xref: /openbmc/linux/drivers/scsi/bnx2fc/bnx2fc_io.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /* bnx2fc_io.c: QLogic Linux FCoE offload driver.
2  * IO manager and SCSI IO processing.
3  *
4  * Copyright (c) 2008-2013 Broadcom Corporation
5  * Copyright (c) 2014-2016 QLogic Corporation
6  * Copyright (c) 2016-2017 Cavium Inc.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation.
11  *
12  * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
13  */
14 
15 #include "bnx2fc.h"
16 
17 #define RESERVE_FREE_LIST_INDEX num_possible_cpus()
18 
19 static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
20 			   int bd_index);
21 static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req);
22 static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req);
23 static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req);
24 static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req);
25 static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
26 				 struct fcoe_fcp_rsp_payload *fcp_rsp,
27 				 u8 num_rq);
28 
29 void bnx2fc_cmd_timer_set(struct bnx2fc_cmd *io_req,
30 			  unsigned int timer_msec)
31 {
32 	struct bnx2fc_interface *interface = io_req->port->priv;
33 
34 	if (queue_delayed_work(interface->timer_work_queue,
35 			       &io_req->timeout_work,
36 			       msecs_to_jiffies(timer_msec)))
37 		kref_get(&io_req->refcount);
38 }
39 
40 static void bnx2fc_cmd_timeout(struct work_struct *work)
41 {
42 	struct bnx2fc_cmd *io_req = container_of(work, struct bnx2fc_cmd,
43 						 timeout_work.work);
44 	u8 cmd_type = io_req->cmd_type;
45 	struct bnx2fc_rport *tgt = io_req->tgt;
46 	int rc;
47 
48 	BNX2FC_IO_DBG(io_req, "cmd_timeout, cmd_type = %d,"
49 		      "req_flags = %lx\n", cmd_type, io_req->req_flags);
50 
51 	spin_lock_bh(&tgt->tgt_lock);
52 	if (test_and_clear_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags)) {
53 		clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
54 		/*
55 		 * ideally we should hold the io_req until RRQ complets,
56 		 * and release io_req from timeout hold.
57 		 */
58 		spin_unlock_bh(&tgt->tgt_lock);
59 		bnx2fc_send_rrq(io_req);
60 		return;
61 	}
62 	if (test_and_clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags)) {
63 		BNX2FC_IO_DBG(io_req, "IO ready for reuse now\n");
64 		goto done;
65 	}
66 
67 	switch (cmd_type) {
68 	case BNX2FC_SCSI_CMD:
69 		if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
70 							&io_req->req_flags)) {
71 			/* Handle eh_abort timeout */
72 			BNX2FC_IO_DBG(io_req, "eh_abort timed out\n");
73 			complete(&io_req->tm_done);
74 		} else if (test_bit(BNX2FC_FLAG_ISSUE_ABTS,
75 				    &io_req->req_flags)) {
76 			/* Handle internally generated ABTS timeout */
77 			BNX2FC_IO_DBG(io_req, "ABTS timed out refcnt = %d\n",
78 					kref_read(&io_req->refcount));
79 			if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
80 					       &io_req->req_flags))) {
81 				/*
82 				 * Cleanup and return original command to
83 				 * mid-layer.
84 				 */
85 				bnx2fc_initiate_cleanup(io_req);
86 				kref_put(&io_req->refcount, bnx2fc_cmd_release);
87 				spin_unlock_bh(&tgt->tgt_lock);
88 
89 				return;
90 			}
91 		} else {
92 			/* Hanlde IO timeout */
93 			BNX2FC_IO_DBG(io_req, "IO timed out. issue ABTS\n");
94 			if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL,
95 					     &io_req->req_flags)) {
96 				BNX2FC_IO_DBG(io_req, "IO completed before "
97 							   " timer expiry\n");
98 				goto done;
99 			}
100 
101 			if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
102 					      &io_req->req_flags)) {
103 				rc = bnx2fc_initiate_abts(io_req);
104 				if (rc == SUCCESS)
105 					goto done;
106 
107 				kref_put(&io_req->refcount, bnx2fc_cmd_release);
108 				spin_unlock_bh(&tgt->tgt_lock);
109 
110 				return;
111 			} else {
112 				BNX2FC_IO_DBG(io_req, "IO already in "
113 						      "ABTS processing\n");
114 			}
115 		}
116 		break;
117 	case BNX2FC_ELS:
118 
119 		if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
120 			BNX2FC_IO_DBG(io_req, "ABTS for ELS timed out\n");
121 
122 			if (!test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
123 					      &io_req->req_flags)) {
124 				kref_put(&io_req->refcount, bnx2fc_cmd_release);
125 				spin_unlock_bh(&tgt->tgt_lock);
126 
127 				return;
128 			}
129 		} else {
130 			/*
131 			 * Handle ELS timeout.
132 			 * tgt_lock is used to sync compl path and timeout
133 			 * path. If els compl path is processing this IO, we
134 			 * have nothing to do here, just release the timer hold
135 			 */
136 			BNX2FC_IO_DBG(io_req, "ELS timed out\n");
137 			if (test_and_set_bit(BNX2FC_FLAG_ELS_DONE,
138 					       &io_req->req_flags))
139 				goto done;
140 
141 			/* Indicate the cb_func that this ELS is timed out */
142 			set_bit(BNX2FC_FLAG_ELS_TIMEOUT, &io_req->req_flags);
143 
144 			if ((io_req->cb_func) && (io_req->cb_arg)) {
145 				io_req->cb_func(io_req->cb_arg);
146 				io_req->cb_arg = NULL;
147 			}
148 		}
149 		break;
150 	default:
151 		printk(KERN_ERR PFX "cmd_timeout: invalid cmd_type %d\n",
152 			cmd_type);
153 		break;
154 	}
155 
156 done:
157 	/* release the cmd that was held when timer was set */
158 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
159 	spin_unlock_bh(&tgt->tgt_lock);
160 }
161 
162 static void bnx2fc_scsi_done(struct bnx2fc_cmd *io_req, int err_code)
163 {
164 	/* Called with host lock held */
165 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
166 
167 	/*
168 	 * active_cmd_queue may have other command types as well,
169 	 * and during flush operation,  we want to error back only
170 	 * scsi commands.
171 	 */
172 	if (io_req->cmd_type != BNX2FC_SCSI_CMD)
173 		return;
174 
175 	BNX2FC_IO_DBG(io_req, "scsi_done. err_code = 0x%x\n", err_code);
176 	if (test_bit(BNX2FC_FLAG_CMD_LOST, &io_req->req_flags)) {
177 		/* Do not call scsi done for this IO */
178 		return;
179 	}
180 
181 	bnx2fc_unmap_sg_list(io_req);
182 	io_req->sc_cmd = NULL;
183 
184 	/* Sanity checks before returning command to mid-layer */
185 	if (!sc_cmd) {
186 		printk(KERN_ERR PFX "scsi_done - sc_cmd NULL. "
187 				    "IO(0x%x) already cleaned up\n",
188 		       io_req->xid);
189 		return;
190 	}
191 	if (!sc_cmd->device) {
192 		pr_err(PFX "0x%x: sc_cmd->device is NULL.\n", io_req->xid);
193 		return;
194 	}
195 	if (!sc_cmd->device->host) {
196 		pr_err(PFX "0x%x: sc_cmd->device->host is NULL.\n",
197 		    io_req->xid);
198 		return;
199 	}
200 
201 	sc_cmd->result = err_code << 16;
202 
203 	BNX2FC_IO_DBG(io_req, "sc=%p, result=0x%x, retries=%d, allowed=%d\n",
204 		sc_cmd, host_byte(sc_cmd->result), sc_cmd->retries,
205 		sc_cmd->allowed);
206 	scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd));
207 	sc_cmd->SCp.ptr = NULL;
208 	sc_cmd->scsi_done(sc_cmd);
209 }
210 
211 struct bnx2fc_cmd_mgr *bnx2fc_cmd_mgr_alloc(struct bnx2fc_hba *hba)
212 {
213 	struct bnx2fc_cmd_mgr *cmgr;
214 	struct io_bdt *bdt_info;
215 	struct bnx2fc_cmd *io_req;
216 	size_t len;
217 	u32 mem_size;
218 	u16 xid;
219 	int i;
220 	int num_ios, num_pri_ios;
221 	size_t bd_tbl_sz;
222 	int arr_sz = num_possible_cpus() + 1;
223 	u16 min_xid = BNX2FC_MIN_XID;
224 	u16 max_xid = hba->max_xid;
225 
226 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) {
227 		printk(KERN_ERR PFX "cmd_mgr_alloc: Invalid min_xid 0x%x \
228 					and max_xid 0x%x\n", min_xid, max_xid);
229 		return NULL;
230 	}
231 	BNX2FC_MISC_DBG("min xid 0x%x, max xid 0x%x\n", min_xid, max_xid);
232 
233 	num_ios = max_xid - min_xid + 1;
234 	len = (num_ios * (sizeof(struct bnx2fc_cmd *)));
235 	len += sizeof(struct bnx2fc_cmd_mgr);
236 
237 	cmgr = kzalloc(len, GFP_KERNEL);
238 	if (!cmgr) {
239 		printk(KERN_ERR PFX "failed to alloc cmgr\n");
240 		return NULL;
241 	}
242 
243 	cmgr->free_list = kcalloc(arr_sz, sizeof(*cmgr->free_list),
244 				  GFP_KERNEL);
245 	if (!cmgr->free_list) {
246 		printk(KERN_ERR PFX "failed to alloc free_list\n");
247 		goto mem_err;
248 	}
249 
250 	cmgr->free_list_lock = kcalloc(arr_sz, sizeof(*cmgr->free_list_lock),
251 				       GFP_KERNEL);
252 	if (!cmgr->free_list_lock) {
253 		printk(KERN_ERR PFX "failed to alloc free_list_lock\n");
254 		kfree(cmgr->free_list);
255 		cmgr->free_list = NULL;
256 		goto mem_err;
257 	}
258 
259 	cmgr->hba = hba;
260 	cmgr->cmds = (struct bnx2fc_cmd **)(cmgr + 1);
261 
262 	for (i = 0; i < arr_sz; i++)  {
263 		INIT_LIST_HEAD(&cmgr->free_list[i]);
264 		spin_lock_init(&cmgr->free_list_lock[i]);
265 	}
266 
267 	/*
268 	 * Pre-allocated pool of bnx2fc_cmds.
269 	 * Last entry in the free list array is the free list
270 	 * of slow path requests.
