xref: /openbmc/linux/drivers/scsi/bnx2fc/bnx2fc_io.c (revision 8dd3cdea)
1 /* bnx2fc_io.c: QLogic Linux FCoE offload driver.
2  * IO manager and SCSI IO processing.
3  *
4  * Copyright (c) 2008-2013 Broadcom Corporation
5  * Copyright (c) 2014-2016 QLogic Corporation
6  * Copyright (c) 2016-2017 Cavium Inc.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation.
11  *
12  * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
13  */
14 
15 #include "bnx2fc.h"
16 
17 #define RESERVE_FREE_LIST_INDEX num_possible_cpus()
18 
19 static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
20 			   int bd_index);
21 static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req);
22 static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req);
23 static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req);
24 static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req);
25 static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
26 				 struct fcoe_fcp_rsp_payload *fcp_rsp,
27 				 u8 num_rq, unsigned char *rq_data);
28 
29 void bnx2fc_cmd_timer_set(struct bnx2fc_cmd *io_req,
30 			  unsigned int timer_msec)
31 {
32 	struct bnx2fc_interface *interface = io_req->port->priv;
33 
34 	if (queue_delayed_work(interface->timer_work_queue,
35 			       &io_req->timeout_work,
36 			       msecs_to_jiffies(timer_msec)))
37 		kref_get(&io_req->refcount);
38 }
39 
40 static void bnx2fc_cmd_timeout(struct work_struct *work)
41 {
42 	struct bnx2fc_cmd *io_req = container_of(work, struct bnx2fc_cmd,
43 						 timeout_work.work);
44 	u8 cmd_type = io_req->cmd_type;
45 	struct bnx2fc_rport *tgt = io_req->tgt;
46 	int rc;
47 
48 	BNX2FC_IO_DBG(io_req, "cmd_timeout, cmd_type = %d,"
49 		      "req_flags = %lx\n", cmd_type, io_req->req_flags);
50 
51 	spin_lock_bh(&tgt->tgt_lock);
52 	if (test_and_clear_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags)) {
53 		clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
54 		/*
55 		 * ideally we should hold the io_req until RRQ complets,
56 		 * and release io_req from timeout hold.
57 		 */
58 		spin_unlock_bh(&tgt->tgt_lock);
59 		bnx2fc_send_rrq(io_req);
60 		return;
61 	}
62 	if (test_and_clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags)) {
63 		BNX2FC_IO_DBG(io_req, "IO ready for reuse now\n");
64 		goto done;
65 	}
66 
67 	switch (cmd_type) {
68 	case BNX2FC_SCSI_CMD:
69 		if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
70 							&io_req->req_flags)) {
71 			/* Handle eh_abort timeout */
72 			BNX2FC_IO_DBG(io_req, "eh_abort timed out\n");
73 			complete(&io_req->abts_done);
74 		} else if (test_bit(BNX2FC_FLAG_ISSUE_ABTS,
75 				    &io_req->req_flags)) {
76 			/* Handle internally generated ABTS timeout */
77 			BNX2FC_IO_DBG(io_req, "ABTS timed out refcnt = %d\n",
78 					kref_read(&io_req->refcount));
79 			if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
80 					       &io_req->req_flags))) {
81 				/*
82 				 * Cleanup and return original command to
83 				 * mid-layer.
84 				 */
85 				bnx2fc_initiate_cleanup(io_req);
86 				kref_put(&io_req->refcount, bnx2fc_cmd_release);
87 				spin_unlock_bh(&tgt->tgt_lock);
88 
89 				return;
90 			}
91 		} else {
92 			/* Hanlde IO timeout */
93 			BNX2FC_IO_DBG(io_req, "IO timed out. issue ABTS\n");
94 			if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL,
95 					     &io_req->req_flags)) {
96 				BNX2FC_IO_DBG(io_req, "IO completed before "
97 							   " timer expiry\n");
98 				goto done;
99 			}
100 
101 			if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
102 					      &io_req->req_flags)) {
103 				rc = bnx2fc_initiate_abts(io_req);
104 				if (rc == SUCCESS)
105 					goto done;
106 
107 				kref_put(&io_req->refcount, bnx2fc_cmd_release);
108 				spin_unlock_bh(&tgt->tgt_lock);
109 
110 				return;
111 			} else {
112 				BNX2FC_IO_DBG(io_req, "IO already in "
113 						      "ABTS processing\n");
114 			}
115 		}
116 		break;
117 	case BNX2FC_ELS:
118 
119 		if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
120 			BNX2FC_IO_DBG(io_req, "ABTS for ELS timed out\n");
121 
122 			if (!test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
123 					      &io_req->req_flags)) {
124 				kref_put(&io_req->refcount, bnx2fc_cmd_release);
125 				spin_unlock_bh(&tgt->tgt_lock);
126 
127 				return;
128 			}
129 		} else {
130 			/*
131 			 * Handle ELS timeout.
132 			 * tgt_lock is used to sync compl path and timeout
133 			 * path. If els compl path is processing this IO, we
134 			 * have nothing to do here, just release the timer hold
135 			 */
136 			BNX2FC_IO_DBG(io_req, "ELS timed out\n");
137 			if (test_and_set_bit(BNX2FC_FLAG_ELS_DONE,
138 					       &io_req->req_flags))
139 				goto done;
140 
141 			/* Indicate the cb_func that this ELS is timed out */
142 			set_bit(BNX2FC_FLAG_ELS_TIMEOUT, &io_req->req_flags);
143 
144 			if ((io_req->cb_func) && (io_req->cb_arg)) {
145 				io_req->cb_func(io_req->cb_arg);
146 				io_req->cb_arg = NULL;
147 			}
148 		}
149 		break;
150 	default:
151 		printk(KERN_ERR PFX "cmd_timeout: invalid cmd_type %d\n",
152 			cmd_type);
153 		break;
154 	}
155 
156 done:
157 	/* release the cmd that was held when timer was set */
158 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
159 	spin_unlock_bh(&tgt->tgt_lock);
160 }
161 
162 static void bnx2fc_scsi_done(struct bnx2fc_cmd *io_req, int err_code)
163 {
164 	/* Called with host lock held */
165 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
166 
167 	/*
168 	 * active_cmd_queue may have other command types as well,
169 	 * and during flush operation,  we want to error back only
170 	 * scsi commands.
171 	 */
172 	if (io_req->cmd_type != BNX2FC_SCSI_CMD)
173 		return;
174 
175 	BNX2FC_IO_DBG(io_req, "scsi_done. err_code = 0x%x\n", err_code);
176 	if (test_bit(BNX2FC_FLAG_CMD_LOST, &io_req->req_flags)) {
177 		/* Do not call scsi done for this IO */
178 		return;
179 	}
180 
181 	bnx2fc_unmap_sg_list(io_req);
182 	io_req->sc_cmd = NULL;
183 
184 	/* Sanity checks before returning command to mid-layer */
185 	if (!sc_cmd) {
186 		printk(KERN_ERR PFX "scsi_done - sc_cmd NULL. "
187 				    "IO(0x%x) already cleaned up\n",
188 		       io_req->xid);
189 		return;
190 	}
191 	if (!sc_cmd->device) {
192 		pr_err(PFX "0x%x: sc_cmd->device is NULL.\n", io_req->xid);
193 		return;
194 	}
195 	if (!sc_cmd->device->host) {
196 		pr_err(PFX "0x%x: sc_cmd->device->host is NULL.\n",
197 		    io_req->xid);
198 		return;
199 	}
200 
201 	sc_cmd->result = err_code << 16;
202 
203 	BNX2FC_IO_DBG(io_req, "sc=%p, result=0x%x, retries=%d, allowed=%d\n",
204 		sc_cmd, host_byte(sc_cmd->result), sc_cmd->retries,
205 		sc_cmd->allowed);
206 	scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd));
207 	bnx2fc_priv(sc_cmd)->io_req = NULL;
208 	scsi_done(sc_cmd);
209 }
210 
211 struct bnx2fc_cmd_mgr *bnx2fc_cmd_mgr_alloc(struct bnx2fc_hba *hba)
212 {
213 	struct bnx2fc_cmd_mgr *cmgr;
214 	struct io_bdt *bdt_info;
215 	struct bnx2fc_cmd *io_req;
216 	size_t len;
217 	u32 mem_size;
218 	u16 xid;
219 	int i;
220 	int num_ios, num_pri_ios;
221 	size_t bd_tbl_sz;
222 	int arr_sz = num_possible_cpus() + 1;
223 	u16 min_xid = BNX2FC_MIN_XID;
224 	u16 max_xid = hba->max_xid;
225 
226 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) {
227 		printk(KERN_ERR PFX "cmd_mgr_alloc: Invalid min_xid 0x%x \
228 					and max_xid 0x%x\n", min_xid, max_xid);
229 		return NULL;
230 	}
231 	BNX2FC_MISC_DBG("min xid 0x%x, max xid 0x%x\n", min_xid, max_xid);
232 
233 	num_ios = max_xid - min_xid + 1;
234 	len = (num_ios * (sizeof(struct bnx2fc_cmd *)));
235 	len += sizeof(struct bnx2fc_cmd_mgr);
236 
237 	cmgr = kzalloc(len, GFP_KERNEL);
238 	if (!cmgr) {
239 		printk(KERN_ERR PFX "failed to alloc cmgr\n");
240 		return NULL;
241 	}
242 
243 	cmgr->hba = hba;
244 	cmgr->free_list = kcalloc(arr_sz, sizeof(*cmgr->free_list),
245 				  GFP_KERNEL);
246 	if (!cmgr->free_list) {
247 		printk(KERN_ERR PFX "failed to alloc free_list\n");
248 		goto mem_err;
249 	}
250 
251 	cmgr->free_list_lock = kcalloc(arr_sz, sizeof(*cmgr->free_list_lock),
252 				       GFP_KERNEL);
253 	if (!cmgr->free_list_lock) {
254 		printk(KERN_ERR PFX "failed to alloc free_list_lock\n");
255 		kfree(cmgr->free_list);
256 		cmgr->free_list = NULL;
257 		goto mem_err;
258 	}
259 
260 	cmgr->cmds = (struct bnx2fc_cmd **)(cmgr + 1);
261 
262 	for (i = 0; i < arr_sz; i++)  {
263 		INIT_LIST_HEAD(&cmgr->free_list[i]);
264 		spin_lock_init(&cmgr->free_list_lock[i]);
265 	}
266 
267 	/*
268 	 * Pre-allocated pool of bnx2fc_cmds.
269 	 * Last entry in the free list array is the free list
270 	 * of slow path requests.
