xref: /openbmc/linux/drivers/scsi/csiostor/csio_hw.c (revision 530e7a660fb795452357b36cce26b839a9a187a9)
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
45 
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
49 
50 int csio_dbg_level = 0xFEFF;
51 unsigned int csio_port_mask = 0xf;
52 
53 /* Default FW event queue entries. */
54 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55 
56 /* Default MSI param level */
57 int csio_msi = 2;
58 
59 /* FCoE function instances */
60 static int dev_num;
61 
62 /* FCoE Adapter types & its description */
63 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64 	{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65 	{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66 	{"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67 	{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68 	{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69 	{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70 	{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71 	{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72 	{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73 	{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74 	{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75 	{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76 	{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77 	{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78 	{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79 	{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80 	{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81 	{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82 	{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83 	{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84 	{"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85 	{"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
86 };
87 
88 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89 static void csio_hw_mbm_cleanup(struct csio_hw *);
90 
91 /* State machine forward declarations */
92 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
101 
102 static void csio_hw_initialize(struct csio_hw *hw);
103 static void csio_evtq_stop(struct csio_hw *hw);
104 static void csio_evtq_start(struct csio_hw *hw);
105 
106 int csio_is_hw_ready(struct csio_hw *hw)
107 {
108 	return csio_match_state(hw, csio_hws_ready);
109 }
110 
111 int csio_is_hw_removing(struct csio_hw *hw)
112 {
113 	return csio_match_state(hw, csio_hws_removing);
114 }
115 
116 
117 /*
118  *	csio_hw_wait_op_done_val - wait until an operation is completed
119  *	@hw: the HW module
120  *	@reg: the register to check for completion
121  *	@mask: a single-bit field within @reg that indicates completion
122  *	@polarity: the value of the field when the operation is completed
123  *	@attempts: number of check iterations
124  *	@delay: delay in usecs between iterations
125  *	@valp: where to store the value of the register at completion time
126  *
127  *	Wait until an operation is completed by checking a bit in a register
128  *	up to @attempts times.  If @valp is not NULL the value of the register
129  *	at the time it indicated completion is stored there.  Returns 0 if the
130  *	operation completes and	-EAGAIN	otherwise.
131  */
132 int
133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134 			 int polarity, int attempts, int delay, uint32_t *valp)
135 {
136 	uint32_t val;
137 	while (1) {
138 		val = csio_rd_reg32(hw, reg);
139 
140 		if (!!(val & mask) == polarity) {
141 			if (valp)
142 				*valp = val;
143 			return 0;
144 		}
145 
146 		if (--attempts == 0)
147 			return -EAGAIN;
148 		if (delay)
149 			udelay(delay);
150 	}
151 }
152 
153 /*
154  *	csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155  *	@hw: the adapter
156  *	@addr: the indirect TP register address
157  *	@mask: specifies the field within the register to modify
158  *	@val: new value for the field
159  *
160  *	Sets a field of an indirect TP register to the given value.
161  */
162 void
163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164 			unsigned int mask, unsigned int val)
165 {
166 	csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167 	val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168 	csio_wr_reg32(hw, val, TP_PIO_DATA_A);
169 }
170 
171 void
172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173 		   uint32_t value)
174 {
175 	uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
176 
177 	csio_wr_reg32(hw, val | value, reg);
178 	/* Flush */
179 	csio_rd_reg32(hw, reg);
180 
181 }
182 
183 static int
184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
185 {
186 	return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187 					    addr, len, buf, 0);
188 }
189 
190 /*
191  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
192  */
193 #define EEPROM_MAX_RD_POLL	40
194 #define EEPROM_MAX_WR_POLL	6
195 #define EEPROM_STAT_ADDR	0x7bfc
196 #define VPD_BASE		0x400
197 #define VPD_BASE_OLD		0
198 #define VPD_LEN			1024
199 #define VPD_INFO_FLD_HDR_SIZE	3
200 
201 /*
202  *	csio_hw_seeprom_read - read a serial EEPROM location
203  *	@hw: hw to read
204  *	@addr: EEPROM virtual address
205  *	@data: where to store the read data
206  *
207  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
208  *	VPD capability.  Note that this function must be called with a virtual
209  *	address.
210  */
211 static int
212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
213 {
214 	uint16_t val = 0;
215 	int attempts = EEPROM_MAX_RD_POLL;
216 	uint32_t base = hw->params.pci.vpd_cap_addr;
217 
218 	if (addr >= EEPROMVSIZE || (addr & 3))
219 		return -EINVAL;
220 
221 	pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
222 
223 	do {
224 		udelay(10);
225 		pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
227 
228 	if (!(val & PCI_VPD_ADDR_F)) {
229 		csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230 		return -EINVAL;
231 	}
232 
233 	pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234 	*data = le32_to_cpu(*(__le32 *)data);
235 
236 	return 0;
237 }
238 
239 /*
240  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
241  * VPD-R sections.
242  */
243 struct t4_vpd_hdr {
244 	u8  id_tag;
245 	u8  id_len[2];
246 	u8  id_data[ID_LEN];
247 	u8  vpdr_tag;
248 	u8  vpdr_len[2];
249 };
250 
251 /*
252  *	csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253  *				      the VPD
254  *	@v: Pointer to buffered vpd data structure
255  *	@kw: The keyword to search for
256  *
257  *	Returns the value of the information field keyword or
258  *	-EINVAL otherwise.
259  */
260 static int
261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
262 {
263 	int32_t i;
264 	int32_t offset , len;
265 	const uint8_t *buf = &v->id_tag;
266 	const uint8_t *vpdr_len = &v->vpdr_tag;
267 	offset = sizeof(struct t4_vpd_hdr);
268 	len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
269 
270 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271 		return -EINVAL;
272 
273 	for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274 		if (memcmp(buf + i , kw, 2) == 0) {
275 			i += VPD_INFO_FLD_HDR_SIZE;
276 			return i;
277 		}
278 
279 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
280 	}
281 
282 	return -EINVAL;
283 }
284 
285 static int
286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
287 {
288 	*pos = pci_find_capability(pdev, cap);
289 	if (*pos)
290 		return 0;
291 
292 	return -1;
293 }
294 
295 /*
296  *	csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297  *	@hw: HW module
298  *	@p: where to store the parameters
299  *
300  *	Reads card parameters stored in VPD EEPROM.
301  */
302 static int
303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
304 {
305 	int i, ret, ec, sn, addr;
306 	uint8_t *vpd, csum;
307 	const struct t4_vpd_hdr *v;
308 	/* To get around compilation warning from strstrip */
309 	char *s;
310 
311 	if (csio_is_valid_vpd(hw))
312 		return 0;
313 
314 	ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315 				  &hw->params.pci.vpd_cap_addr);
316 	if (ret)
317 		return -EINVAL;
318 
319 	vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320 	if (vpd == NULL)
321 		return -ENOMEM;
322 
323 	/*
324 	 * Card information normally starts at VPD_BASE but early cards had
325 	 * it at 0.
326 	 */
327 	ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328 	addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
329 
330 	for (i = 0; i < VPD_LEN; i += 4) {
331 		ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332 		if (ret) {
333 			kfree(vpd);
334 			return ret;
335 		}
336 	}
337 
338 	/* Reset the VPD flag! */
339 	hw->flags &= (~CSIO_HWF_VPD_VALID);
340 
341 	v = (const struct t4_vpd_hdr *)vpd;
342 
343 #define FIND_VPD_KW(var, name) do { \
344 	var = csio_hw_get_vpd_keyword_val(v, name); \
345 	if (var < 0) { \
346 		csio_err(hw, "missing VPD keyword " name "\n"); \
347 		kfree(vpd); \
348 		return -EINVAL; \
349 	} \
350 } while (0)
351 
352 	FIND_VPD_KW(i, "RV");
353 	for (csum = 0; i >= 0; i--)
354 		csum += vpd[i];
355 
356 	if (csum) {
357 		csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358 		kfree(vpd);
359 		return -EINVAL;
360 	}
361 	FIND_VPD_KW(ec, "EC");
362 	FIND_VPD_KW(sn, "SN");
363 #undef FIND_VPD_KW
364 
365 	memcpy(p->id, v->id_data, ID_LEN);
366 	s = strstrip(p->id);
367 	memcpy(p->ec, vpd + ec, EC_LEN);
368 	s = strstrip(p->ec);
369 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371 	s = strstrip(p->sn);
372 
373 	csio_valid_vpd_copied(hw);
374 
375 	kfree(vpd);
376 	return 0;
377 }
378 
379 /*
380  *	csio_hw_sf1_read - read data from the serial flash
381  *	@hw: the HW module
382  *	@byte_cnt: number of bytes to read
383  *	@cont: whether another operation will be chained
384  *      @lock: whether to lock SF for PL access only
385  *	@valp: where to store the read data
386  *
387  *	Reads up to 4 bytes of data from the serial flash.  The location of
388  *	the read needs to be specified prior to calling this by issuing the
389  *	appropriate commands to the serial flash.
390  */
391 static int
392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393 		 int32_t lock, uint32_t *valp)
394 {
395 	int ret;
396 
397 	if (!byte_cnt || byte_cnt > 4)
398 		return -EINVAL;
399 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400 		return -EBUSY;
401 
402 	csio_wr_reg32(hw,  SF_LOCK_V(lock) | SF_CONT_V(cont) |
403 		      BYTECNT_V(byte_cnt - 1), SF_OP_A);
404 	ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405 				       10, NULL);
406 	if (!ret)
407 		*valp = csio_rd_reg32(hw, SF_DATA_A);
408 	return ret;
409 }
410 
411 /*
412  *	csio_hw_sf1_write - write data to the serial flash
413  *	@hw: the HW module
414  *	@byte_cnt: number of bytes to write
415  *	@cont: whether another operation will be chained
416  *      @lock: whether to lock SF for PL access only
417  *	@val: value to write
418  *
419  *	Writes up to 4 bytes of data to the serial flash.  The location of
420  *	the write needs to be specified prior to calling this by issuing the
421  *	appropriate commands to the serial flash.
422  */
423 static int
424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425 		  int32_t lock, uint32_t val)
426 {
427 	if (!byte_cnt || byte_cnt > 4)
428 		return -EINVAL;
429 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430 		return -EBUSY;
431 
432 	csio_wr_reg32(hw, val, SF_DATA_A);
433 	csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434 		      OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
435 
436 	return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437 					10, NULL);
438 }
439 
440 /*
441  *	csio_hw_flash_wait_op - wait for a flash operation to complete
442  *	@hw: the HW module
443  *	@attempts: max number of polls of the status register
444  *	@delay: delay between polls in ms
445  *
446  *	Wait for a flash operation to complete by polling the status register.
447  */
448 static int
449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
450 {
451 	int ret;
452 	uint32_t status;
453 
454 	while (1) {
455 		ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456 		if (ret != 0)
457 			return ret;
458 
459 		ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460 		if (ret != 0)
461 			return ret;
462 
463 		if (!(status & 1))
464 			return 0;
465 		if (--attempts == 0)
466 			return -EAGAIN;
467 		if (delay)
468 			msleep(delay);
469 	}
470 }
471 
472 /*
473  *	csio_hw_read_flash - read words from serial flash
474  *	@hw: the HW module
475  *	@addr: the start address for the read
476  *	@nwords: how many 32-bit words to read
477  *	@data: where to store the read data
478  *	@byte_oriented: whether to store data as bytes or as words
479  *
480  *	Read the specified number of 32-bit words from the serial flash.
481  *	If @byte_oriented is set the read data is stored as a byte array
482  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
483  *	natural endianess.
484  */
485 static int
486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487 		  uint32_t *data, int32_t byte_oriented)
488 {
489 	int ret;
490 
491 	if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492 		return -EINVAL;
493 
494 	addr = swab32(addr) | SF_RD_DATA_FAST;
495 
496 	ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497 	if (ret != 0)
498 		return ret;
499 
500 	ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501 	if (ret != 0)
502 		return ret;
503 
504 	for ( ; nwords; nwords--, data++) {
505 		ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506 		if (nwords == 1)
507 			csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
508 		if (ret)
509 			return ret;
510 		if (byte_oriented)
511 			*data = (__force __u32) htonl(*data);
512 	}
513 	return 0;
514 }
515 
516 /*
517  *	csio_hw_write_flash - write up to a page of data to the serial flash
518  *	@hw: the hw
519  *	@addr: the start address to write
520  *	@n: length of data to write in bytes
521  *	@data: the data to write
522  *
523  *	Writes up to a page of data (256 bytes) to the serial flash starting
524  *	at the given address.  All the data must be written to the same page.
525  */
526 static int
527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528 		    uint32_t n, const uint8_t *data)
529 {
530 	int ret = -EINVAL;
531 	uint32_t buf[64];
532 	uint32_t i, c, left, val, offset = addr & 0xff;
533 
534 	if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535 		return -EINVAL;
536 
537 	val = swab32(addr) | SF_PROG_PAGE;
538 
539 	ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540 	if (ret != 0)
541 		goto unlock;
542 
543 	ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544 	if (ret != 0)
545 		goto unlock;
546 
547 	for (left = n; left; left -= c) {
548 		c = min(left, 4U);
549 		for (val = 0, i = 0; i < c; ++i)
550 			val = (val << 8) + *data++;
551 
552 		ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553 		if (ret)
554 			goto unlock;
555 	}
556 	ret = csio_hw_flash_wait_op(hw, 8, 1);
557 	if (ret)
558 		goto unlock;
559 
560 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
561 
562 	/* Read the page to verify the write succeeded */
563 	ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564 	if (ret)
565 		return ret;
566 
567 	if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568 		csio_err(hw,
569 			 "failed to correctly write the flash page at %#x\n",
570 			 addr);
571 		return -EINVAL;
572 	}
573 
574 	return 0;
575 
576 unlock:
577 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
578 	return ret;
579 }
580 
581 /*
582  *	csio_hw_flash_erase_sectors - erase a range of flash sectors
583  *	@hw: the HW module
584  *	@start: the first sector to erase
585  *	@end: the last sector to erase
586  *
587  *	Erases the sectors in the given inclusive range.
588  */
589 static int
590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
591 {
592 	int ret = 0;
593 
594 	while (start <= end) {
595 
596 		ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597 		if (ret != 0)
598 			goto out;
599 
600 		ret = csio_hw_sf1_write(hw, 4, 0, 1,
601 					SF_ERASE_SECTOR | (start << 8));
602 		if (ret != 0)
603 			goto out;
604 
605 		ret = csio_hw_flash_wait_op(hw, 14, 500);
606 		if (ret != 0)
607 			goto out;
608 
609 		start++;
610 	}
611 out:
612 	if (ret)
613 		csio_err(hw, "erase of flash sector %d failed, error %d\n",
614 			 start, ret);
615 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
616 	return 0;
617 }
618 
619 static void
620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
621 {
622 	csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623 		    FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624 		    FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625 		    FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626 		    FW_HDR_FW_VER_BUILD_G(hw->fwrev));
627 }
628 
629 /*
630  * csio_hw_get_fw_version - read the firmware version
631  * @hw: HW module
632  * @vers: where to place the version
633  *
634  * Reads the FW version from flash.
635  */
636 static int
637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
638 {
639 	return csio_hw_read_flash(hw, FLASH_FW_START +
640 				  offsetof(struct fw_hdr, fw_ver), 1,
641 				  vers, 0);
642 }
643 
644 /*
645  *	csio_hw_get_tp_version - read the TP microcode version
646  *	@hw: HW module
647  *	@vers: where to place the version
648  *
649  *	Reads the TP microcode version from flash.
650  */
651 static int
652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
653 {
654 	return csio_hw_read_flash(hw, FLASH_FW_START +
655 			offsetof(struct fw_hdr, tp_microcode_ver), 1,
656 			vers, 0);
657 }
658 
659 /*
660  * csio_hw_fw_dload - download firmware.
661  * @hw: HW module
662  * @fw_data: firmware image to write.
663  * @size: image size
664  *
665  * Write the supplied firmware image to the card's serial flash.