271 	 */
272 	xid = BNX2FC_MIN_XID;
273 	num_pri_ios = num_ios - hba->elstm_xids;
274 	for (i = 0; i < num_ios; i++) {
275 		io_req = kzalloc(sizeof(*io_req), GFP_KERNEL);
276 
277 		if (!io_req) {
278 			printk(KERN_ERR PFX "failed to alloc io_req\n");
279 			goto mem_err;
280 		}
281 
282 		INIT_LIST_HEAD(&io_req->link);
283 		INIT_DELAYED_WORK(&io_req->timeout_work, bnx2fc_cmd_timeout);
284 
285 		io_req->xid = xid++;
286 		if (i < num_pri_ios)
287 			list_add_tail(&io_req->link,
288 				&cmgr->free_list[io_req->xid %
289 						 num_possible_cpus()]);
290 		else
291 			list_add_tail(&io_req->link,
292 				&cmgr->free_list[num_possible_cpus()]);
293 		io_req++;
294 	}
295 
296 	/* Allocate pool of io_bdts - one for each bnx2fc_cmd */
297 	mem_size = num_ios * sizeof(struct io_bdt *);
298 	cmgr->io_bdt_pool = kmalloc(mem_size, GFP_KERNEL);
299 	if (!cmgr->io_bdt_pool) {
300 		printk(KERN_ERR PFX "failed to alloc io_bdt_pool\n");
301 		goto mem_err;
302 	}
303 
304 	mem_size = sizeof(struct io_bdt);
305 	for (i = 0; i < num_ios; i++) {
306 		cmgr->io_bdt_pool[i] = kmalloc(mem_size, GFP_KERNEL);
307 		if (!cmgr->io_bdt_pool[i]) {
308 			printk(KERN_ERR PFX "failed to alloc "
309 				"io_bdt_pool[%d]\n", i);
310 			goto mem_err;
311 		}
312 	}
313 
314 	/* Allocate an map fcoe_bdt_ctx structures */
315 	bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
316 	for (i = 0; i < num_ios; i++) {
317 		bdt_info = cmgr->io_bdt_pool[i];
318 		bdt_info->bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
319 						      bd_tbl_sz,
320 						      &bdt_info->bd_tbl_dma,
321 						      GFP_KERNEL);
322 		if (!bdt_info->bd_tbl) {
323 			printk(KERN_ERR PFX "failed to alloc "
324 				"bdt_tbl[%d]\n", i);
325 			goto mem_err;
326 		}
327 	}
328 
329 	return cmgr;
330 
331 mem_err:
332 	bnx2fc_cmd_mgr_free(cmgr);
333 	return NULL;
334 }
335 
336 void bnx2fc_cmd_mgr_free(struct bnx2fc_cmd_mgr *cmgr)
337 {
338 	struct io_bdt *bdt_info;
339 	struct bnx2fc_hba *hba = cmgr->hba;
340 	size_t bd_tbl_sz;
341 	u16 min_xid = BNX2FC_MIN_XID;
342 	u16 max_xid = hba->max_xid;
343 	int num_ios;
344 	int i;
345 
346 	num_ios = max_xid - min_xid + 1;
347 
348 	/* Free fcoe_bdt_ctx structures */
349 	if (!cmgr->io_bdt_pool)
350 		goto free_cmd_pool;
351 
352 	bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
353 	for (i = 0; i < num_ios; i++) {
354 		bdt_info = cmgr->io_bdt_pool[i];
355 		if (bdt_info->bd_tbl) {
356 			dma_free_coherent(&hba->pcidev->dev, bd_tbl_sz,
357 					    bdt_info->bd_tbl,
358 					    bdt_info->bd_tbl_dma);
359 			bdt_info->bd_tbl = NULL;
360 		}
361 	}
362 
363 	/* Destroy io_bdt pool */
364 	for (i = 0; i < num_ios; i++) {
365 		kfree(cmgr->io_bdt_pool[i]);
366 		cmgr->io_bdt_pool[i] = NULL;
367 	}
368 
369 	kfree(cmgr->io_bdt_pool);
370 	cmgr->io_bdt_pool = NULL;
371 
372 free_cmd_pool:
373 	kfree(cmgr->free_list_lock);
374 
375 	/* Destroy cmd pool */
376 	if (!cmgr->free_list)
377 		goto free_cmgr;
378 
379 	for (i = 0; i < num_possible_cpus() + 1; i++)  {
380 		struct bnx2fc_cmd *tmp, *io_req;
381 
382 		list_for_each_entry_safe(io_req, tmp,
383 					 &cmgr->free_list[i], link) {
384 			list_del(&io_req->link);
385 			kfree(io_req);
386 		}
387 	}
388 	kfree(cmgr->free_list);
389 free_cmgr:
390 	/* Free command manager itself */
391 	kfree(cmgr);
392 }
393 
394 struct bnx2fc_cmd *bnx2fc_elstm_alloc(struct bnx2fc_rport *tgt, int type)
395 {
396 	struct fcoe_port *port = tgt->port;
397 	struct bnx2fc_interface *interface = port->priv;
398 	struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
399 	struct bnx2fc_cmd *io_req;
400 	struct list_head *listp;
401 	struct io_bdt *bd_tbl;
402 	int index = RESERVE_FREE_LIST_INDEX;
403 	u32 free_sqes;
404 	u32 max_sqes;
405 	u16 xid;
406 
407 	max_sqes = tgt->max_sqes;
408 	switch (type) {
409 	case BNX2FC_TASK_MGMT_CMD:
410 		max_sqes = BNX2FC_TM_MAX_SQES;
411 		break;
412 	case BNX2FC_ELS:
413 		max_sqes = BNX2FC_ELS_MAX_SQES;
414 		break;
415 	default:
416 		break;
417 	}
418 
419 	/*
420 	 * NOTE: Free list insertions and deletions are protected with
421 	 * cmgr lock
422 	 */
423 	spin_lock_bh(&cmd_mgr->free_list_lock[index]);
424 	free_sqes = atomic_read(&tgt->free_sqes);
425 	if ((list_empty(&(cmd_mgr->free_list[index]))) ||
426 	    (tgt->num_active_ios.counter  >= max_sqes) ||
427 	    (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
428 		BNX2FC_TGT_DBG(tgt, "No free els_tm cmds available "
429 			"ios(%d):sqes(%d)\n",
430 			tgt->num_active_ios.counter, tgt->max_sqes);
431 		if (list_empty(&(cmd_mgr->free_list[index])))
432 			printk(KERN_ERR PFX "elstm_alloc: list_empty\n");
433 		spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
434 		return NULL;
435 	}
436 
437 	listp = (struct list_head *)
438 			cmd_mgr->free_list[index].next;
439 	list_del_init(listp);
440 	io_req = (struct bnx2fc_cmd *) listp;
441 	xid = io_req->xid;
442 	cmd_mgr->cmds[xid] = io_req;
443 	atomic_inc(&tgt->num_active_ios);
444 	atomic_dec(&tgt->free_sqes);
445 	spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
446 
447 	INIT_LIST_HEAD(&io_req->link);
448 
449 	io_req->port = port;
450 	io_req->cmd_mgr = cmd_mgr;
451 	io_req->req_flags = 0;
452 	io_req->cmd_type = type;
453 
454 	/* Bind io_bdt for this io_req */
455 	/* Have a static link between io_req and io_bdt_pool */
456 	bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
457 	bd_tbl->io_req = io_req;
458 
459 	/* Hold the io_req  against deletion */
460 	kref_init(&io_req->refcount);
461 	return io_req;
462 }
463 
464 struct bnx2fc_cmd *bnx2fc_cmd_alloc(struct bnx2fc_rport *tgt)
465 {
466 	struct fcoe_port *port = tgt->port;
467 	struct bnx2fc_interface *interface = port->priv;
468 	struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
469 	struct bnx2fc_cmd *io_req;
470 	struct list_head *listp;
471 	struct io_bdt *bd_tbl;
472 	u32 free_sqes;
473 	u32 max_sqes;
474 	u16 xid;
475 	int index = get_cpu();
476 
477 	max_sqes = BNX2FC_SCSI_MAX_SQES;
478 	/*
479 	 * NOTE: Free list insertions and deletions are protected with
480 	 * cmgr lock
481 	 */
482 	spin_lock_bh(&cmd_mgr->free_list_lock[index]);
483 	free_sqes = atomic_read(&tgt->free_sqes);
484 	if ((list_empty(&cmd_mgr->free_list[index])) ||
485 	    (tgt->num_active_ios.counter  >= max_sqes) ||
486 	    (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
487 		spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
488 		put_cpu();
489 		return NULL;
490 	}
491 
492 	listp = (struct list_head *)
493 		cmd_mgr->free_list[index].next;
494 	list_del_init(listp);
495 	io_req = (struct bnx2fc_cmd *) listp;
496 	xid = io_req->xid;
497 	cmd_mgr->cmds[xid] = io_req;
498 	atomic_inc(&tgt->num_active_ios);
499 	atomic_dec(&tgt->free_sqes);
500 	spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
501 	put_cpu();
502 
503 	INIT_LIST_HEAD(&io_req->link);
504 
505 	io_req->port = port;
506 	io_req->cmd_mgr = cmd_mgr;
507 	io_req->req_flags = 0;
508 
509 	/* Bind io_bdt for this io_req */
510 	/* Have a static link between io_req and io_bdt_pool */
511 	bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
512 	bd_tbl->io_req = io_req;
513 
514 	/* Hold the io_req  against deletion */
515 	kref_init(&io_req->refcount);
516 	return io_req;
517 }
518 
519 void bnx2fc_cmd_release(struct kref *ref)
520 {
521 	struct bnx2fc_cmd *io_req = container_of(ref,
522 						struct bnx2fc_cmd, refcount);
523 	struct bnx2fc_cmd_mgr *cmd_mgr = io_req->cmd_mgr;
524 	int index;
525 
526 	if (io_req->cmd_type == BNX2FC_SCSI_CMD)
527 		index = io_req->xid % num_possible_cpus();
528 	else
529 		index = RESERVE_FREE_LIST_INDEX;
530 
531 
532 	spin_lock_bh(&cmd_mgr->free_list_lock[index]);
533 	if (io_req->cmd_type != BNX2FC_SCSI_CMD)
534 		bnx2fc_free_mp_resc(io_req);
535 	cmd_mgr->cmds[io_req->xid] = NULL;
536 	/* Delete IO from retire queue */
537 	list_del_init(&io_req->link);
538 	/* Add it to the free list */
539 	list_add(&io_req->link,
540 			&cmd_mgr->free_list[index]);
541 	atomic_dec(&io_req->tgt->num_active_ios);
542 	spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
543 
544 }
545 
546 static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req)
547 {
548 	struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
549 	struct bnx2fc_interface *interface = io_req->port->priv;
550 	struct bnx2fc_hba *hba = interface->hba;
551 	size_t sz = sizeof(struct fcoe_bd_ctx);
552 
553 	/* clear tm flags */
554 	mp_req->tm_flags = 0;
555 	if (mp_req->mp_req_bd) {
556 		dma_free_coherent(&hba->pcidev->dev, sz,
557 				     mp_req->mp_req_bd,
558 				     mp_req->mp_req_bd_dma);
559 		mp_req->mp_req_bd = NULL;
560 	}