271 	 */
272 	xid = BNX2FC_MIN_XID;
273 	num_pri_ios = num_ios - hba->elstm_xids;
274 	for (i = 0; i < num_ios; i++) {
275 		io_req = kzalloc(sizeof(*io_req), GFP_KERNEL);
276 
277 		if (!io_req) {
278 			printk(KERN_ERR PFX "failed to alloc io_req\n");
279 			goto mem_err;
280 		}
281 
282 		INIT_LIST_HEAD(&io_req->link);
283 		INIT_DELAYED_WORK(&io_req->timeout_work, bnx2fc_cmd_timeout);
284 
285 		io_req->xid = xid++;
286 		if (i < num_pri_ios)
287 			list_add_tail(&io_req->link,
288 				&cmgr->free_list[io_req->xid %
289 						 num_possible_cpus()]);
290 		else
291 			list_add_tail(&io_req->link,
292 				&cmgr->free_list[num_possible_cpus()]);
293 		io_req++;
294 	}
295 
296 	/* Allocate pool of io_bdts - one for each bnx2fc_cmd */
297 	mem_size = num_ios * sizeof(struct io_bdt *);
298 	cmgr->io_bdt_pool = kzalloc(mem_size, GFP_KERNEL);
299 	if (!cmgr->io_bdt_pool) {
300 		printk(KERN_ERR PFX "failed to alloc io_bdt_pool\n");
301 		goto mem_err;
302 	}
303 
304 	mem_size = sizeof(struct io_bdt);
305 	for (i = 0; i < num_ios; i++) {
306 		cmgr->io_bdt_pool[i] = kmalloc(mem_size, GFP_KERNEL);
307 		if (!cmgr->io_bdt_pool[i]) {
308 			printk(KERN_ERR PFX "failed to alloc "
309 				"io_bdt_pool[%d]\n", i);
310 			goto mem_err;
311 		}
312 	}
313 
314 	/* Allocate an map fcoe_bdt_ctx structures */
315 	bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
316 	for (i = 0; i < num_ios; i++) {
317 		bdt_info = cmgr->io_bdt_pool[i];
318 		bdt_info->bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
319 						      bd_tbl_sz,
320 						      &bdt_info->bd_tbl_dma,
321 						      GFP_KERNEL);
322 		if (!bdt_info->bd_tbl) {
323 			printk(KERN_ERR PFX "failed to alloc "
324 				"bdt_tbl[%d]\n", i);
325 			goto mem_err;
326 		}
327 	}
328 
329 	return cmgr;
330 
331 mem_err:
332 	bnx2fc_cmd_mgr_free(cmgr);
333 	return NULL;
334 }
335 
336 void bnx2fc_cmd_mgr_free(struct bnx2fc_cmd_mgr *cmgr)
337 {
338 	struct io_bdt *bdt_info;
339 	struct bnx2fc_hba *hba = cmgr->hba;
340 	size_t bd_tbl_sz;
341 	u16 min_xid = BNX2FC_MIN_XID;
342 	u16 max_xid = hba->max_xid;
343 	int num_ios;
344 	int i;
345 
346 	num_ios = max_xid - min_xid + 1;
347 
348 	/* Free fcoe_bdt_ctx structures */
349 	if (!cmgr->io_bdt_pool)
350 		goto free_cmd_pool;
351 
352 	bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
353 	for (i = 0; i < num_ios; i++) {
354 		bdt_info = cmgr->io_bdt_pool[i];
355 		if (bdt_info->bd_tbl) {
356 			dma_free_coherent(&hba->pcidev->dev, bd_tbl_sz,
357 					    bdt_info->bd_tbl,
358 					    bdt_info->bd_tbl_dma);
359 			bdt_info->bd_tbl = NULL;
360 		}
361 	}
362 
363 	/* Destroy io_bdt pool */
364 	for (i = 0; i < num_ios; i++) {
365 		kfree(cmgr->io_bdt_pool[i]);
366 		cmgr->io_bdt_pool[i] = NULL;
367 	}
368 
369 	kfree(cmgr->io_bdt_pool);
370 	cmgr->io_bdt_pool = NULL;
371 
372 free_cmd_pool:
373 	kfree(cmgr->free_list_lock);
374 
375 	/* Destroy cmd pool */
376 	if (!cmgr->free_list)
377 		goto free_cmgr;
378 
379 	for (i = 0; i < num_possible_cpus() + 1; i++)  {
380 		struct bnx2fc_cmd *tmp, *io_req;
381 
382 		list_for_each_entry_safe(io_req, tmp,
383 					 &cmgr->free_list[i], link) {
384 			list_del(&io_req->link);
385 			kfree(io_req);
386 		}
387 	}
388 	kfree(cmgr->free_list);
389 free_cmgr:
390 	/* Free command manager itself */
391 	kfree(cmgr);
392 }
393 
394 struct bnx2fc_cmd *bnx2fc_elstm_alloc(struct bnx2fc_rport *tgt, int type)
395 {
396 	struct fcoe_port *port = tgt->port;
397 	struct bnx2fc_interface *interface = port->priv;
398 	struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
399 	struct bnx2fc_cmd *io_req;
400 	struct list_head *listp;
401 	struct io_bdt *bd_tbl;
402 	int index = RESERVE_FREE_LIST_INDEX;
403 	u32 free_sqes;
404 	u32 max_sqes;
405 	u16 xid;
406 
407 	max_sqes = tgt->max_sqes;
408 	switch (type) {
409 	case BNX2FC_TASK_MGMT_CMD:
410 		max_sqes = BNX2FC_TM_MAX_SQES;
411 		break;
412 	case BNX2FC_ELS:
413 		max_sqes = BNX2FC_ELS_MAX_SQES;
414 		break;
415 	default:
416 		break;
417 	}
418 
419 	/*
420 	 * NOTE: Free list insertions and deletions are protected with
421 	 * cmgr lock
422 	 */
423 	spin_lock_bh(&cmd_mgr->free_list_lock[index]);
424 	free_sqes = atomic_read(&tgt->free_sqes);
425 	if ((list_empty(&(cmd_mgr->free_list[index]))) ||
426 	    (tgt->num_active_ios.counter  >= max_sqes) ||
427 	    (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
428 		BNX2FC_TGT_DBG(tgt, "No free els_tm cmds available "
429 			"ios(%d):sqes(%d)\n",
430 			tgt->num_active_ios.counter, tgt->max_sqes);
431 		if (list_empty(&(cmd_mgr->free_list[index])))
432 			printk(KERN_ERR PFX "elstm_alloc: list_empty\n");
433 		spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
434 		return NULL;
435 	}
436 
437 	listp = (struct list_head *)
438 			cmd_mgr->free_list[index].next;
439 	list_del_init(listp);
440 	io_req = (struct bnx2fc_cmd *) listp;
441 	xid = io_req->xid;
442 	cmd_mgr->cmds[xid] = io_req;
443 	atomic_inc(&tgt->num_active_ios);
444 	atomic_dec(&tgt->free_sqes);
445 	spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
446 
447 	INIT_LIST_HEAD(&io_req->link);
448 
449 	io_req->port = port;
450 	io_req->cmd_mgr = cmd_mgr;
451 	io_req->req_flags = 0;
452 	io_req->cmd_type = type;
453 
454 	/* Bind io_bdt for this io_req */
455 	/* Have a static link between io_req and io_bdt_pool */
456 	bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
457 	bd_tbl->io_req = io_req;
458 
459 	/* Hold the io_req  against deletion */
460 	kref_init(&io_req->refcount);
461 	return io_req;
462 }
463 
464 struct bnx2fc_cmd *bnx2fc_cmd_alloc(struct bnx2fc_rport *tgt)
465 {
466 	struct fcoe_port *port = tgt->port;
467 	struct bnx2fc_interface *interface = port->priv;
468 	struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
469 	struct bnx2fc_cmd *io_req;
470 	struct list_head *listp;
471 	struct io_bdt *bd_tbl;
472 	u32 free_sqes;
473 	u32 max_sqes;
474 	u16 xid;
475 	int index = get_cpu();
476 
477 	max_sqes = BNX2FC_SCSI_MAX_SQES;
478 	/*
479 	 * NOTE: Free list insertions and deletions are protected with
480 	 * cmgr lock
481 	 */
482 	spin_lock_bh(&cmd_mgr->free_list_lock[index]);
483 	free_sqes = atomic_read(&tgt->free_sqes);
484 	if ((list_empty(&cmd_mgr->free_list[index])) ||
485 	    (tgt->num_active_ios.counter  >= max_sqes) ||
486 	    (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
487 		spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
488 		put_cpu();
489 		return NULL;
490 	}
491 
492 	listp = (struct list_head *)
493 		cmd_mgr->free_list[index].next;
494 	list_del_init(listp);
495 	io_req = (struct bnx2fc_cmd *) listp;
496 	xid = io_req->xid;
497 	cmd_mgr->cmds[xid] = io_req;
498 	atomic_inc(&tgt->num_active_ios);
499 	atomic_dec(&tgt->free_sqes);
500 	spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
501 	put_cpu();
502 
503 	INIT_LIST_HEAD(&io_req->link);
504 
505 	io_req->port = port;
506 	io_req->cmd_mgr = cmd_mgr;
507 	io_req->req_flags = 0;
508 
509 	/* Bind io_bdt for this io_req */
510 	/* Have a static link between io_req and io_bdt_pool */
511 	bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
512 	bd_tbl->io_req = io_req;
513 
514 	/* Hold the io_req  against deletion */
515 	kref_init(&io_req->refcount);
516 	return io_req;
517 }
518 
519 void bnx2fc_cmd_release(struct kref *ref)
520 {
521 	struct bnx2fc_cmd *io_req = container_of(ref,
522 						struct bnx2fc_cmd, refcount);
523 	struct bnx2fc_cmd_mgr *cmd_mgr = io_req->cmd_mgr;
524 	int index;
525 
526 	if (io_req->cmd_type == BNX2FC_SCSI_CMD)
527 		index = io_req->xid % num_possible_cpus();
528 	else
529 		index = RESERVE_FREE_LIST_INDEX;
530 
531 
532 	spin_lock_bh(&cmd_mgr->free_list_lock[index]);
533 	if (io_req->cmd_type != BNX2FC_SCSI_CMD)
534 		bnx2fc_free_mp_resc(io_req);
535 	cmd_mgr->cmds[io_req->xid] = NULL;
536 	/* Delete IO from retire queue */
537 	list_del_init(&io_req->link);
538 	/* Add it to the free list */
539 	list_add(&io_req->link,
540 			&cmd_mgr->free_list[index]);
541 	atomic_dec(&io_req->tgt->num_active_ios);
542 	spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
543 
544 }
545 
546 static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req)
547 {
548 	struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
549 	struct bnx2fc_interface *interface = io_req->port->priv;
550 	struct bnx2fc_hba *hba = interface->hba;
551 	size_t sz = sizeof(struct fcoe_bd_ctx);
552 
553 	/* clear tm flags */
554 	mp_req->tm_flags = 0;
555 	if (mp_req->mp_req_bd) {
556 		dma_free_coherent(&hba->pcidev->dev, sz,
557 				     mp_req->mp_req_bd,
558 				     mp_req->mp_req_bd_dma);
559 		mp_req->mp_req_bd = NULL;
560 	}
561 	if (mp_req->mp_resp_bd) {
