xref: /openbmc/linux/drivers/scsi/bnx2fc/bnx2fc_hwi.c (revision 63dc02bd)
1 /* bnx2fc_hwi.c: Broadcom NetXtreme II Linux FCoE offload driver.
2  * This file contains the code that low level functions that interact
3  * with 57712 FCoE firmware.
4  *
5  * Copyright (c) 2008 - 2011 Broadcom Corporation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
12  */
13 
14 #include "bnx2fc.h"
15 
16 DECLARE_PER_CPU(struct bnx2fc_percpu_s, bnx2fc_percpu);
17 
18 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
19 					struct fcoe_kcqe *new_cqe_kcqe);
20 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
21 					struct fcoe_kcqe *ofld_kcqe);
22 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
23 						struct fcoe_kcqe *ofld_kcqe);
24 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code);
25 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
26 					struct fcoe_kcqe *destroy_kcqe);
27 
28 int bnx2fc_send_stat_req(struct bnx2fc_hba *hba)
29 {
30 	struct fcoe_kwqe_stat stat_req;
31 	struct kwqe *kwqe_arr[2];
32 	int num_kwqes = 1;
33 	int rc = 0;
34 
35 	memset(&stat_req, 0x00, sizeof(struct fcoe_kwqe_stat));
36 	stat_req.hdr.op_code = FCOE_KWQE_OPCODE_STAT;
37 	stat_req.hdr.flags =
38 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
39 
40 	stat_req.stat_params_addr_lo = (u32) hba->stats_buf_dma;
41 	stat_req.stat_params_addr_hi = (u32) ((u64)hba->stats_buf_dma >> 32);
42 
43 	kwqe_arr[0] = (struct kwqe *) &stat_req;
44 
45 	if (hba->cnic && hba->cnic->submit_kwqes)
46 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
47 
48 	return rc;
49 }
50 
51 /**
52  * bnx2fc_send_fw_fcoe_init_msg - initiates initial handshake with FCoE f/w
53  *
54  * @hba:	adapter structure pointer
55  *
56  * Send down FCoE firmware init KWQEs which initiates the initial handshake
57  *	with the f/w.
58  *
59  */
60 int bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba *hba)
61 {
62 	struct fcoe_kwqe_init1 fcoe_init1;
63 	struct fcoe_kwqe_init2 fcoe_init2;
64 	struct fcoe_kwqe_init3 fcoe_init3;
65 	struct kwqe *kwqe_arr[3];
66 	int num_kwqes = 3;
67 	int rc = 0;
68 
69 	if (!hba->cnic) {
70 		printk(KERN_ERR PFX "hba->cnic NULL during fcoe fw init\n");
71 		return -ENODEV;
72 	}
73 
74 	/* fill init1 KWQE */
75 	memset(&fcoe_init1, 0x00, sizeof(struct fcoe_kwqe_init1));
76 	fcoe_init1.hdr.op_code = FCOE_KWQE_OPCODE_INIT1;
77 	fcoe_init1.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
78 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
79 
80 	fcoe_init1.num_tasks = BNX2FC_MAX_TASKS;
81 	fcoe_init1.sq_num_wqes = BNX2FC_SQ_WQES_MAX;
82 	fcoe_init1.rq_num_wqes = BNX2FC_RQ_WQES_MAX;
83 	fcoe_init1.rq_buffer_log_size = BNX2FC_RQ_BUF_LOG_SZ;
84 	fcoe_init1.cq_num_wqes = BNX2FC_CQ_WQES_MAX;
85 	fcoe_init1.dummy_buffer_addr_lo = (u32) hba->dummy_buf_dma;
86 	fcoe_init1.dummy_buffer_addr_hi = (u32) ((u64)hba->dummy_buf_dma >> 32);
87 	fcoe_init1.task_list_pbl_addr_lo = (u32) hba->task_ctx_bd_dma;
88 	fcoe_init1.task_list_pbl_addr_hi =