561 	if (mp_req->mp_resp_bd) {
562 		dma_free_coherent(&hba->pcidev->dev, sz,
563 				     mp_req->mp_resp_bd,
564 				     mp_req->mp_resp_bd_dma);
565 		mp_req->mp_resp_bd = NULL;
566 	}
567 	if (mp_req->req_buf) {
568 		dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
569 				     mp_req->req_buf,
570 				     mp_req->req_buf_dma);
571 		mp_req->req_buf = NULL;
572 	}
573 	if (mp_req->resp_buf) {
574 		dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
575 				     mp_req->resp_buf,
576 				     mp_req->resp_buf_dma);
577 		mp_req->resp_buf = NULL;
578 	}
579 }
580 
581 int bnx2fc_init_mp_req(struct bnx2fc_cmd *io_req)
582 {
583 	struct bnx2fc_mp_req *mp_req;
584 	struct fcoe_bd_ctx *mp_req_bd;
585 	struct fcoe_bd_ctx *mp_resp_bd;
586 	struct bnx2fc_interface *interface = io_req->port->priv;
587 	struct bnx2fc_hba *hba = interface->hba;
588 	dma_addr_t addr;
589 	size_t sz;
590 
591 	mp_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
592 	memset(mp_req, 0, sizeof(struct bnx2fc_mp_req));
593 
594 	if (io_req->cmd_type != BNX2FC_ELS) {
595 		mp_req->req_len = sizeof(struct fcp_cmnd);
596 		io_req->data_xfer_len = mp_req->req_len;
597 	} else
598 		mp_req->req_len = io_req->data_xfer_len;
599 
600 	mp_req->req_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
601 					     &mp_req->req_buf_dma,
602 					     GFP_ATOMIC);
603 	if (!mp_req->req_buf) {
604 		printk(KERN_ERR PFX "unable to alloc MP req buffer\n");
605 		bnx2fc_free_mp_resc(io_req);
606 		return FAILED;
607 	}
608 
609 	mp_req->resp_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
610 					      &mp_req->resp_buf_dma,
611 					      GFP_ATOMIC);
612 	if (!mp_req->resp_buf) {
613 		printk(KERN_ERR PFX "unable to alloc TM resp buffer\n");
614 		bnx2fc_free_mp_resc(io_req);
615 		return FAILED;
616 	}
617 	memset(mp_req->req_buf, 0, CNIC_PAGE_SIZE);
618 	memset(mp_req->resp_buf, 0, CNIC_PAGE_SIZE);
619 
620 	/* Allocate and map mp_req_bd and mp_resp_bd */
621 	sz = sizeof(struct fcoe_bd_ctx);
622 	mp_req->mp_req_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
623 						 &mp_req->mp_req_bd_dma,
624 						 GFP_ATOMIC);
625 	if (!mp_req->mp_req_bd) {
626 		printk(KERN_ERR PFX "unable to alloc MP req bd\n");
627 		bnx2fc_free_mp_resc(io_req);
628 		return FAILED;
629 	}
630 	mp_req->mp_resp_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
631 						 &mp_req->mp_resp_bd_dma,
632 						 GFP_ATOMIC);
633 	if (!mp_req->mp_resp_bd) {
634 		printk(KERN_ERR PFX "unable to alloc MP resp bd\n");
635 		bnx2fc_free_mp_resc(io_req);
636 		return FAILED;
637 	}
638 	/* Fill bd table */
639 	addr = mp_req->req_buf_dma;
640 	mp_req_bd = mp_req->mp_req_bd;
641 	mp_req_bd->buf_addr_lo = (u32)addr & 0xffffffff;
642 	mp_req_bd->buf_addr_hi = (u32)((u64)addr >> 32);
643 	mp_req_bd->buf_len = CNIC_PAGE_SIZE;
644 	mp_req_bd->flags = 0;
645 
646 	/*
647 	 * MP buffer is either a task mgmt command or an ELS.
648 	 * So the assumption is that it consumes a single bd
649 	 * entry in the bd table
650 	 */
651 	mp_resp_bd = mp_req->mp_resp_bd;
652 	addr = mp_req->resp_buf_dma;
653 	mp_resp_bd->buf_addr_lo = (u32)addr & 0xffffffff;
654 	mp_resp_bd->buf_addr_hi = (u32)((u64)addr >> 32);
655 	mp_resp_bd->buf_len = CNIC_PAGE_SIZE;
656 	mp_resp_bd->flags = 0;
657 
658 	return SUCCESS;
659 }
660 
661 static int bnx2fc_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags)
662 {
663 	struct fc_lport *lport;
664 	struct fc_rport *rport;
665 	struct fc_rport_libfc_priv *rp;
666 	struct fcoe_port *port;
667 	struct bnx2fc_interface *interface;
668 	struct bnx2fc_rport *tgt;
669 	struct bnx2fc_cmd *io_req;
670 	struct bnx2fc_mp_req *tm_req;
671 	struct fcoe_task_ctx_entry *task;
672 	struct fcoe_task_ctx_entry *task_page;
673 	struct Scsi_Host *host = sc_cmd->device->host;
674 	struct fc_frame_header *fc_hdr;
675 	struct fcp_cmnd *fcp_cmnd;
676 	int task_idx, index;
677 	int rc = SUCCESS;
678 	u16 xid;
679 	u32 sid, did;
680 	unsigned long start = jiffies;
681 
682 	lport = shost_priv(host);
683 	rport = starget_to_rport(scsi_target(sc_cmd->device));
684 	port = lport_priv(lport);
685 	interface = port->priv;
686 
687 	if (rport == NULL) {
688 		printk(KERN_ERR PFX "device_reset: rport is NULL\n");
689 		rc = FAILED;
690 		goto tmf_err;
691 	}
692 	rp = rport->dd_data;
693 
694 	rc = fc_block_scsi_eh(sc_cmd);
695 	if (rc)
696 		return rc;
697 
698 	if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
699 		printk(KERN_ERR PFX "device_reset: link is not ready\n");
700 		rc = FAILED;
701 		goto tmf_err;
702 	}
703 	/* rport and tgt are allocated together, so tgt should be non-NULL */
704 	tgt = (struct bnx2fc_rport *)&rp[1];
705 
706 	if (!(test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags))) {
707 		printk(KERN_ERR PFX "device_reset: tgt not offloaded\n");
708 		rc = FAILED;
709 		goto tmf_err;
710 	}
711 retry_tmf:
712 	io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_TASK_MGMT_CMD);
713 	if (!io_req) {
714 		if (time_after(jiffies, start + HZ)) {
715 			printk(KERN_ERR PFX "tmf: Failed TMF");
716 			rc = FAILED;
717 			goto tmf_err;
718 		}
719 		msleep(20);
720 		goto retry_tmf;
721 	}
722 	/* Initialize rest of io_req fields */
723 	io_req->sc_cmd = sc_cmd;
724 	io_req->port = port;
725 	io_req->tgt = tgt;
726 
727 	tm_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
728 
729 	rc = bnx2fc_init_mp_req(io_req);
730 	if (rc == FAILED) {
731 		printk(KERN_ERR PFX "Task mgmt MP request init failed\n");
732 		spin_lock_bh(&tgt->tgt_lock);
733 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
734 		spin_unlock_bh(&tgt->tgt_lock);
735 		goto tmf_err;
736 	}
737 
738 	/* Set TM flags */
739 	io_req->io_req_flags = 0;
740 	tm_req->tm_flags = tm_flags;
741 
742 	/* Fill FCP_CMND */
743 	bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tm_req->req_buf);
744 	fcp_cmnd = (struct fcp_cmnd *)tm_req->req_buf;
745 	memset(fcp_cmnd->fc_cdb, 0,  sc_cmd->cmd_len);
746 	fcp_cmnd->fc_dl = 0;
747 
748 	/* Fill FC header */
749 	fc_hdr = &(tm_req->req_fc_hdr);
750 	sid = tgt->sid;
751 	did = rport->port_id;
752 	__fc_fill_fc_hdr(fc_hdr, FC_RCTL_DD_UNSOL_CMD, did, sid,
753 			   FC_TYPE_FCP, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
754 			   FC_FC_SEQ_INIT, 0);
755 	/* Obtain exchange id */
756 	xid = io_req->xid;
757 
758 	BNX2FC_TGT_DBG(tgt, "Initiate TMF - xid = 0x%x\n", xid);
759 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
760 	index = xid % BNX2FC_TASKS_PER_PAGE;
761 
762 	/* Initialize task context for this IO request */
763 	task_page = (struct fcoe_task_ctx_entry *)
764 			interface->hba->task_ctx[task_idx];
765 	task = &(task_page[index]);
766 	bnx2fc_init_mp_task(io_req, task);
767 
768 	sc_cmd->SCp.ptr = (char *)io_req;
769 
770 	/* Obtain free SQ entry */
771 	spin_lock_bh(&tgt->tgt_lock);
772 	bnx2fc_add_2_sq(tgt, xid);
773 
774 	/* Enqueue the io_req to active_tm_queue */
775 	io_req->on_tmf_queue = 1;
776 	list_add_tail(&io_req->link, &tgt->active_tm_queue);
777 
778 	init_completion(&io_req->tm_done);
779 	io_req->wait_for_comp = 1;
780 
781 	/* Ring doorbell */
782 	bnx2fc_ring_doorbell(tgt);
783 	spin_unlock_bh(&tgt->tgt_lock);
784 
785 	rc = wait_for_completion_timeout(&io_req->tm_done,
786 					 interface->tm_timeout * HZ);
787 	spin_lock_bh(&tgt->tgt_lock);
788 
789 	io_req->wait_for_comp = 0;
790 	if (!(test_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags))) {
791 		set_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags);
792 		if (io_req->on_tmf_queue) {
793 			list_del_init(&io_req->link);
794 			io_req->on_tmf_queue = 0;
795 		}
796 		io_req->wait_for_comp = 1;
797 		bnx2fc_initiate_cleanup(io_req);
798 		spin_unlock_bh(&tgt->tgt_lock);
799 		rc = wait_for_completion_timeout(&io_req->tm_done,
800 						 BNX2FC_FW_TIMEOUT);
801 		spin_lock_bh(&tgt->tgt_lock);
802 		io_req->wait_for_comp = 0;
803 		if (!rc)
804 			kref_put(&io_req->refcount, bnx2fc_cmd_release);
805 	}
806 
807 	spin_unlock_bh(&tgt->tgt_lock);
808 
809 	if (!rc) {
810 		BNX2FC_TGT_DBG(tgt, "task mgmt command failed...\n");
811 		rc = FAILED;
812 	} else {
813 		BNX2FC_TGT_DBG(tgt, "task mgmt command success...\n");
814 		rc = SUCCESS;
815 	}
816 tmf_err:
817 	return rc;
818 }
819 
820 int bnx2fc_initiate_abts(struct bnx2fc_cmd *io_req)
821 {
822 	struct fc_lport *lport;
823 	struct bnx2fc_rport *tgt = io_req->tgt;
824 	struct fc_rport *rport = tgt->rport;
825 	struct fc_rport_priv *rdata = tgt->rdata;
826 	struct bnx2fc_interface *interface;
827 	struct fcoe_port *port;
828 	struct bnx2fc_cmd *abts_io_req;
829 	struct fcoe_task_ctx_entry *task;
830 	struct fcoe_task_ctx_entry *task_page;
