xref: /openbmc/linux/drivers/scsi/bnx2fc/bnx2fc_hwi.c (revision 9cfc5c90)
1 /* bnx2fc_hwi.c: QLogic Linux FCoE offload driver.
2  * This file contains the code that low level functions that interact
3  * with 57712 FCoE firmware.
4  *
5  * Copyright (c) 2008-2013 Broadcom Corporation
6  * Copyright (c) 2014-2015 QLogic Corporation
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation.
11  *
12  * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
13  */
14 
15 #include "bnx2fc.h"
16 
17 DECLARE_PER_CPU(struct bnx2fc_percpu_s, bnx2fc_percpu);
18 
19 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
20 					struct fcoe_kcqe *new_cqe_kcqe);
21 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
22 					struct fcoe_kcqe *ofld_kcqe);
23 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
24 						struct fcoe_kcqe *ofld_kcqe);
25 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code);
26 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
27 					struct fcoe_kcqe *destroy_kcqe);
28 
29 int bnx2fc_send_stat_req(struct bnx2fc_hba *hba)
30 {
31 	struct fcoe_kwqe_stat stat_req;
32 	struct kwqe *kwqe_arr[2];
33 	int num_kwqes = 1;
34 	int rc = 0;
35 
36 	memset(&stat_req, 0x00, sizeof(struct fcoe_kwqe_stat));
37 	stat_req.hdr.op_code = FCOE_KWQE_OPCODE_STAT;
38 	stat_req.hdr.flags =
39 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
40 
41 	stat_req.stat_params_addr_lo = (u32) hba->stats_buf_dma;
42 	stat_req.stat_params_addr_hi = (u32) ((u64)hba->stats_buf_dma >> 32);
43 
44 	kwqe_arr[0] = (struct kwqe *) &stat_req;
45 
46 	if (hba->cnic && hba->cnic->submit_kwqes)
47 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
48 
49 	return rc;
50 }
51 
52 /**
53  * bnx2fc_send_fw_fcoe_init_msg - initiates initial handshake with FCoE f/w
54  *
55  * @hba:	adapter structure pointer
56  *
57  * Send down FCoE firmware init KWQEs which initiates the initial handshake
58  *	with the f/w.
59  *
60  */
61 int bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba *hba)
62 {
63 	struct fcoe_kwqe_init1 fcoe_init1;
64 	struct fcoe_kwqe_init2 fcoe_init2;
65 	struct fcoe_kwqe_init3 fcoe_init3;
66 	struct kwqe *kwqe_arr[3];
67 	int num_kwqes = 3;
68 	int rc = 0;
69 
70 	if (!hba->cnic) {
71 		printk(KERN_ERR PFX "hba->cnic NULL during fcoe fw init\n");
72 		return -ENODEV;
73 	}
74 
75 	/* fill init1 KWQE */
76 	memset(&fcoe_init1, 0x00, sizeof(struct fcoe_kwqe_init1));
77 	fcoe_init1.hdr.op_code = FCOE_KWQE_OPCODE_INIT1;
78 	fcoe_init1.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
79 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
80 
81 	fcoe_init1.num_tasks = hba->max_tasks;
82 	fcoe_init1.sq_num_wqes = BNX2FC_SQ_WQES_MAX;
83 	fcoe_init1.rq_num_wqes = BNX2FC_RQ_WQES_MAX;
84 	fcoe_init1.rq_buffer_log_size = BNX2FC_RQ_BUF_LOG_SZ;
85 	fcoe_init1.cq_num_wqes = BNX2FC_CQ_WQES_MAX;
86 	fcoe_init1.dummy_buffer_addr_lo = (u32) hba->dummy_buf_dma;
87 	fcoe_init1.dummy_buffer_addr_hi = (u32) ((u64)hba->dummy_buf_dma >> 32);
88 	fcoe_init1.task_list_pbl_addr_lo = (u32) hba->task_ctx_bd_dma;
89 	fcoe_init1.task_list_pbl_addr_hi =
90 				(u32) ((u64) hba->task_ctx_bd_dma >> 32);
91 	fcoe_init1.mtu = BNX2FC_MINI_JUMBO_MTU;
92 
93 	fcoe_init1.flags = (PAGE_SHIFT <<
94 				FCOE_KWQE_INIT1_LOG_PAGE_SIZE_SHIFT);
95 
96 	fcoe_init1.num_sessions_log = BNX2FC_NUM_MAX_SESS_LOG;
97 
98 	/* fill init2 KWQE */
99 	memset(&fcoe_init2, 0x00, sizeof(struct fcoe_kwqe_init2));
100 	fcoe_init2.hdr.op_code = FCOE_KWQE_OPCODE_INIT2;
101 	fcoe_init2.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
102 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
103 
104 	fcoe_init2.hsi_major_version = FCOE_HSI_MAJOR_VERSION;
105 	fcoe_init2.hsi_minor_version = FCOE_HSI_MINOR_VERSION;
106 
107 
108 	fcoe_init2.hash_tbl_pbl_addr_lo = (u32) hba->hash_tbl_pbl_dma;
109 	fcoe_init2.hash_tbl_pbl_addr_hi = (u32)
110 					   ((u64) hba->hash_tbl_pbl_dma >> 32);
111 
112 	fcoe_init2.t2_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_dma;
113 	fcoe_init2.t2_hash_tbl_addr_hi = (u32)
114 					  ((u64) hba->t2_hash_tbl_dma >> 32);
115 
116 	fcoe_init2.t2_ptr_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_ptr_dma;
117 	fcoe_init2.t2_ptr_hash_tbl_addr_hi = (u32)
118 					((u64) hba->t2_hash_tbl_ptr_dma >> 32);
119 
120 	fcoe_init2.free_list_count = BNX2FC_NUM_MAX_SESS;
121 
122 	/* fill init3 KWQE */
123 	memset(&fcoe_init3, 0x00, sizeof(struct fcoe_kwqe_init3));
124 	fcoe_init3.hdr.op_code = FCOE_KWQE_OPCODE_INIT3;
125 	fcoe_init3.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
126 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
127 	fcoe_init3.error_bit_map_lo = 0xffffffff;
128 	fcoe_init3.error_bit_map_hi = 0xffffffff;
129 
130 	/*
131 	 * enable both cached connection and cached tasks
132 	 * 0 = none, 1 = cached connection, 2 = cached tasks, 3 = both
133 	 */
134 	fcoe_init3.perf_config = 3;
135 
136 	kwqe_arr[0] = (struct kwqe *) &fcoe_init1;
137 	kwqe_arr[1] = (struct kwqe *) &fcoe_init2;
138 	kwqe_arr[2] = (struct kwqe *) &fcoe_init3;
139 
140 	if (hba->cnic && hba->cnic->submit_kwqes)
141 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
142 
143 	return rc;
144 }
145 int bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba *hba)
146 {
147 	struct fcoe_kwqe_destroy fcoe_destroy;
148 	struct kwqe *kwqe_arr[2];
149 	int num_kwqes = 1;
150 	int rc = -1;
151 
152 	/* fill destroy KWQE */
153 	memset(&fcoe_destroy, 0x00, sizeof(struct fcoe_kwqe_destroy));
154 	fcoe_destroy.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY;
155 	fcoe_destroy.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
156 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
157 	kwqe_arr[0] = (struct kwqe *) &fcoe_destroy;
158 
159 	if (hba->cnic && hba->cnic->submit_kwqes)
160 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
161 	return rc;
162 }
163 
164 /**
165  * bnx2fc_send_session_ofld_req - initiates FCoE Session offload process
166  *
167  * @port:		port structure pointer
168  * @tgt:		bnx2fc_rport structure pointer
169  */
170 int bnx2fc_send_session_ofld_req(struct fcoe_port *port,
171 					struct bnx2fc_rport *tgt)
172 {
173 	struct fc_lport *lport = port->lport;
174 	struct bnx2fc_interface *interface = port->priv;
175 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
176 	struct bnx2fc_hba *hba = interface->hba;
177 	struct kwqe *kwqe_arr[4];
178 	struct fcoe_kwqe_conn_offload1 ofld_req1;
179 	struct fcoe_kwqe_conn_offload2 ofld_req2;
180 	struct fcoe_kwqe_conn_offload3 ofld_req3;
181 	struct fcoe_kwqe_conn_offload4 ofld_req4;
182 	struct fc_rport_priv *rdata = tgt->rdata;
183 	struct fc_rport *rport = tgt->rport;
184 	int num_kwqes = 4;
185 	u32 port_id;
186 	int rc = 0;
187 	u16 conn_id;
188 
189 	/* Initialize offload request 1 structure */
190 	memset(&ofld_req1, 0x00, sizeof(struct fcoe_kwqe_conn_offload1));
191 
192 	ofld_req1.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN1;
193 	ofld_req1.hdr.flags =
194 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
195 
196 
197 	conn_id = (u16)tgt->fcoe_conn_id;
198 	ofld_req1.fcoe_conn_id = conn_id;
199 
200 
201 	ofld_req1.sq_addr_lo = (u32) tgt->sq_dma;
202 	ofld_req1.sq_addr_hi = (u32)((u64) tgt->sq_dma >> 32);
203 
204 	ofld_req1.rq_pbl_addr_lo = (u32) tgt->rq_pbl_dma;
205 	ofld_req1.rq_pbl_addr_hi = (u32)((u64) tgt->rq_pbl_dma >> 32);
206 
207 	ofld_req1.rq_first_pbe_addr_lo = (u32) tgt->rq_dma;
208 	ofld_req1.rq_first_pbe_addr_hi =
209 				(u32)((u64) tgt->rq_dma >> 32);
210 
211 	ofld_req1.rq_prod = 0x8000;
212 
213 	/* Initialize offload request 2 structure */
214 	memset(&ofld_req2, 0x00, sizeof(struct fcoe_kwqe_conn_offload2));
215 
216 	ofld_req2.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN2;
217 	ofld_req2.hdr.flags =
218 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
219 
220 	ofld_req2.tx_max_fc_pay_len = rdata->maxframe_size;
221 
222 	ofld_req2.cq_addr_lo = (u32) tgt->cq_dma;
223 	ofld_req2.cq_addr_hi = (u32)((u64)tgt->cq_dma >> 32);
224 
225 	ofld_req2.xferq_addr_lo = (u32) tgt->xferq_dma;
226 	ofld_req2.xferq_addr_hi = (u32)((u64)tgt->xferq_dma >> 32);
227 
228 	ofld_req2.conn_db_addr_lo = (u32)tgt->conn_db_dma;
229 	ofld_req2.conn_db_addr_hi = (u32)((u64)tgt->conn_db_dma >> 32);
230 
231 	/* Initialize offload request 3 structure */
232 	memset(&ofld_req3, 0x00, sizeof(struct fcoe_kwqe_conn_offload3));
233 
234 	ofld_req3.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN3;
235 	ofld_req3.hdr.flags =
236 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
237 
238 	ofld_req3.vlan_tag = interface->vlan_id <<
239 				FCOE_KWQE_CONN_OFFLOAD3_VLAN_ID_SHIFT;
240 	ofld_req3.vlan_tag |= 3 << FCOE_KWQE_CONN_OFFLOAD3_PRIORITY_SHIFT;
241 
242 	port_id = fc_host_port_id(lport->host);
243 	if (port_id == 0) {
244 		BNX2FC_HBA_DBG(lport, "ofld_req: port_id = 0, link down?\n");
245 		return -EINVAL;
246 	}
247 
248 	/*
249 	 * Store s_id of the initiator for further reference. This will
250 	 * be used during disable/destroy during linkdown processing as
251 	 * when the lport is reset, the port_id also is reset to 0
252 	 */
253 	tgt->sid = port_id;
254 	ofld_req3.s_id[0] = (port_id & 0x000000FF);
255 	ofld_req3.s_id[1] = (port_id & 0x0000FF00) >> 8;
256 	ofld_req3.s_id[2] = (port_id & 0x00FF0000) >> 16;
257 
