xref: /openbmc/linux/drivers/scsi/csiostor/csio_hw.c (revision 5b394b2d)
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
45 
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
49 
50 int csio_dbg_level = 0xFEFF;
51 unsigned int csio_port_mask = 0xf;
52 
53 /* Default FW event queue entries. */
54 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55 
56 /* Default MSI param level */
57 int csio_msi = 2;
58 
59 /* FCoE function instances */
60 static int dev_num;
61 
62 /* FCoE Adapter types & its description */
63 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64 	{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65 	{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66 	{"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67 	{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68 	{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69 	{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70 	{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71 	{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72 	{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73 	{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74 	{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75 	{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76 	{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77 	{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78 	{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79 	{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80 	{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81 	{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82 	{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83 	{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84 	{"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85 	{"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
86 };
87 
88 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89 static void csio_hw_mbm_cleanup(struct csio_hw *);
90 
91 /* State machine forward declarations */
92 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
101 
102 static void csio_hw_initialize(struct csio_hw *hw);
103 static void csio_evtq_stop(struct csio_hw *hw);
104 static void csio_evtq_start(struct csio_hw *hw);
105 
106 int csio_is_hw_ready(struct csio_hw *hw)
107 {
108 	return csio_match_state(hw, csio_hws_ready);
109 }
110 
111 int csio_is_hw_removing(struct csio_hw *hw)
112 {
113 	return csio_match_state(hw, csio_hws_removing);
114 }
115 
116 
117 /*
118  *	csio_hw_wait_op_done_val - wait until an operation is completed
119  *	@hw: the HW module
120  *	@reg: the register to check for completion
121  *	@mask: a single-bit field within @reg that indicates completion
122  *	@polarity: the value of the field when the operation is completed
123  *	@attempts: number of check iterations
124  *	@delay: delay in usecs between iterations
125  *	@valp: where to store the value of the register at completion time
126  *
127  *	Wait until an operation is completed by checking a bit in a register
128  *	up to @attempts times.  If @valp is not NULL the value of the register
129  *	at the time it indicated completion is stored there.  Returns 0 if the
130  *	operation completes and	-EAGAIN	otherwise.
131  */
132 int
133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134 			 int polarity, int attempts, int delay, uint32_t *valp)
135 {
136 	uint32_t val;
137 	while (1) {
138 		val = csio_rd_reg32(hw, reg);
139 
140 		if (!!(val & mask) == polarity) {
141 			if (valp)
142 				*valp = val;
143 			return 0;
144 		}
145 
146 		if (--attempts == 0)
147 			return -EAGAIN;
148 		if (delay)
149 			udelay(delay);
150 	}
151 }
152 
153 /*
154  *	csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155  *	@hw: the adapter
156  *	@addr: the indirect TP register address
157  *	@mask: specifies the field within the register to modify
158  *	@val: new value for the field
159  *
160  *	Sets a field of an indirect TP register to the given value.
161  */
162 void
163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164 			unsigned int mask, unsigned int val)
165 {
166 	csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167 	val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168 	csio_wr_reg32(hw, val, TP_PIO_DATA_A);
169 }
170 
171 void
172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173 		   uint32_t value)
174 {
175 	uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
176 
177 	csio_wr_reg32(hw, val | value, reg);
178 	/* Flush */
179 	csio_rd_reg32(hw, reg);
180 
181 }
182 
183 static int
184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
185 {
186 	return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187 					    addr, len, buf, 0);
188 }
189 
190 /*
191  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
192  */
193 #define EEPROM_MAX_RD_POLL	40
194 #define EEPROM_MAX_WR_POLL	6
195 #define EEPROM_STAT_ADDR	0x7bfc
196 #define VPD_BASE		0x400
197 #define VPD_BASE_OLD		0
198 #define VPD_LEN			1024
199 #define VPD_INFO_FLD_HDR_SIZE	3
200 
201 /*
202  *	csio_hw_seeprom_read - read a serial EEPROM location
203  *	@hw: hw to read
204  *	@addr: EEPROM virtual address
205  *	@data: where to store the read data
206  *
207  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
208  *	VPD capability.  Note that this function must be called with a virtual
209  *	address.
210  */
211 static int
212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
213 {
214 	uint16_t val = 0;
215 	int attempts = EEPROM_MAX_RD_POLL;
216 	uint32_t base = hw->params.pci.vpd_cap_addr;
217 
218 	if (addr >= EEPROMVSIZE || (addr & 3))
219 		return -EINVAL;
220 
221 	pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
222 
223 	do {
224 		udelay(10);
225 		pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
227 
228 	if (!(val & PCI_VPD_ADDR_F)) {
229 		csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230 		return -EINVAL;
231 	}
232 
233 	pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234 	*data = le32_to_cpu(*(__le32 *)data);
235 
236 	return 0;
237 }
238 
239 /*
240  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
241  * VPD-R sections.
242  */
243 struct t4_vpd_hdr {
244 	u8  id_tag;
245 	u8  id_len[2];
246 	u8  id_data[ID_LEN];
247 	u8  vpdr_tag;
248 	u8  vpdr_len[2];
249 };
250 
251 /*
252  *	csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253  *				      the VPD
254  *	@v: Pointer to buffered vpd data structure
255  *	@kw: The keyword to search for
256  *
257  *	Returns the value of the information field keyword or
258  *	-EINVAL otherwise.
259  */
260 static int
261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
262 {
263 	int32_t i;
264 	int32_t offset , len;
265 	const uint8_t *buf = &v->id_tag;
266 	const uint8_t *vpdr_len = &v->vpdr_tag;
267 	offset = sizeof(struct t4_vpd_hdr);
268 	len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
269 
270 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271 		return -EINVAL;
272 
273 	for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274 		if (memcmp(buf + i , kw, 2) == 0) {
275 			i += VPD_INFO_FLD_HDR_SIZE;
276 			return i;
277 		}
278 
279 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
280 	}
281 
282 	return -EINVAL;
283 }
284 
285 static int
286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
287 {
288 	*pos = pci_find_capability(pdev, cap);
289 	if (*pos)
290 		return 0;
291 
292 	return -1;
293 }
294 
295 /*
296  *	csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297  *	@hw: HW module
298  *	@p: where to store the parameters
299  *
300  *	Reads card parameters stored in VPD EEPROM.
301  */
302 static int
303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
304 {
305 	int i, ret, ec, sn, addr;
306 	uint8_t *vpd, csum;
307 	const struct t4_vpd_hdr *v;
308 	/* To get around compilation warning from strstrip */
309 	char *s;
310 
311 	if (csio_is_valid_vpd(hw))
312 		return 0;
313 
314 	ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315 				  &hw->params.pci.vpd_cap_addr);
316 	if (ret)
317 		return -EINVAL;
318 
319 	vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320 	if (vpd == NULL)
321 		return -ENOMEM;
322 
323 	/*
324 	 * Card information normally starts at VPD_BASE but early cards had
325 	 * it at 0.
326 	 */
327 	ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328 	addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
329 
330 	for (i = 0; i < VPD_LEN; i += 4) {
331 		ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332 		if (ret) {
333 			kfree(vpd);
334 			return ret;
335 		}
336 	}
337 
338 	/* Reset the VPD flag! */
339 	hw->flags &= (~CSIO_HWF_VPD_VALID);
340 
341 	v = (const struct t4_vpd_hdr *)vpd;
342 
343 #define FIND_VPD_KW(var, name) do { \
344 	var = csio_hw_get_vpd_keyword_val(v, name); \
345 	if (var < 0) { \
346 		csio_err(hw, "missing VPD keyword " name "\n"); \
347 		kfree(vpd); \
348 		return -EINVAL; \
349 	} \
350 } while (0)
351 
352 	FIND_VPD_KW(i, "RV");
353 	for (csum = 0; i >= 0; i--)
354 		csum += vpd[i];
355 
356 	if (csum) {
357 		csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358 		kfree(vpd);
359 		return -EINVAL;
360 	}
361 	FIND_VPD_KW(ec, "EC");
362 	FIND_VPD_KW(sn, "SN");
363 #undef FIND_VPD_KW
364 
365 	memcpy(p->id, v->id_data, ID_LEN);
366 	s = strstrip(p->id);
367 	memcpy(p->ec, vpd + ec, EC_LEN);
368 	s = strstrip(p->ec);
369 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371 	s = strstrip(p->sn);
372 
373 	csio_valid_vpd_copied(hw);
374 
375 	kfree(vpd);
376 	return 0;
377 }
378 
379 /*
380  *	csio_hw_sf1_read - read data from the serial flash
381  *	@hw: the HW module
382  *	@byte_cnt: number of bytes to read
383  *	@cont: whether another operation will be chained
384  *      @lock: whether to lock SF for PL access only
385  *	@valp: where to store the read data
386  *
387  *	Reads up to 4 bytes of data from the serial flash.  The location of
388  *	the read needs to be specified prior to calling this by issuing the
389  *	appropriate commands to the serial flash.
390  */
391 static int
392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393 		 int32_t lock, uint32_t *valp)
394 {
395 	int ret;
396 
397 	if (!byte_cnt || byte_cnt > 4)
398 		return -EINVAL;
399 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400 		return -EBUSY;
401 
402 	csio_wr_reg32(hw,  SF_LOCK_V(lock) | SF_CONT_V(cont) |
403 		      BYTECNT_V(byte_cnt - 1), SF_OP_A);
404 	ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405 				       10, NULL);
406 	if (!ret)
407 		*valp = csio_rd_reg32(hw, SF_DATA_A);
408 	return ret;
409 }
410 
411 /*
412  *	csio_hw_sf1_write - write data to the serial flash
413  *	@hw: the HW module
414  *	@byte_cnt: number of bytes to write
415  *	@cont: whether another operation will be chained
416  *      @lock: whether to lock SF for PL access only
417  *	@val: value to write
418  *
419  *	Writes up to 4 bytes of data to the serial flash.  The location of
420  *	the write needs to be specified prior to calling this by issuing the
421  *	appropriate commands to the serial flash.
422  */
423 static int
424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425 		  int32_t lock, uint32_t val)
426 {
427 	if (!byte_cnt || byte_cnt > 4)
428 		return -EINVAL;
429 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430 		return -EBUSY;
431 
432 	csio_wr_reg32(hw, val, SF_DATA_A);
433 	csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434 		      OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
435 
436 	return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437 					10, NULL);
438 }
439 
440 /*
441  *	csio_hw_flash_wait_op - wait for a flash operation to complete
442  *	@hw: the HW module
443  *	@attempts: max number of polls of the status register
444  *	@delay: delay between polls in ms
445  *
446  *	Wait for a flash operation to complete by polling the status register.
447  */
448 static int
449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
450 {
451 	int ret;
452 	uint32_t status;
453 
454 	while (1) {
455 		ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456 		if (ret != 0)
457 			return ret;
458 
459 		ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460 		if (ret != 0)
461 			return ret;
462 
463 		if (!(status & 1))
464 			return 0;
465 		if (--attempts == 0)
466 			return -EAGAIN;
467 		if (delay)
468 			msleep(delay);
469 	}
470 }
471 
472 /*
473  *	csio_hw_read_flash - read words from serial flash
474  *	@hw: the HW module
475  *	@addr: the start address for the read
476  *	@nwords: how many 32-bit words to read
477  *	@data: where to store the read data
478  *	@byte_oriented: whether to store data as bytes or as words
479  *
480  *	Read the specified number of 32-bit words from the serial flash.
481  *	If @byte_oriented is set the read data is stored as a byte array
482  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
483  *	natural endianess.
484  */
485 static int
486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487 		  uint32_t *data, int32_t byte_oriented)
488 {
489 	int ret;
490 
491 	if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492 		return -EINVAL;
493 
494 	addr = swab32(addr) | SF_RD_DATA_FAST;
495 
496 	ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497 	if (ret != 0)
498 		return ret;
499 
500 	ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501 	if (ret != 0)
502 		return ret;
503 
504 	for ( ; nwords; nwords--, data++) {
505 		ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506 		if (nwords == 1)
507 			csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
508 		if (ret)
509 			return ret;
510 		if (byte_oriented)
511 			*data = (__force __u32) htonl(*data);
512 	}
513 	return 0;
514 }
515 
516 /*
517  *	csio_hw_write_flash - write up to a page of data to the serial flash
518  *	@hw: the hw
519  *	@addr: the start address to write
520  *	@n: length of data to write in bytes
521  *	@data: the data to write
522  *
523  *	Writes up to a page of data (256 bytes) to the serial flash starting
524  *	at the given address.  All the data must be written to the same page.
525  */
526 static int
527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528 		    uint32_t n, const uint8_t *data)
529 {
530 	int ret = -EINVAL;
531 	uint32_t buf[64];
532 	uint32_t i, c, left, val, offset = addr & 0xff;
533 
534 	if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535 		return -EINVAL;
536 
537 	val = swab32(addr) | SF_PROG_PAGE;
538 
539 	ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540 	if (ret != 0)
541 		goto unlock;
542 
543 	ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544 	if (ret != 0)
545 		goto unlock;
546 
547 	for (left = n; left; left -= c) {
548 		c = min(left, 4U);
549 		for (val = 0, i = 0; i < c; ++i)
550 			val = (val << 8) + *data++;
551 
552 		ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553 		if (ret)
554 			goto unlock;
555 	}
556 	ret = csio_hw_flash_wait_op(hw, 8, 1);
557 	if (ret)
558 		goto unlock;
559 
560 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
561 
562 	/* Read the page to verify the write succeeded */
563 	ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564 	if (ret)
565 		return ret;
566 
567 	if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568 		csio_err(hw,
569 			 "failed to correctly write the flash page at %#x\n",
570 			 addr);
571 		return -EINVAL;
572 	}
573 
574 	return 0;
575 
576 unlock:
577 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
578 	return ret;
579 }
580 
581 /*
582  *	csio_hw_flash_erase_sectors - erase a range of flash sectors
583  *	@hw: the HW module
584  *	@start: the first sector to erase
585  *	@end: the last sector to erase
586  *
587  *	Erases the sectors in the given inclusive range.
588  */
589 static int
590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
591 {
592 	int ret = 0;
593 
594 	while (start <= end) {
595 
596 		ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597 		if (ret != 0)
598 			goto out;
599 
600 		ret = csio_hw_sf1_write(hw, 4, 0, 1,
601 					SF_ERASE_SECTOR | (start << 8));
602 		if (ret != 0)
603 			goto out;
604 
605 		ret = csio_hw_flash_wait_op(hw, 14, 500);
606 		if (ret != 0)
607 			goto out;
608 
609 		start++;
610 	}
611 out:
612 	if (ret)
613 		csio_err(hw, "erase of flash sector %d failed, error %d\n",
614 			 start, ret);
615 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
616 	return 0;
617 }
618 
619 static void
620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
621 {
622 	csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623 		    FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624 		    FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625 		    FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626 		    FW_HDR_FW_VER_BUILD_G(hw->fwrev));
627 }
628 
629 /*
630  * csio_hw_get_fw_version - read the firmware version
631  * @hw: HW module
632  * @vers: where to place the version
633  *
634  * Reads the FW version from flash.
635  */
636 static int
637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
638 {
639 	return csio_hw_read_flash(hw, FLASH_FW_START +
640 				  offsetof(struct fw_hdr, fw_ver), 1,
641 				  vers, 0);
642 }
643 
644 /*
645  *	csio_hw_get_tp_version - read the TP microcode version
646  *	@hw: HW module
647  *	@vers: where to place the version
648  *
649  *	Reads the TP microcode version from flash.
650  */
651 static int
652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
653 {
654 	return csio_hw_read_flash(hw, FLASH_FW_START +
655 			offsetof(struct fw_hdr, tp_microcode_ver), 1,
656 			vers, 0);
657 }
658 
659 /*
660  * csio_hw_fw_dload - download firmware.
661  * @hw: HW module
662  * @fw_data: firmware image to write.
663  * @size: image size
664  *
665  * Write the supplied firmware image to the card's serial flash.