89 				(u32) ((u64) hba->task_ctx_bd_dma >> 32);
90 	fcoe_init1.mtu = BNX2FC_MINI_JUMBO_MTU;
91 
92 	fcoe_init1.flags = (PAGE_SHIFT <<
93 				FCOE_KWQE_INIT1_LOG_PAGE_SIZE_SHIFT);
94 
95 	fcoe_init1.num_sessions_log = BNX2FC_NUM_MAX_SESS_LOG;
96 
97 	/* fill init2 KWQE */
98 	memset(&fcoe_init2, 0x00, sizeof(struct fcoe_kwqe_init2));
99 	fcoe_init2.hdr.op_code = FCOE_KWQE_OPCODE_INIT2;
100 	fcoe_init2.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
101 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
102 
103 	fcoe_init2.hsi_major_version = FCOE_HSI_MAJOR_VERSION;
104 	fcoe_init2.hsi_minor_version = FCOE_HSI_MINOR_VERSION;
105 
106 
107 	fcoe_init2.hash_tbl_pbl_addr_lo = (u32) hba->hash_tbl_pbl_dma;
108 	fcoe_init2.hash_tbl_pbl_addr_hi = (u32)
109 					   ((u64) hba->hash_tbl_pbl_dma >> 32);
110 
111 	fcoe_init2.t2_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_dma;
112 	fcoe_init2.t2_hash_tbl_addr_hi = (u32)
113 					  ((u64) hba->t2_hash_tbl_dma >> 32);
114 
115 	fcoe_init2.t2_ptr_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_ptr_dma;
116 	fcoe_init2.t2_ptr_hash_tbl_addr_hi = (u32)
117 					((u64) hba->t2_hash_tbl_ptr_dma >> 32);
118 
119 	fcoe_init2.free_list_count = BNX2FC_NUM_MAX_SESS;
120 
121 	/* fill init3 KWQE */
122 	memset(&fcoe_init3, 0x00, sizeof(struct fcoe_kwqe_init3));
123 	fcoe_init3.hdr.op_code = FCOE_KWQE_OPCODE_INIT3;
124 	fcoe_init3.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
125 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
126 	fcoe_init3.error_bit_map_lo = 0xffffffff;
127 	fcoe_init3.error_bit_map_hi = 0xffffffff;
128 
129 	fcoe_init3.perf_config = 1;
130 
131 	kwqe_arr[0] = (struct kwqe *) &fcoe_init1;
132 	kwqe_arr[1] = (struct kwqe *) &fcoe_init2;
133 	kwqe_arr[2] = (struct kwqe *) &fcoe_init3;
134 
135 	if (hba->cnic && hba->cnic->submit_kwqes)
136 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
137 
138 	return rc;
139 }
140 int bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba *hba)
141 {
142 	struct fcoe_kwqe_destroy fcoe_destroy;
143 	struct kwqe *kwqe_arr[2];
144 	int num_kwqes = 1;
145 	int rc = -1;
146 
147 	/* fill destroy KWQE */
148 	memset(&fcoe_destroy, 0x00, sizeof(struct fcoe_kwqe_destroy));
149 	fcoe_destroy.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY;
150 	fcoe_destroy.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
151 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
152 	kwqe_arr[0] = (struct kwqe *) &fcoe_destroy;
153 
154 	if (hba->cnic && hba->cnic->submit_kwqes)
155 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
156 	return rc;
157 }
158 
159 /**
160  * bnx2fc_send_session_ofld_req - initiates FCoE Session offload process
161  *
162  * @port:		port structure pointer
163  * @tgt:		bnx2fc_rport structure pointer
164  */
165 int bnx2fc_send_session_ofld_req(struct fcoe_port *port,
166 					struct bnx2fc_rport *tgt)
167 {
168 	struct fc_lport *lport = port->lport;
169 	struct bnx2fc_interface *interface = port->priv;
170 	struct bnx2fc_hba *hba = interface->hba;
