1 /* bnx2fc_io.c: QLogic Linux FCoE offload driver. 2 * IO manager and SCSI IO processing. 3 * 4 * Copyright (c) 2008-2013 Broadcom Corporation 5 * Copyright (c) 2014-2016 QLogic Corporation 6 * Copyright (c) 2016-2017 Cavium Inc. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation. 11 * 12 * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com) 13 */ 14 15 #include "bnx2fc.h" 16 17 #define RESERVE_FREE_LIST_INDEX num_possible_cpus() 18 19 static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len, 20 int bd_index); 21 static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req); 22 static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req); 23 static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req); 24 static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req); 25 static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req, 26 struct fcoe_fcp_rsp_payload *fcp_rsp, 27 u8 num_rq); 28 29 void bnx2fc_cmd_timer_set(struct bnx2fc_cmd *io_req, 30 unsigned int timer_msec) 31 { 32 struct bnx2fc_interface *interface = io_req->port->priv; 33 34 if (queue_delayed_work(interface->timer_work_queue, 35 &io_req->timeout_work, 36 msecs_to_jiffies(timer_msec))) 37 kref_get(&io_req->refcount); 38 } 39 40 static void bnx2fc_cmd_timeout(struct work_struct *work) 41 { 42 struct bnx2fc_cmd *io_req = container_of(work, struct bnx2fc_cmd, 43 timeout_work.work); 44 u8 cmd_type = io_req->cmd_type; 45 struct bnx2fc_rport *tgt = io_req->tgt; 46 int rc; 47 48 BNX2FC_IO_DBG(io_req, "cmd_timeout, cmd_type = %d," 49 "req_flags = %lx\n", cmd_type, io_req->req_flags); 50 51 spin_lock_bh(&tgt->tgt_lock); 52 if (test_and_clear_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags)) { 53 clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags); 54 /* 55 * ideally we should hold the io_req until RRQ complets, 56 * and release io_req from timeout hold. 57 */ 58 spin_unlock_bh(&tgt->tgt_lock); 59 bnx2fc_send_rrq(io_req); 60 return; 61 } 62 if (test_and_clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags)) { 63 BNX2FC_IO_DBG(io_req, "IO ready for reuse now\n"); 64 goto done; 65 } 66 67 switch (cmd_type) { 68 case BNX2FC_SCSI_CMD: 69 if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT, 70 &io_req->req_flags)) { 71 /* Handle eh_abort timeout */ 72 BNX2FC_IO_DBG(io_req, "eh_abort timed out\n"); 73 complete(&io_req->abts_done); 74 } else if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, 75 &io_req->req_flags)) { 76 /* Handle internally generated ABTS timeout */ 77 BNX2FC_IO_DBG(io_req, "ABTS timed out refcnt = %d\n", 78 kref_read(&io_req->refcount)); 79 if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE, 80 &io_req->req_flags))) { 81 /* 82 * Cleanup and return original command to 83 * mid-layer. 84 */ 85 bnx2fc_initiate_cleanup(io_req); 86 kref_put(&io_req->refcount, bnx2fc_cmd_release); 87 spin_unlock_bh(&tgt->tgt_lock); 88 89 return; 90 } 91 } else { 92 /* Hanlde IO timeout */ 93 BNX2FC_IO_DBG(io_req, "IO timed out. issue ABTS\n"); 94 if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, 95 &io_req->req_flags)) { 96 BNX2FC_IO_DBG(io_req, "IO completed before " 97 " timer expiry\n"); 98 goto done; 99 } 100 101 if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, 102 &io_req->req_flags)) { 103 rc = bnx2fc_initiate_abts(io_req); 104 if (rc == SUCCESS) 105 goto done; 106 107 kref_put(&io_req->refcount, bnx2fc_cmd_release); 108 spin_unlock_bh(&tgt->tgt_lock); 109 110 return; 111 } else { 112 BNX2FC_IO_DBG(io_req, "IO already in " 113 "ABTS processing\n"); 114 } 115 } 116 break; 117 case BNX2FC_ELS: 118 119 if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) { 120 BNX2FC_IO_DBG(io_req, "ABTS for ELS timed out\n"); 121 122 if (!test_and_set_bit(BNX2FC_FLAG_ABTS_DONE, 123 &io_req->req_flags)) { 124 kref_put(&io_req->refcount, bnx2fc_cmd_release); 125 spin_unlock_bh(&tgt->tgt_lock); 126 127 return; 128 } 129 } else { 130 /* 131 * Handle ELS timeout. 132 * tgt_lock is used to sync compl path and timeout 133 * path. If els compl path is processing this IO, we 134 * have nothing to do here, just release the timer hold 135 */ 136 BNX2FC_IO_DBG(io_req, "ELS timed out\n"); 137 if (test_and_set_bit(BNX2FC_FLAG_ELS_DONE, 138 &io_req->req_flags)) 139 goto done; 140 141 /* Indicate the cb_func that this ELS is timed out */ 142 set_bit(BNX2FC_FLAG_ELS_TIMEOUT, &io_req->req_flags); 143 144 if ((io_req->cb_func) && (io_req->cb_arg)) { 145 io_req->cb_func(io_req->cb_arg); 146 io_req->cb_arg = NULL; 147 } 148 } 149 break; 150 default: 151 printk(KERN_ERR PFX "cmd_timeout: invalid cmd_type %d\n", 152 cmd_type); 153 break; 154 } 155 156 done: 157 /* release the cmd that was held when timer was set */ 158 kref_put(&io_req->refcount, bnx2fc_cmd_release); 159 spin_unlock_bh(&tgt->tgt_lock); 160 } 161 162 static void bnx2fc_scsi_done(struct bnx2fc_cmd *io_req, int err_code) 163 { 164 /* Called with host lock held */ 165 struct scsi_cmnd *sc_cmd = io_req->sc_cmd; 166 167 /* 168 * active_cmd_queue may have other command types as well, 169 * and during flush operation, we want to error back only 170 * scsi commands. 171 */ 172 if (io_req->cmd_type != BNX2FC_SCSI_CMD) 173 return; 174 175 BNX2FC_IO_DBG(io_req, "scsi_done. err_code = 0x%x\n", err_code); 176 if (test_bit(BNX2FC_FLAG_CMD_LOST, &io_req->req_flags)) { 177 /* Do not call scsi done for this IO */ 178 return; 179 } 180 181 bnx2fc_unmap_sg_list(io_req); 182 io_req->sc_cmd = NULL; 183 184 /* Sanity checks before returning command to mid-layer */ 185 if (!sc_cmd) { 186 printk(KERN_ERR PFX "scsi_done - sc_cmd NULL. " 187 "IO(0x%x) already cleaned up\n", 188 io_req->xid); 189 return; 190 } 191 if (!sc_cmd->device) { 192 pr_err(PFX "0x%x: sc_cmd->device is NULL.\n", io_req->xid); 193 return; 194 } 195 if (!sc_cmd->device->host) { 196 pr_err(PFX "0x%x: sc_cmd->device->host is NULL.\n", 197 io_req->xid); 198 return; 199 } 200 201 sc_cmd->result = err_code << 16; 202 203 BNX2FC_IO_DBG(io_req, "sc=%p, result=0x%x, retries=%d, allowed=%d\n", 204 sc_cmd, host_byte(sc_cmd->result), sc_cmd->retries, 205 sc_cmd->allowed); 206 scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd)); 207 sc_cmd->SCp.ptr = NULL; 208 sc_cmd->scsi_done(sc_cmd); 209 } 210 211 struct bnx2fc_cmd_mgr *bnx2fc_cmd_mgr_alloc(struct bnx2fc_hba *hba) 212 { 213 struct bnx2fc_cmd_mgr *cmgr; 214 struct io_bdt *bdt_info; 215 struct bnx2fc_cmd *io_req; 216 size_t len; 217 u32 mem_size; 218 u16 xid; 219 int i; 220 int num_ios, num_pri_ios; 221 size_t bd_tbl_sz; 222 int arr_sz = num_possible_cpus() + 1; 223 u16 min_xid = BNX2FC_MIN_XID; 224 u16 max_xid = hba->max_xid; 225 226 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) { 227 printk(KERN_ERR PFX "cmd_mgr_alloc: Invalid min_xid 0x%x \ 228 and max_xid 0x%x\n", min_xid, max_xid); 229 return NULL; 230 } 231 BNX2FC_MISC_DBG("min xid 0x%x, max xid 0x%x\n", min_xid, max_xid); 232 233 num_ios = max_xid - min_xid + 1; 234 len = (num_ios * (sizeof(struct bnx2fc_cmd *))); 235 len += sizeof(struct bnx2fc_cmd_mgr); 236 237 cmgr = kzalloc(len, GFP_KERNEL); 238 if (!cmgr) { 239 printk(KERN_ERR PFX "failed to alloc cmgr\n"); 240 return NULL; 241 } 242 243 cmgr->hba = hba; 244 cmgr->free_list = kcalloc(arr_sz, sizeof(*cmgr->free_list), 245 GFP_KERNEL); 246 if (!cmgr->free_list) { 247 printk(KERN_ERR PFX "failed to alloc free_list\n"); 248 goto mem_err; 249 } 250 251 cmgr->free_list_lock = kcalloc(arr_sz, sizeof(*cmgr->free_list_lock), 252 GFP_KERNEL); 253 if (!cmgr->free_list_lock) { 254 printk(KERN_ERR PFX "failed to alloc free_list_lock\n"); 255 kfree(cmgr->free_list); 256 cmgr->free_list = NULL; 257 goto mem_err; 258 } 259 260 cmgr->cmds = (struct bnx2fc_cmd **)(cmgr + 1); 261 262 for (i = 0; i < arr_sz; i++) { 263 INIT_LIST_HEAD(&cmgr->free_list[i]); 264 spin_lock_init(&cmgr->free_list_lock[i]); 265 } 266 267 /* 268 * Pre-allocated pool of bnx2fc_cmds. 269 * Last entry in the free list array is the free list 270 * of slow path requests. 