666  */
667 static int
668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
669 {
670 	uint32_t csum;
671 	int32_t addr;
672 	int ret;
673 	uint32_t i;
674 	uint8_t first_page[SF_PAGE_SIZE];
675 	const __be32 *p = (const __be32 *)fw_data;
676 	struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677 	uint32_t sf_sec_size;
678 
679 	if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680 		csio_err(hw, "Serial Flash data invalid\n");
681 		return -EINVAL;
682 	}
683 
684 	if (!size) {
685 		csio_err(hw, "FW image has no data\n");
686 		return -EINVAL;
687 	}
688 
689 	if (size & 511) {
690 		csio_err(hw, "FW image size not multiple of 512 bytes\n");
691 		return -EINVAL;
692 	}
693 
694 	if (ntohs(hdr->len512) * 512 != size) {
695 		csio_err(hw, "FW image size differs from size in FW header\n");
696 		return -EINVAL;
697 	}
698 
699 	if (size > FLASH_FW_MAX_SIZE) {
700 		csio_err(hw, "FW image too large, max is %u bytes\n",
701 			    FLASH_FW_MAX_SIZE);
702 		return -EINVAL;
703 	}
704 
705 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706 		csum += ntohl(p[i]);
707 
708 	if (csum != 0xffffffff) {
709 		csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710 		return -EINVAL;
711 	}
712 
713 	sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
715 
716 	csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717 			  FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
718 
719 	ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720 					  FLASH_FW_START_SEC + i - 1);
721 	if (ret) {
722 		csio_err(hw, "Flash Erase failed\n");
723 		goto out;
724 	}
725 
726 	/*
727 	 * We write the correct version at the end so the driver can see a bad
728 	 * version if the FW write fails.  Start by writing a copy of the
729 	 * first page with a bad version.
730 	 */
731 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
732 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733 	ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734 	if (ret)
735 		goto out;
736 
737 	csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738 		    FW_IMG_START, FW_IMG_START + size);
739 
740 	addr = FLASH_FW_START;
741 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742 		addr += SF_PAGE_SIZE;
743 		fw_data += SF_PAGE_SIZE;
744 		ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745 		if (ret)
746 			goto out;
747 	}
748 
749 	ret = csio_hw_write_flash(hw,
750 				  FLASH_FW_START +
751 					offsetof(struct fw_hdr, fw_ver),
752 				  sizeof(hdr->fw_ver),
753 				  (const uint8_t *)&hdr->fw_ver);
754 
755 out:
756 	if (ret)
757 		csio_err(hw, "firmware download failed, error %d\n", ret);
758 	return ret;
759 }
760 
761 static int
762 csio_hw_get_flash_params(struct csio_hw *hw)
763 {
764 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
765 	 * to the preexisting code.  All flash parts have 64KB sectors.
766 	 */
767 	static struct flash_desc {
768 		u32 vendor_and_model_id;
769 		u32 size_mb;
770 	} supported_flash[] = {
771 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
772 	};
773 
774 	u32 part, manufacturer;
775 	u32 density, size = 0;
776 	u32 flashid = 0;
777 	int ret;
778 
779 	ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
780 	if (!ret)
781 		ret = csio_hw_sf1_read(hw, 3, 0, 1, &flashid);
782 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
783 	if (ret)
784 		return ret;
785 
786 	/* Check to see if it's one of our non-standard supported Flash parts.
787 	 */
788 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
789 		if (supported_flash[part].vendor_and_model_id == flashid) {
790 			hw->params.sf_size = supported_flash[part].size_mb;
791 			hw->params.sf_nsec =
792 				hw->params.sf_size / SF_SEC_SIZE;
793 			goto found;
794 		}
795 
796 	/* Decode Flash part size.  The code below looks repetative with
797 	 * common encodings, but that's not guaranteed in the JEDEC
798 	 * specification for the Read JADEC ID command.  The only thing that
799 	 * we're guaranteed by the JADEC specification is where the
800 	 * Manufacturer ID is in the returned result.  After that each
801 	 * Manufacturer ~could~ encode things completely differently.
802 	 * Note, all Flash parts must have 64KB sectors.
803 	 */
804 	manufacturer = flashid & 0xff;
805 	switch (manufacturer) {
806 	case 0x20: { /* Micron/Numonix */
807 		/* This Density -> Size decoding table is taken from Micron
808 		 * Data Sheets.
809 		 */
810 		density = (flashid >> 16) & 0xff;
811 		switch (density) {
812 		case 0x14 ... 0x19: /* 1MB - 32MB */
813 			size = 1 << density;
814 			break;
815 		case 0x20: /* 64MB */
816 			size = 1 << 26;
817 			break;
818 		case 0x21: /* 128MB */
819 			size = 1 << 27;
820 			break;
821 		case 0x22: /* 256MB */
822 			size = 1 << 28;
823 		}
824 		break;
825 	}
826 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
827 		/* This Density -> Size decoding table is taken from ISSI
828 		 * Data Sheets.
829 		 */
830 		density = (flashid >> 16) & 0xff;
831 		switch (density) {
832 		case 0x16: /* 32 MB */
833 			size = 1 << 25;
834 			break;
835 		case 0x17: /* 64MB */
836 			size = 1 << 26;
837 		}
838 		break;
839 	}
840 	case 0xc2: /* Macronix */
841 	case 0xef: /* Winbond */ {
842 		/* This Density -> Size decoding table is taken from
843 		 * Macronix and Winbond Data Sheets.
844 		 */
845 		density = (flashid >> 16) & 0xff;
846 		switch (density) {
847 		case 0x17: /* 8MB */
848 		case 0x18: /* 16MB */
849 			size = 1 << density;
850 		}
851 	}
852 	}
853 
854 	/* If we didn't recognize the FLASH part, that's no real issue: the
855 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
856 	 * use a FLASH part which is at least 4MB in size and has 64KB
857 	 * sectors.  The unrecognized FLASH part is likely to be much larger
858 	 * than 4MB, but that's all we really need.
859 	 */
860 	if (size == 0) {
861 		csio_warn(hw, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
862 			  flashid);
863 		size = 1 << 22;
864 	}
865 
866 	/* Store decoded Flash size */
867 	hw->params.sf_size = size;
868 	hw->params.sf_nsec = size / SF_SEC_SIZE;
869 
870 found:
871 	if (hw->params.sf_size < FLASH_MIN_SIZE)
872 		csio_warn(hw, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
873 			  flashid, hw->params.sf_size, FLASH_MIN_SIZE);
874 	return 0;
875 }
876 
877 /*****************************************************************************/
878 /* HW State machine assists                                                  */
879 /*****************************************************************************/
880 
881 static int
882 csio_hw_dev_ready(struct csio_hw *hw)
883 {
884 	uint32_t reg;
885 	int cnt = 6;
886 	int src_pf;
887 
888 	while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
889 	       (--cnt != 0))
890 		mdelay(100);
891 
892 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
893 		src_pf = SOURCEPF_G(reg);
894 	else
895 		src_pf = T6_SOURCEPF_G(reg);
896 
897 	if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
898 			   (src_pf >= CSIO_MAX_PFN))) {
899 		csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
900 		return -EIO;
901 	}
902 
903 	hw->pfn = src_pf;
904 
905 	return 0;
906 }
907 
908 /*
909  * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
910  * @hw: HW module
911  * @state: Device state
912  *
913  * FW_HELLO_CMD has to be polled for completion.
914  */
915 static int
916 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
917 {
918 	struct csio_mb	*mbp;
919 	int	rv = 0;
920 	enum fw_retval retval;
921 	uint8_t mpfn;
922 	char state_str[16];
923 	int retries = FW_CMD_HELLO_RETRIES;
924 
925 	memset(state_str, 0, sizeof(state_str));
926 
927 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
928 	if (!mbp) {
929 		rv = -ENOMEM;
930 		CSIO_INC_STATS(hw, n_err_nomem);
931 		goto out;
932 	}
933 
934 retry:
935 	csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
936 		      hw->pfn, CSIO_MASTER_MAY, NULL);
937 
938 	rv = csio_mb_issue(hw, mbp);
939 	if (rv) {
940 		csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
941 		goto out_free_mb;
942 	}
943 
944 	csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
945 	if (retval != FW_SUCCESS) {
946 		csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
947 		rv = -EINVAL;
948 		goto out_free_mb;
949 	}
950 
951 	/* Firmware has designated us to be master */
952 	if (hw->pfn == mpfn) {
953 		hw->flags |= CSIO_HWF_MASTER;
954 	} else if (*state == CSIO_DEV_STATE_UNINIT) {
955 		/*
956 		 * If we're not the Master PF then we need to wait around for
957 		 * the Master PF Driver to finish setting up the adapter.
958 		 *
959 		 * Note that we also do this wait if we're a non-Master-capable
960 		 * PF and there is no current Master PF; a Master PF may show up
961 		 * momentarily and we wouldn't want to fail pointlessly.  (This
962 		 * can happen when an OS loads lots of different drivers rapidly
963 		 * at the same time). In this case, the Master PF returned by
964 		 * the firmware will be PCIE_FW_MASTER_MASK so the test below
965 		 * will work ...
966 		 */
967 
968 		int waiting = FW_CMD_HELLO_TIMEOUT;
969 
970 		/*
971 		 * Wait for the firmware to either indicate an error or
972 		 * initialized state.  If we see either of these we bail out
973 		 * and report the issue to the caller.  If we exhaust the
974 		 * "hello timeout" and we haven't exhausted our retries, try
975 		 * again.  Otherwise bail with a timeout error.
976 		 */
977 		for (;;) {
978 			uint32_t pcie_fw;
979 
980 			spin_unlock_irq(&hw->lock);
981 			msleep(50);
982 			spin_lock_irq(&hw->lock);
983 			waiting -= 50;
984 
985 			/*
986 			 * If neither Error nor Initialialized are indicated
987 			 * by the firmware keep waiting till we exaust our
988 			 * timeout ... and then retry if we haven't exhausted
989 			 * our retries ...
990 			 */
991 			pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
992 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
993 				if (waiting <= 0) {
994 					if (retries-- > 0)
995 						goto retry;
996 
997 					rv = -ETIMEDOUT;
998 					break;
999 				}
1000 				continue;
1001 			}
1002 
1003 			/*
1004 			 * We either have an Error or Initialized condition
1005 			 * report errors preferentially.
1006 			 */
1007 			if (state) {
1008 				if (pcie_fw & PCIE_FW_ERR_F) {
1009 					*state = CSIO_DEV_STATE_ERR;
1010 					rv = -ETIMEDOUT;
1011 				} else if (pcie_fw & PCIE_FW_INIT_F)
1012 					*state = CSIO_DEV_STATE_INIT;
1013 			}
1014 
1015 			/*
1016 			 * If we arrived before a Master PF was selected and
1017 			 * there's not a valid Master PF, grab its identity
1018 			 * for our caller.
1019 			 */
1020 			if (mpfn == PCIE_FW_MASTER_M &&
1021 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
1022 				mpfn = PCIE_FW_MASTER_G(pcie_fw);
1023 			break;
1024 		}
1025 		hw->flags &= ~CSIO_HWF_MASTER;
1026 	}
1027 
1028 	switch (*state) {
1029 	case CSIO_DEV_STATE_UNINIT:
1030 		strcpy(state_str, "Initializing");
1031 		break;
1032 	case CSIO_DEV_STATE_INIT:
1033 		strcpy(state_str, "Initialized");
1034 		break;
1035 	case CSIO_DEV_STATE_ERR:
1036 		strcpy(state_str, "Error");
1037 		break;
1038 	default:
1039 		strcpy(state_str, "Unknown");
1040 		break;
1041 	}
1042 
1043 	if (hw->pfn == mpfn)
1044 		csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1045 			hw->pfn, state_str);
1046 	else
1047 		csio_info(hw,
1048 		    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1049 		    hw->pfn, mpfn, state_str);
1050 
1051 out_free_mb:
1052 	mempool_free(mbp, hw->mb_mempool);
1053 out:
1054 	return rv;
1055 }
1056 
1057 /*
1058  * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1059  * @hw: HW module
1060  *
1061  */
1062 static int
1063 csio_do_bye(struct csio_hw *hw)
1064 {
1065 	struct csio_mb	*mbp;
1066 	enum fw_retval retval;
1067 
1068 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1069 	if (!mbp) {
1070 		CSIO_INC_STATS(hw, n_err_nomem);
1071 		return -ENOMEM;
1072 	}
1073 
1074 	csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1075 
1076 	if (csio_mb_issue(hw, mbp)) {
1077 		csio_err(hw, "Issue of BYE command failed\n");
1078 		mempool_free(mbp, hw->mb_mempool);
1079 		return -EINVAL;
1080 	}
1081 
1082 	retval = csio_mb_fw_retval(mbp);
1083 	if (retval != FW_SUCCESS) {
1084 		mempool_free(mbp, hw->mb_mempool);
1085 		return -EINVAL;
1086 	}
1087 
1088 	mempool_free(mbp, hw->mb_mempool);
1089 
1090 	return 0;
1091 }
1092 
1093 /*
1094  * csio_do_reset- Perform the device reset.
1095  * @hw: HW module
1096  * @fw_rst: FW reset
1097  *
1098  * If fw_rst is set, issues FW reset mbox cmd otherwise
1099  * does PIO reset.
1100  * Performs reset of the function.
1101  */
1102 static int
1103 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1104 {
1105 	struct csio_mb	*mbp;
1106 	enum fw_retval retval;
1107 
1108 	if (!fw_rst) {
1109 		/* PIO reset */
1110 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1111 		mdelay(2000);
1112 		return 0;
1113 	}
1114 
1115 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1116 	if (!mbp) {
1117 		CSIO_INC_STATS(hw, n_err_nomem);
1118 		return -ENOMEM;
1119 	}
1120 
1121 	csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1122 		      PIORSTMODE_F | PIORST_F, 0, NULL);
1123 
1124 	if (csio_mb_issue(hw, mbp)) {
1125 		csio_err(hw, "Issue of RESET command failed.n");
1126 		mempool_free(mbp, hw->mb_mempool);
1127 		return -EINVAL;
1128 	}
1129 
1130 	retval = csio_mb_fw_retval(mbp);
1131 	if (retval != FW_SUCCESS) {
1132 		csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1133 		mempool_free(mbp, hw->mb_mempool);
1134 		return -EINVAL;
1135 	}
1136 
1137 	mempool_free(mbp, hw->mb_mempool);
1138 
1139 	return 0;
1140 }
1141 
1142 static int
1143 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1144 {
1145 	struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1146 	uint16_t caps;
1147 
1148 	caps = ntohs(rsp->fcoecaps);
1149 
1150 	if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1151 		csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1152 		return -EINVAL;
1153 	}
1154 
1155 	if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1156 		csio_err(hw, "No FCoE Control Offload capability\n");
1157 		return -EINVAL;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  *	csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1165  *	@hw: the HW module
1166  *	@mbox: mailbox to use for the FW RESET command (if desired)
1167  *	@force: force uP into RESET even if FW RESET command fails
1168  *
1169  *	Issues a RESET command to firmware (if desired) with a HALT indication
1170  *	and then puts the microprocessor into RESET state.  The RESET command
1171  *	will only be issued if a legitimate mailbox is provided (mbox <=
1172  *	PCIE_FW_MASTER_MASK).
1173  *
1174  *	This is generally used in order for the host to safely manipulate the
1175  *	adapter without fear of conflicting with whatever the firmware might
1176  *	be doing.  The only way out of this state is to RESTART the firmware
1177  *	...
1178  */
1179 static int
1180 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1181 {
1182 	enum fw_retval retval = 0;
1183 
1184 	/*
1185 	 * If a legitimate mailbox is provided, issue a RESET command
1186 	 * with a HALT indication.
1187 	 */
1188 	if (mbox <= PCIE_FW_MASTER_M) {
1189 		struct csio_mb	*mbp;
1190 
1191 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1192 		if (!mbp) {
1193 			CSIO_INC_STATS(hw, n_err_nomem);
1194 			return -ENOMEM;
1195 		}
1196 
1197 		csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1198 			      PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1199 			      NULL);
1200 
1201 		if (csio_mb_issue(hw, mbp)) {
1202 			csio_err(hw, "Issue of RESET command failed!\n");
1203 			mempool_free(mbp, hw->mb_mempool);
1204 			return -EINVAL;
1205 		}
1206 
1207 		retval = csio_mb_fw_retval(mbp);
1208 		mempool_free(mbp, hw->mb_mempool);
1209 	}
1210 
1211 	/*
1212 	 * Normally we won't complete the operation if the firmware RESET
1213 	 * command fails but if our caller insists we'll go ahead and put the
1214 	 * uP into RESET.  This can be useful if the firmware is hung or even
1215 	 * missing ...  We'll have to take the risk of putting the uP into
1216 	 * RESET without the cooperation of firmware in that case.
