xref: /openbmc/linux/drivers/scsi/bnx2fc/bnx2fc_io.c (revision 26b32974)
1 /* bnx2fc_io.c: QLogic Linux FCoE offload driver.
2  * IO manager and SCSI IO processing.
3  *
4  * Copyright (c) 2008-2013 Broadcom Corporation
5  * Copyright (c) 2014-2016 QLogic Corporation
6  * Copyright (c) 2016-2017 Cavium Inc.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation.
11  *
12  * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
13  */
14 
15 #include "bnx2fc.h"
16 
17 #define RESERVE_FREE_LIST_INDEX num_possible_cpus()
18 
19 static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
20 			   int bd_index);
21 static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req);
22 static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req);
23 static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req);
24 static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req);
25 static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
26 				 struct fcoe_fcp_rsp_payload *fcp_rsp,
27 				 u8 num_rq, unsigned char *rq_data);
28 
29 void bnx2fc_cmd_timer_set(struct bnx2fc_cmd *io_req,
30 			  unsigned int timer_msec)
31 {
32 	struct bnx2fc_interface *interface = io_req->port->priv;
33 
34 	if (queue_delayed_work(interface->timer_work_queue,
35 			       &io_req->timeout_work,
36 			       msecs_to_jiffies(timer_msec)))
37 		kref_get(&io_req->refcount);
38 }
39 
40 static void bnx2fc_cmd_timeout(struct work_struct *work)
41 {
42 	struct bnx2fc_cmd *io_req = container_of(work, struct bnx2fc_cmd,
43 						 timeout_work.work);
44 	u8 cmd_type = io_req->cmd_type;
45 	struct bnx2fc_rport *tgt = io_req->tgt;
46 	int rc;
47 
48 	BNX2FC_IO_DBG(io_req, "cmd_timeout, cmd_type = %d,"
49 		      "req_flags = %lx\n", cmd_type, io_req->req_flags);
50 
51 	spin_lock_bh(&tgt->tgt_lock);
52 	if (test_and_clear_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags)) {
53 		clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
54 		/*
55 		 * ideally we should hold the io_req until RRQ complets,
56 		 * and release io_req from timeout hold.
57 		 */
58 		spin_unlock_bh(&tgt->tgt_lock);
59 		bnx2fc_send_rrq(io_req);
60 		return;
61 	}
62 	if (test_and_clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags)) {
63 		BNX2FC_IO_DBG(io_req, "IO ready for reuse now\n");
64 		goto done;
65 	}
66 
67 	switch (cmd_type) {
68 	case BNX2FC_SCSI_CMD:
69 		if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
70 							&io_req->req_flags)) {
71 			/* Handle eh_abort timeout */
72 			BNX2FC_IO_DBG(io_req, "eh_abort timed out\n");
73 			complete(&io_req->abts_done);
74 		} else if (test_bit(BNX2FC_FLAG_ISSUE_ABTS,
75 				    &io_req->req_flags)) {
76 			/* Handle internally generated ABTS timeout */
77 			BNX2FC_IO_DBG(io_req, "ABTS timed out refcnt = %d\n",
78 					kref_read(&io_req->refcount));
79 			if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
80 					       &io_req->req_flags))) {
81 				/*
82 				 * Cleanup and return original command to
83 				 * mid-layer.
84 				 */
85 				bnx2fc_initiate_cleanup(io_req);
86 				kref_put(&io_req->refcount, bnx2fc_cmd_release);
87 				spin_unlock_bh(&tgt->tgt_lock);
88 
89 				return;
90 			}
91 		} else {
92 			/* Hanlde IO timeout */
93 			BNX2FC_IO_DBG(io_req, "IO timed out. issue ABTS\n");
94 			if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL,
95 					     &io_req->req_flags)) {
96 				BNX2FC_IO_DBG(io_req, "IO completed before "
97 							   " timer expiry\n");
98 				goto done;
99 			}
100 
101 			if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
102 					      &io_req->req_flags)) {
103 				rc = bnx2fc_initiate_abts(io_req);
104 				if (rc == SUCCESS)
105 					goto done;
106 
107 				kref_put(&io_req->refcount, bnx2fc_cmd_release);
108 				spin_unlock_bh(&tgt->tgt_lock);
109 
110 				return;
111 			} else {
112 				BNX2FC_IO_DBG(io_req, "IO already in "
113 						      "ABTS processing\n");
114 			}
115 		}
116 		break;
117 	case BNX2FC_ELS:
118 
119 		if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
120 			BNX2FC_IO_DBG(io_req, "ABTS for ELS timed out\n");
121 
122 			if (!test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
123 					      &io_req->req_flags)) {
124 				kref_put(&io_req->refcount, bnx2fc_cmd_release);
125 				spin_unlock_bh(&tgt->tgt_lock);
126 
127 				return;
128 			}
129 		} else {
130 			/*
131 			 * Handle ELS timeout.
132 			 * tgt_lock is used to sync compl path and timeout
133 			 * path. If els compl path is processing this IO, we
134 			 * have nothing to do here, just release the timer hold
135 			 */
136 			BNX2FC_IO_DBG(io_req, "ELS timed out\n");
137 			if (test_and_set_bit(BNX2FC_FLAG_ELS_DONE,
138 					       &io_req->req_flags))
139 				goto done;
140 
141 			/* Indicate the cb_func that this ELS is timed out */
142 			set_bit(BNX2FC_FLAG_ELS_TIMEOUT, &io_req->req_flags);
143 
144 			if ((io_req->cb_func) && (io_req->cb_arg)) {
145 				io_req->cb_func(io_req->cb_arg);
146 				io_req->cb_arg = NULL;
147 			}
148 		}
149 		break;
150 	default:
151 		printk(KERN_ERR PFX "cmd_timeout: invalid cmd_type %d\n",
152 			cmd_type);
153 		break;
154 	}
155 
156 done:
157 	/* release the cmd that was held when timer was set */
158 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
159 	spin_unlock_bh(&tgt->tgt_lock);
160 }
161 
162 static void bnx2fc_scsi_done(struct bnx2fc_cmd *io_req, int err_code)
163 {
164 	/* Called with host lock held */
165 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
166 
167 	/*
168 	 * active_cmd_queue may have other command types as well,
169 	 * and during flush operation,  we want to error back only
170 	 * scsi commands.
171 	 */
172 	if (io_req->cmd_type != BNX2FC_SCSI_CMD)
173 		return;
174 
175 	BNX2FC_IO_DBG(io_req, "scsi_done. err_code = 0x%x\n", err_code);
176 	if (test_bit(BNX2FC_FLAG_CMD_LOST, &io_req->req_flags)) {
177 		/* Do not call scsi done for this IO */
178 		return;
179 	}
180 
181 	bnx2fc_unmap_sg_list(io_req);
182 	io_req->sc_cmd = NULL;
183 
184 	/* Sanity checks before returning command to mid-layer */
185 	if (!sc_cmd) {
186 		printk(KERN_ERR PFX "scsi_done - sc_cmd NULL. "
187 				    "IO(0x%x) already cleaned up\n",
188 		       io_req->xid);
189 		return;
190 	}
191 	if (!sc_cmd->device) {
192 		pr_err(PFX "0x%x: sc_cmd->device is NULL.\n", io_req->xid);
193 		return;
194 	}
195 	if (!sc_cmd->device->host) {
196 		pr_err(PFX "0x%x: sc_cmd->device->host is NULL.\n",
197 		    io_req->xid);
198 		return;
199 	}
200 
201 	sc_cmd->result = err_code << 16;
202 
203 	BNX2FC_IO_DBG(io_req, "sc=%p, result=0x%x, retries=%d, allowed=%d\n",
204 		sc_cmd, host_byte(sc_cmd->result), sc_cmd->retries,
205 		sc_cmd->allowed);
206 	scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd));
207 	bnx2fc_priv(sc_cmd)->io_req = NULL;
208 	scsi_done(sc_cmd);
209 }
210 
211 struct bnx2fc_cmd_mgr *bnx2fc_cmd_mgr_alloc(struct bnx2fc_hba *hba)
212 {
213 	struct bnx2fc_cmd_mgr *cmgr;
214 	struct io_bdt *bdt_info;
215 	struct bnx2fc_cmd *io_req;
216 	size_t len;
217 	u32 mem_size;
218 	u16 xid;
219 	int i;
220 	int num_ios, num_pri_ios;
221 	size_t bd_tbl_sz;
222 	int arr_sz = num_possible_cpus() + 1;
223 	u16 min_xid = BNX2FC_MIN_XID;
224 	u16 max_xid = hba->max_xid;
225 
226 	if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) {
227 		printk(KERN_ERR PFX "cmd_mgr_alloc: Invalid min_xid 0x%x \
228 					and max_xid 0x%x\n", min_xid, max_xid);
229 		return NULL;
230 	}
231 	BNX2FC_MISC_DBG("min xid 0x%x, max xid 0x%x\n", min_xid, max_xid);
232 
233 	num_ios = max_xid - min_xid + 1;
234 	len = (num_ios * (sizeof(struct bnx2fc_cmd *)));
235 	len += sizeof(struct bnx2fc_cmd_mgr);
236 
237 	cmgr = kzalloc(len, GFP_KERNEL);
238 	if (!cmgr) {
239 		printk(KERN_ERR PFX "failed to alloc cmgr\n");
240 		return NULL;
241 	}
242 
243 	cmgr->hba = hba;
244 	cmgr->free_list = kcalloc(arr_sz, sizeof(*cmgr->free_list),
245 				  GFP_KERNEL);
246 	if (!cmgr->free_list) {
247 		printk(KERN_ERR PFX "failed to alloc free_list\n");
248 		goto mem_err;
249 	}
250 
251 	cmgr->free_list_lock = kcalloc(arr_sz, sizeof(*cmgr->free_list_lock),
252 				       GFP_KERNEL);
253 	if (!cmgr->free_list_lock) {
254 		printk(KERN_ERR PFX "failed to alloc free_list_lock\n");
255 		kfree(cmgr->free_list);
256 		cmgr->free_list = NULL;
257 		goto mem_err;
258 	}
259 
260 	cmgr->cmds = (struct bnx2fc_cmd **)(cmgr + 1);
261 
262 	for (i = 0; i < arr_sz; i++)  {
263 		INIT_LIST_HEAD(&cmgr->free_list[i]);
264 		spin_lock_init(&cmgr->free_list_lock[i]);
265 	}
266 
267 	/*
268 	 * Pre-allocated pool of bnx2fc_cmds.
269 	 * Last entry in the free list array is the free list
270 	 * of slow path requests.