831 	struct fc_frame_header *fc_hdr;
832 	struct bnx2fc_mp_req *abts_req;
833 	int task_idx, index;
834 	u32 sid, did;
835 	u16 xid;
836 	int rc = SUCCESS;
837 	u32 r_a_tov = rdata->r_a_tov;
838 
839 	/* called with tgt_lock held */
840 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_abts\n");
841 
842 	port = io_req->port;
843 	interface = port->priv;
844 	lport = port->lport;
845 
846 	if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
847 		printk(KERN_ERR PFX "initiate_abts: tgt not offloaded\n");
848 		rc = FAILED;
849 		goto abts_err;
850 	}
851 
852 	if (rport == NULL) {
853 		printk(KERN_ERR PFX "initiate_abts: rport is NULL\n");
854 		rc = FAILED;
855 		goto abts_err;
856 	}
857 
858 	if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
859 		printk(KERN_ERR PFX "initiate_abts: link is not ready\n");
860 		rc = FAILED;
861 		goto abts_err;
862 	}
863 
864 	abts_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_ABTS);
865 	if (!abts_io_req) {
866 		printk(KERN_ERR PFX "abts: couldnt allocate cmd\n");
867 		rc = FAILED;
868 		goto abts_err;
869 	}
870 
871 	/* Initialize rest of io_req fields */
872 	abts_io_req->sc_cmd = NULL;
873 	abts_io_req->port = port;
874 	abts_io_req->tgt = tgt;
875 	abts_io_req->data_xfer_len = 0; /* No data transfer for ABTS */
876 
877 	abts_req = (struct bnx2fc_mp_req *)&(abts_io_req->mp_req);
878 	memset(abts_req, 0, sizeof(struct bnx2fc_mp_req));
879 
880 	/* Fill FC header */
881 	fc_hdr = &(abts_req->req_fc_hdr);
882 
883 	/* Obtain oxid and rxid for the original exchange to be aborted */
884 	fc_hdr->fh_ox_id = htons(io_req->xid);
885 	fc_hdr->fh_rx_id = htons(io_req->task->rxwr_txrd.var_ctx.rx_id);
886 
887 	sid = tgt->sid;
888 	did = rport->port_id;
889 
890 	__fc_fill_fc_hdr(fc_hdr, FC_RCTL_BA_ABTS, did, sid,
891 			   FC_TYPE_BLS, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
892 			   FC_FC_SEQ_INIT, 0);
893 
894 	xid = abts_io_req->xid;
895 	BNX2FC_IO_DBG(abts_io_req, "ABTS io_req\n");
896 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
897 	index = xid % BNX2FC_TASKS_PER_PAGE;
898 
899 	/* Initialize task context for this IO request */
900 	task_page = (struct fcoe_task_ctx_entry *)
901 			interface->hba->task_ctx[task_idx];
902 	task = &(task_page[index]);
903 	bnx2fc_init_mp_task(abts_io_req, task);
904 
905 	/*
906 	 * ABTS task is a temporary task that will be cleaned up
907 	 * irrespective of ABTS response. We need to start the timer
908 	 * for the original exchange, as the CQE is posted for the original
909 	 * IO request.
910 	 *
911 	 * Timer for ABTS is started only when it is originated by a
912 	 * TM request. For the ABTS issued as part of ULP timeout,
913 	 * scsi-ml maintains the timers.
914 	 */
915 
916 	/* if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))*/
917 	bnx2fc_cmd_timer_set(io_req, 2 * r_a_tov);
918 
919 	/* Obtain free SQ entry */
920 	bnx2fc_add_2_sq(tgt, xid);
921 
922 	/* Ring doorbell */
923 	bnx2fc_ring_doorbell(tgt);
924 
925 abts_err:
926 	return rc;
927 }
928 
929 int bnx2fc_initiate_seq_cleanup(struct bnx2fc_cmd *orig_io_req, u32 offset,
930 				enum fc_rctl r_ctl)
931 {
932 	struct fc_lport *lport;
933 	struct bnx2fc_rport *tgt = orig_io_req->tgt;
934 	struct bnx2fc_interface *interface;
935 	struct fcoe_port *port;
936 	struct bnx2fc_cmd *seq_clnp_req;
937 	struct fcoe_task_ctx_entry *task;
938 	struct fcoe_task_ctx_entry *task_page;
939 	struct bnx2fc_els_cb_arg *cb_arg = NULL;
940 	int task_idx, index;
941 	u16 xid;
942 	int rc = 0;
943 
944 	BNX2FC_IO_DBG(orig_io_req, "bnx2fc_initiate_seq_cleanup xid = 0x%x\n",
945 		   orig_io_req->xid);
946 	kref_get(&orig_io_req->refcount);
947 
948 	port = orig_io_req->port;
949 	interface = port->priv;
950 	lport = port->lport;
951 
952 	cb_arg = kzalloc(sizeof(struct bnx2fc_els_cb_arg), GFP_ATOMIC);
953 	if (!cb_arg) {
954 		printk(KERN_ERR PFX "Unable to alloc cb_arg for seq clnup\n");
955 		rc = -ENOMEM;
956 		goto cleanup_err;
957 	}
958 
959 	seq_clnp_req = bnx2fc_elstm_alloc(tgt, BNX2FC_SEQ_CLEANUP);
960 	if (!seq_clnp_req) {
961 		printk(KERN_ERR PFX "cleanup: couldnt allocate cmd\n");
962 		rc = -ENOMEM;
963 		kfree(cb_arg);
964 		goto cleanup_err;
965 	}
966 	/* Initialize rest of io_req fields */
967 	seq_clnp_req->sc_cmd = NULL;
968 	seq_clnp_req->port = port;
969 	seq_clnp_req->tgt = tgt;
970 	seq_clnp_req->data_xfer_len = 0; /* No data transfer for cleanup */
971 
972 	xid = seq_clnp_req->xid;
973 
974 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
975 	index = xid % BNX2FC_TASKS_PER_PAGE;
976 
977 	/* Initialize task context for this IO request */
978 	task_page = (struct fcoe_task_ctx_entry *)
979 		     interface->hba->task_ctx[task_idx];
980 	task = &(task_page[index]);
981 	cb_arg->aborted_io_req = orig_io_req;
982 	cb_arg->io_req = seq_clnp_req;
983 	cb_arg->r_ctl = r_ctl;
984 	cb_arg->offset = offset;
985 	seq_clnp_req->cb_arg = cb_arg;
986 
987 	printk(KERN_ERR PFX "call init_seq_cleanup_task\n");
988 	bnx2fc_init_seq_cleanup_task(seq_clnp_req, task, orig_io_req, offset);
989 
990 	/* Obtain free SQ entry */
991 	bnx2fc_add_2_sq(tgt, xid);
992 
993 	/* Ring doorbell */
994 	bnx2fc_ring_doorbell(tgt);
995 cleanup_err:
996 	return rc;
997 }
998 
999 int bnx2fc_initiate_cleanup(struct bnx2fc_cmd *io_req)
1000 {
1001 	struct fc_lport *lport;
1002 	struct bnx2fc_rport *tgt = io_req->tgt;
1003 	struct bnx2fc_interface *interface;
1004 	struct fcoe_port *port;
1005 	struct bnx2fc_cmd *cleanup_io_req;
1006 	struct fcoe_task_ctx_entry *task;
1007 	struct fcoe_task_ctx_entry *task_page;
1008 	int task_idx, index;
1009 	u16 xid, orig_xid;
1010 	int rc = 0;
1011 
1012 	/* ASSUMPTION: called with tgt_lock held */
1013 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_cleanup\n");
1014 
1015 	port = io_req->port;
1016 	interface = port->priv;
1017 	lport = port->lport;
1018 
1019 	cleanup_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_CLEANUP);
1020 	if (!cleanup_io_req) {
1021 		printk(KERN_ERR PFX "cleanup: couldnt allocate cmd\n");
1022 		rc = -1;
1023 		goto cleanup_err;
1024 	}
1025 
1026 	/* Initialize rest of io_req fields */
1027 	cleanup_io_req->sc_cmd = NULL;
1028 	cleanup_io_req->port = port;
1029 	cleanup_io_req->tgt = tgt;
1030 	cleanup_io_req->data_xfer_len = 0; /* No data transfer for cleanup */
1031 
1032 	xid = cleanup_io_req->xid;
1033 
1034 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
1035 	index = xid % BNX2FC_TASKS_PER_PAGE;
1036 
1037 	/* Initialize task context for this IO request */
1038 	task_page = (struct fcoe_task_ctx_entry *)
1039 			interface->hba->task_ctx[task_idx];
1040 	task = &(task_page[index]);
1041 	orig_xid = io_req->xid;
1042 
1043 	BNX2FC_IO_DBG(io_req, "CLEANUP io_req xid = 0x%x\n", xid);
1044 
1045 	bnx2fc_init_cleanup_task(cleanup_io_req, task, orig_xid);
1046 
1047 	/* Obtain free SQ entry */
1048 	bnx2fc_add_2_sq(tgt, xid);
1049 
1050 	/* Ring doorbell */
1051 	bnx2fc_ring_doorbell(tgt);
1052 
1053 cleanup_err:
1054 	return rc;
1055 }
1056 
1057 /**
1058  * bnx2fc_eh_target_reset: Reset a target
1059  *
1060  * @sc_cmd:	SCSI command
1061  *
1062  * Set from SCSI host template to send task mgmt command to the target
1063  *	and wait for the response
1064  */
1065 int bnx2fc_eh_target_reset(struct scsi_cmnd *sc_cmd)
1066 {
1067 	return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET);
1068 }
1069 
1070 /**
1071  * bnx2fc_eh_device_reset - Reset a single LUN
1072  *
1073  * @sc_cmd:	SCSI command
1074  *
1075  * Set from SCSI host template to send task mgmt command to the target
1076  *	and wait for the response
1077  */
1078 int bnx2fc_eh_device_reset(struct scsi_cmnd *sc_cmd)
1079 {
1080 	return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET);
1081 }
1082 
1083 static int bnx2fc_abts_cleanup(struct bnx2fc_cmd *io_req)
1084 {
1085 	struct bnx2fc_rport *tgt = io_req->tgt;
1086 	int rc = SUCCESS;
1087 	unsigned int time_left;
1088 
1089 	io_req->wait_for_comp = 1;
1090 	bnx2fc_initiate_cleanup(io_req);
1091 
1092 	spin_unlock_bh(&tgt->tgt_lock);
1093 
1094 	/*
1095 	 * Can't wait forever on cleanup response lest we let the SCSI error
1096 	 * handler wait forever
1097 	 */
1098 	time_left = wait_for_completion_timeout(&io_req->tm_done,
1099 						BNX2FC_FW_TIMEOUT);
1100 	io_req->wait_for_comp = 0;
1101 	if (!time_left)
1102 		BNX2FC_IO_DBG(io_req, "%s(): Wait for cleanup timed out.\n",
1103 			      __func__);
1104 
1105 	/*
1106 	 * Release reference held by SCSI command the cleanup completion
1107 	 * hits the BNX2FC_CLEANUP case in bnx2fc_process_cq_compl() and
1108 	 * thus the SCSI command is not returnedi by bnx2fc_scsi_done().