271 */ 272 xid = BNX2FC_MIN_XID; 273 num_pri_ios = num_ios - hba->elstm_xids; 274 for (i = 0; i < num_ios; i++) { 275 io_req = kzalloc(sizeof(*io_req), GFP_KERNEL); 276 277 if (!io_req) { 278 printk(KERN_ERR PFX "failed to alloc io_req\n"); 279 goto mem_err; 280 } 281 282 INIT_LIST_HEAD(&io_req->link); 283 INIT_DELAYED_WORK(&io_req->timeout_work, bnx2fc_cmd_timeout); 284 285 io_req->xid = xid++; 286 if (i < num_pri_ios) 287 list_add_tail(&io_req->link, 288 &cmgr->free_list[io_req->xid % 289 num_possible_cpus()]); 290 else 291 list_add_tail(&io_req->link, 292 &cmgr->free_list[num_possible_cpus()]); 293 io_req++; 294 } 295 296 /* Allocate pool of io_bdts - one for each bnx2fc_cmd */ 297 mem_size = num_ios * sizeof(struct io_bdt *); 298 cmgr->io_bdt_pool = kzalloc(mem_size, GFP_KERNEL); 299 if (!cmgr->io_bdt_pool) { 300 printk(KERN_ERR PFX "failed to alloc io_bdt_pool\n"); 301 goto mem_err; 302 } 303 304 mem_size = sizeof(struct io_bdt); 305 for (i = 0; i < num_ios; i++) { 306 cmgr->io_bdt_pool[i] = kmalloc(mem_size, GFP_KERNEL); 307 if (!cmgr->io_bdt_pool[i]) { 308 printk(KERN_ERR PFX "failed to alloc " 309 "io_bdt_pool[%d]\n", i); 310 goto mem_err; 311 } 312 } 313 314 /* Allocate an map fcoe_bdt_ctx structures */ 315 bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx); 316 for (i = 0; i < num_ios; i++) { 317 bdt_info = cmgr->io_bdt_pool[i]; 318 bdt_info->bd_tbl = dma_alloc_coherent(&hba->pcidev->dev, 319 bd_tbl_sz, 320 &bdt_info->bd_tbl_dma, 321 GFP_KERNEL); 322 if (!bdt_info->bd_tbl) { 323 printk(KERN_ERR PFX "failed to alloc " 324 "bdt_tbl[%d]\n", i); 325 goto mem_err; 326 } 327 } 328 329 return cmgr; 330 331 mem_err: 332 bnx2fc_cmd_mgr_free(cmgr); 333 return NULL; 334 } 335 336 void bnx2fc_cmd_mgr_free(struct bnx2fc_cmd_mgr *cmgr) 337 { 338 struct io_bdt *bdt_info; 339 struct bnx2fc_hba *hba = cmgr->hba; 340 size_t bd_tbl_sz; 341 u16 min_xid = BNX2FC_MIN_XID; 342 u16 max_xid = hba->max_xid; 343 int num_ios; 344 int i; 345 346 num_ios = max_xid - min_xid + 1; 347 348 /* Free fcoe_bdt_ctx structures */ 349 if (!cmgr->io_bdt_pool) 350 goto free_cmd_pool; 351 352 bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx); 353 for (i = 0; i < num_ios; i++) { 354 bdt_info = cmgr->io_bdt_pool[i]; 355 if (bdt_info->bd_tbl) { 356 dma_free_coherent(&hba->pcidev->dev, bd_tbl_sz, 357 bdt_info->bd_tbl, 358 bdt_info->bd_tbl_dma); 359 bdt_info->bd_tbl = NULL; 360 } 361 } 362 363 /* Destroy io_bdt pool */ 364 for (i = 0; i < num_ios; i++) { 365 kfree(cmgr->io_bdt_pool[i]); 366 cmgr->io_bdt_pool[i] = NULL; 367 } 368 369 kfree(cmgr->io_bdt_pool); 370 cmgr->io_bdt_pool = NULL; 371 372 free_cmd_pool: 373 kfree(cmgr->free_list_lock); 374 375 /* Destroy cmd pool */ 376 if (!cmgr->free_list) 377 goto free_cmgr; 378 379 for (i = 0; i < num_possible_cpus() + 1; i++) { 380 struct bnx2fc_cmd *tmp, *io_req; 381 382 list_for_each_entry_safe(io_req, tmp, 383 &cmgr->free_list[i], link) { 384 list_del(&io_req->link); 385 kfree(io_req); 386 } 387 } 388 kfree(cmgr->free_list); 389 free_cmgr: 390 /* Free command manager itself */ 391 kfree(cmgr); 392 } 393 394 struct bnx2fc_cmd *bnx2fc_elstm_alloc(struct bnx2fc_rport *tgt, int type) 395 { 396 struct fcoe_port *port = tgt->port; 397 struct bnx2fc_interface *interface = port->priv; 398 struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr; 399 struct bnx2fc_cmd *io_req; 400 struct list_head *listp; 401 struct io_bdt *bd_tbl; 402 int index = RESERVE_FREE_LIST_INDEX; 403 u32 free_sqes; 404 u32 max_sqes; 405 u16 xid; 406 407 max_sqes = tgt->max_sqes; 408 switch (type) { 409 case BNX2FC_TASK_MGMT_CMD: 410 max_sqes = BNX2FC_TM_MAX_SQES; 411 break; 412 case BNX2FC_ELS: 413 max_sqes = BNX2FC_ELS_MAX_SQES; 414 break; 415 default: 416 break; 417 } 418 419 /* 420 * NOTE: Free list insertions and deletions are protected with 421 * cmgr lock 422 */ 423 spin_lock_bh(&cmd_mgr->free_list_lock[index]); 424 free_sqes = atomic_read(&tgt->free_sqes); 425 if ((list_empty(&(cmd_mgr->free_list[index]))) || 426 (tgt->num_active_ios.counter >= max_sqes) || 427 (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) { 428 BNX2FC_TGT_DBG(tgt, "No free els_tm cmds available " 429 "ios(%d):sqes(%d)\n", 430 tgt->num_active_ios.counter, tgt->max_sqes); 431 if (list_empty(&(cmd_mgr->free_list[index]))) 432 printk(KERN_ERR PFX "elstm_alloc: list_empty\n"); 433 spin_unlock_bh(&cmd_mgr->free_list_lock[index]); 434 return NULL; 435 } 436 437 listp = (struct list_head *) 438 cmd_mgr->free_list[index].next; 439 list_del_init(listp); 440 io_req = (struct bnx2fc_cmd *) listp; 441 xid = io_req->xid; 442 cmd_mgr->cmds[xid] = io_req; 443 atomic_inc(&tgt->num_active_ios); 444 atomic_dec(&tgt->free_sqes); 445 spin_unlock_bh(&cmd_mgr->free_list_lock[index]); 446 447 INIT_LIST_HEAD(&io_req->link); 448 449 io_req->port = port; 450 io_req->cmd_mgr = cmd_mgr; 451 io_req->req_flags = 0; 452 io_req->cmd_type = type; 453 454 /* Bind io_bdt for this io_req */ 455 /* Have a static link between io_req and io_bdt_pool */ 456 bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid]; 457 bd_tbl->io_req = io_req; 458 459 /* Hold the io_req against deletion */ 460 kref_init(&io_req->refcount); 461 return io_req; 462 } 463 464 struct bnx2fc_cmd *bnx2fc_cmd_alloc(struct bnx2fc_rport *tgt) 465 { 466 struct fcoe_port *port = tgt->port; 467 struct bnx2fc_interface *interface = port->priv; 468 struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr; 469 struct bnx2fc_cmd *io_req; 470 struct list_head *listp; 471 struct io_bdt *bd_tbl; 472 u32 free_sqes; 473 u32 max_sqes; 474 u16 xid; 475 int index = get_cpu(); 476 477 max_sqes = BNX2FC_SCSI_MAX_SQES; 478 /* 479 * NOTE: Free list insertions and deletions are protected with 480 * cmgr lock 481 */ 482 spin_lock_bh(&cmd_mgr->free_list_lock[index]); 483 free_sqes = atomic_read(&tgt->free_sqes); 484 if ((list_empty(&cmd_mgr->free_list[index])) || 485 (tgt->num_active_ios.counter >= max_sqes) || 486 (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) { 487 spin_unlock_bh(&cmd_mgr->free_list_lock[index]); 488 put_cpu(); 489 return NULL; 490 } 491 492 listp = (struct list_head *) 493 cmd_mgr->free_list[index].next; 494 list_del_init(listp); 495 io_req = (struct bnx2fc_cmd *) listp; 496 xid = io_req->xid; 497 cmd_mgr->cmds[xid] = io_req; 498 atomic_inc(&tgt->num_active_ios); 499 atomic_dec(&tgt->free_sqes); 500 spin_unlock_bh(&cmd_mgr->free_list_lock[index]); 501 put_cpu(); 502 503 INIT_LIST_HEAD(&io_req->link); 504 505 io_req->port = port; 506 io_req->cmd_mgr = cmd_mgr; 507 io_req->req_flags = 0; 508 509 /* Bind io_bdt for this io_req */ 510 /* Have a static link between io_req and io_bdt_pool */ 511 bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid]; 512 bd_tbl->io_req = io_req; 513 514 /* Hold the io_req against deletion */ 515 kref_init(&io_req->refcount); 516 return io_req; 517 } 518 519 void bnx2fc_cmd_release(struct kref *ref) 520 { 521 struct bnx2fc_cmd *io_req = container_of(ref, 522 struct bnx2fc_cmd, refcount); 523 struct bnx2fc_cmd_mgr *cmd_mgr = io_req->cmd_mgr; 524 int index; 525 526 if (io_req->cmd_type == BNX2FC_SCSI_CMD) 527 index = io_req->xid % num_possible_cpus(); 528 else 529 index = RESERVE_FREE_LIST_INDEX; 530 531 532 spin_lock_bh(&cmd_mgr->free_list_lock[index]); 533 if (io_req->cmd_type != BNX2FC_SCSI_CMD) 534 bnx2fc_free_mp_resc(io_req); 535 cmd_mgr->cmds[io_req->xid] = NULL; 536 /* Delete IO from retire queue */ 537 list_del_init(&io_req->link); 538 /* Add it to the free list */ 539 list_add(&io_req->link, 540 &cmd_mgr->free_list[index]); 541 atomic_dec(&io_req->tgt->num_active_ios); 542 spin_unlock_bh(&cmd_mgr->free_list_lock[index]); 543 544 } 545 546 static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req) 547 { 548 struct bnx2fc_mp_req *mp_req = &(io_req->mp_req); 549 struct bnx2fc_interface *interface = io_req->port->priv; 550 struct bnx2fc_hba *hba = interface->hba; 551 size_t sz = sizeof(struct fcoe_bd_ctx); 552 553 /* clear tm flags */ 554 mp_req->tm_flags = 0; 555 if (mp_req->mp_req_bd) { 556 