271 	 */
272 	xid = BNX2FC_MIN_XID;
273 	num_pri_ios = num_ios - hba->elstm_xids;
274 	for (i = 0; i < num_ios; i++) {
275 		io_req = kzalloc(sizeof(*io_req), GFP_KERNEL);
276 
277 		if (!io_req) {
278 			printk(KERN_ERR PFX "failed to alloc io_req\n");
279 			goto mem_err;
280 		}
281 
282 		INIT_LIST_HEAD(&io_req->link);
283 		INIT_DELAYED_WORK(&io_req->timeout_work, bnx2fc_cmd_timeout);
284 
285 		io_req->xid = xid++;
286 		if (i < num_pri_ios)
287 			list_add_tail(&io_req->link,
288 				&cmgr->free_list[io_req->xid %
289 						 num_possible_cpus()]);
290 		else
291 			list_add_tail(&io_req->link,
292 				&cmgr->free_list[num_possible_cpus()]);
293 		io_req++;
294 	}
295 
296 	/* Allocate pool of io_bdts - one for each bnx2fc_cmd */
297 	mem_size = num_ios * sizeof(struct io_bdt *);
298 	cmgr->io_bdt_pool = kzalloc(mem_size, GFP_KERNEL);
299 	if (!cmgr->io_bdt_pool) {
300 		printk(KERN_ERR PFX "failed to alloc io_bdt_pool\n");
301 		goto mem_err;
302 	}
303 
304 	mem_size = sizeof(struct io_bdt);
305 	for (i = 0; i < num_ios; i++) {
306 		cmgr->io_bdt_pool[i] = kmalloc(mem_size, GFP_KERNEL);
307 		if (!cmgr->io_bdt_pool[i]) {
308 			printk(KERN_ERR PFX "failed to alloc "
309 				"io_bdt_pool[%d]\n", i);
310 			goto mem_err;
311 		}
312 	}
313 
314 	/* Allocate an map fcoe_bdt_ctx structures */
315 	bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
316 	for (i = 0; i < num_ios; i++) {
317 		bdt_info = cmgr->io_bdt_pool[i];
318 		bdt_info->bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
319 						      bd_tbl_sz,
320 						      &bdt_info->bd_tbl_dma,
321 						      GFP_KERNEL);
322 		if (!bdt_info->bd_tbl) {
323 			printk(KERN_ERR PFX "failed to alloc "
324 				"bdt_tbl[%d]\n", i);
325 			goto mem_err;
326 		}
327 	}
328 
329 	return cmgr;
330 
331 mem_err:
332 	bnx2fc_cmd_mgr_free(cmgr);
333 	return NULL;
334 }
335 
336 void bnx2fc_cmd_mgr_free(struct bnx2fc_cmd_mgr *cmgr)
337 {
338 	struct io_bdt *bdt_info;
339 	struct bnx2fc_hba *hba = cmgr->hba;
340 	size_t bd_tbl_sz;
341 	u16 min_xid = BNX2FC_MIN_XID;
342 	u16 max_xid = hba->max_xid;
343 	int num_ios;
344 	int i;
345 
346 	num_ios = max_xid - min_xid + 1;
347 
348 	/* Free fcoe_bdt_ctx structures */
349 	if (!cmgr->io_bdt_pool)
350 		goto free_cmd_pool;
351 
352 	bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
353 	for (i = 0; i < num_ios; i++) {
354 		bdt_info = cmgr->io_bdt_pool[i];
355 		if (bdt_info->bd_tbl) {
356 			dma_free_coherent(&hba->pcidev->dev, bd_tbl_sz,
357 					    bdt_info->bd_tbl,
358 					    bdt_info->bd_tbl_dma);
359 			bdt_info->bd_tbl = NULL;
360 		}
361 	}
362 
363 	/* Destroy io_bdt pool */
364 	for (i = 0; i < num_ios; i++) {
365 		kfree(cmgr->io_bdt_pool[i]);
366 		cmgr->io_bdt_pool[i] = NULL;
367 	}
368 
369 	kfree(cmgr->io_bdt_pool);
370 	cmgr->io_bdt_pool = NULL;
371 
372 free_cmd_pool:
373 	kfree(cmgr->free_list_lock);
374 
375 	/* Destroy cmd pool */
376 	if (!cmgr->free_list)
377 		goto free_cmgr;
378 
379 	for (i = 0; i < num_possible_cpus() + 1; i++)  {
380 		struct bnx2fc_cmd *tmp, *io_req;
381 
382 		list_for_each_entry_safe(io_req, tmp,
383 					 &cmgr->free_list[i], link) {
384 			list_del(&io_req->link);
385 			kfree(io_req);
386 		}
387 	}
388 	kfree(cmgr->free_list);
389 free_cmgr:
390 	/* Free command manager itself */
391 	kfree(cmgr);
392 }
393 
394 struct bnx2fc_cmd *bnx2fc_elstm_alloc(struct bnx2fc_rport *tgt, int type)
395 {
396 	struct fcoe_port *port = tgt->port;
397 	struct bnx2fc_interface *interface = port->priv;
398 	struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
399 	struct bnx2fc_cmd *io_req;
400 	struct list_head *listp;
401 	struct io_bdt *bd_tbl;
402 	int index = RESERVE_FREE_LIST_INDEX;
403 	u32 free_sqes;
404 	u32 max_sqes;
405 	u16 xid;
406 
407 	max_sqes = tgt->max_sqes;
408 	switch (type) {
409 	case BNX2FC_TASK_MGMT_CMD:
410 		max_sqes = BNX2FC_TM_MAX_SQES;
411 		break;
412 	case BNX2FC_ELS:
413 		max_sqes = BNX2FC_ELS_MAX_SQES;
414 		break;
415 	default:
416 		break;
417 	}
418 
419 	/*
420 	 * NOTE: Free list insertions and deletions are protected with
421 	 * cmgr lock
422 	 */
423 	spin_lock_bh(&cmd_mgr->free_list_lock[index]);
424 	free_sqes = atomic_read(&tgt->free_sqes);
425 	if ((list_empty(&(cmd_mgr->free_list[index]))) ||
426 	    (tgt->num_active_ios.counter  >= max_sqes) ||
427 	    (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
428 		BNX2FC_TGT_DBG(tgt, "No free els_tm cmds available "
429 			"ios(%d):sqes(%d)\n",
430 			tgt->num_active_ios.counter, tgt->max_sqes);
431 		if (list_empty(&(cmd_mgr->free_list[index])))
432 			printk(KERN_ERR PFX "elstm_alloc: list_empty\n");
433 		spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
434 		return NULL;
435 	}
436 
437 	listp = (struct list_head *)
438 			cmd_mgr->free_list[index].next;
439 	list_del_init(listp);
440 	io_req = (struct bnx2fc_cmd *) listp;
441 	xid = io_req->xid;
442 	cmd_mgr->cmds[xid] = io_req;
443 	atomic_inc(&tgt->num_active_ios);
444 	atomic_dec(&tgt->free_sqes);
445 	spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
446 
447 	INIT_LIST_HEAD(&io_req->link);
448 
449 	io_req->port = port;
450 	io_req->cmd_mgr = cmd_mgr;
451 	io_req->req_flags = 0;
452 	io_req->cmd_type = type;
453 
454 	/* Bind io_bdt for this io_req */
455 	/* Have a static link between io_req and io_bdt_pool */
456 	bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
457 	bd_tbl->io_req = io_req;
458 
459 	/* Hold the io_req  against deletion */
460 	kref_init(&io_req->refcount);
461 	return io_req;
462 }
463 
464 struct bnx2fc_cmd *bnx2fc_cmd_alloc(struct bnx2fc_rport *tgt)
465 {
466 	struct fcoe_port *port = tgt->port;
467 	struct bnx2fc_interface *interface = port->priv;
468 	struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
469 	struct bnx2fc_cmd *io_req;
470 	struct list_head *listp;
471 	struct io_bdt *bd_tbl;
472 	u32 free_sqes;
473 	u32 max_sqes;
474 	u16 xid;
475 	int index = raw_smp_processor_id();
476 
477 	max_sqes = BNX2FC_SCSI_MAX_SQES;
478 	/*
479 	 * NOTE: Free list insertions and deletions are protected with
480 	 * cmgr lock
481 	 */
482 	spin_lock_bh(&cmd_mgr->free_list_lock[index]);
483 	free_sqes = atomic_read(&tgt->free_sqes);
484 	if ((list_empty(&cmd_mgr->free_list[index])) ||
485 	    (tgt->num_active_ios.counter  >= max_sqes) ||
486 	    (free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
487 		spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
488 		return NULL;
489 	}
490 
491 	listp = (struct list_head *)
492 		cmd_mgr->free_list[index].next;
493 	list_del_init(listp);
494 	io_req = (struct bnx2fc_cmd *) listp;
495 	xid = io_req->xid;
496 	cmd_mgr->cmds[xid] = io_req;
497 	atomic_inc(&tgt->num_active_ios);
498 	atomic_dec(&tgt->free_sqes);
499 	spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
500 
501 	INIT_LIST_HEAD(&io_req->link);
502 
503 	io_req->port = port;
504 	io_req->cmd_mgr = cmd_mgr;
505 	io_req->req_flags = 0;
506 
507 	/* Bind io_bdt for this io_req */
508 	/* Have a static link between io_req and io_bdt_pool */
509 	bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
510 	bd_tbl->io_req = io_req;
511 
512 	/* Hold the io_req  against deletion */
513 	kref_init(&io_req->refcount);
514 	return io_req;
515 }
516 
517 void bnx2fc_cmd_release(struct kref *ref)
518 {
519 	struct bnx2fc_cmd *io_req = container_of(ref,
520 						struct bnx2fc_cmd, refcount);
521 	struct bnx2fc_cmd_mgr *cmd_mgr = io_req->cmd_mgr;
522 	int index;
523 
524 	if (io_req->cmd_type == BNX2FC_SCSI_CMD)
525 		index = io_req->xid % num_possible_cpus();
526 	else
527 		index = RESERVE_FREE_LIST_INDEX;
528 
529 
530 	spin_lock_bh(&cmd_mgr->free_list_lock[index]);
531 	if (io_req->cmd_type != BNX2FC_SCSI_CMD)
532 		bnx2fc_free_mp_resc(io_req);
533 	cmd_mgr->cmds[io_req->xid] = NULL;
534 	/* Delete IO from retire queue */
535 	list_del_init(&io_req->link);
536 	/* Add it to the free list */
537 	list_add(&io_req->link,
538 			&cmd_mgr->free_list[index]);
539 	atomic_dec(&io_req->tgt->num_active_ios);
540 	spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
541 
542 }
543 
544 static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req)
545 {
546 	struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
547 	struct bnx2fc_interface *interface = io_req->port->priv;
548 	struct bnx2fc_hba *hba = interface->hba;
549 	size_t sz = sizeof(struct fcoe_bd_ctx);
550 
551 	/* clear tm flags */
552 	mp_req->tm_flags = 0;
553 	if (mp_req->mp_req_bd) {
554 		dma_free_coherent(&hba->pcidev->dev, sz,
555 				     mp_req->mp_req_bd,
556 				     mp_req->mp_req_bd_dma);
557 		mp_req->mp_req_bd = NULL;
558 	}
559 	if (mp_req->mp_resp_bd) {
