xref: /openbmc/linux/drivers/scsi/csiostor/csio_hw.c (revision 2cf1c348)
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
45 
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
49 
50 int csio_dbg_level = 0xFEFF;
51 unsigned int csio_port_mask = 0xf;
52 
53 /* Default FW event queue entries. */
54 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55 
56 /* Default MSI param level */
57 int csio_msi = 2;
58 
59 /* FCoE function instances */
60 static int dev_num;
61 
62 /* FCoE Adapter types & its description */
63 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64 	{"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65 	{"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66 	{"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67 	{"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68 	{"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69 	{"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70 	{"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71 	{"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72 	{"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73 	{"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74 	{"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75 	{"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76 	{"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77 	{"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78 	{"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79 	{"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80 	{"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81 	{"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82 	{"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83 	{"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84 	{"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85 	{"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
86 };
87 
88 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89 static void csio_hw_mbm_cleanup(struct csio_hw *);
90 
91 /* State machine forward declarations */
92 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
101 
102 static void csio_hw_initialize(struct csio_hw *hw);
103 static void csio_evtq_stop(struct csio_hw *hw);
104 static void csio_evtq_start(struct csio_hw *hw);
105 
106 int csio_is_hw_ready(struct csio_hw *hw)
107 {
108 	return csio_match_state(hw, csio_hws_ready);
109 }
110 
111 int csio_is_hw_removing(struct csio_hw *hw)
112 {
113 	return csio_match_state(hw, csio_hws_removing);
114 }
115 
116 
117 /*
118  *	csio_hw_wait_op_done_val - wait until an operation is completed
119  *	@hw: the HW module
120  *	@reg: the register to check for completion
121  *	@mask: a single-bit field within @reg that indicates completion
122  *	@polarity: the value of the field when the operation is completed
123  *	@attempts: number of check iterations
124  *	@delay: delay in usecs between iterations
125  *	@valp: where to store the value of the register at completion time
126  *
127  *	Wait until an operation is completed by checking a bit in a register
128  *	up to @attempts times.  If @valp is not NULL the value of the register
129  *	at the time it indicated completion is stored there.  Returns 0 if the
130  *	operation completes and	-EAGAIN	otherwise.
131  */
132 int
133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134 			 int polarity, int attempts, int delay, uint32_t *valp)
135 {
136 	uint32_t val;
137 	while (1) {
138 		val = csio_rd_reg32(hw, reg);
139 
140 		if (!!(val & mask) == polarity) {
141 			if (valp)
142 				*valp = val;
143 			return 0;
144 		}
145 
146 		if (--attempts == 0)
147 			return -EAGAIN;
148 		if (delay)
149 			udelay(delay);
150 	}
151 }
152 
153 /*
154  *	csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155  *	@hw: the adapter
156  *	@addr: the indirect TP register address
157  *	@mask: specifies the field within the register to modify
158  *	@val: new value for the field
159  *
160  *	Sets a field of an indirect TP register to the given value.
161  */
162 void
163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164 			unsigned int mask, unsigned int val)
165 {
166 	csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167 	val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168 	csio_wr_reg32(hw, val, TP_PIO_DATA_A);
169 }
170 
171 void
172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173 		   uint32_t value)
174 {
175 	uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
176 
177 	csio_wr_reg32(hw, val | value, reg);
178 	/* Flush */
179 	csio_rd_reg32(hw, reg);
180 
181 }
182 
183 static int
184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
185 {
186 	return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187 					    addr, len, buf, 0);
188 }
189 
190 /*
191  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
192  */
193 #define EEPROM_MAX_RD_POLL	40
194 #define EEPROM_MAX_WR_POLL	6
195 #define EEPROM_STAT_ADDR	0x7bfc
196 #define VPD_BASE		0x400
197 #define VPD_BASE_OLD		0
198 #define VPD_LEN			1024
199 #define VPD_INFO_FLD_HDR_SIZE	3
200 
201 /*
202  *	csio_hw_seeprom_read - read a serial EEPROM location
203  *	@hw: hw to read
204  *	@addr: EEPROM virtual address
205  *	@data: where to store the read data
206  *
207  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
208  *	VPD capability.  Note that this function must be called with a virtual
209  *	address.
210  */
211 static int
212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
213 {
214 	uint16_t val = 0;
215 	int attempts = EEPROM_MAX_RD_POLL;
216 	uint32_t base = hw->params.pci.vpd_cap_addr;
217 
218 	if (addr >= EEPROMVSIZE || (addr & 3))
219 		return -EINVAL;
220 
221 	pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
222 
223 	do {
224 		udelay(10);
225 		pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
227 
228 	if (!(val & PCI_VPD_ADDR_F)) {
229 		csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230 		return -EINVAL;
231 	}
232 
233 	pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234 	*data = le32_to_cpu(*(__le32 *)data);
235 
236 	return 0;
237 }
238 
239 /*
240  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
241  * VPD-R sections.
242  */
243 struct t4_vpd_hdr {
244 	u8  id_tag;
245 	u8  id_len[2];
246 	u8  id_data[ID_LEN];
247 	u8  vpdr_tag;
248 	u8  vpdr_len[2];
249 };
250 
251 /*
252  *	csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253  *				      the VPD
254  *	@v: Pointer to buffered vpd data structure
255  *	@kw: The keyword to search for
256  *
257  *	Returns the value of the information field keyword or
258  *	-EINVAL otherwise.
259  */
260 static int
261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
262 {
263 	int32_t i;
264 	int32_t offset , len;
265 	const uint8_t *buf = &v->id_tag;
266 	const uint8_t *vpdr_len = &v->vpdr_tag;
267 	offset = sizeof(struct t4_vpd_hdr);
268 	len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
269 
270 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271 		return -EINVAL;
272 
273 	for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274 		if (memcmp(buf + i , kw, 2) == 0) {
275 			i += VPD_INFO_FLD_HDR_SIZE;
276 			return i;
277 		}
278 
279 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
280 	}
281 
282 	return -EINVAL;
283 }
284 
285 static int
286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
287 {
288 	*pos = pci_find_capability(pdev, cap);
289 	if (*pos)
290 		return 0;
291 
292 	return -1;
293 }
294 
295 /*
296  *	csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297  *	@hw: HW module
298  *	@p: where to store the parameters
299  *
300  *	Reads card parameters stored in VPD EEPROM.
301  */
302 static int
303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
304 {
305 	int i, ret, ec, sn, addr;
306 	uint8_t *vpd, csum;
307 	const struct t4_vpd_hdr *v;
308 	/* To get around compilation warning from strstrip */
309 	char __always_unused *s;
310 
311 	if (csio_is_valid_vpd(hw))
312 		return 0;
313 
314 	ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315 				  &hw->params.pci.vpd_cap_addr);
316 	if (ret)
317 		return -EINVAL;
318 
319 	vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320 	if (vpd == NULL)
321 		return -ENOMEM;
322 
323 	/*
324 	 * Card information normally starts at VPD_BASE but early cards had
325 	 * it at 0.
326 	 */
327 	ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328 	addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
329 
330 	for (i = 0; i < VPD_LEN; i += 4) {
331 		ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332 		if (ret) {
333 			kfree(vpd);
334 			return ret;
335 		}
336 	}
337 
338 	/* Reset the VPD flag! */
339 	hw->flags &= (~CSIO_HWF_VPD_VALID);
340 
341 	v = (const struct t4_vpd_hdr *)vpd;
342 
343 #define FIND_VPD_KW(var, name) do { \
344 	var = csio_hw_get_vpd_keyword_val(v, name); \
345 	if (var < 0) { \
346 		csio_err(hw, "missing VPD keyword " name "\n"); \
347 		kfree(vpd); \
348 		return -EINVAL; \
349 	} \
350 } while (0)
351 
352 	FIND_VPD_KW(i, "RV");
353 	for (csum = 0; i >= 0; i--)
354 		csum += vpd[i];
355 
356 	if (csum) {
357 		csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358 		kfree(vpd);
359 		return -EINVAL;
360 	}
361 	FIND_VPD_KW(ec, "EC");
362 	FIND_VPD_KW(sn, "SN");
363 #undef FIND_VPD_KW
364 
365 	memcpy(p->id, v->id_data, ID_LEN);
366 	s = strstrip(p->id);
367 	memcpy(p->ec, vpd + ec, EC_LEN);
368 	s = strstrip(p->ec);
369 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371 	s = strstrip(p->sn);
372 
373 	csio_valid_vpd_copied(hw);
374 
375 	kfree(vpd);
376 	return 0;
377 }
378 
379 /*
380  *	csio_hw_sf1_read - read data from the serial flash
381  *	@hw: the HW module
382  *	@byte_cnt: number of bytes to read
383  *	@cont: whether another operation will be chained
384  *      @lock: whether to lock SF for PL access only
385  *	@valp: where to store the read data
386  *
387  *	Reads up to 4 bytes of data from the serial flash.  The location of
388  *	the read needs to be specified prior to calling this by issuing the
389  *	appropriate commands to the serial flash.
390  */
391 static int
392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393 		 int32_t lock, uint32_t *valp)
394 {
395 	int ret;
396 
397 	if (!byte_cnt || byte_cnt > 4)
398 		return -EINVAL;
399 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400 		return -EBUSY;
401 
402 	csio_wr_reg32(hw,  SF_LOCK_V(lock) | SF_CONT_V(cont) |
403 		      BYTECNT_V(byte_cnt - 1), SF_OP_A);
404 	ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405 				       10, NULL);
406 	if (!ret)
407 		*valp = csio_rd_reg32(hw, SF_DATA_A);
408 	return ret;
409 }
410 
411 /*
412  *	csio_hw_sf1_write - write data to the serial flash
413  *	@hw: the HW module
414  *	@byte_cnt: number of bytes to write
415  *	@cont: whether another operation will be chained
416  *      @lock: whether to lock SF for PL access only
417  *	@val: value to write
418  *
419  *	Writes up to 4 bytes of data to the serial flash.  The location of
420  *	the write needs to be specified prior to calling this by issuing the
421  *	appropriate commands to the serial flash.
422  */
423 static int
424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425 		  int32_t lock, uint32_t val)
426 {
427 	if (!byte_cnt || byte_cnt > 4)
428 		return -EINVAL;
429 	if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430 		return -EBUSY;
431 
432 	csio_wr_reg32(hw, val, SF_DATA_A);
433 	csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434 		      OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
435 
436 	return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437 					10, NULL);
438 }
439 
440 /*
441  *	csio_hw_flash_wait_op - wait for a flash operation to complete
442  *	@hw: the HW module
443  *	@attempts: max number of polls of the status register
444  *	@delay: delay between polls in ms
445  *
446  *	Wait for a flash operation to complete by polling the status register.
447  */
448 static int
449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
450 {
451 	int ret;
452 	uint32_t status;
453 
454 	while (1) {
455 		ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456 		if (ret != 0)
457 			return ret;
458 
459 		ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460 		if (ret != 0)
461 			return ret;
462 
463 		if (!(status & 1))
464 			return 0;
465 		if (--attempts == 0)
466 			return -EAGAIN;
467 		if (delay)
468 			msleep(delay);
469 	}
470 }
471 
472 /*
473  *	csio_hw_read_flash - read words from serial flash
474  *	@hw: the HW module
475  *	@addr: the start address for the read
476  *	@nwords: how many 32-bit words to read
477  *	@data: where to store the read data
478  *	@byte_oriented: whether to store data as bytes or as words
479  *
480  *	Read the specified number of 32-bit words from the serial flash.
481  *	If @byte_oriented is set the read data is stored as a byte array
482  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
483  *	natural endianess.
484  */
485 static int
486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487 		  uint32_t *data, int32_t byte_oriented)
488 {
489 	int ret;
490 
491 	if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492 		return -EINVAL;
493 
494 	addr = swab32(addr) | SF_RD_DATA_FAST;
495 
496 	ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497 	if (ret != 0)
498 		return ret;
499 
500 	ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501 	if (ret != 0)
502 		return ret;
503 
504 	for ( ; nwords; nwords--, data++) {
505 		ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506 		if (nwords == 1)
507 			csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
508 		if (ret)
509 			return ret;
510 		if (byte_oriented)
511 			*data = (__force __u32) htonl(*data);
512 	}
513 	return 0;
514 }
515 
516 /*
517  *	csio_hw_write_flash - write up to a page of data to the serial flash
518  *	@hw: the hw
519  *	@addr: the start address to write
520  *	@n: length of data to write in bytes
521  *	@data: the data to write
522  *
523  *	Writes up to a page of data (256 bytes) to the serial flash starting
524  *	at the given address.  All the data must be written to the same page.
525  */
526 static int
527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528 		    uint32_t n, const uint8_t *data)
529 {
530 	int ret = -EINVAL;
531 	uint32_t buf[64];
532 	uint32_t i, c, left, val, offset = addr & 0xff;
533 
534 	if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535 		return -EINVAL;
536 
537 	val = swab32(addr) | SF_PROG_PAGE;
538 
539 	ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540 	if (ret != 0)
541 		goto unlock;
542 
543 	ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544 	if (ret != 0)
545 		goto unlock;
546 
547 	for (left = n; left; left -= c) {
548 		c = min(left, 4U);
549 		for (val = 0, i = 0; i < c; ++i)
550 			val = (val << 8) + *data++;
551 
552 		ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553 		if (ret)
554 			goto unlock;
555 	}
556 	ret = csio_hw_flash_wait_op(hw, 8, 1);
557 	if (ret)
558 		goto unlock;
559 
560 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
561 
562 	/* Read the page to verify the write succeeded */
563 	ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564 	if (ret)
565 		return ret;
566 
567 	if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568 		csio_err(hw,
569 			 "failed to correctly write the flash page at %#x\n",
570 			 addr);
571 		return -EINVAL;
572 	}
573 
574 	return 0;
575 
576 unlock:
577 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
578 	return ret;
579 }
580 
581 /*
582  *	csio_hw_flash_erase_sectors - erase a range of flash sectors
583  *	@hw: the HW module
584  *	@start: the first sector to erase
585  *	@end: the last sector to erase
586  *
587  *	Erases the sectors in the given inclusive range.
588  */
589 static int
590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
591 {
592 	int ret = 0;
593 
594 	while (start <= end) {
595 
596 		ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597 		if (ret != 0)
598 			goto out;
599 
600 		ret = csio_hw_sf1_write(hw, 4, 0, 1,
601 					SF_ERASE_SECTOR | (start << 8));
602 		if (ret != 0)
603 			goto out;
604 
605 		ret = csio_hw_flash_wait_op(hw, 14, 500);
606 		if (ret != 0)
607 			goto out;
608 
609 		start++;
610 	}
611 out:
612 	if (ret)
613 		csio_err(hw, "erase of flash sector %d failed, error %d\n",
614 			 start, ret);
615 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
616 	return 0;
617 }
618 
619 static void
620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
621 {
622 	csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623 		    FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624 		    FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625 		    FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626 		    FW_HDR_FW_VER_BUILD_G(hw->fwrev));
627 }
628 
629 /*
630  * csio_hw_get_fw_version - read the firmware version
631  * @hw: HW module
632  * @vers: where to place the version
633  *
634  * Reads the FW version from flash.
635  */
636 static int
637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
638 {
639 	return csio_hw_read_flash(hw, FLASH_FW_START +
640 				  offsetof(struct fw_hdr, fw_ver), 1,
641 				  vers, 0);
642 }
643 
644 /*
645  *	csio_hw_get_tp_version - read the TP microcode version
646  *	@hw: HW module
647  *	@vers: where to place the version
648  *
649  *	Reads the TP microcode version from flash.
650  */
651 static int
652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
653 {
654 	return csio_hw_read_flash(hw, FLASH_FW_START +
655 			offsetof(struct fw_hdr, tp_microcode_ver), 1,
656 			vers, 0);
657 }
658 
659 /*
660  * csio_hw_fw_dload - download firmware.
661  * @hw: HW module
662  * @fw_data: firmware image to write.
663  * @size: image size
664  *
665  * Write the supplied firmware image to the card's serial flash.
666  */
667 static int
668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
669 {
670 	uint32_t csum;
671 	int32_t addr;
672 	int ret;
673 	uint32_t i;
674 	uint8_t first_page[SF_PAGE_SIZE];
675 	const __be32 *p = (const __be32 *)fw_data;
676 	struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677 	uint32_t sf_sec_size;
678 
679 	if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680 		csio_err(hw, "Serial Flash data invalid\n");
681 		return -EINVAL;
682 	}
683 
684 	if (!size) {
685 		csio_err(hw, "FW image has no data\n");
686 		return -EINVAL;
687 	}
688 
689 	if (size & 511) {
690 		csio_err(hw, "FW image size not multiple of 512 bytes\n");
691 		return -EINVAL;
692 	}
693 
694 	if (ntohs(hdr->len512) * 512 != size) {
695 		csio_err(hw, "FW image size differs from size in FW header\n");
696 		return -EINVAL;
697 	}
698 
699 	if (size > FLASH_FW_MAX_SIZE) {
700 		csio_err(hw, "FW image too large, max is %u bytes\n",
701 			    FLASH_FW_MAX_SIZE);
702 		return -EINVAL;
703 	}
704 
705 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706 		csum += ntohl(p[i]);
707 
708 	if (csum != 0xffffffff) {
709 		csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710 		return -EINVAL;
711 	}
712 
713 	sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
715 
716 	csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717 			  FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
718 
719 	ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720 					  FLASH_FW_START_SEC + i - 1);
721 	if (ret) {
722 		csio_err(hw, "Flash Erase failed\n");
723 		goto out;
724 	}
725 
726 	/*
727 	 * We write the correct version at the end so the driver can see a bad
728 	 * version if the FW write fails.  Start by writing a copy of the
729 	 * first page with a bad version.