1217 	 *
1218 	 * We also force the firmware's HALT flag to be on in case we bypassed
1219 	 * the firmware RESET command above or we're dealing with old firmware
1220 	 * which doesn't have the HALT capability.  This will serve as a flag
1221 	 * for the incoming firmware to know that it's coming out of a HALT
1222 	 * rather than a RESET ... if it's new enough to understand that ...
1223 	 */
1224 	if (retval == 0 || force) {
1225 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1226 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1227 				   PCIE_FW_HALT_F);
1228 	}
1229 
1230 	/*
1231 	 * And we always return the result of the firmware RESET command
1232 	 * even when we force the uP into RESET ...
1233 	 */
1234 	return retval ? -EINVAL : 0;
1235 }
1236 
1237 /*
1238  *	csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1239  *	@hw: the HW module
1240  *	@reset: if we want to do a RESET to restart things
1241  *
1242  *	Restart firmware previously halted by csio_hw_fw_halt().  On successful
1243  *	return the previous PF Master remains as the new PF Master and there
1244  *	is no need to issue a new HELLO command, etc.
1245  *
1246  *	We do this in two ways:
1247  *
1248  *	 1. If we're dealing with newer firmware we'll simply want to take
1249  *	    the chip's microprocessor out of RESET.  This will cause the
1250  *	    firmware to start up from its start vector.  And then we'll loop
1251  *	    until the firmware indicates it's started again (PCIE_FW.HALT
1252  *	    reset to 0) or we timeout.
1253  *
1254  *	 2. If we're dealing with older firmware then we'll need to RESET
1255  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
1256  *	    flag and automatically RESET itself on startup.
1257  */
1258 static int
1259 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1260 {
1261 	if (reset) {
1262 		/*
1263 		 * Since we're directing the RESET instead of the firmware
1264 		 * doing it automatically, we need to clear the PCIE_FW.HALT
1265 		 * bit.
1266 		 */
1267 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1268 
1269 		/*
1270 		 * If we've been given a valid mailbox, first try to get the
1271 		 * firmware to do the RESET.  If that works, great and we can
1272 		 * return success.  Otherwise, if we haven't been given a
1273 		 * valid mailbox or the RESET command failed, fall back to
1274 		 * hitting the chip with a hammer.
1275 		 */
1276 		if (mbox <= PCIE_FW_MASTER_M) {
1277 			csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1278 			msleep(100);
1279 			if (csio_do_reset(hw, true) == 0)
1280 				return 0;
1281 		}
1282 
1283 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1284 		msleep(2000);
1285 	} else {
1286 		int ms;
1287 
1288 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1289 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1290 			if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1291 				return 0;
1292 			msleep(100);
1293 			ms += 100;
1294 		}
1295 		return -ETIMEDOUT;
1296 	}
1297 	return 0;
1298 }
1299 
1300 /*
1301  *	csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1302  *	@hw: the HW module
1303  *	@mbox: mailbox to use for the FW RESET command (if desired)
1304  *	@fw_data: the firmware image to write
1305  *	@size: image size
1306  *	@force: force upgrade even if firmware doesn't cooperate
1307  *
1308  *	Perform all of the steps necessary for upgrading an adapter's
1309  *	firmware image.  Normally this requires the cooperation of the
1310  *	existing firmware in order to halt all existing activities
1311  *	but if an invalid mailbox token is passed in we skip that step
1312  *	(though we'll still put the adapter microprocessor into RESET in
1313  *	that case).
1314  *
1315  *	On successful return the new firmware will have been loaded and
1316  *	the adapter will have been fully RESET losing all previous setup
1317  *	state.  On unsuccessful return the adapter may be completely hosed ...
1318  *	positive errno indicates that the adapter is ~probably~ intact, a
1319  *	negative errno indicates that things are looking bad ...
1320  */
1321 static int
1322 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1323 		  const u8 *fw_data, uint32_t size, int32_t force)
1324 {
1325 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1326 	int reset, ret;
1327 
1328 	ret = csio_hw_fw_halt(hw, mbox, force);
1329 	if (ret != 0 && !force)
1330 		return ret;
1331 
1332 	ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1333 	if (ret != 0)
1334 		return ret;
1335 
1336 	/*
1337 	 * Older versions of the firmware don't understand the new
1338 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1339 	 * restart.  So for newly loaded older firmware we'll have to do the
1340 	 * RESET for it so it starts up on a clean slate.  We can tell if
1341 	 * the newly loaded firmware will handle this right by checking
1342 	 * its header flags to see if it advertises the capability.
1343 	 */
1344 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1345 	return csio_hw_fw_restart(hw, mbox, reset);
1346 }
1347 
1348 /*
1349  * csio_get_device_params - Get device parameters.
1350  * @hw: HW module
1351  *
1352  */
1353 static int
1354 csio_get_device_params(struct csio_hw *hw)
1355 {
1356 	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
1357 	struct csio_mb	*mbp;
1358 	enum fw_retval retval;
1359 	u32 param[6];
1360 	int i, j = 0;
1361 
1362 	/* Initialize portids to -1 */
1363 	for (i = 0; i < CSIO_MAX_PPORTS; i++)
1364 		hw->pport[i].portid = -1;
1365 
1366 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1367 	if (!mbp) {
1368 		CSIO_INC_STATS(hw, n_err_nomem);
1369 		return -ENOMEM;
1370 	}
1371 
1372 	/* Get port vec information. */
1373 	param[0] = FW_PARAM_DEV(PORTVEC);
1374 
1375 	/* Get Core clock. */
1376 	param[1] = FW_PARAM_DEV(CCLK);
1377 
1378 	/* Get EQ id start and end. */
1379 	param[2] = FW_PARAM_PFVF(EQ_START);
1380 	param[3] = FW_PARAM_PFVF(EQ_END);
1381 
1382 	/* Get IQ id start and end. */
1383 	param[4] = FW_PARAM_PFVF(IQFLINT_START);
1384 	param[5] = FW_PARAM_PFVF(IQFLINT_END);
1385 
1386 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1387 		       ARRAY_SIZE(param), param, NULL, false, NULL);
1388 	if (csio_mb_issue(hw, mbp)) {
1389 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1390 		mempool_free(mbp, hw->mb_mempool);
1391 		return -EINVAL;
1392 	}
1393 
1394 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1395 			ARRAY_SIZE(param), param);
1396 	if (retval != FW_SUCCESS) {
1397 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1398 				retval);
1399 		mempool_free(mbp, hw->mb_mempool);
1400 		return -EINVAL;
1401 	}
1402 
1403 	/* cache the information. */
1404 	hw->port_vec = param[0];
1405 	hw->vpd.cclk = param[1];
1406 	wrm->fw_eq_start = param[2];
1407 	wrm->fw_iq_start = param[4];
1408 
1409 	/* Using FW configured max iqs & eqs */
1410 	if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1411 		!csio_is_hw_master(hw)) {
1412 		hw->cfg_niq = param[5] - param[4] + 1;
1413 		hw->cfg_neq = param[3] - param[2] + 1;
1414 		csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1415 			hw->cfg_niq, hw->cfg_neq);
1416 	}
1417 
1418 	hw->port_vec &= csio_port_mask;
1419 
1420 	hw->num_pports	= hweight32(hw->port_vec);
1421 
1422 	csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1423 		    hw->port_vec, hw->num_pports);
1424 
1425 	for (i = 0; i < hw->num_pports; i++) {
1426 		while ((hw->port_vec & (1 << j)) == 0)
1427 			j++;
1428 		hw->pport[i].portid = j++;
1429 		csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1430 	}
1431 	mempool_free(mbp, hw->mb_mempool);
1432 
1433 	return 0;
1434 }
1435 
1436 
1437 /*
1438  * csio_config_device_caps - Get and set device capabilities.
1439  * @hw: HW module
1440  *
1441  */
1442 static int
1443 csio_config_device_caps(struct csio_hw *hw)
1444 {
1445 	struct csio_mb	*mbp;
1446 	enum fw_retval retval;
1447 	int rv = -EINVAL;
1448 
1449 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1450 	if (!mbp) {
1451 		CSIO_INC_STATS(hw, n_err_nomem);
1452 		return -ENOMEM;
1453 	}
1454 
1455 	/* Get device capabilities */
1456 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1457 
1458 	if (csio_mb_issue(hw, mbp)) {
1459 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1460 		goto out;
1461 	}
1462 
1463 	retval = csio_mb_fw_retval(mbp);
1464 	if (retval != FW_SUCCESS) {
1465 		csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1466 		goto out;
1467 	}
1468 
1469 	/* Validate device capabilities */
1470 	rv = csio_hw_validate_caps(hw, mbp);
1471 	if (rv != 0)
1472 		goto out;
1473 
1474 	/* Don't config device capabilities if already configured */
1475 	if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1476 		rv = 0;
1477 		goto out;
1478 	}
1479 
1480 	/* Write back desired device capabilities */
1481 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1482 			    false, true, NULL);
1483 
1484 	if (csio_mb_issue(hw, mbp)) {
1485 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1486 		goto out;
1487 	}
1488 
1489 	retval = csio_mb_fw_retval(mbp);
1490 	if (retval != FW_SUCCESS) {
1491 		csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1492 		goto out;
1493 	}
1494 
1495 	rv = 0;
1496 out:
1497 	mempool_free(mbp, hw->mb_mempool);
1498 	return rv;
1499 }
1500 
1501 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
1502 {
1503 	enum cc_fec cc_fec = 0;
1504 
1505 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1506 		cc_fec |= FEC_RS;
1507 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1508 		cc_fec |= FEC_BASER_RS;
1509 
1510 	return cc_fec;
1511 }
1512 
1513 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
1514 {
1515 	fw_port_cap32_t fw_pause = 0;
1516 
1517 	if (cc_pause & PAUSE_RX)
1518 		fw_pause |= FW_PORT_CAP32_FC_RX;
1519 	if (cc_pause & PAUSE_TX)
1520 		fw_pause |= FW_PORT_CAP32_FC_TX;
1521 
1522 	return fw_pause;
1523 }
1524 
1525 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
1526 {
1527 	fw_port_cap32_t fw_fec = 0;
1528 
1529 	if (cc_fec & FEC_RS)
1530 		fw_fec |= FW_PORT_CAP32_FEC_RS;
1531 	if (cc_fec & FEC_BASER_RS)
1532 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
1533 
1534 	return fw_fec;
1535 }
1536 
1537 /**
1538  * fwcap_to_fwspeed - return highest speed in Port Capabilities
1539  * @acaps: advertised Port Capabilities
1540  *
1541  * Get the highest speed for the port from the advertised Port
1542  * Capabilities.
1543  */
1544 fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
1545 {
1546 	#define TEST_SPEED_RETURN(__caps_speed) \
1547 		do { \
1548 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
1549 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
1550 		} while (0)
1551 
1552 	TEST_SPEED_RETURN(400G);
1553 	TEST_SPEED_RETURN(200G);
1554 	TEST_SPEED_RETURN(100G);
1555 	TEST_SPEED_RETURN(50G);
1556 	TEST_SPEED_RETURN(40G);
1557 	TEST_SPEED_RETURN(25G);
1558 	TEST_SPEED_RETURN(10G);
1559 	TEST_SPEED_RETURN(1G);
1560 	TEST_SPEED_RETURN(100M);
1561 
1562 	#undef TEST_SPEED_RETURN
1563 
1564 	return 0;
1565 }
1566 
1567 /**
1568  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
1569  *      @caps16: a 16-bit Port Capabilities value
1570  *
1571  *      Returns the equivalent 32-bit Port Capabilities value.
1572  */
1573 fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
1574 {
1575 	fw_port_cap32_t caps32 = 0;
1576 
1577 	#define CAP16_TO_CAP32(__cap) \
1578 		do { \
1579 			if (caps16 & FW_PORT_CAP_##__cap) \
1580 				caps32 |= FW_PORT_CAP32_##__cap; \
1581 		} while (0)
1582 
1583 	CAP16_TO_CAP32(SPEED_100M);
1584 	CAP16_TO_CAP32(SPEED_1G);
1585 	CAP16_TO_CAP32(SPEED_25G);
1586 	CAP16_TO_CAP32(SPEED_10G);
1587 	CAP16_TO_CAP32(SPEED_40G);
1588 	CAP16_TO_CAP32(SPEED_100G);
1589 	CAP16_TO_CAP32(FC_RX);
1590 	CAP16_TO_CAP32(FC_TX);
1591 	CAP16_TO_CAP32(ANEG);
1592 	CAP16_TO_CAP32(MDIAUTO);
1593 	CAP16_TO_CAP32(MDISTRAIGHT);
1594 	CAP16_TO_CAP32(FEC_RS);
1595 	CAP16_TO_CAP32(FEC_BASER_RS);
1596 	CAP16_TO_CAP32(802_3_PAUSE);
1597 	CAP16_TO_CAP32(802_3_ASM_DIR);
1598 
1599 	#undef CAP16_TO_CAP32
1600 
1601 	return caps32;
1602 }
1603 
1604 /**
1605  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
1606  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
1607  *
1608  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
1609  *      32-bit Port Capabilities value.
1610  */
1611 fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
1612 {
1613 	fw_port_cap32_t linkattr = 0;
1614 
1615 	/* The format of the Link Status in the old
1616 	 * 16-bit Port Information message isn't the same as the
1617 	 * 16-bit Port Capabilities bitfield used everywhere else.
1618 	 */
1619 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1620 		linkattr |= FW_PORT_CAP32_FC_RX;
1621 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1622 		linkattr |= FW_PORT_CAP32_FC_TX;
1623 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1624 		linkattr |= FW_PORT_CAP32_SPEED_100M;
1625 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1626 		linkattr |= FW_PORT_CAP32_SPEED_1G;
1627 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1628 		linkattr |= FW_PORT_CAP32_SPEED_10G;
1629 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1630 		linkattr |= FW_PORT_CAP32_SPEED_25G;
1631 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1632 		linkattr |= FW_PORT_CAP32_SPEED_40G;
1633 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1634 		linkattr |= FW_PORT_CAP32_SPEED_100G;
1635 
1636 	return linkattr;
1637 }
1638 
1639 /**
1640  *      csio_init_link_config - initialize a link's SW state
1641  *      @lc: pointer to structure holding the link state
1642  *      @pcaps: link Port Capabilities
1643  *      @acaps: link current Advertised Port Capabilities
1644  *
1645  *      Initializes the SW state maintained for each link, including the link's
1646  *      capabilities and default speed/flow-control/autonegotiation settings.
1647  */
1648 static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
1649 				  fw_port_cap32_t acaps)
1650 {
1651 	lc->pcaps = pcaps;
1652 	lc->def_acaps = acaps;
1653 	lc->lpacaps = 0;
1654 	lc->speed_caps = 0;
1655 	lc->speed = 0;
1656 	lc->requested_fc = PAUSE_RX | PAUSE_TX;
1657 	lc->fc = lc->requested_fc;
1658 
1659 	/*
1660 	 * For Forward Error Control, we default to whatever the Firmware
1661 	 * tells us the Link is currently advertising.
1662 	 */
1663 	lc->requested_fec = FEC_AUTO;
1664 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
1665 
1666 	/* If the Port is capable of Auto-Negtotiation, initialize it as
1667 	 * "enabled" and copy over all of the Physical Port Capabilities
1668 	 * to the Advertised Port Capabilities.  Otherwise mark it as
1669 	 * Auto-Negotiate disabled and select the highest supported speed
1670 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
1671 	 * and t4_handle_get_port_info().
1672 	 */
1673 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
1674 		lc->acaps = lc->pcaps & ADVERT_MASK;
1675 		lc->autoneg = AUTONEG_ENABLE;
1676 		lc->requested_fc |= PAUSE_AUTONEG;
1677 	} else {
1678 		lc->acaps = 0;
1679 		lc->autoneg = AUTONEG_DISABLE;
1680 	}
1681 }
1682 
1683 static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps,
1684 			    uint32_t *rcaps)
1685 {
1686 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
1687 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap;
1688 
1689 	lc->link_ok = 0;
1690 
1691 	/*
1692 	 * Convert driver coding of Pause Frame Flow Control settings into the
1693 	 * Firmware's API.
1694 	 */
1695 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
1696 
1697 	/*
1698 	 * Convert Common Code Forward Error Control settings into the
1699 	 * Firmware's API.  If the current Requested FEC has "Automatic"
1700 	 * (IEEE 802.3) specified, then we use whatever the Firmware
1701 	 * sent us as part of it's IEEE 802.3-based interpratation of
1702 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
1703 	 * use whatever is in the current Requested FEC settings.