666  */
667 static int
668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
669 {
670 	uint32_t csum;
671 	int32_t addr;
672 	int ret;
673 	uint32_t i;
674 	uint8_t first_page[SF_PAGE_SIZE];
675 	const __be32 *p = (const __be32 *)fw_data;
676 	struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677 	uint32_t sf_sec_size;
678 
679 	if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680 		csio_err(hw, "Serial Flash data invalid\n");
681 		return -EINVAL;
682 	}
683 
684 	if (!size) {
685 		csio_err(hw, "FW image has no data\n");
686 		return -EINVAL;
687 	}
688 
689 	if (size & 511) {
690 		csio_err(hw, "FW image size not multiple of 512 bytes\n");
691 		return -EINVAL;
692 	}
693 
694 	if (ntohs(hdr->len512) * 512 != size) {
695 		csio_err(hw, "FW image size differs from size in FW header\n");
696 		return -EINVAL;
697 	}
698 
699 	if (size > FLASH_FW_MAX_SIZE) {
700 		csio_err(hw, "FW image too large, max is %u bytes\n",
701 			    FLASH_FW_MAX_SIZE);
702 		return -EINVAL;
703 	}
704 
705 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706 		csum += ntohl(p[i]);
707 
708 	if (csum != 0xffffffff) {
709 		csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710 		return -EINVAL;
711 	}
712 
713 	sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
715 
716 	csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717 			  FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
718 
719 	ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720 					  FLASH_FW_START_SEC + i - 1);
721 	if (ret) {
722 		csio_err(hw, "Flash Erase failed\n");
723 		goto out;
724 	}
725 
726 	/*
727 	 * We write the correct version at the end so the driver can see a bad
728 	 * version if the FW write fails.  Start by writing a copy of the
729 	 * first page with a bad version.
730 	 */
731 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
732 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733 	ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734 	if (ret)
735 		goto out;
736 
737 	csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738 		    FW_IMG_START, FW_IMG_START + size);
739 
740 	addr = FLASH_FW_START;
741 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742 		addr += SF_PAGE_SIZE;
743 		fw_data += SF_PAGE_SIZE;
744 		ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745 		if (ret)
746 			goto out;
747 	}
748 
749 	ret = csio_hw_write_flash(hw,
750 				  FLASH_FW_START +
751 					offsetof(struct fw_hdr, fw_ver),
752 				  sizeof(hdr->fw_ver),
753 				  (const uint8_t *)&hdr->fw_ver);
754 
755 out:
756 	if (ret)
757 		csio_err(hw, "firmware download failed, error %d\n", ret);
758 	return ret;
759 }
760 
761 static int
762 csio_hw_get_flash_params(struct csio_hw *hw)
763 {
764 	int ret;
765 	uint32_t info = 0;
766 
767 	ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
768 	if (!ret)
769 		ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
770 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
771 	if (ret != 0)
772 		return ret;
773 
774 	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
775 		return -EINVAL;
776 	info >>= 16;				/* log2 of size */
777 	if (info >= 0x14 && info < 0x18)
778 		hw->params.sf_nsec = 1 << (info - 16);
779 	else if (info == 0x18)
780 		hw->params.sf_nsec = 64;
781 	else
782 		return -EINVAL;
783 	hw->params.sf_size = 1 << info;
784 
785 	return 0;
786 }
787 
788 /*****************************************************************************/
789 /* HW State machine assists                                                  */
790 /*****************************************************************************/
791 
792 static int
793 csio_hw_dev_ready(struct csio_hw *hw)
794 {
795 	uint32_t reg;
796 	int cnt = 6;
797 	int src_pf;
798 
799 	while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
800 	       (--cnt != 0))
801 		mdelay(100);
802 
803 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
804 		src_pf = SOURCEPF_G(reg);
805 	else
806 		src_pf = T6_SOURCEPF_G(reg);
807 
808 	if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
809 			   (src_pf >= CSIO_MAX_PFN))) {
810 		csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
811 		return -EIO;
812 	}
813 
814 	hw->pfn = src_pf;
815 
816 	return 0;
817 }
818 
819 /*
820  * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
821  * @hw: HW module
822  * @state: Device state
823  *
824  * FW_HELLO_CMD has to be polled for completion.
825  */
826 static int
827 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
828 {
829 	struct csio_mb	*mbp;
830 	int	rv = 0;
831 	enum fw_retval retval;
832 	uint8_t mpfn;
833 	char state_str[16];
834 	int retries = FW_CMD_HELLO_RETRIES;
835 
836 	memset(state_str, 0, sizeof(state_str));
837 
838 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
839 	if (!mbp) {
840 		rv = -ENOMEM;
841 		CSIO_INC_STATS(hw, n_err_nomem);
842 		goto out;
843 	}
844 
845 retry:
846 	csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
847 		      hw->pfn, CSIO_MASTER_MAY, NULL);
848 
849 	rv = csio_mb_issue(hw, mbp);
850 	if (rv) {
851 		csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
852 		goto out_free_mb;
853 	}
854 
855 	csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
856 	if (retval != FW_SUCCESS) {
857 		csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
858 		rv = -EINVAL;
859 		goto out_free_mb;
860 	}
861 
862 	/* Firmware has designated us to be master */
863 	if (hw->pfn == mpfn) {
864 		hw->flags |= CSIO_HWF_MASTER;
865 	} else if (*state == CSIO_DEV_STATE_UNINIT) {
866 		/*
867 		 * If we're not the Master PF then we need to wait around for
868 		 * the Master PF Driver to finish setting up the adapter.
869 		 *
870 		 * Note that we also do this wait if we're a non-Master-capable
871 		 * PF and there is no current Master PF; a Master PF may show up
872 		 * momentarily and we wouldn't want to fail pointlessly.  (This
873 		 * can happen when an OS loads lots of different drivers rapidly
874 		 * at the same time). In this case, the Master PF returned by
875 		 * the firmware will be PCIE_FW_MASTER_MASK so the test below
876 		 * will work ...
877 		 */
878 
879 		int waiting = FW_CMD_HELLO_TIMEOUT;
880 
881 		/*
882 		 * Wait for the firmware to either indicate an error or
883 		 * initialized state.  If we see either of these we bail out
884 		 * and report the issue to the caller.  If we exhaust the
885 		 * "hello timeout" and we haven't exhausted our retries, try
886 		 * again.  Otherwise bail with a timeout error.
887 		 */
888 		for (;;) {
889 			uint32_t pcie_fw;
890 
891 			spin_unlock_irq(&hw->lock);
892 			msleep(50);
893 			spin_lock_irq(&hw->lock);
894 			waiting -= 50;
895 
896 			/*
897 			 * If neither Error nor Initialialized are indicated
898 			 * by the firmware keep waiting till we exaust our
899 			 * timeout ... and then retry if we haven't exhausted
900 			 * our retries ...
901 			 */
902 			pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
903 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
904 				if (waiting <= 0) {
905 					if (retries-- > 0)
906 						goto retry;
907 
908 					rv = -ETIMEDOUT;
909 					break;
910 				}
911 				continue;
912 			}
913 
914 			/*
915 			 * We either have an Error or Initialized condition
916 			 * report errors preferentially.
917 			 */
918 			if (state) {
919 				if (pcie_fw & PCIE_FW_ERR_F) {
920 					*state = CSIO_DEV_STATE_ERR;
921 					rv = -ETIMEDOUT;
922 				} else if (pcie_fw & PCIE_FW_INIT_F)
923 					*state = CSIO_DEV_STATE_INIT;
924 			}
925 
926 			/*
927 			 * If we arrived before a Master PF was selected and
928 			 * there's not a valid Master PF, grab its identity
929 			 * for our caller.
930 			 */
931 			if (mpfn == PCIE_FW_MASTER_M &&
932 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
933 				mpfn = PCIE_FW_MASTER_G(pcie_fw);
934 			break;
935 		}
936 		hw->flags &= ~CSIO_HWF_MASTER;
937 	}
938 
939 	switch (*state) {
940 	case CSIO_DEV_STATE_UNINIT:
941 		strcpy(state_str, "Initializing");
942 		break;
943 	case CSIO_DEV_STATE_INIT:
944 		strcpy(state_str, "Initialized");
945 		break;
946 	case CSIO_DEV_STATE_ERR:
947 		strcpy(state_str, "Error");
948 		break;
949 	default:
950 		strcpy(state_str, "Unknown");
951 		break;
952 	}
953 
954 	if (hw->pfn == mpfn)
955 		csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
956 			hw->pfn, state_str);
957 	else
958 		csio_info(hw,
959 		    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
960 		    hw->pfn, mpfn, state_str);
961 
962 out_free_mb:
963 	mempool_free(mbp, hw->mb_mempool);
964 out:
965 	return rv;
966 }
967 
968 /*
969  * csio_do_bye - Perform the BYE FW Mailbox command and process response.
970  * @hw: HW module
971  *
972  */
973 static int
974 csio_do_bye(struct csio_hw *hw)
975 {
976 	struct csio_mb	*mbp;
977 	enum fw_retval retval;
978 
979 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
980 	if (!mbp) {
981 		CSIO_INC_STATS(hw, n_err_nomem);
982 		return -ENOMEM;
983 	}
984 
985 	csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
986 
987 	if (csio_mb_issue(hw, mbp)) {
988 		csio_err(hw, "Issue of BYE command failed\n");
989 		mempool_free(mbp, hw->mb_mempool);
990 		return -EINVAL;
991 	}
992 
993 	retval = csio_mb_fw_retval(mbp);
994 	if (retval != FW_SUCCESS) {
995 		mempool_free(mbp, hw->mb_mempool);
996 		return -EINVAL;
997 	}
998 
999 	mempool_free(mbp, hw->mb_mempool);
1000 
1001 	return 0;
1002 }
1003 
1004 /*
1005  * csio_do_reset- Perform the device reset.
1006  * @hw: HW module
1007  * @fw_rst: FW reset
1008  *
1009  * If fw_rst is set, issues FW reset mbox cmd otherwise
1010  * does PIO reset.
1011  * Performs reset of the function.
1012  */
1013 static int
1014 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1015 {
1016 	struct csio_mb	*mbp;
1017 	enum fw_retval retval;
1018 
1019 	if (!fw_rst) {
1020 		/* PIO reset */
1021 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1022 		mdelay(2000);
1023 		return 0;
1024 	}
1025 
1026 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1027 	if (!mbp) {
1028 		CSIO_INC_STATS(hw, n_err_nomem);
1029 		return -ENOMEM;
1030 	}
1031 
1032 	csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1033 		      PIORSTMODE_F | PIORST_F, 0, NULL);
1034 
1035 	if (csio_mb_issue(hw, mbp)) {
1036 		csio_err(hw, "Issue of RESET command failed.n");
1037 		mempool_free(mbp, hw->mb_mempool);
1038 		return -EINVAL;
1039 	}
1040 
1041 	retval = csio_mb_fw_retval(mbp);
1042 	if (retval != FW_SUCCESS) {
1043 		csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1044 		mempool_free(mbp, hw->mb_mempool);
1045 		return -EINVAL;
1046 	}
1047 
1048 	mempool_free(mbp, hw->mb_mempool);
1049 
1050 	return 0;
1051 }
1052 
1053 static int
1054 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1055 {
1056 	struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1057 	uint16_t caps;
1058 
1059 	caps = ntohs(rsp->fcoecaps);
1060 
1061 	if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1062 		csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1063 		return -EINVAL;
1064 	}
1065 
1066 	if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1067 		csio_err(hw, "No FCoE Control Offload capability\n");
1068 		return -EINVAL;
1069 	}
1070 
1071 	return 0;
1072 }
1073 
1074 /*
1075  *	csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1076  *	@hw: the HW module
1077  *	@mbox: mailbox to use for the FW RESET command (if desired)
1078  *	@force: force uP into RESET even if FW RESET command fails
1079  *
1080  *	Issues a RESET command to firmware (if desired) with a HALT indication
1081  *	and then puts the microprocessor into RESET state.  The RESET command
1082  *	will only be issued if a legitimate mailbox is provided (mbox <=
1083  *	PCIE_FW_MASTER_MASK).
1084  *
1085  *	This is generally used in order for the host to safely manipulate the
1086  *	adapter without fear of conflicting with whatever the firmware might
1087  *	be doing.  The only way out of this state is to RESTART the firmware
1088  *	...
1089  */
1090 static int
1091 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1092 {
1093 	enum fw_retval retval = 0;
1094 
1095 	/*
1096 	 * If a legitimate mailbox is provided, issue a RESET command
1097 	 * with a HALT indication.
1098 	 */
1099 	if (mbox <= PCIE_FW_MASTER_M) {
1100 		struct csio_mb	*mbp;
1101 
1102 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1103 		if (!mbp) {
1104 			CSIO_INC_STATS(hw, n_err_nomem);
1105 			return -ENOMEM;
1106 		}
1107 
1108 		csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1109 			      PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1110 			      NULL);
1111 
1112 		if (csio_mb_issue(hw, mbp)) {
1113 			csio_err(hw, "Issue of RESET command failed!\n");
1114 			mempool_free(mbp, hw->mb_mempool);
1115 			return -EINVAL;
1116 		}
1117 
1118 		retval = csio_mb_fw_retval(mbp);
1119 		mempool_free(mbp, hw->mb_mempool);
1120 	}
1121 
1122 	/*
1123 	 * Normally we won't complete the operation if the firmware RESET
1124 	 * command fails but if our caller insists we'll go ahead and put the
1125 	 * uP into RESET.  This can be useful if the firmware is hung or even
1126 	 * missing ...  We'll have to take the risk of putting the uP into
1127 	 * RESET without the cooperation of firmware in that case.
1128 	 *
1129 	 * We also force the firmware's HALT flag to be on in case we bypassed
1130 	 * the firmware RESET command above or we're dealing with old firmware
1131 	 * which doesn't have the HALT capability.  This will serve as a flag
1132 	 * for the incoming firmware to know that it's coming out of a HALT
1133 	 * rather than a RESET ... if it's new enough to understand that ...
1134 	 */
1135 	if (retval == 0 || force) {
1136 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1137 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1138 				   PCIE_FW_HALT_F);
1139 	}
1140 
1141 	/*
1142 	 * And we always return the result of the firmware RESET command
1143 	 * even when we force the uP into RESET ...
1144 	 */
1145 	return retval ? -EINVAL : 0;
1146 }
1147 
1148 /*
1149  *	csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1150  *	@hw: the HW module
1151  *	@reset: if we want to do a RESET to restart things
1152  *
1153  *	Restart firmware previously halted by csio_hw_fw_halt().  On successful
1154  *	return the previous PF Master remains as the new PF Master and there
1155  *	is no need to issue a new HELLO command, etc.
1156  *
1157  *	We do this in two ways:
1158  *
1159  *	 1. If we're dealing with newer firmware we'll simply want to take
1160  *	    the chip's microprocessor out of RESET.  This will cause the
1161  *	    firmware to start up from its start vector.  And then we'll loop
1162  *	    until the firmware indicates it's started again (PCIE_FW.HALT
1163  *	    reset to 0) or we timeout.
1164  *
1165  *	 2. If we're dealing with older firmware then we'll need to RESET
1166  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
1167  *	    flag and automatically RESET itself on startup.
1168  */
1169 static int
1170 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1171 {
1172 	if (reset) {
1173 		/*
1174 		 * Since we're directing the RESET instead of the firmware
1175 		 * doing it automatically, we need to clear the PCIE_FW.HALT
1176 		 * bit.
1177 		 */
1178 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1179 
1180 		/*
1181 		 * If we've been given a valid mailbox, first try to get the
1182 		 * firmware to do the RESET.  If that works, great and we can
1183 		 * return success.  Otherwise, if we haven't been given a
1184 		 * valid mailbox or the RESET command failed, fall back to
1185 		 * hitting the chip with a hammer.