1109 	 */
1110 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
1111 
1112 	spin_lock_bh(&tgt->tgt_lock);
1113 	return rc;
1114 }
1115 
1116 /**
1117  * bnx2fc_eh_abort - eh_abort_handler api to abort an outstanding
1118  *			SCSI command
1119  *
1120  * @sc_cmd:	SCSI_ML command pointer
1121  *
1122  * SCSI abort request handler
1123  */
1124 int bnx2fc_eh_abort(struct scsi_cmnd *sc_cmd)
1125 {
1126 	struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
1127 	struct fc_rport_libfc_priv *rp = rport->dd_data;
1128 	struct bnx2fc_cmd *io_req;
1129 	struct fc_lport *lport;
1130 	struct bnx2fc_rport *tgt;
1131 	int rc;
1132 	unsigned int time_left;
1133 
1134 	rc = fc_block_scsi_eh(sc_cmd);
1135 	if (rc)
1136 		return rc;
1137 
1138 	lport = shost_priv(sc_cmd->device->host);
1139 	if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
1140 		printk(KERN_ERR PFX "eh_abort: link not ready\n");
1141 		return FAILED;
1142 	}
1143 
1144 	tgt = (struct bnx2fc_rport *)&rp[1];
1145 
1146 	BNX2FC_TGT_DBG(tgt, "Entered bnx2fc_eh_abort\n");
1147 
1148 	spin_lock_bh(&tgt->tgt_lock);
1149 	io_req = (struct bnx2fc_cmd *)sc_cmd->SCp.ptr;
1150 	if (!io_req) {
1151 		/* Command might have just completed */
1152 		printk(KERN_ERR PFX "eh_abort: io_req is NULL\n");
1153 		spin_unlock_bh(&tgt->tgt_lock);
1154 		return SUCCESS;
1155 	}
1156 	BNX2FC_IO_DBG(io_req, "eh_abort - refcnt = %d\n",
1157 		      kref_read(&io_req->refcount));
1158 
1159 	/* Hold IO request across abort processing */
1160 	kref_get(&io_req->refcount);
1161 
1162 	BUG_ON(tgt != io_req->tgt);
1163 
1164 	/* Remove the io_req from the active_q. */
1165 	/*
1166 	 * Task Mgmt functions (LUN RESET & TGT RESET) will not
1167 	 * issue an ABTS on this particular IO req, as the
1168 	 * io_req is no longer in the active_q.
1169 	 */
1170 	if (tgt->flush_in_prog) {
1171 		printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1172 			"flush in progress\n", io_req->xid);
1173 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
1174 		spin_unlock_bh(&tgt->tgt_lock);
1175 		return SUCCESS;
1176 	}
1177 
1178 	if (io_req->on_active_queue == 0) {
1179 		printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1180 				"not on active_q\n", io_req->xid);
1181 		/*
1182 		 * The IO is still with the FW.
1183 		 * Return failure and let SCSI-ml retry eh_abort.
1184 		 */
1185 		spin_unlock_bh(&tgt->tgt_lock);
1186 		return FAILED;
1187 	}
1188 
1189 	/*
1190 	 * Only eh_abort processing will remove the IO from
1191 	 * active_cmd_q before processing the request. this is
1192 	 * done to avoid race conditions between IOs aborted
1193 	 * as part of task management completion and eh_abort
1194 	 * processing
1195 	 */
1196 	list_del_init(&io_req->link);
1197 	io_req->on_active_queue = 0;
1198 	/* Move IO req to retire queue */
1199 	list_add_tail(&io_req->link, &tgt->io_retire_queue);
1200 
1201 	init_completion(&io_req->tm_done);
1202 
1203 	if (test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
1204 		printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1205 				"already in abts processing\n", io_req->xid);
1206 		if (cancel_delayed_work(&io_req->timeout_work))
1207 			kref_put(&io_req->refcount,
1208 				 bnx2fc_cmd_release); /* drop timer hold */
1209 		/*
1210 		 * We don't want to hold off the upper layer timer so simply
1211 		 * cleanup the command and return that I/O was successfully
1212 		 * aborted.
1213 		 */
1214 		rc = bnx2fc_abts_cleanup(io_req);
1215 		/* This only occurs when an task abort was requested while ABTS
1216 		   is in progress.  Setting the IO_CLEANUP flag will skip the
1217 		   RRQ process in the case when the fw generated SCSI_CMD cmpl
1218 		   was a result from the ABTS request rather than the CLEANUP
1219 		   request */
1220 		set_bit(BNX2FC_FLAG_IO_CLEANUP,	&io_req->req_flags);
1221 		goto done;
1222 	}
1223 
1224 	/* Cancel the current timer running on this io_req */
1225 	if (cancel_delayed_work(&io_req->timeout_work))
1226 		kref_put(&io_req->refcount,
1227 			 bnx2fc_cmd_release); /* drop timer hold */
1228 	set_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags);
1229 	io_req->wait_for_comp = 1;
1230 	rc = bnx2fc_initiate_abts(io_req);
1231 	if (rc == FAILED) {
1232 		bnx2fc_initiate_cleanup(io_req);
1233 		spin_unlock_bh(&tgt->tgt_lock);
1234 		wait_for_completion(&io_req->tm_done);
1235 		spin_lock_bh(&tgt->tgt_lock);
1236 		io_req->wait_for_comp = 0;
1237 		goto done;
1238 	}
1239 	spin_unlock_bh(&tgt->tgt_lock);
1240 
1241 	/* Wait 2 * RA_TOV + 1 to be sure timeout function hasn't fired */
1242 	time_left = wait_for_completion_timeout(&io_req->tm_done,
1243 	    (2 * rp->r_a_tov + 1) * HZ);
1244 	if (time_left)
1245 		BNX2FC_IO_DBG(io_req, "Timed out in eh_abort waiting for tm_done");
1246 
1247 	spin_lock_bh(&tgt->tgt_lock);
1248 	io_req->wait_for_comp = 0;
1249 	if (test_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) {
1250 		BNX2FC_IO_DBG(io_req, "IO completed in a different context\n");
1251 		rc = SUCCESS;
1252 	} else if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
1253 				      &io_req->req_flags))) {
1254 		/* Let the scsi-ml try to recover this command */
1255 		printk(KERN_ERR PFX "abort failed, xid = 0x%x\n",
1256 		       io_req->xid);
1257 		/*
1258 		 * Cleanup firmware residuals before returning control back
1259 		 * to SCSI ML.
1260 		 */
1261 		rc = bnx2fc_abts_cleanup(io_req);
1262 		goto done;
1263 	} else {
1264 		/*
1265 		 * We come here even when there was a race condition
1266 		 * between timeout and abts completion, and abts
1267 		 * completion happens just in time.