1704 	 */
1705 	if (lc->requested_fec & FEC_AUTO)
1706 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
1707 	else
1708 		cc_fec = lc->requested_fec;
1709 	fw_fec = cc_to_fwcap_fec(cc_fec);
1710 
1711 	/* Figure out what our Requested Port Capabilities are going to be.
1712 	 * Note parallel structure in t4_handle_get_port_info() and
1713 	 * init_link_config().
1714 	 */
1715 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
1716 		lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
1717 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1718 		lc->fec = cc_fec;
1719 	} else if (lc->autoneg == AUTONEG_DISABLE) {
1720 		lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
1721 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1722 		lc->fec = cc_fec;
1723 	} else {
1724 		lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
1725 	}
1726 
1727 	*rcaps = lrcap;
1728 }
1729 
1730 /*
1731  * csio_enable_ports - Bring up all available ports.
1732  * @hw: HW module.
1733  *
1734  */
1735 static int
1736 csio_enable_ports(struct csio_hw *hw)
1737 {
1738 	struct csio_mb  *mbp;
1739 	u16 fw_caps = FW_CAPS_UNKNOWN;
1740 	enum fw_retval retval;
1741 	uint8_t portid;
1742 	fw_port_cap32_t pcaps, acaps, rcaps;
1743 	int i;
1744 
1745 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1746 	if (!mbp) {
1747 		CSIO_INC_STATS(hw, n_err_nomem);
1748 		return -ENOMEM;
1749 	}
1750 
1751 	for (i = 0; i < hw->num_pports; i++) {
1752 		portid = hw->pport[i].portid;
1753 
1754 		if (fw_caps == FW_CAPS_UNKNOWN) {
1755 			u32 param, val;
1756 
1757 			param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
1758 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
1759 			val = 1;
1760 
1761 			csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO,
1762 				       hw->pfn, 0, 1, &param, &val, false,
1763 				       NULL);
1764 
1765 			if (csio_mb_issue(hw, mbp)) {
1766 				csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n",
1767 					 portid);
1768 				mempool_free(mbp, hw->mb_mempool);
1769 				return -EINVAL;
1770 			}
1771 
1772 			csio_mb_process_read_params_rsp(hw, mbp, &retval, 1,
1773 							&val);
1774 			if (retval != FW_SUCCESS) {
1775 				csio_err(hw, "FW_PARAMS_CMD(r) port:%d failed: 0x%x\n",
1776 					 portid, retval);
1777 				mempool_free(mbp, hw->mb_mempool);
1778 				return -EINVAL;
1779 			}
1780 
1781 			fw_caps = val;
1782 		}
1783 
1784 		/* Read PORT information */
1785 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1786 			     false, 0, fw_caps, NULL);
1787 
1788 		if (csio_mb_issue(hw, mbp)) {
1789 			csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1790 				 portid);
1791 			mempool_free(mbp, hw->mb_mempool);
1792 			return -EINVAL;
1793 		}
1794 
1795 		csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps,
1796 					      &pcaps, &acaps);
1797 		if (retval != FW_SUCCESS) {
1798 			csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1799 				 portid, retval);
1800 			mempool_free(mbp, hw->mb_mempool);
1801 			return -EINVAL;
1802 		}
1803 
1804 		csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps);
1805 
1806 		csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps);
1807 
1808 		/* Write back PORT information */
1809 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1810 			     true, rcaps, fw_caps, NULL);
1811 
1812 		if (csio_mb_issue(hw, mbp)) {
1813 			csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1814 				 portid);
1815 			mempool_free(mbp, hw->mb_mempool);
1816 			return -EINVAL;
1817 		}
1818 
1819 		retval = csio_mb_fw_retval(mbp);
1820 		if (retval != FW_SUCCESS) {
1821 			csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1822 				 portid, retval);
1823 			mempool_free(mbp, hw->mb_mempool);
1824 			return -EINVAL;
1825 		}
1826 
1827 	} /* For all ports */
1828 
1829 	mempool_free(mbp, hw->mb_mempool);
1830 
1831 	return 0;
1832 }
1833 
1834 /*
1835  * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1836  * @hw: HW module
1837  * Issued with lock held.
1838  */
1839 static int
1840 csio_get_fcoe_resinfo(struct csio_hw *hw)
1841 {
1842 	struct csio_fcoe_res_info *res_info = &hw->fres_info;
1843 	struct fw_fcoe_res_info_cmd *rsp;
1844 	struct csio_mb  *mbp;
1845 	enum fw_retval retval;
1846 
1847 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1848 	if (!mbp) {
1849 		CSIO_INC_STATS(hw, n_err_nomem);
1850 		return -ENOMEM;
1851 	}
1852 
1853 	/* Get FCoE FW resource information */
1854 	csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1855 
1856 	if (csio_mb_issue(hw, mbp)) {
1857 		csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1858 		mempool_free(mbp, hw->mb_mempool);
1859 		return -EINVAL;
1860 	}
1861 
1862 	rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1863 	retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1864 	if (retval != FW_SUCCESS) {
1865 		csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1866 			 retval);
1867 		mempool_free(mbp, hw->mb_mempool);
1868 		return -EINVAL;
1869 	}
1870 
1871 	res_info->e_d_tov = ntohs(rsp->e_d_tov);
1872 	res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1873 	res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1874 	res_info->r_r_tov = ntohs(rsp->r_r_tov);
1875 	res_info->max_xchgs = ntohl(rsp->max_xchgs);
1876 	res_info->max_ssns = ntohl(rsp->max_ssns);
1877 	res_info->used_xchgs = ntohl(rsp->used_xchgs);
1878 	res_info->used_ssns = ntohl(rsp->used_ssns);
1879 	res_info->max_fcfs = ntohl(rsp->max_fcfs);
1880 	res_info->max_vnps = ntohl(rsp->max_vnps);
1881 	res_info->used_fcfs = ntohl(rsp->used_fcfs);
1882 	res_info->used_vnps = ntohl(rsp->used_vnps);
1883 
1884 	csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1885 						  res_info->max_xchgs);
1886 	mempool_free(mbp, hw->mb_mempool);
1887 
1888 	return 0;
1889 }
1890 
1891 static int
1892 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1893 {
1894 	struct csio_mb	*mbp;
1895 	enum fw_retval retval;
1896 	u32 _param[1];
1897 
1898 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1899 	if (!mbp) {
1900 		CSIO_INC_STATS(hw, n_err_nomem);
1901 		return -ENOMEM;
1902 	}
1903 
1904 	/*
1905 	 * Find out whether we're dealing with a version of
1906 	 * the firmware which has configuration file support.
1907 	 */
1908 	_param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1909 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1910 
1911 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1912 		       ARRAY_SIZE(_param), _param, NULL, false, NULL);
1913 	if (csio_mb_issue(hw, mbp)) {
1914 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1915 		mempool_free(mbp, hw->mb_mempool);
1916 		return -EINVAL;
1917 	}
1918 
1919 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1920 			ARRAY_SIZE(_param), _param);
1921 	if (retval != FW_SUCCESS) {
1922 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1923 				retval);
1924 		mempool_free(mbp, hw->mb_mempool);
1925 		return -EINVAL;
1926 	}
1927 
1928 	mempool_free(mbp, hw->mb_mempool);
1929 	*param = _param[0];
1930 
1931 	return 0;
1932 }
1933 
1934 static int
1935 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1936 {
1937 	int ret = 0;
1938 	const struct firmware *cf;
1939 	struct pci_dev *pci_dev = hw->pdev;
1940 	struct device *dev = &pci_dev->dev;
1941 	unsigned int mtype = 0, maddr = 0;
1942 	uint32_t *cfg_data;
1943 	int value_to_add = 0;
1944 	const char *fw_cfg_file;
1945 
1946 	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
1947 		fw_cfg_file = FW_CFG_NAME_T5;
1948 	else
1949 		fw_cfg_file = FW_CFG_NAME_T6;
1950 
1951 	if (request_firmware(&cf, fw_cfg_file, dev) < 0) {
1952 		csio_err(hw, "could not find config file %s, err: %d\n",
1953 			 fw_cfg_file, ret);
1954 		return -ENOENT;
1955 	}
1956 
1957 	if (cf->size%4 != 0)
1958 		value_to_add = 4 - (cf->size % 4);
1959 
1960 	cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1961 	if (cfg_data == NULL) {
1962 		ret = -ENOMEM;
1963 		goto leave;
1964 	}
1965 
1966 	memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1967 	if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1968 		ret = -EINVAL;
1969 		goto leave;
1970 	}
1971 
1972 	mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1973 	maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1974 
1975 	ret = csio_memory_write(hw, mtype, maddr,
1976 				cf->size + value_to_add, cfg_data);
1977 
1978 	if ((ret == 0) && (value_to_add != 0)) {
1979 		union {
1980 			u32 word;
1981 			char buf[4];
1982 		} last;
1983 		size_t size = cf->size & ~0x3;
1984 		int i;
1985 
1986 		last.word = cfg_data[size >> 2];
1987 		for (i = value_to_add; i < 4; i++)
1988 			last.buf[i] = 0;
1989 		ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1990 	}
1991 	if (ret == 0) {
1992 		csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
1993 		snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
1994 	}
1995 
1996 leave:
1997 	kfree(cfg_data);
1998 	release_firmware(cf);
1999 	return ret;
2000 }
2001 
2002 /*
2003  * HW initialization: contact FW, obtain config, perform basic init.
2004  *
2005  * If the firmware we're dealing with has Configuration File support, then
2006  * we use that to perform all configuration -- either using the configuration
2007  * file stored in flash on the adapter or using a filesystem-local file
2008  * if available.
2009  *
2010  * If we don't have configuration file support in the firmware, then we'll
2011  * have to set things up the old fashioned way with hard-coded register
2012  * writes and firmware commands ...
2013  */
2014 
2015 /*
2016  * Attempt to initialize the HW via a Firmware Configuration File.
2017  */
2018 static int
2019 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
2020 {
2021 	struct csio_mb	*mbp = NULL;
2022 	struct fw_caps_config_cmd *caps_cmd;
2023 	unsigned int mtype, maddr;
2024 	int rv = -EINVAL;
2025 	uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
2026 	char path[64];
2027 	char *config_name = NULL;
2028 
2029 	/*
2030 	 * Reset device if necessary
2031 	 */
2032 	if (reset) {
2033 		rv = csio_do_reset(hw, true);
2034 		if (rv != 0)
2035 			goto bye;
2036 	}
2037 
2038 	/*
2039 	 * If we have a configuration file in host ,
2040 	 * then use that.  Otherwise, use the configuration file stored
2041 	 * in the HW flash ...
2042 	 */
2043 	spin_unlock_irq(&hw->lock);
2044 	rv = csio_hw_flash_config(hw, fw_cfg_param, path);
2045 	spin_lock_irq(&hw->lock);
2046 	if (rv != 0) {
2047 		/*
2048 		 * config file was not found. Use default
2049 		 * config file from flash.
2050 		 */
2051 		config_name = "On FLASH";
2052 		mtype = FW_MEMTYPE_CF_FLASH;
2053 		maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
2054 	} else {
2055 		config_name = path;
2056 		mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
2057 		maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
2058 	}
2059 
2060 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2061 	if (!mbp) {
2062 		CSIO_INC_STATS(hw, n_err_nomem);
2063 		return -ENOMEM;
2064 	}
2065 	/*
2066 	 * Tell the firmware to process the indicated Configuration File.
2067 	 * If there are no errors and the caller has provided return value
2068 	 * pointers for the [fini] section version, checksum and computed
2069 	 * checksum, pass those back to the caller.
2070 	 */
2071 	caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
2072 	CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2073 	caps_cmd->op_to_write =
2074 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2075 		      FW_CMD_REQUEST_F |
2076 		      FW_CMD_READ_F);
2077 	caps_cmd->cfvalid_to_len16 =
2078 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
2079 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
2080 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
2081 		      FW_LEN16(*caps_cmd));
2082 
2083 	if (csio_mb_issue(hw, mbp)) {
2084 		rv = -EINVAL;
2085 		goto bye;
2086 	}
2087 
2088 	rv = csio_mb_fw_retval(mbp);
2089 	 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
2090 	  * Configuration File in FLASH), our last gasp effort is to use the
2091 	  * Firmware Configuration File which is embedded in the
2092 	  * firmware.  A very few early versions of the firmware didn't
2093 	  * have one embedded but we can ignore those.
2094 	  */
2095 	if (rv == ENOENT) {
2096 		CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2097 		caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2098 					      FW_CMD_REQUEST_F |
2099 					      FW_CMD_READ_F);
2100 		caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2101 
2102 		if (csio_mb_issue(hw, mbp)) {
2103 			rv = -EINVAL;
2104 			goto bye;
2105 		}
2106 
2107 		rv = csio_mb_fw_retval(mbp);
2108 		config_name = "Firmware Default";
2109 	}
2110 	if (rv != FW_SUCCESS)
2111 		goto bye;
2112 
2113 	finiver = ntohl(caps_cmd->finiver);
2114 	finicsum = ntohl(caps_cmd->finicsum);
2115 	cfcsum = ntohl(caps_cmd->cfcsum);
2116 
2117 	/*
2118 	 * And now tell the firmware to use the configuration we just loaded.
2119 	 */
2120 	caps_cmd->op_to_write =
2121 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2122 		      FW_CMD_REQUEST_F |
2123 		      FW_CMD_WRITE_F);
2124 	caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2125 
2126 	if (csio_mb_issue(hw, mbp)) {
2127 		rv = -EINVAL;
2128 		goto bye;
2129 	}
2130 
2131 	rv = csio_mb_fw_retval(mbp);
2132 	if (rv != FW_SUCCESS) {
2133 		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
2134 		goto bye;
2135 	}
2136 
2137 	if (finicsum != cfcsum) {
2138 		csio_warn(hw,
2139 		      "Config File checksum mismatch: csum=%#x, computed=%#x\n",
2140 		      finicsum, cfcsum);
2141 	}
2142 
2143 	/* Validate device capabilities */
2144 	rv = csio_hw_validate_caps(hw, mbp);
2145 	if (rv != 0)
2146 		goto bye;
2147 
2148 	mempool_free(mbp, hw->mb_mempool);
2149 	mbp = NULL;
2150 
2151 	/*
2152 	 * Note that we're operating with parameters
2153 	 * not supplied by the driver, rather than from hard-wired
2154 	 * initialization constants buried in the driver.
2155 	 */
2156 	hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2157 
2158 	/* device parameters */
2159 	rv = csio_get_device_params(hw);
2160 	if (rv != 0)
2161 		goto bye;
2162 
2163 	/* Configure SGE */
2164 	csio_wr_sge_init(hw);
2165 
2166 	/*
2167 	 * And finally tell the firmware to initialize itself using the
2168 	 * parameters from the Configuration File.
2169 	 */
2170 	/* Post event to notify completion of configuration */
2171 	csio_post_event(&hw->sm, CSIO_HWE_INIT);
2172 
2173 	csio_info(hw, "Successfully configure using Firmware "
2174 		  "Configuration File %s, version %#x, computed checksum %#x\n",
2175 		  config_name, finiver, cfcsum);
2176 	return 0;
2177 
2178 	/*
2179 	 * Something bad happened.  Return the error ...
2180 	 */
2181 bye:
2182 	if (mbp)
2183 		mempool_free(mbp, hw->mb_mempool);
2184 	hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
2185 	csio_warn(hw, "Configuration file error %d\n", rv);
2186 	return rv;
2187 }
2188 
2189 /* Is the given firmware API compatible with the one the driver was compiled
2190  * with?
2191  */
2192 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2193 {
2194 
2195 	/* short circuit if it's the exact same firmware version */
2196 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2197 		return 1;
2198 
2199 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2200 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2201 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2202 		return 1;
2203 #undef SAME_INTF
2204 
2205 	return 0;
2206 }
2207 
2208 /* The firmware in the filesystem is usable, but should it be installed?
2209  * This routine explains itself in detail if it indicates the filesystem
2210  * firmware should be installed.