258 	port_id = rport->port_id;
259 	ofld_req3.d_id[0] = (port_id & 0x000000FF);
260 	ofld_req3.d_id[1] = (port_id & 0x0000FF00) >> 8;
261 	ofld_req3.d_id[2] = (port_id & 0x00FF0000) >> 16;
262 
263 	ofld_req3.tx_total_conc_seqs = rdata->max_seq;
264 
265 	ofld_req3.tx_max_conc_seqs_c3 = rdata->max_seq;
266 	ofld_req3.rx_max_fc_pay_len  = lport->mfs;
267 
268 	ofld_req3.rx_total_conc_seqs = BNX2FC_MAX_SEQS;
269 	ofld_req3.rx_max_conc_seqs_c3 = BNX2FC_MAX_SEQS;
270 	ofld_req3.rx_open_seqs_exch_c3 = 1;
271 
272 	ofld_req3.confq_first_pbe_addr_lo = tgt->confq_dma;
273 	ofld_req3.confq_first_pbe_addr_hi = (u32)((u64) tgt->confq_dma >> 32);
274 
275 	/* set mul_n_port_ids supported flag to 0, until it is supported */
276 	ofld_req3.flags = 0;
277 	/*
278 	ofld_req3.flags |= (((lport->send_sp_features & FC_SP_FT_MNA) ? 1:0) <<
279 			    FCOE_KWQE_CONN_OFFLOAD3_B_MUL_N_PORT_IDS_SHIFT);
280 	*/
281 	/* Info from PLOGI response */
282 	ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_EDTR) ? 1 : 0) <<
283 			     FCOE_KWQE_CONN_OFFLOAD3_B_E_D_TOV_RES_SHIFT);
284 
285 	ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) <<
286 			     FCOE_KWQE_CONN_OFFLOAD3_B_CONT_INCR_SEQ_CNT_SHIFT);
287 
288 	/*
289 	 * Info from PRLI response, this info is used for sequence level error
290 	 * recovery support
291 	 */
292 	if (tgt->dev_type == TYPE_TAPE) {
293 		ofld_req3.flags |= 1 <<
294 				    FCOE_KWQE_CONN_OFFLOAD3_B_CONF_REQ_SHIFT;
295 		ofld_req3.flags |= (((rdata->flags & FC_RP_FLAGS_REC_SUPPORTED)
296 				    ? 1 : 0) <<
297 				    FCOE_KWQE_CONN_OFFLOAD3_B_REC_VALID_SHIFT);
298 	}
299 
300 	/* vlan flag */
301 	ofld_req3.flags |= (interface->vlan_enabled <<
302 			    FCOE_KWQE_CONN_OFFLOAD3_B_VLAN_FLAG_SHIFT);
303 
304 	/* C2_VALID and ACK flags are not set as they are not supported */
305 
306 
307 	/* Initialize offload request 4 structure */
308 	memset(&ofld_req4, 0x00, sizeof(struct fcoe_kwqe_conn_offload4));
309 	ofld_req4.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN4;
310 	ofld_req4.hdr.flags =
311 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
312 
313 	ofld_req4.e_d_tov_timer_val = lport->e_d_tov / 20;
314 
315 
316 	ofld_req4.src_mac_addr_lo[0] =  port->data_src_addr[5];
317 							/* local mac */
318 	ofld_req4.src_mac_addr_lo[1] =  port->data_src_addr[4];
319 	ofld_req4.src_mac_addr_mid[0] =  port->data_src_addr[3];
320 	ofld_req4.src_mac_addr_mid[1] =  port->data_src_addr[2];
321 	ofld_req4.src_mac_addr_hi[0] =  port->data_src_addr[1];
322 	ofld_req4.src_mac_addr_hi[1] =  port->data_src_addr[0];
323 	ofld_req4.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
324 							/* fcf mac */
325 	ofld_req4.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
326 	ofld_req4.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
327 	ofld_req4.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
328 	ofld_req4.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
329 	ofld_req4.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
330 
331 	ofld_req4.lcq_addr_lo = (u32) tgt->lcq_dma;
332 	ofld_req4.lcq_addr_hi = (u32)((u64) tgt->lcq_dma >> 32);
333 
334 	ofld_req4.confq_pbl_base_addr_lo = (u32) tgt->confq_pbl_dma;
335 	ofld_req4.confq_pbl_base_addr_hi =
336 					(u32)((u64) tgt->confq_pbl_dma >> 32);
337 
338 	kwqe_arr[0] = (struct kwqe *) &ofld_req1;
339 	kwqe_arr[1] = (struct kwqe *) &ofld_req2;
340 	kwqe_arr[2] = (struct kwqe *) &ofld_req3;
341 	kwqe_arr[3] = (struct kwqe *) &ofld_req4;
342 
343 	if (hba->cnic && hba->cnic->submit_kwqes)
344 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
345 
346 	return rc;
347 }
348 
349 /**
350  * bnx2fc_send_session_enable_req - initiates FCoE Session enablement
351  *
352  * @port:		port structure pointer
353  * @tgt:		bnx2fc_rport structure pointer
354  */
355 int bnx2fc_send_session_enable_req(struct fcoe_port *port,
356 					struct bnx2fc_rport *tgt)
357 {
358 	struct kwqe *kwqe_arr[2];
359 	struct bnx2fc_interface *interface = port->priv;
360 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
361 	struct bnx2fc_hba *hba = interface->hba;
362 	struct fcoe_kwqe_conn_enable_disable enbl_req;
363 	struct fc_lport *lport = port->lport;
364 	struct fc_rport *rport = tgt->rport;
365 	int num_kwqes = 1;
366 	int rc = 0;
367 	u32 port_id;
368 
369 	memset(&enbl_req, 0x00,
370 	       sizeof(struct fcoe_kwqe_conn_enable_disable));
371 	enbl_req.hdr.op_code = FCOE_KWQE_OPCODE_ENABLE_CONN;
372 	enbl_req.hdr.flags =
373 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
374 
375 	enbl_req.src_mac_addr_lo[0] =  port->data_src_addr[5];
376 							/* local mac */
377 	enbl_req.src_mac_addr_lo[1] =  port->data_src_addr[4];
378 	enbl_req.src_mac_addr_mid[0] =  port->data_src_addr[3];
379 	enbl_req.src_mac_addr_mid[1] =  port->data_src_addr[2];
380 	enbl_req.src_mac_addr_hi[0] =  port->data_src_addr[1];
381 	enbl_req.src_mac_addr_hi[1] =  port->data_src_addr[0];
382 	memcpy(tgt->src_addr, port->data_src_addr, ETH_ALEN);
383 
384 	enbl_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
385 	enbl_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
386 	enbl_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
387 	enbl_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
388 	enbl_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
389 	enbl_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
390 
391 	port_id = fc_host_port_id(lport->host);
392 	if (port_id != tgt->sid) {
393 		printk(KERN_ERR PFX "WARN: enable_req port_id = 0x%x,"
394 				"sid = 0x%x\n", port_id, tgt->sid);
395 		port_id = tgt->sid;
396 	}
397 	enbl_req.s_id[0] = (port_id & 0x000000FF);
398 	enbl_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
399 	enbl_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
400 
401 	port_id = rport->port_id;
402 	enbl_req.d_id[0] = (port_id & 0x000000FF);
403 	enbl_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
404 	enbl_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
405 	enbl_req.vlan_tag = interface->vlan_id <<
406 				FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
407 	enbl_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
408 	enbl_req.vlan_flag = interface->vlan_enabled;
409 	enbl_req.context_id = tgt->context_id;
410 	enbl_req.conn_id = tgt->fcoe_conn_id;
411 
412 	kwqe_arr[0] = (struct kwqe *) &enbl_req;
413 
414 	if (hba->cnic && hba->cnic->submit_kwqes)
415 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
416 	return rc;
417 }
418 
419 /**
420  * bnx2fc_send_session_disable_req - initiates FCoE Session disable
421  *
422  * @port:		port structure pointer
423  * @tgt:		bnx2fc_rport structure pointer
424  */
425 int bnx2fc_send_session_disable_req(struct fcoe_port *port,
426 				    struct bnx2fc_rport *tgt)
427 {
428 	struct bnx2fc_interface *interface = port->priv;
429 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
430 	struct bnx2fc_hba *hba = interface->hba;
431 	struct fcoe_kwqe_conn_enable_disable disable_req;
432 	struct kwqe *kwqe_arr[2];
433 	struct fc_rport *rport = tgt->rport;
434 	int num_kwqes = 1;
435 	int rc = 0;
436 	u32 port_id;
437 
438 	memset(&disable_req, 0x00,
439 	       sizeof(struct fcoe_kwqe_conn_enable_disable));
440 	disable_req.hdr.op_code = FCOE_KWQE_OPCODE_DISABLE_CONN;
441 	disable_req.hdr.flags =
442 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
443 
444 	disable_req.src_mac_addr_lo[0] =  tgt->src_addr[5];
445 	disable_req.src_mac_addr_lo[1] =  tgt->src_addr[4];
446 	disable_req.src_mac_addr_mid[0] =  tgt->src_addr[3];
447 	disable_req.src_mac_addr_mid[1] =  tgt->src_addr[2];
448 	disable_req.src_mac_addr_hi[0] =  tgt->src_addr[1];
449 	disable_req.src_mac_addr_hi[1] =  tgt->src_addr[0];
450 
451 	disable_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
452 	disable_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
453 	disable_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
454 	disable_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
455 	disable_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
456 	disable_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
457 
458 	port_id = tgt->sid;
459 	disable_req.s_id[0] = (port_id & 0x000000FF);
460 	disable_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
461 	disable_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
462 
463 
464 	port_id = rport->port_id;
465 	disable_req.d_id[0] = (port_id & 0x000000FF);
466 	disable_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
467 	disable_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
468 	disable_req.context_id = tgt->context_id;
469 	disable_req.conn_id = tgt->fcoe_conn_id;
470 	disable_req.vlan_tag = interface->vlan_id <<
471 				FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
472 	disable_req.vlan_tag |=
473 			3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
474 	disable_req.vlan_flag = interface->vlan_enabled;
475 
476 	kwqe_arr[0] = (struct kwqe *) &disable_req;
477 
478 	if (hba->cnic && hba->cnic->submit_kwqes)
479 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
480 
481 	return rc;
482 }
483 
484 /**
485  * bnx2fc_send_session_destroy_req - initiates FCoE Session destroy
486  *
487  * @port:		port structure pointer
488  * @tgt:		bnx2fc_rport structure pointer
489  */
490 int bnx2fc_send_session_destroy_req(struct bnx2fc_hba *hba,