730 	 */
731 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
732 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733 	ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734 	if (ret)
735 		goto out;
736 
737 	csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738 		    FW_IMG_START, FW_IMG_START + size);
739 
740 	addr = FLASH_FW_START;
741 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742 		addr += SF_PAGE_SIZE;
743 		fw_data += SF_PAGE_SIZE;
744 		ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745 		if (ret)
746 			goto out;
747 	}
748 
749 	ret = csio_hw_write_flash(hw,
750 				  FLASH_FW_START +
751 					offsetof(struct fw_hdr, fw_ver),
752 				  sizeof(hdr->fw_ver),
753 				  (const uint8_t *)&hdr->fw_ver);
754 
755 out:
756 	if (ret)
757 		csio_err(hw, "firmware download failed, error %d\n", ret);
758 	return ret;
759 }
760 
761 static int
762 csio_hw_get_flash_params(struct csio_hw *hw)
763 {
764 	/* Table for non-Numonix supported flash parts.  Numonix parts are left
765 	 * to the preexisting code.  All flash parts have 64KB sectors.
766 	 */
767 	static struct flash_desc {
768 		u32 vendor_and_model_id;
769 		u32 size_mb;
770 	} supported_flash[] = {
771 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
772 	};
773 
774 	u32 part, manufacturer;
775 	u32 density, size = 0;
776 	u32 flashid = 0;
777 	int ret;
778 
779 	ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
780 	if (!ret)
781 		ret = csio_hw_sf1_read(hw, 3, 0, 1, &flashid);
782 	csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
783 	if (ret)
784 		return ret;
785 
786 	/* Check to see if it's one of our non-standard supported Flash parts.
787 	 */
788 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
789 		if (supported_flash[part].vendor_and_model_id == flashid) {
790 			hw->params.sf_size = supported_flash[part].size_mb;
791 			hw->params.sf_nsec =
792 				hw->params.sf_size / SF_SEC_SIZE;
793 			goto found;
794 		}
795 
796 	/* Decode Flash part size.  The code below looks repetitive with
797 	 * common encodings, but that's not guaranteed in the JEDEC
798 	 * specification for the Read JEDEC ID command.  The only thing that
799 	 * we're guaranteed by the JEDEC specification is where the
800 	 * Manufacturer ID is in the returned result.  After that each
801 	 * Manufacturer ~could~ encode things completely differently.
802 	 * Note, all Flash parts must have 64KB sectors.
803 	 */
804 	manufacturer = flashid & 0xff;
805 	switch (manufacturer) {
806 	case 0x20: { /* Micron/Numonix */
807 		/* This Density -> Size decoding table is taken from Micron
808 		 * Data Sheets.
809 		 */
810 		density = (flashid >> 16) & 0xff;
811 		switch (density) {
812 		case 0x14 ... 0x19: /* 1MB - 32MB */
813 			size = 1 << density;
814 			break;
815 		case 0x20: /* 64MB */
816 			size = 1 << 26;
817 			break;
818 		case 0x21: /* 128MB */
819 			size = 1 << 27;
820 			break;
821 		case 0x22: /* 256MB */
822 			size = 1 << 28;
823 		}
824 		break;
825 	}
826 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
827 		/* This Density -> Size decoding table is taken from ISSI
828 		 * Data Sheets.
829 		 */
830 		density = (flashid >> 16) & 0xff;
831 		switch (density) {
832 		case 0x16: /* 32 MB */
833 			size = 1 << 25;
834 			break;
835 		case 0x17: /* 64MB */
836 			size = 1 << 26;
837 		}
838 		break;
839 	}
840 	case 0xc2: /* Macronix */
841 	case 0xef: /* Winbond */ {
842 		/* This Density -> Size decoding table is taken from
843 		 * Macronix and Winbond Data Sheets.
844 		 */
845 		density = (flashid >> 16) & 0xff;
846 		switch (density) {
847 		case 0x17: /* 8MB */
848 		case 0x18: /* 16MB */
849 			size = 1 << density;
850 		}
851 	}
852 	}
853 
854 	/* If we didn't recognize the FLASH part, that's no real issue: the
855 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
856 	 * use a FLASH part which is at least 4MB in size and has 64KB
857 	 * sectors.  The unrecognized FLASH part is likely to be much larger
858 	 * than 4MB, but that's all we really need.
859 	 */
860 	if (size == 0) {
861 		csio_warn(hw, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
862 			  flashid);
863 		size = 1 << 22;
864 	}
865 
866 	/* Store decoded Flash size */
867 	hw->params.sf_size = size;
868 	hw->params.sf_nsec = size / SF_SEC_SIZE;
869 
870 found:
871 	if (hw->params.sf_size < FLASH_MIN_SIZE)
872 		csio_warn(hw, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
873 			  flashid, hw->params.sf_size, FLASH_MIN_SIZE);
874 	return 0;
875 }
876 
877 /*****************************************************************************/
878 /* HW State machine assists                                                  */
879 /*****************************************************************************/
880 
881 static int
882 csio_hw_dev_ready(struct csio_hw *hw)
883 {
884 	uint32_t reg;
885 	int cnt = 6;
886 	int src_pf;
887 
888 	while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
889 	       (--cnt != 0))
890 		mdelay(100);
891 
892 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
893 		src_pf = SOURCEPF_G(reg);
894 	else
895 		src_pf = T6_SOURCEPF_G(reg);
896 
897 	if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
898 			   (src_pf >= CSIO_MAX_PFN))) {
899 		csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
900 		return -EIO;
901 	}
902 
903 	hw->pfn = src_pf;
904 
905 	return 0;
906 }
907 
908 /*
909  * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
910  * @hw: HW module
911  * @state: Device state
912  *
913  * FW_HELLO_CMD has to be polled for completion.
914  */
915 static int
916 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
917 {
918 	struct csio_mb	*mbp;
919 	int	rv = 0;
920 	enum fw_retval retval;
921 	uint8_t mpfn;
922 	char state_str[16];
923 	int retries = FW_CMD_HELLO_RETRIES;
924 
925 	memset(state_str, 0, sizeof(state_str));
926 
927 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
928 	if (!mbp) {
929 		rv = -ENOMEM;
930 		CSIO_INC_STATS(hw, n_err_nomem);
931 		goto out;
932 	}
933 
934 retry:
935 	csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
936 		      hw->pfn, CSIO_MASTER_MAY, NULL);
937 
938 	rv = csio_mb_issue(hw, mbp);
939 	if (rv) {
940 		csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
941 		goto out_free_mb;
942 	}
943 
944 	csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
945 	if (retval != FW_SUCCESS) {
946 		csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
947 		rv = -EINVAL;
948 		goto out_free_mb;
949 	}
950 
951 	/* Firmware has designated us to be master */
952 	if (hw->pfn == mpfn) {
953 		hw->flags |= CSIO_HWF_MASTER;
954 	} else if (*state == CSIO_DEV_STATE_UNINIT) {
955 		/*
956 		 * If we're not the Master PF then we need to wait around for
957 		 * the Master PF Driver to finish setting up the adapter.
958 		 *
959 		 * Note that we also do this wait if we're a non-Master-capable
960 		 * PF and there is no current Master PF; a Master PF may show up
961 		 * momentarily and we wouldn't want to fail pointlessly.  (This
962 		 * can happen when an OS loads lots of different drivers rapidly
963 		 * at the same time). In this case, the Master PF returned by
964 		 * the firmware will be PCIE_FW_MASTER_MASK so the test below
965 		 * will work ...
966 		 */
967 
968 		int waiting = FW_CMD_HELLO_TIMEOUT;
969 
970 		/*
971 		 * Wait for the firmware to either indicate an error or
972 		 * initialized state.  If we see either of these we bail out
973 		 * and report the issue to the caller.  If we exhaust the
974 		 * "hello timeout" and we haven't exhausted our retries, try
975 		 * again.  Otherwise bail with a timeout error.
976 		 */
977 		for (;;) {
978 			uint32_t pcie_fw;
979 
980 			spin_unlock_irq(&hw->lock);
981 			msleep(50);
982 			spin_lock_irq(&hw->lock);
983 			waiting -= 50;
984 
985 			/*
986 			 * If neither Error nor Initialized are indicated
987 			 * by the firmware keep waiting till we exhaust our
988 			 * timeout ... and then retry if we haven't exhausted
989 			 * our retries ...
990 			 */
991 			pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
992 			if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
993 				if (waiting <= 0) {
994 					if (retries-- > 0)
995 						goto retry;
996 
997 					rv = -ETIMEDOUT;
998 					break;
999 				}
1000 				continue;
1001 			}
1002 
1003 			/*
1004 			 * We either have an Error or Initialized condition
1005 			 * report errors preferentially.
1006 			 */
1007 			if (state) {
1008 				if (pcie_fw & PCIE_FW_ERR_F) {
1009 					*state = CSIO_DEV_STATE_ERR;
1010 					rv = -ETIMEDOUT;
1011 				} else if (pcie_fw & PCIE_FW_INIT_F)
1012 					*state = CSIO_DEV_STATE_INIT;
1013 			}
1014 
1015 			/*
1016 			 * If we arrived before a Master PF was selected and
1017 			 * there's not a valid Master PF, grab its identity
1018 			 * for our caller.
1019 			 */
1020 			if (mpfn == PCIE_FW_MASTER_M &&
1021 			    (pcie_fw & PCIE_FW_MASTER_VLD_F))
1022 				mpfn = PCIE_FW_MASTER_G(pcie_fw);
1023 			break;
1024 		}
1025 		hw->flags &= ~CSIO_HWF_MASTER;
1026 	}
1027 
1028 	switch (*state) {
1029 	case CSIO_DEV_STATE_UNINIT:
1030 		strcpy(state_str, "Initializing");
1031 		break;
1032 	case CSIO_DEV_STATE_INIT:
1033 		strcpy(state_str, "Initialized");
1034 		break;
1035 	case CSIO_DEV_STATE_ERR:
1036 		strcpy(state_str, "Error");
1037 		break;
1038 	default:
1039 		strcpy(state_str, "Unknown");
1040 		break;
1041 	}
1042 
1043 	if (hw->pfn == mpfn)
1044 		csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1045 			hw->pfn, state_str);
1046 	else
1047 		csio_info(hw,
1048 		    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1049 		    hw->pfn, mpfn, state_str);
1050 
1051 out_free_mb:
1052 	mempool_free(mbp, hw->mb_mempool);
1053 out:
1054 	return rv;
1055 }
1056 
1057 /*
1058  * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1059  * @hw: HW module
1060  *
1061  */
1062 static int
1063 csio_do_bye(struct csio_hw *hw)
1064 {
1065 	struct csio_mb	*mbp;
1066 	enum fw_retval retval;
1067 
1068 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1069 	if (!mbp) {
1070 		CSIO_INC_STATS(hw, n_err_nomem);
1071 		return -ENOMEM;
1072 	}
1073 
1074 	csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1075 
1076 	if (csio_mb_issue(hw, mbp)) {
1077 		csio_err(hw, "Issue of BYE command failed\n");
1078 		mempool_free(mbp, hw->mb_mempool);
1079 		return -EINVAL;
1080 	}
1081 
1082 	retval = csio_mb_fw_retval(mbp);
1083 	if (retval != FW_SUCCESS) {
1084 		mempool_free(mbp, hw->mb_mempool);
1085 		return -EINVAL;
1086 	}
1087 
1088 	mempool_free(mbp, hw->mb_mempool);
1089 
1090 	return 0;
1091 }
1092 
1093 /*
1094  * csio_do_reset- Perform the device reset.
1095  * @hw: HW module
1096  * @fw_rst: FW reset
1097  *
1098  * If fw_rst is set, issues FW reset mbox cmd otherwise
1099  * does PIO reset.
1100  * Performs reset of the function.
1101  */
1102 static int
1103 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1104 {
1105 	struct csio_mb	*mbp;
1106 	enum fw_retval retval;
1107 
1108 	if (!fw_rst) {
1109 		/* PIO reset */
1110 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1111 		mdelay(2000);
1112 		return 0;
1113 	}
1114 
1115 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1116 	if (!mbp) {
1117 		CSIO_INC_STATS(hw, n_err_nomem);
1118 		return -ENOMEM;
1119 	}
1120 
1121 	csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1122 		      PIORSTMODE_F | PIORST_F, 0, NULL);
1123 
1124 	if (csio_mb_issue(hw, mbp)) {
1125 		csio_err(hw, "Issue of RESET command failed.n");
1126 		mempool_free(mbp, hw->mb_mempool);
1127 		return -EINVAL;
1128 	}
1129 
1130 	retval = csio_mb_fw_retval(mbp);
1131 	if (retval != FW_SUCCESS) {
1132 		csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1133 		mempool_free(mbp, hw->mb_mempool);
1134 		return -EINVAL;
1135 	}
1136 
1137 	mempool_free(mbp, hw->mb_mempool);
1138 
1139 	return 0;
1140 }
1141 
1142 static int
1143 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1144 {
1145 	struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1146 	uint16_t caps;
1147 
1148 	caps = ntohs(rsp->fcoecaps);
1149 
1150 	if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1151 		csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1152 		return -EINVAL;
1153 	}
1154 
1155 	if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1156 		csio_err(hw, "No FCoE Control Offload capability\n");
1157 		return -EINVAL;
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 /*
1164  *	csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1165  *	@hw: the HW module
1166  *	@mbox: mailbox to use for the FW RESET command (if desired)
1167  *	@force: force uP into RESET even if FW RESET command fails
1168  *
1169  *	Issues a RESET command to firmware (if desired) with a HALT indication
1170  *	and then puts the microprocessor into RESET state.  The RESET command
1171  *	will only be issued if a legitimate mailbox is provided (mbox <=
1172  *	PCIE_FW_MASTER_MASK).
1173  *
1174  *	This is generally used in order for the host to safely manipulate the
1175  *	adapter without fear of conflicting with whatever the firmware might
1176  *	be doing.  The only way out of this state is to RESTART the firmware
1177  *	...
1178  */
1179 static int
1180 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1181 {
1182 	enum fw_retval retval = 0;
1183 
1184 	/*
1185 	 * If a legitimate mailbox is provided, issue a RESET command
1186 	 * with a HALT indication.
1187 	 */
1188 	if (mbox <= PCIE_FW_MASTER_M) {
1189 		struct csio_mb	*mbp;
1190 
1191 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1192 		if (!mbp) {
1193 			CSIO_INC_STATS(hw, n_err_nomem);
1194 			return -ENOMEM;
1195 		}
1196 
1197 		csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1198 			      PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1199 			      NULL);
1200 
1201 		if (csio_mb_issue(hw, mbp)) {
1202 			csio_err(hw, "Issue of RESET command failed!\n");
1203 			mempool_free(mbp, hw->mb_mempool);
1204 			return -EINVAL;
1205 		}
1206 
1207 		retval = csio_mb_fw_retval(mbp);
1208 		mempool_free(mbp, hw->mb_mempool);
1209 	}
1210 
1211 	/*
1212 	 * Normally we won't complete the operation if the firmware RESET
1213 	 * command fails but if our caller insists we'll go ahead and put the
1214 	 * uP into RESET.  This can be useful if the firmware is hung or even
1215 	 * missing ...  We'll have to take the risk of putting the uP into
1216 	 * RESET without the cooperation of firmware in that case.
1217 	 *
1218 	 * We also force the firmware's HALT flag to be on in case we bypassed
1219 	 * the firmware RESET command above or we're dealing with old firmware
1220 	 * which doesn't have the HALT capability.  This will serve as a flag
1221 	 * for the incoming firmware to know that it's coming out of a HALT
1222 	 * rather than a RESET ... if it's new enough to understand that ...
1223 	 */
1224 	if (retval == 0 || force) {
1225 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1226 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1227 				   PCIE_FW_HALT_F);
1228 	}
1229 
1230 	/*
1231 	 * And we always return the result of the firmware RESET command
1232 	 * even when we force the uP into RESET ...
1233 	 */
1234 	return retval ? -EINVAL : 0;
1235 }
1236 
1237 /*
1238  *	csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1239  *	@hw: the HW module
1240  *	@reset: if we want to do a RESET to restart things
1241  *
1242  *	Restart firmware previously halted by csio_hw_fw_halt().  On successful
1243  *	return the previous PF Master remains as the new PF Master and there
1244  *	is no need to issue a new HELLO command, etc.