562 		dma_free_coherent(&hba->pcidev->dev, sz,
563 				     mp_req->mp_resp_bd,
564 				     mp_req->mp_resp_bd_dma);
565 		mp_req->mp_resp_bd = NULL;
566 	}
567 	if (mp_req->req_buf) {
568 		dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
569 				     mp_req->req_buf,
570 				     mp_req->req_buf_dma);
571 		mp_req->req_buf = NULL;
572 	}
573 	if (mp_req->resp_buf) {
574 		dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
575 				     mp_req->resp_buf,
576 				     mp_req->resp_buf_dma);
577 		mp_req->resp_buf = NULL;
578 	}
579 }
580 
581 int bnx2fc_init_mp_req(struct bnx2fc_cmd *io_req)
582 {
583 	struct bnx2fc_mp_req *mp_req;
584 	struct fcoe_bd_ctx *mp_req_bd;
585 	struct fcoe_bd_ctx *mp_resp_bd;
586 	struct bnx2fc_interface *interface = io_req->port->priv;
587 	struct bnx2fc_hba *hba = interface->hba;
588 	dma_addr_t addr;
589 	size_t sz;
590 
591 	mp_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
592 	memset(mp_req, 0, sizeof(struct bnx2fc_mp_req));
593 
594 	if (io_req->cmd_type != BNX2FC_ELS) {
595 		mp_req->req_len = sizeof(struct fcp_cmnd);
596 		io_req->data_xfer_len = mp_req->req_len;
597 	} else
598 		mp_req->req_len = io_req->data_xfer_len;
599 
600 	mp_req->req_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
601 					     &mp_req->req_buf_dma,
602 					     GFP_ATOMIC);
603 	if (!mp_req->req_buf) {
604 		printk(KERN_ERR PFX "unable to alloc MP req buffer\n");
605 		bnx2fc_free_mp_resc(io_req);
606 		return FAILED;
607 	}
608 
609 	mp_req->resp_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
610 					      &mp_req->resp_buf_dma,
611 					      GFP_ATOMIC);
612 	if (!mp_req->resp_buf) {
613 		printk(KERN_ERR PFX "unable to alloc TM resp buffer\n");
614 		bnx2fc_free_mp_resc(io_req);
615 		return FAILED;
616 	}
617 	memset(mp_req->req_buf, 0, CNIC_PAGE_SIZE);
618 	memset(mp_req->resp_buf, 0, CNIC_PAGE_SIZE);
619 
620 	/* Allocate and map mp_req_bd and mp_resp_bd */
621 	sz = sizeof(struct fcoe_bd_ctx);
622 	mp_req->mp_req_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
623 						 &mp_req->mp_req_bd_dma,
624 						 GFP_ATOMIC);
625 	if (!mp_req->mp_req_bd) {
626 		printk(KERN_ERR PFX "unable to alloc MP req bd\n");
627 		bnx2fc_free_mp_resc(io_req);
628 		return FAILED;
629 	}
630 	mp_req->mp_resp_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
631 						 &mp_req->mp_resp_bd_dma,
632 						 GFP_ATOMIC);
633 	if (!mp_req->mp_resp_bd) {
634 		printk(KERN_ERR PFX "unable to alloc MP resp bd\n");
635 		bnx2fc_free_mp_resc(io_req);
636 		return FAILED;
637 	}
638 	/* Fill bd table */
639 	addr = mp_req->req_buf_dma;
640 	mp_req_bd = mp_req->mp_req_bd;
641 	mp_req_bd->buf_addr_lo = (u32)addr & 0xffffffff;
642 	mp_req_bd->buf_addr_hi = (u32)((u64)addr >> 32);
643 	mp_req_bd->buf_len = CNIC_PAGE_SIZE;
644 	mp_req_bd->flags = 0;
645 
646 	/*
647 	 * MP buffer is either a task mgmt command or an ELS.
648 	 * So the assumption is that it consumes a single bd
649 	 * entry in the bd table
650 	 */
651 	mp_resp_bd = mp_req->mp_resp_bd;
652 	addr = mp_req->resp_buf_dma;
653 	mp_resp_bd->buf_addr_lo = (u32)addr & 0xffffffff;
654 	mp_resp_bd->buf_addr_hi = (u32)((u64)addr >> 32);
655 	mp_resp_bd->buf_len = CNIC_PAGE_SIZE;
656 	mp_resp_bd->flags = 0;
657 
658 	return SUCCESS;
659 }
660 
661 static int bnx2fc_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags)
662 {
663 	struct fc_lport *lport;
664 	struct fc_rport *rport;
665 	struct fc_rport_libfc_priv *rp;
666 	struct fcoe_port *port;
667 	struct bnx2fc_interface *interface;
668 	struct bnx2fc_rport *tgt;
669 	struct bnx2fc_cmd *io_req;
670 	struct bnx2fc_mp_req *tm_req;
671 	struct fcoe_task_ctx_entry *task;
672 	struct fcoe_task_ctx_entry *task_page;
673 	struct Scsi_Host *host = sc_cmd->device->host;
674 	struct fc_frame_header *fc_hdr;
675 	struct fcp_cmnd *fcp_cmnd;
676 	int task_idx, index;
677 	int rc = SUCCESS;
678 	u16 xid;
679 	u32 sid, did;
680 	unsigned long start = jiffies;
681 
682 	lport = shost_priv(host);
683 	rport = starget_to_rport(scsi_target(sc_cmd->device));
684 	port = lport_priv(lport);
685 	interface = port->priv;
686 
687 	if (rport == NULL) {
688 		printk(KERN_ERR PFX "device_reset: rport is NULL\n");
689 		rc = FAILED;
690 		goto tmf_err;
691 	}
692 	rp = rport->dd_data;
693 
694 	rc = fc_block_scsi_eh(sc_cmd);
695 	if (rc)
696 		return rc;
697 
698 	if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
699 		printk(KERN_ERR PFX "device_reset: link is not ready\n");
700 		rc = FAILED;
701 		goto tmf_err;
702 	}
703 	/* rport and tgt are allocated together, so tgt should be non-NULL */
704 	tgt = (struct bnx2fc_rport *)&rp[1];
705 
706 	if (!(test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags))) {
707 		printk(KERN_ERR PFX "device_reset: tgt not offloaded\n");
708 		rc = FAILED;
709 		goto tmf_err;
710 	}
711 retry_tmf:
712 	io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_TASK_MGMT_CMD);
713 	if (!io_req) {
714 		if (time_after(jiffies, start + HZ)) {
715 			printk(KERN_ERR PFX "tmf: Failed TMF");
716 			rc = FAILED;
717 			goto tmf_err;
718 		}
719 		msleep(20);
720 		goto retry_tmf;
721 	}
722 	/* Initialize rest of io_req fields */
723 	io_req->sc_cmd = sc_cmd;
724 	io_req->port = port;
725 	io_req->tgt = tgt;
726 
727 	tm_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
728 
729 	rc = bnx2fc_init_mp_req(io_req);
730 	if (rc == FAILED) {
731 		printk(KERN_ERR PFX "Task mgmt MP request init failed\n");
732 		spin_lock_bh(&tgt->tgt_lock);
733 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
734 		spin_unlock_bh(&tgt->tgt_lock);
735 		goto tmf_err;
736 	}
737 
738 	/* Set TM flags */
739 	io_req->io_req_flags = 0;
740 	tm_req->tm_flags = tm_flags;
741 
742 	/* Fill FCP_CMND */
743 	bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tm_req->req_buf);
744 	fcp_cmnd = (struct fcp_cmnd *)tm_req->req_buf;
745 	memset(fcp_cmnd->fc_cdb, 0,  sc_cmd->cmd_len);
746 	fcp_cmnd->fc_dl = 0;
747 
748 	/* Fill FC header */
749 	fc_hdr = &(tm_req->req_fc_hdr);
750 	sid = tgt->sid;
751 	did = rport->port_id;
752 	__fc_fill_fc_hdr(fc_hdr, FC_RCTL_DD_UNSOL_CMD, did, sid,
753 			   FC_TYPE_FCP, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
754 			   FC_FC_SEQ_INIT, 0);
755 	/* Obtain exchange id */
756 	xid = io_req->xid;
757 
758 	BNX2FC_TGT_DBG(tgt, "Initiate TMF - xid = 0x%x\n", xid);
759 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
760 	index = xid % BNX2FC_TASKS_PER_PAGE;
761 
762 	/* Initialize task context for this IO request */
763 	task_page = (struct fcoe_task_ctx_entry *)
764 			interface->hba->task_ctx[task_idx];
765 	task = &(task_page[index]);
766 	bnx2fc_init_mp_task(io_req, task);
767 
768 	bnx2fc_priv(sc_cmd)->io_req = io_req;
769 
770 	/* Obtain free SQ entry */
771 	spin_lock_bh(&tgt->tgt_lock);
772 	bnx2fc_add_2_sq(tgt, xid);
773 
774 	/* Enqueue the io_req to active_tm_queue */
775 	io_req->on_tmf_queue = 1;
776 	list_add_tail(&io_req->link, &tgt->active_tm_queue);
777 
778 	init_completion(&io_req->abts_done);
779 	io_req->wait_for_abts_comp = 1;
780 
781 	/* Ring doorbell */
782 	bnx2fc_ring_doorbell(tgt);
783 	spin_unlock_bh(&tgt->tgt_lock);
784 
785 	rc = wait_for_completion_timeout(&io_req->abts_done,
786 					 interface->tm_timeout * HZ);
787 	spin_lock_bh(&tgt->tgt_lock);
788 
789 	io_req->wait_for_abts_comp = 0;
790 	if (!(test_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags))) {
791 		set_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags);
792 		if (io_req->on_tmf_queue) {
793 			list_del_init(&io_req->link);
794 			io_req->on_tmf_queue = 0;
795 		}
796 		io_req->wait_for_cleanup_comp = 1;
797 		init_completion(&io_req->cleanup_done);
798 		bnx2fc_initiate_cleanup(io_req);
799 		spin_unlock_bh(&tgt->tgt_lock);
800 		rc = wait_for_completion_timeout(&io_req->cleanup_done,
801 						 BNX2FC_FW_TIMEOUT);
802 		spin_lock_bh(&tgt->tgt_lock);
803 		io_req->wait_for_cleanup_comp = 0;
804 		if (!rc)
805 			kref_put(&io_req->refcount, bnx2fc_cmd_release);
806 	}
807 
808 	spin_unlock_bh(&tgt->tgt_lock);
809 
810 	if (!rc) {
811 		BNX2FC_TGT_DBG(tgt, "task mgmt command failed...\n");
812 		rc = FAILED;
813 	} else {
814 		BNX2FC_TGT_DBG(tgt, "task mgmt command success...\n");
815 		rc = SUCCESS;
816 	}
817 tmf_err:
818 	return rc;
819 }
820 
821 int bnx2fc_initiate_abts(struct bnx2fc_cmd *io_req)
822 {
823 	struct fc_lport *lport;
824 	struct bnx2fc_rport *tgt = io_req->tgt;
825 	struct fc_rport *rport = tgt->rport;
826 	struct fc_rport_priv *rdata = tgt->rdata;
827 	struct bnx2fc_interface *interface;
828 	struct fcoe_port *port;
829 	struct bnx2fc_cmd *abts_io_req;
830 	struct fcoe_task_ctx_entry *task;