491 					struct bnx2fc_rport *tgt)
492 {
493 	struct fcoe_kwqe_conn_destroy destroy_req;
494 	struct kwqe *kwqe_arr[2];
495 	int num_kwqes = 1;
496 	int rc = 0;
497 
498 	memset(&destroy_req, 0x00, sizeof(struct fcoe_kwqe_conn_destroy));
499 	destroy_req.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY_CONN;
500 	destroy_req.hdr.flags =
501 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
502 
503 	destroy_req.context_id = tgt->context_id;
504 	destroy_req.conn_id = tgt->fcoe_conn_id;
505 
506 	kwqe_arr[0] = (struct kwqe *) &destroy_req;
507 
508 	if (hba->cnic && hba->cnic->submit_kwqes)
509 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
510 
511 	return rc;
512 }
513 
514 static bool is_valid_lport(struct bnx2fc_hba *hba, struct fc_lport *lport)
515 {
516 	struct bnx2fc_lport *blport;
517 
518 	spin_lock_bh(&hba->hba_lock);
519 	list_for_each_entry(blport, &hba->vports, list) {
520 		if (blport->lport == lport) {
521 			spin_unlock_bh(&hba->hba_lock);
522 			return true;
523 		}
524 	}
525 	spin_unlock_bh(&hba->hba_lock);
526 	return false;
527 
528 }
529 
530 
531 static void bnx2fc_unsol_els_work(struct work_struct *work)
532 {
533 	struct bnx2fc_unsol_els *unsol_els;
534 	struct fc_lport *lport;
535 	struct bnx2fc_hba *hba;
536 	struct fc_frame *fp;
537 
538 	unsol_els = container_of(work, struct bnx2fc_unsol_els, unsol_els_work);
539 	lport = unsol_els->lport;
540 	fp = unsol_els->fp;
541 	hba = unsol_els->hba;
542 	if (is_valid_lport(hba, lport))
543 		fc_exch_recv(lport, fp);
544 	kfree(unsol_els);
545 }
546 
547 void bnx2fc_process_l2_frame_compl(struct bnx2fc_rport *tgt,
548 				   unsigned char *buf,
549 				   u32 frame_len, u16 l2_oxid)
550 {
551 	struct fcoe_port *port = tgt->port;
552 	struct fc_lport *lport = port->lport;
553 	struct bnx2fc_interface *interface = port->priv;
554 	struct bnx2fc_unsol_els *unsol_els;
555 	struct fc_frame_header *fh;
556 	struct fc_frame *fp;
557 	struct sk_buff *skb;
558 	u32 payload_len;
559 	u32 crc;
560 	u8 op;
561 
562 
563 	unsol_els = kzalloc(sizeof(*unsol_els), GFP_ATOMIC);
564 	if (!unsol_els) {
565 		BNX2FC_TGT_DBG(tgt, "Unable to allocate unsol_work\n");
566 		return;
567 	}
568 
569 	BNX2FC_TGT_DBG(tgt, "l2_frame_compl l2_oxid = 0x%x, frame_len = %d\n",
570 		l2_oxid, frame_len);
571 
572 	payload_len = frame_len - sizeof(struct fc_frame_header);
573 
574 	fp = fc_frame_alloc(lport, payload_len);
575 	if (!fp) {
576 		printk(KERN_ERR PFX "fc_frame_alloc failure\n");
577 		kfree(unsol_els);
578 		return;
579 	}
580 
581 	fh = (struct fc_frame_header *) fc_frame_header_get(fp);
582 	/* Copy FC Frame header and payload into the frame */
583 	memcpy(fh, buf, frame_len);
584 
585 	if (l2_oxid != FC_XID_UNKNOWN)
586 		fh->fh_ox_id = htons(l2_oxid);
587 
588 	skb = fp_skb(fp);
589 
590 	if ((fh->fh_r_ctl == FC_RCTL_ELS_REQ) ||
591 	    (fh->fh_r_ctl == FC_RCTL_ELS_REP)) {
592 
593 		if (fh->fh_type == FC_TYPE_ELS) {
594 			op = fc_frame_payload_op(fp);
595 			if ((op == ELS_TEST) ||	(op == ELS_ESTC) ||
596 			    (op == ELS_FAN) || (op == ELS_CSU)) {
597 				/*
598 				 * No need to reply for these
599 				 * ELS requests
600 				 */
601 				printk(KERN_ERR PFX "dropping ELS 0x%x\n", op);
602 				kfree_skb(skb);
603 				kfree(unsol_els);
604 				return;
605 			}
606 		}
607 		crc = fcoe_fc_crc(fp);
608 		fc_frame_init(fp);
609 		fr_dev(fp) = lport;
610 		fr_sof(fp) = FC_SOF_I3;
611 		fr_eof(fp) = FC_EOF_T;
612 		fr_crc(fp) = cpu_to_le32(~crc);
613 		unsol_els->lport = lport;
614 		unsol_els->hba = interface->hba;
615 		unsol_els->fp = fp;
616 		INIT_WORK(&unsol_els->unsol_els_work, bnx2fc_unsol_els_work);
617 		queue_work(bnx2fc_wq, &unsol_els->unsol_els_work);
618 	} else {
619 		BNX2FC_HBA_DBG(lport, "fh_r_ctl = 0x%x\n", fh->fh_r_ctl);
620 		kfree_skb(skb);
621 		kfree(unsol_els);
622 	}
623 }
624 
625 static void bnx2fc_process_unsol_compl(struct bnx2fc_rport *tgt, u16 wqe)
626 {
627 	u8 num_rq;
628 	struct fcoe_err_report_entry *err_entry;
629 	unsigned char *rq_data;
630 	unsigned char *buf = NULL, *buf1;
631 	int i;
632 	u16 xid;
633 	u32 frame_len, len;
634 	struct bnx2fc_cmd *io_req = NULL;
635 	struct fcoe_task_ctx_entry *task, *task_page;
636 	struct bnx2fc_interface *interface = tgt->port->priv;
637 	struct bnx2fc_hba *hba = interface->hba;
638 	int task_idx, index;
639 	int rc = 0;
640 	u64 err_warn_bit_map;
641 	u8 err_warn = 0xff;
642 
643 
644 	BNX2FC_TGT_DBG(tgt, "Entered UNSOL COMPLETION wqe = 0x%x\n", wqe);
645 	switch (wqe & FCOE_UNSOLICITED_CQE_SUBTYPE) {
646 	case FCOE_UNSOLICITED_FRAME_CQE_TYPE:
647 		frame_len = (wqe & FCOE_UNSOLICITED_CQE_PKT_LEN) >>
648 			     FCOE_UNSOLICITED_CQE_PKT_LEN_SHIFT;
649 
650 		num_rq = (frame_len + BNX2FC_RQ_BUF_SZ - 1) / BNX2FC_RQ_BUF_SZ;
651 
652 		spin_lock_bh(&tgt->tgt_lock);
653 		rq_data = (unsigned char *)bnx2fc_get_next_rqe(tgt, num_rq);
654 		spin_unlock_bh(&tgt->tgt_lock);
655 
656 		if (rq_data) {
657 			buf = rq_data;
658 		} else {
659 			buf1 = buf = kmalloc((num_rq * BNX2FC_RQ_BUF_SZ),
660 					      GFP_ATOMIC);
661 
662 			if (!buf1) {
663 				BNX2FC_TGT_DBG(tgt, "Memory alloc failure\n");
664 				break;
665 			}
666 
667 			for (i = 0; i < num_rq; i++) {
668 				spin_lock_bh(&tgt->tgt_lock);
669 				rq_data = (unsigned char *)
670 					   bnx2fc_get_next_rqe(tgt, 1);
671 				spin_unlock_bh(&tgt->tgt_lock);
672 				len = BNX2FC_RQ_BUF_SZ;
673 				memcpy(buf1, rq_data, len);
674 				buf1 += len;
675 			}
676 		}
677 		bnx2fc_process_l2_frame_compl(tgt, buf, frame_len,
678 					      FC_XID_UNKNOWN);
679 
680 		if (buf != rq_data)
681 			kfree(buf);
682 		spin_lock_bh(&tgt->tgt_lock);
683 		bnx2fc_return_rqe(tgt, num_rq);
684 		spin_unlock_bh(&tgt->tgt_lock);
685 		break;
686 
687 	case FCOE_ERROR_DETECTION_CQE_TYPE:
688 		/*
689 		 * In case of error reporting CQE a single RQ entry
690 		 * is consumed.
691 		 */
692 		spin_lock_bh(&tgt->tgt_lock);
693 		num_rq = 1;
694 		err_entry = (struct fcoe_err_report_entry *)
695 			     bnx2fc_get_next_rqe(tgt, 1);
696 		xid = err_entry->fc_hdr.ox_id;
697 		BNX2FC_TGT_DBG(tgt, "Unsol Error Frame OX_ID = 0x%x\n", xid);
698 		BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x\n",
699 			err_entry->data.err_warn_bitmap_hi,
700 			err_entry->data.err_warn_bitmap_lo);
701 		BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x\n",
702 			err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
703 
704 
705 		if (xid > hba->max_xid) {
706 			BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n",
707 				   xid);
708 			goto ret_err_rqe;
709 		}
710 
711 		task_idx = xid / BNX2FC_TASKS_PER_PAGE;
712 		index = xid % BNX2FC_TASKS_PER_PAGE;
713 		task_page = (struct fcoe_task_ctx_entry *)
714 					hba->task_ctx[task_idx];
715 		task = &(task_page[index]);
716 
717 		io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
718 		if (!io_req)
719 			goto ret_err_rqe;
720 
721 		if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
722 			printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
723 			goto ret_err_rqe;
724 		}
725 
726 		if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
727 				       &io_req->req_flags)) {
728 			BNX2FC_IO_DBG(io_req, "unsol_err: cleanup in "
729 					    "progress.. ignore unsol err\n");
730 			goto ret_err_rqe;
731 		}
732 
733 		err_warn_bit_map = (u64)
734 			((u64)err_entry->data.err_warn_bitmap_hi << 32) |
735 			(u64)err_entry->data.err_warn_bitmap_lo;
736 		for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
737 			if (err_warn_bit_map & (u64)((u64)1 << i)) {
738 				err_warn = i;
739 				break;
740 			}
741 		}
742 
743 		/*
744 		 * If ABTS is already in progress, and FW error is
745 		 * received after that, do not cancel the timeout_work
746 		 * and let the error recovery continue by explicitly
747 		 * logging out the target, when the ABTS eventually
748 		 * times out.
749 		 */
750 		if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
751 			printk(KERN_ERR PFX "err_warn: io_req (0x%x) already "
752 					    "in ABTS processing\n", xid);
753 			goto ret_err_rqe;
754 		}
755 		BNX2FC_TGT_DBG(tgt, "err = 0x%x\n", err_warn);
756 		if (tgt->dev_type != TYPE_TAPE)
757 			goto skip_rec;
758 		switch (err_warn) {
759 		case FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION:
760 		case FCOE_ERROR_CODE_DATA_OOO_RO:
761 		case FCOE_ERROR_CODE_COMMON_INCORRECT_SEQ_CNT:
762 		case FCOE_ERROR_CODE_DATA_SOFI3_SEQ_ACTIVE_SET:
763 		case FCOE_ERROR_CODE_FCP_RSP_OPENED_SEQ:
764 		case FCOE_ERROR_CODE_DATA_SOFN_SEQ_ACTIVE_RESET:
765 			BNX2FC_TGT_DBG(tgt, "REC TOV popped for xid - 0x%x\n",
766 				   xid);
767 			memcpy(&io_req->err_entry, err_entry,
768 			       sizeof(struct fcoe_err_report_entry));
769 			if (!test_bit(BNX2FC_FLAG_SRR_SENT,
770 				      &io_req->req_flags)) {
771 				spin_unlock_bh(&tgt->tgt_lock);
772 				rc = bnx2fc_send_rec(io_req);
773 				spin_lock_bh(&tgt->tgt_lock);
774 
775 				if (rc)
776 					goto skip_rec;
777 			} else
778 				printk(KERN_ERR PFX "SRR in progress\n");
779 			goto ret_err_rqe;
780 			break;
781 		default:
782 			break;
783 		}
784 
785 skip_rec:
786 		set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags);
787 		/*
788 		 * Cancel the timeout_work, as we received IO
789 		 * completion with FW error.