1186 		 */
1187 		if (mbox <= PCIE_FW_MASTER_M) {
1188 			csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1189 			msleep(100);
1190 			if (csio_do_reset(hw, true) == 0)
1191 				return 0;
1192 		}
1193 
1194 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1195 		msleep(2000);
1196 	} else {
1197 		int ms;
1198 
1199 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1200 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1201 			if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1202 				return 0;
1203 			msleep(100);
1204 			ms += 100;
1205 		}
1206 		return -ETIMEDOUT;
1207 	}
1208 	return 0;
1209 }
1210 
1211 /*
1212  *	csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1213  *	@hw: the HW module
1214  *	@mbox: mailbox to use for the FW RESET command (if desired)
1215  *	@fw_data: the firmware image to write
1216  *	@size: image size
1217  *	@force: force upgrade even if firmware doesn't cooperate
1218  *
1219  *	Perform all of the steps necessary for upgrading an adapter's
1220  *	firmware image.  Normally this requires the cooperation of the
1221  *	existing firmware in order to halt all existing activities
1222  *	but if an invalid mailbox token is passed in we skip that step
1223  *	(though we'll still put the adapter microprocessor into RESET in
1224  *	that case).
1225  *
1226  *	On successful return the new firmware will have been loaded and
1227  *	the adapter will have been fully RESET losing all previous setup
1228  *	state.  On unsuccessful return the adapter may be completely hosed ...
1229  *	positive errno indicates that the adapter is ~probably~ intact, a
1230  *	negative errno indicates that things are looking bad ...
1231  */
1232 static int
1233 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1234 		  const u8 *fw_data, uint32_t size, int32_t force)
1235 {
1236 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1237 	int reset, ret;
1238 
1239 	ret = csio_hw_fw_halt(hw, mbox, force);
1240 	if (ret != 0 && !force)
1241 		return ret;
1242 
1243 	ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1244 	if (ret != 0)
1245 		return ret;
1246 
1247 	/*
1248 	 * Older versions of the firmware don't understand the new
1249 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1250 	 * restart.  So for newly loaded older firmware we'll have to do the
1251 	 * RESET for it so it starts up on a clean slate.  We can tell if
1252 	 * the newly loaded firmware will handle this right by checking
1253 	 * its header flags to see if it advertises the capability.
1254 	 */
1255 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1256 	return csio_hw_fw_restart(hw, mbox, reset);
1257 }
1258 
1259 /*
1260  * csio_get_device_params - Get device parameters.
1261  * @hw: HW module
1262  *
1263  */
1264 static int
1265 csio_get_device_params(struct csio_hw *hw)
1266 {
1267 	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
1268 	struct csio_mb	*mbp;
1269 	enum fw_retval retval;
1270 	u32 param[6];
1271 	int i, j = 0;
1272 
1273 	/* Initialize portids to -1 */
1274 	for (i = 0; i < CSIO_MAX_PPORTS; i++)
1275 		hw->pport[i].portid = -1;
1276 
1277 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1278 	if (!mbp) {
1279 		CSIO_INC_STATS(hw, n_err_nomem);
1280 		return -ENOMEM;
1281 	}
1282 
1283 	/* Get port vec information. */
1284 	param[0] = FW_PARAM_DEV(PORTVEC);
1285 
1286 	/* Get Core clock. */
1287 	param[1] = FW_PARAM_DEV(CCLK);
1288 
1289 	/* Get EQ id start and end. */
1290 	param[2] = FW_PARAM_PFVF(EQ_START);
1291 	param[3] = FW_PARAM_PFVF(EQ_END);
1292 
1293 	/* Get IQ id start and end. */
1294 	param[4] = FW_PARAM_PFVF(IQFLINT_START);
1295 	param[5] = FW_PARAM_PFVF(IQFLINT_END);
1296 
1297 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1298 		       ARRAY_SIZE(param), param, NULL, false, NULL);
1299 	if (csio_mb_issue(hw, mbp)) {
1300 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1301 		mempool_free(mbp, hw->mb_mempool);
1302 		return -EINVAL;
1303 	}
1304 
1305 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1306 			ARRAY_SIZE(param), param);
1307 	if (retval != FW_SUCCESS) {
1308 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1309 				retval);
1310 		mempool_free(mbp, hw->mb_mempool);
1311 		return -EINVAL;
1312 	}
1313 
1314 	/* cache the information. */
1315 	hw->port_vec = param[0];
1316 	hw->vpd.cclk = param[1];
1317 	wrm->fw_eq_start = param[2];
1318 	wrm->fw_iq_start = param[4];
1319 
1320 	/* Using FW configured max iqs & eqs */
1321 	if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1322 		!csio_is_hw_master(hw)) {
1323 		hw->cfg_niq = param[5] - param[4] + 1;
1324 		hw->cfg_neq = param[3] - param[2] + 1;
1325 		csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1326 			hw->cfg_niq, hw->cfg_neq);
1327 	}
1328 
1329 	hw->port_vec &= csio_port_mask;
1330 
1331 	hw->num_pports	= hweight32(hw->port_vec);
1332 
1333 	csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1334 		    hw->port_vec, hw->num_pports);
1335 
1336 	for (i = 0; i < hw->num_pports; i++) {
1337 		while ((hw->port_vec & (1 << j)) == 0)
1338 			j++;
1339 		hw->pport[i].portid = j++;
1340 		csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1341 	}
1342 	mempool_free(mbp, hw->mb_mempool);
1343 
1344 	return 0;
1345 }
1346 
1347 
1348 /*
1349  * csio_config_device_caps - Get and set device capabilities.
1350  * @hw: HW module
1351  *
1352  */
1353 static int
1354 csio_config_device_caps(struct csio_hw *hw)
1355 {
1356 	struct csio_mb	*mbp;
1357 	enum fw_retval retval;
1358 	int rv = -EINVAL;
1359 
1360 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1361 	if (!mbp) {
1362 		CSIO_INC_STATS(hw, n_err_nomem);
1363 		return -ENOMEM;
1364 	}
1365 
1366 	/* Get device capabilities */
1367 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1368 
1369 	if (csio_mb_issue(hw, mbp)) {
1370 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1371 		goto out;
1372 	}
1373 
1374 	retval = csio_mb_fw_retval(mbp);
1375 	if (retval != FW_SUCCESS) {
1376 		csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1377 		goto out;
1378 	}
1379 
1380 	/* Validate device capabilities */
1381 	rv = csio_hw_validate_caps(hw, mbp);
1382 	if (rv != 0)
1383 		goto out;
1384 
1385 	/* Don't config device capabilities if already configured */
1386 	if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1387 		rv = 0;
1388 		goto out;
1389 	}
1390 
1391 	/* Write back desired device capabilities */
1392 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1393 			    false, true, NULL);
1394 
1395 	if (csio_mb_issue(hw, mbp)) {
1396 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1397 		goto out;
1398 	}
1399 
1400 	retval = csio_mb_fw_retval(mbp);
1401 	if (retval != FW_SUCCESS) {
1402 		csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1403 		goto out;
1404 	}
1405 
1406 	rv = 0;
1407 out:
1408 	mempool_free(mbp, hw->mb_mempool);
1409 	return rv;
1410 }
1411 
1412 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
1413 {
1414 	enum cc_fec cc_fec = 0;
1415 
1416 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1417 		cc_fec |= FEC_RS;
1418 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1419 		cc_fec |= FEC_BASER_RS;
1420 
1421 	return cc_fec;
1422 }
1423 
1424 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
1425 {
1426 	fw_port_cap32_t fw_pause = 0;
1427 
1428 	if (cc_pause & PAUSE_RX)
1429 		fw_pause |= FW_PORT_CAP32_FC_RX;
1430 	if (cc_pause & PAUSE_TX)
1431 		fw_pause |= FW_PORT_CAP32_FC_TX;
1432 
1433 	return fw_pause;
1434 }
1435 
1436 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
1437 {
1438 	fw_port_cap32_t fw_fec = 0;
1439 
1440 	if (cc_fec & FEC_RS)
1441 		fw_fec |= FW_PORT_CAP32_FEC_RS;
1442 	if (cc_fec & FEC_BASER_RS)
1443 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
1444 
1445 	return fw_fec;
1446 }
1447 
1448 /**
1449  * fwcap_to_fwspeed - return highest speed in Port Capabilities
1450  * @acaps: advertised Port Capabilities
1451  *
1452  * Get the highest speed for the port from the advertised Port
1453  * Capabilities.
1454  */
1455 fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
1456 {
1457 	#define TEST_SPEED_RETURN(__caps_speed) \
1458 		do { \
1459 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
1460 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
1461 		} while (0)
1462 
1463 	TEST_SPEED_RETURN(400G);
1464 	TEST_SPEED_RETURN(200G);
1465 	TEST_SPEED_RETURN(100G);
1466 	TEST_SPEED_RETURN(50G);
1467 	TEST_SPEED_RETURN(40G);
1468 	TEST_SPEED_RETURN(25G);
1469 	TEST_SPEED_RETURN(10G);
1470 	TEST_SPEED_RETURN(1G);
1471 	TEST_SPEED_RETURN(100M);
1472 
1473 	#undef TEST_SPEED_RETURN
1474 
1475 	return 0;
1476 }
1477 
1478 /**
1479  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
1480  *      @caps16: a 16-bit Port Capabilities value
1481  *
1482  *      Returns the equivalent 32-bit Port Capabilities value.
1483  */
1484 fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
1485 {
1486 	fw_port_cap32_t caps32 = 0;
1487 
1488 	#define CAP16_TO_CAP32(__cap) \
1489 		do { \
1490 			if (caps16 & FW_PORT_CAP_##__cap) \
1491 				caps32 |= FW_PORT_CAP32_##__cap; \
1492 		} while (0)
1493 
1494 	CAP16_TO_CAP32(SPEED_100M);
1495 	CAP16_TO_CAP32(SPEED_1G);
1496 	CAP16_TO_CAP32(SPEED_25G);
1497 	CAP16_TO_CAP32(SPEED_10G);
1498 	CAP16_TO_CAP32(SPEED_40G);
1499 	CAP16_TO_CAP32(SPEED_100G);
1500 	CAP16_TO_CAP32(FC_RX);
1501 	CAP16_TO_CAP32(FC_TX);
1502 	CAP16_TO_CAP32(ANEG);
1503 	CAP16_TO_CAP32(MDIAUTO);
1504 	CAP16_TO_CAP32(MDISTRAIGHT);
1505 	CAP16_TO_CAP32(FEC_RS);
1506 	CAP16_TO_CAP32(FEC_BASER_RS);
1507 	CAP16_TO_CAP32(802_3_PAUSE);
1508 	CAP16_TO_CAP32(802_3_ASM_DIR);
1509 
1510 	#undef CAP16_TO_CAP32
1511 
1512 	return caps32;
1513 }
1514 
1515 /**
1516  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
1517  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
1518  *
1519  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
1520  *      32-bit Port Capabilities value.
1521  */
1522 fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
1523 {
1524 	fw_port_cap32_t linkattr = 0;
1525 
1526 	/* The format of the Link Status in the old
1527 	 * 16-bit Port Information message isn't the same as the
1528 	 * 16-bit Port Capabilities bitfield used everywhere else.
1529 	 */
1530 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1531 		linkattr |= FW_PORT_CAP32_FC_RX;
1532 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1533 		linkattr |= FW_PORT_CAP32_FC_TX;
1534 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1535 		linkattr |= FW_PORT_CAP32_SPEED_100M;
1536 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1537 		linkattr |= FW_PORT_CAP32_SPEED_1G;
1538 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1539 		linkattr |= FW_PORT_CAP32_SPEED_10G;
1540 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1541 		linkattr |= FW_PORT_CAP32_SPEED_25G;
1542 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1543 		linkattr |= FW_PORT_CAP32_SPEED_40G;
1544 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1545 		linkattr |= FW_PORT_CAP32_SPEED_100G;
1546 
1547 	return linkattr;
1548 }
1549 
1550 /**
1551  *      csio_init_link_config - initialize a link's SW state
1552  *      @lc: pointer to structure holding the link state
1553  *      @pcaps: link Port Capabilities
1554  *      @acaps: link current Advertised Port Capabilities
1555  *
1556  *      Initializes the SW state maintained for each link, including the link's
1557  *      capabilities and default speed/flow-control/autonegotiation settings.
1558  */
1559 static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
1560 				  fw_port_cap32_t acaps)
1561 {
1562 	lc->pcaps = pcaps;
1563 	lc->def_acaps = acaps;
1564 	lc->lpacaps = 0;
1565 	lc->speed_caps = 0;
1566 	lc->speed = 0;
1567 	lc->requested_fc = PAUSE_RX | PAUSE_TX;
1568 	lc->fc = lc->requested_fc;
1569 
1570 	/*
1571 	 * For Forward Error Control, we default to whatever the Firmware
1572 	 * tells us the Link is currently advertising.
1573 	 */
1574 	lc->requested_fec = FEC_AUTO;
1575 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
1576 
1577 	/* If the Port is capable of Auto-Negtotiation, initialize it as
1578 	 * "enabled" and copy over all of the Physical Port Capabilities
1579 	 * to the Advertised Port Capabilities.  Otherwise mark it as
1580 	 * Auto-Negotiate disabled and select the highest supported speed
1581 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
1582 	 * and t4_handle_get_port_info().
1583 	 */
1584 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
1585 		lc->acaps = lc->pcaps & ADVERT_MASK;
1586 		lc->autoneg = AUTONEG_ENABLE;
1587 		lc->requested_fc |= PAUSE_AUTONEG;
1588 	} else {
1589 		lc->acaps = 0;
1590 		lc->autoneg = AUTONEG_DISABLE;
1591 	}
1592 }
1593 
1594 static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps,
1595 			    uint32_t *rcaps)
1596 {
1597 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
1598 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap;
1599 
1600 	lc->link_ok = 0;
1601 
1602 	/*
1603 	 * Convert driver coding of Pause Frame Flow Control settings into the
1604 	 * Firmware's API.
1605 	 */
1606 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
1607 
1608 	/*
1609 	 * Convert Common Code Forward Error Control settings into the
1610 	 * Firmware's API.  If the current Requested FEC has "Automatic"
1611 	 * (IEEE 802.3) specified, then we use whatever the Firmware
1612 	 * sent us as part of it's IEEE 802.3-based interpratation of
1613 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
1614 	 * use whatever is in the current Requested FEC settings.
1615 	 */
1616 	if (lc->requested_fec & FEC_AUTO)
1617 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
1618 	else
1619 		cc_fec = lc->requested_fec;
1620 	fw_fec = cc_to_fwcap_fec(cc_fec);
1621 
1622 	/* Figure out what our Requested Port Capabilities are going to be.
1623 	 * Note parallel structure in t4_handle_get_port_info() and
1624 	 * init_link_config().
1625 	 */
1626 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
1627 		lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
1628 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1629 		lc->fec = cc_fec;
1630 	} else if (lc->autoneg == AUTONEG_DISABLE) {
1631 		lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
1632 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1633 		lc->fec = cc_fec;
1634 	} else {
1635 		lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
1636 	}
1637 
1638 	*rcaps = lrcap;
1639 }
1640 
1641 /*
1642  * csio_enable_ports - Bring up all available ports.
1643  * @hw: HW module.