831 	struct fcoe_task_ctx_entry *task_page;
832 	struct fc_frame_header *fc_hdr;
833 	struct bnx2fc_mp_req *abts_req;
834 	int task_idx, index;
835 	u32 sid, did;
836 	u16 xid;
837 	int rc = SUCCESS;
838 	u32 r_a_tov = rdata->r_a_tov;
839 
840 	/* called with tgt_lock held */
841 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_abts\n");
842 
843 	port = io_req->port;
844 	interface = port->priv;
845 	lport = port->lport;
846 
847 	if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
848 		printk(KERN_ERR PFX "initiate_abts: tgt not offloaded\n");
849 		rc = FAILED;
850 		goto abts_err;
851 	}
852 
853 	if (rport == NULL) {
854 		printk(KERN_ERR PFX "initiate_abts: rport is NULL\n");
855 		rc = FAILED;
856 		goto abts_err;
857 	}
858 
859 	if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
860 		printk(KERN_ERR PFX "initiate_abts: link is not ready\n");
861 		rc = FAILED;
862 		goto abts_err;
863 	}
864 
865 	abts_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_ABTS);
866 	if (!abts_io_req) {
867 		printk(KERN_ERR PFX "abts: couldn't allocate cmd\n");
868 		rc = FAILED;
869 		goto abts_err;
870 	}
871 
872 	/* Initialize rest of io_req fields */
873 	abts_io_req->sc_cmd = NULL;
874 	abts_io_req->port = port;
875 	abts_io_req->tgt = tgt;
876 	abts_io_req->data_xfer_len = 0; /* No data transfer for ABTS */
877 
878 	abts_req = (struct bnx2fc_mp_req *)&(abts_io_req->mp_req);
879 	memset(abts_req, 0, sizeof(struct bnx2fc_mp_req));
880 
881 	/* Fill FC header */
882 	fc_hdr = &(abts_req->req_fc_hdr);
883 
884 	/* Obtain oxid and rxid for the original exchange to be aborted */
885 	fc_hdr->fh_ox_id = htons(io_req->xid);
886 	fc_hdr->fh_rx_id = htons(io_req->task->rxwr_txrd.var_ctx.rx_id);
887 
888 	sid = tgt->sid;
889 	did = rport->port_id;
890 
891 	__fc_fill_fc_hdr(fc_hdr, FC_RCTL_BA_ABTS, did, sid,
892 			   FC_TYPE_BLS, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
893 			   FC_FC_SEQ_INIT, 0);
894 
895 	xid = abts_io_req->xid;
896 	BNX2FC_IO_DBG(abts_io_req, "ABTS io_req\n");
897 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
898 	index = xid % BNX2FC_TASKS_PER_PAGE;
899 
900 	/* Initialize task context for this IO request */
901 	task_page = (struct fcoe_task_ctx_entry *)
902 			interface->hba->task_ctx[task_idx];
903 	task = &(task_page[index]);
904 	bnx2fc_init_mp_task(abts_io_req, task);
905 
906 	/*
907 	 * ABTS task is a temporary task that will be cleaned up
908 	 * irrespective of ABTS response. We need to start the timer
909 	 * for the original exchange, as the CQE is posted for the original
910 	 * IO request.
911 	 *
912 	 * Timer for ABTS is started only when it is originated by a
913 	 * TM request. For the ABTS issued as part of ULP timeout,
914 	 * scsi-ml maintains the timers.
915 	 */
916 
917 	/* if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))*/
918 	bnx2fc_cmd_timer_set(io_req, 2 * r_a_tov);
919 
920 	/* Obtain free SQ entry */
921 	bnx2fc_add_2_sq(tgt, xid);
922 
923 	/* Ring doorbell */
924 	bnx2fc_ring_doorbell(tgt);
925 
926 abts_err:
927 	return rc;
928 }
929 
930 int bnx2fc_initiate_seq_cleanup(struct bnx2fc_cmd *orig_io_req, u32 offset,
931 				enum fc_rctl r_ctl)
932 {
933 	struct bnx2fc_rport *tgt = orig_io_req->tgt;
934 	struct bnx2fc_interface *interface;
935 	struct fcoe_port *port;
936 	struct bnx2fc_cmd *seq_clnp_req;
937 	struct fcoe_task_ctx_entry *task;
938 	struct fcoe_task_ctx_entry *task_page;
939 	struct bnx2fc_els_cb_arg *cb_arg = NULL;
940 	int task_idx, index;
941 	u16 xid;
942 	int rc = 0;
943 
944 	BNX2FC_IO_DBG(orig_io_req, "bnx2fc_initiate_seq_cleanup xid = 0x%x\n",
945 		   orig_io_req->xid);
946 	kref_get(&orig_io_req->refcount);
947 
948 	port = orig_io_req->port;
949 	interface = port->priv;
950 
951 	cb_arg = kzalloc(sizeof(struct bnx2fc_els_cb_arg), GFP_ATOMIC);
952 	if (!cb_arg) {
953 		printk(KERN_ERR PFX "Unable to alloc cb_arg for seq clnup\n");
954 		rc = -ENOMEM;
955 		goto cleanup_err;
956 	}
957 
958 	seq_clnp_req = bnx2fc_elstm_alloc(tgt, BNX2FC_SEQ_CLEANUP);
959 	if (!seq_clnp_req) {
960 		printk(KERN_ERR PFX "cleanup: couldn't allocate cmd\n");
961 		rc = -ENOMEM;
962 		kfree(cb_arg);
963 		goto cleanup_err;
964 	}
965 	/* Initialize rest of io_req fields */
966 	seq_clnp_req->sc_cmd = NULL;
967 	seq_clnp_req->port = port;
968 	seq_clnp_req->tgt = tgt;
969 	seq_clnp_req->data_xfer_len = 0; /* No data transfer for cleanup */
970 
971 	xid = seq_clnp_req->xid;
972 
973 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
974 	index = xid % BNX2FC_TASKS_PER_PAGE;
975 
976 	/* Initialize task context for this IO request */
977 	task_page = (struct fcoe_task_ctx_entry *)
978 		     interface->hba->task_ctx[task_idx];
979 	task = &(task_page[index]);
980 	cb_arg->aborted_io_req = orig_io_req;
981 	cb_arg->io_req = seq_clnp_req;
982 	cb_arg->r_ctl = r_ctl;
983 	cb_arg->offset = offset;
984 	seq_clnp_req->cb_arg = cb_arg;
985 
986 	printk(KERN_ERR PFX "call init_seq_cleanup_task\n");
987 	bnx2fc_init_seq_cleanup_task(seq_clnp_req, task, orig_io_req, offset);
988 
989 	/* Obtain free SQ entry */
990 	bnx2fc_add_2_sq(tgt, xid);
991 
992 	/* Ring doorbell */
993 	bnx2fc_ring_doorbell(tgt);
994 cleanup_err:
995 	return rc;
996 }
997 
998 int bnx2fc_initiate_cleanup(struct bnx2fc_cmd *io_req)
999 {
1000 	struct bnx2fc_rport *tgt = io_req->tgt;
1001 	struct bnx2fc_interface *interface;
1002 	struct fcoe_port *port;
1003 	struct bnx2fc_cmd *cleanup_io_req;
1004 	struct fcoe_task_ctx_entry *task;
1005 	struct fcoe_task_ctx_entry *task_page;
1006 	int task_idx, index;
1007 	u16 xid, orig_xid;
1008 	int rc = 0;
1009 
1010 	/* ASSUMPTION: called with tgt_lock held */
1011 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_cleanup\n");
1012 
1013 	port = io_req->port;
1014 	interface = port->priv;
1015 
1016 	cleanup_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_CLEANUP);
1017 	if (!cleanup_io_req) {
1018 		printk(KERN_ERR PFX "cleanup: couldn't allocate cmd\n");
1019 		rc = -1;
1020 		goto cleanup_err;
1021 	}
1022 
1023 	/* Initialize rest of io_req fields */
1024 	cleanup_io_req->sc_cmd = NULL;
1025 	cleanup_io_req->port = port;
1026 	cleanup_io_req->tgt = tgt;
1027 	cleanup_io_req->data_xfer_len = 0; /* No data transfer for cleanup */
1028 
1029 	xid = cleanup_io_req->xid;
1030 
1031 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
1032 	index = xid % BNX2FC_TASKS_PER_PAGE;
1033 
1034 	/* Initialize task context for this IO request */
1035 	task_page = (struct fcoe_task_ctx_entry *)
1036 			interface->hba->task_ctx[task_idx];
1037 	task = &(task_page[index]);
1038 	orig_xid = io_req->xid;
1039 
1040 	BNX2FC_IO_DBG(io_req, "CLEANUP io_req xid = 0x%x\n", xid);
1041 
1042 	bnx2fc_init_cleanup_task(cleanup_io_req, task, orig_xid);
1043 
1044 	/* Obtain free SQ entry */
1045 	bnx2fc_add_2_sq(tgt, xid);
1046 
1047 	/* Set flag that cleanup request is pending with the firmware */
1048 	set_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags);
1049 
1050 	/* Ring doorbell */
1051 	bnx2fc_ring_doorbell(tgt);
1052 
1053 cleanup_err:
1054 	return rc;
1055 }
1056 
1057 /**
1058  * bnx2fc_eh_target_reset: Reset a target
1059  *
1060  * @sc_cmd:	SCSI command
1061  *
1062  * Set from SCSI host template to send task mgmt command to the target
1063  *	and wait for the response
1064  */
1065 int bnx2fc_eh_target_reset(struct scsi_cmnd *sc_cmd)
1066 {
1067 	return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET);
1068 }
1069 
1070 /**
1071  * bnx2fc_eh_device_reset - Reset a single LUN
1072  *
1073  * @sc_cmd:	SCSI command
1074  *
1075  * Set from SCSI host template to send task mgmt command to the target
1076  *	and wait for the response
1077  */
1078 int bnx2fc_eh_device_reset(struct scsi_cmnd *sc_cmd)
1079 {
1080 	return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET);
1081 }
1082 
1083 static int bnx2fc_abts_cleanup(struct bnx2fc_cmd *io_req)
1084 	__must_hold(&tgt->tgt_lock)
1085 {
1086 	struct bnx2fc_rport *tgt = io_req->tgt;
1087 	unsigned int time_left;
1088 
1089 	init_completion(&io_req->cleanup_done);
1090 	io_req->wait_for_cleanup_comp = 1;
1091 	bnx2fc_initiate_cleanup(io_req);
1092 
1093 	spin_unlock_bh(&tgt->tgt_lock);
1094 
1095 	/*
1096 	 * Can't wait forever on cleanup response lest we let the SCSI error
1097 	 * handler wait forever
1098 	 */
1099 	time_left = wait_for_completion_timeout(&io_req->cleanup_done,
1100 						BNX2FC_FW_TIMEOUT);
1101 	if (!time_left) {
1102 		BNX2FC_IO_DBG(io_req, "%s(): Wait for cleanup timed out.\n",
1103 			      __func__);
1104 
1105 		/*
1106 		 * Put the extra reference to the SCSI command since it would
1107 		 * not have been returned in this case.