560 		dma_free_coherent(&hba->pcidev->dev, sz,
561 				     mp_req->mp_resp_bd,
562 				     mp_req->mp_resp_bd_dma);
563 		mp_req->mp_resp_bd = NULL;
564 	}
565 	if (mp_req->req_buf) {
566 		dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
567 				     mp_req->req_buf,
568 				     mp_req->req_buf_dma);
569 		mp_req->req_buf = NULL;
570 	}
571 	if (mp_req->resp_buf) {
572 		dma_free_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
573 				     mp_req->resp_buf,
574 				     mp_req->resp_buf_dma);
575 		mp_req->resp_buf = NULL;
576 	}
577 }
578 
579 int bnx2fc_init_mp_req(struct bnx2fc_cmd *io_req)
580 {
581 	struct bnx2fc_mp_req *mp_req;
582 	struct fcoe_bd_ctx *mp_req_bd;
583 	struct fcoe_bd_ctx *mp_resp_bd;
584 	struct bnx2fc_interface *interface = io_req->port->priv;
585 	struct bnx2fc_hba *hba = interface->hba;
586 	dma_addr_t addr;
587 	size_t sz;
588 
589 	mp_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
590 	memset(mp_req, 0, sizeof(struct bnx2fc_mp_req));
591 
592 	if (io_req->cmd_type != BNX2FC_ELS) {
593 		mp_req->req_len = sizeof(struct fcp_cmnd);
594 		io_req->data_xfer_len = mp_req->req_len;
595 	} else
596 		mp_req->req_len = io_req->data_xfer_len;
597 
598 	mp_req->req_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
599 					     &mp_req->req_buf_dma,
600 					     GFP_ATOMIC);
601 	if (!mp_req->req_buf) {
602 		printk(KERN_ERR PFX "unable to alloc MP req buffer\n");
603 		bnx2fc_free_mp_resc(io_req);
604 		return FAILED;
605 	}
606 
607 	mp_req->resp_buf = dma_alloc_coherent(&hba->pcidev->dev, CNIC_PAGE_SIZE,
608 					      &mp_req->resp_buf_dma,
609 					      GFP_ATOMIC);
610 	if (!mp_req->resp_buf) {
611 		printk(KERN_ERR PFX "unable to alloc TM resp buffer\n");
612 		bnx2fc_free_mp_resc(io_req);
613 		return FAILED;
614 	}
615 	memset(mp_req->req_buf, 0, CNIC_PAGE_SIZE);
616 	memset(mp_req->resp_buf, 0, CNIC_PAGE_SIZE);
617 
618 	/* Allocate and map mp_req_bd and mp_resp_bd */
619 	sz = sizeof(struct fcoe_bd_ctx);
620 	mp_req->mp_req_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
621 						 &mp_req->mp_req_bd_dma,
622 						 GFP_ATOMIC);
623 	if (!mp_req->mp_req_bd) {
624 		printk(KERN_ERR PFX "unable to alloc MP req bd\n");
625 		bnx2fc_free_mp_resc(io_req);
626 		return FAILED;
627 	}
628 	mp_req->mp_resp_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
629 						 &mp_req->mp_resp_bd_dma,
630 						 GFP_ATOMIC);
631 	if (!mp_req->mp_resp_bd) {
632 		printk(KERN_ERR PFX "unable to alloc MP resp bd\n");
633 		bnx2fc_free_mp_resc(io_req);
634 		return FAILED;
635 	}
636 	/* Fill bd table */
637 	addr = mp_req->req_buf_dma;
638 	mp_req_bd = mp_req->mp_req_bd;
639 	mp_req_bd->buf_addr_lo = (u32)addr & 0xffffffff;
640 	mp_req_bd->buf_addr_hi = (u32)((u64)addr >> 32);
641 	mp_req_bd->buf_len = CNIC_PAGE_SIZE;
642 	mp_req_bd->flags = 0;
643 
644 	/*
645 	 * MP buffer is either a task mgmt command or an ELS.
646 	 * So the assumption is that it consumes a single bd
647 	 * entry in the bd table
648 	 */
649 	mp_resp_bd = mp_req->mp_resp_bd;
650 	addr = mp_req->resp_buf_dma;
651 	mp_resp_bd->buf_addr_lo = (u32)addr & 0xffffffff;
652 	mp_resp_bd->buf_addr_hi = (u32)((u64)addr >> 32);
653 	mp_resp_bd->buf_len = CNIC_PAGE_SIZE;
654 	mp_resp_bd->flags = 0;
655 
656 	return SUCCESS;
657 }
658 
659 static int bnx2fc_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags)
660 {
661 	struct fc_lport *lport;
662 	struct fc_rport *rport;
663 	struct fc_rport_libfc_priv *rp;
664 	struct fcoe_port *port;
665 	struct bnx2fc_interface *interface;
666 	struct bnx2fc_rport *tgt;
667 	struct bnx2fc_cmd *io_req;
668 	struct bnx2fc_mp_req *tm_req;
669 	struct fcoe_task_ctx_entry *task;
670 	struct fcoe_task_ctx_entry *task_page;
671 	struct Scsi_Host *host = sc_cmd->device->host;
672 	struct fc_frame_header *fc_hdr;
673 	struct fcp_cmnd *fcp_cmnd;
674 	int task_idx, index;
675 	int rc = SUCCESS;
676 	u16 xid;
677 	u32 sid, did;
678 	unsigned long start = jiffies;
679 
680 	lport = shost_priv(host);
681 	rport = starget_to_rport(scsi_target(sc_cmd->device));
682 	port = lport_priv(lport);
683 	interface = port->priv;
684 
685 	if (rport == NULL) {
686 		printk(KERN_ERR PFX "device_reset: rport is NULL\n");
687 		rc = FAILED;
688 		goto tmf_err;
689 	}
690 	rp = rport->dd_data;
691 
692 	rc = fc_block_scsi_eh(sc_cmd);
693 	if (rc)
694 		return rc;
695 
696 	if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
697 		printk(KERN_ERR PFX "device_reset: link is not ready\n");
698 		rc = FAILED;
699 		goto tmf_err;
700 	}
701 	/* rport and tgt are allocated together, so tgt should be non-NULL */
702 	tgt = (struct bnx2fc_rport *)&rp[1];
703 
704 	if (!(test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags))) {
705 		printk(KERN_ERR PFX "device_reset: tgt not offloaded\n");
706 		rc = FAILED;
707 		goto tmf_err;
708 	}
709 retry_tmf:
710 	io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_TASK_MGMT_CMD);
711 	if (!io_req) {
712 		if (time_after(jiffies, start + HZ)) {
713 			printk(KERN_ERR PFX "tmf: Failed TMF");
714 			rc = FAILED;
715 			goto tmf_err;
716 		}
717 		msleep(20);
718 		goto retry_tmf;
719 	}
720 	/* Initialize rest of io_req fields */
721 	io_req->sc_cmd = sc_cmd;
722 	io_req->port = port;
723 	io_req->tgt = tgt;
724 
725 	tm_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
726 
727 	rc = bnx2fc_init_mp_req(io_req);
728 	if (rc == FAILED) {
729 		printk(KERN_ERR PFX "Task mgmt MP request init failed\n");
730 		spin_lock_bh(&tgt->tgt_lock);
731 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
732 		spin_unlock_bh(&tgt->tgt_lock);
733 		goto tmf_err;
734 	}
735 
736 	/* Set TM flags */
737 	io_req->io_req_flags = 0;
738 	tm_req->tm_flags = tm_flags;
739 
740 	/* Fill FCP_CMND */
741 	bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tm_req->req_buf);
742 	fcp_cmnd = (struct fcp_cmnd *)tm_req->req_buf;
743 	memset(fcp_cmnd->fc_cdb, 0,  sc_cmd->cmd_len);
744 	fcp_cmnd->fc_dl = 0;
745 
746 	/* Fill FC header */
747 	fc_hdr = &(tm_req->req_fc_hdr);
748 	sid = tgt->sid;
749 	did = rport->port_id;
750 	__fc_fill_fc_hdr(fc_hdr, FC_RCTL_DD_UNSOL_CMD, did, sid,
751 			   FC_TYPE_FCP, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
752 			   FC_FC_SEQ_INIT, 0);
753 	/* Obtain exchange id */
754 	xid = io_req->xid;
755 
756 	BNX2FC_TGT_DBG(tgt, "Initiate TMF - xid = 0x%x\n", xid);
757 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
758 	index = xid % BNX2FC_TASKS_PER_PAGE;
759 
760 	/* Initialize task context for this IO request */
761 	task_page = (struct fcoe_task_ctx_entry *)
762 			interface->hba->task_ctx[task_idx];
763 	task = &(task_page[index]);
764 	bnx2fc_init_mp_task(io_req, task);
765 
766 	bnx2fc_priv(sc_cmd)->io_req = io_req;
767 
768 	/* Obtain free SQ entry */
769 	spin_lock_bh(&tgt->tgt_lock);
770 	bnx2fc_add_2_sq(tgt, xid);
771 
772 	/* Enqueue the io_req to active_tm_queue */
773 	io_req->on_tmf_queue = 1;
774 	list_add_tail(&io_req->link, &tgt->active_tm_queue);
775 
776 	init_completion(&io_req->abts_done);
777 	io_req->wait_for_abts_comp = 1;
778 
779 	/* Ring doorbell */
780 	bnx2fc_ring_doorbell(tgt);
781 	spin_unlock_bh(&tgt->tgt_lock);
782 
783 	rc = wait_for_completion_timeout(&io_req->abts_done,
784 					 interface->tm_timeout * HZ);
785 	spin_lock_bh(&tgt->tgt_lock);
786 
787 	io_req->wait_for_abts_comp = 0;
788 	if (!(test_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags))) {
789 		set_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags);
790 		if (io_req->on_tmf_queue) {
791 			list_del_init(&io_req->link);
792 			io_req->on_tmf_queue = 0;
793 		}
794 		io_req->wait_for_cleanup_comp = 1;
795 		init_completion(&io_req->cleanup_done);
796 		bnx2fc_initiate_cleanup(io_req);
797 		spin_unlock_bh(&tgt->tgt_lock);
798 		rc = wait_for_completion_timeout(&io_req->cleanup_done,
799 						 BNX2FC_FW_TIMEOUT);
800 		spin_lock_bh(&tgt->tgt_lock);
801 		io_req->wait_for_cleanup_comp = 0;
802 		if (!rc)
803 			kref_put(&io_req->refcount, bnx2fc_cmd_release);
804 	}
805 
806 	spin_unlock_bh(&tgt->tgt_lock);
807 
808 	if (!rc) {
809 		BNX2FC_TGT_DBG(tgt, "task mgmt command failed...\n");
810 		rc = FAILED;
811 	} else {
812 		BNX2FC_TGT_DBG(tgt, "task mgmt command success...\n");
813 		rc = SUCCESS;
814 	}
815 tmf_err:
816 	return rc;
817 }
818 
819 int bnx2fc_initiate_abts(struct bnx2fc_cmd *io_req)
820 {
821 	struct fc_lport *lport;
822 	struct bnx2fc_rport *tgt = io_req->tgt;
823 	struct fc_rport *rport = tgt->rport;
824 	struct fc_rport_priv *rdata = tgt->rdata;
825 	struct bnx2fc_interface *interface;
826 	struct fcoe_port *port;
827 	struct bnx2fc_cmd *abts_io_req;
828 	struct fcoe_task_ctx_entry *task;