1245  *
1246  *	We do this in two ways:
1247  *
1248  *	 1. If we're dealing with newer firmware we'll simply want to take
1249  *	    the chip's microprocessor out of RESET.  This will cause the
1250  *	    firmware to start up from its start vector.  And then we'll loop
1251  *	    until the firmware indicates it's started again (PCIE_FW.HALT
1252  *	    reset to 0) or we timeout.
1253  *
1254  *	 2. If we're dealing with older firmware then we'll need to RESET
1255  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
1256  *	    flag and automatically RESET itself on startup.
1257  */
1258 static int
1259 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1260 {
1261 	if (reset) {
1262 		/*
1263 		 * Since we're directing the RESET instead of the firmware
1264 		 * doing it automatically, we need to clear the PCIE_FW.HALT
1265 		 * bit.
1266 		 */
1267 		csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1268 
1269 		/*
1270 		 * If we've been given a valid mailbox, first try to get the
1271 		 * firmware to do the RESET.  If that works, great and we can
1272 		 * return success.  Otherwise, if we haven't been given a
1273 		 * valid mailbox or the RESET command failed, fall back to
1274 		 * hitting the chip with a hammer.
1275 		 */
1276 		if (mbox <= PCIE_FW_MASTER_M) {
1277 			csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1278 			msleep(100);
1279 			if (csio_do_reset(hw, true) == 0)
1280 				return 0;
1281 		}
1282 
1283 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1284 		msleep(2000);
1285 	} else {
1286 		int ms;
1287 
1288 		csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1289 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1290 			if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1291 				return 0;
1292 			msleep(100);
1293 			ms += 100;
1294 		}
1295 		return -ETIMEDOUT;
1296 	}
1297 	return 0;
1298 }
1299 
1300 /*
1301  *	csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1302  *	@hw: the HW module
1303  *	@mbox: mailbox to use for the FW RESET command (if desired)
1304  *	@fw_data: the firmware image to write
1305  *	@size: image size
1306  *	@force: force upgrade even if firmware doesn't cooperate
1307  *
1308  *	Perform all of the steps necessary for upgrading an adapter's
1309  *	firmware image.  Normally this requires the cooperation of the
1310  *	existing firmware in order to halt all existing activities
1311  *	but if an invalid mailbox token is passed in we skip that step
1312  *	(though we'll still put the adapter microprocessor into RESET in
1313  *	that case).
1314  *
1315  *	On successful return the new firmware will have been loaded and
1316  *	the adapter will have been fully RESET losing all previous setup
1317  *	state.  On unsuccessful return the adapter may be completely hosed ...
1318  *	positive errno indicates that the adapter is ~probably~ intact, a
1319  *	negative errno indicates that things are looking bad ...
1320  */
1321 static int
1322 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1323 		  const u8 *fw_data, uint32_t size, int32_t force)
1324 {
1325 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1326 	int reset, ret;
1327 
1328 	ret = csio_hw_fw_halt(hw, mbox, force);
1329 	if (ret != 0 && !force)
1330 		return ret;
1331 
1332 	ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1333 	if (ret != 0)
1334 		return ret;
1335 
1336 	/*
1337 	 * Older versions of the firmware don't understand the new
1338 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1339 	 * restart.  So for newly loaded older firmware we'll have to do the
1340 	 * RESET for it so it starts up on a clean slate.  We can tell if
1341 	 * the newly loaded firmware will handle this right by checking
1342 	 * its header flags to see if it advertises the capability.
1343 	 */
1344 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1345 	return csio_hw_fw_restart(hw, mbox, reset);
1346 }
1347 
1348 /*
1349  * csio_get_device_params - Get device parameters.
1350  * @hw: HW module
1351  *
1352  */
1353 static int
1354 csio_get_device_params(struct csio_hw *hw)
1355 {
1356 	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
1357 	struct csio_mb	*mbp;
1358 	enum fw_retval retval;
1359 	u32 param[6];
1360 	int i, j = 0;
1361 
1362 	/* Initialize portids to -1 */
1363 	for (i = 0; i < CSIO_MAX_PPORTS; i++)
1364 		hw->pport[i].portid = -1;
1365 
1366 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1367 	if (!mbp) {
1368 		CSIO_INC_STATS(hw, n_err_nomem);
1369 		return -ENOMEM;
1370 	}
1371 
1372 	/* Get port vec information. */
1373 	param[0] = FW_PARAM_DEV(PORTVEC);
1374 
1375 	/* Get Core clock. */
1376 	param[1] = FW_PARAM_DEV(CCLK);
1377 
1378 	/* Get EQ id start and end. */
1379 	param[2] = FW_PARAM_PFVF(EQ_START);
1380 	param[3] = FW_PARAM_PFVF(EQ_END);
1381 
1382 	/* Get IQ id start and end. */
1383 	param[4] = FW_PARAM_PFVF(IQFLINT_START);
1384 	param[5] = FW_PARAM_PFVF(IQFLINT_END);
1385 
1386 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1387 		       ARRAY_SIZE(param), param, NULL, false, NULL);
1388 	if (csio_mb_issue(hw, mbp)) {
1389 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1390 		mempool_free(mbp, hw->mb_mempool);
1391 		return -EINVAL;
1392 	}
1393 
1394 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1395 			ARRAY_SIZE(param), param);
1396 	if (retval != FW_SUCCESS) {
1397 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1398 				retval);
1399 		mempool_free(mbp, hw->mb_mempool);
1400 		return -EINVAL;
1401 	}
1402 
1403 	/* cache the information. */
1404 	hw->port_vec = param[0];
1405 	hw->vpd.cclk = param[1];
1406 	wrm->fw_eq_start = param[2];
1407 	wrm->fw_iq_start = param[4];
1408 
1409 	/* Using FW configured max iqs & eqs */
1410 	if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1411 		!csio_is_hw_master(hw)) {
1412 		hw->cfg_niq = param[5] - param[4] + 1;
1413 		hw->cfg_neq = param[3] - param[2] + 1;
1414 		csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1415 			hw->cfg_niq, hw->cfg_neq);
1416 	}
1417 
1418 	hw->port_vec &= csio_port_mask;
1419 
1420 	hw->num_pports	= hweight32(hw->port_vec);
1421 
1422 	csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1423 		    hw->port_vec, hw->num_pports);
1424 
1425 	for (i = 0; i < hw->num_pports; i++) {
1426 		while ((hw->port_vec & (1 << j)) == 0)
1427 			j++;
1428 		hw->pport[i].portid = j++;
1429 		csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1430 	}
1431 	mempool_free(mbp, hw->mb_mempool);
1432 
1433 	return 0;
1434 }
1435 
1436 
1437 /*
1438  * csio_config_device_caps - Get and set device capabilities.
1439  * @hw: HW module
1440  *
1441  */
1442 static int
1443 csio_config_device_caps(struct csio_hw *hw)
1444 {
1445 	struct csio_mb	*mbp;
1446 	enum fw_retval retval;
1447 	int rv = -EINVAL;
1448 
1449 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1450 	if (!mbp) {
1451 		CSIO_INC_STATS(hw, n_err_nomem);
1452 		return -ENOMEM;
1453 	}
1454 
1455 	/* Get device capabilities */
1456 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1457 
1458 	if (csio_mb_issue(hw, mbp)) {
1459 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1460 		goto out;
1461 	}
1462 
1463 	retval = csio_mb_fw_retval(mbp);
1464 	if (retval != FW_SUCCESS) {
1465 		csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1466 		goto out;
1467 	}
1468 
1469 	/* Validate device capabilities */
1470 	rv = csio_hw_validate_caps(hw, mbp);
1471 	if (rv != 0)
1472 		goto out;
1473 
1474 	/* Don't config device capabilities if already configured */
1475 	if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1476 		rv = 0;
1477 		goto out;
1478 	}
1479 
1480 	/* Write back desired device capabilities */
1481 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1482 			    false, true, NULL);
1483 
1484 	if (csio_mb_issue(hw, mbp)) {
1485 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1486 		goto out;
1487 	}
1488 
1489 	retval = csio_mb_fw_retval(mbp);
1490 	if (retval != FW_SUCCESS) {
1491 		csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1492 		goto out;
1493 	}
1494 
1495 	rv = 0;
1496 out:
1497 	mempool_free(mbp, hw->mb_mempool);
1498 	return rv;
1499 }
1500 
1501 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
1502 {
1503 	enum cc_fec cc_fec = 0;
1504 
1505 	if (fw_fec & FW_PORT_CAP32_FEC_RS)
1506 		cc_fec |= FEC_RS;
1507 	if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1508 		cc_fec |= FEC_BASER_RS;
1509 
1510 	return cc_fec;
1511 }
1512 
1513 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
1514 {
1515 	fw_port_cap32_t fw_pause = 0;
1516 
1517 	if (cc_pause & PAUSE_RX)
1518 		fw_pause |= FW_PORT_CAP32_FC_RX;
1519 	if (cc_pause & PAUSE_TX)
1520 		fw_pause |= FW_PORT_CAP32_FC_TX;
1521 
1522 	return fw_pause;
1523 }
1524 
1525 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
1526 {
1527 	fw_port_cap32_t fw_fec = 0;
1528 
1529 	if (cc_fec & FEC_RS)
1530 		fw_fec |= FW_PORT_CAP32_FEC_RS;
1531 	if (cc_fec & FEC_BASER_RS)
1532 		fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
1533 
1534 	return fw_fec;
1535 }
1536 
1537 /**
1538  * fwcap_to_fwspeed - return highest speed in Port Capabilities
1539  * @acaps: advertised Port Capabilities
1540  *
1541  * Get the highest speed for the port from the advertised Port
1542  * Capabilities.
1543  */
1544 fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
1545 {
1546 	#define TEST_SPEED_RETURN(__caps_speed) \
1547 		do { \
1548 			if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
1549 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
1550 		} while (0)
1551 
1552 	TEST_SPEED_RETURN(400G);
1553 	TEST_SPEED_RETURN(200G);
1554 	TEST_SPEED_RETURN(100G);
1555 	TEST_SPEED_RETURN(50G);
1556 	TEST_SPEED_RETURN(40G);
1557 	TEST_SPEED_RETURN(25G);
1558 	TEST_SPEED_RETURN(10G);
1559 	TEST_SPEED_RETURN(1G);
1560 	TEST_SPEED_RETURN(100M);
1561 
1562 	#undef TEST_SPEED_RETURN
1563 
1564 	return 0;
1565 }
1566 
1567 /**
1568  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
1569  *      @caps16: a 16-bit Port Capabilities value
1570  *
1571  *      Returns the equivalent 32-bit Port Capabilities value.
1572  */
1573 fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
1574 {
1575 	fw_port_cap32_t caps32 = 0;
1576 
1577 	#define CAP16_TO_CAP32(__cap) \
1578 		do { \
1579 			if (caps16 & FW_PORT_CAP_##__cap) \
1580 				caps32 |= FW_PORT_CAP32_##__cap; \
1581 		} while (0)
1582 
1583 	CAP16_TO_CAP32(SPEED_100M);
1584 	CAP16_TO_CAP32(SPEED_1G);
1585 	CAP16_TO_CAP32(SPEED_25G);
1586 	CAP16_TO_CAP32(SPEED_10G);
1587 	CAP16_TO_CAP32(SPEED_40G);
1588 	CAP16_TO_CAP32(SPEED_100G);
1589 	CAP16_TO_CAP32(FC_RX);
1590 	CAP16_TO_CAP32(FC_TX);
1591 	CAP16_TO_CAP32(ANEG);
1592 	CAP16_TO_CAP32(MDIAUTO);
1593 	CAP16_TO_CAP32(MDISTRAIGHT);
1594 	CAP16_TO_CAP32(FEC_RS);
1595 	CAP16_TO_CAP32(FEC_BASER_RS);
1596 	CAP16_TO_CAP32(802_3_PAUSE);
1597 	CAP16_TO_CAP32(802_3_ASM_DIR);
1598 
1599 	#undef CAP16_TO_CAP32
1600 
1601 	return caps32;
1602 }
1603 
1604 /**
1605  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
1606  *	@caps32: a 32-bit Port Capabilities value
1607  *
1608  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
1609  *	not all 32-bit Port Capabilities can be represented in the 16-bit
1610  *	Port Capabilities and some fields/values may not make it.
1611  */
1612 fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
1613 {
1614 	fw_port_cap16_t caps16 = 0;
1615 
1616 	#define CAP32_TO_CAP16(__cap) \
1617 		do { \
1618 			if (caps32 & FW_PORT_CAP32_##__cap) \
1619 				caps16 |= FW_PORT_CAP_##__cap; \
1620 		} while (0)
1621 
1622 	CAP32_TO_CAP16(SPEED_100M);
1623 	CAP32_TO_CAP16(SPEED_1G);
1624 	CAP32_TO_CAP16(SPEED_10G);
1625 	CAP32_TO_CAP16(SPEED_25G);
1626 	CAP32_TO_CAP16(SPEED_40G);
1627 	CAP32_TO_CAP16(SPEED_100G);
1628 	CAP32_TO_CAP16(FC_RX);
1629 	CAP32_TO_CAP16(FC_TX);
1630 	CAP32_TO_CAP16(802_3_PAUSE);
1631 	CAP32_TO_CAP16(802_3_ASM_DIR);
1632 	CAP32_TO_CAP16(ANEG);
1633 	CAP32_TO_CAP16(FORCE_PAUSE);
1634 	CAP32_TO_CAP16(MDIAUTO);
1635 	CAP32_TO_CAP16(MDISTRAIGHT);
1636 	CAP32_TO_CAP16(FEC_RS);
1637 	CAP32_TO_CAP16(FEC_BASER_RS);
1638 
1639 	#undef CAP32_TO_CAP16
1640 
1641 	return caps16;
1642 }
1643 
1644 /**
1645  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
1646  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
1647  *
1648  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
1649  *      32-bit Port Capabilities value.
1650  */
1651 fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
1652 {
1653 	fw_port_cap32_t linkattr = 0;
1654 
1655 	/* The format of the Link Status in the old
1656 	 * 16-bit Port Information message isn't the same as the
1657 	 * 16-bit Port Capabilities bitfield used everywhere else.
1658 	 */
1659 	if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1660 		linkattr |= FW_PORT_CAP32_FC_RX;
1661 	if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1662 		linkattr |= FW_PORT_CAP32_FC_TX;
1663 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1664 		linkattr |= FW_PORT_CAP32_SPEED_100M;
1665 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1666 		linkattr |= FW_PORT_CAP32_SPEED_1G;
1667 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1668 		linkattr |= FW_PORT_CAP32_SPEED_10G;
1669 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1670 		linkattr |= FW_PORT_CAP32_SPEED_25G;
1671 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1672 		linkattr |= FW_PORT_CAP32_SPEED_40G;
1673 	if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1674 		linkattr |= FW_PORT_CAP32_SPEED_100G;
1675 
1676 	return linkattr;
1677 }
1678 
1679 /**
1680  *      csio_init_link_config - initialize a link's SW state
1681  *      @lc: pointer to structure holding the link state
1682  *      @pcaps: link Port Capabilities
1683  *      @acaps: link current Advertised Port Capabilities
1684  *
1685  *      Initializes the SW state maintained for each link, including the link's
1686  *      capabilities and default speed/flow-control/autonegotiation settings.
1687  */
1688 static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
1689 				  fw_port_cap32_t acaps)
1690 {
1691 	lc->pcaps = pcaps;
1692 	lc->def_acaps = acaps;
1693 	lc->lpacaps = 0;
1694 	lc->speed_caps = 0;
1695 	lc->speed = 0;
1696 	lc->requested_fc = PAUSE_RX | PAUSE_TX;
1697 	lc->fc = lc->requested_fc;
1698 
1699 	/*
1700 	 * For Forward Error Control, we default to whatever the Firmware
1701 	 * tells us the Link is currently advertising.
1702 	 */
1703 	lc->requested_fec = FEC_AUTO;
1704 	lc->fec = fwcap_to_cc_fec(lc->def_acaps);
1705 
1706 	/* If the Port is capable of Auto-Negtotiation, initialize it as
1707 	 * "enabled" and copy over all of the Physical Port Capabilities
1708 	 * to the Advertised Port Capabilities.  Otherwise mark it as
1709 	 * Auto-Negotiate disabled and select the highest supported speed
1710 	 * for the link.  Note parallel structure in t4_link_l1cfg_core()
1711 	 * and t4_handle_get_port_info().