2211  */
2212 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
2213 				int k, int c)
2214 {
2215 	const char *reason;
2216 
2217 	if (!card_fw_usable) {
2218 		reason = "incompatible or unusable";
2219 		goto install;
2220 	}
2221 
2222 	if (k > c) {
2223 		reason = "older than the version supported with this driver";
2224 		goto install;
2225 	}
2226 
2227 	return 0;
2228 
2229 install:
2230 	csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
2231 		"installing firmware %u.%u.%u.%u on card.\n",
2232 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2233 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2234 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2235 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2236 
2237 	return 1;
2238 }
2239 
2240 static struct fw_info fw_info_array[] = {
2241 	{
2242 		.chip = CHELSIO_T5,
2243 		.fs_name = FW_CFG_NAME_T5,
2244 		.fw_mod_name = FW_FNAME_T5,
2245 		.fw_hdr = {
2246 			.chip = FW_HDR_CHIP_T5,
2247 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
2248 			.intfver_nic = FW_INTFVER(T5, NIC),
2249 			.intfver_vnic = FW_INTFVER(T5, VNIC),
2250 			.intfver_ri = FW_INTFVER(T5, RI),
2251 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
2252 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
2253 		},
2254 	}, {
2255 		.chip = CHELSIO_T6,
2256 		.fs_name = FW_CFG_NAME_T6,
2257 		.fw_mod_name = FW_FNAME_T6,
2258 		.fw_hdr = {
2259 			.chip = FW_HDR_CHIP_T6,
2260 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
2261 			.intfver_nic = FW_INTFVER(T6, NIC),
2262 			.intfver_vnic = FW_INTFVER(T6, VNIC),
2263 			.intfver_ri = FW_INTFVER(T6, RI),
2264 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
2265 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
2266 		},
2267 	}
2268 };
2269 
2270 static struct fw_info *find_fw_info(int chip)
2271 {
2272 	int i;
2273 
2274 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
2275 		if (fw_info_array[i].chip == chip)
2276 			return &fw_info_array[i];
2277 	}
2278 	return NULL;
2279 }
2280 
2281 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
2282 	       const u8 *fw_data, unsigned int fw_size,
2283 	       struct fw_hdr *card_fw, enum csio_dev_state state,
2284 	       int *reset)
2285 {
2286 	int ret, card_fw_usable, fs_fw_usable;
2287 	const struct fw_hdr *fs_fw;
2288 	const struct fw_hdr *drv_fw;
2289 
2290 	drv_fw = &fw_info->fw_hdr;
2291 
2292 	/* Read the header of the firmware on the card */
2293 	ret = csio_hw_read_flash(hw, FLASH_FW_START,
2294 			    sizeof(*card_fw) / sizeof(uint32_t),
2295 			    (uint32_t *)card_fw, 1);
2296 	if (ret == 0) {
2297 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2298 	} else {
2299 		csio_err(hw,
2300 			"Unable to read card's firmware header: %d\n", ret);
2301 		card_fw_usable = 0;
2302 	}
2303 
2304 	if (fw_data != NULL) {
2305 		fs_fw = (const void *)fw_data;
2306 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2307 	} else {
2308 		fs_fw = NULL;
2309 		fs_fw_usable = 0;
2310 	}
2311 
2312 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2313 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2314 		/* Common case: the firmware on the card is an exact match and
2315 		 * the filesystem one is an exact match too, or the filesystem
2316 		 * one is absent/incompatible.
2317 		 */
2318 	} else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
2319 		   csio_should_install_fs_fw(hw, card_fw_usable,
2320 					be32_to_cpu(fs_fw->fw_ver),
2321 					be32_to_cpu(card_fw->fw_ver))) {
2322 		ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
2323 				     fw_size, 0);
2324 		if (ret != 0) {
2325 			csio_err(hw,
2326 				"failed to install firmware: %d\n", ret);
2327 			goto bye;
2328 		}
2329 
2330 		/* Installed successfully, update the cached header too. */
2331 		memcpy(card_fw, fs_fw, sizeof(*card_fw));
2332 		card_fw_usable = 1;
2333 		*reset = 0;	/* already reset as part of load_fw */
2334 	}
2335 
2336 	if (!card_fw_usable) {
2337 		uint32_t d, c, k;
2338 
2339 		d = be32_to_cpu(drv_fw->fw_ver);
2340 		c = be32_to_cpu(card_fw->fw_ver);
2341 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2342 
2343 		csio_err(hw, "Cannot find a usable firmware: "
2344 			"chip state %d, "
2345 			"driver compiled with %d.%d.%d.%d, "
2346 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2347 			state,
2348 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2349 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2350 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2351 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2352 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2353 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2354 		ret = EINVAL;
2355 		goto bye;
2356 	}
2357 
2358 	/* We're using whatever's on the card and it's known to be good. */
2359 	hw->fwrev = be32_to_cpu(card_fw->fw_ver);
2360 	hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2361 
2362 bye:
2363 	return ret;
2364 }
2365 
2366 /*
2367  * Returns -EINVAL if attempts to flash the firmware failed
2368  * else returns 0,
2369  * if flashing was not attempted because the card had the
2370  * latest firmware ECANCELED is returned
2371  */
2372 static int
2373 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
2374 {
2375 	int ret = -ECANCELED;
2376 	const struct firmware *fw;
2377 	struct fw_info *fw_info;
2378 	struct fw_hdr *card_fw;
2379 	struct pci_dev *pci_dev = hw->pdev;
2380 	struct device *dev = &pci_dev->dev ;
2381 	const u8 *fw_data = NULL;
2382 	unsigned int fw_size = 0;
2383 	const char *fw_bin_file;
2384 
2385 	/* This is the firmware whose headers the driver was compiled
2386 	 * against
2387 	 */
2388 	fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2389 	if (fw_info == NULL) {
2390 		csio_err(hw,
2391 			"unable to get firmware info for chip %d.\n",
2392 			CHELSIO_CHIP_VERSION(hw->chip_id));
2393 		return -EINVAL;
2394 	}
2395 
2396 	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
2397 		fw_bin_file = FW_FNAME_T5;
2398 	else
2399 		fw_bin_file = FW_FNAME_T6;
2400 
2401 	if (request_firmware(&fw, fw_bin_file, dev) < 0) {
2402 		csio_err(hw, "could not find firmware image %s, err: %d\n",
2403 			 fw_bin_file, ret);
2404 	} else {
2405 		fw_data = fw->data;
2406 		fw_size = fw->size;
2407 	}
2408 
2409 	/* allocate memory to read the header of the firmware on the
2410 	 * card
2411 	 */
2412 	card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2413 
2414 	/* upgrade FW logic */
2415 	ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2416 			 hw->fw_state, reset);
2417 
2418 	/* Cleaning up */
2419 	if (fw != NULL)
2420 		release_firmware(fw);
2421 	kfree(card_fw);
2422 	return ret;
2423 }
2424 
2425 static int csio_hw_check_fwver(struct csio_hw *hw)
2426 {
2427 	if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
2428 	    (hw->fwrev < CSIO_MIN_T6_FW)) {
2429 		csio_hw_print_fw_version(hw, "T6 unsupported fw");
2430 		return -1;
2431 	}
2432 
2433 	return 0;
2434 }
2435 
2436 /*
2437  * csio_hw_configure - Configure HW
2438  * @hw - HW module
2439  *
2440  */
2441 static void
2442 csio_hw_configure(struct csio_hw *hw)
2443 {
2444 	int reset = 1;
2445 	int rv;
2446 	u32 param[1];
2447 
2448 	rv = csio_hw_dev_ready(hw);
2449 	if (rv != 0) {
2450 		CSIO_INC_STATS(hw, n_err_fatal);
2451 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2452 		goto out;
2453 	}
2454 
2455 	/* HW version */
2456 	hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2457 
2458 	/* Needed for FW download */
2459 	rv = csio_hw_get_flash_params(hw);
2460 	if (rv != 0) {
2461 		csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2462 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2463 		goto out;
2464 	}
2465 
2466 	/* Set PCIe completion timeout to 4 seconds */
2467 	if (pci_is_pcie(hw->pdev))
2468 		pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2469 				PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2470 
2471 	hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2472 
2473 	rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2474 	if (rv != 0)
2475 		goto out;
2476 
2477 	csio_hw_print_fw_version(hw, "Firmware revision");
2478 
2479 	rv = csio_do_hello(hw, &hw->fw_state);
2480 	if (rv != 0) {
2481 		CSIO_INC_STATS(hw, n_err_fatal);
2482 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2483 		goto out;
2484 	}
2485 
2486 	/* Read vpd */
2487 	rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2488 	if (rv != 0)
2489 		goto out;
2490 
2491 	csio_hw_get_fw_version(hw, &hw->fwrev);
2492 	csio_hw_get_tp_version(hw, &hw->tp_vers);
2493 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2494 
2495 			/* Do firmware update */
2496 		spin_unlock_irq(&hw->lock);
2497 		rv = csio_hw_flash_fw(hw, &reset);
2498 		spin_lock_irq(&hw->lock);
2499 
2500 		if (rv != 0)
2501 			goto out;
2502 
2503 		rv = csio_hw_check_fwver(hw);
2504 		if (rv < 0)
2505 			goto out;
2506 
2507 		/* If the firmware doesn't support Configuration Files,
2508 		 * return an error.
2509 		 */
2510 		rv = csio_hw_check_fwconfig(hw, param);
2511 		if (rv != 0) {
2512 			csio_info(hw, "Firmware doesn't support "
2513 				  "Firmware Configuration files\n");
2514 			goto out;
2515 		}
2516 
2517 		/* The firmware provides us with a memory buffer where we can
2518 		 * load a Configuration File from the host if we want to
2519 		 * override the Configuration File in flash.
2520 		 */
2521 		rv = csio_hw_use_fwconfig(hw, reset, param);
2522 		if (rv == -ENOENT) {
2523 			csio_info(hw, "Could not initialize "
2524 				  "adapter, error%d\n", rv);
2525 			goto out;
2526 		}
2527 		if (rv != 0) {
2528 			csio_info(hw, "Could not initialize "
2529 				  "adapter, error%d\n", rv);
2530 			goto out;
2531 		}
2532 
2533 	} else {
2534 		rv = csio_hw_check_fwver(hw);
2535 		if (rv < 0)
2536 			goto out;
2537 
2538 		if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2539 
2540 			hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2541 
2542 			/* device parameters */
2543 			rv = csio_get_device_params(hw);
2544 			if (rv != 0)
2545 				goto out;
2546 
2547 			/* Get device capabilities */
2548 			rv = csio_config_device_caps(hw);
2549 			if (rv != 0)
2550 				goto out;
2551 
2552 			/* Configure SGE */
2553 			csio_wr_sge_init(hw);
2554 
2555 			/* Post event to notify completion of configuration */
2556 			csio_post_event(&hw->sm, CSIO_HWE_INIT);
2557 			goto out;
2558 		}
2559 	} /* if not master */
2560 
2561 out:
2562 	return;
2563 }
2564 
2565 /*
2566  * csio_hw_initialize - Initialize HW
2567  * @hw - HW module
2568  *
2569  */
2570 static void
2571 csio_hw_initialize(struct csio_hw *hw)
2572 {
2573 	struct csio_mb	*mbp;
2574 	enum fw_retval retval;
2575 	int rv;
2576 	int i;
2577 
2578 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2579 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2580 		if (!mbp)
2581 			goto out;
2582 
2583 		csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2584 
2585 		if (csio_mb_issue(hw, mbp)) {
2586 			csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2587 			goto free_and_out;
2588 		}
2589 
2590 		retval = csio_mb_fw_retval(mbp);
2591 		if (retval != FW_SUCCESS) {
2592 			csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2593 				 retval);
2594 			goto free_and_out;
2595 		}
2596 
2597 		mempool_free(mbp, hw->mb_mempool);
2598 	}
2599 
2600 	rv = csio_get_fcoe_resinfo(hw);
2601 	if (rv != 0) {
2602 		csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2603 		goto out;
2604 	}
2605 
2606 	spin_unlock_irq(&hw->lock);
2607 	rv = csio_config_queues(hw);
2608 	spin_lock_irq(&hw->lock);
2609 
2610 	if (rv != 0) {
2611 		csio_err(hw, "Config of queues failed!: %d\n", rv);
2612 		goto out;
2613 	}
2614 
2615 	for (i = 0; i < hw->num_pports; i++)
2616 		hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2617 
2618 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2619 		rv = csio_enable_ports(hw);
2620 		if (rv != 0) {
2621 			csio_err(hw, "Failed to enable ports: %d\n", rv);
2622 			goto out;
2623 		}
2624 	}
2625 
2626 	csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2627 	return;
2628 
2629 free_and_out:
2630 	mempool_free(mbp, hw->mb_mempool);
2631 out:
2632 	return;
2633 }
2634 
2635 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2636 
2637 /*
2638  * csio_hw_intr_enable - Enable HW interrupts
2639  * @hw: Pointer to HW module.
2640  *
2641  * Enable interrupts in HW registers.
2642  */
2643 static void
2644 csio_hw_intr_enable(struct csio_hw *hw)
2645 {
2646 	uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2647 	u32 pf = 0;
2648 	uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2649 
2650 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2651 		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2652 	else
2653 		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2654 
2655 	/*
2656 	 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2657 	 * by FW, so do nothing for INTX.
2658 	 */
2659 	if (hw->intr_mode == CSIO_IM_MSIX)
2660 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2661 				   AIVEC_V(AIVEC_M), vec);
2662 	else if (hw->intr_mode == CSIO_IM_MSI)
2663 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2664 				   AIVEC_V(AIVEC_M), 0);
2665 
2666 	csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2667 
2668 	/* Turn on MB interrupts - this will internally flush PIO as well */
2669 	csio_mb_intr_enable(hw);
2670 
2671 	/* These are common registers - only a master can modify them */
2672 	if (csio_is_hw_master(hw)) {
2673 		/*
2674 		 * Disable the Serial FLASH interrupt, if enabled!
2675 		 */
2676 		pl &= (~SF_F);
2677 		csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2678 
2679 		csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2680 			      EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2681 			      ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2682 			      ERR_DATA_CPL_ON_HIGH_QID1_F |
2683 			      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2684 			      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2685 			      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2686 			      ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2687 			      SGE_INT_ENABLE3_A);
2688 		csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2689 	}
2690 
2691 	hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2692 
2693 }
2694 
2695 /*
2696  * csio_hw_intr_disable - Disable HW interrupts
2697  * @hw: Pointer to HW module.
2698  *
2699  * Turn off Mailbox and PCI_PF_CFG interrupts.