829 	struct fcoe_task_ctx_entry *task_page;
830 	struct fc_frame_header *fc_hdr;
831 	struct bnx2fc_mp_req *abts_req;
832 	int task_idx, index;
833 	u32 sid, did;
834 	u16 xid;
835 	int rc = SUCCESS;
836 	u32 r_a_tov = rdata->r_a_tov;
837 
838 	/* called with tgt_lock held */
839 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_abts\n");
840 
841 	port = io_req->port;
842 	interface = port->priv;
843 	lport = port->lport;
844 
845 	if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
846 		printk(KERN_ERR PFX "initiate_abts: tgt not offloaded\n");
847 		rc = FAILED;
848 		goto abts_err;
849 	}
850 
851 	if (rport == NULL) {
852 		printk(KERN_ERR PFX "initiate_abts: rport is NULL\n");
853 		rc = FAILED;
854 		goto abts_err;
855 	}
856 
857 	if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
858 		printk(KERN_ERR PFX "initiate_abts: link is not ready\n");
859 		rc = FAILED;
860 		goto abts_err;
861 	}
862 
863 	abts_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_ABTS);
864 	if (!abts_io_req) {
865 		printk(KERN_ERR PFX "abts: couldn't allocate cmd\n");
866 		rc = FAILED;
867 		goto abts_err;
868 	}
869 
870 	/* Initialize rest of io_req fields */
871 	abts_io_req->sc_cmd = NULL;
872 	abts_io_req->port = port;
873 	abts_io_req->tgt = tgt;
874 	abts_io_req->data_xfer_len = 0; /* No data transfer for ABTS */
875 
876 	abts_req = (struct bnx2fc_mp_req *)&(abts_io_req->mp_req);
877 	memset(abts_req, 0, sizeof(struct bnx2fc_mp_req));
878 
879 	/* Fill FC header */
880 	fc_hdr = &(abts_req->req_fc_hdr);
881 
882 	/* Obtain oxid and rxid for the original exchange to be aborted */
883 	fc_hdr->fh_ox_id = htons(io_req->xid);
884 	fc_hdr->fh_rx_id = htons(io_req->task->rxwr_txrd.var_ctx.rx_id);
885 
886 	sid = tgt->sid;
887 	did = rport->port_id;
888 
889 	__fc_fill_fc_hdr(fc_hdr, FC_RCTL_BA_ABTS, did, sid,
890 			   FC_TYPE_BLS, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
891 			   FC_FC_SEQ_INIT, 0);
892 
893 	xid = abts_io_req->xid;
894 	BNX2FC_IO_DBG(abts_io_req, "ABTS io_req\n");
895 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
896 	index = xid % BNX2FC_TASKS_PER_PAGE;
897 
898 	/* Initialize task context for this IO request */
899 	task_page = (struct fcoe_task_ctx_entry *)
900 			interface->hba->task_ctx[task_idx];
901 	task = &(task_page[index]);
902 	bnx2fc_init_mp_task(abts_io_req, task);
903 
904 	/*
905 	 * ABTS task is a temporary task that will be cleaned up
906 	 * irrespective of ABTS response. We need to start the timer
907 	 * for the original exchange, as the CQE is posted for the original
908 	 * IO request.
909 	 *
910 	 * Timer for ABTS is started only when it is originated by a
911 	 * TM request. For the ABTS issued as part of ULP timeout,
912 	 * scsi-ml maintains the timers.
913 	 */
914 
915 	/* if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))*/
916 	bnx2fc_cmd_timer_set(io_req, 2 * r_a_tov);
917 
918 	/* Obtain free SQ entry */
919 	bnx2fc_add_2_sq(tgt, xid);
920 
921 	/* Ring doorbell */
922 	bnx2fc_ring_doorbell(tgt);
923 
924 abts_err:
925 	return rc;
926 }
927 
928 int bnx2fc_initiate_seq_cleanup(struct bnx2fc_cmd *orig_io_req, u32 offset,
929 				enum fc_rctl r_ctl)
930 {
931 	struct bnx2fc_rport *tgt = orig_io_req->tgt;
932 	struct bnx2fc_interface *interface;
933 	struct fcoe_port *port;
934 	struct bnx2fc_cmd *seq_clnp_req;
935 	struct fcoe_task_ctx_entry *task;
936 	struct fcoe_task_ctx_entry *task_page;
937 	struct bnx2fc_els_cb_arg *cb_arg = NULL;
938 	int task_idx, index;
939 	u16 xid;
940 	int rc = 0;
941 
942 	BNX2FC_IO_DBG(orig_io_req, "bnx2fc_initiate_seq_cleanup xid = 0x%x\n",
943 		   orig_io_req->xid);
944 	kref_get(&orig_io_req->refcount);
945 
946 	port = orig_io_req->port;
947 	interface = port->priv;
948 
949 	cb_arg = kzalloc(sizeof(struct bnx2fc_els_cb_arg), GFP_ATOMIC);
950 	if (!cb_arg) {
951 		printk(KERN_ERR PFX "Unable to alloc cb_arg for seq clnup\n");
952 		rc = -ENOMEM;
953 		goto cleanup_err;
954 	}
955 
956 	seq_clnp_req = bnx2fc_elstm_alloc(tgt, BNX2FC_SEQ_CLEANUP);
957 	if (!seq_clnp_req) {
958 		printk(KERN_ERR PFX "cleanup: couldn't allocate cmd\n");
959 		rc = -ENOMEM;
960 		kfree(cb_arg);
961 		goto cleanup_err;
962 	}
963 	/* Initialize rest of io_req fields */
964 	seq_clnp_req->sc_cmd = NULL;
965 	seq_clnp_req->port = port;
966 	seq_clnp_req->tgt = tgt;
967 	seq_clnp_req->data_xfer_len = 0; /* No data transfer for cleanup */
968 
969 	xid = seq_clnp_req->xid;
970 
971 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
972 	index = xid % BNX2FC_TASKS_PER_PAGE;
973 
974 	/* Initialize task context for this IO request */
975 	task_page = (struct fcoe_task_ctx_entry *)
976 		     interface->hba->task_ctx[task_idx];
977 	task = &(task_page[index]);
978 	cb_arg->aborted_io_req = orig_io_req;
979 	cb_arg->io_req = seq_clnp_req;
980 	cb_arg->r_ctl = r_ctl;
981 	cb_arg->offset = offset;
982 	seq_clnp_req->cb_arg = cb_arg;
983 
984 	printk(KERN_ERR PFX "call init_seq_cleanup_task\n");
985 	bnx2fc_init_seq_cleanup_task(seq_clnp_req, task, orig_io_req, offset);
986 
987 	/* Obtain free SQ entry */
988 	bnx2fc_add_2_sq(tgt, xid);
989 
990 	/* Ring doorbell */
991 	bnx2fc_ring_doorbell(tgt);
992 cleanup_err:
993 	return rc;
994 }
995 
996 int bnx2fc_initiate_cleanup(struct bnx2fc_cmd *io_req)
997 {
998 	struct bnx2fc_rport *tgt = io_req->tgt;
999 	struct bnx2fc_interface *interface;
1000 	struct fcoe_port *port;
1001 	struct bnx2fc_cmd *cleanup_io_req;
1002 	struct fcoe_task_ctx_entry *task;
1003 	struct fcoe_task_ctx_entry *task_page;
1004 	int task_idx, index;
1005 	u16 xid, orig_xid;
1006 	int rc = 0;
1007 
1008 	/* ASSUMPTION: called with tgt_lock held */
1009 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_cleanup\n");
1010 
1011 	port = io_req->port;
1012 	interface = port->priv;
1013 
1014 	cleanup_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_CLEANUP);
1015 	if (!cleanup_io_req) {
1016 		printk(KERN_ERR PFX "cleanup: couldn't allocate cmd\n");
1017 		rc = -1;
1018 		goto cleanup_err;
1019 	}
1020 
1021 	/* Initialize rest of io_req fields */
1022 	cleanup_io_req->sc_cmd = NULL;
1023 	cleanup_io_req->port = port;
1024 	cleanup_io_req->tgt = tgt;
1025 	cleanup_io_req->data_xfer_len = 0; /* No data transfer for cleanup */
1026 
1027 	xid = cleanup_io_req->xid;
1028 
1029 	task_idx = xid/BNX2FC_TASKS_PER_PAGE;
1030 	index = xid % BNX2FC_TASKS_PER_PAGE;
1031 
1032 	/* Initialize task context for this IO request */
1033 	task_page = (struct fcoe_task_ctx_entry *)
1034 			interface->hba->task_ctx[task_idx];
1035 	task = &(task_page[index]);
1036 	orig_xid = io_req->xid;
1037 
1038 	BNX2FC_IO_DBG(io_req, "CLEANUP io_req xid = 0x%x\n", xid);
1039 
1040 	bnx2fc_init_cleanup_task(cleanup_io_req, task, orig_xid);
1041 
1042 	/* Obtain free SQ entry */
1043 	bnx2fc_add_2_sq(tgt, xid);
1044 
1045 	/* Set flag that cleanup request is pending with the firmware */
1046 	set_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags);
1047 
1048 	/* Ring doorbell */
1049 	bnx2fc_ring_doorbell(tgt);
1050 
1051 cleanup_err:
1052 	return rc;
1053 }
1054 
1055 /**
1056  * bnx2fc_eh_target_reset: Reset a target
1057  *
1058  * @sc_cmd:	SCSI command
1059  *
1060  * Set from SCSI host template to send task mgmt command to the target
1061  *	and wait for the response
1062  */
1063 int bnx2fc_eh_target_reset(struct scsi_cmnd *sc_cmd)
1064 {
1065 	return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET);
1066 }
1067 
1068 /**
1069  * bnx2fc_eh_device_reset - Reset a single LUN
1070  *
1071  * @sc_cmd:	SCSI command
1072  *
1073  * Set from SCSI host template to send task mgmt command to the target
1074  *	and wait for the response
1075  */
1076 int bnx2fc_eh_device_reset(struct scsi_cmnd *sc_cmd)
1077 {
1078 	return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET);
1079 }
1080 
1081 static int bnx2fc_abts_cleanup(struct bnx2fc_cmd *io_req)
1082 	__must_hold(&tgt->tgt_lock)
1083 {
1084 	struct bnx2fc_rport *tgt = io_req->tgt;
1085 	unsigned int time_left;
1086 
1087 	init_completion(&io_req->cleanup_done);
1088 	io_req->wait_for_cleanup_comp = 1;
1089 	bnx2fc_initiate_cleanup(io_req);
1090 
1091 	spin_unlock_bh(&tgt->tgt_lock);
1092 
1093 	/*
1094 	 * Can't wait forever on cleanup response lest we let the SCSI error
1095 	 * handler wait forever
1096 	 */
1097 	time_left = wait_for_completion_timeout(&io_req->cleanup_done,
1098 						BNX2FC_FW_TIMEOUT);
1099 	if (!time_left) {
1100 		BNX2FC_IO_DBG(io_req, "%s(): Wait for cleanup timed out.\n",
1101 			      __func__);
1102 
1103 		/*
1104 		 * Put the extra reference to the SCSI command since it would
1105 		 * not have been returned in this case.