1644  *
1645  */
1646 static int
1647 csio_enable_ports(struct csio_hw *hw)
1648 {
1649 	struct csio_mb  *mbp;
1650 	u16 fw_caps = FW_CAPS_UNKNOWN;
1651 	enum fw_retval retval;
1652 	uint8_t portid;
1653 	fw_port_cap32_t pcaps, acaps, rcaps;
1654 	int i;
1655 
1656 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1657 	if (!mbp) {
1658 		CSIO_INC_STATS(hw, n_err_nomem);
1659 		return -ENOMEM;
1660 	}
1661 
1662 	for (i = 0; i < hw->num_pports; i++) {
1663 		portid = hw->pport[i].portid;
1664 
1665 		if (fw_caps == FW_CAPS_UNKNOWN) {
1666 			u32 param, val;
1667 
1668 			param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
1669 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
1670 			val = 1;
1671 
1672 			csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO,
1673 				       hw->pfn, 0, 1, &param, &val, false,
1674 				       NULL);
1675 
1676 			if (csio_mb_issue(hw, mbp)) {
1677 				csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n",
1678 					 portid);
1679 				mempool_free(mbp, hw->mb_mempool);
1680 				return -EINVAL;
1681 			}
1682 
1683 			csio_mb_process_read_params_rsp(hw, mbp, &retval, 1,
1684 							&val);
1685 			if (retval != FW_SUCCESS) {
1686 				csio_err(hw, "FW_PARAMS_CMD(r) port:%d failed: 0x%x\n",
1687 					 portid, retval);
1688 				mempool_free(mbp, hw->mb_mempool);
1689 				return -EINVAL;
1690 			}
1691 
1692 			fw_caps = val;
1693 		}
1694 
1695 		/* Read PORT information */
1696 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1697 			     false, 0, fw_caps, NULL);
1698 
1699 		if (csio_mb_issue(hw, mbp)) {
1700 			csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1701 				 portid);
1702 			mempool_free(mbp, hw->mb_mempool);
1703 			return -EINVAL;
1704 		}
1705 
1706 		csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps,
1707 					      &pcaps, &acaps);
1708 		if (retval != FW_SUCCESS) {
1709 			csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1710 				 portid, retval);
1711 			mempool_free(mbp, hw->mb_mempool);
1712 			return -EINVAL;
1713 		}
1714 
1715 		csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps);
1716 
1717 		csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps);
1718 
1719 		/* Write back PORT information */
1720 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1721 			     true, rcaps, fw_caps, NULL);
1722 
1723 		if (csio_mb_issue(hw, mbp)) {
1724 			csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1725 				 portid);
1726 			mempool_free(mbp, hw->mb_mempool);
1727 			return -EINVAL;
1728 		}
1729 
1730 		retval = csio_mb_fw_retval(mbp);
1731 		if (retval != FW_SUCCESS) {
1732 			csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1733 				 portid, retval);
1734 			mempool_free(mbp, hw->mb_mempool);
1735 			return -EINVAL;
1736 		}
1737 
1738 	} /* For all ports */
1739 
1740 	mempool_free(mbp, hw->mb_mempool);
1741 
1742 	return 0;
1743 }
1744 
1745 /*
1746  * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1747  * @hw: HW module
1748  * Issued with lock held.
1749  */
1750 static int
1751 csio_get_fcoe_resinfo(struct csio_hw *hw)
1752 {
1753 	struct csio_fcoe_res_info *res_info = &hw->fres_info;
1754 	struct fw_fcoe_res_info_cmd *rsp;
1755 	struct csio_mb  *mbp;
1756 	enum fw_retval retval;
1757 
1758 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1759 	if (!mbp) {
1760 		CSIO_INC_STATS(hw, n_err_nomem);
1761 		return -ENOMEM;
1762 	}
1763 
1764 	/* Get FCoE FW resource information */
1765 	csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1766 
1767 	if (csio_mb_issue(hw, mbp)) {
1768 		csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1769 		mempool_free(mbp, hw->mb_mempool);
1770 		return -EINVAL;
1771 	}
1772 
1773 	rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1774 	retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1775 	if (retval != FW_SUCCESS) {
1776 		csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1777 			 retval);
1778 		mempool_free(mbp, hw->mb_mempool);
1779 		return -EINVAL;
1780 	}
1781 
1782 	res_info->e_d_tov = ntohs(rsp->e_d_tov);
1783 	res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1784 	res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1785 	res_info->r_r_tov = ntohs(rsp->r_r_tov);
1786 	res_info->max_xchgs = ntohl(rsp->max_xchgs);
1787 	res_info->max_ssns = ntohl(rsp->max_ssns);
1788 	res_info->used_xchgs = ntohl(rsp->used_xchgs);
1789 	res_info->used_ssns = ntohl(rsp->used_ssns);
1790 	res_info->max_fcfs = ntohl(rsp->max_fcfs);
1791 	res_info->max_vnps = ntohl(rsp->max_vnps);
1792 	res_info->used_fcfs = ntohl(rsp->used_fcfs);
1793 	res_info->used_vnps = ntohl(rsp->used_vnps);
1794 
1795 	csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1796 						  res_info->max_xchgs);
1797 	mempool_free(mbp, hw->mb_mempool);
1798 
1799 	return 0;
1800 }
1801 
1802 static int
1803 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1804 {
1805 	struct csio_mb	*mbp;
1806 	enum fw_retval retval;
1807 	u32 _param[1];
1808 
1809 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1810 	if (!mbp) {
1811 		CSIO_INC_STATS(hw, n_err_nomem);
1812 		return -ENOMEM;
1813 	}
1814 
1815 	/*
1816 	 * Find out whether we're dealing with a version of
1817 	 * the firmware which has configuration file support.
1818 	 */
1819 	_param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1820 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1821 
1822 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1823 		       ARRAY_SIZE(_param), _param, NULL, false, NULL);
1824 	if (csio_mb_issue(hw, mbp)) {
1825 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1826 		mempool_free(mbp, hw->mb_mempool);
1827 		return -EINVAL;
1828 	}
1829 
1830 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1831 			ARRAY_SIZE(_param), _param);
1832 	if (retval != FW_SUCCESS) {
1833 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1834 				retval);
1835 		mempool_free(mbp, hw->mb_mempool);
1836 		return -EINVAL;
1837 	}
1838 
1839 	mempool_free(mbp, hw->mb_mempool);
1840 	*param = _param[0];
1841 
1842 	return 0;
1843 }
1844 
1845 static int
1846 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1847 {
1848 	int ret = 0;
1849 	const struct firmware *cf;
1850 	struct pci_dev *pci_dev = hw->pdev;
1851 	struct device *dev = &pci_dev->dev;
1852 	unsigned int mtype = 0, maddr = 0;
1853 	uint32_t *cfg_data;
1854 	int value_to_add = 0;
1855 	const char *fw_cfg_file;
1856 
1857 	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
1858 		fw_cfg_file = FW_CFG_NAME_T5;
1859 	else
1860 		fw_cfg_file = FW_CFG_NAME_T6;
1861 
1862 	if (request_firmware(&cf, fw_cfg_file, dev) < 0) {
1863 		csio_err(hw, "could not find config file %s, err: %d\n",
1864 			 fw_cfg_file, ret);
1865 		return -ENOENT;
1866 	}
1867 
1868 	if (cf->size%4 != 0)
1869 		value_to_add = 4 - (cf->size % 4);
1870 
1871 	cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1872 	if (cfg_data == NULL) {
1873 		ret = -ENOMEM;
1874 		goto leave;
1875 	}
1876 
1877 	memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
1878 	if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
1879 		ret = -EINVAL;
1880 		goto leave;
1881 	}
1882 
1883 	mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1884 	maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1885 
1886 	ret = csio_memory_write(hw, mtype, maddr,
1887 				cf->size + value_to_add, cfg_data);
1888 
1889 	if ((ret == 0) && (value_to_add != 0)) {
1890 		union {
1891 			u32 word;
1892 			char buf[4];
1893 		} last;
1894 		size_t size = cf->size & ~0x3;
1895 		int i;
1896 
1897 		last.word = cfg_data[size >> 2];
1898 		for (i = value_to_add; i < 4; i++)
1899 			last.buf[i] = 0;
1900 		ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
1901 	}
1902 	if (ret == 0) {
1903 		csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
1904 		snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
1905 	}
1906 
1907 leave:
1908 	kfree(cfg_data);
1909 	release_firmware(cf);
1910 	return ret;
1911 }
1912 
1913 /*
1914  * HW initialization: contact FW, obtain config, perform basic init.
1915  *
1916  * If the firmware we're dealing with has Configuration File support, then
1917  * we use that to perform all configuration -- either using the configuration
1918  * file stored in flash on the adapter or using a filesystem-local file
1919  * if available.
1920  *
1921  * If we don't have configuration file support in the firmware, then we'll
1922  * have to set things up the old fashioned way with hard-coded register
1923  * writes and firmware commands ...
1924  */
1925 
1926 /*
1927  * Attempt to initialize the HW via a Firmware Configuration File.
1928  */
1929 static int
1930 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
1931 {
1932 	struct csio_mb	*mbp = NULL;
1933 	struct fw_caps_config_cmd *caps_cmd;
1934 	unsigned int mtype, maddr;
1935 	int rv = -EINVAL;
1936 	uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
1937 	char path[64];
1938 	char *config_name = NULL;
1939 
1940 	/*
1941 	 * Reset device if necessary
1942 	 */
1943 	if (reset) {
1944 		rv = csio_do_reset(hw, true);
1945 		if (rv != 0)
1946 			goto bye;
1947 	}
1948 
1949 	/*
1950 	 * If we have a configuration file in host ,
1951 	 * then use that.  Otherwise, use the configuration file stored
1952 	 * in the HW flash ...
1953 	 */
1954 	spin_unlock_irq(&hw->lock);
1955 	rv = csio_hw_flash_config(hw, fw_cfg_param, path);
1956 	spin_lock_irq(&hw->lock);
1957 	if (rv != 0) {
1958 		/*
1959 		 * config file was not found. Use default
1960 		 * config file from flash.
1961 		 */
1962 		config_name = "On FLASH";
1963 		mtype = FW_MEMTYPE_CF_FLASH;
1964 		maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
1965 	} else {
1966 		config_name = path;
1967 		mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
1968 		maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
1969 	}
1970 
1971 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1972 	if (!mbp) {
1973 		CSIO_INC_STATS(hw, n_err_nomem);
1974 		return -ENOMEM;
1975 	}
1976 	/*
1977 	 * Tell the firmware to process the indicated Configuration File.
1978 	 * If there are no errors and the caller has provided return value
1979 	 * pointers for the [fini] section version, checksum and computed
1980 	 * checksum, pass those back to the caller.
1981 	 */
1982 	caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1983 	CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1984 	caps_cmd->op_to_write =
1985 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
1986 		      FW_CMD_REQUEST_F |
1987 		      FW_CMD_READ_F);
1988 	caps_cmd->cfvalid_to_len16 =
1989 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
1990 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
1991 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
1992 		      FW_LEN16(*caps_cmd));
1993 
1994 	if (csio_mb_issue(hw, mbp)) {
1995 		rv = -EINVAL;
1996 		goto bye;
1997 	}
1998 
1999 	rv = csio_mb_fw_retval(mbp);
2000 	 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
2001 	  * Configuration File in FLASH), our last gasp effort is to use the
2002 	  * Firmware Configuration File which is embedded in the
2003 	  * firmware.  A very few early versions of the firmware didn't
2004 	  * have one embedded but we can ignore those.
2005 	  */
2006 	if (rv == ENOENT) {
2007 		CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2008 		caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2009 					      FW_CMD_REQUEST_F |
2010 					      FW_CMD_READ_F);
2011 		caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2012 
2013 		if (csio_mb_issue(hw, mbp)) {
2014 			rv = -EINVAL;
2015 			goto bye;
2016 		}
2017 
2018 		rv = csio_mb_fw_retval(mbp);
2019 		config_name = "Firmware Default";
2020 	}
2021 	if (rv != FW_SUCCESS)
2022 		goto bye;
2023 
2024 	finiver = ntohl(caps_cmd->finiver);
2025 	finicsum = ntohl(caps_cmd->finicsum);
2026 	cfcsum = ntohl(caps_cmd->cfcsum);
2027 
2028 	/*
2029 	 * And now tell the firmware to use the configuration we just loaded.
2030 	 */
2031 	caps_cmd->op_to_write =
2032 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2033 		      FW_CMD_REQUEST_F |
2034 		      FW_CMD_WRITE_F);
2035 	caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2036 
2037 	if (csio_mb_issue(hw, mbp)) {
2038 		rv = -EINVAL;
2039 		goto bye;
2040 	}
2041 
2042 	rv = csio_mb_fw_retval(mbp);
2043 	if (rv != FW_SUCCESS) {
2044 		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
2045 		goto bye;
2046 	}
2047 
2048 	if (finicsum != cfcsum) {
2049 		csio_warn(hw,
2050 		      "Config File checksum mismatch: csum=%#x, computed=%#x\n",
2051 		      finicsum, cfcsum);
2052 	}
2053 
2054 	/* Validate device capabilities */
2055 	rv = csio_hw_validate_caps(hw, mbp);
2056 	if (rv != 0)
2057 		goto bye;
2058 
2059 	mempool_free(mbp, hw->mb_mempool);
2060 	mbp = NULL;
2061 
2062 	/*
2063 	 * Note that we're operating with parameters
2064 	 * not supplied by the driver, rather than from hard-wired
2065 	 * initialization constants buried in the driver.
2066 	 */
2067 	hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2068 
2069 	/* device parameters */
2070 	rv = csio_get_device_params(hw);
2071 	if (rv != 0)
2072 		goto bye;
2073 
2074 	/* Configure SGE */
2075 	csio_wr_sge_init(hw);
2076 
2077 	/*
2078 	 * And finally tell the firmware to initialize itself using the
2079 	 * parameters from the Configuration File.
2080 	 */
2081 	/* Post event to notify completion of configuration */
2082 	csio_post_event(&hw->sm, CSIO_HWE_INIT);
2083 
2084 	csio_info(hw, "Successfully configure using Firmware "
2085 		  "Configuration File %s, version %#x, computed checksum %#x\n",
2086 		  config_name, finiver, cfcsum);
2087 	return 0;
2088 
2089 	/*
2090 	 * Something bad happened.  Return the error ...
2091 	 */
2092 bye:
2093 	if (mbp)
2094 		mempool_free(mbp, hw->mb_mempool);
2095 	hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
2096 	csio_warn(hw, "Configuration file error %d\n", rv);
2097 	return rv;
2098 }
2099 
2100 /* Is the given firmware API compatible with the one the driver was compiled
2101  * with?
2102  */
2103 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2104 {
2105 
2106 	/* short circuit if it's the exact same firmware version */
2107 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2108 		return 1;
2109 
2110 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2111 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2112 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2113 		return 1;
2114 #undef SAME_INTF
2115 
2116 	return 0;
2117 }
2118 
2119 /* The firmware in the filesystem is usable, but should it be installed?
2120  * This routine explains itself in detail if it indicates the filesystem
2121  * firmware should be installed.
2122  */
2123 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
2124 				int k, int c)
2125 {
2126 	const char *reason;
2127 
2128 	if (!card_fw_usable) {
2129 		reason = "incompatible or unusable";
2130 		goto install;
2131 	}
2132 
2133 	if (k > c) {
2134 		reason = "older than the version supported with this driver";
2135 		goto install;
2136 	}
2137 
2138 	return 0;
2139 
2140 install:
2141 	csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
2142 		"installing firmware %u.%u.%u.%u on card.\n",
2143 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2144 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2145 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2146 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2147 
2148 	return 1;
2149 }
2150 
2151 static struct fw_info fw_info_array[] = {
2152 	{
2153 		.chip = CHELSIO_T5,
2154 		.fs_name = FW_CFG_NAME_T5,
2155 		.fw_mod_name = FW_FNAME_T5,
2156 		.fw_hdr = {
2157 			.chip = FW_HDR_CHIP_T5,
2158 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
2159 			.intfver_nic = FW_INTFVER(T5, NIC),
2160 			.intfver_vnic = FW_INTFVER(T5, VNIC),
2161 			.intfver_ri = FW_INTFVER(T5, RI),
2162 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
2163 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
2164 		},
2165 	}, {
2166 		.chip = CHELSIO_T6,
2167 		.fs_name = FW_CFG_NAME_T6,
2168 		.fw_mod_name = FW_FNAME_T6,
2169 		.fw_hdr = {
2170 			.chip = FW_HDR_CHIP_T6,
2171 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
2172 			.intfver_nic = FW_INTFVER(T6, NIC),
2173 			.intfver_vnic = FW_INTFVER(T6, VNIC),
2174 			.intfver_ri = FW_INTFVER(T6, RI),
2175 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
2176 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
2177 		},
2178 	}
2179 };
2180 
2181 static struct fw_info *find_fw_info(int chip)
2182 {
2183 	int i;
2184 
2185 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
2186 		if (fw_info_array[i].chip == chip)
2187 			return &fw_info_array[i];
2188 	}
2189 	return NULL;
2190 }
2191 
2192 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
2193 	       const u8 *fw_data, unsigned int fw_size,
2194 	       struct fw_hdr *card_fw, enum csio_dev_state state,
2195 	       int *reset)
2196 {
2197 	int ret, card_fw_usable, fs_fw_usable;
2198 	const struct fw_hdr *fs_fw;
2199 	const struct fw_hdr *drv_fw;
2200 
2201 	drv_fw = &fw_info->fw_hdr;
2202 
2203 	/* Read the header of the firmware on the card */
2204 	ret = csio_hw_read_flash(hw, FLASH_FW_START,
2205 			    sizeof(*card_fw) / sizeof(uint32_t),
2206 			    (uint32_t *)card_fw, 1);
2207 	if (ret == 0) {
2208 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2209 	} else {
2210 		csio_err(hw,
2211 			"Unable to read card's firmware header: %d\n", ret);
2212 		card_fw_usable = 0;
2213 	}
2214 
2215 	if (fw_data != NULL) {
2216 		fs_fw = (const void *)fw_data;
2217 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2218 	} else {
2219 		fs_fw = NULL;
2220 		fs_fw_usable = 0;
2221 	}
2222 
2223 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2224 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2225 		/* Common case: the firmware on the card is an exact match and
2226 		 * the filesystem one is an exact match too, or the filesystem
2227 		 * one is absent/incompatible.