171 	struct kwqe *kwqe_arr[4];
172 	struct fcoe_kwqe_conn_offload1 ofld_req1;
173 	struct fcoe_kwqe_conn_offload2 ofld_req2;
174 	struct fcoe_kwqe_conn_offload3 ofld_req3;
175 	struct fcoe_kwqe_conn_offload4 ofld_req4;
176 	struct fc_rport_priv *rdata = tgt->rdata;
177 	struct fc_rport *rport = tgt->rport;
178 	int num_kwqes = 4;
179 	u32 port_id;
180 	int rc = 0;
181 	u16 conn_id;
182 
183 	/* Initialize offload request 1 structure */
184 	memset(&ofld_req1, 0x00, sizeof(struct fcoe_kwqe_conn_offload1));
185 
186 	ofld_req1.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN1;
187 	ofld_req1.hdr.flags =
188 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
189 
190 
191 	conn_id = (u16)tgt->fcoe_conn_id;
192 	ofld_req1.fcoe_conn_id = conn_id;
193 
194 
195 	ofld_req1.sq_addr_lo = (u32) tgt->sq_dma;
196 	ofld_req1.sq_addr_hi = (u32)((u64) tgt->sq_dma >> 32);
197 
198 	ofld_req1.rq_pbl_addr_lo = (u32) tgt->rq_pbl_dma;
199 	ofld_req1.rq_pbl_addr_hi = (u32)((u64) tgt->rq_pbl_dma >> 32);
200 
201 	ofld_req1.rq_first_pbe_addr_lo = (u32) tgt->rq_dma;
202 	ofld_req1.rq_first_pbe_addr_hi =
203 				(u32)((u64) tgt->rq_dma >> 32);
204 
205 	ofld_req1.rq_prod = 0x8000;
206 
207 	/* Initialize offload request 2 structure */
208 	memset(&ofld_req2, 0x00, sizeof(struct fcoe_kwqe_conn_offload2));
209 
210 	ofld_req2.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN2;
211 	ofld_req2.hdr.flags =
212 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
213 
214 	ofld_req2.tx_max_fc_pay_len = rdata->maxframe_size;
215 
216 	ofld_req2.cq_addr_lo = (u32) tgt->cq_dma;
217 	ofld_req2.cq_addr_hi = (u32)((u64)tgt->cq_dma >> 32);
218 
219 	ofld_req2.xferq_addr_lo = (u32) tgt->xferq_dma;
220 	ofld_req2.xferq_addr_hi = (u32)((u64)tgt->xferq_dma >> 32);
221 
222 	ofld_req2.conn_db_addr_lo = (u32)tgt->conn_db_dma;
223 	ofld_req2.conn_db_addr_hi = (u32)((u64)tgt->conn_db_dma >> 32);
224 
225 	/* Initialize offload request 3 structure */
226 	memset(&ofld_req3, 0x00, sizeof(struct fcoe_kwqe_conn_offload3));
227 
228 	ofld_req3.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN3;
229 	ofld_req3.hdr.flags =
230 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
231 
232 	ofld_req3.vlan_tag = interface->vlan_id <<
233 				FCOE_KWQE_CONN_OFFLOAD3_VLAN_ID_SHIFT;
234 	ofld_req3.vlan_tag |= 3 << FCOE_KWQE_CONN_OFFLOAD3_PRIORITY_SHIFT;
235 
236 	port_id = fc_host_port_id(lport->host);
237 	if (port_id == 0) {
238 		BNX2FC_HBA_DBG(lport, "ofld_req: port_id = 0, link down?\n");
239 		return -EINVAL;
240 	}
241 
242 	/*
243 	 * Store s_id of the initiator for further reference. This will
244 	 * be used during disable/destroy during linkdown processing as
245 	 * when the lport is reset, the port_id also is reset to 0
246 	 */
247 	tgt->sid = port_id;
248 	ofld_req3.s_id[0] = (port_id & 0x000000FF);
249 	ofld_req3.s_id[1] = (port_id & 0x0000FF00) >> 8;
250 	ofld_req3.s_id[2] = (port_id & 0x00FF0000) >> 16;
251 
252 	port_id = rport->port_id;