1108 		 */
1109 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
1110 	}
1111 
1112 	spin_lock_bh(&tgt->tgt_lock);
1113 	io_req->wait_for_cleanup_comp = 0;
1114 	return SUCCESS;
1115 }
1116 
1117 /**
1118  * bnx2fc_eh_abort - eh_abort_handler api to abort an outstanding
1119  *			SCSI command
1120  *
1121  * @sc_cmd:	SCSI_ML command pointer
1122  *
1123  * SCSI abort request handler
1124  */
1125 int bnx2fc_eh_abort(struct scsi_cmnd *sc_cmd)
1126 {
1127 	struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
1128 	struct fc_rport_libfc_priv *rp = rport->dd_data;
1129 	struct bnx2fc_cmd *io_req;
1130 	struct fc_lport *lport;
1131 	struct bnx2fc_rport *tgt;
1132 	int rc;
1133 	unsigned int time_left;
1134 
1135 	rc = fc_block_scsi_eh(sc_cmd);
1136 	if (rc)
1137 		return rc;
1138 
1139 	lport = shost_priv(sc_cmd->device->host);
1140 	if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
1141 		printk(KERN_ERR PFX "eh_abort: link not ready\n");
1142 		return FAILED;
1143 	}
1144 
1145 	tgt = (struct bnx2fc_rport *)&rp[1];
1146 
1147 	BNX2FC_TGT_DBG(tgt, "Entered bnx2fc_eh_abort\n");
1148 
1149 	spin_lock_bh(&tgt->tgt_lock);
1150 	io_req = bnx2fc_priv(sc_cmd)->io_req;
1151 	if (!io_req) {
1152 		/* Command might have just completed */
1153 		printk(KERN_ERR PFX "eh_abort: io_req is NULL\n");
1154 		spin_unlock_bh(&tgt->tgt_lock);
1155 		return SUCCESS;
1156 	}
1157 	BNX2FC_IO_DBG(io_req, "eh_abort - refcnt = %d\n",
1158 		      kref_read(&io_req->refcount));
1159 
1160 	/* Hold IO request across abort processing */
1161 	kref_get(&io_req->refcount);
1162 
1163 	BUG_ON(tgt != io_req->tgt);
1164 
1165 	/* Remove the io_req from the active_q. */
1166 	/*
1167 	 * Task Mgmt functions (LUN RESET & TGT RESET) will not
1168 	 * issue an ABTS on this particular IO req, as the
1169 	 * io_req is no longer in the active_q.
1170 	 */
1171 	if (tgt->flush_in_prog) {
1172 		printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1173 			"flush in progress\n", io_req->xid);
1174 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
1175 		spin_unlock_bh(&tgt->tgt_lock);
1176 		return SUCCESS;
1177 	}
1178 
1179 	if (io_req->on_active_queue == 0) {
1180 		printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1181 				"not on active_q\n", io_req->xid);
1182 		/*
1183 		 * The IO is still with the FW.
1184 		 * Return failure and let SCSI-ml retry eh_abort.
1185 		 */
1186 		spin_unlock_bh(&tgt->tgt_lock);
1187 		return FAILED;
1188 	}
1189 
1190 	/*
1191 	 * Only eh_abort processing will remove the IO from
1192 	 * active_cmd_q before processing the request. this is
1193 	 * done to avoid race conditions between IOs aborted
1194 	 * as part of task management completion and eh_abort
1195 	 * processing
1196 	 */
1197 	list_del_init(&io_req->link);
1198 	io_req->on_active_queue = 0;
1199 	/* Move IO req to retire queue */
1200 	list_add_tail(&io_req->link, &tgt->io_retire_queue);
1201 
1202 	init_completion(&io_req->abts_done);
1203 	init_completion(&io_req->cleanup_done);
1204 
1205 	if (test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
1206 		printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1207 				"already in abts processing\n", io_req->xid);
1208 		if (cancel_delayed_work(&io_req->timeout_work))
1209 			kref_put(&io_req->refcount,
1210 				 bnx2fc_cmd_release); /* drop timer hold */
1211 		/*
1212 		 * We don't want to hold off the upper layer timer so simply
1213 		 * cleanup the command and return that I/O was successfully
1214 		 * aborted.
1215 		 */
1216 		bnx2fc_abts_cleanup(io_req);
1217 		/* This only occurs when an task abort was requested while ABTS
1218 		   is in progress.  Setting the IO_CLEANUP flag will skip the
1219 		   RRQ process in the case when the fw generated SCSI_CMD cmpl
1220 		   was a result from the ABTS request rather than the CLEANUP
1221 		   request */
1222 		set_bit(BNX2FC_FLAG_IO_CLEANUP,	&io_req->req_flags);
1223 		rc = FAILED;
1224 		goto done;
1225 	}
1226 
1227 	/* Cancel the current timer running on this io_req */
1228 	if (cancel_delayed_work(&io_req->timeout_work))
1229 		kref_put(&io_req->refcount,
1230 			 bnx2fc_cmd_release); /* drop timer hold */
1231 	set_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags);
1232 	io_req->wait_for_abts_comp = 1;
1233 	rc = bnx2fc_initiate_abts(io_req);
1234 	if (rc == FAILED) {
1235 		io_req->wait_for_cleanup_comp = 1;
1236 		bnx2fc_initiate_cleanup(io_req);
1237 		spin_unlock_bh(&tgt->tgt_lock);
1238 		wait_for_completion(&io_req->cleanup_done);
1239 		spin_lock_bh(&tgt->tgt_lock);
1240 		io_req->wait_for_cleanup_comp = 0;
1241 		goto done;
1242 	}
1243 	spin_unlock_bh(&tgt->tgt_lock);
1244 
1245 	/* Wait 2 * RA_TOV + 1 to be sure timeout function hasn't fired */
1246 	time_left = wait_for_completion_timeout(&io_req->abts_done,
1247 					msecs_to_jiffies(2 * rp->r_a_tov + 1));
1248 	if (time_left)
1249 		BNX2FC_IO_DBG(io_req,
1250 			      "Timed out in eh_abort waiting for abts_done");
1251 
1252 	spin_lock_bh(&tgt->tgt_lock);
1253 	io_req->wait_for_abts_comp = 0;
1254 	if (test_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) {
1255 		BNX2FC_IO_DBG(io_req, "IO completed in a different context\n");
1256 		rc = SUCCESS;
1257 	} else if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
1258 				      &io_req->req_flags))) {
1259 		/* Let the scsi-ml try to recover this command */
1260 		printk(KERN_ERR PFX "abort failed, xid = 0x%x\n",
1261 		       io_req->xid);
1262 		/*
1263 		 * Cleanup firmware residuals before returning control back
1264 		 * to SCSI ML.
1265 		 */
1266 		rc = bnx2fc_abts_cleanup(io_req);
1267 		goto done;
1268 	} else {
1269 		/*
1270 		 * We come here even when there was a race condition
1271 		 * between timeout and abts completion, and abts
1272 		 * completion happens just in time.
1273 		 */
1274 		BNX2FC_IO_DBG(io_req, "abort succeeded\n");
1275 		rc = SUCCESS;
1276 		bnx2fc_scsi_done(io_req, DID_ABORT);
1277 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
1278 	}
1279 done:
1280 	/* release the reference taken in eh_abort */
1281 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
1282 	spin_unlock_bh(&tgt->tgt_lock);
1283 	return rc;
1284 }
1285 
1286 void bnx2fc_process_seq_cleanup_compl(struct bnx2fc_cmd *seq_clnp_req,
1287 				      struct fcoe_task_ctx_entry *task,
1288 				      u8 rx_state)
1289 {
1290 	struct bnx2fc_els_cb_arg *cb_arg = seq_clnp_req->cb_arg;
1291 	struct bnx2fc_cmd *orig_io_req = cb_arg->aborted_io_req;
1292 	u32 offset = cb_arg->offset;
1293 	enum fc_rctl r_ctl = cb_arg->r_ctl;
1294 	int rc = 0;
1295 	struct bnx2fc_rport *tgt = orig_io_req->tgt;
1296 
1297 	BNX2FC_IO_DBG(orig_io_req, "Entered process_cleanup_compl xid = 0x%x"
1298 			      "cmd_type = %d\n",
1299 		   seq_clnp_req->xid, seq_clnp_req->cmd_type);
1300 
1301 	if (rx_state == FCOE_TASK_RX_STATE_IGNORED_SEQUENCE_CLEANUP) {
1302 		printk(KERN_ERR PFX "seq cleanup ignored - xid = 0x%x\n",
1303 			seq_clnp_req->xid);
1304 		goto free_cb_arg;
1305 	}
1306 
1307 	spin_unlock_bh(&tgt->tgt_lock);
1308 	rc = bnx2fc_send_srr(orig_io_req, offset, r_ctl);
1309 	spin_lock_bh(&tgt->tgt_lock);
1310 
1311 	if (rc)
1312 		printk(KERN_ERR PFX "clnup_compl: Unable to send SRR"
1313 			" IO will abort\n");
1314 	seq_clnp_req->cb_arg = NULL;
1315 	kref_put(&orig_io_req->refcount, bnx2fc_cmd_release);
1316 free_cb_arg:
1317 	kfree(cb_arg);
1318 	return;
1319 }
1320 
1321 void bnx2fc_process_cleanup_compl(struct bnx2fc_cmd *io_req,
1322 				  struct fcoe_task_ctx_entry *task,
1323 				  u8 num_rq)
1324 {
1325 	BNX2FC_IO_DBG(io_req, "Entered process_cleanup_compl "
1326 			      "refcnt = %d, cmd_type = %d\n",
1327 		   kref_read(&io_req->refcount), io_req->cmd_type);
1328 	/*
1329 	 * Test whether there is a cleanup request pending. If not just
1330 	 * exit.