1712 	 */
1713 	if (lc->pcaps & FW_PORT_CAP32_ANEG) {
1714 		lc->acaps = lc->pcaps & ADVERT_MASK;
1715 		lc->autoneg = AUTONEG_ENABLE;
1716 		lc->requested_fc |= PAUSE_AUTONEG;
1717 	} else {
1718 		lc->acaps = 0;
1719 		lc->autoneg = AUTONEG_DISABLE;
1720 	}
1721 }
1722 
1723 static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps,
1724 			    uint32_t *rcaps)
1725 {
1726 	unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
1727 	fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap;
1728 
1729 	lc->link_ok = 0;
1730 
1731 	/*
1732 	 * Convert driver coding of Pause Frame Flow Control settings into the
1733 	 * Firmware's API.
1734 	 */
1735 	fw_fc = cc_to_fwcap_pause(lc->requested_fc);
1736 
1737 	/*
1738 	 * Convert Common Code Forward Error Control settings into the
1739 	 * Firmware's API.  If the current Requested FEC has "Automatic"
1740 	 * (IEEE 802.3) specified, then we use whatever the Firmware
1741 	 * sent us as part of it's IEEE 802.3-based interpretation of
1742 	 * the Transceiver Module EPROM FEC parameters.  Otherwise we
1743 	 * use whatever is in the current Requested FEC settings.
1744 	 */
1745 	if (lc->requested_fec & FEC_AUTO)
1746 		cc_fec = fwcap_to_cc_fec(lc->def_acaps);
1747 	else
1748 		cc_fec = lc->requested_fec;
1749 	fw_fec = cc_to_fwcap_fec(cc_fec);
1750 
1751 	/* Figure out what our Requested Port Capabilities are going to be.
1752 	 * Note parallel structure in t4_handle_get_port_info() and
1753 	 * init_link_config().
1754 	 */
1755 	if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
1756 		lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
1757 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1758 		lc->fec = cc_fec;
1759 	} else if (lc->autoneg == AUTONEG_DISABLE) {
1760 		lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
1761 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1762 		lc->fec = cc_fec;
1763 	} else {
1764 		lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
1765 	}
1766 
1767 	*rcaps = lrcap;
1768 }
1769 
1770 /*
1771  * csio_enable_ports - Bring up all available ports.
1772  * @hw: HW module.
1773  *
1774  */
1775 static int
1776 csio_enable_ports(struct csio_hw *hw)
1777 {
1778 	struct csio_mb  *mbp;
1779 	u16 fw_caps = FW_CAPS_UNKNOWN;
1780 	enum fw_retval retval;
1781 	uint8_t portid;
1782 	fw_port_cap32_t pcaps, acaps, rcaps;
1783 	int i;
1784 
1785 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1786 	if (!mbp) {
1787 		CSIO_INC_STATS(hw, n_err_nomem);
1788 		return -ENOMEM;
1789 	}
1790 
1791 	for (i = 0; i < hw->num_pports; i++) {
1792 		portid = hw->pport[i].portid;
1793 
1794 		if (fw_caps == FW_CAPS_UNKNOWN) {
1795 			u32 param, val;
1796 
1797 			param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
1798 			 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
1799 			val = 1;
1800 
1801 			csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO,
1802 				       hw->pfn, 0, 1, &param, &val, true,
1803 				       NULL);
1804 
1805 			if (csio_mb_issue(hw, mbp)) {
1806 				csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n",
1807 					 portid);
1808 				mempool_free(mbp, hw->mb_mempool);
1809 				return -EINVAL;
1810 			}
1811 
1812 			csio_mb_process_read_params_rsp(hw, mbp, &retval,
1813 							0, NULL);
1814 			fw_caps = retval ? FW_CAPS16 : FW_CAPS32;
1815 		}
1816 
1817 		/* Read PORT information */
1818 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1819 			     false, 0, fw_caps, NULL);
1820 
1821 		if (csio_mb_issue(hw, mbp)) {
1822 			csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1823 				 portid);
1824 			mempool_free(mbp, hw->mb_mempool);
1825 			return -EINVAL;
1826 		}
1827 
1828 		csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps,
1829 					      &pcaps, &acaps);
1830 		if (retval != FW_SUCCESS) {
1831 			csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1832 				 portid, retval);
1833 			mempool_free(mbp, hw->mb_mempool);
1834 			return -EINVAL;
1835 		}
1836 
1837 		csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps);
1838 
1839 		csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps);
1840 
1841 		/* Write back PORT information */
1842 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1843 			     true, rcaps, fw_caps, NULL);
1844 
1845 		if (csio_mb_issue(hw, mbp)) {
1846 			csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1847 				 portid);
1848 			mempool_free(mbp, hw->mb_mempool);
1849 			return -EINVAL;
1850 		}
1851 
1852 		retval = csio_mb_fw_retval(mbp);
1853 		if (retval != FW_SUCCESS) {
1854 			csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1855 				 portid, retval);
1856 			mempool_free(mbp, hw->mb_mempool);
1857 			return -EINVAL;
1858 		}
1859 
1860 	} /* For all ports */
1861 
1862 	mempool_free(mbp, hw->mb_mempool);
1863 
1864 	return 0;
1865 }
1866 
1867 /*
1868  * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1869  * @hw: HW module
1870  * Issued with lock held.
1871  */
1872 static int
1873 csio_get_fcoe_resinfo(struct csio_hw *hw)
1874 {
1875 	struct csio_fcoe_res_info *res_info = &hw->fres_info;
1876 	struct fw_fcoe_res_info_cmd *rsp;
1877 	struct csio_mb  *mbp;
1878 	enum fw_retval retval;
1879 
1880 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1881 	if (!mbp) {
1882 		CSIO_INC_STATS(hw, n_err_nomem);
1883 		return -ENOMEM;
1884 	}
1885 
1886 	/* Get FCoE FW resource information */
1887 	csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1888 
1889 	if (csio_mb_issue(hw, mbp)) {
1890 		csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1891 		mempool_free(mbp, hw->mb_mempool);
1892 		return -EINVAL;
1893 	}
1894 
1895 	rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1896 	retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1897 	if (retval != FW_SUCCESS) {
1898 		csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1899 			 retval);
1900 		mempool_free(mbp, hw->mb_mempool);
1901 		return -EINVAL;
1902 	}
1903 
1904 	res_info->e_d_tov = ntohs(rsp->e_d_tov);
1905 	res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1906 	res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1907 	res_info->r_r_tov = ntohs(rsp->r_r_tov);
1908 	res_info->max_xchgs = ntohl(rsp->max_xchgs);
1909 	res_info->max_ssns = ntohl(rsp->max_ssns);
1910 	res_info->used_xchgs = ntohl(rsp->used_xchgs);
1911 	res_info->used_ssns = ntohl(rsp->used_ssns);
1912 	res_info->max_fcfs = ntohl(rsp->max_fcfs);
1913 	res_info->max_vnps = ntohl(rsp->max_vnps);
1914 	res_info->used_fcfs = ntohl(rsp->used_fcfs);
1915 	res_info->used_vnps = ntohl(rsp->used_vnps);
1916 
1917 	csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1918 						  res_info->max_xchgs);
1919 	mempool_free(mbp, hw->mb_mempool);
1920 
1921 	return 0;
1922 }
1923 
1924 static int
1925 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1926 {
1927 	struct csio_mb	*mbp;
1928 	enum fw_retval retval;
1929 	u32 _param[1];
1930 
1931 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1932 	if (!mbp) {
1933 		CSIO_INC_STATS(hw, n_err_nomem);
1934 		return -ENOMEM;
1935 	}
1936 
1937 	/*
1938 	 * Find out whether we're dealing with a version of
1939 	 * the firmware which has configuration file support.
1940 	 */
1941 	_param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1942 		     FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1943 
1944 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1945 		       ARRAY_SIZE(_param), _param, NULL, false, NULL);
1946 	if (csio_mb_issue(hw, mbp)) {
1947 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1948 		mempool_free(mbp, hw->mb_mempool);
1949 		return -EINVAL;
1950 	}
1951 
1952 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1953 			ARRAY_SIZE(_param), _param);
1954 	if (retval != FW_SUCCESS) {
1955 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1956 				retval);
1957 		mempool_free(mbp, hw->mb_mempool);
1958 		return -EINVAL;
1959 	}
1960 
1961 	mempool_free(mbp, hw->mb_mempool);
1962 	*param = _param[0];
1963 
1964 	return 0;
1965 }
1966 
1967 static int
1968 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1969 {
1970 	int ret = 0;
1971 	const struct firmware *cf;
1972 	struct pci_dev *pci_dev = hw->pdev;
1973 	struct device *dev = &pci_dev->dev;
1974 	unsigned int mtype = 0, maddr = 0;
1975 	uint32_t *cfg_data;
1976 	int value_to_add = 0;
1977 	const char *fw_cfg_file;
1978 
1979 	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
1980 		fw_cfg_file = FW_CFG_NAME_T5;
1981 	else
1982 		fw_cfg_file = FW_CFG_NAME_T6;
1983 
1984 	if (request_firmware(&cf, fw_cfg_file, dev) < 0) {
1985 		csio_err(hw, "could not find config file %s, err: %d\n",
1986 			 fw_cfg_file, ret);
1987 		return -ENOENT;
1988 	}
1989 
1990 	if (cf->size%4 != 0)
1991 		value_to_add = 4 - (cf->size % 4);
1992 
1993 	cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1994 	if (cfg_data == NULL) {
1995 		ret = -ENOMEM;
1996 		goto leave;
1997 	}
1998 
1999 	memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
2000 	if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
2001 		ret = -EINVAL;
2002 		goto leave;
2003 	}
2004 
2005 	mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
2006 	maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
2007 
2008 	ret = csio_memory_write(hw, mtype, maddr,
2009 				cf->size + value_to_add, cfg_data);
2010 
2011 	if ((ret == 0) && (value_to_add != 0)) {
2012 		union {
2013 			u32 word;
2014 			char buf[4];
2015 		} last;
2016 		size_t size = cf->size & ~0x3;
2017 		int i;
2018 
2019 		last.word = cfg_data[size >> 2];
2020 		for (i = value_to_add; i < 4; i++)
2021 			last.buf[i] = 0;
2022 		ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
2023 	}
2024 	if (ret == 0) {
2025 		csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
2026 		snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
2027 	}
2028 
2029 leave:
2030 	kfree(cfg_data);
2031 	release_firmware(cf);
2032 	return ret;
2033 }
2034 
2035 /*
2036  * HW initialization: contact FW, obtain config, perform basic init.
2037  *
2038  * If the firmware we're dealing with has Configuration File support, then
2039  * we use that to perform all configuration -- either using the configuration
2040  * file stored in flash on the adapter or using a filesystem-local file
2041  * if available.
2042  *
2043  * If we don't have configuration file support in the firmware, then we'll
2044  * have to set things up the old fashioned way with hard-coded register
2045  * writes and firmware commands ...
2046  */
2047 
2048 /*
2049  * Attempt to initialize the HW via a Firmware Configuration File.
2050  */
2051 static int
2052 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
2053 {
2054 	struct csio_mb	*mbp = NULL;
2055 	struct fw_caps_config_cmd *caps_cmd;
2056 	unsigned int mtype, maddr;
2057 	int rv = -EINVAL;
2058 	uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
2059 	char path[64];
2060 	char *config_name = NULL;
2061 
2062 	/*
2063 	 * Reset device if necessary
2064 	 */
2065 	if (reset) {
2066 		rv = csio_do_reset(hw, true);
2067 		if (rv != 0)
2068 			goto bye;
2069 	}
2070 
2071 	/*
2072 	 * If we have a configuration file in host ,
2073 	 * then use that.  Otherwise, use the configuration file stored
2074 	 * in the HW flash ...
2075 	 */
2076 	spin_unlock_irq(&hw->lock);
2077 	rv = csio_hw_flash_config(hw, fw_cfg_param, path);
2078 	spin_lock_irq(&hw->lock);
2079 	if (rv != 0) {
2080 		/*
2081 		 * config file was not found. Use default
2082 		 * config file from flash.
2083 		 */
2084 		config_name = "On FLASH";
2085 		mtype = FW_MEMTYPE_CF_FLASH;
2086 		maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
2087 	} else {
2088 		config_name = path;
2089 		mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
2090 		maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
2091 	}
2092 
2093 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2094 	if (!mbp) {
2095 		CSIO_INC_STATS(hw, n_err_nomem);
2096 		return -ENOMEM;
2097 	}
2098 	/*
2099 	 * Tell the firmware to process the indicated Configuration File.
2100 	 * If there are no errors and the caller has provided return value
2101 	 * pointers for the [fini] section version, checksum and computed
2102 	 * checksum, pass those back to the caller.
2103 	 */
2104 	caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
2105 	CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2106 	caps_cmd->op_to_write =
2107 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2108 		      FW_CMD_REQUEST_F |
2109 		      FW_CMD_READ_F);
2110 	caps_cmd->cfvalid_to_len16 =
2111 		htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
2112 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
2113 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
2114 		      FW_LEN16(*caps_cmd));
2115 
2116 	if (csio_mb_issue(hw, mbp)) {
2117 		rv = -EINVAL;
2118 		goto bye;
2119 	}
2120 
2121 	rv = csio_mb_fw_retval(mbp);
2122 	 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
2123 	  * Configuration File in FLASH), our last gasp effort is to use the
2124 	  * Firmware Configuration File which is embedded in the
2125 	  * firmware.  A very few early versions of the firmware didn't
2126 	  * have one embedded but we can ignore those.
2127 	  */
2128 	if (rv == ENOENT) {
2129 		CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2130 		caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2131 					      FW_CMD_REQUEST_F |
2132 					      FW_CMD_READ_F);
2133 		caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2134 
2135 		if (csio_mb_issue(hw, mbp)) {
2136 			rv = -EINVAL;
2137 			goto bye;
2138 		}
2139 
2140 		rv = csio_mb_fw_retval(mbp);
2141 		config_name = "Firmware Default";
2142 	}
2143 	if (rv != FW_SUCCESS)
2144 		goto bye;
2145 
2146 	finiver = ntohl(caps_cmd->finiver);
2147 	finicsum = ntohl(caps_cmd->finicsum);
2148 	cfcsum = ntohl(caps_cmd->cfcsum);
2149 
2150 	/*
2151 	 * And now tell the firmware to use the configuration we just loaded.
2152 	 */
2153 	caps_cmd->op_to_write =
2154 		htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2155 		      FW_CMD_REQUEST_F |
2156 		      FW_CMD_WRITE_F);
2157 	caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2158 
2159 	if (csio_mb_issue(hw, mbp)) {
2160 		rv = -EINVAL;
2161 		goto bye;
2162 	}
2163 
2164 	rv = csio_mb_fw_retval(mbp);
2165 	if (rv != FW_SUCCESS) {
2166 		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
2167 		goto bye;
2168 	}
2169 
2170 	if (finicsum != cfcsum) {
2171 		csio_warn(hw,
2172 		      "Config File checksum mismatch: csum=%#x, computed=%#x\n",
2173 		      finicsum, cfcsum);
2174 	}
2175 
2176 	/* Validate device capabilities */
2177 	rv = csio_hw_validate_caps(hw, mbp);
2178 	if (rv != 0)
2179 		goto bye;
2180 
2181 	mempool_free(mbp, hw->mb_mempool);
2182 	mbp = NULL;
2183 
2184 	/*
2185 	 * Note that we're operating with parameters
2186 	 * not supplied by the driver, rather than from hard-wired
2187 	 * initialization constants buried in the driver.
2188 	 */
2189 	hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2190 
2191 	/* device parameters */
2192 	rv = csio_get_device_params(hw);
2193 	if (rv != 0)
2194 		goto bye;
2195 
2196 	/* Configure SGE */
2197 	csio_wr_sge_init(hw);
2198 
2199 	/*
2200 	 * And finally tell the firmware to initialize itself using the
2201 	 * parameters from the Configuration File.
2202 	 */
2203 	/* Post event to notify completion of configuration */
2204 	csio_post_event(&hw->sm, CSIO_HWE_INIT);
2205 
2206 	csio_info(hw, "Successfully configure using Firmware "
2207 		  "Configuration File %s, version %#x, computed checksum %#x\n",
2208 		  config_name, finiver, cfcsum);
2209 	return 0;
2210 
2211 	/*
2212 	 * Something bad happened.  Return the error ...
2213 	 */
2214 bye:
2215 	if (mbp)
2216 		mempool_free(mbp, hw->mb_mempool);
2217 	hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
2218 	csio_warn(hw, "Configuration file error %d\n", rv);
2219 	return rv;
2220 }
2221 
2222 /* Is the given firmware API compatible with the one the driver was compiled
2223  * with?
2224  */
2225 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2226 {
2227 
2228 	/* short circuit if it's the exact same firmware version */
2229 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2230 		return 1;
2231 
2232 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2233 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2234 	    SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2235 		return 1;
2236 #undef SAME_INTF
2237 
2238 	return 0;
2239 }
2240 
2241 /* The firmware in the filesystem is usable, but should it be installed?
2242  * This routine explains itself in detail if it indicates the filesystem
2243  * firmware should be installed.