dma_free_coherent(&hba->pcidev->dev, sz, 557 mp_req->mp_req_bd, 558 mp_req->mp_req_bd_dma); 559 mp_req->mp_req_bd = NULL; 560 } 561 if (mp_req->mp_resp_bd) { 562 dma_free_coherent(&hba->pcidev->dev, sz, 563 mp_req->mp_resp_bd, 564 mp_req->mp_resp_bd_dma); 565 mp_req->mp_resp_bd = NULL; 566 } 567 if (mp_req->req_buf) { 568 dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE, 569 mp_req->req_buf, 570 mp_req->req_buf_dma); 571 mp_req->req_buf = NULL; 572 } 573 if (mp_req->resp_buf) { 574 dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE, 575 mp_req->resp_buf, 576 mp_req->resp_buf_dma); 577 mp_req->resp_buf = NULL; 578 } 579 } 580 581 int bnx2fc_init_mp_req(struct bnx2fc_cmd *io_req) 582 { 583 struct bnx2fc_mp_req *mp_req; 584 struct fcoe_bd_ctx *mp_req_bd; 585 struct fcoe_bd_ctx *mp_resp_bd; 586 struct bnx2fc_interface *interface = io_req->port->priv; 587 struct bnx2fc_hba *hba = interface->hba; 588 dma_addr_t addr; 589 size_t sz; 590 591 mp_req = (struct bnx2fc_mp_req *)&(io_req->mp_req); 592 memset(mp_req, 0, sizeof(struct bnx2fc_mp_req)); 593 594 if (io_req->cmd_type != BNX2FC_ELS) { 595 mp_req->req_len = sizeof(struct fcp_cmnd); 596 io_req->data_xfer_len = mp_req->req_len; 597 } else 598 mp_req->req_len = io_req->data_xfer_len; 599 600 mp_req->req_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE, 601 &mp_req->req_buf_dma, 602 GFP_ATOMIC); 603 if (!mp_req->req_buf) { 604 printk(KERN_ERR PFX "unable to alloc MP req buffer\n"); 605 bnx2fc_free_mp_resc(io_req); 606 return FAILED; 607 } 608 609 mp_req->resp_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE, 610 &mp_req->resp_buf_dma, 611 GFP_ATOMIC); 612 if (!mp_req->resp_buf) { 613 printk(KERN_ERR PFX "unable to alloc TM resp buffer\n"); 614 bnx2fc_free_mp_resc(io_req); 615 return FAILED; 616 } 617 memset(mp_req->req_buf, 0, CNIC_PAGE_SIZE); 618 memset(mp_req->resp_buf, 0, CNIC_PAGE_SIZE); 619 620 /* Allocate and map mp_req_bd and mp_resp_bd */ 621 sz = sizeof(struct fcoe_bd_ctx); 622 mp_req->mp_req_bd = dma_alloc_coherent(&hba->pcidev->dev, sz, 623 &mp_req->mp_req_bd_dma, 624 GFP_ATOMIC); 625 if (!mp_req->mp_req_bd) { 626 printk(KERN_ERR PFX "unable to alloc MP req bd\n"); 627 bnx2fc_free_mp_resc(io_req); 628 return FAILED; 629 } 630 mp_req->mp_resp_bd = dma_alloc_coherent(&hba->pcidev->dev, sz, 631 &mp_req->mp_resp_bd_dma, 632 GFP_ATOMIC); 633 if (!mp_req->mp_resp_bd) { 634 printk(KERN_ERR PFX "unable to alloc MP resp bd\n"); 635 bnx2fc_free_mp_resc(io_req); 636 return FAILED; 637 } 638 /* Fill bd table */ 639 addr = mp_req->req_buf_dma; 640 mp_req_bd = mp_req->mp_req_bd; 641 mp_req_bd->buf_addr_lo = (u32)addr & 0xffffffff; 642 mp_req_bd->buf_addr_hi = (u32)((u64)addr >> 32); 643 mp_req_bd->buf_len = CNIC_PAGE_SIZE; 644 mp_req_bd->flags = 0; 645 646 /* 647 * MP buffer is either a task mgmt command or an ELS. 648 * So the assumption is that it consumes a single bd 649 * entry in the bd table 650 */ 651 mp_resp_bd = mp_req->mp_resp_bd; 652 addr = mp_req->resp_buf_dma; 653 mp_resp_bd->buf_addr_lo = (u32)addr & 0xffffffff; 654 mp_resp_bd->buf_addr_hi = (u32)((u64)addr >> 32); 655 mp_resp_bd->buf_len = CNIC_PAGE_SIZE; 656 mp_resp_bd->flags = 0; 657 658 return SUCCESS; 659 } 660 661 static int bnx2fc_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags) 662 { 663 struct fc_lport *lport; 664 struct fc_rport *rport; 665 struct fc_rport_libfc_priv *rp; 666 struct fcoe_port *port; 667 struct bnx2fc_interface *interface; 668 struct bnx2fc_rport *tgt; 669 struct bnx2fc_cmd *io_req; 670 struct bnx2fc_mp_req *tm_req; 671 struct fcoe_task_ctx_entry *task; 672 struct fcoe_task_ctx_entry *task_page; 673 struct Scsi_Host *host = sc_cmd->device->host; 674 struct fc_frame_header *fc_hdr; 675 struct fcp_cmnd *fcp_cmnd; 676 int task_idx, index; 677 int rc = SUCCESS; 678 u16 xid; 679 u32 sid, did; 680 unsigned long start = jiffies; 681 682 lport = shost_priv(host); 683 rport = starget_to_rport(scsi_target(sc_cmd->device)); 684 port = lport_priv(lport); 685 interface = port->priv; 686 687 if (rport == NULL) { 688 printk(KERN_ERR PFX "device_reset: rport is NULL\n"); 689 rc = FAILED; 690 goto tmf_err; 691 } 692 rp = rport->dd_data; 693 694 rc = fc_block_scsi_eh(sc_cmd); 695 if (rc) 696 return rc; 697 698 if (lport->state != LPORT_ST_READY || !(lport->link_up)) { 699 printk(KERN_ERR PFX "device_reset: link is not ready\n"); 700 rc = FAILED; 701 goto tmf_err; 702 } 703 /* rport and tgt are allocated together, so tgt should be non-NULL */ 704 tgt = (struct bnx2fc_rport *)&rp[1]; 705 706 if (!(test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags))) { 707 printk(KERN_ERR PFX "device_reset: tgt not offloaded\n"); 708 rc = FAILED; 709 goto tmf_err; 710 } 711 retry_tmf: 712 io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_TASK_MGMT_CMD); 713 if (!io_req) { 714 if (time_after(jiffies, start + HZ)) { 715 printk(KERN_ERR PFX "tmf: Failed TMF"); 716 rc = FAILED; 717 goto tmf_err; 718 } 719 msleep(20); 720 goto retry_tmf; 721 } 722 /* Initialize rest of io_req fields */ 723 io_req->sc_cmd = sc_cmd; 724 io_req->port = port; 725 io_req->tgt = tgt; 726 727 tm_req = (struct bnx2fc_mp_req *)&(io_req->mp_req); 728 729 rc = bnx2fc_init_mp_req(io_req); 730 if (rc == FAILED) { 731 printk(KERN_ERR PFX "Task mgmt MP request init failed\n"); 732 spin_lock_bh(&tgt->tgt_lock); 733 kref_put(&io_req->refcount, bnx2fc_cmd_release); 734 spin_unlock_bh(&tgt->tgt_lock); 735 goto tmf_err; 736 } 737 738 /* Set TM flags */ 739 io_req->io_req_flags = 0; 740 tm_req->tm_flags = tm_flags; 741 742 /* Fill FCP_CMND */ 743 bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tm_req->req_buf); 744 fcp_cmnd = (struct fcp_cmnd *)tm_req->req_buf; 745 memset(fcp_cmnd->fc_cdb, 0, sc_cmd->cmd_len); 746 fcp_cmnd->fc_dl = 0; 747 748 /* Fill FC header */ 749 fc_hdr = &(tm_req->req_fc_hdr); 750 sid = tgt->sid; 751 did = rport->port_id; 752 __fc_fill_fc_hdr(fc_hdr, FC_RCTL_DD_UNSOL_CMD, did, sid, 753 FC_TYPE_FCP, FC_FC_FIRST_SEQ | FC_FC_END_SEQ | 754 FC_FC_SEQ_INIT, 0); 755 /* Obtain exchange id */ 756 xid = io_req->xid; 757 758 BNX2FC_TGT_DBG(tgt, "Initiate TMF - xid = 0x%x\n", xid); 759 task_idx = xid/BNX2FC_TASKS_PER_PAGE; 760 index = xid % BNX2FC_TASKS_PER_PAGE; 761 762 /* Initialize task context for this IO request */ 763 task_page = (struct fcoe_task_ctx_entry *) 764 interface->hba->task_ctx[task_idx]; 765 task = &(task_page[index]); 766 bnx2fc_init_mp_task(io_req, task); 767 768 sc_cmd->SCp.ptr = (char *)io_req; 769 770 /* Obtain free SQ entry */ 771 spin_lock_bh(&tgt->tgt_lock); 772 bnx2fc_add_2_sq(tgt, xid); 773 774 /* Enqueue the io_req to active_tm_queue */ 775 io_req->on_tmf_queue = 1; 776 list_add_tail(&io_req->link, &tgt->active_tm_queue); 777 778 init_completion(&io_req->abts_done); 779 io_req->wait_for_abts_comp = 1; 780 781 /* Ring doorbell */ 782 bnx2fc_ring_doorbell(tgt); 783 spin_unlock_bh(&tgt->tgt_lock); 784 785 rc = wait_for_completion_timeout(&io_req->abts_done, 786 interface->tm_timeout * HZ); 787 spin_lock_bh(&tgt->tgt_lock); 788 789 io_req->wait_for_abts_comp = 0; 790 if (!(test_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags))) { 791 set_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags); 792 if (io_req->on_tmf_queue) { 793 list_del_init(&io_req->link); 794 io_req->on_tmf_queue = 0; 795 } 796 io_req->wait_for_cleanup_comp = 1; 797 init_completion(&io_req->cleanup_done); 798 bnx2fc_initiate_cleanup(io_req); 799 spin_unlock_bh(&tgt->tgt_lock); 800 rc = wait_for_completion_timeout(&io_req->cleanup_done, 801 BNX2FC_FW_TIMEOUT); 802 spin_lock_bh(&tgt->tgt_lock); 803 io_req->wait_for_cleanup_comp = 0; 804 if (!rc) 805 kref_put(&io_req->refcount, bnx2fc_cmd_release); 806 } 807 808 spin_unlock_bh(&tgt->tgt_lock); 809 810 if (!rc) { 811 BNX2FC_TGT_DBG(tgt, "task mgmt command failed...\n"); 812 rc = FAILED; 813 } else { 814 BNX2FC_TGT_DBG(tgt, "task mgmt command success...