790 		 */
791 		if (cancel_delayed_work(&io_req->timeout_work))
792 			kref_put(&io_req->refcount, bnx2fc_cmd_release);
793 
794 		rc = bnx2fc_initiate_abts(io_req);
795 		if (rc != SUCCESS) {
796 			printk(KERN_ERR PFX "err_warn: initiate_abts "
797 				"failed xid = 0x%x. issue cleanup\n",
798 				io_req->xid);
799 			bnx2fc_initiate_cleanup(io_req);
800 		}
801 ret_err_rqe:
802 		bnx2fc_return_rqe(tgt, 1);
803 		spin_unlock_bh(&tgt->tgt_lock);
804 		break;
805 
806 	case FCOE_WARNING_DETECTION_CQE_TYPE:
807 		/*
808 		 *In case of warning reporting CQE a single RQ entry
809 		 * is consumes.
810 		 */
811 		spin_lock_bh(&tgt->tgt_lock);
812 		num_rq = 1;
813 		err_entry = (struct fcoe_err_report_entry *)
814 			     bnx2fc_get_next_rqe(tgt, 1);
815 		xid = cpu_to_be16(err_entry->fc_hdr.ox_id);
816 		BNX2FC_TGT_DBG(tgt, "Unsol Warning Frame OX_ID = 0x%x\n", xid);
817 		BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x",
818 			err_entry->data.err_warn_bitmap_hi,
819 			err_entry->data.err_warn_bitmap_lo);
820 		BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x",
821 			err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
822 
823 		if (xid > hba->max_xid) {
824 			BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid);
825 			goto ret_warn_rqe;
826 		}
827 
828 		err_warn_bit_map = (u64)
829 			((u64)err_entry->data.err_warn_bitmap_hi << 32) |
830 			(u64)err_entry->data.err_warn_bitmap_lo;
831 		for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
832 			if (err_warn_bit_map & (u64) (1 << i)) {
833 				err_warn = i;
834 				break;
835 			}
836 		}
837 		BNX2FC_TGT_DBG(tgt, "warn = 0x%x\n", err_warn);
838 
839 		task_idx = xid / BNX2FC_TASKS_PER_PAGE;
840 		index = xid % BNX2FC_TASKS_PER_PAGE;
841 		task_page = (struct fcoe_task_ctx_entry *)
842 			     interface->hba->task_ctx[task_idx];
843 		task = &(task_page[index]);
844 		io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
845 		if (!io_req)
846 			goto ret_warn_rqe;
847 
848 		if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
849 			printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
850 			goto ret_warn_rqe;
851 		}
852 
853 		memcpy(&io_req->err_entry, err_entry,
854 		       sizeof(struct fcoe_err_report_entry));
855 
856 		if (err_warn == FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION)
857 			/* REC_TOV is not a warning code */
858 			BUG_ON(1);
859 		else
860 			BNX2FC_TGT_DBG(tgt, "Unsolicited warning\n");
861 ret_warn_rqe:
862 		bnx2fc_return_rqe(tgt, 1);
863 		spin_unlock_bh(&tgt->tgt_lock);
864 		break;
865 
866 	default:
867 		printk(KERN_ERR PFX "Unsol Compl: Invalid CQE Subtype\n");
868 		break;
869 	}
870 }
871 
872 void bnx2fc_process_cq_compl(struct bnx2fc_rport *tgt, u16 wqe)
873 {
874 	struct fcoe_task_ctx_entry *task;
875 	struct fcoe_task_ctx_entry *task_page;
876 	struct fcoe_port *port = tgt->port;
877 	struct bnx2fc_interface *interface = port->priv;
878 	struct bnx2fc_hba *hba = interface->hba;
879 	struct bnx2fc_cmd *io_req;
880 	int task_idx, index;
881 	u16 xid;
882 	u8  cmd_type;
883 	u8 rx_state = 0;
884 	u8 num_rq;
885 
886 	spin_lock_bh(&tgt->tgt_lock);
887 	xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
888 	if (xid >= hba->max_tasks) {
889 		printk(KERN_ERR PFX "ERROR:xid out of range\n");
890 		spin_unlock_bh(&tgt->tgt_lock);
891 		return;
892 	}
893 	task_idx = xid / BNX2FC_TASKS_PER_PAGE;
894 	index = xid % BNX2FC_TASKS_PER_PAGE;
895 	task_page = (struct fcoe_task_ctx_entry *)hba->task_ctx[task_idx];
896 	task = &(task_page[index]);
897 
898 	num_rq = ((task->rxwr_txrd.var_ctx.rx_flags &
899 		   FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE) >>
900 		   FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE_SHIFT);
901 
902 	io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
903 
904 	if (io_req == NULL) {
905 		printk(KERN_ERR PFX "ERROR? cq_compl - io_req is NULL\n");
906 		spin_unlock_bh(&tgt->tgt_lock);
907 		return;
908 	}
909 
910 	/* Timestamp IO completion time */
911 	cmd_type = io_req->cmd_type;
912 
913 	rx_state = ((task->rxwr_txrd.var_ctx.rx_flags &
914 		    FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE) >>
915 		    FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE_SHIFT);
916 
917 	/* Process other IO completion types */
918 	switch (cmd_type) {
919 	case BNX2FC_SCSI_CMD:
920 		if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) {
921 			bnx2fc_process_scsi_cmd_compl(io_req, task, num_rq);
922 			spin_unlock_bh(&tgt->tgt_lock);
923 			return;
924 		}
925 
926 		if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
927 			bnx2fc_process_abts_compl(io_req, task, num_rq);
928 		else if (rx_state ==
929 			 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
930 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
931 		else
932 			printk(KERN_ERR PFX "Invalid rx state - %d\n",
933 				rx_state);
934 		break;
935 
936 	case BNX2FC_TASK_MGMT_CMD:
937 		BNX2FC_IO_DBG(io_req, "Processing TM complete\n");
938 		bnx2fc_process_tm_compl(io_req, task, num_rq);
939 		break;
940 
941 	case BNX2FC_ABTS:
942 		/*
943 		 * ABTS request received by firmware. ABTS response
944 		 * will be delivered to the task belonging to the IO
945 		 * that was aborted
946 		 */
947 		BNX2FC_IO_DBG(io_req, "cq_compl- ABTS sent out by fw\n");
948 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
949 		break;
950 
951 	case BNX2FC_ELS:
952 		if (rx_state == FCOE_TASK_RX_STATE_COMPLETED)
953 			bnx2fc_process_els_compl(io_req, task, num_rq);
954 		else if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
955 			bnx2fc_process_abts_compl(io_req, task, num_rq);
956 		else if (rx_state ==
957 			 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
958 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
959 		else
960 			printk(KERN_ERR PFX "Invalid rx state =  %d\n",
961 				rx_state);
962 		break;
963 
964 	case BNX2FC_CLEANUP:
965 		BNX2FC_IO_DBG(io_req, "cq_compl- cleanup resp rcvd\n");
966 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
967 		break;
968 
969 	case BNX2FC_SEQ_CLEANUP:
970 		BNX2FC_IO_DBG(io_req, "cq_compl(0x%x) - seq cleanup resp\n",
971 			      io_req->xid);
972 		bnx2fc_process_seq_cleanup_compl(io_req, task, rx_state);
973 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
974 		break;
975 
976 	default:
977 		printk(KERN_ERR PFX "Invalid cmd_type %d\n", cmd_type);
978 		break;
979 	}
980 	spin_unlock_bh(&tgt->tgt_lock);
981 }
982 
983 void bnx2fc_arm_cq(struct bnx2fc_rport *tgt)
984 {
985 	struct b577xx_fcoe_rx_doorbell *rx_db = &tgt->rx_db;
986 	u32 msg;
987 
988 	wmb();
989 	rx_db->doorbell_cq_cons = tgt->cq_cons_idx | (tgt->cq_curr_toggle_bit <<
990 			FCOE_CQE_TOGGLE_BIT_SHIFT);
991 	msg = *((u32 *)rx_db);
992 	writel(cpu_to_le32(msg), tgt->ctx_base);
993 	mmiowb();
994 
995 }
996 
997 struct bnx2fc_work *bnx2fc_alloc_work(struct bnx2fc_rport *tgt, u16 wqe)
998 {
999 	struct bnx2fc_work *work;
1000 	work = kzalloc(sizeof(struct bnx2fc_work), GFP_ATOMIC);
1001 	if (!work)
1002 		return NULL;
1003 
1004 	INIT_LIST_HEAD(&work->list);
1005 	work->tgt = tgt;
1006 	work->wqe = wqe;
1007 	return work;
1008 }
1009 
1010 int bnx2fc_process_new_cqes(struct bnx2fc_rport *tgt)
1011 {
1012 	struct fcoe_cqe *cq;
1013 	u32 cq_cons;
1014 	struct fcoe_cqe *cqe;
1015 	u32 num_free_sqes = 0;
1016 	u32 num_cqes = 0;
1017 	u16 wqe;
1018 
1019 	/*
1020 	 * cq_lock is a low contention lock used to protect
1021 	 * the CQ data structure from being freed up during
1022 	 * the upload operation
1023 	 */
1024 	spin_lock_bh(&tgt->cq_lock);
1025 
1026 	if (!tgt->cq) {
1027 		printk(KERN_ERR PFX "process_new_cqes: cq is NULL\n");
1028 		spin_unlock_bh(&tgt->cq_lock);
1029 		return 0;
1030 	}
1031 	cq = tgt->cq;
1032 	cq_cons = tgt->cq_cons_idx;
1033 	cqe = &cq[cq_cons];
1034 
1035 	while (((wqe = cqe->wqe) & FCOE_CQE_TOGGLE_BIT) ==
1036 	       (tgt->cq_curr_toggle_bit <<
1037 	       FCOE_CQE_TOGGLE_BIT_SHIFT)) {
1038 
1039 		/* new entry on the cq */
1040 		if (wqe & FCOE_CQE_CQE_TYPE) {
1041 			/* Unsolicited event notification */
1042 			bnx2fc_process_unsol_compl(tgt, wqe);
1043 		} else {
1044 			/* Pending work request completion */
1045 			struct bnx2fc_work *work = NULL;
1046 			struct bnx2fc_percpu_s *fps = NULL;
1047 			unsigned int cpu = wqe % num_possible_cpus();
1048 
1049 			fps = &per_cpu(bnx2fc_percpu, cpu);
1050 			spin_lock_bh(&fps->fp_work_lock);
1051 			if (unlikely(!fps->iothread))
1052 				goto unlock;
1053 
1054 			work = bnx2fc_alloc_work(tgt, wqe);
1055 			if (work)
1056 				list_add_tail(&work->list,
1057 					      &fps->work_list);
1058 unlock:
1059 			spin_unlock_bh(&fps->fp_work_lock);
1060 
1061 			/* Pending work request completion */
1062 			if (fps->iothread && work)
1063 				wake_up_process(fps->iothread);
1064 			else
1065 				bnx2fc_process_cq_compl(tgt, wqe);
1066 			num_free_sqes++;
1067 		}
1068 		cqe++;
1069 		tgt->cq_cons_idx++;
1070 		num_cqes++;
1071 
1072 		if (tgt->cq_cons_idx == BNX2FC_CQ_WQES_MAX) {
1073 			tgt->cq_cons_idx = 0;
1074 			cqe = cq;
1075 			tgt->cq_curr_toggle_bit =
1076 				1 - tgt->cq_curr_toggle_bit;
1077 		}
1078 	}
1079 	if (num_cqes) {
1080 		/* Arm CQ only if doorbell is mapped */
1081 		if (tgt->ctx_base)
1082 			bnx2fc_arm_cq(tgt);
1083 		atomic_add(num_free_sqes, &tgt->free_sqes);
1084 	}
1085 	spin_unlock_bh(&tgt->cq_lock);
1086 	return 0;
1087 }
1088 
1089 /**
1090  * bnx2fc_fastpath_notification - process global event queue (KCQ)
1091  *
1092  * @hba:		adapter structure pointer
1093  * @new_cqe_kcqe:	pointer to newly DMA'd KCQ entry
1094  *
1095  * Fast path event notification handler
1096  */
1097 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
1098 					struct fcoe_kcqe *new_cqe_kcqe)
1099 {
1100 	u32 conn_id = new_cqe_kcqe->fcoe_conn_id;
1101 	struct bnx2fc_rport *tgt = hba->tgt_ofld_list[conn_id];
1102 
1103 	if (!tgt) {
1104 		printk(KERN_ERR PFX "conn_id 0x%x not valid\n", conn_id);
1105 		return;
1106 	}
1107 
1108 	bnx2fc_process_new_cqes(tgt);
1109 }
1110 
1111 /**
1112  * bnx2fc_process_ofld_cmpl - process FCoE session offload completion
1113  *
1114  * @hba:	adapter structure pointer
1115  * @ofld_kcqe:	connection offload kcqe pointer
1116  *
1117  * handle session offload completion, enable the session if offload is
1118  * successful.