1331 	 */
1332 	if (!test_and_clear_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ,
1333 				&io_req->req_flags))
1334 		return;
1335 	/*
1336 	 * If we receive a cleanup completion for this request then the
1337 	 * firmware will not give us an abort completion for this request
1338 	 * so clear any ABTS pending flags.
1339 	 */
1340 	if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags) &&
1341 	    !test_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags)) {
1342 		set_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags);
1343 		if (io_req->wait_for_abts_comp)
1344 			complete(&io_req->abts_done);
1345 	}
1346 
1347 	bnx2fc_scsi_done(io_req, DID_ERROR);
1348 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
1349 	if (io_req->wait_for_cleanup_comp)
1350 		complete(&io_req->cleanup_done);
1351 }
1352 
1353 void bnx2fc_process_abts_compl(struct bnx2fc_cmd *io_req,
1354 			       struct fcoe_task_ctx_entry *task,
1355 			       u8 num_rq)
1356 {
1357 	u32 r_ctl;
1358 	u32 r_a_tov = FC_DEF_R_A_TOV;
1359 	u8 issue_rrq = 0;
1360 	struct bnx2fc_rport *tgt = io_req->tgt;
1361 
1362 	BNX2FC_IO_DBG(io_req, "Entered process_abts_compl xid = 0x%x"
1363 			      "refcnt = %d, cmd_type = %d\n",
1364 		   io_req->xid,
1365 		   kref_read(&io_req->refcount), io_req->cmd_type);
1366 
1367 	if (test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
1368 				       &io_req->req_flags)) {
1369 		BNX2FC_IO_DBG(io_req, "Timer context finished processing"
1370 				" this io\n");
1371 		return;
1372 	}
1373 
1374 	/*
1375 	 * If we receive an ABTS completion here then we will not receive
1376 	 * a cleanup completion so clear any cleanup pending flags.
1377 	 */
1378 	if (test_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags)) {
1379 		clear_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags);
1380 		if (io_req->wait_for_cleanup_comp)
1381 			complete(&io_req->cleanup_done);
1382 	}
1383 
1384 	/* Do not issue RRQ as this IO is already cleanedup */
1385 	if (test_and_set_bit(BNX2FC_FLAG_IO_CLEANUP,
1386 				&io_req->req_flags))
1387 		goto io_compl;
1388 
1389 	/*
1390 	 * For ABTS issued due to SCSI eh_abort_handler, timeout
1391 	 * values are maintained by scsi-ml itself. Cancel timeout
1392 	 * in case ABTS issued as part of task management function
1393 	 * or due to FW error.
1394 	 */
1395 	if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))
1396 		if (cancel_delayed_work(&io_req->timeout_work))
1397 			kref_put(&io_req->refcount,
1398 				 bnx2fc_cmd_release); /* drop timer hold */
1399 
1400 	r_ctl = (u8)task->rxwr_only.union_ctx.comp_info.abts_rsp.r_ctl;
1401 
1402 	switch (r_ctl) {
1403 	case FC_RCTL_BA_ACC:
1404 		/*
1405 		 * Dont release this cmd yet. It will be relesed
1406 		 * after we get RRQ response
1407 		 */
1408 		BNX2FC_IO_DBG(io_req, "ABTS response - ACC Send RRQ\n");
1409 		issue_rrq = 1;
1410 		break;
1411 
1412 	case FC_RCTL_BA_RJT:
1413 		BNX2FC_IO_DBG(io_req, "ABTS response - RJT\n");
1414 		break;
1415 	default:
1416 		printk(KERN_ERR PFX "Unknown ABTS response\n");
1417 		break;
1418 	}
1419 
1420 	if (issue_rrq) {
1421 		BNX2FC_IO_DBG(io_req, "Issue RRQ after R_A_TOV\n");
1422 		set_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags);
1423 	}
1424 	set_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
1425 	bnx2fc_cmd_timer_set(io_req, r_a_tov);
1426 
1427 io_compl:
1428 	if (io_req->wait_for_abts_comp) {
1429 		if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
1430 				       &io_req->req_flags))
1431 			complete(&io_req->abts_done);
1432 	} else {
1433 		/*
1434 		 * We end up here when ABTS is issued as
1435 		 * in asynchronous context, i.e., as part
1436 		 * of task management completion, or
1437 		 * when FW error is received or when the
1438 		 * ABTS is issued when the IO is timed
1439 		 * out.
1440 		 */
1441 
1442 		if (io_req->on_active_queue) {
1443 			list_del_init(&io_req->link);
1444 			io_req->on_active_queue = 0;
1445 			/* Move IO req to retire queue */
1446 			list_add_tail(&io_req->link, &tgt->io_retire_queue);
1447 		}
1448 		bnx2fc_scsi_done(io_req, DID_ERROR);
1449 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
1450 	}
1451 }
1452 
1453 static void bnx2fc_lun_reset_cmpl(struct bnx2fc_cmd *io_req)
1454 {
1455 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1456 	struct bnx2fc_rport *tgt = io_req->tgt;
1457 	struct bnx2fc_cmd *cmd, *tmp;
1458 	u64 tm_lun = sc_cmd->device->lun;
1459 	u64 lun;
1460 	int rc = 0;
1461 
1462 	/* called with tgt_lock held */
1463 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_lun_reset_cmpl\n");
1464 	/*
1465 	 * Walk thru the active_ios queue and ABORT the IO
1466 	 * that matches with the LUN that was reset
1467 	 */
1468 	list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) {
1469 		BNX2FC_TGT_DBG(tgt, "LUN RST cmpl: scan for pending IOs\n");
1470 		lun = cmd->sc_cmd->device->lun;
1471 		if (lun == tm_lun) {
1472 			/* Initiate ABTS on this cmd */
1473 			if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
1474 					      &cmd->req_flags)) {
1475 				/* cancel the IO timeout */
1476 				if (cancel_delayed_work(&io_req->timeout_work))
1477 					kref_put(&io_req->refcount,
1478 						 bnx2fc_cmd_release);
1479 							/* timer hold */
1480 				rc = bnx2fc_initiate_abts(cmd);
1481 				/* abts shouldn't fail in this context */
1482 				WARN_ON(rc != SUCCESS);
1483 			} else
1484 				printk(KERN_ERR PFX "lun_rst: abts already in"
1485 					" progress for this IO 0x%x\n",
1486 					cmd->xid);
1487 		}
1488 	}
1489 }
1490 
1491 static void bnx2fc_tgt_reset_cmpl(struct bnx2fc_cmd *io_req)
1492 {
1493 	struct bnx2fc_rport *tgt = io_req->tgt;
1494 	struct bnx2fc_cmd *cmd, *tmp;
1495 	int rc = 0;
1496 
1497 	/* called with tgt_lock held */
1498 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_tgt_reset_cmpl\n");
1499 	/*
1500 	 * Walk thru the active_ios queue and ABORT the IO
1501 	 * that matches with the LUN that was reset
1502 	 */
1503 	list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) {
1504 		BNX2FC_TGT_DBG(tgt, "TGT RST cmpl: scan for pending IOs\n");
1505 		/* Initiate ABTS */
1506 		if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
1507 							&cmd->req_flags)) {
1508 			/* cancel the IO timeout */
1509 			if (cancel_delayed_work(&io_req->timeout_work))
1510 				kref_put(&io_req->refcount,
1511 					 bnx2fc_cmd_release); /* timer hold */
1512 			rc = bnx2fc_initiate_abts(cmd);
1513 			/* abts shouldn't fail in this context */
1514 			WARN_ON(rc != SUCCESS);
1515 
1516 		} else
1517 			printk(KERN_ERR PFX "tgt_rst: abts already in progress"
1518 				" for this IO 0x%x\n", cmd->xid);
1519 	}
1520 }
1521 
1522 void bnx2fc_process_tm_compl(struct bnx2fc_cmd *io_req,
1523 			     struct fcoe_task_ctx_entry *task, u8 num_rq,
1524 				  unsigned char *rq_data)
1525 {
1526 	struct bnx2fc_mp_req *tm_req;
1527 	struct fc_frame_header *fc_hdr;
1528 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1529 	u64 *hdr;
1530 	u64 *temp_hdr;
1531 	void *rsp_buf;
1532 
1533 	/* Called with tgt_lock held */
1534 	BNX2FC_IO_DBG(io_req, "Entered process_tm_compl\n");
1535 
1536 	if (!(test_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags)))
1537 		set_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags);
1538 	else {
1539 		/* TM has already timed out and we got
1540 		 * delayed completion. Ignore completion
1541 		 * processing.