1106 		 */
1107 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
1108 	}
1109 
1110 	spin_lock_bh(&tgt->tgt_lock);
1111 	io_req->wait_for_cleanup_comp = 0;
1112 	return SUCCESS;
1113 }
1114 
1115 /**
1116  * bnx2fc_eh_abort - eh_abort_handler api to abort an outstanding
1117  *			SCSI command
1118  *
1119  * @sc_cmd:	SCSI_ML command pointer
1120  *
1121  * SCSI abort request handler
1122  */
1123 int bnx2fc_eh_abort(struct scsi_cmnd *sc_cmd)
1124 {
1125 	struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
1126 	struct fc_rport_libfc_priv *rp = rport->dd_data;
1127 	struct bnx2fc_cmd *io_req;
1128 	struct fc_lport *lport;
1129 	struct bnx2fc_rport *tgt;
1130 	int rc;
1131 	unsigned int time_left;
1132 
1133 	rc = fc_block_scsi_eh(sc_cmd);
1134 	if (rc)
1135 		return rc;
1136 
1137 	lport = shost_priv(sc_cmd->device->host);
1138 	if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
1139 		printk(KERN_ERR PFX "eh_abort: link not ready\n");
1140 		return FAILED;
1141 	}
1142 
1143 	tgt = (struct bnx2fc_rport *)&rp[1];
1144 
1145 	BNX2FC_TGT_DBG(tgt, "Entered bnx2fc_eh_abort\n");
1146 
1147 	spin_lock_bh(&tgt->tgt_lock);
1148 	io_req = bnx2fc_priv(sc_cmd)->io_req;
1149 	if (!io_req) {
1150 		/* Command might have just completed */
1151 		printk(KERN_ERR PFX "eh_abort: io_req is NULL\n");
1152 		spin_unlock_bh(&tgt->tgt_lock);
1153 		return SUCCESS;
1154 	}
1155 	BNX2FC_IO_DBG(io_req, "eh_abort - refcnt = %d\n",
1156 		      kref_read(&io_req->refcount));
1157 
1158 	/* Hold IO request across abort processing */
1159 	kref_get(&io_req->refcount);
1160 
1161 	BUG_ON(tgt != io_req->tgt);
1162 
1163 	/* Remove the io_req from the active_q. */
1164 	/*
1165 	 * Task Mgmt functions (LUN RESET & TGT RESET) will not
1166 	 * issue an ABTS on this particular IO req, as the
1167 	 * io_req is no longer in the active_q.
1168 	 */
1169 	if (tgt->flush_in_prog) {
1170 		printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1171 			"flush in progress\n", io_req->xid);
1172 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
1173 		spin_unlock_bh(&tgt->tgt_lock);
1174 		return SUCCESS;
1175 	}
1176 
1177 	if (io_req->on_active_queue == 0) {
1178 		printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1179 				"not on active_q\n", io_req->xid);
1180 		/*
1181 		 * The IO is still with the FW.
1182 		 * Return failure and let SCSI-ml retry eh_abort.
1183 		 */
1184 		spin_unlock_bh(&tgt->tgt_lock);
1185 		return FAILED;
1186 	}
1187 
1188 	/*
1189 	 * Only eh_abort processing will remove the IO from
1190 	 * active_cmd_q before processing the request. this is
1191 	 * done to avoid race conditions between IOs aborted
1192 	 * as part of task management completion and eh_abort
1193 	 * processing
1194 	 */
1195 	list_del_init(&io_req->link);
1196 	io_req->on_active_queue = 0;
1197 	/* Move IO req to retire queue */
1198 	list_add_tail(&io_req->link, &tgt->io_retire_queue);
1199 
1200 	init_completion(&io_req->abts_done);
1201 	init_completion(&io_req->cleanup_done);
1202 
1203 	if (test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
1204 		printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
1205 				"already in abts processing\n", io_req->xid);
1206 		if (cancel_delayed_work(&io_req->timeout_work))
1207 			kref_put(&io_req->refcount,
1208 				 bnx2fc_cmd_release); /* drop timer hold */
1209 		/*
1210 		 * We don't want to hold off the upper layer timer so simply
1211 		 * cleanup the command and return that I/O was successfully
1212 		 * aborted.
1213 		 */
1214 		bnx2fc_abts_cleanup(io_req);
1215 		/* This only occurs when an task abort was requested while ABTS
1216 		   is in progress.  Setting the IO_CLEANUP flag will skip the
1217 		   RRQ process in the case when the fw generated SCSI_CMD cmpl
1218 		   was a result from the ABTS request rather than the CLEANUP
1219 		   request */
1220 		set_bit(BNX2FC_FLAG_IO_CLEANUP,	&io_req->req_flags);
1221 		rc = FAILED;
1222 		goto done;
1223 	}
1224 
1225 	/* Cancel the current timer running on this io_req */
1226 	if (cancel_delayed_work(&io_req->timeout_work))
1227 		kref_put(&io_req->refcount,
1228 			 bnx2fc_cmd_release); /* drop timer hold */
1229 	set_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags);
1230 	io_req->wait_for_abts_comp = 1;
1231 	rc = bnx2fc_initiate_abts(io_req);
1232 	if (rc == FAILED) {
1233 		io_req->wait_for_cleanup_comp = 1;
1234 		bnx2fc_initiate_cleanup(io_req);
1235 		spin_unlock_bh(&tgt->tgt_lock);
1236 		wait_for_completion(&io_req->cleanup_done);
1237 		spin_lock_bh(&tgt->tgt_lock);
1238 		io_req->wait_for_cleanup_comp = 0;
1239 		goto done;
1240 	}
1241 	spin_unlock_bh(&tgt->tgt_lock);
1242 
1243 	/* Wait 2 * RA_TOV + 1 to be sure timeout function hasn't fired */
1244 	time_left = wait_for_completion_timeout(&io_req->abts_done,
1245 					msecs_to_jiffies(2 * rp->r_a_tov + 1));
1246 	if (time_left)
1247 		BNX2FC_IO_DBG(io_req,
1248 			      "Timed out in eh_abort waiting for abts_done");
1249 
1250 	spin_lock_bh(&tgt->tgt_lock);
1251 	io_req->wait_for_abts_comp = 0;
1252 	if (test_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) {
1253 		BNX2FC_IO_DBG(io_req, "IO completed in a different context\n");
1254 		rc = SUCCESS;
1255 	} else if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
1256 				      &io_req->req_flags))) {
1257 		/* Let the scsi-ml try to recover this command */
1258 		printk(KERN_ERR PFX "abort failed, xid = 0x%x\n",
1259 		       io_req->xid);
1260 		/*
1261 		 * Cleanup firmware residuals before returning control back
1262 		 * to SCSI ML.
1263 		 */
1264 		rc = bnx2fc_abts_cleanup(io_req);
1265 		goto done;
1266 	} else {
1267 		/*
1268 		 * We come here even when there was a race condition
1269 		 * between timeout and abts completion, and abts
1270 		 * completion happens just in time.
1271 		 */
1272 		BNX2FC_IO_DBG(io_req, "abort succeeded\n");
1273 		rc = SUCCESS;
1274 		bnx2fc_scsi_done(io_req, DID_ABORT);
1275 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
1276 	}
1277 done:
1278 	/* release the reference taken in eh_abort */
1279 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
1280 	spin_unlock_bh(&tgt->tgt_lock);
1281 	return rc;
1282 }
1283 
1284 void bnx2fc_process_seq_cleanup_compl(struct bnx2fc_cmd *seq_clnp_req,
1285 				      struct fcoe_task_ctx_entry *task,
1286 				      u8 rx_state)
1287 {
1288 	struct bnx2fc_els_cb_arg *cb_arg = seq_clnp_req->cb_arg;
1289 	struct bnx2fc_cmd *orig_io_req = cb_arg->aborted_io_req;
1290 	u32 offset = cb_arg->offset;
1291 	enum fc_rctl r_ctl = cb_arg->r_ctl;
1292 	int rc = 0;
1293 	struct bnx2fc_rport *tgt = orig_io_req->tgt;
1294 
1295 	BNX2FC_IO_DBG(orig_io_req, "Entered process_cleanup_compl xid = 0x%x"
1296 			      "cmd_type = %d\n",
1297 		   seq_clnp_req->xid, seq_clnp_req->cmd_type);
1298 
1299 	if (rx_state == FCOE_TASK_RX_STATE_IGNORED_SEQUENCE_CLEANUP) {
1300 		printk(KERN_ERR PFX "seq cleanup ignored - xid = 0x%x\n",
1301 			seq_clnp_req->xid);
1302 		goto free_cb_arg;
1303 	}
1304 
1305 	spin_unlock_bh(&tgt->tgt_lock);
1306 	rc = bnx2fc_send_srr(orig_io_req, offset, r_ctl);
1307 	spin_lock_bh(&tgt->tgt_lock);
1308 
1309 	if (rc)
1310 		printk(KERN_ERR PFX "clnup_compl: Unable to send SRR"
1311 			" IO will abort\n");
1312 	seq_clnp_req->cb_arg = NULL;
1313 	kref_put(&orig_io_req->refcount, bnx2fc_cmd_release);
1314 free_cb_arg:
1315 	kfree(cb_arg);
1316 	return;
1317 }
1318 
1319 void bnx2fc_process_cleanup_compl(struct bnx2fc_cmd *io_req,
1320 				  struct fcoe_task_ctx_entry *task,
1321 				  u8 num_rq)
1322 {
1323 	BNX2FC_IO_DBG(io_req, "Entered process_cleanup_compl "
1324 			      "refcnt = %d, cmd_type = %d\n",
1325 		   kref_read(&io_req->refcount), io_req->cmd_type);
1326 	/*
1327 	 * Test whether there is a cleanup request pending. If not just
1328 	 * exit.