1119  */
1120 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
1121 					struct fcoe_kcqe *ofld_kcqe)
1122 {
1123 	struct bnx2fc_rport		*tgt;
1124 	struct fcoe_port		*port;
1125 	struct bnx2fc_interface		*interface;
1126 	u32				conn_id;
1127 	u32				context_id;
1128 
1129 	conn_id = ofld_kcqe->fcoe_conn_id;
1130 	context_id = ofld_kcqe->fcoe_conn_context_id;
1131 	tgt = hba->tgt_ofld_list[conn_id];
1132 	if (!tgt) {
1133 		printk(KERN_ALERT PFX "ERROR:ofld_cmpl: No pending ofld req\n");
1134 		return;
1135 	}
1136 	BNX2FC_TGT_DBG(tgt, "Entered ofld compl - context_id = 0x%x\n",
1137 		ofld_kcqe->fcoe_conn_context_id);
1138 	port = tgt->port;
1139 	interface = tgt->port->priv;
1140 	if (hba != interface->hba) {
1141 		printk(KERN_ERR PFX "ERROR:ofld_cmpl: HBA mis-match\n");
1142 		goto ofld_cmpl_err;
1143 	}
1144 	/*
1145 	 * cnic has allocated a context_id for this session; use this
1146 	 * while enabling the session.
1147 	 */
1148 	tgt->context_id = context_id;
1149 	if (ofld_kcqe->completion_status) {
1150 		if (ofld_kcqe->completion_status ==
1151 				FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE) {
1152 			printk(KERN_ERR PFX "unable to allocate FCoE context "
1153 				"resources\n");
1154 			set_bit(BNX2FC_FLAG_CTX_ALLOC_FAILURE, &tgt->flags);
1155 		}
1156 	} else {
1157 		/* FW offload request successfully completed */
1158 		set_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1159 	}
1160 ofld_cmpl_err:
1161 	set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1162 	wake_up_interruptible(&tgt->ofld_wait);
1163 }
1164 
1165 /**
1166  * bnx2fc_process_enable_conn_cmpl - process FCoE session enable completion
1167  *
1168  * @hba:	adapter structure pointer
1169  * @ofld_kcqe:	connection offload kcqe pointer
1170  *
1171  * handle session enable completion, mark the rport as ready
1172  */
1173 
1174 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
1175 						struct fcoe_kcqe *ofld_kcqe)
1176 {
1177 	struct bnx2fc_rport		*tgt;
1178 	struct bnx2fc_interface		*interface;
1179 	u32				conn_id;
1180 	u32				context_id;
1181 
1182 	context_id = ofld_kcqe->fcoe_conn_context_id;
1183 	conn_id = ofld_kcqe->fcoe_conn_id;
1184 	tgt = hba->tgt_ofld_list[conn_id];
1185 	if (!tgt) {
1186 		printk(KERN_ERR PFX "ERROR:enbl_cmpl: No pending ofld req\n");
1187 		return;
1188 	}
1189 
1190 	BNX2FC_TGT_DBG(tgt, "Enable compl - context_id = 0x%x\n",
1191 		ofld_kcqe->fcoe_conn_context_id);
1192 
1193 	/*
1194 	 * context_id should be the same for this target during offload
1195 	 * and enable
1196 	 */
1197 	if (tgt->context_id != context_id) {
1198 		printk(KERN_ERR PFX "context id mis-match\n");
1199 		return;
1200 	}
1201 	interface = tgt->port->priv;
1202 	if (hba != interface->hba) {
1203 		printk(KERN_ERR PFX "bnx2fc-enbl_cmpl: HBA mis-match\n");
1204 		goto enbl_cmpl_err;
1205 	}
1206 	if (!ofld_kcqe->completion_status)
1207 		/* enable successful - rport ready for issuing IOs */
1208 		set_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1209 
1210 enbl_cmpl_err:
1211 	set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1212 	wake_up_interruptible(&tgt->ofld_wait);
1213 }
1214 
1215 static void bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba *hba,
1216 					struct fcoe_kcqe *disable_kcqe)
1217 {
1218 
1219 	struct bnx2fc_rport		*tgt;
1220 	u32				conn_id;
1221 
1222 	conn_id = disable_kcqe->fcoe_conn_id;
1223 	tgt = hba->tgt_ofld_list[conn_id];
1224 	if (!tgt) {
1225 		printk(KERN_ERR PFX "ERROR: disable_cmpl: No disable req\n");
1226 		return;
1227 	}
1228 
1229 	BNX2FC_TGT_DBG(tgt, PFX "disable_cmpl: conn_id %d\n", conn_id);
1230 
1231 	if (disable_kcqe->completion_status) {
1232 		printk(KERN_ERR PFX "Disable failed with cmpl status %d\n",
1233 			disable_kcqe->completion_status);
1234 		set_bit(BNX2FC_FLAG_DISABLE_FAILED, &tgt->flags);
1235 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1236 		wake_up_interruptible(&tgt->upld_wait);
1237 	} else {
1238 		/* disable successful */
1239 		BNX2FC_TGT_DBG(tgt, "disable successful\n");
1240 		clear_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1241 		clear_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1242 		set_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1243 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1244 		wake_up_interruptible(&tgt->upld_wait);
1245 	}
1246 }
1247 
1248 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
1249 					struct fcoe_kcqe *destroy_kcqe)
1250 {
1251 	struct bnx2fc_rport		*tgt;
1252 	u32				conn_id;
1253 
1254 	conn_id = destroy_kcqe->fcoe_conn_id;
1255 	tgt = hba->tgt_ofld_list[conn_id];
1256 	if (!tgt) {
1257 		printk(KERN_ERR PFX "destroy_cmpl: No destroy req\n");
1258 		return;
1259 	}
1260 
1261 	BNX2FC_TGT_DBG(tgt, "destroy_cmpl: conn_id %d\n", conn_id);
1262 
1263 	if (destroy_kcqe->completion_status) {
1264 		printk(KERN_ERR PFX "Destroy conn failed, cmpl status %d\n",
1265 			destroy_kcqe->completion_status);
1266 		return;
1267 	} else {
1268 		/* destroy successful */
1269 		BNX2FC_TGT_DBG(tgt, "upload successful\n");
1270 		clear_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1271 		set_bit(BNX2FC_FLAG_DESTROYED, &tgt->flags);
1272 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1273 		wake_up_interruptible(&tgt->upld_wait);
1274 	}
1275 }
1276 
1277 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code)
1278 {
1279 	switch (err_code) {
1280 	case FCOE_KCQE_COMPLETION_STATUS_INVALID_OPCODE:
1281 		printk(KERN_ERR PFX "init_failure due to invalid opcode\n");
1282 		break;
1283 
1284 	case FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE:
1285 		printk(KERN_ERR PFX "init failed due to ctx alloc failure\n");
1286 		break;
1287 
1288 	case FCOE_KCQE_COMPLETION_STATUS_NIC_ERROR:
1289 		printk(KERN_ERR PFX "init_failure due to NIC error\n");
1290 		break;
1291 	case FCOE_KCQE_COMPLETION_STATUS_ERROR:
1292 		printk(KERN_ERR PFX "init failure due to compl status err\n");
1293 		break;
1294 	case FCOE_KCQE_COMPLETION_STATUS_WRONG_HSI_VERSION:
1295 		printk(KERN_ERR PFX "init failure due to HSI mismatch\n");
1296 		break;
1297 	default:
1298 		printk(KERN_ERR PFX "Unknown Error code %d\n", err_code);
1299 	}
1300 }
1301 
1302 /**
1303  * bnx2fc_indicae_kcqe - process KCQE
1304  *
1305  * @hba:	adapter structure pointer
1306  * @kcqe:	kcqe pointer
1307  * @num_cqe:	Number of completion queue elements
1308  *
1309  * Generic KCQ event handler
1310  */
1311 void bnx2fc_indicate_kcqe(void *context, struct kcqe *kcq[],
1312 					u32 num_cqe)
1313 {
1314 	struct bnx2fc_hba *hba = (struct bnx2fc_hba *)context;
1315 	int i = 0;
1316 	struct fcoe_kcqe *kcqe = NULL;
1317 
1318 	while (i < num_cqe) {
1319 		kcqe = (struct fcoe_kcqe *) kcq[i++];
1320 
1321 		switch (kcqe->op_code) {
1322 		case FCOE_KCQE_OPCODE_CQ_EVENT_NOTIFICATION:
1323 			bnx2fc_fastpath_notification(hba, kcqe);
1324 			break;
1325 
1326 		case FCOE_KCQE_OPCODE_OFFLOAD_CONN:
1327 			bnx2fc_process_ofld_cmpl(hba, kcqe);
1328 			break;
1329 
1330 		case FCOE_KCQE_OPCODE_ENABLE_CONN:
1331 			bnx2fc_process_enable_conn_cmpl(hba, kcqe);
1332 			break;
1333 
1334 		case FCOE_KCQE_OPCODE_INIT_FUNC:
1335 			if (kcqe->completion_status !=
1336 					FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1337 				bnx2fc_init_failure(hba,
1338 						kcqe->completion_status);
1339 			} else {
1340 				set_bit(ADAPTER_STATE_UP, &hba->adapter_state);
1341 				bnx2fc_get_link_state(hba);
1342 				printk(KERN_INFO PFX "[%.2x]: FCOE_INIT passed\n",
1343 					(u8)hba->pcidev->bus->number);
1344 			}
1345 			break;
1346 
1347 		case FCOE_KCQE_OPCODE_DESTROY_FUNC:
1348 			if (kcqe->completion_status !=
1349 					FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1350 
1351 				printk(KERN_ERR PFX "DESTROY failed\n");
1352 			} else {
1353 				printk(KERN_ERR PFX "DESTROY success\n");
1354 			}
1355 			set_bit(BNX2FC_FLAG_DESTROY_CMPL, &hba->flags);
1356 			wake_up_interruptible(&hba->destroy_wait);
1357 			break;
1358 
1359 		case FCOE_KCQE_OPCODE_DISABLE_CONN:
1360 			bnx2fc_process_conn_disable_cmpl(hba, kcqe);
1361 			break;
1362 
1363 		case FCOE_KCQE_OPCODE_DESTROY_CONN:
1364 			bnx2fc_process_conn_destroy_cmpl(hba, kcqe);
1365 			break;
1366 
1367 		case FCOE_KCQE_OPCODE_STAT_FUNC:
1368 			if (kcqe->completion_status !=
1369 			    FCOE_KCQE_COMPLETION_STATUS_SUCCESS)
1370 				printk(KERN_ERR PFX "STAT failed\n");
1371 			complete(&hba->stat_req_done);
1372 			break;
1373 
1374 		case FCOE_KCQE_OPCODE_FCOE_ERROR:
1375 			/* fall thru */
1376 		default:
1377 			printk(KERN_ERR PFX "unknown opcode 0x%x\n",
1378 								kcqe->op_code);
1379 		}
1380 	}
1381 }
1382 