1268 		 */
1269 		BNX2FC_IO_DBG(io_req, "abort succeeded\n");
1270 		rc = SUCCESS;
1271 		bnx2fc_scsi_done(io_req, DID_ABORT);
1272 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
1273 	}
1274 done:
1275 	/* release the reference taken in eh_abort */
1276 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
1277 	spin_unlock_bh(&tgt->tgt_lock);
1278 	return rc;
1279 }
1280 
1281 void bnx2fc_process_seq_cleanup_compl(struct bnx2fc_cmd *seq_clnp_req,
1282 				      struct fcoe_task_ctx_entry *task,
1283 				      u8 rx_state)
1284 {
1285 	struct bnx2fc_els_cb_arg *cb_arg = seq_clnp_req->cb_arg;
1286 	struct bnx2fc_cmd *orig_io_req = cb_arg->aborted_io_req;
1287 	u32 offset = cb_arg->offset;
1288 	enum fc_rctl r_ctl = cb_arg->r_ctl;
1289 	int rc = 0;
1290 	struct bnx2fc_rport *tgt = orig_io_req->tgt;
1291 
1292 	BNX2FC_IO_DBG(orig_io_req, "Entered process_cleanup_compl xid = 0x%x"
1293 			      "cmd_type = %d\n",
1294 		   seq_clnp_req->xid, seq_clnp_req->cmd_type);
1295 
1296 	if (rx_state == FCOE_TASK_RX_STATE_IGNORED_SEQUENCE_CLEANUP) {
1297 		printk(KERN_ERR PFX "seq cleanup ignored - xid = 0x%x\n",
1298 			seq_clnp_req->xid);
1299 		goto free_cb_arg;
1300 	}
1301 
1302 	spin_unlock_bh(&tgt->tgt_lock);
1303 	rc = bnx2fc_send_srr(orig_io_req, offset, r_ctl);
1304 	spin_lock_bh(&tgt->tgt_lock);
1305 
1306 	if (rc)
1307 		printk(KERN_ERR PFX "clnup_compl: Unable to send SRR"
1308 			" IO will abort\n");
1309 	seq_clnp_req->cb_arg = NULL;
1310 	kref_put(&orig_io_req->refcount, bnx2fc_cmd_release);
1311 free_cb_arg:
1312 	kfree(cb_arg);
1313 	return;
1314 }
1315 
1316 void bnx2fc_process_cleanup_compl(struct bnx2fc_cmd *io_req,
1317 				  struct fcoe_task_ctx_entry *task,
1318 				  u8 num_rq)
1319 {
1320 	BNX2FC_IO_DBG(io_req, "Entered process_cleanup_compl "
1321 			      "refcnt = %d, cmd_type = %d\n",
1322 		   kref_read(&io_req->refcount), io_req->cmd_type);
1323 	bnx2fc_scsi_done(io_req, DID_ERROR);
1324 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
1325 	if (io_req->wait_for_comp)
1326 		complete(&io_req->tm_done);
1327 }
1328 
1329 void bnx2fc_process_abts_compl(struct bnx2fc_cmd *io_req,
1330 			       struct fcoe_task_ctx_entry *task,
1331 			       u8 num_rq)
1332 {
1333 	u32 r_ctl;
1334 	u32 r_a_tov = FC_DEF_R_A_TOV;
1335 	u8 issue_rrq = 0;
1336 	struct bnx2fc_rport *tgt = io_req->tgt;
1337 
1338 	BNX2FC_IO_DBG(io_req, "Entered process_abts_compl xid = 0x%x"
1339 			      "refcnt = %d, cmd_type = %d\n",
1340 		   io_req->xid,
1341 		   kref_read(&io_req->refcount), io_req->cmd_type);
1342 
1343 	if (test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
1344 				       &io_req->req_flags)) {
1345 		BNX2FC_IO_DBG(io_req, "Timer context finished processing"
1346 				" this io\n");
1347 		return;
1348 	}
1349 
1350 	/* Do not issue RRQ as this IO is already cleanedup */
1351 	if (test_and_set_bit(BNX2FC_FLAG_IO_CLEANUP,
1352 				&io_req->req_flags))
1353 		goto io_compl;
1354 
1355 	/*
1356 	 * For ABTS issued due to SCSI eh_abort_handler, timeout
1357 	 * values are maintained by scsi-ml itself. Cancel timeout
1358 	 * in case ABTS issued as part of task management function
1359 	 * or due to FW error.
1360 	 */
1361 	if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))
1362 		if (cancel_delayed_work(&io_req->timeout_work))
1363 			kref_put(&io_req->refcount,
1364 				 bnx2fc_cmd_release); /* drop timer hold */
1365 
1366 	r_ctl = (u8)task->rxwr_only.union_ctx.comp_info.abts_rsp.r_ctl;
1367 
1368 	switch (r_ctl) {
1369 	case FC_RCTL_BA_ACC:
1370 		/*
1371 		 * Dont release this cmd yet. It will be relesed
1372 		 * after we get RRQ response
1373 		 */
1374 		BNX2FC_IO_DBG(io_req, "ABTS response - ACC Send RRQ\n");
1375 		issue_rrq = 1;
1376 		break;
1377 
1378 	case FC_RCTL_BA_RJT:
1379 		BNX2FC_IO_DBG(io_req, "ABTS response - RJT\n");
1380 		break;
1381 	default:
1382 		printk(KERN_ERR PFX "Unknown ABTS response\n");
1383 		break;
1384 	}
1385 
1386 	if (issue_rrq) {
1387 		BNX2FC_IO_DBG(io_req, "Issue RRQ after R_A_TOV\n");
1388 		set_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags);
1389 	}
1390 	set_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
1391 	bnx2fc_cmd_timer_set(io_req, r_a_tov);
1392 
1393 io_compl:
1394 	if (io_req->wait_for_comp) {
1395 		if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
1396 				       &io_req->req_flags))
1397 			complete(&io_req->tm_done);
1398 	} else {
1399 		/*
1400 		 * We end up here when ABTS is issued as
1401 		 * in asynchronous context, i.e., as part
1402 		 * of task management completion, or
1403 		 * when FW error is received or when the
1404 		 * ABTS is issued when the IO is timed
1405 		 * out.
1406 		 */
1407 
1408 		if (io_req->on_active_queue) {
1409 			list_del_init(&io_req->link);
1410 			io_req->on_active_queue = 0;
1411 			/* Move IO req to retire queue */
1412 			list_add_tail(&io_req->link, &tgt->io_retire_queue);
1413 		}
1414 		bnx2fc_scsi_done(io_req, DID_ERROR);
1415 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
1416 	}
1417 }
1418 
1419 static void bnx2fc_lun_reset_cmpl(struct bnx2fc_cmd *io_req)
1420 {
1421 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1422 	struct bnx2fc_rport *tgt = io_req->tgt;
1423 	struct bnx2fc_cmd *cmd, *tmp;
1424 	u64 tm_lun = sc_cmd->device->lun;
1425 	u64 lun;
1426 	int rc = 0;
1427 
1428 	/* called with tgt_lock held */
1429 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_lun_reset_cmpl\n");
1430 	/*
1431 	 * Walk thru the active_ios queue and ABORT the IO
1432 	 * that matches with the LUN that was reset
1433 	 */
1434 	list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) {
1435 		BNX2FC_TGT_DBG(tgt, "LUN RST cmpl: scan for pending IOs\n");
1436 		lun = cmd->sc_cmd->device->lun;
1437 		if (lun == tm_lun) {
1438 			/* Initiate ABTS on this cmd */
1439 			if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
1440 					      &cmd->req_flags)) {
1441 				/* cancel the IO timeout */
1442 				if (cancel_delayed_work(&io_req->timeout_work))
1443 					kref_put(&io_req->refcount,
1444 						 bnx2fc_cmd_release);
1445 							/* timer hold */
1446 				rc = bnx2fc_initiate_abts(cmd);
1447 				/* abts shouldn't fail in this context */
1448 				WARN_ON(rc != SUCCESS);
1449 			} else
1450 				printk(KERN_ERR PFX "lun_rst: abts already in"
1451 					" progress for this IO 0x%x\n",
1452 					cmd->xid);
1453 		}
1454 	}
1455 }
1456 
1457 static void bnx2fc_tgt_reset_cmpl(struct bnx2fc_cmd *io_req)
1458 {
1459 	struct bnx2fc_rport *tgt = io_req->tgt;
1460 	struct bnx2fc_cmd *cmd, *tmp;
1461 	int rc = 0;
1462 
1463 	/* called with tgt_lock held */
1464 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_tgt_reset_cmpl\n");
1465 	/*
1466 	 * Walk thru the active_ios queue and ABORT the IO
1467 	 * that matches with the LUN that was reset
1468 	 */
1469 	list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) {
1470 		BNX2FC_TGT_DBG(tgt, "TGT RST cmpl: scan for pending IOs\n");
1471 		/* Initiate ABTS */
1472 		if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
1473 							&cmd->req_flags)) {
1474 			/* cancel the IO timeout */
1475 			if (cancel_delayed_work(&io_req->timeout_work))
1476 				kref_put(&io_req->refcount,
1477 					 bnx2fc_cmd_release); /* timer hold */
1478 			rc = bnx2fc_initiate_abts(cmd);
1479 			/* abts shouldn't fail in this context */
1480 			WARN_ON(rc != SUCCESS);
1481 
1482 		} else
1483 			printk(KERN_ERR PFX "tgt_rst: abts already in progress"
1484 				" for this IO 0x%x\n", cmd->xid);
1485 	}
1486 }
1487 
1488 void bnx2fc_process_tm_compl(struct bnx2fc_cmd *io_req,
1489 			     struct fcoe_task_ctx_entry *task, u8 num_rq)
1490 {
1491 	struct bnx2fc_mp_req *tm_req;
1492 	struct fc_frame_header *fc_hdr;
1493 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1494 	u64 *hdr;
1495 	u64 *temp_hdr;
1496 	void *rsp_buf;
1497 
1498 	/* Called with tgt_lock held */
1499 	BNX2FC_IO_DBG(io_req, "Entered process_tm_compl\n");
1500 
1501 	if (!(test_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags)))
1502 		set_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags);
1503 	else {
1504 		/* TM has already timed out and we got
1505 		 * delayed completion. Ignore completion
1506 		 * processing.