\n"); 815 rc = SUCCESS; 816 } 817 tmf_err: 818 return rc; 819 } 820 821 int bnx2fc_initiate_abts(struct bnx2fc_cmd *io_req) 822 { 823 struct fc_lport *lport; 824 struct bnx2fc_rport *tgt = io_req->tgt; 825 struct fc_rport *rport = tgt->rport; 826 struct fc_rport_priv *rdata = tgt->rdata; 827 struct bnx2fc_interface *interface; 828 struct fcoe_port *port; 829 struct bnx2fc_cmd *abts_io_req; 830 struct fcoe_task_ctx_entry *task; 831 struct fcoe_task_ctx_entry *task_page; 832 struct fc_frame_header *fc_hdr; 833 struct bnx2fc_mp_req *abts_req; 834 int task_idx, index; 835 u32 sid, did; 836 u16 xid; 837 int rc = SUCCESS; 838 u32 r_a_tov = rdata->r_a_tov; 839 840 /* called with tgt_lock held */ 841 BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_abts\n"); 842 843 port = io_req->port; 844 interface = port->priv; 845 lport = port->lport; 846 847 if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) { 848 printk(KERN_ERR PFX "initiate_abts: tgt not offloaded\n"); 849 rc = FAILED; 850 goto abts_err; 851 } 852 853 if (rport == NULL) { 854 printk(KERN_ERR PFX "initiate_abts: rport is NULL\n"); 855 rc = FAILED; 856 goto abts_err; 857 } 858 859 if (lport->state != LPORT_ST_READY || !(lport->link_up)) { 860 printk(KERN_ERR PFX "initiate_abts: link is not ready\n"); 861 rc = FAILED; 862 goto abts_err; 863 } 864 865 abts_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_ABTS); 866 if (!abts_io_req) { 867 printk(KERN_ERR PFX "abts: couldnt allocate cmd\n"); 868 rc = FAILED; 869 goto abts_err; 870 } 871 872 /* Initialize rest of io_req fields */ 873 abts_io_req->sc_cmd = NULL; 874 abts_io_req->port = port; 875 abts_io_req->tgt = tgt; 876 abts_io_req->data_xfer_len = 0; /* No data transfer for ABTS */ 877 878 abts_req = (struct bnx2fc_mp_req *)&(abts_io_req->mp_req); 879 memset(abts_req, 0, sizeof(struct bnx2fc_mp_req)); 880 881 /* Fill FC header */ 882 fc_hdr = &(abts_req->req_fc_hdr); 883 884 /* Obtain oxid and rxid for the original exchange to be aborted */ 885 fc_hdr->fh_ox_id = htons(io_req->xid); 886 fc_hdr->fh_rx_id = htons(io_req->task->rxwr_txrd.var_ctx.rx_id); 887 888 sid = tgt->sid; 889 did = rport->port_id; 890 891 __fc_fill_fc_hdr(fc_hdr, FC_RCTL_BA_ABTS, did, sid, 892 FC_TYPE_BLS, FC_FC_FIRST_SEQ | FC_FC_END_SEQ | 893 FC_FC_SEQ_INIT, 0); 894 895 xid = abts_io_req->xid; 896 BNX2FC_IO_DBG(abts_io_req, "ABTS io_req\n"); 897 task_idx = xid/BNX2FC_TASKS_PER_PAGE; 898 index = xid % BNX2FC_TASKS_PER_PAGE; 899 900 /* Initialize task context for this IO request */ 901 task_page = (struct fcoe_task_ctx_entry *) 902 interface->hba->task_ctx[task_idx]; 903 task = &(task_page[index]); 904 bnx2fc_init_mp_task(abts_io_req, task); 905 906 /* 907 * ABTS task is a temporary task that will be cleaned up 908 * irrespective of ABTS response. We need to start the timer 909 * for the original exchange, as the CQE is posted for the original 910 * IO request. 911 * 912 * Timer for ABTS is started only when it is originated by a 913 * TM request. For the ABTS issued as part of ULP timeout, 914 * scsi-ml maintains the timers. 915 */ 916 917 /* if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))*/ 918 bnx2fc_cmd_timer_set(io_req, 2 * r_a_tov); 919 920 /* Obtain free SQ entry */ 921 bnx2fc_add_2_sq(tgt, xid); 922 923 /* Ring doorbell */ 924 bnx2fc_ring_doorbell(tgt); 925 926 abts_err: 927 return rc; 928 } 929 930 int bnx2fc_initiate_seq_cleanup(struct bnx2fc_cmd *orig_io_req, u32 offset, 931 enum fc_rctl r_ctl) 932 { 933 struct fc_lport *lport; 934 struct bnx2fc_rport *tgt = orig_io_req->tgt; 935 struct bnx2fc_interface *interface; 936 struct fcoe_port *port; 937 struct bnx2fc_cmd *seq_clnp_req; 938 struct fcoe_task_ctx_entry *task; 939 struct fcoe_task_ctx_entry *task_page; 940 struct bnx2fc_els_cb_arg *cb_arg = NULL; 941 int task_idx, index; 942 u16 xid; 943 int rc = 0; 944 945 BNX2FC_IO_DBG(orig_io_req, "bnx2fc_initiate_seq_cleanup xid = 0x%x\n", 946 orig_io_req->xid); 947 kref_get(&orig_io_req->refcount); 948 949 port = orig_io_req->port; 950 interface = port->priv; 951 lport = port->lport; 952 953 cb_arg = kzalloc(sizeof(struct bnx2fc_els_cb_arg), GFP_ATOMIC); 954 if (!cb_arg) { 955 printk(KERN_ERR PFX "Unable to alloc cb_arg for seq clnup\n"); 956 rc = -ENOMEM; 957 goto cleanup_err; 958 } 959 960 seq_clnp_req = bnx2fc_elstm_alloc(tgt, BNX2FC_SEQ_CLEANUP); 961 if (!seq_clnp_req) { 962 printk(KERN_ERR PFX "cleanup: couldnt allocate cmd\n"); 963 rc = -ENOMEM; 964 kfree(cb_arg); 965 goto cleanup_err; 966 } 967 /* Initialize rest of io_req fields */ 968 seq_clnp_req->sc_cmd = NULL; 969 seq_clnp_req->port = port; 970 seq_clnp_req->tgt = tgt; 971 seq_clnp_req->data_xfer_len = 0; /* No data transfer for cleanup */ 972 973 xid = seq_clnp_req->xid; 974 975 task_idx = xid/BNX2FC_TASKS_PER_PAGE; 976 index = xid % BNX2FC_TASKS_PER_PAGE; 977 978 /* Initialize task context for this IO request */ 979 task_page = (struct fcoe_task_ctx_entry *) 980 interface->hba->task_ctx[task_idx]; 981 task = &(task_page[index]); 982 cb_arg->aborted_io_req = orig_io_req; 983 cb_arg->io_req = seq_clnp_req; 984 cb_arg->r_ctl = r_ctl; 985 cb_arg->offset = offset; 986 seq_clnp_req->cb_arg = cb_arg; 987 988 printk(KERN_ERR PFX "call init_seq_cleanup_task\n"); 989 bnx2fc_init_seq_cleanup_task(seq_clnp_req, task, orig_io_req, offset); 990 991 /* Obtain free SQ entry */ 992 bnx2fc_add_2_sq(tgt, xid); 993 994 /* Ring doorbell */ 995 bnx2fc_ring_doorbell(tgt); 996 cleanup_err: 997 return rc; 998 } 999 1000 int bnx2fc_initiate_cleanup(struct bnx2fc_cmd *io_req) 1001 { 1002 struct fc_lport *lport; 1003 struct bnx2fc_rport *tgt = io_req->tgt; 1004 struct bnx2fc_interface *interface; 1005 struct fcoe_port *port; 1006 struct bnx2fc_cmd *cleanup_io_req; 1007 struct fcoe_task_ctx_entry *task; 1008 struct fcoe_task_ctx_entry *task_page; 1009 int task_idx, index; 1010 u16 xid, orig_xid; 1011 int rc = 0; 1012 1013 /* ASSUMPTION: called with tgt_lock held */ 1014 BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_cleanup\n"); 1015 1016 port = io_req->port; 1017 interface = port->priv; 1018 lport = port->lport; 1019 1020 cleanup_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_CLEANUP); 1021 if (!cleanup_io_req) { 1022 printk(KERN_ERR PFX "cleanup: couldnt allocate cmd\n"); 1023 rc = -1; 1024 goto cleanup_err; 1025 } 1026 1027 /* Initialize rest of io_req fields */ 1028 cleanup_io_req->sc_cmd = NULL; 1029 cleanup_io_req->port = port; 1030 cleanup_io_req->tgt = tgt; 1031 cleanup_io_req->data_xfer_len = 0; /* No data transfer for cleanup */ 1032 1033 xid = cleanup_io_req->xid; 1034 1035 task_idx = xid/BNX2FC_TASKS_PER_PAGE; 1036 index = xid % BNX2FC_TASKS_PER_PAGE; 1037 1038 /* Initialize task context for this IO request */ 1039 task_page = (struct fcoe_task_ctx_entry *) 1040 interface->hba->task_ctx[task_idx]; 1041 task = &(task_page[index]); 1042 orig_xid = io_req->xid; 1043 1044 BNX2FC_IO_DBG(io_req, "CLEANUP io_req xid = 0x%x\n", xid); 1045 1046 bnx2fc_init_cleanup_task(cleanup_io_req, task, orig_xid); 1047 1048 /* Obtain free SQ entry */ 1049 bnx2fc_add_2_sq(tgt, xid); 1050 1051 /* Set flag that cleanup request is pending with the firmware */ 1052 set_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags); 1053 1054 /* Ring doorbell */ 1055 bnx2fc_ring_doorbell(tgt); 1056 1057 cleanup_err: 1058 return rc; 1059 } 1060 1061 /** 1062 * bnx2fc_eh_target_reset: Reset a target 1063 * 1064 * @sc_cmd: SCSI command 1065 * 1066 * Set from SCSI host template to send task mgmt command to the target 1067 * and wait for the response 1068 */ 1069 int bnx2fc_eh_target_reset(struct scsi_cmnd *sc_cmd) 1070 { 1071 return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET); 1072 } 1073 1074 /** 1075 * bnx2fc_eh_device_reset - Reset a single LUN 1076 * 1077 * @sc_cmd: SCSI command 1078 * 1079 * Set from SCSI host template to send task mgmt command to the target 1080 * and wait for the response 1081 */ 1082 int bnx2fc_eh_device_reset(struct scsi_cmnd *sc_cmd) 1083 { 1084 return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET); 1085 } 1086 1087 static int bnx2fc_abts_cleanup(struct bnx2fc_cmd *io_req) 1088 { 1089 struct bnx2fc_rport *tgt = io_req->tgt; 1090 unsigned int time_left; 1091 1092 init_completion(&io_req->cleanup_done); 1093 io_req->wait_for_cleanup_comp = 1; 1094 bnx2fc_initiate_cleanup(io_req); 1095 1096 spin_unlock_bh(&tgt->tgt_lock); 1097 1098 /* 1099 * Can't wait forever on cleanup response lest we let the SCSI error 1100 * handler wait forever 1101 */ 1102 time_left = wait_for_completion_timeout(&io_req->cleanup_done, 1103 BNX2FC_FW_TIMEOUT); 1104 if (!time_left) { 1105 BNX2FC_IO_DBG(io_req, "%s(): Wait for cleanup timed out.