1383 void bnx2fc_add_2_sq(struct bnx2fc_rport *tgt, u16 xid)
1384 {
1385 	struct fcoe_sqe *sqe;
1386 
1387 	sqe = &tgt->sq[tgt->sq_prod_idx];
1388 
1389 	/* Fill SQ WQE */
1390 	sqe->wqe = xid << FCOE_SQE_TASK_ID_SHIFT;
1391 	sqe->wqe |= tgt->sq_curr_toggle_bit << FCOE_SQE_TOGGLE_BIT_SHIFT;
1392 
1393 	/* Advance SQ Prod Idx */
1394 	if (++tgt->sq_prod_idx == BNX2FC_SQ_WQES_MAX) {
1395 		tgt->sq_prod_idx = 0;
1396 		tgt->sq_curr_toggle_bit = 1 - tgt->sq_curr_toggle_bit;
1397 	}
1398 }
1399 
1400 void bnx2fc_ring_doorbell(struct bnx2fc_rport *tgt)
1401 {
1402 	struct b577xx_doorbell_set_prod *sq_db = &tgt->sq_db;
1403 	u32 msg;
1404 
1405 	wmb();
1406 	sq_db->prod = tgt->sq_prod_idx |
1407 				(tgt->sq_curr_toggle_bit << 15);
1408 	msg = *((u32 *)sq_db);
1409 	writel(cpu_to_le32(msg), tgt->ctx_base);
1410 	mmiowb();
1411 
1412 }
1413 
1414 int bnx2fc_map_doorbell(struct bnx2fc_rport *tgt)
1415 {
1416 	u32 context_id = tgt->context_id;
1417 	struct fcoe_port *port = tgt->port;
1418 	u32 reg_off;
1419 	resource_size_t reg_base;
1420 	struct bnx2fc_interface *interface = port->priv;
1421 	struct bnx2fc_hba *hba = interface->hba;
1422 
1423 	reg_base = pci_resource_start(hba->pcidev,
1424 					BNX2X_DOORBELL_PCI_BAR);
1425 	reg_off = (1 << BNX2X_DB_SHIFT) * (context_id & 0x1FFFF);
1426 	tgt->ctx_base = ioremap_nocache(reg_base + reg_off, 4);
1427 	if (!tgt->ctx_base)
1428 		return -ENOMEM;
1429 	return 0;
1430 }
1431 
1432 char *bnx2fc_get_next_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1433 {
1434 	char *buf = (char *)tgt->rq + (tgt->rq_cons_idx * BNX2FC_RQ_BUF_SZ);
1435 
1436 	if (tgt->rq_cons_idx + num_items > BNX2FC_RQ_WQES_MAX)
1437 		return NULL;
1438 
1439 	tgt->rq_cons_idx += num_items;
1440 
1441 	if (tgt->rq_cons_idx >= BNX2FC_RQ_WQES_MAX)
1442 		tgt->rq_cons_idx -= BNX2FC_RQ_WQES_MAX;
1443 
1444 	return buf;
1445 }
1446 
1447 void bnx2fc_return_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1448 {
1449 	/* return the rq buffer */
1450 	u32 next_prod_idx = tgt->rq_prod_idx + num_items;
1451 	if ((next_prod_idx & 0x7fff) == BNX2FC_RQ_WQES_MAX) {
1452 		/* Wrap around RQ */
1453 		next_prod_idx += 0x8000 - BNX2FC_RQ_WQES_MAX;
1454 	}
1455 	tgt->rq_prod_idx = next_prod_idx;
1456 	tgt->conn_db->rq_prod = tgt->rq_prod_idx;
1457 }
1458 
1459 void bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd *seq_clnp_req,
1460 				  struct fcoe_task_ctx_entry *task,
1461 				  struct bnx2fc_cmd *orig_io_req,
1462 				  u32 offset)
1463 {
1464 	struct scsi_cmnd *sc_cmd = orig_io_req->sc_cmd;
1465 	struct bnx2fc_rport *tgt = seq_clnp_req->tgt;
1466 	struct bnx2fc_interface *interface = tgt->port->priv;
1467 	struct fcoe_bd_ctx *bd = orig_io_req->bd_tbl->bd_tbl;
1468 	struct fcoe_task_ctx_entry *orig_task;
1469 	struct fcoe_task_ctx_entry *task_page;
1470 	struct fcoe_ext_mul_sges_ctx *sgl;
1471 	u8 task_type = FCOE_TASK_TYPE_SEQUENCE_CLEANUP;
1472 	u8 orig_task_type;
1473 	u16 orig_xid = orig_io_req->xid;
1474 	u32 context_id = tgt->context_id;
1475 	u64 phys_addr = (u64)orig_io_req->bd_tbl->bd_tbl_dma;
1476 	u32 orig_offset = offset;
1477 	int bd_count;
1478 	int orig_task_idx, index;
1479 	int i;
1480 
1481 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1482 
1483 	if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1484 		orig_task_type = FCOE_TASK_TYPE_WRITE;
1485 	else
1486 		orig_task_type = FCOE_TASK_TYPE_READ;
1487 
1488 	/* Tx flags */
1489 	task->txwr_rxrd.const_ctx.tx_flags =
1490 				FCOE_TASK_TX_STATE_SEQUENCE_CLEANUP <<
1491 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1492 	/* init flags */
1493 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1494 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1495 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1496 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1497 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1498 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1499 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1500 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1501 
1502 	task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1503 
1504 	task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_seq_cnt = 0;
1505 	task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_data_offset = offset;
1506 
1507 	bd_count = orig_io_req->bd_tbl->bd_valid;
1508 
1509 	/* obtain the appropriate bd entry from relative offset */
1510 	for (i = 0; i < bd_count; i++) {
1511 		if (offset < bd[i].buf_len)
1512 			break;
1513 		offset -= bd[i].buf_len;
1514 	}
1515 	phys_addr += (i * sizeof(struct fcoe_bd_ctx));
1516 
1517 	if (orig_task_type == FCOE_TASK_TYPE_WRITE) {
1518 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1519 				(u32)phys_addr;
1520 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1521 				(u32)((u64)phys_addr >> 32);
1522 		task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1523 				bd_count;
1524 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_off =
1525 				offset; /* adjusted offset */
1526 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_idx = i;
1527 	} else {
1528 		orig_task_idx = orig_xid / BNX2FC_TASKS_PER_PAGE;
1529 		index = orig_xid % BNX2FC_TASKS_PER_PAGE;
1530 
1531 		task_page = (struct fcoe_task_ctx_entry *)
1532 			     interface->hba->task_ctx[orig_task_idx];
1533 		orig_task = &(task_page[index]);
1534 
1535 		/* Multiple SGEs were used for this IO */
1536 		sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1537 		sgl->mul_sgl.cur_sge_addr.lo = (u32)phys_addr;
1538 		sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32);
1539 		sgl->mul_sgl.sgl_size = bd_count;
1540 		sgl->mul_sgl.cur_sge_off = offset; /*adjusted offset */
1541 		sgl->mul_sgl.cur_sge_idx = i;
1542 
1543 		memset(&task->rxwr_only.rx_seq_ctx, 0,
1544 		       sizeof(struct fcoe_rx_seq_ctx));
1545 		task->rxwr_only.rx_seq_ctx.low_exp_ro = orig_offset;
1546 		task->rxwr_only.rx_seq_ctx.high_exp_ro = orig_offset;
1547 	}
1548 }
1549 void bnx2fc_init_cleanup_task(struct bnx2fc_cmd *io_req,
1550 			      struct fcoe_task_ctx_entry *task,
1551 			      u16 orig_xid)
1552 {
1553 	u8 task_type = FCOE_TASK_TYPE_EXCHANGE_CLEANUP;
1554 	struct bnx2fc_rport *tgt = io_req->tgt;
1555 	u32 context_id = tgt->context_id;
1556 
1557 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1558 
1559 	/* Tx Write Rx Read */
1560 	/* init flags */
1561 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1562 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1563 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1564 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1565 	if (tgt->dev_type == TYPE_TAPE)
1566 		task->txwr_rxrd.const_ctx.init_flags |=
1567 				FCOE_TASK_DEV_TYPE_TAPE <<
1568 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1569 	else
1570 		task->txwr_rxrd.const_ctx.init_flags |=
1571 				FCOE_TASK_DEV_TYPE_DISK <<
1572 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1573 	task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1574 
1575 	/* Tx flags */
1576 	task->txwr_rxrd.const_ctx.tx_flags =
1577 				FCOE_TASK_TX_STATE_EXCHANGE_CLEANUP <<
1578 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1579 
1580 	/* Rx Read Tx Write */
1581 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1582 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1583 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1584 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1585 }
1586 
1587 void bnx2fc_init_mp_task(struct bnx2fc_cmd *io_req,
1588 				struct fcoe_task_ctx_entry *task)
1589 {
1590 	struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
1591 	struct bnx2fc_rport *tgt = io_req->tgt;
1592 	struct fc_frame_header *fc_hdr;
1593 	struct fcoe_ext_mul_sges_ctx *sgl;
1594 	u8 task_type = 0;
1595 	u64 *hdr;
1596 	u64 temp_hdr[3];
1597 	u32 context_id;
1598 
1599 
1600 	/* Obtain task_type */
1601 	if ((io_req->cmd_type == BNX2FC_TASK_MGMT_CMD) ||
1602 	    (io_req->cmd_type == BNX2FC_ELS)) {
1603 		task_type = FCOE_TASK_TYPE_MIDPATH;
1604 	} else if (io_req->cmd_type == BNX2FC_ABTS) {
1605 		task_type = FCOE_TASK_TYPE_ABTS;
1606 	}
1607 
1608 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1609 
1610 	/* Setup the task from io_req for easy reference */
1611 	io_req->task = task;
1612 
1613 	BNX2FC_IO_DBG(io_req, "Init MP task for cmd_type = %d task_type = %d\n",
1614 		io_req->cmd_type, task_type);
1615 
1616 	/* Tx only */
1617 	if ((task_type == FCOE_TASK_TYPE_MIDPATH) ||
1618 	    (task_type == FCOE_TASK_TYPE_UNSOLICITED)) {
1619 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1620 				(u32)mp_req->mp_req_bd_dma;