1507 		 */
1508 		return;
1509 	}
1510 
1511 	tm_req = &(io_req->mp_req);
1512 	fc_hdr = &(tm_req->resp_fc_hdr);
1513 	hdr = (u64 *)fc_hdr;
1514 	temp_hdr = (u64 *)
1515 		&task->rxwr_only.union_ctx.comp_info.mp_rsp.fc_hdr;
1516 	hdr[0] = cpu_to_be64(temp_hdr[0]);
1517 	hdr[1] = cpu_to_be64(temp_hdr[1]);
1518 	hdr[2] = cpu_to_be64(temp_hdr[2]);
1519 
1520 	tm_req->resp_len =
1521 		task->rxwr_only.union_ctx.comp_info.mp_rsp.mp_payload_len;
1522 
1523 	rsp_buf = tm_req->resp_buf;
1524 
1525 	if (fc_hdr->fh_r_ctl == FC_RCTL_DD_CMD_STATUS) {
1526 		bnx2fc_parse_fcp_rsp(io_req,
1527 				     (struct fcoe_fcp_rsp_payload *)
1528 				     rsp_buf, num_rq);
1529 		if (io_req->fcp_rsp_code == 0) {
1530 			/* TM successful */
1531 			if (tm_req->tm_flags & FCP_TMF_LUN_RESET)
1532 				bnx2fc_lun_reset_cmpl(io_req);
1533 			else if (tm_req->tm_flags & FCP_TMF_TGT_RESET)
1534 				bnx2fc_tgt_reset_cmpl(io_req);
1535 		}
1536 	} else {
1537 		printk(KERN_ERR PFX "tmf's fc_hdr r_ctl = 0x%x\n",
1538 			fc_hdr->fh_r_ctl);
1539 	}
1540 	if (!sc_cmd->SCp.ptr) {
1541 		printk(KERN_ERR PFX "tm_compl: SCp.ptr is NULL\n");
1542 		return;
1543 	}
1544 	switch (io_req->fcp_status) {
1545 	case FC_GOOD:
1546 		if (io_req->cdb_status == 0) {
1547 			/* Good IO completion */
1548 			sc_cmd->result = DID_OK << 16;
1549 		} else {
1550 			/* Transport status is good, SCSI status not good */
1551 			sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
1552 		}
1553 		if (io_req->fcp_resid)
1554 			scsi_set_resid(sc_cmd, io_req->fcp_resid);
1555 		break;
1556 
1557 	default:
1558 		BNX2FC_IO_DBG(io_req, "process_tm_compl: fcp_status = %d\n",
1559 			   io_req->fcp_status);
1560 		break;
1561 	}
1562 
1563 	sc_cmd = io_req->sc_cmd;
1564 	io_req->sc_cmd = NULL;
1565 
1566 	/* check if the io_req exists in tgt's tmf_q */
1567 	if (io_req->on_tmf_queue) {
1568 
1569 		list_del_init(&io_req->link);
1570 		io_req->on_tmf_queue = 0;
1571 	} else {
1572 
1573 		printk(KERN_ERR PFX "Command not on active_cmd_queue!\n");
1574 		return;
1575 	}
1576 
1577 	sc_cmd->SCp.ptr = NULL;
1578 	sc_cmd->scsi_done(sc_cmd);
1579 
1580 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
1581 	if (io_req->wait_for_comp) {
1582 		BNX2FC_IO_DBG(io_req, "tm_compl - wake up the waiter\n");
1583 		complete(&io_req->tm_done);
1584 	}
1585 }
1586 
1587 static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
1588 			   int bd_index)
1589 {
1590 	struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1591 	int frag_size, sg_frags;
1592 
1593 	sg_frags = 0;
1594 	while (sg_len) {
1595 		if (sg_len >= BNX2FC_BD_SPLIT_SZ)
1596 			frag_size = BNX2FC_BD_SPLIT_SZ;
1597 		else
1598 			frag_size = sg_len;
1599 		bd[bd_index + sg_frags].buf_addr_lo = addr & 0xffffffff;
1600 		bd[bd_index + sg_frags].buf_addr_hi  = addr >> 32;
1601 		bd[bd_index + sg_frags].buf_len = (u16)frag_size;
1602 		bd[bd_index + sg_frags].flags = 0;
1603 
1604 		addr += (u64) frag_size;
1605 		sg_frags++;
1606 		sg_len -= frag_size;
1607 	}
1608 	return sg_frags;
1609 
1610 }
1611 
1612 static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req)
1613 {
1614 	struct bnx2fc_interface *interface = io_req->port->priv;
1615 	struct bnx2fc_hba *hba = interface->hba;
1616 	struct scsi_cmnd *sc = io_req->sc_cmd;
1617 	struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1618 	struct scatterlist *sg;
1619 	int byte_count = 0;
1620 	int sg_count = 0;
1621 	int bd_count = 0;
1622 	int sg_frags;
1623 	unsigned int sg_len;
1624 	u64 addr;
1625 	int i;
1626 
1627 	/*
1628 	 * Use dma_map_sg directly to ensure we're using the correct
1629 	 * dev struct off of pcidev.
1630 	 */
1631 	sg_count = dma_map_sg(&hba->pcidev->dev, scsi_sglist(sc),
1632 			      scsi_sg_count(sc), sc->sc_data_direction);
1633 	scsi_for_each_sg(sc, sg, sg_count, i) {
1634 		sg_len = sg_dma_len(sg);
1635 		addr = sg_dma_address(sg);
1636 		if (sg_len > BNX2FC_MAX_BD_LEN) {
1637 			sg_frags = bnx2fc_split_bd(io_req, addr, sg_len,
1638 						   bd_count);
1639 		} else {
1640 
1641 			sg_frags = 1;
1642 			bd[bd_count].buf_addr_lo = addr & 0xffffffff;
1643 			bd[bd_count].buf_addr_hi  = addr >> 32;
1644 			bd[bd_count].buf_len = (u16)sg_len;
1645 			bd[bd_count].flags = 0;
1646 		}
1647 		bd_count += sg_frags;
1648 		byte_count += sg_len;
1649 	}
1650 	if (byte_count != scsi_bufflen(sc))
1651 		printk(KERN_ERR PFX "byte_count = %d != scsi_bufflen = %d, "
1652 			"task_id = 0x%x\n", byte_count, scsi_bufflen(sc),
1653 			io_req->xid);
1654 	return bd_count;
1655 }
1656 
1657 static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req)
1658 {
1659 	struct scsi_cmnd *sc = io_req->sc_cmd;
1660 	struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1661 	int bd_count;
1662 
1663 	if (scsi_sg_count(sc)) {
1664 		bd_count = bnx2fc_map_sg(io_req);
1665 		if (bd_count == 0)
1666 			return -ENOMEM;
1667 	} else {
1668 		bd_count = 0;
1669 		bd[0].buf_addr_lo = bd[0].buf_addr_hi = 0;
1670 		bd[0].buf_len = bd[0].flags = 0;
1671 	}
1672 	io_req->bd_tbl->bd_valid = bd_count;
1673 
1674 	return 0;
1675 }
1676 
1677 static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req)
1678 {
1679 	struct scsi_cmnd *sc = io_req->sc_cmd;
1680 	struct bnx2fc_interface *interface = io_req->port->priv;
1681 	struct bnx2fc_hba *hba = interface->hba;
1682 
1683 	/*
1684 	 * Use dma_unmap_sg directly to ensure we're using the correct
1685 	 * dev struct off of pcidev.
1686 	 */
1687 	if (io_req->bd_tbl->bd_valid && sc && scsi_sg_count(sc)) {
1688 		dma_unmap_sg(&hba->pcidev->dev, scsi_sglist(sc),
1689 		    scsi_sg_count(sc), sc->sc_data_direction);
1690 		io_req->bd_tbl->bd_valid = 0;
1691 	}
1692 }
1693 
1694 void bnx2fc_build_fcp_cmnd(struct bnx2fc_cmd *io_req,
1695 				  struct fcp_cmnd *fcp_cmnd)
1696 {
1697 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1698 
1699 	memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
1700 
1701 	int_to_scsilun(sc_cmd->device->lun, &fcp_cmnd->fc_lun);
1702 
1703 	fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len);
1704 	memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len);
1705 
1706 	fcp_cmnd->fc_cmdref = 0;
1707 	fcp_cmnd->fc_pri_ta = 0;
1708 	fcp_cmnd->fc_tm_flags = io_req->mp_req.tm_flags;
1709 	fcp_cmnd->fc_flags = io_req->io_req_flags;
1710 	fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE;
1711 }
1712 
1713 static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
1714 				 struct fcoe_fcp_rsp_payload *fcp_rsp,
1715 				 u8 num_rq)
1716 {
1717 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1718 	struct bnx2fc_rport *tgt = io_req->tgt;
1719 	u8 rsp_flags = fcp_rsp->fcp_flags.flags;
1720 	u32 rq_buff_len = 0;
1721 	int i;
1722 	unsigned char *rq_data;
1723 	unsigned char *dummy;
1724 	int fcp_sns_len = 0;
1725 	int fcp_rsp_len = 0;
1726 
1727 	io_req->fcp_status = FC_GOOD;
1728 	io_req->fcp_resid = 0;
1729 	if (rsp_flags & (FCOE_FCP_RSP_FLAGS_FCP_RESID_OVER |
1730 	    FCOE_FCP_RSP_FLAGS_FCP_RESID_UNDER))
1731 		io_req->fcp_resid = fcp_rsp->fcp_resid;
1732 
1733 	io_req->scsi_comp_flags = rsp_flags;
1734 	CMD_SCSI_STATUS(sc_cmd) = io_req->cdb_status =
1735 				fcp_rsp->scsi_status_code;
1736 
1737 	/* Fetch fcp_rsp_info and fcp_sns_info if available */
1738 	if (num_rq) {
1739 
1740 		/*
1741 		 * We do not anticipate num_rq >1, as the linux defined
1742 		 * SCSI_SENSE_BUFFERSIZE is 96 bytes + 8 bytes of FCP_RSP_INFO
1743 		 * 256 bytes of single rq buffer is good enough to hold this.
1744 		 */
1745 
1746 		if (rsp_flags &
1747 		    FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID) {
1748 			fcp_rsp_len = rq_buff_len
1749 					= fcp_rsp->fcp_rsp_len;
1750 		}
1751 
1752 		if (rsp_flags &
1753 		    FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID) {
1754 			fcp_sns_len = fcp_rsp->fcp_sns_len;
1755 			rq_buff_len += fcp_rsp->fcp_sns_len;
1756 		}
1757 
1758 		io_req->fcp_rsp_len = fcp_rsp_len;
1759 		io_req->fcp_sns_len = fcp_sns_len;
1760 
1761 		if (rq_buff_len > num_rq * BNX2FC_RQ_BUF_SZ) {
1762 			/* Invalid sense sense length. */
1763 			printk(KERN_ERR PFX "invalid sns length %d\n",
1764 				rq_buff_len);
1765 			/* reset rq_buff_len */
1766 			rq_buff_len =  num_rq * BNX2FC_RQ_BUF_SZ;
1767 		}
1768 
1769 		rq_data = bnx2fc_get_next_rqe(tgt, 1);
1770 
1771 		if (num_rq > 1) {
1772 			/* We do not need extra sense data */
1773 			for (i = 1; i < num_rq; i++)
1774 				dummy = bnx2fc_get_next_rqe(tgt, 1);
1775 		}
1776 
1777 		/* fetch fcp_rsp_code */
1778 		if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) {
1779 			/* Only for task management function */
1780 			io_req->fcp_rsp_code = rq_data[3];
1781 			BNX2FC_IO_DBG(io_req, "fcp_rsp_code = %d\n",
1782 				io_req->fcp_rsp_code);
1783 		}
1784 
1785 		/* fetch sense data */
1786 		rq_data += fcp_rsp_len;
1787 
1788 		if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) {
1789 			printk(KERN_ERR PFX "Truncating sense buffer\n");
1790 			fcp_sns_len = SCSI_SENSE_BUFFERSIZE;
1791 		}
1792 
1793 		memset(sc_cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1794 		if (fcp_sns_len)
1795 			memcpy(sc_cmd->sense_buffer, rq_data, fcp_sns_len);
1796 
1797 		/* return RQ entries */
1798 		for (i = 0; i < num_rq; i++)
1799 			bnx2fc_return_rqe(tgt, 1);
1800 	}
1801 }
1802 
1803 /**
1804  * bnx2fc_queuecommand - Queuecommand function of the scsi template
1805  *
1806  * @host:	The Scsi_Host the command was issued to
1807  * @sc_cmd:	struct scsi_cmnd to be executed
1808  *
1809  * This is the IO strategy routine, called by SCSI-ML
1810  **/
1811 int bnx2fc_queuecommand(struct Scsi_Host *host,
1812 			struct scsi_cmnd *sc_cmd)
1813 {
1814 	struct fc_lport *lport = shost_priv(host);
1815 	struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
1816 	struct fc_rport_libfc_priv *rp = rport->dd_data;
1817 	struct bnx2fc_rport *tgt;
1818 	struct bnx2fc_cmd *io_req;
1819 	int rc = 0;
1820 	int rval;
1821 
1822 	rval = fc_remote_port_chkready(rport);
1823 	if (rval) {
1824 		sc_cmd->result = rval;
1825 		sc_cmd->scsi_done(sc_cmd);
1826 		return 0;
1827 	}
1828 
1829 	if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
1830 		rc = SCSI_MLQUEUE_HOST_BUSY;
1831 		goto exit_qcmd;
1832 	}
1833 
1834 	/* rport and tgt are allocated together, so tgt should be non-NULL */
1835 	tgt = (struct bnx2fc_rport *)&rp[1];
1836 
1837 	if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
1838 		/*
1839 		 * Session is not offloaded yet. Let SCSI-ml retry
1840 		 * the command.