2700  */
2701 void
2702 csio_hw_intr_disable(struct csio_hw *hw)
2703 {
2704 	u32 pf = 0;
2705 
2706 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2707 		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2708 	else
2709 		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2710 
2711 	if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2712 		return;
2713 
2714 	hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2715 
2716 	csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2717 	if (csio_is_hw_master(hw))
2718 		csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2719 
2720 	/* Turn off MB interrupts */
2721 	csio_mb_intr_disable(hw);
2722 
2723 }
2724 
2725 void
2726 csio_hw_fatal_err(struct csio_hw *hw)
2727 {
2728 	csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2729 	csio_hw_intr_disable(hw);
2730 
2731 	/* Do not reset HW, we may need FW state for debugging */
2732 	csio_fatal(hw, "HW Fatal error encountered!\n");
2733 }
2734 
2735 /*****************************************************************************/
2736 /* START: HW SM                                                              */
2737 /*****************************************************************************/
2738 /*
2739  * csio_hws_uninit - Uninit state
2740  * @hw - HW module
2741  * @evt - Event
2742  *
2743  */
2744 static void
2745 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2746 {
2747 	hw->prev_evt = hw->cur_evt;
2748 	hw->cur_evt = evt;
2749 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2750 
2751 	switch (evt) {
2752 	case CSIO_HWE_CFG:
2753 		csio_set_state(&hw->sm, csio_hws_configuring);
2754 		csio_hw_configure(hw);
2755 		break;
2756 
2757 	default:
2758 		CSIO_INC_STATS(hw, n_evt_unexp);
2759 		break;
2760 	}
2761 }
2762 
2763 /*
2764  * csio_hws_configuring - Configuring state
2765  * @hw - HW module
2766  * @evt - Event
2767  *
2768  */
2769 static void
2770 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2771 {
2772 	hw->prev_evt = hw->cur_evt;
2773 	hw->cur_evt = evt;
2774 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2775 
2776 	switch (evt) {
2777 	case CSIO_HWE_INIT:
2778 		csio_set_state(&hw->sm, csio_hws_initializing);
2779 		csio_hw_initialize(hw);
2780 		break;
2781 
2782 	case CSIO_HWE_INIT_DONE:
2783 		csio_set_state(&hw->sm, csio_hws_ready);
2784 		/* Fan out event to all lnode SMs */
2785 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2786 		break;
2787 
2788 	case CSIO_HWE_FATAL:
2789 		csio_set_state(&hw->sm, csio_hws_uninit);
2790 		break;
2791 
2792 	case CSIO_HWE_PCI_REMOVE:
2793 		csio_do_bye(hw);
2794 		break;
2795 	default:
2796 		CSIO_INC_STATS(hw, n_evt_unexp);
2797 		break;
2798 	}
2799 }
2800 
2801 /*
2802  * csio_hws_initializing - Initialiazing state
2803  * @hw - HW module
2804  * @evt - Event
2805  *
2806  */
2807 static void
2808 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2809 {
2810 	hw->prev_evt = hw->cur_evt;
2811 	hw->cur_evt = evt;
2812 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2813 
2814 	switch (evt) {
2815 	case CSIO_HWE_INIT_DONE:
2816 		csio_set_state(&hw->sm, csio_hws_ready);
2817 
2818 		/* Fan out event to all lnode SMs */
2819 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2820 
2821 		/* Enable interrupts */
2822 		csio_hw_intr_enable(hw);
2823 		break;
2824 
2825 	case CSIO_HWE_FATAL:
2826 		csio_set_state(&hw->sm, csio_hws_uninit);
2827 		break;
2828 
2829 	case CSIO_HWE_PCI_REMOVE:
2830 		csio_do_bye(hw);
2831 		break;
2832 
2833 	default:
2834 		CSIO_INC_STATS(hw, n_evt_unexp);
2835 		break;
2836 	}
2837 }
2838 
2839 /*
2840  * csio_hws_ready - Ready state
2841  * @hw - HW module
2842  * @evt - Event
2843  *
2844  */
2845 static void
2846 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2847 {
2848 	/* Remember the event */
2849 	hw->evtflag = evt;
2850 
2851 	hw->prev_evt = hw->cur_evt;
2852 	hw->cur_evt = evt;
2853 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2854 
2855 	switch (evt) {
2856 	case CSIO_HWE_HBA_RESET:
2857 	case CSIO_HWE_FW_DLOAD:
2858 	case CSIO_HWE_SUSPEND:
2859 	case CSIO_HWE_PCI_REMOVE:
2860 	case CSIO_HWE_PCIERR_DETECTED:
2861 		csio_set_state(&hw->sm, csio_hws_quiescing);
2862 		/* cleanup all outstanding cmds */
2863 		if (evt == CSIO_HWE_HBA_RESET ||
2864 		    evt == CSIO_HWE_PCIERR_DETECTED)
2865 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2866 		else
2867 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2868 
2869 		csio_hw_intr_disable(hw);
2870 		csio_hw_mbm_cleanup(hw);
2871 		csio_evtq_stop(hw);
2872 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2873 		csio_evtq_flush(hw);
2874 		csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2875 		csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2876 		break;
2877 
2878 	case CSIO_HWE_FATAL:
2879 		csio_set_state(&hw->sm, csio_hws_uninit);
2880 		break;
2881 
2882 	default:
2883 		CSIO_INC_STATS(hw, n_evt_unexp);
2884 		break;
2885 	}
2886 }
2887 
2888 /*
2889  * csio_hws_quiescing - Quiescing state
2890  * @hw - HW module
2891  * @evt - Event
2892  *
2893  */
2894 static void
2895 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2896 {
2897 	hw->prev_evt = hw->cur_evt;
2898 	hw->cur_evt = evt;
2899 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2900 
2901 	switch (evt) {
2902 	case CSIO_HWE_QUIESCED:
2903 		switch (hw->evtflag) {
2904 		case CSIO_HWE_FW_DLOAD:
2905 			csio_set_state(&hw->sm, csio_hws_resetting);
2906 			/* Download firmware */
2907 			/* Fall through */
2908 
2909 		case CSIO_HWE_HBA_RESET:
2910 			csio_set_state(&hw->sm, csio_hws_resetting);
2911 			/* Start reset of the HBA */
2912 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2913 			csio_wr_destroy_queues(hw, false);
2914 			csio_do_reset(hw, false);
2915 			csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2916 			break;
2917 
2918 		case CSIO_HWE_PCI_REMOVE:
2919 			csio_set_state(&hw->sm, csio_hws_removing);
2920 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2921 			csio_wr_destroy_queues(hw, true);
2922 			/* Now send the bye command */
2923 			csio_do_bye(hw);
2924 			break;
2925 
2926 		case CSIO_HWE_SUSPEND:
2927 			csio_set_state(&hw->sm, csio_hws_quiesced);
2928 			break;
2929 
2930 		case CSIO_HWE_PCIERR_DETECTED:
2931 			csio_set_state(&hw->sm, csio_hws_pcierr);
2932 			csio_wr_destroy_queues(hw, false);
2933 			break;
2934 
2935 		default:
2936 			CSIO_INC_STATS(hw, n_evt_unexp);
2937 			break;
2938 
2939 		}
2940 		break;
2941 
2942 	default:
2943 		CSIO_INC_STATS(hw, n_evt_unexp);
2944 		break;
2945 	}
2946 }
2947 
2948 /*
2949  * csio_hws_quiesced - Quiesced state
2950  * @hw - HW module
2951  * @evt - Event
2952  *
2953  */
2954 static void
2955 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2956 {
2957 	hw->prev_evt = hw->cur_evt;
2958 	hw->cur_evt = evt;
2959 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2960 
2961 	switch (evt) {
2962 	case CSIO_HWE_RESUME:
2963 		csio_set_state(&hw->sm, csio_hws_configuring);
2964 		csio_hw_configure(hw);
2965 		break;
2966 
2967 	default:
2968 		CSIO_INC_STATS(hw, n_evt_unexp);
2969 		break;
2970 	}
2971 }
2972 
2973 /*
2974  * csio_hws_resetting - HW Resetting state
2975  * @hw - HW module
2976  * @evt - Event
2977  *
2978  */
2979 static void
2980 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2981 {
2982 	hw->prev_evt = hw->cur_evt;
2983 	hw->cur_evt = evt;
2984 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2985 
2986 	switch (evt) {
2987 	case CSIO_HWE_HBA_RESET_DONE:
2988 		csio_evtq_start(hw);
2989 		csio_set_state(&hw->sm, csio_hws_configuring);
2990 		csio_hw_configure(hw);
2991 		break;
2992 
2993 	default:
2994 		CSIO_INC_STATS(hw, n_evt_unexp);
2995 		break;
2996 	}
2997 }
2998 
2999 /*
3000  * csio_hws_removing - PCI Hotplug removing state
3001  * @hw - HW module
3002  * @evt - Event
3003  *
3004  */
3005 static void
3006 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
3007 {
3008 	hw->prev_evt = hw->cur_evt;
3009 	hw->cur_evt = evt;
3010 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
3011 
3012 	switch (evt) {
3013 	case CSIO_HWE_HBA_RESET:
3014 		if (!csio_is_hw_master(hw))
3015 			break;
3016 		/*
3017 		 * The BYE should have alerady been issued, so we cant
3018 		 * use the mailbox interface. Hence we use the PL_RST
3019 		 * register directly.
3020 		 */
3021 		csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
3022 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
3023 		mdelay(2000);
3024 		break;
3025 
3026 	/* Should never receive any new events */
3027 	default:
3028 		CSIO_INC_STATS(hw, n_evt_unexp);
3029 		break;
3030 
3031 	}
3032 }
3033 
3034 /*
3035  * csio_hws_pcierr - PCI Error state
3036  * @hw - HW module
3037  * @evt - Event
3038  *
3039  */
3040 static void
3041 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
3042 {
3043 	hw->prev_evt = hw->cur_evt;
3044 	hw->cur_evt = evt;
3045 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
3046 
3047 	switch (evt) {
3048 	case CSIO_HWE_PCIERR_SLOT_RESET:
3049 		csio_evtq_start(hw);
3050 		csio_set_state(&hw->sm, csio_hws_configuring);
3051 		csio_hw_configure(hw);
3052 		break;
3053 
3054 	default:
3055 		CSIO_INC_STATS(hw, n_evt_unexp);
3056 		break;
3057 	}
3058 }
3059 
3060 /*****************************************************************************/
3061 /* END: HW SM                                                                */
3062 /*****************************************************************************/
3063 
3064 /*
3065  *	csio_handle_intr_status - table driven interrupt handler
3066  *	@hw: HW instance
3067  *	@reg: the interrupt status register to process
3068  *	@acts: table of interrupt actions
3069  *
3070  *	A table driven interrupt handler that applies a set of masks to an
3071  *	interrupt status word and performs the corresponding actions if the
3072  *	interrupts described by the mask have occured.  The actions include
3073  *	optionally emitting a warning or alert message. The table is terminated
3074  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3075  *	conditions.
3076  */
3077 int
3078 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
3079 				 const struct intr_info *acts)
3080 {
3081 	int fatal = 0;
3082 	unsigned int mask = 0;
3083 	unsigned int status = csio_rd_reg32(hw, reg);
3084 
3085 	for ( ; acts->mask; ++acts) {
3086 		if (!(status & acts->mask))
3087 			continue;
3088 		if (acts->fatal) {
3089 			fatal++;
3090 			csio_fatal(hw, "Fatal %s (0x%x)\n",
3091 				    acts->msg, status & acts->mask);
3092 		} else if (acts->msg)
3093 			csio_info(hw, "%s (0x%x)\n",
3094 				    acts->msg, status & acts->mask);
3095 		mask |= acts->mask;
3096 	}
3097 	status &= mask;
3098 	if (status)                           /* clear processed interrupts */
3099 		csio_wr_reg32(hw, status, reg);
3100 	return fatal;
3101 }
3102 
3103 /*
3104  * TP interrupt handler.
3105  */
3106 static void csio_tp_intr_handler(struct csio_hw *hw)
3107 {
3108 	static struct intr_info tp_intr_info[] = {
3109 		{ 0x3fffffff, "TP parity error", -1, 1 },
3110 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3111 		{ 0, NULL, 0, 0 }
3112 	};
3113 
3114 	if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
3115 		csio_hw_fatal_err(hw);
3116 }
3117 
3118 /*
3119  * SGE interrupt handler.
3120  */
3121 static void csio_sge_intr_handler(struct csio_hw *hw)
3122 {
3123 	uint64_t v;
3124 
3125 	static struct intr_info sge_intr_info[] = {
3126 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3127 		  "SGE received CPL exceeding IQE size", -1, 1 },
3128 		{ ERR_INVALID_CIDX_INC_F,
3129 		  "SGE GTS CIDX increment too large", -1, 0 },
3130 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3131 		{ ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
3132 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3133 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3134 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3135 		  0 },
3136 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3137 		  0 },
3138 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3139 		  0 },
3140 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3141 		  0 },
3142 		{ ERR_ING_CTXT_PRIO_F,
3143 		  "SGE too many priority ingress contexts", -1, 0 },
3144 		{ ERR_EGR_CTXT_PRIO_F,
3145 		  "SGE too many priority egress contexts", -1, 0 },
3146 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3147 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3148 		{ 0, NULL, 0, 0 }
3149 	};
3150 
3151 	v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
3152 	    ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
3153 	if (v) {
3154 		csio_fatal(hw, "SGE parity error (%#llx)\n",
3155 			    (unsigned long long)v);
3156 		csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
3157 						SGE_INT_CAUSE1_A);
3158 		csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
3159 	}
3160 
3161 	v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
3162 
3163 	if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
3164 	    v != 0)
3165 		csio_hw_fatal_err(hw);
3166 }
3167 
3168 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3169 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3170 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3171 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3172 
3173 /*
3174  * CIM interrupt handler.
3175  */
3176 static void csio_cim_intr_handler(struct csio_hw *hw)
3177 {
3178 	static struct intr_info cim_intr_info[] = {
3179 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3180 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3181 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3182 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3183 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3184 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3185 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3186 		{ 0, NULL, 0, 0 }
3187 	};
3188 	static struct intr_info cim_upintr_info[] = {
3189 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3190 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3191 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
3192 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
3193 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3194 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3195 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3196 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3197 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3198 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3199 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3200 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3201 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3202 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3203 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3204 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3205 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3206 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3207 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3208 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3209 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3210 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3211 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3212 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3213 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3214 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3215 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3216 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3217 		{ 0, NULL, 0, 0 }
3218 	};
3219 
3220 	int fat;
3221 
3222 	fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
3223 				      cim_intr_info) +
3224 	      csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
3225 				      cim_upintr_info);
3226 	if (fat)
3227 		csio_hw_fatal_err(hw);
3228 }
3229 
3230 /*
3231  * ULP RX interrupt handler.
3232  */
3233 static void csio_ulprx_intr_handler(struct csio_hw *hw)
3234 {
3235 	static struct intr_info ulprx_intr_info[] = {
3236 		{ 0x1800000, "ULPRX context error", -1, 1 },
3237 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3238 		{ 0, NULL, 0, 0 }
3239 	};
3240 
3241 	if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3242 		csio_hw_fatal_err(hw);
3243 }
3244 
3245 /*
3246  * ULP TX interrupt handler.
3247  */
3248 static void csio_ulptx_intr_handler(struct csio_hw *hw)
3249 {
3250 	static struct intr_info ulptx_intr_info[] = {
3251 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3252 		  0 },
3253 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3254 		  0 },
3255 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3256 		  0 },
3257 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3258 		  0 },
3259 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3260 		{ 0, NULL, 0, 0 }
3261 	};
3262 
3263 	if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3264 		csio_hw_fatal_err(hw);
3265 }
3266 
3267 /*
3268  * PM TX interrupt handler.
3269  */
3270 static void csio_pmtx_intr_handler(struct csio_hw *hw)
3271 {
3272 	static struct intr_info pmtx_intr_info[] = {
3273 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3274 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3275 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3276 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3277 		{ 0xffffff0, "PMTX framing error", -1, 1 },
3278 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3279 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
3280 		  1 },
3281 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3282 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3283 		{ 0, NULL, 0, 0 }
3284 	};
3285 
3286 	if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3287 		csio_hw_fatal_err(hw);
3288 }
3289 
3290 /*
3291  * PM RX interrupt handler.
3292  */
3293 static void csio_pmrx_intr_handler(struct csio_hw *hw)
3294 {
3295 	static struct intr_info pmrx_intr_info[] = {
3296 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3297 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
3298 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3299 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
3300 		  1 },
3301 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3302 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3303 		{ 0, NULL, 0, 0 }
3304 	};
3305 
3306 	if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3307 		csio_hw_fatal_err(hw);
3308 }
3309 
3310 /*
3311  * CPL switch interrupt handler.
3312  */
3313 static void csio_cplsw_intr_handler(struct csio_hw *hw)
3314 {
3315 	static struct intr_info cplsw_intr_info[] = {
3316 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3317 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3318 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3319 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3320 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3321 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3322 		{ 0, NULL, 0, 0 }
3323 	};
3324 
3325 	if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
3326 		csio_hw_fatal_err(hw);
3327 }
3328 
3329 /*
3330  * LE interrupt handler.
3331  */
3332 static void csio_le_intr_handler(struct csio_hw *hw)
3333 {
3334 	enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
3335 
3336 	static struct intr_info le_intr_info[] = {
3337 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
3338 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
3339 		{ PARITYERR_F, "LE parity error", -1, 1 },
3340 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3341 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
3342 		{ 0, NULL, 0, 0 }
3343 	};
3344 
3345 	static struct intr_info t6_le_intr_info[] = {
3346 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3347 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3348 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
3349 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3350 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3351 		{ 0, NULL, 0, 0 }
3352 	};
3353 
3354 	if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
3355 				    (chip == CHELSIO_T5) ?
3356 				    le_intr_info : t6_le_intr_info))
3357 		csio_hw_fatal_err(hw);
3358 }
3359 
3360 /*
3361  * MPS interrupt handler.