2228 		 */
2229 	} else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
2230 		   csio_should_install_fs_fw(hw, card_fw_usable,
2231 					be32_to_cpu(fs_fw->fw_ver),
2232 					be32_to_cpu(card_fw->fw_ver))) {
2233 		ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
2234 				     fw_size, 0);
2235 		if (ret != 0) {
2236 			csio_err(hw,
2237 				"failed to install firmware: %d\n", ret);
2238 			goto bye;
2239 		}
2240 
2241 		/* Installed successfully, update the cached header too. */
2242 		memcpy(card_fw, fs_fw, sizeof(*card_fw));
2243 		card_fw_usable = 1;
2244 		*reset = 0;	/* already reset as part of load_fw */
2245 	}
2246 
2247 	if (!card_fw_usable) {
2248 		uint32_t d, c, k;
2249 
2250 		d = be32_to_cpu(drv_fw->fw_ver);
2251 		c = be32_to_cpu(card_fw->fw_ver);
2252 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2253 
2254 		csio_err(hw, "Cannot find a usable firmware: "
2255 			"chip state %d, "
2256 			"driver compiled with %d.%d.%d.%d, "
2257 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2258 			state,
2259 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2260 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2261 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2262 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2263 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2264 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2265 		ret = EINVAL;
2266 		goto bye;
2267 	}
2268 
2269 	/* We're using whatever's on the card and it's known to be good. */
2270 	hw->fwrev = be32_to_cpu(card_fw->fw_ver);
2271 	hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2272 
2273 bye:
2274 	return ret;
2275 }
2276 
2277 /*
2278  * Returns -EINVAL if attempts to flash the firmware failed
2279  * else returns 0,
2280  * if flashing was not attempted because the card had the
2281  * latest firmware ECANCELED is returned
2282  */
2283 static int
2284 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
2285 {
2286 	int ret = -ECANCELED;
2287 	const struct firmware *fw;
2288 	struct fw_info *fw_info;
2289 	struct fw_hdr *card_fw;
2290 	struct pci_dev *pci_dev = hw->pdev;
2291 	struct device *dev = &pci_dev->dev ;
2292 	const u8 *fw_data = NULL;
2293 	unsigned int fw_size = 0;
2294 	const char *fw_bin_file;
2295 
2296 	/* This is the firmware whose headers the driver was compiled
2297 	 * against
2298 	 */
2299 	fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2300 	if (fw_info == NULL) {
2301 		csio_err(hw,
2302 			"unable to get firmware info for chip %d.\n",
2303 			CHELSIO_CHIP_VERSION(hw->chip_id));
2304 		return -EINVAL;
2305 	}
2306 
2307 	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
2308 		fw_bin_file = FW_FNAME_T5;
2309 	else
2310 		fw_bin_file = FW_FNAME_T6;
2311 
2312 	if (request_firmware(&fw, fw_bin_file, dev) < 0) {
2313 		csio_err(hw, "could not find firmware image %s, err: %d\n",
2314 			 fw_bin_file, ret);
2315 	} else {
2316 		fw_data = fw->data;
2317 		fw_size = fw->size;
2318 	}
2319 
2320 	/* allocate memory to read the header of the firmware on the
2321 	 * card
2322 	 */
2323 	card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2324 
2325 	/* upgrade FW logic */
2326 	ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2327 			 hw->fw_state, reset);
2328 
2329 	/* Cleaning up */
2330 	if (fw != NULL)
2331 		release_firmware(fw);
2332 	kfree(card_fw);
2333 	return ret;
2334 }
2335 
2336 static int csio_hw_check_fwver(struct csio_hw *hw)
2337 {
2338 	if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
2339 	    (hw->fwrev < CSIO_MIN_T6_FW)) {
2340 		csio_hw_print_fw_version(hw, "T6 unsupported fw");
2341 		return -1;
2342 	}
2343 
2344 	return 0;
2345 }
2346 
2347 /*
2348  * csio_hw_configure - Configure HW
2349  * @hw - HW module
2350  *
2351  */
2352 static void
2353 csio_hw_configure(struct csio_hw *hw)
2354 {
2355 	int reset = 1;
2356 	int rv;
2357 	u32 param[1];
2358 
2359 	rv = csio_hw_dev_ready(hw);
2360 	if (rv != 0) {
2361 		CSIO_INC_STATS(hw, n_err_fatal);
2362 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2363 		goto out;
2364 	}
2365 
2366 	/* HW version */
2367 	hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2368 
2369 	/* Needed for FW download */
2370 	rv = csio_hw_get_flash_params(hw);
2371 	if (rv != 0) {
2372 		csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2373 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2374 		goto out;
2375 	}
2376 
2377 	/* Set PCIe completion timeout to 4 seconds */
2378 	if (pci_is_pcie(hw->pdev))
2379 		pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2380 				PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2381 
2382 	hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2383 
2384 	rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2385 	if (rv != 0)
2386 		goto out;
2387 
2388 	csio_hw_print_fw_version(hw, "Firmware revision");
2389 
2390 	rv = csio_do_hello(hw, &hw->fw_state);
2391 	if (rv != 0) {
2392 		CSIO_INC_STATS(hw, n_err_fatal);
2393 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2394 		goto out;
2395 	}
2396 
2397 	/* Read vpd */
2398 	rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2399 	if (rv != 0)
2400 		goto out;
2401 
2402 	csio_hw_get_fw_version(hw, &hw->fwrev);
2403 	csio_hw_get_tp_version(hw, &hw->tp_vers);
2404 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2405 
2406 			/* Do firmware update */
2407 		spin_unlock_irq(&hw->lock);
2408 		rv = csio_hw_flash_fw(hw, &reset);
2409 		spin_lock_irq(&hw->lock);
2410 
2411 		if (rv != 0)
2412 			goto out;
2413 
2414 		rv = csio_hw_check_fwver(hw);
2415 		if (rv < 0)
2416 			goto out;
2417 
2418 		/* If the firmware doesn't support Configuration Files,
2419 		 * return an error.
2420 		 */
2421 		rv = csio_hw_check_fwconfig(hw, param);
2422 		if (rv != 0) {
2423 			csio_info(hw, "Firmware doesn't support "
2424 				  "Firmware Configuration files\n");
2425 			goto out;
2426 		}
2427 
2428 		/* The firmware provides us with a memory buffer where we can
2429 		 * load a Configuration File from the host if we want to
2430 		 * override the Configuration File in flash.
2431 		 */
2432 		rv = csio_hw_use_fwconfig(hw, reset, param);
2433 		if (rv == -ENOENT) {
2434 			csio_info(hw, "Could not initialize "
2435 				  "adapter, error%d\n", rv);
2436 			goto out;
2437 		}
2438 		if (rv != 0) {
2439 			csio_info(hw, "Could not initialize "
2440 				  "adapter, error%d\n", rv);
2441 			goto out;
2442 		}
2443 
2444 	} else {
2445 		rv = csio_hw_check_fwver(hw);
2446 		if (rv < 0)
2447 			goto out;
2448 
2449 		if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2450 
2451 			hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2452 
2453 			/* device parameters */
2454 			rv = csio_get_device_params(hw);
2455 			if (rv != 0)
2456 				goto out;
2457 
2458 			/* Get device capabilities */
2459 			rv = csio_config_device_caps(hw);
2460 			if (rv != 0)
2461 				goto out;
2462 
2463 			/* Configure SGE */
2464 			csio_wr_sge_init(hw);
2465 
2466 			/* Post event to notify completion of configuration */
2467 			csio_post_event(&hw->sm, CSIO_HWE_INIT);
2468 			goto out;
2469 		}
2470 	} /* if not master */
2471 
2472 out:
2473 	return;
2474 }
2475 
2476 /*
2477  * csio_hw_initialize - Initialize HW
2478  * @hw - HW module
2479  *
2480  */
2481 static void
2482 csio_hw_initialize(struct csio_hw *hw)
2483 {
2484 	struct csio_mb	*mbp;
2485 	enum fw_retval retval;
2486 	int rv;
2487 	int i;
2488 
2489 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2490 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2491 		if (!mbp)
2492 			goto out;
2493 
2494 		csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2495 
2496 		if (csio_mb_issue(hw, mbp)) {
2497 			csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2498 			goto free_and_out;
2499 		}
2500 
2501 		retval = csio_mb_fw_retval(mbp);
2502 		if (retval != FW_SUCCESS) {
2503 			csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2504 				 retval);
2505 			goto free_and_out;
2506 		}
2507 
2508 		mempool_free(mbp, hw->mb_mempool);
2509 	}
2510 
2511 	rv = csio_get_fcoe_resinfo(hw);
2512 	if (rv != 0) {
2513 		csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2514 		goto out;
2515 	}
2516 
2517 	spin_unlock_irq(&hw->lock);
2518 	rv = csio_config_queues(hw);
2519 	spin_lock_irq(&hw->lock);
2520 
2521 	if (rv != 0) {
2522 		csio_err(hw, "Config of queues failed!: %d\n", rv);
2523 		goto out;
2524 	}
2525 
2526 	for (i = 0; i < hw->num_pports; i++)
2527 		hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2528 
2529 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2530 		rv = csio_enable_ports(hw);
2531 		if (rv != 0) {
2532 			csio_err(hw, "Failed to enable ports: %d\n", rv);
2533 			goto out;
2534 		}
2535 	}
2536 
2537 	csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2538 	return;
2539 
2540 free_and_out:
2541 	mempool_free(mbp, hw->mb_mempool);
2542 out:
2543 	return;
2544 }
2545 
2546 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2547 
2548 /*
2549  * csio_hw_intr_enable - Enable HW interrupts
2550  * @hw: Pointer to HW module.
2551  *
2552  * Enable interrupts in HW registers.
2553  */
2554 static void
2555 csio_hw_intr_enable(struct csio_hw *hw)
2556 {
2557 	uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2558 	u32 pf = 0;
2559 	uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2560 
2561 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2562 		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2563 	else
2564 		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2565 
2566 	/*
2567 	 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2568 	 * by FW, so do nothing for INTX.
2569 	 */
2570 	if (hw->intr_mode == CSIO_IM_MSIX)
2571 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2572 				   AIVEC_V(AIVEC_M), vec);
2573 	else if (hw->intr_mode == CSIO_IM_MSI)
2574 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2575 				   AIVEC_V(AIVEC_M), 0);
2576 
2577 	csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2578 
2579 	/* Turn on MB interrupts - this will internally flush PIO as well */
2580 	csio_mb_intr_enable(hw);
2581 
2582 	/* These are common registers - only a master can modify them */
2583 	if (csio_is_hw_master(hw)) {
2584 		/*
2585 		 * Disable the Serial FLASH interrupt, if enabled!
2586 		 */
2587 		pl &= (~SF_F);
2588 		csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2589 
2590 		csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2591 			      EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2592 			      ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2593 			      ERR_DATA_CPL_ON_HIGH_QID1_F |
2594 			      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2595 			      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2596 			      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2597 			      ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2598 			      SGE_INT_ENABLE3_A);
2599 		csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2600 	}
2601 
2602 	hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2603 
2604 }
2605 
2606 /*
2607  * csio_hw_intr_disable - Disable HW interrupts
2608  * @hw: Pointer to HW module.
2609  *
2610  * Turn off Mailbox and PCI_PF_CFG interrupts.