1841 		 */
1842 		rc = SCSI_MLQUEUE_TARGET_BUSY;
1843 		goto exit_qcmd;
1844 	}
1845 	if (tgt->retry_delay_timestamp) {
1846 		if (time_after(jiffies, tgt->retry_delay_timestamp)) {
1847 			tgt->retry_delay_timestamp = 0;
1848 		} else {
1849 			/* If retry_delay timer is active, flow off the ML */
1850 			rc = SCSI_MLQUEUE_TARGET_BUSY;
1851 			goto exit_qcmd;
1852 		}
1853 	}
1854 
1855 	spin_lock_bh(&tgt->tgt_lock);
1856 
1857 	io_req = bnx2fc_cmd_alloc(tgt);
1858 	if (!io_req) {
1859 		rc = SCSI_MLQUEUE_HOST_BUSY;
1860 		goto exit_qcmd_tgtlock;
1861 	}
1862 	io_req->sc_cmd = sc_cmd;
1863 
1864 	if (bnx2fc_post_io_req(tgt, io_req)) {
1865 		printk(KERN_ERR PFX "Unable to post io_req\n");
1866 		rc = SCSI_MLQUEUE_HOST_BUSY;
1867 		goto exit_qcmd_tgtlock;
1868 	}
1869 
1870 exit_qcmd_tgtlock:
1871 	spin_unlock_bh(&tgt->tgt_lock);
1872 exit_qcmd:
1873 	return rc;
1874 }
1875 
1876 void bnx2fc_process_scsi_cmd_compl(struct bnx2fc_cmd *io_req,
1877 				   struct fcoe_task_ctx_entry *task,
1878 				   u8 num_rq)
1879 {
1880 	struct fcoe_fcp_rsp_payload *fcp_rsp;
1881 	struct bnx2fc_rport *tgt = io_req->tgt;
1882 	struct scsi_cmnd *sc_cmd;
1883 	struct Scsi_Host *host;
1884 
1885 
1886 	/* scsi_cmd_cmpl is called with tgt lock held */
1887 
1888 	if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) {
1889 		/* we will not receive ABTS response for this IO */
1890 		BNX2FC_IO_DBG(io_req, "Timer context finished processing "
1891 			   "this scsi cmd\n");
1892 		return;
1893 	}
1894 
1895 	/* Cancel the timeout_work, as we received IO completion */
1896 	if (cancel_delayed_work(&io_req->timeout_work))
1897 		kref_put(&io_req->refcount,
1898 			 bnx2fc_cmd_release); /* drop timer hold */
1899 
1900 	sc_cmd = io_req->sc_cmd;
1901 	if (sc_cmd == NULL) {
1902 		printk(KERN_ERR PFX "scsi_cmd_compl - sc_cmd is NULL\n");
1903 		return;
1904 	}
1905 
1906 	/* Fetch fcp_rsp from task context and perform cmd completion */
1907 	fcp_rsp = (struct fcoe_fcp_rsp_payload *)
1908 		   &(task->rxwr_only.union_ctx.comp_info.fcp_rsp.payload);
1909 
1910 	/* parse fcp_rsp and obtain sense data from RQ if available */
1911 	bnx2fc_parse_fcp_rsp(io_req, fcp_rsp, num_rq);
1912 
1913 	host = sc_cmd->device->host;
1914 	if (!sc_cmd->SCp.ptr) {
1915 		printk(KERN_ERR PFX "SCp.ptr is NULL\n");
1916 		return;
1917 	}
1918 
1919 	if (io_req->on_active_queue) {
1920 		list_del_init(&io_req->link);
1921 		io_req->on_active_queue = 0;
1922 		/* Move IO req to retire queue */
1923 		list_add_tail(&io_req->link, &tgt->io_retire_queue);
1924 	} else {
1925 		/* This should not happen, but could have been pulled
1926 		 * by bnx2fc_flush_active_ios(), or during a race
1927 		 * between command abort and (late) completion.
1928 		 */
1929 		BNX2FC_IO_DBG(io_req, "xid not on active_cmd_queue\n");
1930 		if (io_req->wait_for_comp)
1931 			if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
1932 					       &io_req->req_flags))
1933 				complete(&io_req->tm_done);
1934 	}
1935 
1936 	bnx2fc_unmap_sg_list(io_req);
1937 	io_req->sc_cmd = NULL;
1938 
1939 	switch (io_req->fcp_status) {
1940 	case FC_GOOD:
1941 		if (io_req->cdb_status == 0) {
1942 			/* Good IO completion */
1943 			sc_cmd->result = DID_OK << 16;
1944 		} else {
1945 			/* Transport status is good, SCSI status not good */
1946 			BNX2FC_IO_DBG(io_req, "scsi_cmpl: cdb_status = %d"
1947 				 " fcp_resid = 0x%x\n",
1948 				io_req->cdb_status, io_req->fcp_resid);
1949 			sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
1950 
1951 			if (io_req->cdb_status == SAM_STAT_TASK_SET_FULL ||
1952 			    io_req->cdb_status == SAM_STAT_BUSY) {
1953 				/* Set the jiffies + retry_delay_timer * 100ms
1954 				   for the rport/tgt */
1955 				tgt->retry_delay_timestamp = jiffies +
1956 					fcp_rsp->retry_delay_timer * HZ / 10;
1957 			}
1958 
1959 		}
1960 		if (io_req->fcp_resid)
1961 			scsi_set_resid(sc_cmd, io_req->fcp_resid);
1962 		break;
1963 	default:
1964 		printk(KERN_ERR PFX "scsi_cmd_compl: fcp_status = %d\n",
1965 			io_req->fcp_status);
1966 		break;
1967 	}
1968 	sc_cmd->SCp.ptr = NULL;
1969 	sc_cmd->scsi_done(sc_cmd);
1970 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
1971 }
1972 
1973 int bnx2fc_post_io_req(struct bnx2fc_rport *tgt,
1974 			       struct bnx2fc_cmd *io_req)
1975 {
1976 	struct fcoe_task_ctx_entry *task;
1977 	struct fcoe_task_ctx_entry *task_page;
1978 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1979 	struct fcoe_port *port = tgt->port;
1980 	struct bnx2fc_interface *interface = port->priv;
1981 	struct bnx2fc_hba *hba = interface->hba;
1982 	struct fc_lport *lport = port->lport;
1983 	struct fc_stats *stats;
1984 	int task_idx, index;
1985 	u16 xid;
1986 
1987 	/* bnx2fc_post_io_req() is called with the tgt_lock held */
1988 
1989 	/* Initialize rest of io_req fields */
1990 	io_req->cmd_type = BNX2FC_SCSI_CMD;
1991 	io_req->port = port;
1992 	io_req->tgt = tgt;
1993 	io_req->data_xfer_len = scsi_bufflen(sc_cmd);
1994 	sc_cmd->SCp.ptr = (char *)io_req;
1995 
1996 	stats = per_cpu_ptr(lport->stats, get_cpu());
1997 	if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) {
1998 		io_req->io_req_flags = BNX2FC_READ;
1999 		stats->InputRequests++;
2000 		stats->InputBytes += io_req->data_xfer_len;
2001 	} else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) {
2002 		io_req->io_req_flags = BNX2FC_WRITE;
2003 		stats->OutputRequests++;
2004 		stats->OutputBytes += io_req->data_xfer_len;
2005 	} else {
2006 		io_req->io_req_flags = 0;
2007 		stats->ControlRequests++;
2008 	}
2009 	put_cpu();
2010 
2011 	xid = io_req->xid;
2012 
2013 	/* Build buffer descriptor list for firmware from sg list */
2014 	if (bnx2fc_build_bd_list_from_sg(io_req)) {
2015 		printk(KERN_ERR PFX "BD list creation failed\n");
2016 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
2017 		return -EAGAIN;
2018 	}
2019 
2020 	task_idx = xid / BNX2FC_TASKS_PER_PAGE;
2021 	index = xid % BNX2FC_TASKS_PER_PAGE;
2022 
2023 	/* Initialize task context for this IO request */
2024 	task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx];
2025 	task = &(task_page[index]);
2026 	bnx2fc_init_task(io_req, task);
2027 
2028 	if (tgt->flush_in_prog) {
2029 		printk(KERN_ERR PFX "Flush in progress..Host Busy\n");
2030 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
2031 		return -EAGAIN;
2032 	}
2033 
2034 	if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
2035 		printk(KERN_ERR PFX "Session not ready...post_io\n");
2036 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
2037 		return -EAGAIN;
2038 	}
2039 
2040 	/* Time IO req */
2041 	if (tgt->io_timeout)
2042 		bnx2fc_cmd_timer_set(io_req, BNX2FC_IO_TIMEOUT);
2043 	/* Obtain free SQ entry */
2044 	bnx2fc_add_2_sq(tgt, xid);
2045 
2046 	/* Enqueue the io_req to active_cmd_queue */
2047 
2048 	io_req->on_active_queue = 1;
2049 	/* move io_req from pending_queue to active_queue */
2050 	list_add_tail(&io_req->link, &tgt->active_cmd_queue);
2051 
2052 	/* Ring doorbell */
2053 	bnx2fc_ring_doorbell(tgt);
2054 	return 0;
2055 }
2056