2244  */
2245 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
2246 				int k, int c)
2247 {
2248 	const char *reason;
2249 
2250 	if (!card_fw_usable) {
2251 		reason = "incompatible or unusable";
2252 		goto install;
2253 	}
2254 
2255 	if (k > c) {
2256 		reason = "older than the version supported with this driver";
2257 		goto install;
2258 	}
2259 
2260 	return 0;
2261 
2262 install:
2263 	csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
2264 		"installing firmware %u.%u.%u.%u on card.\n",
2265 		FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2266 		FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2267 		FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2268 		FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2269 
2270 	return 1;
2271 }
2272 
2273 static struct fw_info fw_info_array[] = {
2274 	{
2275 		.chip = CHELSIO_T5,
2276 		.fs_name = FW_CFG_NAME_T5,
2277 		.fw_mod_name = FW_FNAME_T5,
2278 		.fw_hdr = {
2279 			.chip = FW_HDR_CHIP_T5,
2280 			.fw_ver = __cpu_to_be32(FW_VERSION(T5)),
2281 			.intfver_nic = FW_INTFVER(T5, NIC),
2282 			.intfver_vnic = FW_INTFVER(T5, VNIC),
2283 			.intfver_ri = FW_INTFVER(T5, RI),
2284 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
2285 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
2286 		},
2287 	}, {
2288 		.chip = CHELSIO_T6,
2289 		.fs_name = FW_CFG_NAME_T6,
2290 		.fw_mod_name = FW_FNAME_T6,
2291 		.fw_hdr = {
2292 			.chip = FW_HDR_CHIP_T6,
2293 			.fw_ver = __cpu_to_be32(FW_VERSION(T6)),
2294 			.intfver_nic = FW_INTFVER(T6, NIC),
2295 			.intfver_vnic = FW_INTFVER(T6, VNIC),
2296 			.intfver_ri = FW_INTFVER(T6, RI),
2297 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
2298 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
2299 		},
2300 	}
2301 };
2302 
2303 static struct fw_info *find_fw_info(int chip)
2304 {
2305 	int i;
2306 
2307 	for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
2308 		if (fw_info_array[i].chip == chip)
2309 			return &fw_info_array[i];
2310 	}
2311 	return NULL;
2312 }
2313 
2314 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
2315 	       const u8 *fw_data, unsigned int fw_size,
2316 	       struct fw_hdr *card_fw, enum csio_dev_state state,
2317 	       int *reset)
2318 {
2319 	int ret, card_fw_usable, fs_fw_usable;
2320 	const struct fw_hdr *fs_fw;
2321 	const struct fw_hdr *drv_fw;
2322 
2323 	drv_fw = &fw_info->fw_hdr;
2324 
2325 	/* Read the header of the firmware on the card */
2326 	ret = csio_hw_read_flash(hw, FLASH_FW_START,
2327 			    sizeof(*card_fw) / sizeof(uint32_t),
2328 			    (uint32_t *)card_fw, 1);
2329 	if (ret == 0) {
2330 		card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2331 	} else {
2332 		csio_err(hw,
2333 			"Unable to read card's firmware header: %d\n", ret);
2334 		card_fw_usable = 0;
2335 	}
2336 
2337 	if (fw_data != NULL) {
2338 		fs_fw = (const void *)fw_data;
2339 		fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2340 	} else {
2341 		fs_fw = NULL;
2342 		fs_fw_usable = 0;
2343 	}
2344 
2345 	if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2346 	    (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2347 		/* Common case: the firmware on the card is an exact match and
2348 		 * the filesystem one is an exact match too, or the filesystem
2349 		 * one is absent/incompatible.
2350 		 */
2351 	} else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
2352 		   csio_should_install_fs_fw(hw, card_fw_usable,
2353 					be32_to_cpu(fs_fw->fw_ver),
2354 					be32_to_cpu(card_fw->fw_ver))) {
2355 		ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
2356 				     fw_size, 0);
2357 		if (ret != 0) {
2358 			csio_err(hw,
2359 				"failed to install firmware: %d\n", ret);
2360 			goto bye;
2361 		}
2362 
2363 		/* Installed successfully, update the cached header too. */
2364 		memcpy(card_fw, fs_fw, sizeof(*card_fw));
2365 		card_fw_usable = 1;
2366 		*reset = 0;	/* already reset as part of load_fw */
2367 	}
2368 
2369 	if (!card_fw_usable) {
2370 		uint32_t d, c, k;
2371 
2372 		d = be32_to_cpu(drv_fw->fw_ver);
2373 		c = be32_to_cpu(card_fw->fw_ver);
2374 		k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2375 
2376 		csio_err(hw, "Cannot find a usable firmware: "
2377 			"chip state %d, "
2378 			"driver compiled with %d.%d.%d.%d, "
2379 			"card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2380 			state,
2381 			FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2382 			FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2383 			FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2384 			FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2385 			FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2386 			FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2387 		ret = -EINVAL;
2388 		goto bye;
2389 	}
2390 
2391 	/* We're using whatever's on the card and it's known to be good. */
2392 	hw->fwrev = be32_to_cpu(card_fw->fw_ver);
2393 	hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2394 
2395 bye:
2396 	return ret;
2397 }
2398 
2399 /*
2400  * Returns -EINVAL if attempts to flash the firmware failed,
2401  * -ENOMEM if memory allocation failed else returns 0,
2402  * if flashing was not attempted because the card had the
2403  * latest firmware ECANCELED is returned
2404  */
2405 static int
2406 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
2407 {
2408 	int ret = -ECANCELED;
2409 	const struct firmware *fw;
2410 	struct fw_info *fw_info;
2411 	struct fw_hdr *card_fw;
2412 	struct pci_dev *pci_dev = hw->pdev;
2413 	struct device *dev = &pci_dev->dev ;
2414 	const u8 *fw_data = NULL;
2415 	unsigned int fw_size = 0;
2416 	const char *fw_bin_file;
2417 
2418 	/* This is the firmware whose headers the driver was compiled
2419 	 * against
2420 	 */
2421 	fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2422 	if (fw_info == NULL) {
2423 		csio_err(hw,
2424 			"unable to get firmware info for chip %d.\n",
2425 			CHELSIO_CHIP_VERSION(hw->chip_id));
2426 		return -EINVAL;
2427 	}
2428 
2429 	/* allocate memory to read the header of the firmware on the
2430 	 * card
2431 	 */
2432 	card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2433 	if (!card_fw)
2434 		return -ENOMEM;
2435 
2436 	if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
2437 		fw_bin_file = FW_FNAME_T5;
2438 	else
2439 		fw_bin_file = FW_FNAME_T6;
2440 
2441 	if (request_firmware(&fw, fw_bin_file, dev) < 0) {
2442 		csio_err(hw, "could not find firmware image %s, err: %d\n",
2443 			 fw_bin_file, ret);
2444 	} else {
2445 		fw_data = fw->data;
2446 		fw_size = fw->size;
2447 	}
2448 
2449 	/* upgrade FW logic */
2450 	ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2451 			 hw->fw_state, reset);
2452 
2453 	/* Cleaning up */
2454 	if (fw != NULL)
2455 		release_firmware(fw);
2456 	kfree(card_fw);
2457 	return ret;
2458 }
2459 
2460 static int csio_hw_check_fwver(struct csio_hw *hw)
2461 {
2462 	if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
2463 	    (hw->fwrev < CSIO_MIN_T6_FW)) {
2464 		csio_hw_print_fw_version(hw, "T6 unsupported fw");
2465 		return -1;
2466 	}
2467 
2468 	return 0;
2469 }
2470 
2471 /*
2472  * csio_hw_configure - Configure HW
2473  * @hw - HW module
2474  *
2475  */
2476 static void
2477 csio_hw_configure(struct csio_hw *hw)
2478 {
2479 	int reset = 1;
2480 	int rv;
2481 	u32 param[1];
2482 
2483 	rv = csio_hw_dev_ready(hw);
2484 	if (rv != 0) {
2485 		CSIO_INC_STATS(hw, n_err_fatal);
2486 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2487 		goto out;
2488 	}
2489 
2490 	/* HW version */
2491 	hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2492 
2493 	/* Needed for FW download */
2494 	rv = csio_hw_get_flash_params(hw);
2495 	if (rv != 0) {
2496 		csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2497 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2498 		goto out;
2499 	}
2500 
2501 	/* Set PCIe completion timeout to 4 seconds */
2502 	if (pci_is_pcie(hw->pdev))
2503 		pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2504 				PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2505 
2506 	hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2507 
2508 	rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2509 	if (rv != 0)
2510 		goto out;
2511 
2512 	csio_hw_print_fw_version(hw, "Firmware revision");
2513 
2514 	rv = csio_do_hello(hw, &hw->fw_state);
2515 	if (rv != 0) {
2516 		CSIO_INC_STATS(hw, n_err_fatal);
2517 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2518 		goto out;
2519 	}
2520 
2521 	/* Read vpd */
2522 	rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2523 	if (rv != 0)
2524 		goto out;
2525 
2526 	csio_hw_get_fw_version(hw, &hw->fwrev);
2527 	csio_hw_get_tp_version(hw, &hw->tp_vers);
2528 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2529 
2530 			/* Do firmware update */
2531 		spin_unlock_irq(&hw->lock);
2532 		rv = csio_hw_flash_fw(hw, &reset);
2533 		spin_lock_irq(&hw->lock);
2534 
2535 		if (rv != 0)
2536 			goto out;
2537 
2538 		rv = csio_hw_check_fwver(hw);
2539 		if (rv < 0)
2540 			goto out;
2541 
2542 		/* If the firmware doesn't support Configuration Files,
2543 		 * return an error.
2544 		 */
2545 		rv = csio_hw_check_fwconfig(hw, param);
2546 		if (rv != 0) {
2547 			csio_info(hw, "Firmware doesn't support "
2548 				  "Firmware Configuration files\n");
2549 			goto out;
2550 		}
2551 
2552 		/* The firmware provides us with a memory buffer where we can
2553 		 * load a Configuration File from the host if we want to
2554 		 * override the Configuration File in flash.
2555 		 */
2556 		rv = csio_hw_use_fwconfig(hw, reset, param);
2557 		if (rv == -ENOENT) {
2558 			csio_info(hw, "Could not initialize "
2559 				  "adapter, error%d\n", rv);
2560 			goto out;
2561 		}
2562 		if (rv != 0) {
2563 			csio_info(hw, "Could not initialize "
2564 				  "adapter, error%d\n", rv);
2565 			goto out;
2566 		}
2567 
2568 	} else {
2569 		rv = csio_hw_check_fwver(hw);
2570 		if (rv < 0)
2571 			goto out;
2572 
2573 		if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2574 
2575 			hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2576 
2577 			/* device parameters */
2578 			rv = csio_get_device_params(hw);
2579 			if (rv != 0)
2580 				goto out;
2581 
2582 			/* Get device capabilities */
2583 			rv = csio_config_device_caps(hw);
2584 			if (rv != 0)
2585 				goto out;
2586 
2587 			/* Configure SGE */
2588 			csio_wr_sge_init(hw);
2589 
2590 			/* Post event to notify completion of configuration */
2591 			csio_post_event(&hw->sm, CSIO_HWE_INIT);
2592 			goto out;
2593 		}
2594 	} /* if not master */
2595 
2596 out:
2597 	return;
2598 }
2599 
2600 /*
2601  * csio_hw_initialize - Initialize HW
2602  * @hw - HW module
2603  *
2604  */
2605 static void
2606 csio_hw_initialize(struct csio_hw *hw)
2607 {
2608 	struct csio_mb	*mbp;
2609 	enum fw_retval retval;
2610 	int rv;
2611 	int i;
2612 
2613 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2614 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2615 		if (!mbp)
2616 			goto out;
2617 
2618 		csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2619 
2620 		if (csio_mb_issue(hw, mbp)) {
2621 			csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2622 			goto free_and_out;
2623 		}
2624 
2625 		retval = csio_mb_fw_retval(mbp);
2626 		if (retval != FW_SUCCESS) {
2627 			csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2628 				 retval);
2629 			goto free_and_out;
2630 		}
2631 
2632 		mempool_free(mbp, hw->mb_mempool);
2633 	}
2634 
2635 	rv = csio_get_fcoe_resinfo(hw);
2636 	if (rv != 0) {
2637 		csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2638 		goto out;
2639 	}
2640 
2641 	spin_unlock_irq(&hw->lock);
2642 	rv = csio_config_queues(hw);
2643 	spin_lock_irq(&hw->lock);
2644 
2645 	if (rv != 0) {
2646 		csio_err(hw, "Config of queues failed!: %d\n", rv);
2647 		goto out;
2648 	}
2649 
2650 	for (i = 0; i < hw->num_pports; i++)
2651 		hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2652 
2653 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2654 		rv = csio_enable_ports(hw);
2655 		if (rv != 0) {
2656 			csio_err(hw, "Failed to enable ports: %d\n", rv);
2657 			goto out;
2658 		}
2659 	}
2660 
2661 	csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2662 	return;
2663 
2664 free_and_out:
2665 	mempool_free(mbp, hw->mb_mempool);
2666 out:
2667 	return;
2668 }
2669 
2670 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2671 
2672 /*
2673  * csio_hw_intr_enable - Enable HW interrupts
2674  * @hw: Pointer to HW module.
2675  *
2676  * Enable interrupts in HW registers.
2677  */
2678 static void
2679 csio_hw_intr_enable(struct csio_hw *hw)
2680 {
2681 	uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2682 	u32 pf = 0;
2683 	uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2684 
2685 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2686 		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2687 	else
2688 		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2689 
2690 	/*
2691 	 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2692 	 * by FW, so do nothing for INTX.
2693 	 */
2694 	if (hw->intr_mode == CSIO_IM_MSIX)
2695 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2696 				   AIVEC_V(AIVEC_M), vec);
2697 	else if (hw->intr_mode == CSIO_IM_MSI)
2698 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2699 				   AIVEC_V(AIVEC_M), 0);
2700 
2701 	csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2702 
2703 	/* Turn on MB interrupts - this will internally flush PIO as well */
2704 	csio_mb_intr_enable(hw);
2705 
2706 	/* These are common registers - only a master can modify them */
2707 	if (csio_is_hw_master(hw)) {
2708 		/*
2709 		 * Disable the Serial FLASH interrupt, if enabled!
2710 		 */
2711 		pl &= (~SF_F);
2712 		csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2713 
2714 		csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2715 			      EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2716 			      ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2717 			      ERR_DATA_CPL_ON_HIGH_QID1_F |
2718 			      ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2719 			      ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2720 			      ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2721 			      ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2722 			      SGE_INT_ENABLE3_A);
2723 		csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2724 	}
2725 
2726 	hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2727 
2728 }
2729 
2730 /*
2731  * csio_hw_intr_disable - Disable HW interrupts
2732  * @hw: Pointer to HW module.
2733  *
2734  * Turn off Mailbox and PCI_PF_CFG interrupts.