2611  */
2612 void
2613 csio_hw_intr_disable(struct csio_hw *hw)
2614 {
2615 	u32 pf = 0;
2616 
2617 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2618 		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2619 	else
2620 		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2621 
2622 	if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2623 		return;
2624 
2625 	hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2626 
2627 	csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2628 	if (csio_is_hw_master(hw))
2629 		csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2630 
2631 	/* Turn off MB interrupts */
2632 	csio_mb_intr_disable(hw);
2633 
2634 }
2635 
2636 void
2637 csio_hw_fatal_err(struct csio_hw *hw)
2638 {
2639 	csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2640 	csio_hw_intr_disable(hw);
2641 
2642 	/* Do not reset HW, we may need FW state for debugging */
2643 	csio_fatal(hw, "HW Fatal error encountered!\n");
2644 }
2645 
2646 /*****************************************************************************/
2647 /* START: HW SM                                                              */
2648 /*****************************************************************************/
2649 /*
2650  * csio_hws_uninit - Uninit state
2651  * @hw - HW module
2652  * @evt - Event
2653  *
2654  */
2655 static void
2656 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2657 {
2658 	hw->prev_evt = hw->cur_evt;
2659 	hw->cur_evt = evt;
2660 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2661 
2662 	switch (evt) {
2663 	case CSIO_HWE_CFG:
2664 		csio_set_state(&hw->sm, csio_hws_configuring);
2665 		csio_hw_configure(hw);
2666 		break;
2667 
2668 	default:
2669 		CSIO_INC_STATS(hw, n_evt_unexp);
2670 		break;
2671 	}
2672 }
2673 
2674 /*
2675  * csio_hws_configuring - Configuring state
2676  * @hw - HW module
2677  * @evt - Event
2678  *
2679  */
2680 static void
2681 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2682 {
2683 	hw->prev_evt = hw->cur_evt;
2684 	hw->cur_evt = evt;
2685 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2686 
2687 	switch (evt) {
2688 	case CSIO_HWE_INIT:
2689 		csio_set_state(&hw->sm, csio_hws_initializing);
2690 		csio_hw_initialize(hw);
2691 		break;
2692 
2693 	case CSIO_HWE_INIT_DONE:
2694 		csio_set_state(&hw->sm, csio_hws_ready);
2695 		/* Fan out event to all lnode SMs */
2696 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2697 		break;
2698 
2699 	case CSIO_HWE_FATAL:
2700 		csio_set_state(&hw->sm, csio_hws_uninit);
2701 		break;
2702 
2703 	case CSIO_HWE_PCI_REMOVE:
2704 		csio_do_bye(hw);
2705 		break;
2706 	default:
2707 		CSIO_INC_STATS(hw, n_evt_unexp);
2708 		break;
2709 	}
2710 }
2711 
2712 /*
2713  * csio_hws_initializing - Initialiazing state
2714  * @hw - HW module
2715  * @evt - Event
2716  *
2717  */
2718 static void
2719 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2720 {
2721 	hw->prev_evt = hw->cur_evt;
2722 	hw->cur_evt = evt;
2723 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2724 
2725 	switch (evt) {
2726 	case CSIO_HWE_INIT_DONE:
2727 		csio_set_state(&hw->sm, csio_hws_ready);
2728 
2729 		/* Fan out event to all lnode SMs */
2730 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2731 
2732 		/* Enable interrupts */
2733 		csio_hw_intr_enable(hw);
2734 		break;
2735 
2736 	case CSIO_HWE_FATAL:
2737 		csio_set_state(&hw->sm, csio_hws_uninit);
2738 		break;
2739 
2740 	case CSIO_HWE_PCI_REMOVE:
2741 		csio_do_bye(hw);
2742 		break;
2743 
2744 	default:
2745 		CSIO_INC_STATS(hw, n_evt_unexp);
2746 		break;
2747 	}
2748 }
2749 
2750 /*
2751  * csio_hws_ready - Ready state
2752  * @hw - HW module
2753  * @evt - Event
2754  *
2755  */
2756 static void
2757 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2758 {
2759 	/* Remember the event */
2760 	hw->evtflag = evt;
2761 
2762 	hw->prev_evt = hw->cur_evt;
2763 	hw->cur_evt = evt;
2764 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2765 
2766 	switch (evt) {
2767 	case CSIO_HWE_HBA_RESET:
2768 	case CSIO_HWE_FW_DLOAD:
2769 	case CSIO_HWE_SUSPEND:
2770 	case CSIO_HWE_PCI_REMOVE:
2771 	case CSIO_HWE_PCIERR_DETECTED:
2772 		csio_set_state(&hw->sm, csio_hws_quiescing);
2773 		/* cleanup all outstanding cmds */
2774 		if (evt == CSIO_HWE_HBA_RESET ||
2775 		    evt == CSIO_HWE_PCIERR_DETECTED)
2776 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2777 		else
2778 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2779 
2780 		csio_hw_intr_disable(hw);
2781 		csio_hw_mbm_cleanup(hw);
2782 		csio_evtq_stop(hw);
2783 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2784 		csio_evtq_flush(hw);
2785 		csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2786 		csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2787 		break;
2788 
2789 	case CSIO_HWE_FATAL:
2790 		csio_set_state(&hw->sm, csio_hws_uninit);
2791 		break;
2792 
2793 	default:
2794 		CSIO_INC_STATS(hw, n_evt_unexp);
2795 		break;
2796 	}
2797 }
2798 
2799 /*
2800  * csio_hws_quiescing - Quiescing state
2801  * @hw - HW module
2802  * @evt - Event
2803  *
2804  */
2805 static void
2806 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2807 {
2808 	hw->prev_evt = hw->cur_evt;
2809 	hw->cur_evt = evt;
2810 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2811 
2812 	switch (evt) {
2813 	case CSIO_HWE_QUIESCED:
2814 		switch (hw->evtflag) {
2815 		case CSIO_HWE_FW_DLOAD:
2816 			csio_set_state(&hw->sm, csio_hws_resetting);
2817 			/* Download firmware */
2818 			/* Fall through */
2819 
2820 		case CSIO_HWE_HBA_RESET:
2821 			csio_set_state(&hw->sm, csio_hws_resetting);
2822 			/* Start reset of the HBA */
2823 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2824 			csio_wr_destroy_queues(hw, false);
2825 			csio_do_reset(hw, false);
2826 			csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2827 			break;
2828 
2829 		case CSIO_HWE_PCI_REMOVE:
2830 			csio_set_state(&hw->sm, csio_hws_removing);
2831 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2832 			csio_wr_destroy_queues(hw, true);
2833 			/* Now send the bye command */
2834 			csio_do_bye(hw);
2835 			break;
2836 
2837 		case CSIO_HWE_SUSPEND:
2838 			csio_set_state(&hw->sm, csio_hws_quiesced);
2839 			break;
2840 
2841 		case CSIO_HWE_PCIERR_DETECTED:
2842 			csio_set_state(&hw->sm, csio_hws_pcierr);
2843 			csio_wr_destroy_queues(hw, false);
2844 			break;
2845 
2846 		default:
2847 			CSIO_INC_STATS(hw, n_evt_unexp);
2848 			break;
2849 
2850 		}
2851 		break;
2852 
2853 	default:
2854 		CSIO_INC_STATS(hw, n_evt_unexp);
2855 		break;
2856 	}
2857 }
2858 
2859 /*
2860  * csio_hws_quiesced - Quiesced state
2861  * @hw - HW module
2862  * @evt - Event
2863  *
2864  */
2865 static void
2866 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2867 {
2868 	hw->prev_evt = hw->cur_evt;
2869 	hw->cur_evt = evt;
2870 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2871 
2872 	switch (evt) {
2873 	case CSIO_HWE_RESUME:
2874 		csio_set_state(&hw->sm, csio_hws_configuring);
2875 		csio_hw_configure(hw);
2876 		break;
2877 
2878 	default:
2879 		CSIO_INC_STATS(hw, n_evt_unexp);
2880 		break;
2881 	}
2882 }
2883 
2884 /*
2885  * csio_hws_resetting - HW Resetting state
2886  * @hw - HW module
2887  * @evt - Event
2888  *
2889  */
2890 static void
2891 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2892 {
2893 	hw->prev_evt = hw->cur_evt;
2894 	hw->cur_evt = evt;
2895 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2896 
2897 	switch (evt) {
2898 	case CSIO_HWE_HBA_RESET_DONE:
2899 		csio_evtq_start(hw);
2900 		csio_set_state(&hw->sm, csio_hws_configuring);
2901 		csio_hw_configure(hw);
2902 		break;
2903 
2904 	default:
2905 		CSIO_INC_STATS(hw, n_evt_unexp);
2906 		break;
2907 	}
2908 }
2909 
2910 /*
2911  * csio_hws_removing - PCI Hotplug removing state
2912  * @hw - HW module
2913  * @evt - Event
2914  *
2915  */
2916 static void
2917 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2918 {
2919 	hw->prev_evt = hw->cur_evt;
2920 	hw->cur_evt = evt;
2921 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2922 
2923 	switch (evt) {
2924 	case CSIO_HWE_HBA_RESET:
2925 		if (!csio_is_hw_master(hw))
2926 			break;
2927 		/*
2928 		 * The BYE should have alerady been issued, so we cant
2929 		 * use the mailbox interface. Hence we use the PL_RST
2930 		 * register directly.
2931 		 */
2932 		csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2933 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
2934 		mdelay(2000);
2935 		break;
2936 
2937 	/* Should never receive any new events */
2938 	default:
2939 		CSIO_INC_STATS(hw, n_evt_unexp);
2940 		break;
2941 
2942 	}
2943 }
2944 
2945 /*
2946  * csio_hws_pcierr - PCI Error state
2947  * @hw - HW module
2948  * @evt - Event
2949  *
2950  */
2951 static void
2952 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2953 {
2954 	hw->prev_evt = hw->cur_evt;
2955 	hw->cur_evt = evt;
2956 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2957 
2958 	switch (evt) {
2959 	case CSIO_HWE_PCIERR_SLOT_RESET:
2960 		csio_evtq_start(hw);
2961 		csio_set_state(&hw->sm, csio_hws_configuring);
2962 		csio_hw_configure(hw);
2963 		break;
2964 
2965 	default:
2966 		CSIO_INC_STATS(hw, n_evt_unexp);
2967 		break;
2968 	}
2969 }
2970 
2971 /*****************************************************************************/
2972 /* END: HW SM                                                                */
2973 /*****************************************************************************/
2974 
2975 /*
2976  *	csio_handle_intr_status - table driven interrupt handler
2977  *	@hw: HW instance
2978  *	@reg: the interrupt status register to process
2979  *	@acts: table of interrupt actions
2980  *
2981  *	A table driven interrupt handler that applies a set of masks to an
2982  *	interrupt status word and performs the corresponding actions if the
2983  *	interrupts described by the mask have occured.  The actions include
2984  *	optionally emitting a warning or alert message. The table is terminated
2985  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
2986  *	conditions.
2987  */
2988 int
2989 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
2990 				 const struct intr_info *acts)
2991 {
2992 	int fatal = 0;
2993 	unsigned int mask = 0;
2994 	unsigned int status = csio_rd_reg32(hw, reg);
2995 
2996 	for ( ; acts->mask; ++acts) {
2997 		if (!(status & acts->mask))
2998 			continue;
2999 		if (acts->fatal) {
3000 			fatal++;
3001 			csio_fatal(hw, "Fatal %s (0x%x)\n",
3002 				    acts->msg, status & acts->mask);
3003 		} else if (acts->msg)
3004 			csio_info(hw, "%s (0x%x)\n",
3005 				    acts->msg, status & acts->mask);
3006 		mask |= acts->mask;
3007 	}
3008 	status &= mask;
3009 	if (status)                           /* clear processed interrupts */
3010 		csio_wr_reg32(hw, status, reg);
3011 	return fatal;
3012 }
3013 
3014 /*
3015  * TP interrupt handler.
3016  */
3017 static void csio_tp_intr_handler(struct csio_hw *hw)
3018 {
3019 	static struct intr_info tp_intr_info[] = {
3020 		{ 0x3fffffff, "TP parity error", -1, 1 },
3021 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3022 		{ 0, NULL, 0, 0 }
3023 	};
3024 
3025 	if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
3026 		csio_hw_fatal_err(hw);
3027 }
3028 
3029 /*
3030  * SGE interrupt handler.
3031  */
3032 static void csio_sge_intr_handler(struct csio_hw *hw)
3033 {
3034 	uint64_t v;
3035 
3036 	static struct intr_info sge_intr_info[] = {
3037 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3038 		  "SGE received CPL exceeding IQE size", -1, 1 },
3039 		{ ERR_INVALID_CIDX_INC_F,
3040 		  "SGE GTS CIDX increment too large", -1, 0 },
3041 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3042 		{ ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
3043 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3044 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3045 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3046 		  0 },
3047 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3048 		  0 },
3049 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3050 		  0 },
3051 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3052 		  0 },
3053 		{ ERR_ING_CTXT_PRIO_F,
3054 		  "SGE too many priority ingress contexts", -1, 0 },
3055 		{ ERR_EGR_CTXT_PRIO_F,
3056 		  "SGE too many priority egress contexts", -1, 0 },
3057 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3058 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3059 		{ 0, NULL, 0, 0 }
3060 	};
3061 
3062 	v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
3063 	    ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
3064 	if (v) {
3065 		csio_fatal(hw, "SGE parity error (%#llx)\n",
3066 			    (unsigned long long)v);
3067 		csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
3068 						SGE_INT_CAUSE1_A);
3069 		csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
3070 	}
3071 
3072 	v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
3073 
3074 	if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
3075 	    v != 0)
3076 		csio_hw_fatal_err(hw);
3077 }
3078 
3079 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3080 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3081 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3082 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3083 
3084 /*
3085  * CIM interrupt handler.
3086  */
3087 static void csio_cim_intr_handler(struct csio_hw *hw)
3088 {
3089 	static struct intr_info cim_intr_info[] = {
3090 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3091 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3092 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3093 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3094 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3095 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3096 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3097 		{ 0, NULL, 0, 0 }
3098 	};
3099 	static struct intr_info cim_upintr_info[] = {
3100 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3101 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3102 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
3103 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
3104 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3105 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3106 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3107 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3108 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3109 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3110 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3111 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3112 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3113 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3114 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3115 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3116 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3117 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3118 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3119 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3120 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3121 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3122 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3123 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3124 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3125 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3126 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3127 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3128 		{ 0, NULL, 0, 0 }
3129 	};
3130 
3131 	int fat;
3132 
3133 	fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
3134 				      cim_intr_info) +
3135 	      csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
3136 				      cim_upintr_info);
3137 	if (fat)
3138 		csio_hw_fatal_err(hw);
3139 }
3140 
3141 /*
3142  * ULP RX interrupt handler.
3143  */
3144 static void csio_ulprx_intr_handler(struct csio_hw *hw)
3145 {
3146 	static struct intr_info ulprx_intr_info[] = {
3147 		{ 0x1800000, "ULPRX context error", -1, 1 },
3148 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3149 		{ 0, NULL, 0, 0 }
3150 	};
3151 
3152 	if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3153 		csio_hw_fatal_err(hw);
3154 }
3155 
3156 /*
3157  * ULP TX interrupt handler.
3158  */
3159 static void csio_ulptx_intr_handler(struct csio_hw *hw)
3160 {
3161 	static struct intr_info ulptx_intr_info[] = {
3162 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3163 		  0 },
3164 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3165 		  0 },
3166 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3167 		  0 },
3168 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3169 		  0 },
3170 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3171 		{ 0, NULL, 0, 0 }
3172 	};
3173 
3174 	if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3175 		csio_hw_fatal_err(hw);
3176 }
3177 
3178 /*
3179  * PM TX interrupt handler.
3180  */
3181 static void csio_pmtx_intr_handler(struct csio_hw *hw)
3182 {
3183 	static struct intr_info pmtx_intr_info[] = {
3184 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3185 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3186 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3187 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3188 		{ 0xffffff0, "PMTX framing error", -1, 1 },
3189 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3190 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
3191 		  1 },
3192 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3193 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3194 		{ 0, NULL, 0, 0 }
3195 	};
3196 
3197 	if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3198 		csio_hw_fatal_err(hw);
3199 }
3200 
3201 /*
3202  * PM RX interrupt handler.
3203  */
3204 static void csio_pmrx_intr_handler(struct csio_hw *hw)
3205 {
3206 	static struct intr_info pmrx_intr_info[] = {
3207 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3208 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
3209 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3210 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
3211 		  1 },
3212 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3213 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3214 		{ 0, NULL, 0, 0 }
3215 	};
3216 
3217 	if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3218 		csio_hw_fatal_err(hw);
3219 }
3220 
3221 /*
3222  * CPL switch interrupt handler.
3223  */
3224 static void csio_cplsw_intr_handler(struct csio_hw *hw)
3225 {
3226 	static struct intr_info cplsw_intr_info[] = {
3227 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3228 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3229 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3230 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3231 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3232 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3233 		{ 0, NULL, 0, 0 }
3234 	};
3235 
3236 	if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
3237 		csio_hw_fatal_err(hw);
3238 }
3239 
3240 /*
3241  * LE interrupt handler.
3242  */
3243 static void csio_le_intr_handler(struct csio_hw *hw)
3244 {
3245 	enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
3246 
3247 	static struct intr_info le_intr_info[] = {
3248 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
3249 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
3250 		{ PARITYERR_F, "LE parity error", -1, 1 },
3251 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3252 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
3253 		{ 0, NULL, 0, 0 }
3254 	};
3255 
3256 	static struct intr_info t6_le_intr_info[] = {
3257 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3258 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3259 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
3260 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3261 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3262 		{ 0, NULL, 0, 0 }
3263 	};
3264 
3265 	if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
3266 				    (chip == CHELSIO_T5) ?
3267 				    le_intr_info : t6_le_intr_info))
3268 		csio_hw_fatal_err(hw);
3269 }
3270 
3271 /*
3272  * MPS interrupt handler.
3273  */
3274 static void csio_mps_intr_handler(struct csio_hw *hw)
3275 {
3276 	static struct intr_info mps_rx_intr_info[] = {
3277 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
3278 		{ 0, NULL, 0, 0 }
3279 	};
3280 	static struct intr_info mps_tx_intr_info[] = {
3281 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3282 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3283 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3284 		  -1, 1 },
3285 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3286 		  -1, 1 },
3287 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
3288 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3289 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
3290 		{ 0, NULL, 0, 0 }
3291 	};
3292 	static struct intr_info mps_trc_intr_info[] = {
3293 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3294 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3295 		  -1, 1 },
3296 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3297 		{ 0, NULL, 0, 0 }
3298 	};
3299 	static struct intr_info mps_stat_sram_intr_info[] = {
3300 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3301 		{ 0, NULL, 0, 0 }
3302 	};
3303 	static struct intr_info mps_stat_tx_intr_info[] = {
3304 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3305 		{ 0, NULL, 0, 0 }
3306 	};
3307 	static struct intr_info mps_stat_rx_intr_info[] = {
3308 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3309 		{ 0, NULL, 0, 0 }
3310 	};
3311 	static struct intr_info mps_cls_intr_info[] = {
3312 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3313 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3314 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3315 		{ 0, NULL, 0, 0 }
3316 	};
3317 
3318 	int fat;
3319 
3320 	fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
3321 				      mps_rx_intr_info) +
3322 	      csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
3323 				      mps_tx_intr_info) +
3324 	      csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
3325 				      mps_trc_intr_info) +
3326 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3327 				      mps_stat_sram_intr_info) +
3328 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3329 				      mps_stat_tx_intr_info) +
3330 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3331 				      mps_stat_rx_intr_info) +
3332 	      csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
3333 				      mps_cls_intr_info);
3334 
3335 	csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
3336 	csio_rd_reg32(hw, MPS_INT_CAUSE_A);                    /* flush */
3337 	if (fat)
3338 		csio_hw_fatal_err(hw);
3339 }
3340 
3341 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3342 		      ECC_UE_INT_CAUSE_F)
3343 
3344 /*
3345  * EDC/MC interrupt handler.