253 	ofld_req3.d_id[0] = (port_id & 0x000000FF);
254 	ofld_req3.d_id[1] = (port_id & 0x0000FF00) >> 8;
255 	ofld_req3.d_id[2] = (port_id & 0x00FF0000) >> 16;
256 
257 	ofld_req3.tx_total_conc_seqs = rdata->max_seq;
258 
259 	ofld_req3.tx_max_conc_seqs_c3 = rdata->max_seq;
260 	ofld_req3.rx_max_fc_pay_len  = lport->mfs;
261 
262 	ofld_req3.rx_total_conc_seqs = BNX2FC_MAX_SEQS;
263 	ofld_req3.rx_max_conc_seqs_c3 = BNX2FC_MAX_SEQS;
264 	ofld_req3.rx_open_seqs_exch_c3 = 1;
265 
266 	ofld_req3.confq_first_pbe_addr_lo = tgt->confq_dma;
267 	ofld_req3.confq_first_pbe_addr_hi = (u32)((u64) tgt->confq_dma >> 32);
268 
269 	/* set mul_n_port_ids supported flag to 0, until it is supported */
270 	ofld_req3.flags = 0;
271 	/*
272 	ofld_req3.flags |= (((lport->send_sp_features & FC_SP_FT_MNA) ? 1:0) <<
273 			    FCOE_KWQE_CONN_OFFLOAD3_B_MUL_N_PORT_IDS_SHIFT);
274 	*/
275 	/* Info from PLOGI response */
276 	ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_EDTR) ? 1 : 0) <<
277 			     FCOE_KWQE_CONN_OFFLOAD3_B_E_D_TOV_RES_SHIFT);
278 
279 	ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) <<
280 			     FCOE_KWQE_CONN_OFFLOAD3_B_CONT_INCR_SEQ_CNT_SHIFT);
281 
282 	/*
283 	 * Info from PRLI response, this info is used for sequence level error
284 	 * recovery support
285 	 */
286 	if (tgt->dev_type == TYPE_TAPE) {
287 		ofld_req3.flags |= 1 <<
288 				    FCOE_KWQE_CONN_OFFLOAD3_B_CONF_REQ_SHIFT;
289 		ofld_req3.flags |= (((rdata->flags & FC_RP_FLAGS_REC_SUPPORTED)
290 				    ? 1 : 0) <<
291 				    FCOE_KWQE_CONN_OFFLOAD3_B_REC_VALID_SHIFT);
292 	}
293 
294 	/* vlan flag */
295 	ofld_req3.flags |= (interface->vlan_enabled <<
296 			    FCOE_KWQE_CONN_OFFLOAD3_B_VLAN_FLAG_SHIFT);
297 
298 	/* C2_VALID and ACK flags are not set as they are not suppported */
299 
300 
301 	/* Initialize offload request 4 structure */
302 	memset(&ofld_req4, 0x00, sizeof(struct fcoe_kwqe_conn_offload4));
303 	ofld_req4.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN4;
304 	ofld_req4.hdr.flags =
305 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
306 
307 	ofld_req4.e_d_tov_timer_val = lport->e_d_tov / 20;
308 
309 
310 	ofld_req4.src_mac_addr_lo[0] =  port->data_src_addr[5];
311 							/* local mac */
312 	ofld_req4.src_mac_addr_lo[1] =  port->data_src_addr[4];
313 	ofld_req4.src_mac_addr_mid[0] =  port->data_src_addr[3];
314 	ofld_req4.src_mac_addr_mid[1] =  port->data_src_addr[2];
315 	ofld_req4.src_mac_addr_hi[0] =  port->data_src_addr[1];
316 	ofld_req4.src_mac_addr_hi[1] =  port->data_src_addr[0];
317 	ofld_req4.dst_mac_addr_lo[0] =  interface->ctlr.dest_addr[5];
318 							/* fcf mac */
319 	ofld_req4.dst_mac_addr_lo[1] =  interface->ctlr.dest_addr[4];
320 	ofld_req4.dst_mac_addr_mid[0] =  interface->ctlr.dest_addr[3];
321 	ofld_req4.dst_mac_addr_mid[1] =  interface->ctlr.dest_addr[2];
322 	ofld_req4.dst_mac_addr_hi[0] =  interface->ctlr.dest_addr[1];
323 	ofld_req4.dst_mac_addr_hi[1] =  interface->ctlr.dest_addr[0];
324 
325 	ofld_req4.lcq_addr_lo = (u32) tgt->lcq_dma;