1329 	 */
1330 	if (!test_and_clear_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ,
1331 				&io_req->req_flags))
1332 		return;
1333 	/*
1334 	 * If we receive a cleanup completion for this request then the
1335 	 * firmware will not give us an abort completion for this request
1336 	 * so clear any ABTS pending flags.
1337 	 */
1338 	if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags) &&
1339 	    !test_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags)) {
1340 		set_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags);
1341 		if (io_req->wait_for_abts_comp)
1342 			complete(&io_req->abts_done);
1343 	}
1344 
1345 	bnx2fc_scsi_done(io_req, DID_ERROR);
1346 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
1347 	if (io_req->wait_for_cleanup_comp)
1348 		complete(&io_req->cleanup_done);
1349 }
1350 
1351 void bnx2fc_process_abts_compl(struct bnx2fc_cmd *io_req,
1352 			       struct fcoe_task_ctx_entry *task,
1353 			       u8 num_rq)
1354 {
1355 	u32 r_ctl;
1356 	u32 r_a_tov = FC_DEF_R_A_TOV;
1357 	u8 issue_rrq = 0;
1358 	struct bnx2fc_rport *tgt = io_req->tgt;
1359 
1360 	BNX2FC_IO_DBG(io_req, "Entered process_abts_compl xid = 0x%x"
1361 			      "refcnt = %d, cmd_type = %d\n",
1362 		   io_req->xid,
1363 		   kref_read(&io_req->refcount), io_req->cmd_type);
1364 
1365 	if (test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
1366 				       &io_req->req_flags)) {
1367 		BNX2FC_IO_DBG(io_req, "Timer context finished processing"
1368 				" this io\n");
1369 		return;
1370 	}
1371 
1372 	/*
1373 	 * If we receive an ABTS completion here then we will not receive
1374 	 * a cleanup completion so clear any cleanup pending flags.
1375 	 */
1376 	if (test_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags)) {
1377 		clear_bit(BNX2FC_FLAG_ISSUE_CLEANUP_REQ, &io_req->req_flags);
1378 		if (io_req->wait_for_cleanup_comp)
1379 			complete(&io_req->cleanup_done);
1380 	}
1381 
1382 	/* Do not issue RRQ as this IO is already cleanedup */
1383 	if (test_and_set_bit(BNX2FC_FLAG_IO_CLEANUP,
1384 				&io_req->req_flags))
1385 		goto io_compl;
1386 
1387 	/*
1388 	 * For ABTS issued due to SCSI eh_abort_handler, timeout
1389 	 * values are maintained by scsi-ml itself. Cancel timeout
1390 	 * in case ABTS issued as part of task management function
1391 	 * or due to FW error.
1392 	 */
1393 	if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))
1394 		if (cancel_delayed_work(&io_req->timeout_work))
1395 			kref_put(&io_req->refcount,
1396 				 bnx2fc_cmd_release); /* drop timer hold */
1397 
1398 	r_ctl = (u8)task->rxwr_only.union_ctx.comp_info.abts_rsp.r_ctl;
1399 
1400 	switch (r_ctl) {
1401 	case FC_RCTL_BA_ACC:
1402 		/*
1403 		 * Dont release this cmd yet. It will be relesed
1404 		 * after we get RRQ response
1405 		 */
1406 		BNX2FC_IO_DBG(io_req, "ABTS response - ACC Send RRQ\n");
1407 		issue_rrq = 1;
1408 		break;
1409 
1410 	case FC_RCTL_BA_RJT:
1411 		BNX2FC_IO_DBG(io_req, "ABTS response - RJT\n");
1412 		break;
1413 	default:
1414 		printk(KERN_ERR PFX "Unknown ABTS response\n");
1415 		break;
1416 	}
1417 
1418 	if (issue_rrq) {
1419 		BNX2FC_IO_DBG(io_req, "Issue RRQ after R_A_TOV\n");
1420 		set_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags);
1421 	}
1422 	set_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
1423 	bnx2fc_cmd_timer_set(io_req, r_a_tov);
1424 
1425 io_compl:
1426 	if (io_req->wait_for_abts_comp) {
1427 		if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
1428 				       &io_req->req_flags))
1429 			complete(&io_req->abts_done);
1430 	} else {
1431 		/*
1432 		 * We end up here when ABTS is issued as
1433 		 * in asynchronous context, i.e., as part
1434 		 * of task management completion, or
1435 		 * when FW error is received or when the
1436 		 * ABTS is issued when the IO is timed
1437 		 * out.
1438 		 */
1439 
1440 		if (io_req->on_active_queue) {
1441 			list_del_init(&io_req->link);
1442 			io_req->on_active_queue = 0;
1443 			/* Move IO req to retire queue */
1444 			list_add_tail(&io_req->link, &tgt->io_retire_queue);
1445 		}
1446 		bnx2fc_scsi_done(io_req, DID_ERROR);
1447 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
1448 	}
1449 }
1450 
1451 static void bnx2fc_lun_reset_cmpl(struct bnx2fc_cmd *io_req)
1452 {
1453 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1454 	struct bnx2fc_rport *tgt = io_req->tgt;
1455 	struct bnx2fc_cmd *cmd, *tmp;
1456 	u64 tm_lun = sc_cmd->device->lun;
1457 	u64 lun;
1458 	int rc = 0;
1459 
1460 	/* called with tgt_lock held */
1461 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_lun_reset_cmpl\n");
1462 	/*
1463 	 * Walk thru the active_ios queue and ABORT the IO
1464 	 * that matches with the LUN that was reset
1465 	 */
1466 	list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) {
1467 		BNX2FC_TGT_DBG(tgt, "LUN RST cmpl: scan for pending IOs\n");
1468 		lun = cmd->sc_cmd->device->lun;
1469 		if (lun == tm_lun) {
1470 			/* Initiate ABTS on this cmd */
1471 			if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
1472 					      &cmd->req_flags)) {
1473 				/* cancel the IO timeout */
1474 				if (cancel_delayed_work(&io_req->timeout_work))
1475 					kref_put(&io_req->refcount,
1476 						 bnx2fc_cmd_release);
1477 							/* timer hold */
1478 				rc = bnx2fc_initiate_abts(cmd);
1479 				/* abts shouldn't fail in this context */
1480 				WARN_ON(rc != SUCCESS);
1481 			} else
1482 				printk(KERN_ERR PFX "lun_rst: abts already in"
1483 					" progress for this IO 0x%x\n",
1484 					cmd->xid);
1485 		}
1486 	}
1487 }
1488 
1489 static void bnx2fc_tgt_reset_cmpl(struct bnx2fc_cmd *io_req)
1490 {
1491 	struct bnx2fc_rport *tgt = io_req->tgt;
1492 	struct bnx2fc_cmd *cmd, *tmp;
1493 	int rc = 0;
1494 
1495 	/* called with tgt_lock held */
1496 	BNX2FC_IO_DBG(io_req, "Entered bnx2fc_tgt_reset_cmpl\n");
1497 	/*
1498 	 * Walk thru the active_ios queue and ABORT the IO
1499 	 * that matches with the LUN that was reset
1500 	 */
1501 	list_for_each_entry_safe(cmd, tmp, &tgt->active_cmd_queue, link) {
1502 		BNX2FC_TGT_DBG(tgt, "TGT RST cmpl: scan for pending IOs\n");
1503 		/* Initiate ABTS */
1504 		if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
1505 							&cmd->req_flags)) {
1506 			/* cancel the IO timeout */
1507 			if (cancel_delayed_work(&io_req->timeout_work))
1508 				kref_put(&io_req->refcount,
1509 					 bnx2fc_cmd_release); /* timer hold */
1510 			rc = bnx2fc_initiate_abts(cmd);
1511 			/* abts shouldn't fail in this context */
1512 			WARN_ON(rc != SUCCESS);
1513 
1514 		} else
1515 			printk(KERN_ERR PFX "tgt_rst: abts already in progress"
1516 				" for this IO 0x%x\n", cmd->xid);
1517 	}
1518 }
1519 
1520 void bnx2fc_process_tm_compl(struct bnx2fc_cmd *io_req,
1521 			     struct fcoe_task_ctx_entry *task, u8 num_rq,
1522 				  unsigned char *rq_data)
1523 {
1524 	struct bnx2fc_mp_req *tm_req;
1525 	struct fc_frame_header *fc_hdr;
1526 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1527 	u64 *hdr;
1528 	u64 *temp_hdr;
1529 	void *rsp_buf;
1530 
1531 	/* Called with tgt_lock held */
1532 	BNX2FC_IO_DBG(io_req, "Entered process_tm_compl\n");
1533 
1534 	if (!(test_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags)))
1535 		set_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags);
1536 	else {
1537 		/* TM has already timed out and we got
1538 		 * delayed completion. Ignore completion
1539 		 * processing.