2735  */
2736 void
2737 csio_hw_intr_disable(struct csio_hw *hw)
2738 {
2739 	u32 pf = 0;
2740 
2741 	if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2742 		pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2743 	else
2744 		pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2745 
2746 	if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2747 		return;
2748 
2749 	hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2750 
2751 	csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2752 	if (csio_is_hw_master(hw))
2753 		csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2754 
2755 	/* Turn off MB interrupts */
2756 	csio_mb_intr_disable(hw);
2757 
2758 }
2759 
2760 void
2761 csio_hw_fatal_err(struct csio_hw *hw)
2762 {
2763 	csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2764 	csio_hw_intr_disable(hw);
2765 
2766 	/* Do not reset HW, we may need FW state for debugging */
2767 	csio_fatal(hw, "HW Fatal error encountered!\n");
2768 }
2769 
2770 /*****************************************************************************/
2771 /* START: HW SM                                                              */
2772 /*****************************************************************************/
2773 /*
2774  * csio_hws_uninit - Uninit state
2775  * @hw - HW module
2776  * @evt - Event
2777  *
2778  */
2779 static void
2780 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2781 {
2782 	hw->prev_evt = hw->cur_evt;
2783 	hw->cur_evt = evt;
2784 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2785 
2786 	switch (evt) {
2787 	case CSIO_HWE_CFG:
2788 		csio_set_state(&hw->sm, csio_hws_configuring);
2789 		csio_hw_configure(hw);
2790 		break;
2791 
2792 	default:
2793 		CSIO_INC_STATS(hw, n_evt_unexp);
2794 		break;
2795 	}
2796 }
2797 
2798 /*
2799  * csio_hws_configuring - Configuring state
2800  * @hw - HW module
2801  * @evt - Event
2802  *
2803  */
2804 static void
2805 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2806 {
2807 	hw->prev_evt = hw->cur_evt;
2808 	hw->cur_evt = evt;
2809 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2810 
2811 	switch (evt) {
2812 	case CSIO_HWE_INIT:
2813 		csio_set_state(&hw->sm, csio_hws_initializing);
2814 		csio_hw_initialize(hw);
2815 		break;
2816 
2817 	case CSIO_HWE_INIT_DONE:
2818 		csio_set_state(&hw->sm, csio_hws_ready);
2819 		/* Fan out event to all lnode SMs */
2820 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2821 		break;
2822 
2823 	case CSIO_HWE_FATAL:
2824 		csio_set_state(&hw->sm, csio_hws_uninit);
2825 		break;
2826 
2827 	case CSIO_HWE_PCI_REMOVE:
2828 		csio_do_bye(hw);
2829 		break;
2830 	default:
2831 		CSIO_INC_STATS(hw, n_evt_unexp);
2832 		break;
2833 	}
2834 }
2835 
2836 /*
2837  * csio_hws_initializing - Initializing state
2838  * @hw - HW module
2839  * @evt - Event
2840  *
2841  */
2842 static void
2843 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2844 {
2845 	hw->prev_evt = hw->cur_evt;
2846 	hw->cur_evt = evt;
2847 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2848 
2849 	switch (evt) {
2850 	case CSIO_HWE_INIT_DONE:
2851 		csio_set_state(&hw->sm, csio_hws_ready);
2852 
2853 		/* Fan out event to all lnode SMs */
2854 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2855 
2856 		/* Enable interrupts */
2857 		csio_hw_intr_enable(hw);
2858 		break;
2859 
2860 	case CSIO_HWE_FATAL:
2861 		csio_set_state(&hw->sm, csio_hws_uninit);
2862 		break;
2863 
2864 	case CSIO_HWE_PCI_REMOVE:
2865 		csio_do_bye(hw);
2866 		break;
2867 
2868 	default:
2869 		CSIO_INC_STATS(hw, n_evt_unexp);
2870 		break;
2871 	}
2872 }
2873 
2874 /*
2875  * csio_hws_ready - Ready state
2876  * @hw - HW module
2877  * @evt - Event
2878  *
2879  */
2880 static void
2881 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2882 {
2883 	/* Remember the event */
2884 	hw->evtflag = evt;
2885 
2886 	hw->prev_evt = hw->cur_evt;
2887 	hw->cur_evt = evt;
2888 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2889 
2890 	switch (evt) {
2891 	case CSIO_HWE_HBA_RESET:
2892 	case CSIO_HWE_FW_DLOAD:
2893 	case CSIO_HWE_SUSPEND:
2894 	case CSIO_HWE_PCI_REMOVE:
2895 	case CSIO_HWE_PCIERR_DETECTED:
2896 		csio_set_state(&hw->sm, csio_hws_quiescing);
2897 		/* cleanup all outstanding cmds */
2898 		if (evt == CSIO_HWE_HBA_RESET ||
2899 		    evt == CSIO_HWE_PCIERR_DETECTED)
2900 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2901 		else
2902 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2903 
2904 		csio_hw_intr_disable(hw);
2905 		csio_hw_mbm_cleanup(hw);
2906 		csio_evtq_stop(hw);
2907 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2908 		csio_evtq_flush(hw);
2909 		csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2910 		csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2911 		break;
2912 
2913 	case CSIO_HWE_FATAL:
2914 		csio_set_state(&hw->sm, csio_hws_uninit);
2915 		break;
2916 
2917 	default:
2918 		CSIO_INC_STATS(hw, n_evt_unexp);
2919 		break;
2920 	}
2921 }
2922 
2923 /*
2924  * csio_hws_quiescing - Quiescing state
2925  * @hw - HW module
2926  * @evt - Event
2927  *
2928  */
2929 static void
2930 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2931 {
2932 	hw->prev_evt = hw->cur_evt;
2933 	hw->cur_evt = evt;
2934 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2935 
2936 	switch (evt) {
2937 	case CSIO_HWE_QUIESCED:
2938 		switch (hw->evtflag) {
2939 		case CSIO_HWE_FW_DLOAD:
2940 			csio_set_state(&hw->sm, csio_hws_resetting);
2941 			/* Download firmware */
2942 			fallthrough;
2943 
2944 		case CSIO_HWE_HBA_RESET:
2945 			csio_set_state(&hw->sm, csio_hws_resetting);
2946 			/* Start reset of the HBA */
2947 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2948 			csio_wr_destroy_queues(hw, false);
2949 			csio_do_reset(hw, false);
2950 			csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2951 			break;
2952 
2953 		case CSIO_HWE_PCI_REMOVE:
2954 			csio_set_state(&hw->sm, csio_hws_removing);
2955 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2956 			csio_wr_destroy_queues(hw, true);
2957 			/* Now send the bye command */
2958 			csio_do_bye(hw);
2959 			break;
2960 
2961 		case CSIO_HWE_SUSPEND:
2962 			csio_set_state(&hw->sm, csio_hws_quiesced);
2963 			break;
2964 
2965 		case CSIO_HWE_PCIERR_DETECTED:
2966 			csio_set_state(&hw->sm, csio_hws_pcierr);
2967 			csio_wr_destroy_queues(hw, false);
2968 			break;
2969 
2970 		default:
2971 			CSIO_INC_STATS(hw, n_evt_unexp);
2972 			break;
2973 
2974 		}
2975 		break;
2976 
2977 	default:
2978 		CSIO_INC_STATS(hw, n_evt_unexp);
2979 		break;
2980 	}
2981 }
2982 
2983 /*
2984  * csio_hws_quiesced - Quiesced state
2985  * @hw - HW module
2986  * @evt - Event
2987  *
2988  */
2989 static void
2990 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2991 {
2992 	hw->prev_evt = hw->cur_evt;
2993 	hw->cur_evt = evt;
2994 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2995 
2996 	switch (evt) {
2997 	case CSIO_HWE_RESUME:
2998 		csio_set_state(&hw->sm, csio_hws_configuring);
2999 		csio_hw_configure(hw);
3000 		break;
3001 
3002 	default:
3003 		CSIO_INC_STATS(hw, n_evt_unexp);
3004 		break;
3005 	}
3006 }
3007 
3008 /*
3009  * csio_hws_resetting - HW Resetting state
3010  * @hw - HW module
3011  * @evt - Event
3012  *
3013  */
3014 static void
3015 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
3016 {
3017 	hw->prev_evt = hw->cur_evt;
3018 	hw->cur_evt = evt;
3019 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
3020 
3021 	switch (evt) {
3022 	case CSIO_HWE_HBA_RESET_DONE:
3023 		csio_evtq_start(hw);
3024 		csio_set_state(&hw->sm, csio_hws_configuring);
3025 		csio_hw_configure(hw);
3026 		break;
3027 
3028 	default:
3029 		CSIO_INC_STATS(hw, n_evt_unexp);
3030 		break;
3031 	}
3032 }
3033 
3034 /*
3035  * csio_hws_removing - PCI Hotplug removing state
3036  * @hw - HW module
3037  * @evt - Event
3038  *
3039  */
3040 static void
3041 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
3042 {
3043 	hw->prev_evt = hw->cur_evt;
3044 	hw->cur_evt = evt;
3045 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
3046 
3047 	switch (evt) {
3048 	case CSIO_HWE_HBA_RESET:
3049 		if (!csio_is_hw_master(hw))
3050 			break;
3051 		/*
3052 		 * The BYE should have already been issued, so we can't
3053 		 * use the mailbox interface. Hence we use the PL_RST
3054 		 * register directly.
3055 		 */
3056 		csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
3057 		csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
3058 		mdelay(2000);
3059 		break;
3060 
3061 	/* Should never receive any new events */
3062 	default:
3063 		CSIO_INC_STATS(hw, n_evt_unexp);
3064 		break;
3065 
3066 	}
3067 }
3068 
3069 /*
3070  * csio_hws_pcierr - PCI Error state
3071  * @hw - HW module
3072  * @evt - Event
3073  *
3074  */
3075 static void
3076 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
3077 {
3078 	hw->prev_evt = hw->cur_evt;
3079 	hw->cur_evt = evt;
3080 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
3081 
3082 	switch (evt) {
3083 	case CSIO_HWE_PCIERR_SLOT_RESET:
3084 		csio_evtq_start(hw);
3085 		csio_set_state(&hw->sm, csio_hws_configuring);
3086 		csio_hw_configure(hw);
3087 		break;
3088 
3089 	default:
3090 		CSIO_INC_STATS(hw, n_evt_unexp);
3091 		break;
3092 	}
3093 }
3094 
3095 /*****************************************************************************/
3096 /* END: HW SM                                                                */
3097 /*****************************************************************************/
3098 
3099 /*
3100  *	csio_handle_intr_status - table driven interrupt handler
3101  *	@hw: HW instance
3102  *	@reg: the interrupt status register to process
3103  *	@acts: table of interrupt actions
3104  *
3105  *	A table driven interrupt handler that applies a set of masks to an
3106  *	interrupt status word and performs the corresponding actions if the
3107  *	interrupts described by the mask have occurred.  The actions include
3108  *	optionally emitting a warning or alert message. The table is terminated
3109  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3110  *	conditions.
3111  */
3112 int
3113 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
3114 				 const struct intr_info *acts)
3115 {
3116 	int fatal = 0;
3117 	unsigned int mask = 0;
3118 	unsigned int status = csio_rd_reg32(hw, reg);
3119 
3120 	for ( ; acts->mask; ++acts) {
3121 		if (!(status & acts->mask))
3122 			continue;
3123 		if (acts->fatal) {
3124 			fatal++;
3125 			csio_fatal(hw, "Fatal %s (0x%x)\n",
3126 				    acts->msg, status & acts->mask);
3127 		} else if (acts->msg)
3128 			csio_info(hw, "%s (0x%x)\n",
3129 				    acts->msg, status & acts->mask);
3130 		mask |= acts->mask;
3131 	}
3132 	status &= mask;
3133 	if (status)                           /* clear processed interrupts */
3134 		csio_wr_reg32(hw, status, reg);
3135 	return fatal;
3136 }
3137 
3138 /*
3139  * TP interrupt handler.
3140  */
3141 static void csio_tp_intr_handler(struct csio_hw *hw)
3142 {
3143 	static struct intr_info tp_intr_info[] = {
3144 		{ 0x3fffffff, "TP parity error", -1, 1 },
3145 		{ FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3146 		{ 0, NULL, 0, 0 }
3147 	};
3148 
3149 	if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
3150 		csio_hw_fatal_err(hw);
3151 }
3152 
3153 /*
3154  * SGE interrupt handler.
3155  */
3156 static void csio_sge_intr_handler(struct csio_hw *hw)
3157 {
3158 	uint64_t v;
3159 
3160 	static struct intr_info sge_intr_info[] = {
3161 		{ ERR_CPL_EXCEED_IQE_SIZE_F,
3162 		  "SGE received CPL exceeding IQE size", -1, 1 },
3163 		{ ERR_INVALID_CIDX_INC_F,
3164 		  "SGE GTS CIDX increment too large", -1, 0 },
3165 		{ ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3166 		{ ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
3167 		{ ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3168 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3169 		{ ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3170 		  0 },
3171 		{ ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3172 		  0 },
3173 		{ ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3174 		  0 },
3175 		{ ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3176 		  0 },
3177 		{ ERR_ING_CTXT_PRIO_F,
3178 		  "SGE too many priority ingress contexts", -1, 0 },
3179 		{ ERR_EGR_CTXT_PRIO_F,
3180 		  "SGE too many priority egress contexts", -1, 0 },
3181 		{ INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3182 		{ EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3183 		{ 0, NULL, 0, 0 }
3184 	};
3185 
3186 	v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
3187 	    ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
3188 	if (v) {
3189 		csio_fatal(hw, "SGE parity error (%#llx)\n",
3190 			    (unsigned long long)v);
3191 		csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
3192 						SGE_INT_CAUSE1_A);
3193 		csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
3194 	}
3195 
3196 	v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
3197 
3198 	if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
3199 	    v != 0)
3200 		csio_hw_fatal_err(hw);
3201 }
3202 
3203 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3204 		      OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3205 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3206 		      IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3207 
3208 /*
3209  * CIM interrupt handler.
3210  */
3211 static void csio_cim_intr_handler(struct csio_hw *hw)
3212 {
3213 	static struct intr_info cim_intr_info[] = {
3214 		{ PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3215 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3216 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3217 		{ MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3218 		{ MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3219 		{ TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3220 		{ TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3221 		{ 0, NULL, 0, 0 }
3222 	};
3223 	static struct intr_info cim_upintr_info[] = {
3224 		{ RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3225 		{ ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3226 		{ ILLWRINT_F, "CIM illegal write", -1, 1 },
3227 		{ ILLRDINT_F, "CIM illegal read", -1, 1 },
3228 		{ ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3229 		{ ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3230 		{ SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3231 		{ SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3232 		{ BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3233 		{ SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3234 		{ SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3235 		{ BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3236 		{ SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3237 		{ SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3238 		{ BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3239 		{ BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3240 		{ SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3241 		{ SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3242 		{ BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3243 		{ BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3244 		{ SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3245 		{ SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3246 		{ BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3247 		{ BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3248 		{ REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3249 		{ RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3250 		{ TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3251 		{ TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3252 		{ 0, NULL, 0, 0 }
3253 	};
3254 
3255 	int fat;
3256 
3257 	fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
3258 				      cim_intr_info) +
3259 	      csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
3260 				      cim_upintr_info);
3261 	if (fat)
3262 		csio_hw_fatal_err(hw);
3263 }
3264 
3265 /*
3266  * ULP RX interrupt handler.
3267  */
3268 static void csio_ulprx_intr_handler(struct csio_hw *hw)
3269 {
3270 	static struct intr_info ulprx_intr_info[] = {
3271 		{ 0x1800000, "ULPRX context error", -1, 1 },
3272 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3273 		{ 0, NULL, 0, 0 }
3274 	};
3275 
3276 	if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3277 		csio_hw_fatal_err(hw);
3278 }
3279 
3280 /*
3281  * ULP TX interrupt handler.
3282  */
3283 static void csio_ulptx_intr_handler(struct csio_hw *hw)
3284 {
3285 	static struct intr_info ulptx_intr_info[] = {
3286 		{ PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3287 		  0 },
3288 		{ PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3289 		  0 },
3290 		{ PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3291 		  0 },
3292 		{ PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3293 		  0 },
3294 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3295 		{ 0, NULL, 0, 0 }
3296 	};
3297 
3298 	if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3299 		csio_hw_fatal_err(hw);
3300 }
3301 
3302 /*
3303  * PM TX interrupt handler.
3304  */
3305 static void csio_pmtx_intr_handler(struct csio_hw *hw)
3306 {
3307 	static struct intr_info pmtx_intr_info[] = {
3308 		{ PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3309 		{ PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3310 		{ PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3311 		{ ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3312 		{ 0xffffff0, "PMTX framing error", -1, 1 },
3313 		{ OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3314 		{ DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
3315 		  1 },
3316 		{ ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3317 		{ PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3318 		{ 0, NULL, 0, 0 }
3319 	};
3320 
3321 	if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3322 		csio_hw_fatal_err(hw);
3323 }
3324 
3325 /*
3326  * PM RX interrupt handler.
3327  */
3328 static void csio_pmrx_intr_handler(struct csio_hw *hw)
3329 {
3330 	static struct intr_info pmrx_intr_info[] = {
3331 		{ ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3332 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
3333 		{ OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3334 		{ DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
3335 		  1 },
3336 		{ IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3337 		{ PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3338 		{ 0, NULL, 0, 0 }
3339 	};
3340 
3341 	if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3342 		csio_hw_fatal_err(hw);
3343 }
3344 
3345 /*
3346  * CPL switch interrupt handler.
3347  */
3348 static void csio_cplsw_intr_handler(struct csio_hw *hw)
3349 {
3350 	static struct intr_info cplsw_intr_info[] = {
3351 		{ CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3352 		{ CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3353 		{ TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3354 		{ SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3355 		{ CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3356 		{ ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3357 		{ 0, NULL, 0, 0 }
3358 	};
3359 
3360 	if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
3361 		csio_hw_fatal_err(hw);
3362 }
3363 
3364 /*
3365  * LE interrupt handler.
3366  */
3367 static void csio_le_intr_handler(struct csio_hw *hw)
3368 {
3369 	enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
3370 
3371 	static struct intr_info le_intr_info[] = {
3372 		{ LIPMISS_F, "LE LIP miss", -1, 0 },
3373 		{ LIP0_F, "LE 0 LIP error", -1, 0 },
3374 		{ PARITYERR_F, "LE parity error", -1, 1 },
3375 		{ UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3376 		{ REQQPARERR_F, "LE request queue parity error", -1, 1 },
3377 		{ 0, NULL, 0, 0 }
3378 	};
3379 
3380 	static struct intr_info t6_le_intr_info[] = {
3381 		{ T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3382 		{ T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3383 		{ TCAMINTPERR_F, "LE parity error", -1, 1 },
3384 		{ T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3385 		{ SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3386 		{ 0, NULL, 0, 0 }
3387 	};
3388 
3389 	if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
3390 				    (chip == CHELSIO_T5) ?