326 	ofld_req4.lcq_addr_hi = (u32)((u64) tgt->lcq_dma >> 32);
327 
328 	ofld_req4.confq_pbl_base_addr_lo = (u32) tgt->confq_pbl_dma;
329 	ofld_req4.confq_pbl_base_addr_hi =
330 					(u32)((u64) tgt->confq_pbl_dma >> 32);
331 
332 	kwqe_arr[0] = (struct kwqe *) &ofld_req1;
333 	kwqe_arr[1] = (struct kwqe *) &ofld_req2;
334 	kwqe_arr[2] = (struct kwqe *) &ofld_req3;
335 	kwqe_arr[3] = (struct kwqe *) &ofld_req4;
336 
337 	if (hba->cnic && hba->cnic->submit_kwqes)
338 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
339 
340 	return rc;
341 }
342 
343 /**
344  * bnx2fc_send_session_enable_req - initiates FCoE Session enablement
345  *
346  * @port:		port structure pointer
347  * @tgt:		bnx2fc_rport structure pointer
348  */
349 static int bnx2fc_send_session_enable_req(struct fcoe_port *port,
350 					struct bnx2fc_rport *tgt)
351 {
352 	struct kwqe *kwqe_arr[2];
353 	struct bnx2fc_interface *interface = port->priv;
354 	struct bnx2fc_hba *hba = interface->hba;
355 	struct fcoe_kwqe_conn_enable_disable enbl_req;
356 	struct fc_lport *lport = port->lport;
357 	struct fc_rport *rport = tgt->rport;
358 	int num_kwqes = 1;
359 	int rc = 0;
360 	u32 port_id;
361 
362 	memset(&enbl_req, 0x00,
363 	       sizeof(struct fcoe_kwqe_conn_enable_disable));
364 	enbl_req.hdr.op_code = FCOE_KWQE_OPCODE_ENABLE_CONN;
365 	enbl_req.hdr.flags =
366 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
367 
368 	enbl_req.src_mac_addr_lo[0] =  port->data_src_addr[5];
369 							/* local mac */
370 	enbl_req.src_mac_addr_lo[1] =  port->data_src_addr[4];
371 	enbl_req.src_mac_addr_mid[0] =  port->data_src_addr[3];
372 	enbl_req.src_mac_addr_mid[1] =  port->data_src_addr[2];
373 	enbl_req.src_mac_addr_hi[0] =  port->data_src_addr[1];
374 	enbl_req.src_mac_addr_hi[1] =  port->data_src_addr[0];
375 	memcpy(tgt->src_addr, port->data_src_addr, ETH_ALEN);
376 
377 	enbl_req.dst_mac_addr_lo[0] =  interface->ctlr.dest_addr[5];
378 	enbl_req.dst_mac_addr_lo[1] =  interface->ctlr.dest_addr[4];
379 	enbl_req.dst_mac_addr_mid[0] =  interface->ctlr.dest_addr[3];
380 	enbl_req.dst_mac_addr_mid[1] =  interface->ctlr.dest_addr[2];
381 	enbl_req.dst_mac_addr_hi[0] =  interface->ctlr.dest_addr[1];
382 	enbl_req.dst_mac_addr_hi[1] =  interface->ctlr.dest_addr[0];
383 
384 	port_id = fc_host_port_id(lport->host);
385 	if (port_id != tgt->sid) {
386 		printk(KERN_ERR PFX "WARN: enable_req port_id = 0x%x,"
387 				"sid = 0x%x\n", port_id, tgt->sid);
388 		port_id = tgt->sid;
389 	}
390 	enbl_req.s_id[0] = (port_id & 0x000000FF);
391 	enbl_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
392 	enbl_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
393 
394 	port_id = rport->port_id;
395 	enbl_req.d_id[0] = (port_id & 0x000000FF);
396 	enbl_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
397 	enbl_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
398 	enbl_req.vlan_tag = interface->vlan_id <<
399 				FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
400 	enbl_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