3362  */
3363 static void csio_mps_intr_handler(struct csio_hw *hw)
3364 {
3365 	static struct intr_info mps_rx_intr_info[] = {
3366 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
3367 		{ 0, NULL, 0, 0 }
3368 	};
3369 	static struct intr_info mps_tx_intr_info[] = {
3370 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3371 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3372 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3373 		  -1, 1 },
3374 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3375 		  -1, 1 },
3376 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
3377 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3378 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
3379 		{ 0, NULL, 0, 0 }
3380 	};
3381 	static struct intr_info mps_trc_intr_info[] = {
3382 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3383 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3384 		  -1, 1 },
3385 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3386 		{ 0, NULL, 0, 0 }
3387 	};
3388 	static struct intr_info mps_stat_sram_intr_info[] = {
3389 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3390 		{ 0, NULL, 0, 0 }
3391 	};
3392 	static struct intr_info mps_stat_tx_intr_info[] = {
3393 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3394 		{ 0, NULL, 0, 0 }
3395 	};
3396 	static struct intr_info mps_stat_rx_intr_info[] = {
3397 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3398 		{ 0, NULL, 0, 0 }
3399 	};
3400 	static struct intr_info mps_cls_intr_info[] = {
3401 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3402 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3403 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3404 		{ 0, NULL, 0, 0 }
3405 	};
3406 
3407 	int fat;
3408 
3409 	fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
3410 				      mps_rx_intr_info) +
3411 	      csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
3412 				      mps_tx_intr_info) +
3413 	      csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
3414 				      mps_trc_intr_info) +
3415 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3416 				      mps_stat_sram_intr_info) +
3417 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3418 				      mps_stat_tx_intr_info) +
3419 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3420 				      mps_stat_rx_intr_info) +
3421 	      csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
3422 				      mps_cls_intr_info);
3423 
3424 	csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
3425 	csio_rd_reg32(hw, MPS_INT_CAUSE_A);                    /* flush */
3426 	if (fat)
3427 		csio_hw_fatal_err(hw);
3428 }
3429 
3430 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3431 		      ECC_UE_INT_CAUSE_F)
3432 
3433 /*
3434  * EDC/MC interrupt handler.
3435  */
3436 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3437 {
3438 	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3439 
3440 	unsigned int addr, cnt_addr, v;
3441 
3442 	if (idx <= MEM_EDC1) {
3443 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3444 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3445 	} else {
3446 		addr = MC_INT_CAUSE_A;
3447 		cnt_addr = MC_ECC_STATUS_A;
3448 	}
3449 
3450 	v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3451 	if (v & PERR_INT_CAUSE_F)
3452 		csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3453 	if (v & ECC_CE_INT_CAUSE_F) {
3454 		uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3455 
3456 		csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3457 		csio_warn(hw, "%u %s correctable ECC data error%s\n",
3458 			    cnt, name[idx], cnt > 1 ? "s" : "");
3459 	}
3460 	if (v & ECC_UE_INT_CAUSE_F)
3461 		csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3462 
3463 	csio_wr_reg32(hw, v, addr);
3464 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3465 		csio_hw_fatal_err(hw);
3466 }
3467 
3468 /*
3469  * MA interrupt handler.
3470  */
3471 static void csio_ma_intr_handler(struct csio_hw *hw)
3472 {
3473 	uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3474 
3475 	if (status & MEM_PERR_INT_CAUSE_F)
3476 		csio_fatal(hw, "MA parity error, parity status %#x\n",
3477 			    csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3478 	if (status & MEM_WRAP_INT_CAUSE_F) {
3479 		v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3480 		csio_fatal(hw,
3481 		   "MA address wrap-around error by client %u to address %#x\n",
3482 		   MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3483 	}
3484 	csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3485 	csio_hw_fatal_err(hw);
3486 }
3487 
3488 /*
3489  * SMB interrupt handler.
3490  */
3491 static void csio_smb_intr_handler(struct csio_hw *hw)
3492 {
3493 	static struct intr_info smb_intr_info[] = {
3494 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3495 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3496 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3497 		{ 0, NULL, 0, 0 }
3498 	};
3499 
3500 	if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3501 		csio_hw_fatal_err(hw);
3502 }
3503 
3504 /*
3505  * NC-SI interrupt handler.
3506  */
3507 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3508 {
3509 	static struct intr_info ncsi_intr_info[] = {
3510 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3511 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3512 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3513 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3514 		{ 0, NULL, 0, 0 }
3515 	};
3516 
3517 	if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3518 		csio_hw_fatal_err(hw);
3519 }
3520 
3521 /*
3522  * XGMAC interrupt handler.
3523  */
3524 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3525 {
3526 	uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3527 
3528 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3529 	if (!v)
3530 		return;
3531 
3532 	if (v & TXFIFO_PRTY_ERR_F)
3533 		csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3534 	if (v & RXFIFO_PRTY_ERR_F)
3535 		csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3536 	csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3537 	csio_hw_fatal_err(hw);
3538 }
3539 
3540 /*
3541  * PL interrupt handler.
3542  */
3543 static void csio_pl_intr_handler(struct csio_hw *hw)
3544 {
3545 	static struct intr_info pl_intr_info[] = {
3546 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
3547 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3548 		{ 0, NULL, 0, 0 }
3549 	};
3550 
3551 	if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3552 		csio_hw_fatal_err(hw);
3553 }
3554 
3555 /*
3556  *	csio_hw_slow_intr_handler - control path interrupt handler
3557  *	@hw: HW module
3558  *
3559  *	Interrupt handler for non-data global interrupt events, e.g., errors.
3560  *	The designation 'slow' is because it involves register reads, while
3561  *	data interrupts typically don't involve any MMIOs.
3562  */
3563 int
3564 csio_hw_slow_intr_handler(struct csio_hw *hw)
3565 {
3566 	uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3567 
3568 	if (!(cause & CSIO_GLBL_INTR_MASK)) {
3569 		CSIO_INC_STATS(hw, n_plint_unexp);
3570 		return 0;
3571 	}
3572 
3573 	csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3574 
3575 	CSIO_INC_STATS(hw, n_plint_cnt);
3576 
3577 	if (cause & CIM_F)
3578 		csio_cim_intr_handler(hw);
3579 
3580 	if (cause & MPS_F)
3581 		csio_mps_intr_handler(hw);
3582 
3583 	if (cause & NCSI_F)
3584 		csio_ncsi_intr_handler(hw);
3585 
3586 	if (cause & PL_F)
3587 		csio_pl_intr_handler(hw);
3588 
3589 	if (cause & SMB_F)
3590 		csio_smb_intr_handler(hw);
3591 
3592 	if (cause & XGMAC0_F)
3593 		csio_xgmac_intr_handler(hw, 0);
3594 
3595 	if (cause & XGMAC1_F)
3596 		csio_xgmac_intr_handler(hw, 1);
3597 
3598 	if (cause & XGMAC_KR0_F)
3599 		csio_xgmac_intr_handler(hw, 2);
3600 
3601 	if (cause & XGMAC_KR1_F)
3602 		csio_xgmac_intr_handler(hw, 3);
3603 
3604 	if (cause & PCIE_F)
3605 		hw->chip_ops->chip_pcie_intr_handler(hw);
3606 
3607 	if (cause & MC_F)
3608 		csio_mem_intr_handler(hw, MEM_MC);
3609 
3610 	if (cause & EDC0_F)
3611 		csio_mem_intr_handler(hw, MEM_EDC0);
3612 
3613 	if (cause & EDC1_F)
3614 		csio_mem_intr_handler(hw, MEM_EDC1);
3615 
3616 	if (cause & LE_F)
3617 		csio_le_intr_handler(hw);
3618 
3619 	if (cause & TP_F)
3620 		csio_tp_intr_handler(hw);
3621 
3622 	if (cause & MA_F)
3623 		csio_ma_intr_handler(hw);
3624 
3625 	if (cause & PM_TX_F)
3626 		csio_pmtx_intr_handler(hw);
3627 
3628 	if (cause & PM_RX_F)
3629 		csio_pmrx_intr_handler(hw);
3630 
3631 	if (cause & ULP_RX_F)
3632 		csio_ulprx_intr_handler(hw);
3633 
3634 	if (cause & CPL_SWITCH_F)
3635 		csio_cplsw_intr_handler(hw);
3636 
3637 	if (cause & SGE_F)
3638 		csio_sge_intr_handler(hw);
3639 
3640 	if (cause & ULP_TX_F)
3641 		csio_ulptx_intr_handler(hw);
3642 
3643 	/* Clear the interrupts just processed for which we are the master. */
3644 	csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3645 	csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3646 
3647 	return 1;
3648 }
3649 
3650 /*****************************************************************************
3651  * HW <--> mailbox interfacing routines.
3652  ****************************************************************************/
3653 /*
3654  * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3655  *
3656  * @data: Private data pointer.
3657  *
3658  * Called from worker thread context.
3659  */
3660 static void
3661 csio_mberr_worker(void *data)
3662 {
3663 	struct csio_hw *hw = (struct csio_hw *)data;
3664 	struct csio_mbm *mbm = &hw->mbm;
3665 	LIST_HEAD(cbfn_q);
3666 	struct csio_mb *mbp_next;
3667 	int rv;
3668 
3669 	del_timer_sync(&mbm->timer);
3670 
3671 	spin_lock_irq(&hw->lock);
3672 	if (list_empty(&mbm->cbfn_q)) {
3673 		spin_unlock_irq(&hw->lock);
3674 		return;
3675 	}
3676 
3677 	list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3678 	mbm->stats.n_cbfnq = 0;
3679 
3680 	/* Try to start waiting mailboxes */
3681 	if (!list_empty(&mbm->req_q)) {
3682 		mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3683 		list_del_init(&mbp_next->list);
3684 
3685 		rv = csio_mb_issue(hw, mbp_next);
3686 		if (rv != 0)
3687 			list_add_tail(&mbp_next->list, &mbm->req_q);
3688 		else
3689 			CSIO_DEC_STATS(mbm, n_activeq);
3690 	}
3691 	spin_unlock_irq(&hw->lock);
3692 
3693 	/* Now callback completions */
3694 	csio_mb_completions(hw, &cbfn_q);
3695 }
3696 
3697 /*
3698  * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3699  *
3700  * @data: private data pointer
3701  *
3702  **/
3703 static void
3704 csio_hw_mb_timer(struct timer_list *t)
3705 {
3706 	struct csio_mbm *mbm = from_timer(mbm, t, timer);
3707 	struct csio_hw *hw = mbm->hw;
3708 	struct csio_mb *mbp = NULL;
3709 
3710 	spin_lock_irq(&hw->lock);
3711 	mbp = csio_mb_tmo_handler(hw);
3712 	spin_unlock_irq(&hw->lock);
3713 
3714 	/* Call back the function for the timed-out Mailbox */
3715 	if (mbp)
3716 		mbp->mb_cbfn(hw, mbp);
3717 
3718 }
3719 
3720 /*
3721  * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3722  * @hw: HW module
3723  *
3724  * Called with lock held, should exit with lock held.
3725  * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3726  * into a local queue. Drops lock and calls the completions. Holds
3727  * lock and returns.
3728  */
3729 static void
3730 csio_hw_mbm_cleanup(struct csio_hw *hw)
3731 {
3732 	LIST_HEAD(cbfn_q);
3733 
3734 	csio_mb_cancel_all(hw, &cbfn_q);
3735 
3736 	spin_unlock_irq(&hw->lock);
3737 	csio_mb_completions(hw, &cbfn_q);
3738 	spin_lock_irq(&hw->lock);
3739 }
3740 
3741 /*****************************************************************************
3742  * Event handling
3743  ****************************************************************************/
3744 int
3745 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3746 			uint16_t len)
3747 {
3748 	struct csio_evt_msg *evt_entry = NULL;
3749 
3750 	if (type >= CSIO_EVT_MAX)
3751 		return -EINVAL;
3752 
3753 	if (len > CSIO_EVT_MSG_SIZE)
3754 		return -EINVAL;
3755 
3756 	if (hw->flags & CSIO_HWF_FWEVT_STOP)
3757 		return -EINVAL;
3758 
3759 	if (list_empty(&hw->evt_free_q)) {
3760 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3761 			 type, len);
3762 		return -ENOMEM;
3763 	}
3764 
3765 	evt_entry = list_first_entry(&hw->evt_free_q,
3766 				     struct csio_evt_msg, list);
3767 	list_del_init(&evt_entry->list);
3768 
3769 	/* copy event msg and queue the event */
3770 	evt_entry->type = type;
3771 	memcpy((void *)evt_entry->data, evt_msg, len);
3772 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3773 
3774 	CSIO_DEC_STATS(hw, n_evt_freeq);
3775 	CSIO_INC_STATS(hw, n_evt_activeq);
3776 
3777 	return 0;
3778 }
3779 
3780 static int
3781 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3782 			uint16_t len, bool msg_sg)
3783 {
3784 	struct csio_evt_msg *evt_entry = NULL;
3785 	struct csio_fl_dma_buf *fl_sg;
3786 	uint32_t off = 0;
3787 	unsigned long flags;
3788 	int n, ret = 0;
3789 
3790 	if (type >= CSIO_EVT_MAX)
3791 		return -EINVAL;
3792 
3793 	if (len > CSIO_EVT_MSG_SIZE)
3794 		return -EINVAL;
3795 
3796 	spin_lock_irqsave(&hw->lock, flags);
3797 	if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3798 		ret = -EINVAL;
3799 		goto out;
3800 	}
3801 
3802 	if (list_empty(&hw->evt_free_q)) {
3803 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3804 			 type, len);
3805 		ret = -ENOMEM;
3806 		goto out;
3807 	}
3808 
3809 	evt_entry = list_first_entry(&hw->evt_free_q,
3810 				     struct csio_evt_msg, list);
3811 	list_del_init(&evt_entry->list);
3812 
3813 	/* copy event msg and queue the event */
3814 	evt_entry->type = type;
3815 
3816 	/* If Payload in SG list*/
3817 	if (msg_sg) {
3818 		fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3819 		for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3820 			memcpy((void *)((uintptr_t)evt_entry->data + off),
3821 				fl_sg->flbufs[n].vaddr,
3822 				fl_sg->flbufs[n].len);
3823 			off += fl_sg->flbufs[n].len;
3824 		}
3825 	} else
3826 		memcpy((void *)evt_entry->data, evt_msg, len);
3827 
3828 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3829 	CSIO_DEC_STATS(hw, n_evt_freeq);
3830 	CSIO_INC_STATS(hw, n_evt_activeq);
3831 out:
3832 	spin_unlock_irqrestore(&hw->lock, flags);
3833 	return ret;
3834 }
3835 
3836 static void
3837 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3838 {
3839 	if (evt_entry) {
3840 		spin_lock_irq(&hw->lock);
3841 		list_del_init(&evt_entry->list);
3842 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3843 		CSIO_DEC_STATS(hw, n_evt_activeq);
3844 		CSIO_INC_STATS(hw, n_evt_freeq);
3845 		spin_unlock_irq(&hw->lock);
3846 	}
3847 }
3848 
3849 void
3850 csio_evtq_flush(struct csio_hw *hw)
3851 {
3852 	uint32_t count;
3853 	count = 30;
3854 	while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3855 		spin_unlock_irq(&hw->lock);
3856 		msleep(2000);
3857 		spin_lock_irq(&hw->lock);
3858 	}
3859 
3860 	CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3861 }
3862 
3863 static void
3864 csio_evtq_stop(struct csio_hw *hw)
3865 {
3866 	hw->flags |= CSIO_HWF_FWEVT_STOP;
3867 }
3868 
3869 static void
3870 csio_evtq_start(struct csio_hw *hw)
3871 {
3872 	hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3873 }
3874 
3875 static void
3876 csio_evtq_cleanup(struct csio_hw *hw)
3877 {
3878 	struct list_head *evt_entry, *next_entry;
3879 
3880 	/* Release outstanding events from activeq to freeq*/
3881 	if (!list_empty(&hw->evt_active_q))
3882 		list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3883 
3884 	hw->stats.n_evt_activeq = 0;
3885 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3886 
3887 	/* Freeup event entry */
3888 	list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3889 		kfree(evt_entry);
3890 		CSIO_DEC_STATS(hw, n_evt_freeq);
3891 	}
3892 
3893 	hw->stats.n_evt_freeq = 0;
3894 }
3895 
3896 
3897 static void
3898 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3899 			  struct csio_fl_dma_buf *flb, void *priv)
3900 {
3901 	__u8 op;
3902 	void *msg = NULL;
3903 	uint32_t msg_len = 0;
3904 	bool msg_sg = 0;
3905 
3906 	op = ((struct rss_header *) wr)->opcode;
3907 	if (op == CPL_FW6_PLD) {
3908 		CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3909 		if (!flb || !flb->totlen) {
3910 			CSIO_INC_STATS(hw, n_cpl_unexp);
3911 			return;
3912 		}
3913 
3914 		msg = (void *) flb;
3915 		msg_len = flb->totlen;
3916 		msg_sg = 1;
3917 	} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3918 
3919 		CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3920 		/* skip RSS header */
3921 		msg = (void *)((uintptr_t)wr + sizeof(__be64));
3922 		msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3923 			   sizeof(struct cpl_fw4_msg);
3924 	} else {
3925 		csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3926 		CSIO_INC_STATS(hw, n_cpl_unexp);
3927 		return;
3928 	}
3929 
3930 	/*
3931 	 * Enqueue event to EventQ. Events processing happens
3932 	 * in Event worker thread context
3933 	 */
3934 	if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3935 				  (uint16_t)msg_len, msg_sg))
3936 		CSIO_INC_STATS(hw, n_evt_drop);
3937 }
3938 
3939 void
3940 csio_evtq_worker(struct work_struct *work)
3941 {
3942 	struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3943 	struct list_head *evt_entry, *next_entry;
3944 	LIST_HEAD(evt_q);
3945 	struct csio_evt_msg	*evt_msg;
3946 	struct cpl_fw6_msg *msg;
3947 	struct csio_rnode *rn;
3948 	int rv = 0;
3949 	uint8_t evtq_stop = 0;
3950 
3951 	csio_dbg(hw, "event worker thread active evts#%d\n",
3952 		 hw->stats.n_evt_activeq);
3953 
3954 	spin_lock_irq(&hw->lock);
3955 	while (!list_empty(&hw->evt_active_q)) {
3956 		list_splice_tail_init(&hw->evt_active_q, &evt_q);
3957 		spin_unlock_irq(&hw->lock);
3958 
3959 		list_for_each_safe(evt_entry, next_entry, &evt_q) {
3960 			evt_msg = (struct csio_evt_msg *) evt_entry;
3961 
3962 			/* Drop events if queue is STOPPED */
3963 			spin_lock_irq(&hw->lock);
3964 			if (hw->flags & CSIO_HWF_FWEVT_STOP)
3965 				evtq_stop = 1;
3966 			spin_unlock_irq(&hw->lock);
3967 			if (evtq_stop) {
3968 				CSIO_INC_STATS(hw, n_evt_drop);
3969 				goto free_evt;
3970 			}
3971 
3972 			switch (evt_msg->type) {
3973 			case CSIO_EVT_FW:
3974 				msg = (struct cpl_fw6_msg *)(evt_msg->data);
3975 
3976 				if ((msg->opcode == CPL_FW6_MSG ||
3977 				     msg->opcode == CPL_FW4_MSG) &&
3978 				    !msg->type) {
3979 					rv = csio_mb_fwevt_handler(hw,
3980 								msg->data);
3981 					if (!rv)
3982 						break;
3983 					/* Handle any remaining fw events */
3984 					csio_fcoe_fwevt_handler(hw,
3985 							msg->opcode, msg->data);
3986 				} else if (msg->opcode == CPL_FW6_PLD) {
3987 
3988 					csio_fcoe_fwevt_handler(hw,
3989 							msg->opcode, msg->data);
3990 				} else {
3991 					csio_warn(hw,
3992 					     "Unhandled FW msg op %x type %x\n",
3993 						  msg->opcode, msg->type);
3994 					CSIO_INC_STATS(hw, n_evt_drop);
3995 				}
3996 				break;
3997 
3998 			case CSIO_EVT_MBX:
3999 				csio_mberr_worker(hw);
4000 				break;
4001 
4002 			case CSIO_EVT_DEV_LOSS:
4003 				memcpy(&rn, evt_msg->data, sizeof(rn));
4004 				csio_rnode_devloss_handler(rn);
4005 				break;
4006 
4007 			default:
4008 				csio_warn(hw, "Unhandled event %x on evtq\n",
4009 					  evt_msg->type);
4010 				CSIO_INC_STATS(hw, n_evt_unexp);
4011 				break;
4012 			}
4013 free_evt:
4014 			csio_free_evt(hw, evt_msg);
4015 		}
4016 
4017 		spin_lock_irq(&hw->lock);
4018 	}
4019 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
4020 	spin_unlock_irq(&hw->lock);
4021 }
4022 
4023 int
4024 csio_fwevtq_handler(struct csio_hw *hw)
4025 {
4026 	int rv;
4027 
4028 	if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
4029 		CSIO_INC_STATS(hw, n_int_stray);
4030 		return -EINVAL;
4031 	}
4032 
4033 	rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
4034 			   csio_process_fwevtq_entry, NULL);
4035 	return rv;
4036 }
4037 
4038 /****************************************************************************
4039  * Entry points
4040  ****************************************************************************/
4041 
4042 /* Management module */
4043 /*
4044  * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
4045  * mgmt - mgmt module
4046  * @io_req - io request
4047  *
4048  * Return - 0:if given IO Req exists in active Q.