1540 		 */
1541 		return;
1542 	}
1543 
1544 	tm_req = &(io_req->mp_req);
1545 	fc_hdr = &(tm_req->resp_fc_hdr);
1546 	hdr = (u64 *)fc_hdr;
1547 	temp_hdr = (u64 *)
1548 		&task->rxwr_only.union_ctx.comp_info.mp_rsp.fc_hdr;
1549 	hdr[0] = cpu_to_be64(temp_hdr[0]);
1550 	hdr[1] = cpu_to_be64(temp_hdr[1]);
1551 	hdr[2] = cpu_to_be64(temp_hdr[2]);
1552 
1553 	tm_req->resp_len =
1554 		task->rxwr_only.union_ctx.comp_info.mp_rsp.mp_payload_len;
1555 
1556 	rsp_buf = tm_req->resp_buf;
1557 
1558 	if (fc_hdr->fh_r_ctl == FC_RCTL_DD_CMD_STATUS) {
1559 		bnx2fc_parse_fcp_rsp(io_req,
1560 				     (struct fcoe_fcp_rsp_payload *)
1561 				     rsp_buf, num_rq, rq_data);
1562 		if (io_req->fcp_rsp_code == 0) {
1563 			/* TM successful */
1564 			if (tm_req->tm_flags & FCP_TMF_LUN_RESET)
1565 				bnx2fc_lun_reset_cmpl(io_req);
1566 			else if (tm_req->tm_flags & FCP_TMF_TGT_RESET)
1567 				bnx2fc_tgt_reset_cmpl(io_req);
1568 		}
1569 	} else {
1570 		printk(KERN_ERR PFX "tmf's fc_hdr r_ctl = 0x%x\n",
1571 			fc_hdr->fh_r_ctl);
1572 	}
1573 	if (!bnx2fc_priv(sc_cmd)->io_req) {
1574 		printk(KERN_ERR PFX "tm_compl: io_req is NULL\n");
1575 		return;
1576 	}
1577 	switch (io_req->fcp_status) {
1578 	case FC_GOOD:
1579 		if (io_req->cdb_status == 0) {
1580 			/* Good IO completion */
1581 			sc_cmd->result = DID_OK << 16;
1582 		} else {
1583 			/* Transport status is good, SCSI status not good */
1584 			sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
1585 		}
1586 		if (io_req->fcp_resid)
1587 			scsi_set_resid(sc_cmd, io_req->fcp_resid);
1588 		break;
1589 
1590 	default:
1591 		BNX2FC_IO_DBG(io_req, "process_tm_compl: fcp_status = %d\n",
1592 			   io_req->fcp_status);
1593 		break;
1594 	}
1595 
1596 	sc_cmd = io_req->sc_cmd;
1597 	io_req->sc_cmd = NULL;
1598 
1599 	/* check if the io_req exists in tgt's tmf_q */
1600 	if (io_req->on_tmf_queue) {
1601 
1602 		list_del_init(&io_req->link);
1603 		io_req->on_tmf_queue = 0;
1604 	} else {
1605 
1606 		printk(KERN_ERR PFX "Command not on active_cmd_queue!\n");
1607 		return;
1608 	}
1609 
1610 	bnx2fc_priv(sc_cmd)->io_req = NULL;
1611 	scsi_done(sc_cmd);
1612 
1613 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
1614 	if (io_req->wait_for_abts_comp) {
1615 		BNX2FC_IO_DBG(io_req, "tm_compl - wake up the waiter\n");
1616 		complete(&io_req->abts_done);
1617 	}
1618 }
1619 
1620 static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
1621 			   int bd_index)
1622 {
1623 	struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1624 	int frag_size, sg_frags;
1625 
1626 	sg_frags = 0;
1627 	while (sg_len) {
1628 		if (sg_len >= BNX2FC_BD_SPLIT_SZ)
1629 			frag_size = BNX2FC_BD_SPLIT_SZ;
1630 		else
1631 			frag_size = sg_len;
1632 		bd[bd_index + sg_frags].buf_addr_lo = addr & 0xffffffff;
1633 		bd[bd_index + sg_frags].buf_addr_hi  = addr >> 32;
1634 		bd[bd_index + sg_frags].buf_len = (u16)frag_size;
1635 		bd[bd_index + sg_frags].flags = 0;
1636 
1637 		addr += (u64) frag_size;
1638 		sg_frags++;
1639 		sg_len -= frag_size;
1640 	}
1641 	return sg_frags;
1642 
1643 }
1644 
1645 static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req)
1646 {
1647 	struct bnx2fc_interface *interface = io_req->port->priv;
1648 	struct bnx2fc_hba *hba = interface->hba;
1649 	struct scsi_cmnd *sc = io_req->sc_cmd;
1650 	struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1651 	struct scatterlist *sg;
1652 	int byte_count = 0;
1653 	int sg_count = 0;
1654 	int bd_count = 0;
1655 	int sg_frags;
1656 	unsigned int sg_len;
1657 	u64 addr;
1658 	int i;
1659 
1660 	WARN_ON(scsi_sg_count(sc) > BNX2FC_MAX_BDS_PER_CMD);
1661 	/*
1662 	 * Use dma_map_sg directly to ensure we're using the correct
1663 	 * dev struct off of pcidev.
1664 	 */
1665 	sg_count = dma_map_sg(&hba->pcidev->dev, scsi_sglist(sc),
1666 			      scsi_sg_count(sc), sc->sc_data_direction);
1667 	scsi_for_each_sg(sc, sg, sg_count, i) {
1668 		sg_len = sg_dma_len(sg);
1669 		addr = sg_dma_address(sg);
1670 		if (sg_len > BNX2FC_MAX_BD_LEN) {
1671 			sg_frags = bnx2fc_split_bd(io_req, addr, sg_len,
1672 						   bd_count);
1673 		} else {
1674 
1675 			sg_frags = 1;
1676 			bd[bd_count].buf_addr_lo = addr & 0xffffffff;
1677 			bd[bd_count].buf_addr_hi  = addr >> 32;
1678 			bd[bd_count].buf_len = (u16)sg_len;
1679 			bd[bd_count].flags = 0;
1680 		}
1681 		bd_count += sg_frags;
1682 		byte_count += sg_len;
1683 	}
1684 	if (byte_count != scsi_bufflen(sc))
1685 		printk(KERN_ERR PFX "byte_count = %d != scsi_bufflen = %d, "
1686 			"task_id = 0x%x\n", byte_count, scsi_bufflen(sc),
1687 			io_req->xid);
1688 	return bd_count;
1689 }
1690 
1691 static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req)
1692 {
1693 	struct scsi_cmnd *sc = io_req->sc_cmd;
1694 	struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
1695 	int bd_count;
1696 
1697 	if (scsi_sg_count(sc)) {
1698 		bd_count = bnx2fc_map_sg(io_req);
1699 		if (bd_count == 0)
1700 			return -ENOMEM;
1701 	} else {
1702 		bd_count = 0;
1703 		bd[0].buf_addr_lo = bd[0].buf_addr_hi = 0;
1704 		bd[0].buf_len = bd[0].flags = 0;
1705 	}
1706 	io_req->bd_tbl->bd_valid = bd_count;
1707 
1708 	/*
1709 	 * Return the command to ML if BD count exceeds the max number
1710 	 * that can be handled by FW.
1711 	 */
1712 	if (bd_count > BNX2FC_FW_MAX_BDS_PER_CMD) {
1713 		pr_err("bd_count = %d exceeded FW supported max BD(255), task_id = 0x%x\n",
1714 		       bd_count, io_req->xid);
1715 		return -ENOMEM;
1716 	}
1717 
1718 	return 0;
1719 }
1720 
1721 static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req)
1722 {
1723 	struct scsi_cmnd *sc = io_req->sc_cmd;
1724 	struct bnx2fc_interface *interface = io_req->port->priv;
1725 	struct bnx2fc_hba *hba = interface->hba;
1726 
1727 	/*
1728 	 * Use dma_unmap_sg directly to ensure we're using the correct
1729 	 * dev struct off of pcidev.
1730 	 */
1731 	if (io_req->bd_tbl->bd_valid && sc && scsi_sg_count(sc)) {
1732 		dma_unmap_sg(&hba->pcidev->dev, scsi_sglist(sc),
1733 		    scsi_sg_count(sc), sc->sc_data_direction);
1734 		io_req->bd_tbl->bd_valid = 0;
1735 	}
1736 }
1737 
1738 void bnx2fc_build_fcp_cmnd(struct bnx2fc_cmd *io_req,
1739 				  struct fcp_cmnd *fcp_cmnd)
1740 {
1741 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1742 
1743 	memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
1744 
1745 	int_to_scsilun(sc_cmd->device->lun, &fcp_cmnd->fc_lun);
1746 
1747 	fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len);
1748 	memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len);
1749 
1750 	fcp_cmnd->fc_cmdref = 0;
1751 	fcp_cmnd->fc_pri_ta = 0;
1752 	fcp_cmnd->fc_tm_flags = io_req->mp_req.tm_flags;
1753 	fcp_cmnd->fc_flags = io_req->io_req_flags;
1754 	fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE;
1755 }
1756 
1757 static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
1758 				 struct fcoe_fcp_rsp_payload *fcp_rsp,
1759 				 u8 num_rq, unsigned char *rq_data)
1760 {
1761 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1762 	u8 rsp_flags = fcp_rsp->fcp_flags.flags;
1763 	u32 rq_buff_len = 0;
1764 	int fcp_sns_len = 0;
1765 	int fcp_rsp_len = 0;
1766 
1767 	io_req->fcp_status = FC_GOOD;
1768 	io_req->fcp_resid = 0;
1769 	if (rsp_flags & (FCOE_FCP_RSP_FLAGS_FCP_RESID_OVER |
1770 	    FCOE_FCP_RSP_FLAGS_FCP_RESID_UNDER))
1771 		io_req->fcp_resid = fcp_rsp->fcp_resid;
1772 
1773 	io_req->scsi_comp_flags = rsp_flags;
1774 	io_req->cdb_status = fcp_rsp->scsi_status_code;
1775 
1776 	/* Fetch fcp_rsp_info and fcp_sns_info if available */
1777 	if (num_rq) {
1778 
1779 		/*
1780 		 * We do not anticipate num_rq >1, as the linux defined
1781 		 * SCSI_SENSE_BUFFERSIZE is 96 bytes + 8 bytes of FCP_RSP_INFO
1782 		 * 256 bytes of single rq buffer is good enough to hold this.
1783 		 */
1784 
1785 		if (rsp_flags &
1786 		    FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID) {
1787 			fcp_rsp_len = rq_buff_len
1788 					= fcp_rsp->fcp_rsp_len;
1789 		}
1790 
1791 		if (rsp_flags &
1792 		    FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID) {
1793 			fcp_sns_len = fcp_rsp->fcp_sns_len;
1794 			rq_buff_len += fcp_rsp->fcp_sns_len;
1795 		}
1796 
1797 		io_req->fcp_rsp_len = fcp_rsp_len;
1798 		io_req->fcp_sns_len = fcp_sns_len;
1799 
1800 		if (rq_buff_len > num_rq * BNX2FC_RQ_BUF_SZ) {
1801 			/* Invalid sense sense length. */
1802 			printk(KERN_ERR PFX "invalid sns length %d\n",
1803 				rq_buff_len);
1804 			/* reset rq_buff_len */
1805 			rq_buff_len =  num_rq * BNX2FC_RQ_BUF_SZ;
1806 		}
1807 
1808 		/* fetch fcp_rsp_code */
1809 		if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) {
1810 			/* Only for task management function */
1811 			io_req->fcp_rsp_code = rq_data[3];
1812 			BNX2FC_IO_DBG(io_req, "fcp_rsp_code = %d\n",
1813 				io_req->fcp_rsp_code);
1814 		}
1815 
1816 		/* fetch sense data */
1817 		rq_data += fcp_rsp_len;
1818 
1819 		if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) {
1820 			printk(KERN_ERR PFX "Truncating sense buffer\n");
1821 			fcp_sns_len = SCSI_SENSE_BUFFERSIZE;
1822 		}
1823 
1824 		memset(sc_cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1825 		if (fcp_sns_len)
1826 			memcpy(sc_cmd->sense_buffer, rq_data, fcp_sns_len);
1827 
1828 	}
1829 }
1830 
1831 /**
1832  * bnx2fc_queuecommand - Queuecommand function of the scsi template
1833  *
1834  * @host:	The Scsi_Host the command was issued to
1835  * @sc_cmd:	struct scsi_cmnd to be executed
1836  *
1837  * This is the IO strategy routine, called by SCSI-ML
1838  **/
1839 int bnx2fc_queuecommand(struct Scsi_Host *host,
1840 			struct scsi_cmnd *sc_cmd)
1841 {
1842 	struct fc_lport *lport = shost_priv(host);
1843 	struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
1844 	struct fc_rport_libfc_priv *rp = rport->dd_data;
1845 	struct bnx2fc_rport *tgt;
1846 	struct bnx2fc_cmd *io_req;
1847 	int rc = 0;
1848 	int rval;
1849 
1850 	rval = fc_remote_port_chkready(rport);
1851 	if (rval) {
1852 		sc_cmd->result = rval;
1853 		scsi_done(sc_cmd);
1854 		return 0;
1855 	}
1856 
1857 	if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
1858 		rc = SCSI_MLQUEUE_HOST_BUSY;
1859 		goto exit_qcmd;
1860 	}
1861 
1862 	/* rport and tgt are allocated together, so tgt should be non-NULL */
1863 	tgt = (struct bnx2fc_rport *)&rp[1];
1864 
1865 	if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
1866 		/*
1867 		 * Session is not offloaded yet. Let SCSI-ml retry
1868 		 * the command.