401 	enbl_req.vlan_flag = interface->vlan_enabled;
402 	enbl_req.context_id = tgt->context_id;
403 	enbl_req.conn_id = tgt->fcoe_conn_id;
404 
405 	kwqe_arr[0] = (struct kwqe *) &enbl_req;
406 
407 	if (hba->cnic && hba->cnic->submit_kwqes)
408 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
409 	return rc;
410 }
411 
412 /**
413  * bnx2fc_send_session_disable_req - initiates FCoE Session disable
414  *
415  * @port:		port structure pointer
416  * @tgt:		bnx2fc_rport structure pointer
417  */
418 int bnx2fc_send_session_disable_req(struct fcoe_port *port,
419 				    struct bnx2fc_rport *tgt)
420 {
421 	struct bnx2fc_interface *interface = port->priv;
422 	struct bnx2fc_hba *hba = interface->hba;
423 	struct fcoe_kwqe_conn_enable_disable disable_req;
424 	struct kwqe *kwqe_arr[2];
425 	struct fc_rport *rport = tgt->rport;
426 	int num_kwqes = 1;
427 	int rc = 0;
428 	u32 port_id;
429 
430 	memset(&disable_req, 0x00,
431 	       sizeof(struct fcoe_kwqe_conn_enable_disable));
432 	disable_req.hdr.op_code = FCOE_KWQE_OPCODE_DISABLE_CONN;
433 	disable_req.hdr.flags =
434 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
435 
436 	disable_req.src_mac_addr_lo[0] =  tgt->src_addr[5];
437 	disable_req.src_mac_addr_lo[1] =  tgt->src_addr[4];
438 	disable_req.src_mac_addr_mid[0] =  tgt->src_addr[3];
439 	disable_req.src_mac_addr_mid[1] =  tgt->src_addr[2];
440 	disable_req.src_mac_addr_hi[0] =  tgt->src_addr[1];
441 	disable_req.src_mac_addr_hi[1] =  tgt->src_addr[0];
442 
443 	disable_req.dst_mac_addr_lo[0] =  interface->ctlr.dest_addr[5];
444 	disable_req.dst_mac_addr_lo[1] =  interface->ctlr.dest_addr[4];
445 	disable_req.dst_mac_addr_mid[0] =  interface->ctlr.dest_addr[3];
446 	disable_req.dst_mac_addr_mid[1] =  interface->ctlr.dest_addr[2];
447 	disable_req.dst_mac_addr_hi[0] =  interface->ctlr.dest_addr[1];
448 	disable_req.dst_mac_addr_hi[1] =  interface->ctlr.dest_addr[0];
449 
450 	port_id = tgt->sid;
451 	disable_req.s_id[0] = (port_id & 0x000000FF);
452 	disable_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
453 	disable_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
454 
455 
456 	port_id = rport->port_id;
457 	disable_req.d_id[0] = (port_id & 0x000000FF);
458 	disable_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
459 	disable_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
460 	disable_req.context_id = tgt->context_id;
461 	disable_req.conn_id = tgt->fcoe_conn_id;
462 	disable_req.vlan_tag = interface->vlan_id <<
463 				FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
464 	disable_req.vlan_tag |=
465 			3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
466 	disable_req.vlan_flag = interface->vlan_enabled;
467 
468 	kwqe_arr[0] = (struct kwqe *) &disable_req;
469 
470 	if (hba->cnic && hba->cnic->submit_kwqes)
471 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
472 
473 	return rc;
474 }
475 
476 /**
477  * bnx2fc_send_session_destroy_req - initiates FCoE Session destroy
478  *