3391 				    le_intr_info : t6_le_intr_info))
3392 		csio_hw_fatal_err(hw);
3393 }
3394 
3395 /*
3396  * MPS interrupt handler.
3397  */
3398 static void csio_mps_intr_handler(struct csio_hw *hw)
3399 {
3400 	static struct intr_info mps_rx_intr_info[] = {
3401 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
3402 		{ 0, NULL, 0, 0 }
3403 	};
3404 	static struct intr_info mps_tx_intr_info[] = {
3405 		{ TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3406 		{ NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3407 		{ TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3408 		  -1, 1 },
3409 		{ TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3410 		  -1, 1 },
3411 		{ BUBBLE_F, "MPS Tx underflow", -1, 1 },
3412 		{ SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3413 		{ FRMERR_F, "MPS Tx framing error", -1, 1 },
3414 		{ 0, NULL, 0, 0 }
3415 	};
3416 	static struct intr_info mps_trc_intr_info[] = {
3417 		{ FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3418 		{ PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3419 		  -1, 1 },
3420 		{ MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3421 		{ 0, NULL, 0, 0 }
3422 	};
3423 	static struct intr_info mps_stat_sram_intr_info[] = {
3424 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3425 		{ 0, NULL, 0, 0 }
3426 	};
3427 	static struct intr_info mps_stat_tx_intr_info[] = {
3428 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3429 		{ 0, NULL, 0, 0 }
3430 	};
3431 	static struct intr_info mps_stat_rx_intr_info[] = {
3432 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3433 		{ 0, NULL, 0, 0 }
3434 	};
3435 	static struct intr_info mps_cls_intr_info[] = {
3436 		{ MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3437 		{ MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3438 		{ HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3439 		{ 0, NULL, 0, 0 }
3440 	};
3441 
3442 	int fat;
3443 
3444 	fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
3445 				      mps_rx_intr_info) +
3446 	      csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
3447 				      mps_tx_intr_info) +
3448 	      csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
3449 				      mps_trc_intr_info) +
3450 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3451 				      mps_stat_sram_intr_info) +
3452 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3453 				      mps_stat_tx_intr_info) +
3454 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3455 				      mps_stat_rx_intr_info) +
3456 	      csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
3457 				      mps_cls_intr_info);
3458 
3459 	csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
3460 	csio_rd_reg32(hw, MPS_INT_CAUSE_A);                    /* flush */
3461 	if (fat)
3462 		csio_hw_fatal_err(hw);
3463 }
3464 
3465 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3466 		      ECC_UE_INT_CAUSE_F)
3467 
3468 /*
3469  * EDC/MC interrupt handler.
3470  */
3471 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3472 {
3473 	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3474 
3475 	unsigned int addr, cnt_addr, v;
3476 
3477 	if (idx <= MEM_EDC1) {
3478 		addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3479 		cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3480 	} else {
3481 		addr = MC_INT_CAUSE_A;
3482 		cnt_addr = MC_ECC_STATUS_A;
3483 	}
3484 
3485 	v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3486 	if (v & PERR_INT_CAUSE_F)
3487 		csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3488 	if (v & ECC_CE_INT_CAUSE_F) {
3489 		uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3490 
3491 		csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3492 		csio_warn(hw, "%u %s correctable ECC data error%s\n",
3493 			    cnt, name[idx], cnt > 1 ? "s" : "");
3494 	}
3495 	if (v & ECC_UE_INT_CAUSE_F)
3496 		csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3497 
3498 	csio_wr_reg32(hw, v, addr);
3499 	if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3500 		csio_hw_fatal_err(hw);
3501 }
3502 
3503 /*
3504  * MA interrupt handler.
3505  */
3506 static void csio_ma_intr_handler(struct csio_hw *hw)
3507 {
3508 	uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3509 
3510 	if (status & MEM_PERR_INT_CAUSE_F)
3511 		csio_fatal(hw, "MA parity error, parity status %#x\n",
3512 			    csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3513 	if (status & MEM_WRAP_INT_CAUSE_F) {
3514 		v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3515 		csio_fatal(hw,
3516 		   "MA address wrap-around error by client %u to address %#x\n",
3517 		   MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3518 	}
3519 	csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3520 	csio_hw_fatal_err(hw);
3521 }
3522 
3523 /*
3524  * SMB interrupt handler.
3525  */
3526 static void csio_smb_intr_handler(struct csio_hw *hw)
3527 {
3528 	static struct intr_info smb_intr_info[] = {
3529 		{ MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3530 		{ MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3531 		{ SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3532 		{ 0, NULL, 0, 0 }
3533 	};
3534 
3535 	if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3536 		csio_hw_fatal_err(hw);
3537 }
3538 
3539 /*
3540  * NC-SI interrupt handler.
3541  */
3542 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3543 {
3544 	static struct intr_info ncsi_intr_info[] = {
3545 		{ CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3546 		{ MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3547 		{ TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3548 		{ RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3549 		{ 0, NULL, 0, 0 }
3550 	};
3551 
3552 	if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3553 		csio_hw_fatal_err(hw);
3554 }
3555 
3556 /*
3557  * XGMAC interrupt handler.
3558  */
3559 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3560 {
3561 	uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3562 
3563 	v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3564 	if (!v)
3565 		return;
3566 
3567 	if (v & TXFIFO_PRTY_ERR_F)
3568 		csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3569 	if (v & RXFIFO_PRTY_ERR_F)
3570 		csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3571 	csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3572 	csio_hw_fatal_err(hw);
3573 }
3574 
3575 /*
3576  * PL interrupt handler.
3577  */
3578 static void csio_pl_intr_handler(struct csio_hw *hw)
3579 {
3580 	static struct intr_info pl_intr_info[] = {
3581 		{ FATALPERR_F, "T4 fatal parity error", -1, 1 },
3582 		{ PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3583 		{ 0, NULL, 0, 0 }
3584 	};
3585 
3586 	if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3587 		csio_hw_fatal_err(hw);
3588 }
3589 
3590 /*
3591  *	csio_hw_slow_intr_handler - control path interrupt handler
3592  *	@hw: HW module
3593  *
3594  *	Interrupt handler for non-data global interrupt events, e.g., errors.
3595  *	The designation 'slow' is because it involves register reads, while
3596  *	data interrupts typically don't involve any MMIOs.
3597  */
3598 int
3599 csio_hw_slow_intr_handler(struct csio_hw *hw)
3600 {
3601 	uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3602 
3603 	if (!(cause & CSIO_GLBL_INTR_MASK)) {
3604 		CSIO_INC_STATS(hw, n_plint_unexp);
3605 		return 0;
3606 	}
3607 
3608 	csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3609 
3610 	CSIO_INC_STATS(hw, n_plint_cnt);
3611 
3612 	if (cause & CIM_F)
3613 		csio_cim_intr_handler(hw);
3614 
3615 	if (cause & MPS_F)
3616 		csio_mps_intr_handler(hw);
3617 
3618 	if (cause & NCSI_F)
3619 		csio_ncsi_intr_handler(hw);
3620 
3621 	if (cause & PL_F)
3622 		csio_pl_intr_handler(hw);
3623 
3624 	if (cause & SMB_F)
3625 		csio_smb_intr_handler(hw);
3626 
3627 	if (cause & XGMAC0_F)
3628 		csio_xgmac_intr_handler(hw, 0);
3629 
3630 	if (cause & XGMAC1_F)
3631 		csio_xgmac_intr_handler(hw, 1);
3632 
3633 	if (cause & XGMAC_KR0_F)
3634 		csio_xgmac_intr_handler(hw, 2);
3635 
3636 	if (cause & XGMAC_KR1_F)
3637 		csio_xgmac_intr_handler(hw, 3);
3638 
3639 	if (cause & PCIE_F)
3640 		hw->chip_ops->chip_pcie_intr_handler(hw);
3641 
3642 	if (cause & MC_F)
3643 		csio_mem_intr_handler(hw, MEM_MC);
3644 
3645 	if (cause & EDC0_F)
3646 		csio_mem_intr_handler(hw, MEM_EDC0);
3647 
3648 	if (cause & EDC1_F)
3649 		csio_mem_intr_handler(hw, MEM_EDC1);
3650 
3651 	if (cause & LE_F)
3652 		csio_le_intr_handler(hw);
3653 
3654 	if (cause & TP_F)
3655 		csio_tp_intr_handler(hw);
3656 
3657 	if (cause & MA_F)
3658 		csio_ma_intr_handler(hw);
3659 
3660 	if (cause & PM_TX_F)
3661 		csio_pmtx_intr_handler(hw);
3662 
3663 	if (cause & PM_RX_F)
3664 		csio_pmrx_intr_handler(hw);
3665 
3666 	if (cause & ULP_RX_F)
3667 		csio_ulprx_intr_handler(hw);
3668 
3669 	if (cause & CPL_SWITCH_F)
3670 		csio_cplsw_intr_handler(hw);
3671 
3672 	if (cause & SGE_F)
3673 		csio_sge_intr_handler(hw);
3674 
3675 	if (cause & ULP_TX_F)
3676 		csio_ulptx_intr_handler(hw);
3677 
3678 	/* Clear the interrupts just processed for which we are the master. */
3679 	csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3680 	csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3681 
3682 	return 1;
3683 }
3684 
3685 /*****************************************************************************
3686  * HW <--> mailbox interfacing routines.
3687  ****************************************************************************/
3688 /*
3689  * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3690  *
3691  * @data: Private data pointer.
3692  *
3693  * Called from worker thread context.
3694  */
3695 static void
3696 csio_mberr_worker(void *data)
3697 {
3698 	struct csio_hw *hw = (struct csio_hw *)data;
3699 	struct csio_mbm *mbm = &hw->mbm;
3700 	LIST_HEAD(cbfn_q);
3701 	struct csio_mb *mbp_next;
3702 	int rv;
3703 
3704 	del_timer_sync(&mbm->timer);
3705 
3706 	spin_lock_irq(&hw->lock);
3707 	if (list_empty(&mbm->cbfn_q)) {
3708 		spin_unlock_irq(&hw->lock);
3709 		return;
3710 	}
3711 
3712 	list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3713 	mbm->stats.n_cbfnq = 0;
3714 
3715 	/* Try to start waiting mailboxes */
3716 	if (!list_empty(&mbm->req_q)) {
3717 		mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3718 		list_del_init(&mbp_next->list);
3719 
3720 		rv = csio_mb_issue(hw, mbp_next);
3721 		if (rv != 0)
3722 			list_add_tail(&mbp_next->list, &mbm->req_q);
3723 		else
3724 			CSIO_DEC_STATS(mbm, n_activeq);
3725 	}
3726 	spin_unlock_irq(&hw->lock);
3727 
3728 	/* Now callback completions */
3729 	csio_mb_completions(hw, &cbfn_q);
3730 }
3731 
3732 /*
3733  * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3734  *
3735  * @data: private data pointer
3736  *
3737  **/
3738 static void
3739 csio_hw_mb_timer(struct timer_list *t)
3740 {
3741 	struct csio_mbm *mbm = from_timer(mbm, t, timer);
3742 	struct csio_hw *hw = mbm->hw;
3743 	struct csio_mb *mbp = NULL;
3744 
3745 	spin_lock_irq(&hw->lock);
3746 	mbp = csio_mb_tmo_handler(hw);
3747 	spin_unlock_irq(&hw->lock);
3748 
3749 	/* Call back the function for the timed-out Mailbox */
3750 	if (mbp)
3751 		mbp->mb_cbfn(hw, mbp);
3752 
3753 }
3754 
3755 /*
3756  * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3757  * @hw: HW module
3758  *
3759  * Called with lock held, should exit with lock held.
3760  * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3761  * into a local queue. Drops lock and calls the completions. Holds
3762  * lock and returns.
3763  */
3764 static void
3765 csio_hw_mbm_cleanup(struct csio_hw *hw)
3766 {
3767 	LIST_HEAD(cbfn_q);
3768 
3769 	csio_mb_cancel_all(hw, &cbfn_q);
3770 
3771 	spin_unlock_irq(&hw->lock);
3772 	csio_mb_completions(hw, &cbfn_q);
3773 	spin_lock_irq(&hw->lock);
3774 }
3775 
3776 /*****************************************************************************
3777  * Event handling
3778  ****************************************************************************/
3779 int
3780 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3781 			uint16_t len)
3782 {
3783 	struct csio_evt_msg *evt_entry = NULL;
3784 
3785 	if (type >= CSIO_EVT_MAX)
3786 		return -EINVAL;
3787 
3788 	if (len > CSIO_EVT_MSG_SIZE)
3789 		return -EINVAL;
3790 
3791 	if (hw->flags & CSIO_HWF_FWEVT_STOP)
3792 		return -EINVAL;
3793 
3794 	if (list_empty(&hw->evt_free_q)) {
3795 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3796 			 type, len);
3797 		return -ENOMEM;
3798 	}
3799 
3800 	evt_entry = list_first_entry(&hw->evt_free_q,
3801 				     struct csio_evt_msg, list);
3802 	list_del_init(&evt_entry->list);
3803 
3804 	/* copy event msg and queue the event */
3805 	evt_entry->type = type;
3806 	memcpy((void *)evt_entry->data, evt_msg, len);
3807 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3808 
3809 	CSIO_DEC_STATS(hw, n_evt_freeq);
3810 	CSIO_INC_STATS(hw, n_evt_activeq);
3811 
3812 	return 0;
3813 }
3814 
3815 static int
3816 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3817 			uint16_t len, bool msg_sg)
3818 {
3819 	struct csio_evt_msg *evt_entry = NULL;
3820 	struct csio_fl_dma_buf *fl_sg;
3821 	uint32_t off = 0;
3822 	unsigned long flags;
3823 	int n, ret = 0;
3824 
3825 	if (type >= CSIO_EVT_MAX)
3826 		return -EINVAL;
3827 
3828 	if (len > CSIO_EVT_MSG_SIZE)
3829 		return -EINVAL;
3830 
3831 	spin_lock_irqsave(&hw->lock, flags);
3832 	if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3833 		ret = -EINVAL;
3834 		goto out;
3835 	}
3836 
3837 	if (list_empty(&hw->evt_free_q)) {
3838 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3839 			 type, len);
3840 		ret = -ENOMEM;
3841 		goto out;
3842 	}
3843 
3844 	evt_entry = list_first_entry(&hw->evt_free_q,
3845 				     struct csio_evt_msg, list);
3846 	list_del_init(&evt_entry->list);
3847 
3848 	/* copy event msg and queue the event */
3849 	evt_entry->type = type;
3850 
3851 	/* If Payload in SG list*/
3852 	if (msg_sg) {
3853 		fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3854 		for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3855 			memcpy((void *)((uintptr_t)evt_entry->data + off),
3856 				fl_sg->flbufs[n].vaddr,
3857 				fl_sg->flbufs[n].len);
3858 			off += fl_sg->flbufs[n].len;
3859 		}
3860 	} else
3861 		memcpy((void *)evt_entry->data, evt_msg, len);
3862 
3863 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3864 	CSIO_DEC_STATS(hw, n_evt_freeq);
3865 	CSIO_INC_STATS(hw, n_evt_activeq);
3866 out:
3867 	spin_unlock_irqrestore(&hw->lock, flags);
3868 	return ret;
3869 }
3870 
3871 static void
3872 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3873 {
3874 	if (evt_entry) {
3875 		spin_lock_irq(&hw->lock);
3876 		list_del_init(&evt_entry->list);
3877 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3878 		CSIO_DEC_STATS(hw, n_evt_activeq);
3879 		CSIO_INC_STATS(hw, n_evt_freeq);
3880 		spin_unlock_irq(&hw->lock);
3881 	}
3882 }
3883 
3884 void
3885 csio_evtq_flush(struct csio_hw *hw)
3886 {
3887 	uint32_t count;
3888 	count = 30;
3889 	while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3890 		spin_unlock_irq(&hw->lock);
3891 		msleep(2000);
3892 		spin_lock_irq(&hw->lock);
3893 	}
3894 
3895 	CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3896 }
3897 
3898 static void
3899 csio_evtq_stop(struct csio_hw *hw)