\n", 1106 __func__); 1107 1108 /* 1109 * Put the extra reference to the SCSI command since it would 1110 * not have been returned in this case. 1111 */ 1112 kref_put(&io_req->refcount, bnx2fc_cmd_release); 1113 } 1114 1115 spin_lock_bh(&tgt->tgt_lock); 1116 io_req->wait_for_cleanup_comp = 0; 1117 return SUCCESS; 1118 } 1119 1120 /** 1121 * bnx2fc_eh_abort - eh_abort_handler api to abort an outstanding 1122 * SCSI command 1123 * 1124 * @sc_cmd: SCSI_ML command pointer 1125 * 1126 * SCSI abort request handler 1127 */ 1128 int bnx2fc_eh_abort(struct scsi_cmnd *sc_cmd) 1129 { 1130 struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device)); 1131 struct fc_rport_libfc_priv *rp = rport->dd_data; 1132 struct bnx2fc_cmd *io_req; 1133 struct fc_lport *lport; 1134 struct bnx2fc_rport *tgt; 1135 int rc; 1136 unsigned int time_left; 1137 1138 rc = fc_block_scsi_eh(sc_cmd); 1139 if (rc) 1140 return rc; 1141 1142 lport = shost_priv(sc_cmd->device->host); 1143 if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) { 1144 printk(KERN_ERR PFX "eh_abort: link not ready\n"); 1145 return FAILED; 1146 } 1147 1148 tgt = (struct bnx2fc_rport *)&rp[1]; 1149 1150 BNX2FC_TGT_DBG(tgt, "Entered bnx2fc_eh_abort\n"); 1151 1152 spin_lock_bh(&tgt->tgt_lock); 1153 io_req = (struct bnx2fc_cmd *)sc_cmd->SCp.ptr; 1154 if (!io_req) { 1155 /* Command might have just completed */ 1156 printk(KERN_ERR PFX "eh_abort: io_req is NULL\n"); 1157 spin_unlock_bh(&tgt->tgt_lock); 1158 return SUCCESS; 1159 } 1160 BNX2FC_IO_DBG(io_req, "eh_abort - refcnt = %d\n", 1161 kref_read(&io_req->refcount)); 1162 1163 /* Hold IO request across abort processing */ 1164 kref_get(&io_req->refcount); 1165 1166 BUG_ON(tgt != io_req->tgt); 1167 1168 /* Remove the io_req from the active_q. */ 1169 /* 1170 * Task Mgmt functions (LUN RESET & TGT RESET) will not 1171 * issue an ABTS on this particular IO req, as the 1172 * io_req is no longer in the active_q. 1173 */ 1174 if (tgt->flush_in_prog) { 1175 printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) " 1176 "flush in progress\n", io_req->xid); 1177 kref_put(&io_req->refcount, bnx2fc_cmd_release); 1178 spin_unlock_bh(&tgt->tgt_lock); 1179 return SUCCESS; 1180 } 1181 1182 if (io_req->on_active_queue == 0) { 1183 printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) " 1184 "not on active_q\n", io_req->xid); 1185 /* 1186 * The IO is still with the FW. 1187 * Return failure and let SCSI-ml retry eh_abort. 1188 */ 1189 spin_unlock_bh(&tgt->tgt_lock); 1190 return FAILED; 1191 } 1192 1193 /* 1194 * Only eh_abort processing will remove the IO from 1195 * active_cmd_q before processing the request. this is 1196 * done to avoid race conditions between IOs aborted 1197 * as part of task management completion and eh_abort 1198 * processing 1199 */ 1200 list_del_init(&io_req->link); 1201 io_req->on_active_queue = 0; 1202 /* Move IO req to retire queue */ 1203 list_add_tail(&io_req->link, &tgt->io_retire_queue); 1204 1205 init_completion(&io_req->abts_done); 1206 init_completion(&io_req->cleanup_done); 1207 1208 if (test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) { 1209 printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) " 1210 "already in abts processing\n", io_req->xid); 1211 if (cancel_delayed_work(&io_req->timeout_work)) 1212 kref_put(&io_req->refcount, 1213 bnx2fc_cmd_release); /* drop timer hold */ 1214 /* 1215 * We don't want to hold off the upper layer timer so simply 1216 * cleanup the command and return that I/O was successfully 1217 * aborted. 1218 */ 1219 rc = bnx2fc_abts_cleanup(io_req); 1220 /* This only occurs when an task abort was requested while ABTS 1221 is in progress. Setting the IO_CLEANUP flag will skip the 1222 RRQ process in the case when the fw generated SCSI_CMD cmpl 1223 was a result from the ABTS request rather than the CLEANUP 1224 request */ 1225 set_bit(BNX2FC_FLAG_IO_CLEANUP, &io_req->req_flags); 1226 goto done; 1227 } 1228 1229 /* Cancel the current timer running on this io_req */ 1230 if (cancel_delayed_work(&io_req->timeout_work)) 1231 kref_put(&io_req->refcount, 1232 bnx2fc_cmd_release); /* drop timer hold */ 1233 set_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags); 1234 io_req->wait_for_abts_comp = 1; 1235 rc = bnx2fc_initiate_abts(io_req); 1236 if (rc == FAILED) { 1237 io_req->wait_for_cleanup_comp = 1; 1238 bnx2fc_initiate_cleanup(io_req); 1239 spin_unlock_bh(&tgt->tgt_lock); 1240 wait_for_completion(&io_req->cleanup_done); 1241 spin_lock_bh(&tgt->tgt_lock); 1242 io_req->wait_for_cleanup_comp = 0; 1243 goto done; 1244 } 1245 spin_unlock_bh(&tgt->tgt_lock); 1246 1247 /* Wait 2 * RA_TOV + 1 to be sure timeout function hasn't fired */ 1248 time_left = wait_for_completion_timeout(&io_req->abts_done, 1249 (2 * rp->r_a_tov + 1) * HZ); 1250 if (time_left) 1251 BNX2FC_IO_DBG(io_req, 1252 "Timed out in eh_abort waiting for abts_done"); 1253 1254 spin_lock_bh(&tgt->tgt_lock); 1255 io_req->wait_for_abts_comp = 0; 1256 if (test_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) { 1257 BNX2FC_IO_DBG(io_req, "IO completed in a different context\n"); 1258 rc = SUCCESS; 1259 } else if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE, 1260 &io_req->req_flags))) { 1261 /* Let the scsi-ml try to recover this command */ 1262 printk(KERN_ERR PFX "abort failed, xid = 0x%x\n", 1263 io_req->xid); 1264 /* 1265 * Cleanup firmware residuals before returning control back 1266 * to SCSI ML. 1267 */ 1268 rc = bnx2fc_abts_cleanup(io_req); 1269 goto done; 1270 } else { 1271 /* 1272 * We come here even when there was a race condition 1273 * between timeout and abts completion, and abts 1274 * completion happens just in time. 1275 */ 1276 BNX2FC_IO_DBG(io_req, "abort succeeded\n"); 1277 rc = SUCCESS; 1278 bnx2fc_scsi_done(io_req, DID_ABORT); 1279 kref_put(&io_req->refcount, bnx2fc_cmd_release); 1280 } 1281 done: 1282 /* release the reference taken in eh_abort */ 1283 kref_put(&io_req->refcount, bnx2fc_cmd_release); 1284 spin_unlock_bh(&tgt->tgt_lock); 1285 return rc; 1286 } 1287 1288 void bnx2fc_process_seq_cleanup_compl(struct bnx2fc_cmd *seq_clnp_req, 1289 struct fcoe_task_ctx_entry *task, 1290 u8 rx_state) 1291 { 1292 struct bnx2fc_els_cb_arg *cb_arg = seq_clnp_req->cb_arg; 1293 struct bnx2fc_cmd *orig_io_req = cb_arg->aborted_io_req; 1294 u32 offset = cb_arg->offset; 1295 enum fc_rctl r_ctl = cb_arg->r_ctl; 1296 int rc = 0; 1297 struct bnx2fc_rport *tgt = orig_io_req->tgt; 1298 1299 BNX2FC_IO_DBG(orig_io_req, "Entered process_cleanup_compl xid = 0x%x" 1300 "cmd_type = %d\n", 1301 seq_clnp_req->xid, seq_clnp_req->cmd_type); 1302 1303 if (rx_state == FCOE_TASK_RX_STATE_IGNORED_SEQUENCE_CLEANUP) { 1304 printk(KERN_ERR PFX "seq cleanup ignored - xid = 0x%x\n", 1305 seq_clnp_req->xid); 1306 goto free_cb_arg; 1307 } 1308 1309 spin_unlock_bh(&tgt->tgt_lock); 1310 rc = bnx2fc_send_srr(orig_io_req, offset, r_ctl); 1311 spin_lock_bh(&tgt->tgt_lock); 1312 1313 if (rc) 1314 printk(KERN_ERR PFX "clnup_compl: Unable to send SRR" 1315 " IO will abort\n"); 1316 seq_clnp_req->cb_arg = NULL; 1317 kref_put(&orig_io_req->refcount, bnx2fc_cmd_release); 1318 free_cb_arg: 1319 kfree(cb_arg); 1320 return; 1321 } 1322 1323 void bnx2fc_process_cleanup_compl(struct bnx2fc_cmd *io_req, 1324 struct fcoe_task_ctx_entry *task, 1325 u8 num_rq) 1326 { 1327 BNX2FC_IO_DBG(io_req, "Entered process_cleanup_compl " 1328 "refcnt = %d, cmd_type = %d\n", 1329 kref_read(&io_req->refcount), io_req->cmd_type); 1330 /* 1331 * Test whether there is a cleanup request pending. If not just 1332 * exit. 1333 */ 1334 if (!test_and_clear_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, 1335 &io_req->req_flags)) 1336 return; 1337 /* 1338 * If we receive a cleanup completion for this request then the 1339 * firmware will not give us an abort completion for this request 1340 * so clear any ABTS pending flags. 