479  * @port:		port structure pointer
480  * @tgt:		bnx2fc_rport structure pointer
481  */
482 int bnx2fc_send_session_destroy_req(struct bnx2fc_hba *hba,
483 					struct bnx2fc_rport *tgt)
484 {
485 	struct fcoe_kwqe_conn_destroy destroy_req;
486 	struct kwqe *kwqe_arr[2];
487 	int num_kwqes = 1;
488 	int rc = 0;
489 
490 	memset(&destroy_req, 0x00, sizeof(struct fcoe_kwqe_conn_destroy));
491 	destroy_req.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY_CONN;
492 	destroy_req.hdr.flags =
493 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
494 
495 	destroy_req.context_id = tgt->context_id;
496 	destroy_req.conn_id = tgt->fcoe_conn_id;
497 
498 	kwqe_arr[0] = (struct kwqe *) &destroy_req;
499 
500 	if (hba->cnic && hba->cnic->submit_kwqes)
501 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
502 
503 	return rc;
504 }
505 
506 static bool is_valid_lport(struct bnx2fc_hba *hba, struct fc_lport *lport)
507 {
508 	struct bnx2fc_lport *blport;
509 
510 	spin_lock_bh(&hba->hba_lock);
511 	list_for_each_entry(blport, &hba->vports, list) {
512 		if (blport->lport == lport) {
513 			spin_unlock_bh(&hba->hba_lock);
514 			return true;
515 		}
516 	}
517 	spin_unlock_bh(&hba->hba_lock);
518 	return false;
519 
520 }
521 
522 
523 static void bnx2fc_unsol_els_work(struct work_struct *work)
524 {
525 	struct bnx2fc_unsol_els *unsol_els;
526 	struct fc_lport *lport;
527 	struct bnx2fc_hba *hba;
528 	struct fc_frame *fp;
529 
530 	unsol_els = container_of(work, struct bnx2fc_unsol_els, unsol_els_work);
531 	lport = unsol_els->lport;
532 	fp = unsol_els->fp;
533 	hba = unsol_els->hba;
534 	if (is_valid_lport(hba, lport))
535 		fc_exch_recv(lport, fp);
536 	kfree(unsol_els);
537 }
538 
539 void bnx2fc_process_l2_frame_compl(struct bnx2fc_rport *tgt,
540 				   unsigned char *buf,
541 				   u32 frame_len, u16 l2_oxid)
542 {
543 	struct fcoe_port *port = tgt->port;
544 	struct fc_lport *lport = port->lport;
545 	struct bnx2fc_interface *interface = port->priv;
546 	struct bnx2fc_unsol_els *unsol_els;
547 	struct fc_frame_header *fh;
548 	struct fc_frame *fp;
549 	struct sk_buff *skb;
550 	u32 payload_len;
551 	u32 crc;
552 	u8 op;
553 
554 
555 	unsol_els = kzalloc(sizeof(*unsol_els), GFP_ATOMIC);
556 	if (!unsol_els) {
557 		BNX2FC_TGT_DBG(tgt, "Unable to allocate unsol_work\n");
558 		return;
559 	}
560 
561 	BNX2FC_TGT_DBG(tgt, "l2_frame_compl l2_oxid = 0x%x, frame_len = %d\n",
562 		l2_oxid, frame_len);
563 
564 	payload_len = frame_len - sizeof(struct fc_frame_header);
565 
566 	fp = fc_frame_alloc(lport, payload_len);
567 	if (!fp) {
568 		printk(KERN_ERR PFX "fc_frame_alloc failure\n");
569 		kfree(unsol_els);
570 		return;
571 	}
572 
573 	fh = (struct fc_frame_header *) fc_frame_header_get(fp);
574 	/* Copy FC Frame header and payload into the frame */
575 	memcpy(fh, buf, frame_len);
576 
577 	if (l2_oxid != FC_XID_UNKNOWN)
578 		fh->fh_ox_id = htons(l2_oxid);
579 
580 	skb = fp_skb(fp);
581 
582 	if ((fh->fh_r_ctl == FC_RCTL_ELS_REQ) ||