1621 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1622 				(u32)((u64)mp_req->mp_req_bd_dma >> 32);
1623 		task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1;
1624 	}
1625 
1626 	/* Tx Write Rx Read */
1627 	/* init flags */
1628 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1629 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1630 	if (tgt->dev_type == TYPE_TAPE)
1631 		task->txwr_rxrd.const_ctx.init_flags |=
1632 				FCOE_TASK_DEV_TYPE_TAPE <<
1633 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1634 	else
1635 		task->txwr_rxrd.const_ctx.init_flags |=
1636 				FCOE_TASK_DEV_TYPE_DISK <<
1637 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1638 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1639 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1640 
1641 	/* tx flags */
1642 	task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_INIT <<
1643 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1644 
1645 	/* Rx Write Tx Read */
1646 	task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1647 
1648 	/* rx flags */
1649 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1650 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1651 
1652 	context_id = tgt->context_id;
1653 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1654 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1655 
1656 	fc_hdr = &(mp_req->req_fc_hdr);
1657 	if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1658 		fc_hdr->fh_ox_id = cpu_to_be16(io_req->xid);
1659 		fc_hdr->fh_rx_id = htons(0xffff);
1660 		task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1661 	} else if (task_type == FCOE_TASK_TYPE_UNSOLICITED) {
1662 		fc_hdr->fh_rx_id = cpu_to_be16(io_req->xid);
1663 	}
1664 
1665 	/* Fill FC Header into middle path buffer */
1666 	hdr = (u64 *) &task->txwr_rxrd.union_ctx.tx_frame.fc_hdr;
1667 	memcpy(temp_hdr, fc_hdr, sizeof(temp_hdr));
1668 	hdr[0] = cpu_to_be64(temp_hdr[0]);
1669 	hdr[1] = cpu_to_be64(temp_hdr[1]);
1670 	hdr[2] = cpu_to_be64(temp_hdr[2]);
1671 
1672 	/* Rx Only */
1673 	if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1674 		sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1675 
1676 		sgl->mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_resp_bd_dma;
1677 		sgl->mul_sgl.cur_sge_addr.hi =
1678 				(u32)((u64)mp_req->mp_resp_bd_dma >> 32);
1679 		sgl->mul_sgl.sgl_size = 1;
1680 	}
1681 }
1682 
1683 void bnx2fc_init_task(struct bnx2fc_cmd *io_req,
1684 			     struct fcoe_task_ctx_entry *task)
1685 {
1686 	u8 task_type;
1687 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1688 	struct io_bdt *bd_tbl = io_req->bd_tbl;
1689 	struct bnx2fc_rport *tgt = io_req->tgt;
1690 	struct fcoe_cached_sge_ctx *cached_sge;
1691 	struct fcoe_ext_mul_sges_ctx *sgl;
1692 	int dev_type = tgt->dev_type;
1693 	u64 *fcp_cmnd;
1694 	u64 tmp_fcp_cmnd[4];
1695 	u32 context_id;
1696 	int cnt, i;
1697 	int bd_count;
1698 
1699 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1700 
1701 	/* Setup the task from io_req for easy reference */
1702 	io_req->task = task;
1703 
1704 	if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1705 		task_type = FCOE_TASK_TYPE_WRITE;
1706 	else
1707 		task_type = FCOE_TASK_TYPE_READ;
1708 
1709 	/* Tx only */
1710 	bd_count = bd_tbl->bd_valid;
1711 	cached_sge = &task->rxwr_only.union_ctx.read_info.sgl_ctx.cached_sge;
1712 	if (task_type == FCOE_TASK_TYPE_WRITE) {
1713 		if ((dev_type == TYPE_DISK) && (bd_count == 1)) {
1714 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1715 
1716 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.lo =
1717 			cached_sge->cur_buf_addr.lo =
1718 					fcoe_bd_tbl->buf_addr_lo;
1719 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.hi =
1720 			cached_sge->cur_buf_addr.hi =
1721 					fcoe_bd_tbl->buf_addr_hi;
1722 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_rem =
1723 			cached_sge->cur_buf_rem =
1724 					fcoe_bd_tbl->buf_len;
1725 
1726 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1727 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1728 		} else {
1729 			task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1730 					(u32)bd_tbl->bd_tbl_dma;
1731 			task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1732 					(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1733 			task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1734 					bd_tbl->bd_valid;
1735 		}
1736 	}
1737 
1738 	/*Tx Write Rx Read */
1739 	/* Init state to NORMAL */
1740 	task->txwr_rxrd.const_ctx.init_flags |= task_type <<
1741 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1742 	if (dev_type == TYPE_TAPE) {
1743 		task->txwr_rxrd.const_ctx.init_flags |=
1744 				FCOE_TASK_DEV_TYPE_TAPE <<
1745 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1746 		io_req->rec_retry = 0;
1747 		io_req->rec_retry = 0;
1748 	} else
1749 		task->txwr_rxrd.const_ctx.init_flags |=
1750 				FCOE_TASK_DEV_TYPE_DISK <<
1751 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1752 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1753 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1754 	/* tx flags */
1755 	task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_NORMAL <<
1756 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1757 
1758 	/* Set initial seq counter */
1759 	task->txwr_rxrd.union_ctx.tx_seq.ctx.seq_cnt = 1;
1760 
1761 	/* Fill FCP_CMND IU */
1762 	fcp_cmnd = (u64 *)
1763 		    task->txwr_rxrd.union_ctx.fcp_cmd.opaque;
1764 	bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)&tmp_fcp_cmnd);
1765 
1766 	/* swap fcp_cmnd */
1767 	cnt = sizeof(struct fcp_cmnd) / sizeof(u64);
1768 
1769 	for (i = 0; i < cnt; i++) {
1770 		*fcp_cmnd = cpu_to_be64(tmp_fcp_cmnd[i]);
1771 		fcp_cmnd++;
1772 	}
1773 
1774 	/* Rx Write Tx Read */
1775 	task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1776 
1777 	context_id = tgt->context_id;
1778 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1779 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1780 
1781 	/* rx flags */
1782 	/* Set state to "waiting for the first packet" */
1783 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1784 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1785 
1786 	task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1787 
1788 	/* Rx Only */
1789 	if (task_type != FCOE_TASK_TYPE_READ)
1790 		return;
1791 
1792 	sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1793 	bd_count = bd_tbl->bd_valid;
1794 
1795 	if (dev_type == TYPE_DISK) {
1796 		if (bd_count == 1) {
1797 
1798 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1799 
1800 			cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1801 			cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1802 			cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1803 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1804 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1805 		} else if (bd_count == 2) {
1806 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1807 
1808 			cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1809 			cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1810 			cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1811 
1812 			fcoe_bd_tbl++;
1813 			cached_sge->second_buf_addr.lo =
1814 						 fcoe_bd_tbl->buf_addr_lo;
1815 			cached_sge->second_buf_addr.hi =
1816 						fcoe_bd_tbl->buf_addr_hi;
1817 			cached_sge->second_buf_rem = fcoe_bd_tbl->buf_len;
1818 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1819 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1820 		} else {
1821 
1822 			sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1823 			sgl->mul_sgl.cur_sge_addr.hi =
1824 					(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1825 			sgl->mul_sgl.sgl_size = bd_count;
1826 		}
1827 	} else {
1828 		sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1829 		sgl->mul_sgl.cur_sge_addr.hi =
1830 				(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1831 		sgl->mul_sgl.sgl_size = bd_count;
1832 	}
1833 }
1834 
1835 /**
1836  * bnx2fc_setup_task_ctx - allocate and map task context
1837  *
1838  * @hba:	pointer to adapter structure
1839  *
1840  * allocate memory for task context, and associated BD table to be used
1841  * by firmware
1842  *
1843  */
1844 int bnx2fc_setup_task_ctx(struct bnx2fc_hba *hba)
1845 {
1846 	int rc = 0;
1847 	struct regpair *task_ctx_bdt;
1848 	dma_addr_t addr;
1849 	int task_ctx_arr_sz;
1850 	int i;
1851 
1852 	/*
1853 	 * Allocate task context bd table. A page size of bd table
1854 	 * can map 256 buffers. Each buffer contains 32 task context
1855 	 * entries. Hence the limit with one page is 8192 task context
1856 	 * entries.