1341 */ 1342 if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags) && 1343 !test_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags)) { 1344 set_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags); 1345 if (io_req->wait_for_abts_comp) 1346 complete(&io_req->abts_done); 1347 } 1348 1349 bnx2fc_scsi_done(io_req, DID_ERROR); 1350 kref_put(&io_req->refcount, bnx2fc_cmd_release); 1351 if (io_req->wait_for_cleanup_comp) 1352 complete(&io_req->cleanup_done); 1353 } 1354 1355 void bnx2fc_process_abts_compl(struct bnx2fc_cmd *io_req, 1356 struct fcoe_task_ctx_entry *task, 1357 u8 num_rq) 1358 { 1359 u32 r_ctl; 1360 u32 r_a_tov = FC_DEF_R_A_TOV; 1361 u8 issue_rrq = 0; 1362 struct bnx2fc_rport *tgt = io_req->tgt; 1363 1364 BNX2FC_IO_DBG(io_req, "Entered process_abts_compl xid = 0x%x" 1365 "refcnt = %d, cmd_type = %d\n", 1366 io_req->xid, 1367 kref_read(&io_req->refcount), io_req->cmd_type); 1368 1369 if (test_and_set_bit(BNX2FC_FLAG_ABTS_DONE, 1370 &io_req->req_flags)) { 1371 BNX2FC_IO_DBG(io_req, "Timer context finished processing" 1372 " this io\n"); 1373 return; 1374 } 1375 1376 /* 1377 * If we receive an ABTS completion here then we will not receive 1378 * a cleanup completion so clear any cleanup pending flags. 1379 */ 1380 if (test_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags)) { 1381 clear_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags); 1382 if (io_req->wait_for_cleanup_comp) 1383 complete(&io_req->cleanup_done); 1384 } 1385 1386 /* Do not issue RRQ as this IO is already cleanedup */ 1387 if (test_and_set_bit(BNX2FC_FLAG_IO_CLEANUP, 1388 &io_req->req_flags)) 1389 goto io_compl; 1390 1391 /* 1392 * For ABTS issued due to SCSI eh_abort_handler, timeout 1393 * values are maintained by scsi-ml itself. Cancel timeout 1394 * in case ABTS issued as part of task management function 1395 * or due to FW error. 1396 */ 1397 if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) 1398 if (cancel_delayed_work(&io_req->timeout_work)) 1399 kref_put(&io_req->refcount, 1400 bnx2fc_cmd_release); /* drop timer hold */ 1401 1402 r_ctl = (u8)task->rxwr_only.union_ctx.comp_info.abts_rsp.r_ctl; 1403 1404 switch (r_ctl) { 1405 case FC_RCTL_BA_ACC: 1406 /* 1407 * Dont release this cmd yet. It will be relesed 1408 * after we get RRQ response 1409 */ 1410 BNX2FC_IO_DBG(io_req, "ABTS response - ACC Send RRQ\n"); 1411 issue_rrq = 1; 1412 break; 1413 1414 case FC_RCTL_BA_RJT: 1415 BNX2FC_IO_DBG(io_req, "ABTS response - RJT\n"); 1416 break; 1417 default: 1418 printk(KERN_ERR PFX "Unknown ABTS response\n"); 1419 break; 1420 } 1421 1422 if (issue_rrq) { 1423 BNX2FC_IO_DBG(io_req, "Issue RRQ after R_A_TOV\n"); 1424 set_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags); 1425 } 1426 set_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags); 1427 bnx2fc_cmd_timer_set(io_req, r_a_tov); 1428 1429 io_compl: 1430 if (io_req->wait_for_abts_comp) { 1431 if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT, 1432 &io_req->req_flags)) 1433 complete(&io_req->abts_done); 1434 } else { 1435 /* 1436 * We end up here when ABTS is issued as 1437 * in asynchronous context, i.e., as part 1438 * of task management completion, or 1439 * when FW error is received or when the 1440 * ABTS is issued when the IO is timed 1441 * out. 1442 */ 1443 1444 if (io_req->on_active_queue) { 1445 list_del_init(&io_req->link); 1446 io_req->on_active_queue = 0; 1447 /* Move IO req to retire queue */ 1448 list_add_tail(&io_req->link, &tgt->io_retire_queue); 1449 } 1450 bnx2fc_scsi_done(io_req, DID_ERROR); 1451 kref_put(&io_req->refcount, bnx2fc_cmd_release); 1452 } 1453 } 1454 1455 static void bnx2fc_lun_reset_cmpl(struct bnx2fc_cmd *io_req) 1456 { 1457 struct scsi_cmnd *sc_cmd = io_req->sc_cmd; 1458 struct bnx2fc_rport *tgt = io_req->tgt; 1459 struct bnx2fc_cmd *cmd, *tmp; 1460 u64 tm_lun = sc_cmd->device->lun; 1461 u64 lun; 1462 int rc = 0; 1463 1464 /* called with tgt_lock held */ 1465 BNX2FC_IO_DBG(io_req, "Entered bnx2fc_lun_reset_cmpl\n"); 1466 /* 1467 * Walk thru the active_ios queue and ABORT the IO 1468 * that matches with the LUN that was reset 1469 */ 1470 list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) { 1471 BNX2FC_TGT_DBG(tgt, "LUN RST cmpl: scan for pending IOs\n"); 1472 lun = cmd->sc_cmd->device->lun; 1473 if (lun == tm_lun) { 1474 /* Initiate ABTS on this cmd */ 1475 if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, 1476 &cmd->req_flags)) { 1477 /* cancel the IO timeout */ 1478 if (cancel_delayed_work(&io_req->timeout_work)) 1479 kref_put(&io_req->refcount, 1480 bnx2fc_cmd_release); 1481 /* timer hold */ 1482 rc = bnx2fc_initiate_abts(cmd); 1483 /* abts shouldn't fail in this context */ 1484 WARN_ON(rc != SUCCESS); 1485 } else 1486 printk(KERN_ERR PFX "lun_rst: abts already in" 1487 " progress for this IO 0x%x\n", 1488 cmd->xid); 1489 } 1490 } 1491 } 1492 1493 static void bnx2fc_tgt_reset_cmpl(struct bnx2fc_cmd *io_req) 1494 { 1495 struct bnx2fc_rport *tgt = io_req->tgt; 1496 struct bnx2fc_cmd *cmd, *tmp; 1497 int rc = 0; 1498 1499 /* called with tgt_lock held */ 1500 BNX2FC_IO_DBG(io_req, "Entered bnx2fc_tgt_reset_cmpl\n"); 1501 /* 1502 * Walk thru the active_ios queue and ABORT the IO 1503 * that matches with the LUN that was reset 1504 */ 1505 list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) { 1506 BNX2FC_TGT_DBG(tgt, "TGT RST cmpl: scan for pending IOs\n"); 1507 /* Initiate ABTS */ 1508 if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, 1509 &cmd->req_flags)) { 1510 /* cancel the IO timeout */ 1511 if (cancel_delayed_work(&io_req->timeout_work)) 1512 kref_put(&io_req->refcount, 1513 bnx2fc_cmd_release); /* timer hold */ 1514 rc = bnx2fc_initiate_abts(cmd); 1515 /* abts shouldn't fail in this context */ 1516 WARN_ON(rc != SUCCESS); 1517 1518 } else 1519 printk(KERN_ERR PFX "tgt_rst: abts already in progress" 1520 " for this IO 0x%x\n", cmd->xid); 1521 } 1522 } 1523 1524 void bnx2fc_process_tm_compl(struct bnx2fc_cmd *io_req, 1525 struct fcoe_task_ctx_entry *task, u8 num_rq) 1526 { 1527 struct bnx2fc_mp_req *tm_req; 1528 struct fc_frame_header *fc_hdr; 1529 struct scsi_cmnd *sc_cmd = io_req->sc_cmd; 1530 u64 *hdr; 1531 u64 *temp_hdr; 1532 void *rsp_buf; 1533 1534 /* Called with tgt_lock held */ 1535 BNX2FC_IO_DBG(io_req, "Entered process_tm_compl\n"); 1536 1537 if (!(test_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags))) 1538 set_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags); 1539 else { 1540 /* TM has already timed out and we got 1541 * delayed completion. Ignore completion 1542 * processing. 1543 */ 1544 return; 1545 } 1546 1547 tm_req = &(io_req->mp_req); 1548 fc_hdr = &(tm_req->resp_fc_hdr); 1549 hdr = (u64 *)fc_hdr; 1550 temp_hdr = (u64 *) 1551 &task->rxwr_only.union_ctx.comp_info.mp_rsp.fc_hdr; 1552 hdr[0] = cpu_to_be64(temp_hdr[0]); 1553 hdr[1] = cpu_to_be64(temp_hdr[1]); 1554 hdr[2] = cpu_to_be64(temp_hdr[2]); 1555 1556 tm_req->resp_len = 1557 task->rxwr_only.union_ctx.comp_info.mp_rsp.mp_payload_len; 1558 1559 rsp_buf = tm_req->resp_buf; 1560 1561 if (fc_hdr->fh_r_ctl == FC_RCTL_DD_CMD_STATUS) { 1562 bnx2fc_parse_fcp_rsp(io_req, 1563 (struct fcoe_fcp_rsp_payload *) 1564 rsp_buf, num_rq); 1565 if (io_req->fcp_rsp_code == 0) { 1566 /* TM successful */ 1567 if (tm_req->tm_flags & FCP_TMF_LUN_RESET) 1568 bnx2fc_lun_reset_cmpl(io_req); 1569 else if (tm_req->tm_flags & FCP_TMF_TGT_RESET) 1570 bnx2fc_tgt_reset_cmpl(io_req); 1571 } 1572 } else { 1573 printk(KERN_ERR PFX "tmf's fc_hdr r_ctl = 0x%x\n", 1574 fc_hdr->fh_r_ctl); 1575 } 1576 if (!sc_cmd->SCp.ptr) { 1577 printk(KERN_ERR PFX "tm_compl: SCp.ptr is NULL\n"); 1578 return; 1579 } 1580 switch (io_req->fcp_status) { 1581 case FC_GOOD: 1582 if (io_req->cdb_status == 0) { 1583 /* Good IO completion */ 1584 sc_cmd->result = DID_OK << 16; 1585 } else { 1586 /* Transport status is good, SCSI status not good */ 1587 sc_cmd->result = (DID_OK << 16) | io_req->cdb_status; 1588 } 1589 if (io_req->fcp_resid) 1590 scsi_set_resid(sc_cmd, io_req->fcp_resid); 1591 break; 1592 1593 default: 1594 BNX2FC_IO_DBG(io_req, "process_tm_compl: fcp_status = %d\n", 1595 io_req->fcp_status); 1596 break; 1597 } 1598 1599 sc_cmd = io_req->sc_cmd; 1600 io_req->sc_cmd = NULL; 1601 1602 /* check if the io_req exists in tgt's tmf_q */ 1603 if (io_req->on_tmf_queue) { 1604 1605 list_del_init(&io_req->link); 1606 io_req->on_tmf_queue = 0; 1607 } else { 1608 1609 printk(KERN_ERR PFX "Command not on active_cmd_queue!