1542 		 */
1543 		return;
1544 	}
1545 
1546 	tm_req = &(io_req->mp_req);
1547 	fc_hdr = &(tm_req->resp_fc_hdr);
1548 	hdr = (u64 *)fc_hdr;
1549 	temp_hdr = (u64 *)
1550 		&task->rxwr_only.union_ctx.comp_info.mp_rsp.fc_hdr;
1551 	hdr[0] = cpu_to_be64(temp_hdr[0]);
1552 	hdr[1] = cpu_to_be64(temp_hdr[1]);
1553 	hdr[2] = cpu_to_be64(temp_hdr[2]);
1554 
1555 	tm_req->resp_len =
1556 		task->rxwr_only.union_ctx.comp_info.mp_rsp.mp_payload_len;
1557 
1558 	rsp_buf = tm_req->resp_buf;
1559 
1560 	if (fc_hdr->fh_r_ctl == FC_RCTL_DD_CMD_STATUS) {
1561 		bnx2fc_parse_fcp_rsp(io_req,
1562 				     (struct fcoe_fcp_rsp_payload *)
1563 				     rsp_buf, num_rq, rq_data);
1564 		if (io_req->fcp_rsp_code == 0) {
1565 			/* TM successful */
1566 			if (tm_req->tm_flags & FCP_TMF_LUN_RESET)
1567 				bnx2fc_lun_reset_cmpl(io_req);
1568 			else if (tm_req->tm_flags & FCP_TMF_TGT_RESET)
1569 				bnx2fc_tgt_reset_cmpl(io_req);
1570 		}
1571 	} else {
1572 		printk(KERN_ERR PFX "tmf's fc_hdr r_ctl = 0x%x\n",
1573 			fc_hdr->fh_r_ctl);
1574 	}
1575 	if (!bnx2fc_priv(sc_cmd)->io_req) {
1576 		printk(KERN_ERR PFX "tm_compl: io_req is NULL\n");
1577 		return;
1578 	}
1579 	switch (io_req->fcp_status) {
1580 	case FC_GOOD:
1581 		if (io_req->cdb_status == 0) {
1582 			/* Good IO completion */
1583 			sc_cmd->result = DID_OK << 16;
1584 		} else {
1585 			/* Transport status is good, SCSI status not good */
1586 			sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
1587 		}
1588 		if (io_req->fcp_resid)
1589 			scsi_set_resid(sc_cmd, io_req->fcp_resid);
1590 		break;
1591 
1592 	default:
1593 		BNX2FC_IO_DBG(io_req, "process_tm_compl: fcp_status = %d\n",
1594 			   io_req->fcp_status);
1595 		break;
1596 	}
1597 
1598 	sc_cmd = io_req->sc_cmd;
1599 	io_req->sc_cmd = NULL;
1600 
1601 	/* check if the io_req exists in tgt's tmf_q */
1602 	if (io_req->on_tmf_queue) {
1603 
1604 		list_del_init(&io_req->link);
1605 		io_req->on_tmf_queue = 0;
1606 	} else {
1607 
1608 		printk(KERN_ERR PFX "Command not on active_cmd_queue!\n");
1609 		return;
1610 	}
1611 
1612 	bnx2fc_priv(sc_cmd)->io_req = NULL;
1613 	scsi_done(sc_cmd);
1614 
1615 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
1616 	if (io_req->wait_for_abts_comp) {
1617 		BNX2FC_IO_DBG(io_req, "tm_compl - wake up the waiter\n");
1618 		complete(&io_req->abts_done);
1619 	}
1620 }
1621 
1622 static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
1623 			   int bd_index)
1624 {
1625 	struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1626 	int frag_size, sg_frags;
1627 
1628 	sg_frags = 0;
1629 	while (sg_len) {
1630 		if (sg_len >= BNX2FC_BD_SPLIT_SZ)
1631 			frag_size = BNX2FC_BD_SPLIT_SZ;
1632 		else
1633 			frag_size = sg_len;
1634 		bd[bd_index + sg_frags].buf_addr_lo = addr & 0xffffffff;
1635 		bd[bd_index + sg_frags].buf_addr_hi  = addr >> 32;
1636 		bd[bd_index + sg_frags].buf_len = (u16)frag_size;
1637 		bd[bd_index + sg_frags].flags = 0;
1638 
1639 		addr += (u64) frag_size;
1640 		sg_frags++;
1641 		sg_len -= frag_size;
1642 	}
1643 	return sg_frags;
1644 
1645 }
1646 
1647 static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req)
1648 {
1649 	struct bnx2fc_interface *interface = io_req->port->priv;
1650 	struct bnx2fc_hba *hba = interface->hba;
1651 	struct scsi_cmnd *sc = io_req->sc_cmd;
1652 	struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1653 	struct scatterlist *sg;
1654 	int byte_count = 0;
1655 	int sg_count = 0;
1656 	int bd_count = 0;
1657 	int sg_frags;
1658 	unsigned int sg_len;
1659 	u64 addr;
1660 	int i;
1661 
1662 	WARN_ON(scsi_sg_count(sc) > BNX2FC_MAX_BDS_PER_CMD);
1663 	/*
1664 	 * Use dma_map_sg directly to ensure we're using the correct
1665 	 * dev struct off of pcidev.
1666 	 */
1667 	sg_count = dma_map_sg(&hba->pcidev->dev, scsi_sglist(sc),
1668 			      scsi_sg_count(sc), sc->sc_data_direction);
1669 	scsi_for_each_sg(sc, sg, sg_count, i) {
1670 		sg_len = sg_dma_len(sg);
1671 		addr = sg_dma_address(sg);
1672 		if (sg_len > BNX2FC_MAX_BD_LEN) {
1673 			sg_frags = bnx2fc_split_bd(io_req, addr, sg_len,
1674 						   bd_count);
1675 		} else {
1676 
1677 			sg_frags = 1;
1678 			bd[bd_count].buf_addr_lo = addr & 0xffffffff;
1679 			bd[bd_count].buf_addr_hi  = addr >> 32;
1680 			bd[bd_count].buf_len = (u16)sg_len;
1681 			bd[bd_count].flags = 0;
1682 		}
1683 		bd_count += sg_frags;
1684 		byte_count += sg_len;
1685 	}
1686 	if (byte_count != scsi_bufflen(sc))
1687 		printk(KERN_ERR PFX "byte_count = %d != scsi_bufflen = %d, "
1688 			"task_id = 0x%x\n", byte_count, scsi_bufflen(sc),
1689 			io_req->xid);
1690 	return bd_count;
1691 }
1692 
1693 static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req)
1694 {
1695 	struct scsi_cmnd *sc = io_req->sc_cmd;
1696 	struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1697 	int bd_count;
1698 
1699 	if (scsi_sg_count(sc)) {
1700 		bd_count = bnx2fc_map_sg(io_req);
1701 		if (bd_count == 0)
1702 			return -ENOMEM;
1703 	} else {
1704 		bd_count = 0;
1705 		bd[0].buf_addr_lo = bd[0].buf_addr_hi = 0;
1706 		bd[0].buf_len = bd[0].flags = 0;
1707 	}
1708 	io_req->bd_tbl->bd_valid = bd_count;
1709 
1710 	/*
1711 	 * Return the command to ML if BD count exceeds the max number
1712 	 * that can be handled by FW.
1713 	 */
1714 	if (bd_count > BNX2FC_FW_MAX_BDS_PER_CMD) {
1715 		pr_err("bd_count = %d exceeded FW supported max BD(255), task_id = 0x%x\n",
1716 		       bd_count, io_req->xid);
1717 		return -ENOMEM;
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req)
1724 {
1725 	struct scsi_cmnd *sc = io_req->sc_cmd;
1726 	struct bnx2fc_interface *interface = io_req->port->priv;
1727 	struct bnx2fc_hba *hba = interface->hba;
1728 
1729 	/*
1730 	 * Use dma_unmap_sg directly to ensure we're using the correct
1731 	 * dev struct off of pcidev.
1732 	 */
1733 	if (io_req->bd_tbl->bd_valid && sc && scsi_sg_count(sc)) {
1734 		dma_unmap_sg(&hba->pcidev->dev, scsi_sglist(sc),
1735 		    scsi_sg_count(sc), sc->sc_data_direction);
1736 		io_req->bd_tbl->bd_valid = 0;
1737 	}
1738 }
1739 
1740 void bnx2fc_build_fcp_cmnd(struct bnx2fc_cmd *io_req,
1741 				  struct fcp_cmnd *fcp_cmnd)
1742 {
1743 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1744 
1745 	memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
1746 
1747 	int_to_scsilun(sc_cmd->device->lun, &fcp_cmnd->fc_lun);
1748 
1749 	fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len);
1750 	memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len);
1751 
1752 	fcp_cmnd->fc_cmdref = 0;
1753 	fcp_cmnd->fc_pri_ta = 0;
1754 	fcp_cmnd->fc_tm_flags = io_req->mp_req.tm_flags;
1755 	fcp_cmnd->fc_flags = io_req->io_req_flags;
1756 	fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE;
1757 }
1758 
1759 static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
1760 				 struct fcoe_fcp_rsp_payload *fcp_rsp,
1761 				 u8 num_rq, unsigned char *rq_data)
1762 {
1763 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1764 	u8 rsp_flags = fcp_rsp->fcp_flags.flags;
1765 	u32 rq_buff_len = 0;
1766 	int fcp_sns_len = 0;
1767 	int fcp_rsp_len = 0;
1768 
1769 	io_req->fcp_status = FC_GOOD;
1770 	io_req->fcp_resid = 0;
1771 	if (rsp_flags & (FCOE_FCP_RSP_FLAGS_FCP_RESID_OVER |
1772 	    FCOE_FCP_RSP_FLAGS_FCP_RESID_UNDER))
1773 		io_req->fcp_resid = fcp_rsp->fcp_resid;
1774 
1775 	io_req->scsi_comp_flags = rsp_flags;
1776 	io_req->cdb_status = fcp_rsp->scsi_status_code;
1777 
1778 	/* Fetch fcp_rsp_info and fcp_sns_info if available */
1779 	if (num_rq) {
1780 
1781 		/*
1782 		 * We do not anticipate num_rq >1, as the linux defined
1783 		 * SCSI_SENSE_BUFFERSIZE is 96 bytes + 8 bytes of FCP_RSP_INFO
1784 		 * 256 bytes of single rq buffer is good enough to hold this.
1785 		 */
1786 
1787 		if (rsp_flags &
1788 		    FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID) {
1789 			fcp_rsp_len = rq_buff_len
1790 					= fcp_rsp->fcp_rsp_len;
1791 		}
1792 
1793 		if (rsp_flags &
1794 		    FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID) {
1795 			fcp_sns_len = fcp_rsp->fcp_sns_len;
1796 			rq_buff_len += fcp_rsp->fcp_sns_len;
1797 		}
1798 
1799 		io_req->fcp_rsp_len = fcp_rsp_len;
1800 		io_req->fcp_sns_len = fcp_sns_len;
1801 
1802 		if (rq_buff_len > num_rq * BNX2FC_RQ_BUF_SZ) {
1803 			/* Invalid sense sense length. */
1804 			printk(KERN_ERR PFX "invalid sns length %d\n",
1805 				rq_buff_len);
1806 			/* reset rq_buff_len */
1807 			rq_buff_len =  num_rq * BNX2FC_RQ_BUF_SZ;
1808 		}
1809 
1810 		/* fetch fcp_rsp_code */
1811 		if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) {
1812 			/* Only for task management function */
1813 			io_req->fcp_rsp_code = rq_data[3];
1814 			BNX2FC_IO_DBG(io_req, "fcp_rsp_code = %d\n",
1815 				io_req->fcp_rsp_code);
1816 		}
1817 
1818 		/* fetch sense data */
1819 		rq_data += fcp_rsp_len;
1820 
1821 		if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) {
1822 			printk(KERN_ERR PFX "Truncating sense buffer\n");
1823 			fcp_sns_len = SCSI_SENSE_BUFFERSIZE;
1824 		}
1825 
1826 		memset(sc_cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1827 		if (fcp_sns_len)
1828 			memcpy(sc_cmd->sense_buffer, rq_data, fcp_sns_len);
1829 
1830 	}
1831 }
1832 
1833 /**
1834  * bnx2fc_queuecommand - Queuecommand function of the scsi template
1835  *
1836  * @host:	The Scsi_Host the command was issued to
1837  * @sc_cmd:	struct scsi_cmnd to be executed
1838  *
1839  * This is the IO strategy routine, called by SCSI-ML
1840  **/
1841 int bnx2fc_queuecommand(struct Scsi_Host *host,
1842 			struct scsi_cmnd *sc_cmd)
1843 {
1844 	struct fc_lport *lport = shost_priv(host);
1845 	struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
1846 	struct fc_rport_libfc_priv *rp = rport->dd_data;
1847 	struct bnx2fc_rport *tgt;
1848 	struct bnx2fc_cmd *io_req;
1849 	int rc = 0;
1850 	int rval;
1851 
1852 	rval = fc_remote_port_chkready(rport);
1853 	if (rval) {
1854 		sc_cmd->result = rval;
1855 		scsi_done(sc_cmd);
1856 		return 0;
1857 	}
1858 
1859 	if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
1860 		rc = SCSI_MLQUEUE_HOST_BUSY;
1861 		goto exit_qcmd;
1862 	}
1863 
1864 	/* rport and tgt are allocated together, so tgt should be non-NULL */
1865 	tgt = (struct bnx2fc_rport *)&rp[1];
1866 
1867 	if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
1868 		/*
1869 		 * Session is not offloaded yet. Let SCSI-ml retry
1870 		 * the command.