3346  */
3347 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3348 {
3349 	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3350 
3351 	unsigned int addr, cnt_addr, v;
3352 
3353 	if (idx <= MEM_EDC1) {
3354 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3355 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3356 	} else {
3357 		addr = MC_INT_CAUSE_A;
3358 		cnt_addr = MC_ECC_STATUS_A;
3359 	}
3360 
3361 	v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3362 	if (v & PERR_INT_CAUSE_F)
3363 		csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3364 	if (v & ECC_CE_INT_CAUSE_F) {
3365 		uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3366 
3367 		csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3368 		csio_warn(hw, "%u %s correctable ECC data error%s\n",
3369 			    cnt, name[idx], cnt > 1 ? "s" : "");
3370 	}
3371 	if (v & ECC_UE_INT_CAUSE_F)
3372 		csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3373 
3374 	csio_wr_reg32(hw, v, addr);
3375 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3376 		csio_hw_fatal_err(hw);
3377 }
3378 
3379 /*
3380  * MA interrupt handler.
3381  */
3382 static void csio_ma_intr_handler(struct csio_hw *hw)
3383 {
3384 	uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3385 
3386 	if (status & MEM_PERR_INT_CAUSE_F)
3387 		csio_fatal(hw, "MA parity error, parity status %#x\n",
3388 			    csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3389 	if (status & MEM_WRAP_INT_CAUSE_F) {
3390 		v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3391 		csio_fatal(hw,
3392 		   "MA address wrap-around error by client %u to address %#x\n",
3393 		   MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3394 	}
3395 	csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3396 	csio_hw_fatal_err(hw);
3397 }
3398 
3399 /*
3400  * SMB interrupt handler.
3401  */
3402 static void csio_smb_intr_handler(struct csio_hw *hw)
3403 {
3404 	static struct intr_info smb_intr_info[] = {
3405 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3406 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3407 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3408 		{ 0, NULL, 0, 0 }
3409 	};
3410 
3411 	if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3412 		csio_hw_fatal_err(hw);
3413 }
3414 
3415 /*
3416  * NC-SI interrupt handler.
3417  */
3418 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3419 {
3420 	static struct intr_info ncsi_intr_info[] = {
3421 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3422 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3423 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3424 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3425 		{ 0, NULL, 0, 0 }
3426 	};
3427 
3428 	if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3429 		csio_hw_fatal_err(hw);
3430 }
3431 
3432 /*
3433  * XGMAC interrupt handler.
3434  */
3435 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3436 {
3437 	uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3438 
3439 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3440 	if (!v)
3441 		return;
3442 
3443 	if (v & TXFIFO_PRTY_ERR_F)
3444 		csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3445 	if (v & RXFIFO_PRTY_ERR_F)
3446 		csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3447 	csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3448 	csio_hw_fatal_err(hw);
3449 }
3450 
3451 /*
3452  * PL interrupt handler.
3453  */
3454 static void csio_pl_intr_handler(struct csio_hw *hw)
3455 {
3456 	static struct intr_info pl_intr_info[] = {
3457 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
3458 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3459 		{ 0, NULL, 0, 0 }
3460 	};
3461 
3462 	if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3463 		csio_hw_fatal_err(hw);
3464 }
3465 
3466 /*
3467  *	csio_hw_slow_intr_handler - control path interrupt handler
3468  *	@hw: HW module
3469  *
3470  *	Interrupt handler for non-data global interrupt events, e.g., errors.
3471  *	The designation 'slow' is because it involves register reads, while
3472  *	data interrupts typically don't involve any MMIOs.
3473  */
3474 int
3475 csio_hw_slow_intr_handler(struct csio_hw *hw)
3476 {
3477 	uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3478 
3479 	if (!(cause & CSIO_GLBL_INTR_MASK)) {
3480 		CSIO_INC_STATS(hw, n_plint_unexp);
3481 		return 0;
3482 	}
3483 
3484 	csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3485 
3486 	CSIO_INC_STATS(hw, n_plint_cnt);
3487 
3488 	if (cause & CIM_F)
3489 		csio_cim_intr_handler(hw);
3490 
3491 	if (cause & MPS_F)
3492 		csio_mps_intr_handler(hw);
3493 
3494 	if (cause & NCSI_F)
3495 		csio_ncsi_intr_handler(hw);
3496 
3497 	if (cause & PL_F)
3498 		csio_pl_intr_handler(hw);
3499 
3500 	if (cause & SMB_F)
3501 		csio_smb_intr_handler(hw);
3502 
3503 	if (cause & XGMAC0_F)
3504 		csio_xgmac_intr_handler(hw, 0);
3505 
3506 	if (cause & XGMAC1_F)
3507 		csio_xgmac_intr_handler(hw, 1);
3508 
3509 	if (cause & XGMAC_KR0_F)
3510 		csio_xgmac_intr_handler(hw, 2);
3511 
3512 	if (cause & XGMAC_KR1_F)
3513 		csio_xgmac_intr_handler(hw, 3);
3514 
3515 	if (cause & PCIE_F)
3516 		hw->chip_ops->chip_pcie_intr_handler(hw);
3517 
3518 	if (cause & MC_F)
3519 		csio_mem_intr_handler(hw, MEM_MC);
3520 
3521 	if (cause & EDC0_F)
3522 		csio_mem_intr_handler(hw, MEM_EDC0);
3523 
3524 	if (cause & EDC1_F)
3525 		csio_mem_intr_handler(hw, MEM_EDC1);
3526 
3527 	if (cause & LE_F)
3528 		csio_le_intr_handler(hw);
3529 
3530 	if (cause & TP_F)
3531 		csio_tp_intr_handler(hw);
3532 
3533 	if (cause & MA_F)
3534 		csio_ma_intr_handler(hw);
3535 
3536 	if (cause & PM_TX_F)
3537 		csio_pmtx_intr_handler(hw);
3538 
3539 	if (cause & PM_RX_F)
3540 		csio_pmrx_intr_handler(hw);
3541 
3542 	if (cause & ULP_RX_F)
3543 		csio_ulprx_intr_handler(hw);
3544 
3545 	if (cause & CPL_SWITCH_F)
3546 		csio_cplsw_intr_handler(hw);
3547 
3548 	if (cause & SGE_F)
3549 		csio_sge_intr_handler(hw);
3550 
3551 	if (cause & ULP_TX_F)
3552 		csio_ulptx_intr_handler(hw);
3553 
3554 	/* Clear the interrupts just processed for which we are the master. */
3555 	csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3556 	csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3557 
3558 	return 1;
3559 }
3560 
3561 /*****************************************************************************
3562  * HW <--> mailbox interfacing routines.
3563  ****************************************************************************/
3564 /*
3565  * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3566  *
3567  * @data: Private data pointer.
3568  *
3569  * Called from worker thread context.
3570  */
3571 static void
3572 csio_mberr_worker(void *data)
3573 {
3574 	struct csio_hw *hw = (struct csio_hw *)data;
3575 	struct csio_mbm *mbm = &hw->mbm;
3576 	LIST_HEAD(cbfn_q);
3577 	struct csio_mb *mbp_next;
3578 	int rv;
3579 
3580 	del_timer_sync(&mbm->timer);
3581 
3582 	spin_lock_irq(&hw->lock);
3583 	if (list_empty(&mbm->cbfn_q)) {
3584 		spin_unlock_irq(&hw->lock);
3585 		return;
3586 	}
3587 
3588 	list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3589 	mbm->stats.n_cbfnq = 0;
3590 
3591 	/* Try to start waiting mailboxes */
3592 	if (!list_empty(&mbm->req_q)) {
3593 		mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3594 		list_del_init(&mbp_next->list);
3595 
3596 		rv = csio_mb_issue(hw, mbp_next);
3597 		if (rv != 0)
3598 			list_add_tail(&mbp_next->list, &mbm->req_q);
3599 		else
3600 			CSIO_DEC_STATS(mbm, n_activeq);
3601 	}
3602 	spin_unlock_irq(&hw->lock);
3603 
3604 	/* Now callback completions */
3605 	csio_mb_completions(hw, &cbfn_q);
3606 }
3607 
3608 /*
3609  * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3610  *
3611  * @data: private data pointer
3612  *
3613  **/
3614 static void
3615 csio_hw_mb_timer(struct timer_list *t)
3616 {
3617 	struct csio_mbm *mbm = from_timer(mbm, t, timer);
3618 	struct csio_hw *hw = mbm->hw;
3619 	struct csio_mb *mbp = NULL;
3620 
3621 	spin_lock_irq(&hw->lock);
3622 	mbp = csio_mb_tmo_handler(hw);
3623 	spin_unlock_irq(&hw->lock);
3624 
3625 	/* Call back the function for the timed-out Mailbox */
3626 	if (mbp)
3627 		mbp->mb_cbfn(hw, mbp);
3628 
3629 }
3630 
3631 /*
3632  * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3633  * @hw: HW module
3634  *
3635  * Called with lock held, should exit with lock held.
3636  * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3637  * into a local queue. Drops lock and calls the completions. Holds
3638  * lock and returns.
3639  */
3640 static void
3641 csio_hw_mbm_cleanup(struct csio_hw *hw)
3642 {
3643 	LIST_HEAD(cbfn_q);
3644 
3645 	csio_mb_cancel_all(hw, &cbfn_q);
3646 
3647 	spin_unlock_irq(&hw->lock);
3648 	csio_mb_completions(hw, &cbfn_q);
3649 	spin_lock_irq(&hw->lock);
3650 }
3651 
3652 /*****************************************************************************
3653  * Event handling
3654  ****************************************************************************/
3655 int
3656 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3657 			uint16_t len)
3658 {
3659 	struct csio_evt_msg *evt_entry = NULL;
3660 
3661 	if (type >= CSIO_EVT_MAX)
3662 		return -EINVAL;
3663 
3664 	if (len > CSIO_EVT_MSG_SIZE)
3665 		return -EINVAL;
3666 
3667 	if (hw->flags & CSIO_HWF_FWEVT_STOP)
3668 		return -EINVAL;
3669 
3670 	if (list_empty(&hw->evt_free_q)) {
3671 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3672 			 type, len);
3673 		return -ENOMEM;
3674 	}
3675 
3676 	evt_entry = list_first_entry(&hw->evt_free_q,
3677 				     struct csio_evt_msg, list);
3678 	list_del_init(&evt_entry->list);
3679 
3680 	/* copy event msg and queue the event */
3681 	evt_entry->type = type;
3682 	memcpy((void *)evt_entry->data, evt_msg, len);
3683 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3684 
3685 	CSIO_DEC_STATS(hw, n_evt_freeq);
3686 	CSIO_INC_STATS(hw, n_evt_activeq);
3687 
3688 	return 0;
3689 }
3690 
3691 static int
3692 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3693 			uint16_t len, bool msg_sg)
3694 {
3695 	struct csio_evt_msg *evt_entry = NULL;
3696 	struct csio_fl_dma_buf *fl_sg;
3697 	uint32_t off = 0;
3698 	unsigned long flags;
3699 	int n, ret = 0;
3700 
3701 	if (type >= CSIO_EVT_MAX)
3702 		return -EINVAL;
3703 
3704 	if (len > CSIO_EVT_MSG_SIZE)
3705 		return -EINVAL;
3706 
3707 	spin_lock_irqsave(&hw->lock, flags);
3708 	if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3709 		ret = -EINVAL;
3710 		goto out;
3711 	}
3712 
3713 	if (list_empty(&hw->evt_free_q)) {
3714 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3715 			 type, len);
3716 		ret = -ENOMEM;
3717 		goto out;
3718 	}
3719 
3720 	evt_entry = list_first_entry(&hw->evt_free_q,
3721 				     struct csio_evt_msg, list);
3722 	list_del_init(&evt_entry->list);
3723 
3724 	/* copy event msg and queue the event */
3725 	evt_entry->type = type;
3726 
3727 	/* If Payload in SG list*/
3728 	if (msg_sg) {
3729 		fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3730 		for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3731 			memcpy((void *)((uintptr_t)evt_entry->data + off),
3732 				fl_sg->flbufs[n].vaddr,
3733 				fl_sg->flbufs[n].len);
3734 			off += fl_sg->flbufs[n].len;
3735 		}
3736 	} else
3737 		memcpy((void *)evt_entry->data, evt_msg, len);
3738 
3739 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3740 	CSIO_DEC_STATS(hw, n_evt_freeq);
3741 	CSIO_INC_STATS(hw, n_evt_activeq);
3742 out:
3743 	spin_unlock_irqrestore(&hw->lock, flags);
3744 	return ret;
3745 }
3746 
3747 static void
3748 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3749 {
3750 	if (evt_entry) {
3751 		spin_lock_irq(&hw->lock);
3752 		list_del_init(&evt_entry->list);
3753 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3754 		CSIO_DEC_STATS(hw, n_evt_activeq);
3755 		CSIO_INC_STATS(hw, n_evt_freeq);
3756 		spin_unlock_irq(&hw->lock);
3757 	}
3758 }
3759 
3760 void
3761 csio_evtq_flush(struct csio_hw *hw)
3762 {
3763 	uint32_t count;
3764 	count = 30;
3765 	while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3766 		spin_unlock_irq(&hw->lock);
3767 		msleep(2000);
3768 		spin_lock_irq(&hw->lock);
3769 	}
3770 
3771 	CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3772 }
3773 
3774 static void
3775 csio_evtq_stop(struct csio_hw *hw)
3776 {
3777 	hw->flags |= CSIO_HWF_FWEVT_STOP;
3778 }
3779 
3780 static void
3781 csio_evtq_start(struct csio_hw *hw)
3782 {
3783 	hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3784 }
3785 
3786 static void
3787 csio_evtq_cleanup(struct csio_hw *hw)
3788 {
3789 	struct list_head *evt_entry, *next_entry;
3790 
3791 	/* Release outstanding events from activeq to freeq*/
3792 	if (!list_empty(&hw->evt_active_q))
3793 		list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3794 
3795 	hw->stats.n_evt_activeq = 0;
3796 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3797 
3798 	/* Freeup event entry */
3799 	list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3800 		kfree(evt_entry);
3801 		CSIO_DEC_STATS(hw, n_evt_freeq);
3802 	}
3803 
3804 	hw->stats.n_evt_freeq = 0;
3805 }
3806 
3807 
3808 static void
3809 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3810 			  struct csio_fl_dma_buf *flb, void *priv)
3811 {
3812 	__u8 op;
3813 	void *msg = NULL;
3814 	uint32_t msg_len = 0;
3815 	bool msg_sg = 0;
3816 
3817 	op = ((struct rss_header *) wr)->opcode;
3818 	if (op == CPL_FW6_PLD) {
3819 		CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3820 		if (!flb || !flb->totlen) {
3821 			CSIO_INC_STATS(hw, n_cpl_unexp);
3822 			return;
3823 		}
3824 
3825 		msg = (void *) flb;
3826 		msg_len = flb->totlen;
3827 		msg_sg = 1;
3828 	} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3829 
3830 		CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3831 		/* skip RSS header */
3832 		msg = (void *)((uintptr_t)wr + sizeof(__be64));
3833 		msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3834 			   sizeof(struct cpl_fw4_msg);
3835 	} else {
3836 		csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3837 		CSIO_INC_STATS(hw, n_cpl_unexp);
3838 		return;
3839 	}
3840 
3841 	/*
3842 	 * Enqueue event to EventQ. Events processing happens
3843 	 * in Event worker thread context
3844 	 */
3845 	if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3846 				  (uint16_t)msg_len, msg_sg))
3847 		CSIO_INC_STATS(hw, n_evt_drop);
3848 }
3849 
3850 void
3851 csio_evtq_worker(struct work_struct *work)
3852 {
3853 	struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3854 	struct list_head *evt_entry, *next_entry;
3855 	LIST_HEAD(evt_q);
3856 	struct csio_evt_msg	*evt_msg;
3857 	struct cpl_fw6_msg *msg;
3858 	struct csio_rnode *rn;
3859 	int rv = 0;
3860 	uint8_t evtq_stop = 0;
3861 
3862 	csio_dbg(hw, "event worker thread active evts#%d\n",
3863 		 hw->stats.n_evt_activeq);
3864 
3865 	spin_lock_irq(&hw->lock);
3866 	while (!list_empty(&hw->evt_active_q)) {
3867 		list_splice_tail_init(&hw->evt_active_q, &evt_q);
3868 		spin_unlock_irq(&hw->lock);
3869 
3870 		list_for_each_safe(evt_entry, next_entry, &evt_q) {
3871 			evt_msg = (struct csio_evt_msg *) evt_entry;
3872 
3873 			/* Drop events if queue is STOPPED */
3874 			spin_lock_irq(&hw->lock);
3875 			if (hw->flags & CSIO_HWF_FWEVT_STOP)
3876 				evtq_stop = 1;
3877 			spin_unlock_irq(&hw->lock);
3878 			if (evtq_stop) {
3879 				CSIO_INC_STATS(hw, n_evt_drop);
3880 				goto free_evt;
3881 			}
3882 
3883 			switch (evt_msg->type) {
3884 			case CSIO_EVT_FW:
3885 				msg = (struct cpl_fw6_msg *)(evt_msg->data);
3886 
3887 				if ((msg->opcode == CPL_FW6_MSG ||
3888 				     msg->opcode == CPL_FW4_MSG) &&
3889 				    !msg->type) {
3890 					rv = csio_mb_fwevt_handler(hw,
3891 								msg->data);
3892 					if (!rv)
3893 						break;
3894 					/* Handle any remaining fw events */
3895 					csio_fcoe_fwevt_handler(hw,
3896 							msg->opcode, msg->data);
3897 				} else if (msg->opcode == CPL_FW6_PLD) {
3898 
3899 					csio_fcoe_fwevt_handler(hw,
3900 							msg->opcode, msg->data);
3901 				} else {
3902 					csio_warn(hw,
3903 					     "Unhandled FW msg op %x type %x\n",
3904 						  msg->opcode, msg->type);
3905 					CSIO_INC_STATS(hw, n_evt_drop);
3906 				}
3907 				break;
3908 
3909 			case CSIO_EVT_MBX:
3910 				csio_mberr_worker(hw);
3911 				break;
3912 
3913 			case CSIO_EVT_DEV_LOSS:
3914 				memcpy(&rn, evt_msg->data, sizeof(rn));
3915 				csio_rnode_devloss_handler(rn);
3916 				break;
3917 
3918 			default:
3919 				csio_warn(hw, "Unhandled event %x on evtq\n",
3920 					  evt_msg->type);
3921 				CSIO_INC_STATS(hw, n_evt_unexp);
3922 				break;
3923 			}
3924 free_evt:
3925 			csio_free_evt(hw, evt_msg);
3926 		}
3927 
3928 		spin_lock_irq(&hw->lock);
3929 	}
3930 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3931 	spin_unlock_irq(&hw->lock);
3932 }
3933 
3934 int
3935 csio_fwevtq_handler(struct csio_hw *hw)
3936 {
3937 	int rv;
3938 
3939 	if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
3940 		CSIO_INC_STATS(hw, n_int_stray);
3941 		return -EINVAL;
3942 	}
3943 
3944 	rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
3945 			   csio_process_fwevtq_entry, NULL);
3946 	return rv;
3947 }
3948 
3949 /****************************************************************************
3950  * Entry points
3951  ****************************************************************************/
3952 
3953 /* Management module */
3954 /*
3955  * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
3956  * mgmt - mgmt module
3957  * @io_req - io request
3958  *
3959  * Return - 0:if given IO Req exists in active Q.