1869 		 */
1870 		rc = SCSI_MLQUEUE_TARGET_BUSY;
1871 		goto exit_qcmd;
1872 	}
1873 	if (tgt->retry_delay_timestamp) {
1874 		if (time_after(jiffies, tgt->retry_delay_timestamp)) {
1875 			tgt->retry_delay_timestamp = 0;
1876 		} else {
1877 			/* If retry_delay timer is active, flow off the ML */
1878 			rc = SCSI_MLQUEUE_TARGET_BUSY;
1879 			goto exit_qcmd;
1880 		}
1881 	}
1882 
1883 	spin_lock_bh(&tgt->tgt_lock);
1884 
1885 	io_req = bnx2fc_cmd_alloc(tgt);
1886 	if (!io_req) {
1887 		rc = SCSI_MLQUEUE_HOST_BUSY;
1888 		goto exit_qcmd_tgtlock;
1889 	}
1890 	io_req->sc_cmd = sc_cmd;
1891 
1892 	if (bnx2fc_post_io_req(tgt, io_req)) {
1893 		printk(KERN_ERR PFX "Unable to post io_req\n");
1894 		rc = SCSI_MLQUEUE_HOST_BUSY;
1895 		goto exit_qcmd_tgtlock;
1896 	}
1897 
1898 exit_qcmd_tgtlock:
1899 	spin_unlock_bh(&tgt->tgt_lock);
1900 exit_qcmd:
1901 	return rc;
1902 }
1903 
1904 void bnx2fc_process_scsi_cmd_compl(struct bnx2fc_cmd *io_req,
1905 				   struct fcoe_task_ctx_entry *task,
1906 				   u8 num_rq, unsigned char *rq_data)
1907 {
1908 	struct fcoe_fcp_rsp_payload *fcp_rsp;
1909 	struct bnx2fc_rport *tgt = io_req->tgt;
1910 	struct scsi_cmnd *sc_cmd;
1911 	u16 scope = 0, qualifier = 0;
1912 
1913 	/* scsi_cmd_cmpl is called with tgt lock held */
1914 
1915 	if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) {
1916 		/* we will not receive ABTS response for this IO */
1917 		BNX2FC_IO_DBG(io_req, "Timer context finished processing "
1918 			   "this scsi cmd\n");
1919 		if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
1920 				       &io_req->req_flags)) {
1921 			BNX2FC_IO_DBG(io_req,
1922 				      "Actual completion after cleanup request cleaning up\n");
1923 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
1924 		}
1925 		return;
1926 	}
1927 
1928 	/* Cancel the timeout_work, as we received IO completion */
1929 	if (cancel_delayed_work(&io_req->timeout_work))
1930 		kref_put(&io_req->refcount,
1931 			 bnx2fc_cmd_release); /* drop timer hold */
1932 
1933 	sc_cmd = io_req->sc_cmd;
1934 	if (sc_cmd == NULL) {
1935 		printk(KERN_ERR PFX "scsi_cmd_compl - sc_cmd is NULL\n");
1936 		return;
1937 	}
1938 
1939 	/* Fetch fcp_rsp from task context and perform cmd completion */
1940 	fcp_rsp = (struct fcoe_fcp_rsp_payload *)
1941 		   &(task->rxwr_only.union_ctx.comp_info.fcp_rsp.payload);
1942 
1943 	/* parse fcp_rsp and obtain sense data from RQ if available */
1944 	bnx2fc_parse_fcp_rsp(io_req, fcp_rsp, num_rq, rq_data);
1945 
1946 	if (!bnx2fc_priv(sc_cmd)->io_req) {
1947 		printk(KERN_ERR PFX "io_req is NULL\n");
1948 		return;
1949 	}
1950 
1951 	if (io_req->on_active_queue) {
1952 		list_del_init(&io_req->link);
1953 		io_req->on_active_queue = 0;
1954 		/* Move IO req to retire queue */
1955 		list_add_tail(&io_req->link, &tgt->io_retire_queue);
1956 	} else {
1957 		/* This should not happen, but could have been pulled
1958 		 * by bnx2fc_flush_active_ios(), or during a race
1959 		 * between command abort and (late) completion.
1960 		 */
1961 		BNX2FC_IO_DBG(io_req, "xid not on active_cmd_queue\n");
1962 		if (io_req->wait_for_abts_comp)
1963 			if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
1964 					       &io_req->req_flags))
1965 				complete(&io_req->abts_done);
1966 	}
1967 
1968 	bnx2fc_unmap_sg_list(io_req);
1969 	io_req->sc_cmd = NULL;
1970 
1971 	switch (io_req->fcp_status) {
1972 	case FC_GOOD:
1973 		if (io_req->cdb_status == 0) {
1974 			/* Good IO completion */
1975 			sc_cmd->result = DID_OK << 16;
1976 		} else {
1977 			/* Transport status is good, SCSI status not good */
1978 			BNX2FC_IO_DBG(io_req, "scsi_cmpl: cdb_status = %d"
1979 				 " fcp_resid = 0x%x\n",
1980 				io_req->cdb_status, io_req->fcp_resid);
1981 			sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
1982 
1983 			if (io_req->cdb_status == SAM_STAT_TASK_SET_FULL ||
1984 			    io_req->cdb_status == SAM_STAT_BUSY) {
1985 				/* Newer array firmware with BUSY or
1986 				 * TASK_SET_FULL may return a status that needs
1987 				 * the scope bits masked.
1988 				 * Or a huge delay timestamp up to 27 minutes
1989 				 * can result.
1990 				 */
1991 				if (fcp_rsp->retry_delay_timer) {
1992 					/* Upper 2 bits */
1993 					scope = fcp_rsp->retry_delay_timer
1994 						& 0xC000;
1995 					/* Lower 14 bits */
1996 					qualifier = fcp_rsp->retry_delay_timer
1997 						& 0x3FFF;
1998 				}
1999 				if (scope > 0 && qualifier > 0 &&
2000 					qualifier <= 0x3FEF) {
2001 					/* Set the jiffies +
2002 					 * retry_delay_timer * 100ms
2003 					 * for the rport/tgt
2004 					 */
2005 					tgt->retry_delay_timestamp = jiffies +
2006 						(qualifier * HZ / 10);
2007 				}
2008 			}
2009 		}
2010 		if (io_req->fcp_resid)
2011 			scsi_set_resid(sc_cmd, io_req->fcp_resid);
2012 		break;
2013 	default:
2014 		printk(KERN_ERR PFX "scsi_cmd_compl: fcp_status = %d\n",
2015 			io_req->fcp_status);
2016 		break;
2017 	}
2018 	bnx2fc_priv(sc_cmd)->io_req = NULL;
2019 	scsi_done(sc_cmd);
2020 	kref_put(&io_req->refcount, bnx2fc_cmd_release);
2021 }
2022 
2023 int bnx2fc_post_io_req(struct bnx2fc_rport *tgt,
2024 			       struct bnx2fc_cmd *io_req)
2025 {
2026 	struct fcoe_task_ctx_entry *task;
2027 	struct fcoe_task_ctx_entry *task_page;
2028 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
2029 	struct fcoe_port *port = tgt->port;
2030 	struct bnx2fc_interface *interface = port->priv;
2031 	struct bnx2fc_hba *hba = interface->hba;
2032 	struct fc_lport *lport = port->lport;
2033 	int task_idx, index;
2034 	u16 xid;
2035 
2036 	/* bnx2fc_post_io_req() is called with the tgt_lock held */
2037 
2038 	/* Initialize rest of io_req fields */
2039 	io_req->cmd_type = BNX2FC_SCSI_CMD;
2040 	io_req->port = port;
2041 	io_req->tgt = tgt;
2042 	io_req->data_xfer_len = scsi_bufflen(sc_cmd);
2043 	bnx2fc_priv(sc_cmd)->io_req = io_req;
2044 
2045 	if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) {
2046 		io_req->io_req_flags = BNX2FC_READ;
2047 		this_cpu_inc(lport->stats->InputRequests);
2048 		this_cpu_add(lport->stats->InputBytes, io_req->data_xfer_len);
2049 	} else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) {
2050 		io_req->io_req_flags = BNX2FC_WRITE;
2051 		this_cpu_inc(lport->stats->OutputRequests);
2052 		this_cpu_add(lport->stats->OutputBytes, io_req->data_xfer_len);
2053 	} else {
2054 		io_req->io_req_flags = 0;
2055 		this_cpu_inc(lport->stats->ControlRequests);
2056 	}
2057 
2058 	xid = io_req->xid;
2059 
2060 	/* Build buffer descriptor list for firmware from sg list */
2061 	if (bnx2fc_build_bd_list_from_sg(io_req)) {
2062 		printk(KERN_ERR PFX "BD list creation failed\n");
2063 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
2064 		return -EAGAIN;
2065 	}
2066 
2067 	task_idx = xid / BNX2FC_TASKS_PER_PAGE;
2068 	index = xid % BNX2FC_TASKS_PER_PAGE;
2069 
2070 	/* Initialize task context for this IO request */
2071 	task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx];
2072 	task = &(task_page[index]);
2073 	bnx2fc_init_task(io_req, task);
2074 
2075 	if (tgt->flush_in_prog) {
2076 		printk(KERN_ERR PFX "Flush in progress..Host Busy\n");
2077 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
2078 		return -EAGAIN;
2079 	}
2080 
2081 	if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
2082 		printk(KERN_ERR PFX "Session not ready...post_io\n");
2083 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
2084 		return -EAGAIN;
2085 	}
2086 
2087 	/* Time IO req */
2088 	if (tgt->io_timeout)
2089 		bnx2fc_cmd_timer_set(io_req, BNX2FC_IO_TIMEOUT);
2090 	/* Obtain free SQ entry */
2091 	bnx2fc_add_2_sq(tgt, xid);
2092 
2093 	/* Enqueue the io_req to active_cmd_queue */
2094 
2095 	io_req->on_active_queue = 1;
2096 	/* move io_req from pending_queue to active_queue */
2097 	list_add_tail(&io_req->link, &tgt->active_cmd_queue);
2098 
2099 	/* Ring doorbell */
2100 	bnx2fc_ring_doorbell(tgt);
2101 	return 0;
2102 }
2103