1857 	 */
1858 	hba->task_ctx_bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
1859 						  PAGE_SIZE,
1860 						  &hba->task_ctx_bd_dma,
1861 						  GFP_KERNEL);
1862 	if (!hba->task_ctx_bd_tbl) {
1863 		printk(KERN_ERR PFX "unable to allocate task context BDT\n");
1864 		rc = -1;
1865 		goto out;
1866 	}
1867 	memset(hba->task_ctx_bd_tbl, 0, PAGE_SIZE);
1868 
1869 	/*
1870 	 * Allocate task_ctx which is an array of pointers pointing to
1871 	 * a page containing 32 task contexts
1872 	 */
1873 	task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1874 	hba->task_ctx = kzalloc((task_ctx_arr_sz * sizeof(void *)),
1875 				 GFP_KERNEL);
1876 	if (!hba->task_ctx) {
1877 		printk(KERN_ERR PFX "unable to allocate task context array\n");
1878 		rc = -1;
1879 		goto out1;
1880 	}
1881 
1882 	/*
1883 	 * Allocate task_ctx_dma which is an array of dma addresses
1884 	 */
1885 	hba->task_ctx_dma = kmalloc((task_ctx_arr_sz *
1886 					sizeof(dma_addr_t)), GFP_KERNEL);
1887 	if (!hba->task_ctx_dma) {
1888 		printk(KERN_ERR PFX "unable to alloc context mapping array\n");
1889 		rc = -1;
1890 		goto out2;
1891 	}
1892 
1893 	task_ctx_bdt = (struct regpair *)hba->task_ctx_bd_tbl;
1894 	for (i = 0; i < task_ctx_arr_sz; i++) {
1895 
1896 		hba->task_ctx[i] = dma_alloc_coherent(&hba->pcidev->dev,
1897 						      PAGE_SIZE,
1898 						      &hba->task_ctx_dma[i],
1899 						      GFP_KERNEL);
1900 		if (!hba->task_ctx[i]) {
1901 			printk(KERN_ERR PFX "unable to alloc task context\n");
1902 			rc = -1;
1903 			goto out3;
1904 		}
1905 		memset(hba->task_ctx[i], 0, PAGE_SIZE);
1906 		addr = (u64)hba->task_ctx_dma[i];
1907 		task_ctx_bdt->hi = cpu_to_le32((u64)addr >> 32);
1908 		task_ctx_bdt->lo = cpu_to_le32((u32)addr);
1909 		task_ctx_bdt++;
1910 	}
1911 	return 0;
1912 
1913 out3:
1914 	for (i = 0; i < task_ctx_arr_sz; i++) {
1915 		if (hba->task_ctx[i]) {
1916 
1917 			dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1918 				hba->task_ctx[i], hba->task_ctx_dma[i]);
1919 			hba->task_ctx[i] = NULL;
1920 		}
1921 	}
1922 
1923 	kfree(hba->task_ctx_dma);
1924 	hba->task_ctx_dma = NULL;
1925 out2:
1926 	kfree(hba->task_ctx);
1927 	hba->task_ctx = NULL;
1928 out1:
1929 	dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1930 			hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma);
1931 	hba->task_ctx_bd_tbl = NULL;
1932 out:
1933 	return rc;
1934 }
1935 
1936 void bnx2fc_free_task_ctx(struct bnx2fc_hba *hba)
1937 {
1938 	int task_ctx_arr_sz;
1939 	int i;
1940 
1941 	if (hba->task_ctx_bd_tbl) {
1942 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1943 				    hba->task_ctx_bd_tbl,
1944 				    hba->task_ctx_bd_dma);
1945 		hba->task_ctx_bd_tbl = NULL;
1946 	}
1947 
1948 	task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1949 	if (hba->task_ctx) {
1950 		for (i = 0; i < task_ctx_arr_sz; i++) {
1951 			if (hba->task_ctx[i]) {
1952 				dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1953 						    hba->task_ctx[i],
1954 						    hba->task_ctx_dma[i]);
1955 				hba->task_ctx[i] = NULL;
1956 			}
1957 		}
1958 		kfree(hba->task_ctx);
1959 		hba->task_ctx = NULL;
1960 	}
1961 
1962 	kfree(hba->task_ctx_dma);
1963 	hba->task_ctx_dma = NULL;
1964 }
1965 
1966 static void bnx2fc_free_hash_table(struct bnx2fc_hba *hba)
1967 {
1968 	int i;
1969 	int segment_count;
1970 	u32 *pbl;
1971 
1972 	if (hba->hash_tbl_segments) {
1973 
1974 		pbl = hba->hash_tbl_pbl;
1975 		if (pbl) {
1976 			segment_count = hba->hash_tbl_segment_count;
1977 			for (i = 0; i < segment_count; ++i) {
1978 				dma_addr_t dma_address;
1979 
1980 				dma_address = le32_to_cpu(*pbl);
1981 				++pbl;
1982 				dma_address += ((u64)le32_to_cpu(*pbl)) << 32;
1983 				++pbl;
1984 				dma_free_coherent(&hba->pcidev->dev,
1985 						  BNX2FC_HASH_TBL_CHUNK_SIZE,
1986 						  hba->hash_tbl_segments[i],
1987 						  dma_address);
1988 			}
1989 		}
1990 
1991 		kfree(hba->hash_tbl_segments);
1992 		hba->hash_tbl_segments = NULL;
1993 	}
1994 
1995 	if (hba->hash_tbl_pbl) {
1996 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1997 				    hba->hash_tbl_pbl,
1998 				    hba->hash_tbl_pbl_dma);
1999 		hba->hash_tbl_pbl = NULL;
2000 	}
2001 }
2002 
2003 static int bnx2fc_allocate_hash_table(struct bnx2fc_hba *hba)
2004 {
2005 	int i;
2006 	int hash_table_size;
2007 	int segment_count;
2008 	int segment_array_size;
2009 	int dma_segment_array_size;
2010 	dma_addr_t *dma_segment_array;
2011 	u32 *pbl;
2012 
2013 	hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL *
2014 		sizeof(struct fcoe_hash_table_entry);
2015 
2016 	segment_count = hash_table_size + BNX2FC_HASH_TBL_CHUNK_SIZE - 1;
2017 	segment_count /= BNX2FC_HASH_TBL_CHUNK_SIZE;
2018 	hba->hash_tbl_segment_count = segment_count;
2019 
2020 	segment_array_size = segment_count * sizeof(*hba->hash_tbl_segments);
2021 	hba->hash_tbl_segments = kzalloc(segment_array_size, GFP_KERNEL);
2022 	if (!hba->hash_tbl_segments) {
2023 		printk(KERN_ERR PFX "hash table pointers alloc failed\n");
2024 		return -ENOMEM;
2025 	}
2026 	dma_segment_array_size = segment_count * sizeof(*dma_segment_array);
2027 	dma_segment_array = kzalloc(dma_segment_array_size, GFP_KERNEL);
2028 	if (!dma_segment_array) {
2029 		printk(KERN_ERR PFX "hash table pointers (dma) alloc failed\n");
2030 		goto cleanup_ht;
2031 	}
2032 
2033 	for (i = 0; i < segment_count; ++i) {
2034 		hba->hash_tbl_segments[i] =
2035 			dma_alloc_coherent(&hba->pcidev->dev,
2036 					   BNX2FC_HASH_TBL_CHUNK_SIZE,
2037 					   &dma_segment_array[i],
2038 					   GFP_KERNEL);
2039 		if (!hba->hash_tbl_segments[i]) {
2040 			printk(KERN_ERR PFX "hash segment alloc failed\n");
2041 			goto cleanup_dma;
2042 		}
2043 		memset(hba->hash_tbl_segments[i], 0,
2044 		       BNX2FC_HASH_TBL_CHUNK_SIZE);
2045 	}
2046 
2047 	hba->hash_tbl_pbl = dma_alloc_coherent(&hba->pcidev->dev,
2048 					       PAGE_SIZE,
2049 					       &hba->hash_tbl_pbl_dma,
2050 					       GFP_KERNEL);
2051 	if (!hba->hash_tbl_pbl) {
2052 		printk(KERN_ERR PFX "hash table pbl alloc failed\n");
2053 		goto cleanup_dma;
2054 	}
2055 	memset(hba->hash_tbl_pbl, 0, PAGE_SIZE);
2056 
2057 	pbl = hba->hash_tbl_pbl;
2058 	for (i = 0; i < segment_count; ++i) {
2059 		u64 paddr = dma_segment_array[i];
2060 		*pbl = cpu_to_le32((u32) paddr);
2061 		++pbl;
2062 		*pbl = cpu_to_le32((u32) (paddr >> 32));
2063 		++pbl;
2064 	}
2065 	pbl = hba->hash_tbl_pbl;
2066 	i = 0;
2067 	while (*pbl && *(pbl + 1)) {
2068 		u32 lo;
2069 		u32 hi;
2070 		lo = *pbl;
2071 		++pbl;
2072 		hi = *pbl;
2073 		++pbl;
2074 		++i;
2075 	}
2076 	kfree(dma_segment_array);
2077 	return 0;
2078 
2079 cleanup_dma:
2080 	for (i = 0; i < segment_count; ++i) {
2081 		if (hba->hash_tbl_segments[i])
2082 			dma_free_coherent(&hba->pcidev->dev,
2083 					    BNX2FC_HASH_TBL_CHUNK_SIZE,
2084 					    hba->hash_tbl_segments[i],
2085 					    dma_segment_array[i]);
2086 	}
2087 
2088 	kfree(dma_segment_array);
2089 
2090 cleanup_ht:
2091 	kfree(hba->hash_tbl_segments);
2092 	hba->hash_tbl_segments = NULL;
2093 	return -ENOMEM;
2094 }
2095 
2096 /**
2097  * bnx2fc_setup_fw_resc - Allocate and map hash table and dummy buffer
2098  *
2099  * @hba:	Pointer to adapter structure
2100  *
2101  */
2102 int bnx2fc_setup_fw_resc(struct bnx2fc_hba *hba)
2103 {
2104 	u64 addr;
2105 	u32 mem_size;
2106 	int i;
2107 
2108 	if (bnx2fc_allocate_hash_table(hba))
2109 		return -ENOMEM;
2110 
2111 	mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2112 	hba->t2_hash_tbl_ptr = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2113 						  &hba->t2_hash_tbl_ptr_dma,
2114 						  GFP_KERNEL);
2115 	if (!hba->t2_hash_tbl_ptr) {
2116 		printk(KERN_ERR PFX "unable to allocate t2 hash table ptr\n");
2117 		bnx2fc_free_fw_resc(hba);
2118 		return -ENOMEM;
2119 	}
2120 	memset(hba->t2_hash_tbl_ptr, 0x00, mem_size);
2121 
2122 	mem_size = BNX2FC_NUM_MAX_SESS *
2123 				sizeof(struct fcoe_t2_hash_table_entry);
2124 	hba->t2_hash_tbl = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2125 					      &hba->t2_hash_tbl_dma,
2126 					      GFP_KERNEL);
2127 	if (!hba->t2_hash_tbl) {
2128 		printk(KERN_ERR PFX "unable to allocate t2 hash table\n");
2129 		bnx2fc_free_fw_resc(hba);
2130 		return -ENOMEM;
2131 	}
2132 	memset(hba->t2_hash_tbl, 0x00, mem_size);
2133 	for (i = 0; i < BNX2FC_NUM_MAX_SESS; i++) {
2134 		addr = (unsigned long) hba->t2_hash_tbl_dma +
2135 			 ((i+1) * sizeof(struct fcoe_t2_hash_table_entry));
2136 		hba->t2_hash_tbl[i].next.lo = addr & 0xffffffff;
2137 		hba->t2_hash_tbl[i].next.hi = addr >> 32;
2138 	}
2139 
2140 	hba->dummy_buffer = dma_alloc_coherent(&hba->pcidev->dev,
2141 					       PAGE_SIZE, &hba->dummy_buf_dma,
2142 					       GFP_KERNEL);
2143 	if (!hba->dummy_buffer) {
2144 		printk(KERN_ERR PFX "unable to alloc MP Dummy Buffer\n");
2145 		bnx2fc_free_fw_resc(hba);
2146 		return -ENOMEM;
2147 	}
2148 
2149 	hba->stats_buffer = dma_alloc_coherent(&hba->pcidev->dev,
2150 					       PAGE_SIZE,
2151 					       &hba->stats_buf_dma,
2152 					       GFP_KERNEL);
2153 	if (!hba->stats_buffer) {
2154 		printk(KERN_ERR PFX "unable to alloc Stats Buffer\n");
2155 		bnx2fc_free_fw_resc(hba);
2156 		return -ENOMEM;
2157 	}
2158 	memset(hba->stats_buffer, 0x00, PAGE_SIZE);
2159 
2160 	return 0;
2161 }
2162 
2163 void bnx2fc_free_fw_resc(struct bnx2fc_hba *hba)
2164 {
2165 	u32 mem_size;
2166 
2167 	if (hba->stats_buffer) {
2168 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2169 				  hba->stats_buffer, hba->stats_buf_dma);
2170 		hba->stats_buffer = NULL;
2171 	}
2172 
2173 	if (hba->dummy_buffer) {
2174 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2175 				  hba->dummy_buffer, hba->dummy_buf_dma);
2176 		hba->dummy_buffer = NULL;
2177 	}
2178 
2179 	if (hba->t2_hash_tbl_ptr) {
2180 		mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2181 		dma_free_coherent(&hba->pcidev->dev, mem_size,
2182 				    hba->t2_hash_tbl_ptr,
2183 				    hba->t2_hash_tbl_ptr_dma);
2184 		hba->t2_hash_tbl_ptr = NULL;
2185 	}
2186 
2187 	if (hba->t2_hash_tbl) {
2188 		mem_size = BNX2FC_NUM_MAX_SESS *
2189 			    sizeof(struct fcoe_t2_hash_table_entry);
2190 		dma_free_coherent(&hba->pcidev->dev, mem_size,
2191 				    hba->t2_hash_tbl, hba->t2_hash_tbl_dma);
2192 		hba->t2_hash_tbl = NULL;
2193 	}
2194 	bnx2fc_free_hash_table(hba);
2195 }
2196