1871 		 */
1872 		rc = SCSI_MLQUEUE_TARGET_BUSY;
1873 		goto exit_qcmd;
1874 	}
1875 	if (tgt->retry_delay_timestamp) {
1876 		if (time_after(jiffies, tgt->retry_delay_timestamp)) {
1877 			tgt->retry_delay_timestamp = 0;
1878 		} else {
1879 			/* If retry_delay timer is active, flow off the ML */
1880 			rc = SCSI_MLQUEUE_TARGET_BUSY;
1881 			goto exit_qcmd;
1882 		}
1883 	}
1884 
1885 	spin_lock_bh(&tgt->tgt_lock);
1886 
1887 	io_req = bnx2fc_cmd_alloc(tgt);
1888 	if (!io_req) {
1889 		rc = SCSI_MLQUEUE_HOST_BUSY;
1890 		goto exit_qcmd_tgtlock;
1891 	}
1892 	io_req->sc_cmd = sc_cmd;
1893 
1894 	if (bnx2fc_post_io_req(tgt, io_req)) {
1895 		printk(KERN_ERR PFX "Unable to post io_req\n");
1896 		rc = SCSI_MLQUEUE_HOST_BUSY;
1897 		goto exit_qcmd_tgtlock;
1898 	}
1899 
1900 exit_qcmd_tgtlock:
1901 	spin_unlock_bh(&tgt->tgt_lock);
1902 exit_qcmd:
1903 	return rc;
1904 }
1905 
1906 void bnx2fc_process_scsi_cmd_compl(struct bnx2fc_cmd *io_req,
1907 				   struct fcoe_task_ctx_entry *task,
1908 				   u8 num_rq, unsigned char *rq_data)
1909 {
1910 	struct fcoe_fcp_rsp_payload *fcp_rsp;
1911 	struct bnx2fc_rport *tgt = io_req->tgt;
1912 	struct scsi_cmnd *sc_cmd;
1913 	u16 scope = 0, qualifier = 0;
1914 
1915 	/* scsi_cmd_cmpl is called with tgt lock held */
1916 
1917 	if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) {
1918 		/* we will not receive ABTS response for this IO */
1919 		BNX2FC_IO_DBG(io_req, "Timer context finished processing "
1920 			   "this scsi cmd\n");
1921 		if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
1922 				       &io_req->req_flags)) {
1923 			BNX2FC_IO_DBG(io_req,
1924 				      "Actual completion after cleanup request cleaning up\n");
1925 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
1926 		}
1927 		return;
1928 	}
1929 
1930 	/* Cancel the timeout_work, as we received IO completion */
1931 	if (cancel_delayed_work(&io_req->timeout_work))
1932 		kref_put(&io_req->refcount,
1933 			 bnx2fc_cmd_release); /* drop timer hold */
1934 
1935 	sc_cmd = io_req->sc_cmd;
1936 	if (sc_cmd == NULL) {
1937 		printk(KERN_ERR PFX "scsi_cmd_compl - sc_cmd is NULL\n");
1938 		return;
1939 	}
1940 
1941 	/* Fetch fcp_rsp from task context and perform cmd completion */
1942 	fcp_rsp = (struct fcoe_fcp_rsp_payload *)
1943 		   &(task->rxwr_only.union_ctx.comp_info.fcp_rsp.payload);
1944 
1945 	/* parse fcp_rsp and obtain sense data from RQ if available */
1946 	bnx2fc_parse_fcp_rsp(io_req, fcp_rsp, num_rq, rq_data);
1947 
1948 	if (!bnx2fc_priv(sc_cmd)->io_req) {
1949 		printk(KERN_ERR PFX "io_req is NULL\n");
1950 		return;
1951 	}
1952 
1953 	if (io_req->on_active_queue) {
1954 		list_del_init(&io_req->link);
1955 		io_req->on_active_queue = 0;
1956 		/* Move IO req to retire queue */
1957 		list_add_tail(&io_req->link, &tgt->io_retire_queue);
1958 	} else {
1959 		/* This should not happen, but could have been pulled
1960 		 * by bnx2fc_flush_active_ios(), or during a race
1961 		 * between command abort and (late) completion.
1962 		 */
1963 		BNX2FC_IO_DBG(io_req, "xid not on active_cmd_queue\n");
1964 		if (io_req->wait_for_abts_comp)
1965 			if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
1966 					       &io_req->req_flags))
1967 				complete(&io_req->abts_done);
1968 	}
1969 
1970 	bnx2fc_unmap_sg_list(io_req);
1971 	io_req->sc_cmd = NULL;
1972 
1973 	switch (io_req->fcp_status) {
1974 	case FC_GOOD:
1975 		if (io_req->cdb_status == 0) {
1976 			/* Good IO completion */
1977 			sc_cmd->result = DID_OK << 16;
1978 		} else {
1979 			/* Transport status is good, SCSI status not good */
1980 			BNX2FC_IO_DBG(io_req, "scsi_cmpl: cdb_status = %d"
1981 				 " fcp_resid = 0x%x\n",
1982 				io_req->cdb_status, io_req->fcp_resid);
1983 			sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
1984 
1985 			if (io_req->cdb_status == SAM_STAT_TASK_SET_FULL ||
1986 			    io_req->cdb_status == SAM_STAT_BUSY) {
1987 				/* Newer array firmware with BUSY or
1988 				 * TASK_SET_FULL may return a status that needs
1989 				 * the scope bits masked.
1990 				 * Or a huge delay timestamp up to 27 minutes
1991 				 * can result.
1992 				 */
1993 				if (fcp_rsp->retry_delay_timer) {
1994 					/* Upper 2 bits */
1995 					scope = fcp_rsp->retry_delay_timer
1996 						& 0xC000;
1997 					/* Lower 14 bits */
1998 					qualifier = fcp_rsp->retry_delay_timer
1999 						& 0x3FFF;
2000 				}
2001 				if (scope > 0 && qualifier > 0 &&
2002 					qualifier <= 0x3FEF) {
2003 					/* Set the jiffies +
2004 					 * retry_delay_timer * 100ms
2005 					 * for the rport/tgt
2006 					 */
2007 					tgt->retry_delay_timestamp = jiffies +
2008 						(qualifier * HZ / 10);
2009 				}
2010 			}
2011 		}
2012 		if (io_req->fcp_resid)
2013 			scsi_set_resid(sc_cmd, io_req->fcp_resid);
2014 		break;
2015 	default:
2016 		printk(KERN_ERR PFX "scsi_cmd_compl: fcp_status = %d\n",
2017 			io_req->fcp_status);
2018 		break;
2019 	}
2020 	bnx2fc_priv(sc_cmd)->io_req = NULL;
2021 	scsi_done(sc_cmd);
2022 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
2023 }
2024 
2025 int bnx2fc_post_io_req(struct bnx2fc_rport *tgt,
2026 			       struct bnx2fc_cmd *io_req)
2027 {
2028 	struct fcoe_task_ctx_entry *task;
2029 	struct fcoe_task_ctx_entry *task_page;
2030 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
2031 	struct fcoe_port *port = tgt->port;
2032 	struct bnx2fc_interface *interface = port->priv;
2033 	struct bnx2fc_hba *hba = interface->hba;
2034 	struct fc_lport *lport = port->lport;
2035 	struct fc_stats *stats;
2036 	int task_idx, index;
2037 	u16 xid;
2038 
2039 	/* bnx2fc_post_io_req() is called with the tgt_lock held */
2040 
2041 	/* Initialize rest of io_req fields */
2042 	io_req->cmd_type = BNX2FC_SCSI_CMD;
2043 	io_req->port = port;
2044 	io_req->tgt = tgt;
2045 	io_req->data_xfer_len = scsi_bufflen(sc_cmd);
2046 	bnx2fc_priv(sc_cmd)->io_req = io_req;
2047 
2048 	stats = per_cpu_ptr(lport->stats, get_cpu());
2049 	if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) {
2050 		io_req->io_req_flags = BNX2FC_READ;
2051 		stats->InputRequests++;
2052 		stats->InputBytes += io_req->data_xfer_len;
2053 	} else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) {
2054 		io_req->io_req_flags = BNX2FC_WRITE;
2055 		stats->OutputRequests++;
2056 		stats->OutputBytes += io_req->data_xfer_len;
2057 	} else {
2058 		io_req->io_req_flags = 0;
2059 		stats->ControlRequests++;
2060 	}
2061 	put_cpu();
2062 
2063 	xid = io_req->xid;
2064 
2065 	/* Build buffer descriptor list for firmware from sg list */
2066 	if (bnx2fc_build_bd_list_from_sg(io_req)) {
2067 		printk(KERN_ERR PFX "BD list creation failed\n");
2068 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
2069 		return -EAGAIN;
2070 	}
2071 
2072 	task_idx = xid / BNX2FC_TASKS_PER_PAGE;
2073 	index = xid % BNX2FC_TASKS_PER_PAGE;
2074 
2075 	/* Initialize task context for this IO request */
2076 	task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx];
2077 	task = &(task_page[index]);
2078 	bnx2fc_init_task(io_req, task);
2079 
2080 	if (tgt->flush_in_prog) {
2081 		printk(KERN_ERR PFX "Flush in progress..Host Busy\n");
2082 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
2083 		return -EAGAIN;
2084 	}
2085 
2086 	if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
2087 		printk(KERN_ERR PFX "Session not ready...post_io\n");
2088 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
2089 		return -EAGAIN;
2090 	}
2091 
2092 	/* Time IO req */
2093 	if (tgt->io_timeout)
2094 		bnx2fc_cmd_timer_set(io_req, BNX2FC_IO_TIMEOUT);
2095 	/* Obtain free SQ entry */
2096 	bnx2fc_add_2_sq(tgt, xid);
2097 
2098 	/* Enqueue the io_req to active_cmd_queue */
2099 
2100 	io_req->on_active_queue = 1;
2101 	/* move io_req from pending_queue to active_queue */
2102 	list_add_tail(&io_req->link, &tgt->active_cmd_queue);
2103 
2104 	/* Ring doorbell */
2105 	bnx2fc_ring_doorbell(tgt);
2106 	return 0;
2107 }
2108