\n"); 1610 return; 1611 } 1612 1613 sc_cmd->SCp.ptr = NULL; 1614 sc_cmd->scsi_done(sc_cmd); 1615 1616 kref_put(&io_req->refcount, bnx2fc_cmd_release); 1617 if (io_req->wait_for_abts_comp) { 1618 BNX2FC_IO_DBG(io_req, "tm_compl - wake up the waiter\n"); 1619 complete(&io_req->abts_done); 1620 } 1621 } 1622 1623 static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len, 1624 int bd_index) 1625 { 1626 struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl; 1627 int frag_size, sg_frags; 1628 1629 sg_frags = 0; 1630 while (sg_len) { 1631 if (sg_len >= BNX2FC_BD_SPLIT_SZ) 1632 frag_size = BNX2FC_BD_SPLIT_SZ; 1633 else 1634 frag_size = sg_len; 1635 bd[bd_index + sg_frags].buf_addr_lo = addr & 0xffffffff; 1636 bd[bd_index + sg_frags].buf_addr_hi = addr >> 32; 1637 bd[bd_index + sg_frags].buf_len = (u16)frag_size; 1638 bd[bd_index + sg_frags].flags = 0; 1639 1640 addr += (u64) frag_size; 1641 sg_frags++; 1642 sg_len -= frag_size; 1643 } 1644 return sg_frags; 1645 1646 } 1647 1648 static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req) 1649 { 1650 struct bnx2fc_interface *interface = io_req->port->priv; 1651 struct bnx2fc_hba *hba = interface->hba; 1652 struct scsi_cmnd *sc = io_req->sc_cmd; 1653 struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl; 1654 struct scatterlist *sg; 1655 int byte_count = 0; 1656 int sg_count = 0; 1657 int bd_count = 0; 1658 int sg_frags; 1659 unsigned int sg_len; 1660 u64 addr; 1661 int i; 1662 1663 WARN_ON(scsi_sg_count(sc) > BNX2FC_MAX_BDS_PER_CMD); 1664 /* 1665 * Use dma_map_sg directly to ensure we're using the correct 1666 * dev struct off of pcidev. 1667 */ 1668 sg_count = dma_map_sg(&hba->pcidev->dev, scsi_sglist(sc), 1669 scsi_sg_count(sc), sc->sc_data_direction); 1670 scsi_for_each_sg(sc, sg, sg_count, i) { 1671 sg_len = sg_dma_len(sg); 1672 addr = sg_dma_address(sg); 1673 if (sg_len > BNX2FC_MAX_BD_LEN) { 1674 sg_frags = bnx2fc_split_bd(io_req, addr, sg_len, 1675 bd_count); 1676 } else { 1677 1678 sg_frags = 1; 1679 bd[bd_count].buf_addr_lo = addr & 0xffffffff; 1680 bd[bd_count].buf_addr_hi = addr >> 32; 1681 bd[bd_count].buf_len = (u16)sg_len; 1682 bd[bd_count].flags = 0; 1683 } 1684 bd_count += sg_frags; 1685 byte_count += sg_len; 1686 } 1687 if (byte_count != scsi_bufflen(sc)) 1688 printk(KERN_ERR PFX "byte_count = %d != scsi_bufflen = %d, " 1689 "task_id = 0x%x\n", byte_count, scsi_bufflen(sc), 1690 io_req->xid); 1691 return bd_count; 1692 } 1693 1694 static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req) 1695 { 1696 struct scsi_cmnd *sc = io_req->sc_cmd; 1697 struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl; 1698 int bd_count; 1699 1700 if (scsi_sg_count(sc)) { 1701 bd_count = bnx2fc_map_sg(io_req); 1702 if (bd_count == 0) 1703 return -ENOMEM; 1704 } else { 1705 bd_count = 0; 1706 bd[0].buf_addr_lo = bd[0].buf_addr_hi = 0; 1707 bd[0].buf_len = bd[0].flags = 0; 1708 } 1709 io_req->bd_tbl->bd_valid = bd_count; 1710 1711 /* 1712 * Return the command to ML if BD count exceeds the max number 1713 * that can be handled by FW. 1714 */ 1715 if (bd_count > BNX2FC_FW_MAX_BDS_PER_CMD) { 1716 pr_err("bd_count = %d exceeded FW supported max BD(255), task_id = 0x%x\n", 1717 bd_count, io_req->xid); 1718 return -ENOMEM; 1719 } 1720 1721 return 0; 1722 } 1723 1724 static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req) 1725 { 1726 struct scsi_cmnd *sc = io_req->sc_cmd; 1727 struct bnx2fc_interface *interface = io_req->port->priv; 1728 struct bnx2fc_hba *hba = interface->hba; 1729 1730 /* 1731 * Use dma_unmap_sg directly to ensure we're using the correct 1732 * dev struct off of pcidev. 1733 */ 1734 if (io_req->bd_tbl->bd_valid && sc && scsi_sg_count(sc)) { 1735 dma_unmap_sg(&hba->pcidev->dev, scsi_sglist(sc), 1736 scsi_sg_count(sc), sc->sc_data_direction); 1737 io_req->bd_tbl->bd_valid = 0; 1738 } 1739 } 1740 1741 void bnx2fc_build_fcp_cmnd(struct bnx2fc_cmd *io_req, 1742 struct fcp_cmnd *fcp_cmnd) 1743 { 1744 struct scsi_cmnd *sc_cmd = io_req->sc_cmd; 1745 1746 memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); 1747 1748 int_to_scsilun(sc_cmd->device->lun, &fcp_cmnd->fc_lun); 1749 1750 fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len); 1751 memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len); 1752 1753 fcp_cmnd->fc_cmdref = 0; 1754 fcp_cmnd->fc_pri_ta = 0; 1755 fcp_cmnd->fc_tm_flags = io_req->mp_req.tm_flags; 1756 fcp_cmnd->fc_flags = io_req->io_req_flags; 1757 fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE; 1758 } 1759 1760 static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req, 1761 struct fcoe_fcp_rsp_payload *fcp_rsp, 1762 u8 num_rq) 1763 { 1764 struct scsi_cmnd *sc_cmd = io_req->sc_cmd; 1765 struct bnx2fc_rport *tgt = io_req->tgt; 1766 u8 rsp_flags = fcp_rsp->fcp_flags.flags; 1767 u32 rq_buff_len = 0; 1768 int i; 1769 unsigned char *rq_data; 1770 unsigned char *dummy; 1771 int fcp_sns_len = 0; 1772 int fcp_rsp_len = 0; 1773 1774 io_req->fcp_status = FC_GOOD; 1775 io_req->fcp_resid = 0; 1776 if (rsp_flags & (FCOE_FCP_RSP_FLAGS_FCP_RESID_OVER | 1777 FCOE_FCP_RSP_FLAGS_FCP_RESID_UNDER)) 1778 io_req->fcp_resid = fcp_rsp->fcp_resid; 1779 1780 io_req->scsi_comp_flags = rsp_flags; 1781 CMD_SCSI_STATUS(sc_cmd) = io_req->cdb_status = 1782 fcp_rsp->scsi_status_code; 1783 1784 /* Fetch fcp_rsp_info and fcp_sns_info if available */ 1785 if (num_rq) { 1786 1787 /* 1788 * We do not anticipate num_rq >1, as the linux defined 1789 * SCSI_SENSE_BUFFERSIZE is 96 bytes + 8 bytes of FCP_RSP_INFO 1790 * 256 bytes of single rq buffer is good enough to hold this. 1791 */ 1792 1793 if (rsp_flags & 1794 FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID) { 1795 fcp_rsp_len = rq_buff_len 1796 = fcp_rsp->fcp_rsp_len; 1797 } 1798 1799 if (rsp_flags & 1800 FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID) { 1801 fcp_sns_len = fcp_rsp->fcp_sns_len; 1802 rq_buff_len += fcp_rsp->fcp_sns_len; 1803 } 1804 1805 io_req->fcp_rsp_len = fcp_rsp_len; 1806 io_req->fcp_sns_len = fcp_sns_len; 1807 1808 if (rq_buff_len > num_rq * BNX2FC_RQ_BUF_SZ) { 1809 /* Invalid sense sense length. */ 1810 printk(KERN_ERR PFX "invalid sns length %d\n", 1811 rq_buff_len); 1812 /* reset rq_buff_len */ 1813 rq_buff_len = num_rq * BNX2FC_RQ_BUF_SZ; 1814 } 1815 1816 rq_data = bnx2fc_get_next_rqe(tgt, 1); 1817 1818 if (num_rq > 1) { 1819 /* We do not need extra sense data */ 1820 for (i = 1; i < num_rq; i++) 1821 dummy = bnx2fc_get_next_rqe(tgt, 1); 1822 } 1823 1824 /* fetch fcp_rsp_code */ 1825 if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) { 1826 /* Only for task management function */ 1827 io_req->fcp_rsp_code = rq_data[3]; 1828 BNX2FC_IO_DBG(io_req, "fcp_rsp_code = %d\n", 1829 io_req->fcp_rsp_code); 1830 } 1831 1832 /* fetch sense data */ 1833 rq_data += fcp_rsp_len; 1834 1835 if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) { 1836 printk(KERN_ERR PFX "Truncating sense buffer\n"); 1837 fcp_sns_len = SCSI_SENSE_BUFFERSIZE; 1838 } 1839 1840 memset(sc_cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE); 1841 if (fcp_sns_len) 1842 memcpy(sc_cmd->sense_buffer, rq_data, fcp_sns_len); 