3900 {
3901 	hw->flags |= CSIO_HWF_FWEVT_STOP;
3902 }
3903 
3904 static void
3905 csio_evtq_start(struct csio_hw *hw)
3906 {
3907 	hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3908 }
3909 
3910 static void
3911 csio_evtq_cleanup(struct csio_hw *hw)
3912 {
3913 	struct list_head *evt_entry, *next_entry;
3914 
3915 	/* Release outstanding events from activeq to freeq*/
3916 	if (!list_empty(&hw->evt_active_q))
3917 		list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3918 
3919 	hw->stats.n_evt_activeq = 0;
3920 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3921 
3922 	/* Freeup event entry */
3923 	list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3924 		kfree(evt_entry);
3925 		CSIO_DEC_STATS(hw, n_evt_freeq);
3926 	}
3927 
3928 	hw->stats.n_evt_freeq = 0;
3929 }
3930 
3931 
3932 static void
3933 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3934 			  struct csio_fl_dma_buf *flb, void *priv)
3935 {
3936 	__u8 op;
3937 	void *msg = NULL;
3938 	uint32_t msg_len = 0;
3939 	bool msg_sg = 0;
3940 
3941 	op = ((struct rss_header *) wr)->opcode;
3942 	if (op == CPL_FW6_PLD) {
3943 		CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3944 		if (!flb || !flb->totlen) {
3945 			CSIO_INC_STATS(hw, n_cpl_unexp);
3946 			return;
3947 		}
3948 
3949 		msg = (void *) flb;
3950 		msg_len = flb->totlen;
3951 		msg_sg = 1;
3952 	} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3953 
3954 		CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3955 		/* skip RSS header */
3956 		msg = (void *)((uintptr_t)wr + sizeof(__be64));
3957 		msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3958 			   sizeof(struct cpl_fw4_msg);
3959 	} else {
3960 		csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3961 		CSIO_INC_STATS(hw, n_cpl_unexp);
3962 		return;
3963 	}
3964 
3965 	/*
3966 	 * Enqueue event to EventQ. Events processing happens
3967 	 * in Event worker thread context
3968 	 */
3969 	if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3970 				  (uint16_t)msg_len, msg_sg))
3971 		CSIO_INC_STATS(hw, n_evt_drop);
3972 }
3973 
3974 void
3975 csio_evtq_worker(struct work_struct *work)
3976 {
3977 	struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3978 	struct list_head *evt_entry, *next_entry;
3979 	LIST_HEAD(evt_q);
3980 	struct csio_evt_msg	*evt_msg;
3981 	struct cpl_fw6_msg *msg;
3982 	struct csio_rnode *rn;
3983 	int rv = 0;
3984 	uint8_t evtq_stop = 0;
3985 
3986 	csio_dbg(hw, "event worker thread active evts#%d\n",
3987 		 hw->stats.n_evt_activeq);
3988 
3989 	spin_lock_irq(&hw->lock);
3990 	while (!list_empty(&hw->evt_active_q)) {
3991 		list_splice_tail_init(&hw->evt_active_q, &evt_q);
3992 		spin_unlock_irq(&hw->lock);
3993 
3994 		list_for_each_safe(evt_entry, next_entry, &evt_q) {
3995 			evt_msg = (struct csio_evt_msg *) evt_entry;
3996 
3997 			/* Drop events if queue is STOPPED */
3998 			spin_lock_irq(&hw->lock);
3999 			if (hw->flags & CSIO_HWF_FWEVT_STOP)
4000 				evtq_stop = 1;
4001 			spin_unlock_irq(&hw->lock);
4002 			if (evtq_stop) {
4003 				CSIO_INC_STATS(hw, n_evt_drop);
4004 				goto free_evt;
4005 			}
4006 
4007 			switch (evt_msg->type) {
4008 			case CSIO_EVT_FW:
4009 				msg = (struct cpl_fw6_msg *)(evt_msg->data);
4010 
4011 				if ((msg->opcode == CPL_FW6_MSG ||
4012 				     msg->opcode == CPL_FW4_MSG) &&
4013 				    !msg->type) {
4014 					rv = csio_mb_fwevt_handler(hw,
4015 								msg->data);
4016 					if (!rv)
4017 						break;
4018 					/* Handle any remaining fw events */
4019 					csio_fcoe_fwevt_handler(hw,
4020 							msg->opcode, msg->data);
4021 				} else if (msg->opcode == CPL_FW6_PLD) {
4022 
4023 					csio_fcoe_fwevt_handler(hw,
4024 							msg->opcode, msg->data);
4025 				} else {
4026 					csio_warn(hw,
4027 					     "Unhandled FW msg op %x type %x\n",
4028 						  msg->opcode, msg->type);
4029 					CSIO_INC_STATS(hw, n_evt_drop);
4030 				}
4031 				break;
4032 
4033 			case CSIO_EVT_MBX:
4034 				csio_mberr_worker(hw);
4035 				break;
4036 
4037 			case CSIO_EVT_DEV_LOSS:
4038 				memcpy(&rn, evt_msg->data, sizeof(rn));
4039 				csio_rnode_devloss_handler(rn);
4040 				break;
4041 
4042 			default:
4043 				csio_warn(hw, "Unhandled event %x on evtq\n",
4044 					  evt_msg->type);
4045 				CSIO_INC_STATS(hw, n_evt_unexp);
4046 				break;
4047 			}
4048 free_evt:
4049 			csio_free_evt(hw, evt_msg);
4050 		}
4051 
4052 		spin_lock_irq(&hw->lock);
4053 	}
4054 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
4055 	spin_unlock_irq(&hw->lock);
4056 }
4057 
4058 int
4059 csio_fwevtq_handler(struct csio_hw *hw)
4060 {
4061 	int rv;
4062 
4063 	if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
4064 		CSIO_INC_STATS(hw, n_int_stray);
4065 		return -EINVAL;
4066 	}
4067 
4068 	rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
4069 			   csio_process_fwevtq_entry, NULL);
4070 	return rv;
4071 }
4072 
4073 /****************************************************************************
4074  * Entry points
4075  ****************************************************************************/
4076 
4077 /* Management module */
4078 /*
4079  * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
4080  * mgmt - mgmt module
4081  * @io_req - io request
4082  *
4083  * Return - 0:if given IO Req exists in active Q.
4084  *          -EINVAL  :if lookup fails.
4085  */
4086 int
4087 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
4088 {
4089 	struct list_head *tmp;
4090 
4091 	/* Lookup ioreq in the ACTIVEQ */
4092 	list_for_each(tmp, &mgmtm->active_q) {
4093 		if (io_req == (struct csio_ioreq *)tmp)
4094 			return 0;
4095 	}
4096 	return -EINVAL;
4097 }
4098 
4099 #define	ECM_MIN_TMO	1000	/* Minimum timeout value for req */
4100 
4101 /*
4102  * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
4103  * @data - Event data.
4104  *
4105  * Return - none.
4106  */
4107 static void
4108 csio_mgmt_tmo_handler(struct timer_list *t)
4109 {
4110 	struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer);
4111 	struct list_head *tmp;
4112 	struct csio_ioreq *io_req;
4113 
4114 	csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
4115 
4116 	spin_lock_irq(&mgmtm->hw->lock);
4117 
4118 	list_for_each(tmp, &mgmtm->active_q) {
4119 		io_req = (struct csio_ioreq *) tmp;
4120 		io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
4121 
4122 		if (!io_req->tmo) {
4123 			/* Dequeue the request from retry Q. */
4124 			tmp = csio_list_prev(tmp);
4125 			list_del_init(&io_req->sm.sm_list);
4126 			if (io_req->io_cbfn) {
4127 				/* io_req will be freed by completion handler */
4128 				io_req->wr_status = -ETIMEDOUT;
4129 				io_req->io_cbfn(mgmtm->hw, io_req);
4130 			} else {
4131 				CSIO_DB_ASSERT(0);
4132 			}
4133 		}
4134 	}
4135 
4136 	/* If retry queue is not empty, re-arm timer */
4137 	if (!list_empty(&mgmtm->active_q))
4138 		mod_timer(&mgmtm->mgmt_timer,
4139 			  jiffies + msecs_to_jiffies(ECM_MIN_TMO));
4140 	spin_unlock_irq(&mgmtm->hw->lock);
4141 }
4142 
4143 static void
4144 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
4145 {
4146 	struct csio_hw *hw = mgmtm->hw;
4147 	struct csio_ioreq *io_req;
4148 	struct list_head *tmp;
4149 	uint32_t count;
4150 
4151 	count = 30;
4152 	/* Wait for all outstanding req to complete gracefully */
4153 	while ((!list_empty(&mgmtm->active_q)) && count--) {
4154 		spin_unlock_irq(&hw->lock);
4155 		msleep(2000);
4156 		spin_lock_irq(&hw->lock);
4157 	}
4158 
4159 	/* release outstanding req from ACTIVEQ */
4160 	list_for_each(tmp, &mgmtm->active_q) {
4161 		io_req = (struct csio_ioreq *) tmp;
4162 		tmp = csio_list_prev(tmp);
4163 		list_del_init(&io_req->sm.sm_list);
4164 		mgmtm->stats.n_active--;
4165 		if (io_req->io_cbfn) {
4166 			/* io_req will be freed by completion handler */
4167 			io_req->wr_status = -ETIMEDOUT;
4168 			io_req->io_cbfn(mgmtm->hw, io_req);
4169 		}
4170 	}
4171 }
4172 
4173 /*
4174  * csio_mgmt_init - Mgmt module init entry point
4175  * @mgmtsm - mgmt module
4176  * @hw	 - HW module
4177  *
4178  * Initialize mgmt timer, resource wait queue, active queue,
4179  * completion q. Allocate Egress and Ingress
4180  * WR queues and save off the queue index returned by the WR
4181  * module for future use. Allocate and save off mgmt reqs in the
4182  * mgmt_req_freelist for future use. Make sure their SM is initialized
4183  * to uninit state.
4184  * Returns: 0 - on success
4185  *          -ENOMEM   - on error.
4186  */
4187 static int
4188 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
4189 {
4190 	timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0);
4191 
4192 	INIT_LIST_HEAD(&mgmtm->active_q);
4193 	INIT_LIST_HEAD(&mgmtm->cbfn_q);
4194 
4195 	mgmtm->hw = hw;
4196 	/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
4197 
4198 	return 0;
4199 }
4200 
4201 /*
4202  * csio_mgmtm_exit - MGMT module exit entry point
4203  * @mgmtsm - mgmt module
4204  *
4205  * This function called during MGMT module uninit.
4206  * Stop timers, free ioreqs allocated.
4207  * Returns: None
4208  *
4209  */
4210 static void
4211 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
4212 {
4213 	del_timer_sync(&mgmtm->mgmt_timer);
4214 }
4215 
4216 
4217 /**
4218  * csio_hw_start - Kicks off the HW State machine
4219  * @hw:		Pointer to HW module.
4220  *
4221  * It is assumed that the initialization is a synchronous operation.
4222  * So when we return after posting the event, the HW SM should be in
4223  * the ready state, if there were no errors during init.
4224  */
4225 int
4226 csio_hw_start(struct csio_hw *hw)
4227 {
4228 	spin_lock_irq(&hw->lock);
4229 	csio_post_event(&hw->sm, CSIO_HWE_CFG);
4230 	spin_unlock_irq(&hw->lock);
4231 
4232 	if (csio_is_hw_ready(hw))
4233 		return 0;
4234 	else if (csio_match_state(hw, csio_hws_uninit))
4235 		return -EINVAL;
4236 	else
4237 		return -ENODEV;
4238 }
4239 
4240 int
4241 csio_hw_stop(struct csio_hw *hw)
4242 {
4243 	csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
4244 
4245 	if (csio_is_hw_removing(hw))
4246 		return 0;
4247 	else
4248 		return -EINVAL;
4249 }
4250 
4251 /* Max reset retries */
4252 #define CSIO_MAX_RESET_RETRIES	3
4253 
4254 /**
4255  * csio_hw_reset - Reset the hardware
4256  * @hw:		HW module.
4257  *
4258  * Caller should hold lock across this function.
4259  */
4260 int
4261 csio_hw_reset(struct csio_hw *hw)
4262 {
4263 	if (!csio_is_hw_master(hw))
4264 		return -EPERM;
4265 
4266 	if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
4267 		csio_dbg(hw, "Max hw reset attempts reached..");
4268 		return -EINVAL;
4269 	}
4270 
4271 	hw->rst_retries++;
4272 	csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
4273 
4274 	if (csio_is_hw_ready(hw)) {
4275 		hw->rst_retries = 0;
4276 		hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
4277 		return 0;
4278 	} else
4279 		return -EINVAL;
4280 }
4281 
4282 /*
4283  * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
4284  * @hw: HW module.
4285  */
4286 static void
4287 csio_hw_get_device_id(struct csio_hw *hw)
4288 {
4289 	/* Is the adapter device id cached already ?*/
4290 	if (csio_is_dev_id_cached(hw))
4291 		return;
4292 
4293 	/* Get the PCI vendor & device id */
4294 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
4295 			     &hw->params.pci.vendor_id);
4296 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
4297 			     &hw->params.pci.device_id);
4298 
4299 	csio_dev_id_cached(hw);
4300 	hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
4301 
4302 } /* csio_hw_get_device_id */
4303 
4304 /*
4305  * csio_hw_set_description - Set the model, description of the hw.
4306  * @hw: HW module.
4307  * @ven_id: PCI Vendor ID
4308  * @dev_id: PCI Device ID
4309  */
4310 static void
4311 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
4312 {
4313 	uint32_t adap_type, prot_type;
4314 
4315 	if (ven_id == CSIO_VENDOR_ID) {
4316 		prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
4317 		adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
4318 
4319 		if (prot_type == CSIO_T5_FCOE_ASIC) {
4320 			memcpy(hw->hw_ver,
4321 			       csio_t5_fcoe_adapters[adap_type].model_no, 16);
4322 			memcpy(hw->model_desc,
4323 			       csio_t5_fcoe_adapters[adap_type].description,
4324 			       32);
4325 		} else {
4326 			char tempName[32] = "Chelsio FCoE Controller";
4327 			memcpy(hw->model_desc, tempName, 32);
4328 		}
4329 	}
4330 } /* csio_hw_set_description */
4331 
4332 /**
4333  * csio_hw_init - Initialize HW module.
4334  * @hw:		Pointer to HW module.
4335  *
4336  * Initialize the members of the HW module.
4337  */
4338 int
4339 csio_hw_init(struct csio_hw *hw)
4340 {
4341 	int rv = -EINVAL;
4342 	uint32_t i;
4343 	uint16_t ven_id, dev_id;
4344 	struct csio_evt_msg	*evt_entry;
4345 
4346 	INIT_LIST_HEAD(&hw->sm.sm_list);
4347 	csio_init_state(&hw->sm, csio_hws_uninit);
4348 	spin_lock_init(&hw->lock);
4349 	INIT_LIST_HEAD(&hw->sln_head);
4350 
4351 	/* Get the PCI vendor & device id */
4352 	csio_hw_get_device_id(hw);
4353 
4354 	strcpy(hw->name, CSIO_HW_NAME);
4355 
4356 	/* Initialize the HW chip ops T5 specific ops */
4357 	hw->chip_ops = &t5_ops;
4358 
4359 	/* Set the model & its description */
4360 
4361 	ven_id = hw->params.pci.vendor_id;
4362 	dev_id = hw->params.pci.device_id;
4363 
4364 	csio_hw_set_description(hw, ven_id, dev_id);
4365 
4366 	/* Initialize default log level */
4367 	hw->params.log_level = (uint32_t) csio_dbg_level;
4368 
4369 	csio_set_fwevt_intr_idx(hw, -1);
4370 	csio_set_nondata_intr_idx(hw, -1);
4371 
4372 	/* Init all the modules: Mailbox, WorkRequest and Transport */
4373 	if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
4374 		goto err;
4375 
4376 	rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
4377 	if (rv)
4378 		goto err_mbm_exit;
4379 
4380 	rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
4381 	if (rv)
4382 		goto err_wrm_exit;
4383 
4384 	rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
4385 	if (rv)
4386 		goto err_scsim_exit;
4387 	/* Pre-allocate evtq and initialize them */
4388 	INIT_LIST_HEAD(&hw->evt_active_q);
4389 	INIT_LIST_HEAD(&hw->evt_free_q);
4390 	for (i = 0; i < csio_evtq_sz; i++) {
4391 
4392 		evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4393 		if (!evt_entry) {
4394 			rv = -ENOMEM;
4395 			csio_err(hw, "Failed to initialize eventq");
4396 			goto err_evtq_cleanup;
4397 		}
4398 
4399 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
4400 		CSIO_INC_STATS(hw, n_evt_freeq);
4401 	}
4402 
4403 	hw->dev_num = dev_num;
4404 	dev_num++;
4405 
4406 	return 0;
4407 
4408 err_evtq_cleanup:
4409 	csio_evtq_cleanup(hw);
4410 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4411 err_scsim_exit:
4412 	csio_scsim_exit(csio_hw_to_scsim(hw));
4413 err_wrm_exit:
4414 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4415 err_mbm_exit:
4416 	csio_mbm_exit(csio_hw_to_mbm(hw));
4417 err:
4418 	return rv;
4419 }
4420 
4421 /**
4422  * csio_hw_exit - Un-initialize HW module.
4423  * @hw:		Pointer to HW module.
4424  *
4425  */
4426 void
4427 csio_hw_exit(struct csio_hw *hw)
4428 {
4429 	csio_evtq_cleanup(hw);
4430 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4431 	csio_scsim_exit(csio_hw_to_scsim(hw));
4432 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4433 	csio_mbm_exit(csio_hw_to_mbm(hw));
4434 }
4435