4049  *          -EINVAL  :if lookup fails.
4050  */
4051 int
4052 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
4053 {
4054 	struct list_head *tmp;
4055 
4056 	/* Lookup ioreq in the ACTIVEQ */
4057 	list_for_each(tmp, &mgmtm->active_q) {
4058 		if (io_req == (struct csio_ioreq *)tmp)
4059 			return 0;
4060 	}
4061 	return -EINVAL;
4062 }
4063 
4064 #define	ECM_MIN_TMO	1000	/* Minimum timeout value for req */
4065 
4066 /*
4067  * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
4068  * @data - Event data.
4069  *
4070  * Return - none.
4071  */
4072 static void
4073 csio_mgmt_tmo_handler(struct timer_list *t)
4074 {
4075 	struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer);
4076 	struct list_head *tmp;
4077 	struct csio_ioreq *io_req;
4078 
4079 	csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
4080 
4081 	spin_lock_irq(&mgmtm->hw->lock);
4082 
4083 	list_for_each(tmp, &mgmtm->active_q) {
4084 		io_req = (struct csio_ioreq *) tmp;
4085 		io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
4086 
4087 		if (!io_req->tmo) {
4088 			/* Dequeue the request from retry Q. */
4089 			tmp = csio_list_prev(tmp);
4090 			list_del_init(&io_req->sm.sm_list);
4091 			if (io_req->io_cbfn) {
4092 				/* io_req will be freed by completion handler */
4093 				io_req->wr_status = -ETIMEDOUT;
4094 				io_req->io_cbfn(mgmtm->hw, io_req);
4095 			} else {
4096 				CSIO_DB_ASSERT(0);
4097 			}
4098 		}
4099 	}
4100 
4101 	/* If retry queue is not empty, re-arm timer */
4102 	if (!list_empty(&mgmtm->active_q))
4103 		mod_timer(&mgmtm->mgmt_timer,
4104 			  jiffies + msecs_to_jiffies(ECM_MIN_TMO));
4105 	spin_unlock_irq(&mgmtm->hw->lock);
4106 }
4107 
4108 static void
4109 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
4110 {
4111 	struct csio_hw *hw = mgmtm->hw;
4112 	struct csio_ioreq *io_req;
4113 	struct list_head *tmp;
4114 	uint32_t count;
4115 
4116 	count = 30;
4117 	/* Wait for all outstanding req to complete gracefully */
4118 	while ((!list_empty(&mgmtm->active_q)) && count--) {
4119 		spin_unlock_irq(&hw->lock);
4120 		msleep(2000);
4121 		spin_lock_irq(&hw->lock);
4122 	}
4123 
4124 	/* release outstanding req from ACTIVEQ */
4125 	list_for_each(tmp, &mgmtm->active_q) {
4126 		io_req = (struct csio_ioreq *) tmp;
4127 		tmp = csio_list_prev(tmp);
4128 		list_del_init(&io_req->sm.sm_list);
4129 		mgmtm->stats.n_active--;
4130 		if (io_req->io_cbfn) {
4131 			/* io_req will be freed by completion handler */
4132 			io_req->wr_status = -ETIMEDOUT;
4133 			io_req->io_cbfn(mgmtm->hw, io_req);
4134 		}
4135 	}
4136 }
4137 
4138 /*
4139  * csio_mgmt_init - Mgmt module init entry point
4140  * @mgmtsm - mgmt module
4141  * @hw	 - HW module
4142  *
4143  * Initialize mgmt timer, resource wait queue, active queue,
4144  * completion q. Allocate Egress and Ingress
4145  * WR queues and save off the queue index returned by the WR
4146  * module for future use. Allocate and save off mgmt reqs in the
4147  * mgmt_req_freelist for future use. Make sure their SM is initialized
4148  * to uninit state.
4149  * Returns: 0 - on success
4150  *          -ENOMEM   - on error.
4151  */
4152 static int
4153 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
4154 {
4155 	timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0);
4156 
4157 	INIT_LIST_HEAD(&mgmtm->active_q);
4158 	INIT_LIST_HEAD(&mgmtm->cbfn_q);
4159 
4160 	mgmtm->hw = hw;
4161 	/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
4162 
4163 	return 0;
4164 }
4165 
4166 /*
4167  * csio_mgmtm_exit - MGMT module exit entry point
4168  * @mgmtsm - mgmt module
4169  *
4170  * This function called during MGMT module uninit.
4171  * Stop timers, free ioreqs allocated.
4172  * Returns: None
4173  *
4174  */
4175 static void
4176 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
4177 {
4178 	del_timer_sync(&mgmtm->mgmt_timer);
4179 }
4180 
4181 
4182 /**
4183  * csio_hw_start - Kicks off the HW State machine
4184  * @hw:		Pointer to HW module.
4185  *
4186  * It is assumed that the initialization is a synchronous operation.
4187  * So when we return afer posting the event, the HW SM should be in
4188  * the ready state, if there were no errors during init.
4189  */
4190 int
4191 csio_hw_start(struct csio_hw *hw)
4192 {
4193 	spin_lock_irq(&hw->lock);
4194 	csio_post_event(&hw->sm, CSIO_HWE_CFG);
4195 	spin_unlock_irq(&hw->lock);
4196 
4197 	if (csio_is_hw_ready(hw))
4198 		return 0;
4199 	else if (csio_match_state(hw, csio_hws_uninit))
4200 		return -EINVAL;
4201 	else
4202 		return -ENODEV;
4203 }
4204 
4205 int
4206 csio_hw_stop(struct csio_hw *hw)
4207 {
4208 	csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
4209 
4210 	if (csio_is_hw_removing(hw))
4211 		return 0;
4212 	else
4213 		return -EINVAL;
4214 }
4215 
4216 /* Max reset retries */
4217 #define CSIO_MAX_RESET_RETRIES	3
4218 
4219 /**
4220  * csio_hw_reset - Reset the hardware
4221  * @hw:		HW module.
4222  *
4223  * Caller should hold lock across this function.
4224  */
4225 int
4226 csio_hw_reset(struct csio_hw *hw)
4227 {
4228 	if (!csio_is_hw_master(hw))
4229 		return -EPERM;
4230 
4231 	if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
4232 		csio_dbg(hw, "Max hw reset attempts reached..");
4233 		return -EINVAL;
4234 	}
4235 
4236 	hw->rst_retries++;
4237 	csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
4238 
4239 	if (csio_is_hw_ready(hw)) {
4240 		hw->rst_retries = 0;
4241 		hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
4242 		return 0;
4243 	} else
4244 		return -EINVAL;
4245 }
4246 
4247 /*
4248  * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
4249  * @hw: HW module.
4250  */
4251 static void
4252 csio_hw_get_device_id(struct csio_hw *hw)
4253 {
4254 	/* Is the adapter device id cached already ?*/
4255 	if (csio_is_dev_id_cached(hw))
4256 		return;
4257 
4258 	/* Get the PCI vendor & device id */
4259 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
4260 			     &hw->params.pci.vendor_id);
4261 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
4262 			     &hw->params.pci.device_id);
4263 
4264 	csio_dev_id_cached(hw);
4265 	hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
4266 
4267 } /* csio_hw_get_device_id */
4268 
4269 /*
4270  * csio_hw_set_description - Set the model, description of the hw.
4271  * @hw: HW module.
4272  * @ven_id: PCI Vendor ID
4273  * @dev_id: PCI Device ID
4274  */
4275 static void
4276 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
4277 {
4278 	uint32_t adap_type, prot_type;
4279 
4280 	if (ven_id == CSIO_VENDOR_ID) {
4281 		prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
4282 		adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
4283 
4284 		if (prot_type == CSIO_T5_FCOE_ASIC) {
4285 			memcpy(hw->hw_ver,
4286 			       csio_t5_fcoe_adapters[adap_type].model_no, 16);
4287 			memcpy(hw->model_desc,
4288 			       csio_t5_fcoe_adapters[adap_type].description,
4289 			       32);
4290 		} else {
4291 			char tempName[32] = "Chelsio FCoE Controller";
4292 			memcpy(hw->model_desc, tempName, 32);
4293 		}
4294 	}
4295 } /* csio_hw_set_description */
4296 
4297 /**
4298  * csio_hw_init - Initialize HW module.
4299  * @hw:		Pointer to HW module.
4300  *
4301  * Initialize the members of the HW module.
4302  */
4303 int
4304 csio_hw_init(struct csio_hw *hw)
4305 {
4306 	int rv = -EINVAL;
4307 	uint32_t i;
4308 	uint16_t ven_id, dev_id;
4309 	struct csio_evt_msg	*evt_entry;
4310 
4311 	INIT_LIST_HEAD(&hw->sm.sm_list);
4312 	csio_init_state(&hw->sm, csio_hws_uninit);
4313 	spin_lock_init(&hw->lock);
4314 	INIT_LIST_HEAD(&hw->sln_head);
4315 
4316 	/* Get the PCI vendor & device id */
4317 	csio_hw_get_device_id(hw);
4318 
4319 	strcpy(hw->name, CSIO_HW_NAME);
4320 
4321 	/* Initialize the HW chip ops T5 specific ops */
4322 	hw->chip_ops = &t5_ops;
4323 
4324 	/* Set the model & its description */
4325 
4326 	ven_id = hw->params.pci.vendor_id;
4327 	dev_id = hw->params.pci.device_id;
4328 
4329 	csio_hw_set_description(hw, ven_id, dev_id);
4330 
4331 	/* Initialize default log level */
4332 	hw->params.log_level = (uint32_t) csio_dbg_level;
4333 
4334 	csio_set_fwevt_intr_idx(hw, -1);
4335 	csio_set_nondata_intr_idx(hw, -1);
4336 
4337 	/* Init all the modules: Mailbox, WorkRequest and Transport */
4338 	if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
4339 		goto err;
4340 
4341 	rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
4342 	if (rv)
4343 		goto err_mbm_exit;
4344 
4345 	rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
4346 	if (rv)
4347 		goto err_wrm_exit;
4348 
4349 	rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
4350 	if (rv)
4351 		goto err_scsim_exit;
4352 	/* Pre-allocate evtq and initialize them */
4353 	INIT_LIST_HEAD(&hw->evt_active_q);
4354 	INIT_LIST_HEAD(&hw->evt_free_q);
4355 	for (i = 0; i < csio_evtq_sz; i++) {
4356 
4357 		evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4358 		if (!evt_entry) {
4359 			rv = -ENOMEM;
4360 			csio_err(hw, "Failed to initialize eventq");
4361 			goto err_evtq_cleanup;
4362 		}
4363 
4364 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
4365 		CSIO_INC_STATS(hw, n_evt_freeq);
4366 	}
4367 
4368 	hw->dev_num = dev_num;
4369 	dev_num++;
4370 
4371 	return 0;
4372 
4373 err_evtq_cleanup:
4374 	csio_evtq_cleanup(hw);
4375 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4376 err_scsim_exit:
4377 	csio_scsim_exit(csio_hw_to_scsim(hw));
4378 err_wrm_exit:
4379 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4380 err_mbm_exit:
4381 	csio_mbm_exit(csio_hw_to_mbm(hw));
4382 err:
4383 	return rv;
4384 }
4385 
4386 /**
4387  * csio_hw_exit - Un-initialize HW module.
4388  * @hw:		Pointer to HW module.
4389  *
4390  */
4391 void
4392 csio_hw_exit(struct csio_hw *hw)
4393 {
4394 	csio_evtq_cleanup(hw);
4395 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4396 	csio_scsim_exit(csio_hw_to_scsim(hw));
4397 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4398 	csio_mbm_exit(csio_hw_to_mbm(hw));
4399 }
4400