3960  *          -EINVAL  :if lookup fails.
3961  */
3962 int
3963 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
3964 {
3965 	struct list_head *tmp;
3966 
3967 	/* Lookup ioreq in the ACTIVEQ */
3968 	list_for_each(tmp, &mgmtm->active_q) {
3969 		if (io_req == (struct csio_ioreq *)tmp)
3970 			return 0;
3971 	}
3972 	return -EINVAL;
3973 }
3974 
3975 #define	ECM_MIN_TMO	1000	/* Minimum timeout value for req */
3976 
3977 /*
3978  * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
3979  * @data - Event data.
3980  *
3981  * Return - none.
3982  */
3983 static void
3984 csio_mgmt_tmo_handler(struct timer_list *t)
3985 {
3986 	struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer);
3987 	struct list_head *tmp;
3988 	struct csio_ioreq *io_req;
3989 
3990 	csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
3991 
3992 	spin_lock_irq(&mgmtm->hw->lock);
3993 
3994 	list_for_each(tmp, &mgmtm->active_q) {
3995 		io_req = (struct csio_ioreq *) tmp;
3996 		io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
3997 
3998 		if (!io_req->tmo) {
3999 			/* Dequeue the request from retry Q. */
4000 			tmp = csio_list_prev(tmp);
4001 			list_del_init(&io_req->sm.sm_list);
4002 			if (io_req->io_cbfn) {
4003 				/* io_req will be freed by completion handler */
4004 				io_req->wr_status = -ETIMEDOUT;
4005 				io_req->io_cbfn(mgmtm->hw, io_req);
4006 			} else {
4007 				CSIO_DB_ASSERT(0);
4008 			}
4009 		}
4010 	}
4011 
4012 	/* If retry queue is not empty, re-arm timer */
4013 	if (!list_empty(&mgmtm->active_q))
4014 		mod_timer(&mgmtm->mgmt_timer,
4015 			  jiffies + msecs_to_jiffies(ECM_MIN_TMO));
4016 	spin_unlock_irq(&mgmtm->hw->lock);
4017 }
4018 
4019 static void
4020 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
4021 {
4022 	struct csio_hw *hw = mgmtm->hw;
4023 	struct csio_ioreq *io_req;
4024 	struct list_head *tmp;
4025 	uint32_t count;
4026 
4027 	count = 30;
4028 	/* Wait for all outstanding req to complete gracefully */
4029 	while ((!list_empty(&mgmtm->active_q)) && count--) {
4030 		spin_unlock_irq(&hw->lock);
4031 		msleep(2000);
4032 		spin_lock_irq(&hw->lock);
4033 	}
4034 
4035 	/* release outstanding req from ACTIVEQ */
4036 	list_for_each(tmp, &mgmtm->active_q) {
4037 		io_req = (struct csio_ioreq *) tmp;
4038 		tmp = csio_list_prev(tmp);
4039 		list_del_init(&io_req->sm.sm_list);
4040 		mgmtm->stats.n_active--;
4041 		if (io_req->io_cbfn) {
4042 			/* io_req will be freed by completion handler */
4043 			io_req->wr_status = -ETIMEDOUT;
4044 			io_req->io_cbfn(mgmtm->hw, io_req);
4045 		}
4046 	}
4047 }
4048 
4049 /*
4050  * csio_mgmt_init - Mgmt module init entry point
4051  * @mgmtsm - mgmt module
4052  * @hw	 - HW module
4053  *
4054  * Initialize mgmt timer, resource wait queue, active queue,
4055  * completion q. Allocate Egress and Ingress
4056  * WR queues and save off the queue index returned by the WR
4057  * module for future use. Allocate and save off mgmt reqs in the
4058  * mgmt_req_freelist for future use. Make sure their SM is initialized
4059  * to uninit state.
4060  * Returns: 0 - on success
4061  *          -ENOMEM   - on error.
4062  */
4063 static int
4064 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
4065 {
4066 	timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0);
4067 
4068 	INIT_LIST_HEAD(&mgmtm->active_q);
4069 	INIT_LIST_HEAD(&mgmtm->cbfn_q);
4070 
4071 	mgmtm->hw = hw;
4072 	/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
4073 
4074 	return 0;
4075 }
4076 
4077 /*
4078  * csio_mgmtm_exit - MGMT module exit entry point
4079  * @mgmtsm - mgmt module
4080  *
4081  * This function called during MGMT module uninit.
4082  * Stop timers, free ioreqs allocated.
4083  * Returns: None
4084  *
4085  */
4086 static void
4087 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
4088 {
4089 	del_timer_sync(&mgmtm->mgmt_timer);
4090 }
4091 
4092 
4093 /**
4094  * csio_hw_start - Kicks off the HW State machine
4095  * @hw:		Pointer to HW module.
4096  *
4097  * It is assumed that the initialization is a synchronous operation.
4098  * So when we return afer posting the event, the HW SM should be in
4099  * the ready state, if there were no errors during init.
4100  */
4101 int
4102 csio_hw_start(struct csio_hw *hw)
4103 {
4104 	spin_lock_irq(&hw->lock);
4105 	csio_post_event(&hw->sm, CSIO_HWE_CFG);
4106 	spin_unlock_irq(&hw->lock);
4107 
4108 	if (csio_is_hw_ready(hw))
4109 		return 0;
4110 	else if (csio_match_state(hw, csio_hws_uninit))
4111 		return -EINVAL;
4112 	else
4113 		return -ENODEV;
4114 }
4115 
4116 int
4117 csio_hw_stop(struct csio_hw *hw)
4118 {
4119 	csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
4120 
4121 	if (csio_is_hw_removing(hw))
4122 		return 0;
4123 	else
4124 		return -EINVAL;
4125 }
4126 
4127 /* Max reset retries */
4128 #define CSIO_MAX_RESET_RETRIES	3
4129 
4130 /**
4131  * csio_hw_reset - Reset the hardware
4132  * @hw:		HW module.
4133  *
4134  * Caller should hold lock across this function.
4135  */
4136 int
4137 csio_hw_reset(struct csio_hw *hw)
4138 {
4139 	if (!csio_is_hw_master(hw))
4140 		return -EPERM;
4141 
4142 	if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
4143 		csio_dbg(hw, "Max hw reset attempts reached..");
4144 		return -EINVAL;
4145 	}
4146 
4147 	hw->rst_retries++;
4148 	csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
4149 
4150 	if (csio_is_hw_ready(hw)) {
4151 		hw->rst_retries = 0;
4152 		hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
4153 		return 0;
4154 	} else
4155 		return -EINVAL;
4156 }
4157 
4158 /*
4159  * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
4160  * @hw: HW module.
4161  */
4162 static void
4163 csio_hw_get_device_id(struct csio_hw *hw)
4164 {
4165 	/* Is the adapter device id cached already ?*/
4166 	if (csio_is_dev_id_cached(hw))
4167 		return;
4168 
4169 	/* Get the PCI vendor & device id */
4170 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
4171 			     &hw->params.pci.vendor_id);
4172 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
4173 			     &hw->params.pci.device_id);
4174 
4175 	csio_dev_id_cached(hw);
4176 	hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
4177 
4178 } /* csio_hw_get_device_id */
4179 
4180 /*
4181  * csio_hw_set_description - Set the model, description of the hw.
4182  * @hw: HW module.
4183  * @ven_id: PCI Vendor ID
4184  * @dev_id: PCI Device ID
4185  */
4186 static void
4187 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
4188 {
4189 	uint32_t adap_type, prot_type;
4190 
4191 	if (ven_id == CSIO_VENDOR_ID) {
4192 		prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
4193 		adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
4194 
4195 		if (prot_type == CSIO_T5_FCOE_ASIC) {
4196 			memcpy(hw->hw_ver,
4197 			       csio_t5_fcoe_adapters[adap_type].model_no, 16);
4198 			memcpy(hw->model_desc,
4199 			       csio_t5_fcoe_adapters[adap_type].description,
4200 			       32);
4201 		} else {
4202 			char tempName[32] = "Chelsio FCoE Controller";
4203 			memcpy(hw->model_desc, tempName, 32);
4204 		}
4205 	}
4206 } /* csio_hw_set_description */
4207 
4208 /**
4209  * csio_hw_init - Initialize HW module.
4210  * @hw:		Pointer to HW module.
4211  *
4212  * Initialize the members of the HW module.
4213  */
4214 int
4215 csio_hw_init(struct csio_hw *hw)
4216 {
4217 	int rv = -EINVAL;
4218 	uint32_t i;
4219 	uint16_t ven_id, dev_id;
4220 	struct csio_evt_msg	*evt_entry;
4221 
4222 	INIT_LIST_HEAD(&hw->sm.sm_list);
4223 	csio_init_state(&hw->sm, csio_hws_uninit);
4224 	spin_lock_init(&hw->lock);
4225 	INIT_LIST_HEAD(&hw->sln_head);
4226 
4227 	/* Get the PCI vendor & device id */
4228 	csio_hw_get_device_id(hw);
4229 
4230 	strcpy(hw->name, CSIO_HW_NAME);
4231 
4232 	/* Initialize the HW chip ops T5 specific ops */
4233 	hw->chip_ops = &t5_ops;
4234 
4235 	/* Set the model & its description */
4236 
4237 	ven_id = hw->params.pci.vendor_id;
4238 	dev_id = hw->params.pci.device_id;
4239 
4240 	csio_hw_set_description(hw, ven_id, dev_id);
4241 
4242 	/* Initialize default log level */
4243 	hw->params.log_level = (uint32_t) csio_dbg_level;
4244 
4245 	csio_set_fwevt_intr_idx(hw, -1);
4246 	csio_set_nondata_intr_idx(hw, -1);
4247 
4248 	/* Init all the modules: Mailbox, WorkRequest and Transport */
4249 	if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
4250 		goto err;
4251 
4252 	rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
4253 	if (rv)
4254 		goto err_mbm_exit;
4255 
4256 	rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
4257 	if (rv)
4258 		goto err_wrm_exit;
4259 
4260 	rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
4261 	if (rv)
4262 		goto err_scsim_exit;
4263 	/* Pre-allocate evtq and initialize them */
4264 	INIT_LIST_HEAD(&hw->evt_active_q);
4265 	INIT_LIST_HEAD(&hw->evt_free_q);
4266 	for (i = 0; i < csio_evtq_sz; i++) {
4267 
4268 		evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4269 		if (!evt_entry) {
4270 			rv = -ENOMEM;
4271 			csio_err(hw, "Failed to initialize eventq");
4272 			goto err_evtq_cleanup;
4273 		}
4274 
4275 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
4276 		CSIO_INC_STATS(hw, n_evt_freeq);
4277 	}
4278 
4279 	hw->dev_num = dev_num;
4280 	dev_num++;
4281 
4282 	return 0;
4283 
4284 err_evtq_cleanup:
4285 	csio_evtq_cleanup(hw);
4286 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4287 err_scsim_exit:
4288 	csio_scsim_exit(csio_hw_to_scsim(hw));
4289 err_wrm_exit:
4290 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4291 err_mbm_exit:
4292 	csio_mbm_exit(csio_hw_to_mbm(hw));
4293 err:
4294 	return rv;
4295 }
4296 
4297 /**
4298  * csio_hw_exit - Un-initialize HW module.
4299  * @hw:		Pointer to HW module.
4300  *
4301  */
4302 void
4303 csio_hw_exit(struct csio_hw *hw)
4304 {
4305 	csio_evtq_cleanup(hw);
4306 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4307 	csio_scsim_exit(csio_hw_to_scsim(hw));
4308 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4309 	csio_mbm_exit(csio_hw_to_mbm(hw));
4310 }
4311