1843 1844 /* return RQ entries */ 1845 for (i = 0; i < num_rq; i++) 1846 bnx2fc_return_rqe(tgt, 1); 1847 } 1848 } 1849 1850 /** 1851 * bnx2fc_queuecommand - Queuecommand function of the scsi template 1852 * 1853 * @host: The Scsi_Host the command was issued to 1854 * @sc_cmd: struct scsi_cmnd to be executed 1855 * 1856 * This is the IO strategy routine, called by SCSI-ML 1857 **/ 1858 int bnx2fc_queuecommand(struct Scsi_Host *host, 1859 struct scsi_cmnd *sc_cmd) 1860 { 1861 struct fc_lport *lport = shost_priv(host); 1862 struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device)); 1863 struct fc_rport_libfc_priv *rp = rport->dd_data; 1864 struct bnx2fc_rport *tgt; 1865 struct bnx2fc_cmd *io_req; 1866 int rc = 0; 1867 int rval; 1868 1869 rval = fc_remote_port_chkready(rport); 1870 if (rval) { 1871 sc_cmd->result = rval; 1872 sc_cmd->scsi_done(sc_cmd); 1873 return 0; 1874 } 1875 1876 if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) { 1877 rc = SCSI_MLQUEUE_HOST_BUSY; 1878 goto exit_qcmd; 1879 } 1880 1881 /* rport and tgt are allocated together, so tgt should be non-NULL */ 1882 tgt = (struct bnx2fc_rport *)&rp[1]; 1883 1884 if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) { 1885 /* 1886 * Session is not offloaded yet. Let SCSI-ml retry 1887 * the command. 1888 */ 1889 rc = SCSI_MLQUEUE_TARGET_BUSY; 1890 goto exit_qcmd; 1891 } 1892 if (tgt->retry_delay_timestamp) { 1893 if (time_after(jiffies, tgt->retry_delay_timestamp)) { 1894 tgt->retry_delay_timestamp = 0; 1895 } else { 1896 /* If retry_delay timer is active, flow off the ML */ 1897 rc = SCSI_MLQUEUE_TARGET_BUSY; 1898 goto exit_qcmd; 1899 } 1900 } 1901 1902 spin_lock_bh(&tgt->tgt_lock); 1903 1904 io_req = bnx2fc_cmd_alloc(tgt); 1905 if (!io_req) { 1906 rc = SCSI_MLQUEUE_HOST_BUSY; 1907 goto exit_qcmd_tgtlock; 1908 } 1909 io_req->sc_cmd = sc_cmd; 1910 1911 if (bnx2fc_post_io_req(tgt, io_req)) { 1912 printk(KERN_ERR PFX "Unable to post io_req\n"); 1913 rc = SCSI_MLQUEUE_HOST_BUSY; 1914 goto exit_qcmd_tgtlock; 1915 } 1916 1917 exit_qcmd_tgtlock: 1918 spin_unlock_bh(&tgt->tgt_lock); 1919 exit_qcmd: 1920 return rc; 1921 } 1922 1923 void bnx2fc_process_scsi_cmd_compl(struct bnx2fc_cmd *io_req, 1924 struct fcoe_task_ctx_entry *task, 1925 u8 num_rq) 1926 { 1927 struct fcoe_fcp_rsp_payload *fcp_rsp; 1928 struct bnx2fc_rport *tgt = io_req->tgt; 1929 struct scsi_cmnd *sc_cmd; 1930 struct Scsi_Host *host; 1931 1932 1933 /* scsi_cmd_cmpl is called with tgt lock held */ 1934 1935 if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) { 1936 /* we will not receive ABTS response for this IO */ 1937 BNX2FC_IO_DBG(io_req, "Timer context finished processing " 1938 "this scsi cmd\n"); 1939 return; 1940 } 1941 1942 /* Cancel the timeout_work, as we received IO completion */ 1943 if (cancel_delayed_work(&io_req->timeout_work)) 1944 kref_put(&io_req->refcount, 1945 bnx2fc_cmd_release); /* drop timer hold */ 1946 1947 sc_cmd = io_req->sc_cmd; 1948 if (sc_cmd == NULL) { 1949 printk(KERN_ERR PFX "scsi_cmd_compl - sc_cmd is NULL\n"); 1950 return; 1951 } 1952 1953 /* Fetch fcp_rsp from task context and perform cmd completion */ 1954 fcp_rsp = (struct fcoe_fcp_rsp_payload *) 1955 &(task->rxwr_only.union_ctx.comp_info.fcp_rsp.payload); 1956 1957 /* parse fcp_rsp and obtain sense data from RQ if available */ 1958 bnx2fc_parse_fcp_rsp(io_req, fcp_rsp, num_rq); 1959 1960 host = sc_cmd->device->host; 1961 if (!sc_cmd->SCp.ptr) { 1962 printk(KERN_ERR PFX "SCp.ptr is NULL\n"); 1963 return; 1964 } 1965 1966 if (io_req->on_active_queue) { 1967 list_del_init(&io_req->link); 1968 io_req->on_active_queue = 0; 1969 /* Move IO req to retire queue */ 1970 list_add_tail(&io_req->link, &tgt->io_retire_queue); 1971 } else { 1972 /* This should not happen, but could have been pulled 1973 * by bnx2fc_flush_active_ios(), or during a race 1974 * between command abort and (late) completion. 1975 */ 1976 BNX2FC_IO_DBG(io_req, "xid not on active_cmd_queue\n"); 1977 if (io_req->wait_for_abts_comp) 1978 if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT, 1979 &io_req->req_flags)) 1980 complete(&io_req->abts_done); 1981 } 1982 1983 bnx2fc_unmap_sg_list(io_req); 1984 io_req->sc_cmd = NULL; 1985 1986 switch (io_req->fcp_status) { 1987 case FC_GOOD: 1988 if (io_req->cdb_status == 0) { 1989 /* Good IO completion */ 1990 sc_cmd->result = DID_OK << 16; 1991 } else { 1992 /* Transport status is good, SCSI status not good */ 1993 BNX2FC_IO_DBG(io_req, "scsi_cmpl: cdb_status = %d" 1994 " fcp_resid = 0x%x\n", 1995 io_req->cdb_status, io_req->fcp_resid); 1996 sc_cmd->result = (DID_OK << 16) | io_req->cdb_status; 1997 1998 if (io_req->cdb_status == SAM_STAT_TASK_SET_FULL || 1999 io_req->cdb_status == SAM_STAT_BUSY) { 2000 /* Set the jiffies + retry_delay_timer * 100ms 2001 for the rport/tgt */ 2002 tgt->retry_delay_timestamp = jiffies + 2003 fcp_rsp->retry_delay_timer * HZ / 10; 2004 } 2005 2006 } 2007 if (io_req->fcp_resid) 2008 scsi_set_resid(sc_cmd, io_req->fcp_resid); 2009 break; 2010 default: 2011 printk(KERN_ERR PFX "scsi_cmd_compl: fcp_status = %d\n", 2012 io_req->fcp_status); 2013 break; 2014 } 2015 sc_cmd->SCp.ptr = NULL; 2016 sc_cmd->scsi_done(sc_cmd); 2017 kref_put(&io_req->refcount, bnx2fc_cmd_release); 2018 } 2019 2020 int bnx2fc_post_io_req(struct bnx2fc_rport *tgt, 2021 struct bnx2fc_cmd *io_req) 2022 { 2023 struct fcoe_task_ctx_entry *task; 2024 struct fcoe_task_ctx_entry *task_page; 2025 struct scsi_cmnd *sc_cmd = io_req->sc_cmd; 2026 struct fcoe_port *port = tgt->port; 2027 struct bnx2fc_interface *interface = port->priv; 2028 struct bnx2fc_hba *hba = interface->hba; 2029 struct fc_lport *lport = port->lport; 2030 struct fc_stats *stats; 2031 int task_idx, index; 2032 u16 xid; 2033 2034 /* bnx2fc_post_io_req() is called with the tgt_lock held */ 2035 2036 /* Initialize rest of io_req fields */ 2037 io_req->cmd_type = BNX2FC_SCSI_CMD; 2038 io_req->port = port; 2039 io_req->tgt = tgt; 2040 io_req->data_xfer_len = scsi_bufflen(sc_cmd); 2041 sc_cmd->SCp.ptr = (char *)io_req; 2042 2043 stats = per_cpu_ptr(lport->stats, get_cpu()); 2044 if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) { 2045 io_req->io_req_flags = BNX2FC_READ; 2046 stats->InputRequests++; 2047 stats->InputBytes += io_req->data_xfer_len; 2048 } else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) { 2049 io_req->io_req_flags = BNX2FC_WRITE; 2050 stats->OutputRequests++; 2051 stats->OutputBytes += io_req->data_xfer_len; 2052 } else { 2053 io_req->io_req_flags = 0; 2054 stats->ControlRequests++; 2055 } 2056 put_cpu(); 2057 2058 xid = io_req->xid; 2059 2060 /* Build buffer descriptor list for firmware from sg list */ 2061 if (bnx2fc_build_bd_list_from_sg(io_req)) { 2062 printk(KERN_ERR PFX "BD list creation failed\n"); 2063 kref_put(&io_req->refcount, bnx2fc_cmd_release); 2064 return -EAGAIN; 2065 } 2066 2067 task_idx = xid / BNX2FC_TASKS_PER_PAGE; 2068 index = xid % BNX2FC_TASKS_PER_PAGE; 2069 2070 /* Initialize task context for this IO request */ 2071 task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx]; 2072 task = &(task_page[index]); 2073 bnx2fc_init_task(io_req, task); 2074 2075 if (tgt->flush_in_prog) { 2076 printk(KERN_ERR PFX "Flush in progress..Host Busy\n"); 2077 kref_put(&io_req->refcount, bnx2fc_cmd_release); 2078 return -EAGAIN; 2079 } 2080 2081 if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) { 2082 printk(KERN_ERR PFX "Session not ready...post_io\n"); 2083 kref_put(&io_req->refcount, bnx2fc_cmd_release); 2084 return -EAGAIN; 2085 } 2086 2087 /* Time IO req */ 2088 if (tgt->io_timeout) 2089 bnx2fc_cmd_timer_set(io_req, BNX2FC_IO_TIMEOUT); 2090 /* Obtain free SQ entry */ 2091 bnx2fc_add_2_sq(tgt, xid); 2092 2093 /* Enqueue the io_req to active_cmd_queue */ 2094 2095 io_req->on_active_queue = 1; 2096 /* move io_req from pending_queue to active_queue */ 2097 list_add_tail(&io_req->link, &tgt->active_cmd_queue); 2098 2099 /* Ring doorbell */ 2100 bnx2fc_ring_doorbell(tgt); 2101 return 0; 2102 } 2103