583 	    (fh->fh_r_ctl == FC_RCTL_ELS_REP)) {
584 
585 		if (fh->fh_type == FC_TYPE_ELS) {
586 			op = fc_frame_payload_op(fp);
587 			if ((op == ELS_TEST) ||	(op == ELS_ESTC) ||
588 			    (op == ELS_FAN) || (op == ELS_CSU)) {
589 				/*
590 				 * No need to reply for these
591 				 * ELS requests
592 				 */
593 				printk(KERN_ERR PFX "dropping ELS 0x%x\n", op);
594 				kfree_skb(skb);
595 				kfree(unsol_els);
596 				return;
597 			}
598 		}
599 		crc = fcoe_fc_crc(fp);
600 		fc_frame_init(fp);
601 		fr_dev(fp) = lport;
602 		fr_sof(fp) = FC_SOF_I3;
603 		fr_eof(fp) = FC_EOF_T;
604 		fr_crc(fp) = cpu_to_le32(~crc);
605 		unsol_els->lport = lport;
606 		unsol_els->hba = interface->hba;
607 		unsol_els->fp = fp;
608 		INIT_WORK(&unsol_els->unsol_els_work, bnx2fc_unsol_els_work);
609 		queue_work(bnx2fc_wq, &unsol_els->unsol_els_work);
610 	} else {
611 		BNX2FC_HBA_DBG(lport, "fh_r_ctl = 0x%x\n", fh->fh_r_ctl);
612 		kfree_skb(skb);
613 		kfree(unsol_els);
614 	}
615 }
616 
617 static void bnx2fc_process_unsol_compl(struct bnx2fc_rport *tgt, u16 wqe)
618 {
619 	u8 num_rq;
620 	struct fcoe_err_report_entry *err_entry;
621 	unsigned char *rq_data;
622 	unsigned char *buf = NULL, *buf1;
623 	int i;
624 	u16 xid;
625 	u32 frame_len, len;
626 	struct bnx2fc_cmd *io_req = NULL;
627 	struct fcoe_task_ctx_entry *task, *task_page;
628 	struct bnx2fc_interface *interface = tgt->port->priv;
629 	struct bnx2fc_hba *hba = interface->hba;
630 	int task_idx, index;
631 	int rc = 0;
632 	u64 err_warn_bit_map;
633 	u8 err_warn = 0xff;
634 
635 
636 	BNX2FC_TGT_DBG(tgt, "Entered UNSOL COMPLETION wqe = 0x%x\n", wqe);
637 	switch (wqe & FCOE_UNSOLICITED_CQE_SUBTYPE) {
638 	case FCOE_UNSOLICITED_FRAME_CQE_TYPE:
639 		frame_len = (wqe & FCOE_UNSOLICITED_CQE_PKT_LEN) >>
640 			     FCOE_UNSOLICITED_CQE_PKT_LEN_SHIFT;
641 
642 		num_rq = (frame_len + BNX2FC_RQ_BUF_SZ - 1) / BNX2FC_RQ_BUF_SZ;
643 
644 		spin_lock_bh(&tgt->tgt_lock);
645 		rq_data = (unsigned char *)bnx2fc_get_next_rqe(tgt, num_rq);
646 		spin_unlock_bh(&tgt->tgt_lock);
647 
648 		if (rq_data) {
649 			buf = rq_data;
650 		} else {
651 			buf1 = buf = kmalloc((num_rq * BNX2FC_RQ_BUF_SZ),
652 					      GFP_ATOMIC);
653 
654 			if (!buf1) {
655 				BNX2FC_TGT_DBG(tgt, "Memory alloc failure\n");
656 				break;
657 			}
658 
659 			for (i = 0; i < num_rq; i++) {
660 				spin_lock_bh(&tgt->tgt_lock);
661 				rq_data = (unsigned char *)
662 					   bnx2fc_get_next_rqe(tgt, 1);
663 				spin_unlock_bh(&tgt->tgt_lock);
664 				len = BNX2FC_RQ_BUF_SZ;
665 				memcpy(buf1, rq_data, len);
666 				buf1 += len;
667 			}
668 		}
669 		bnx2fc_process_l2_frame_compl(tgt, buf, frame_len,
670 					      FC_XID_UNKNOWN);
671 
672 		if (buf != rq_data)
673 			kfree(buf);
674 		spin_lock_bh(&tgt->tgt_lock);
675 		bnx2fc_return_rqe(tgt, num_rq);
676 		spin_unlock_bh(&tgt->tgt_lock);
677 		break;
678 
679 	case FCOE_ERROR_DETECTION_CQE_TYPE:
680 		/*
681 		 * In case of error reporting CQE a single RQ entry
682 		 * is consumed.
683 		 */
684 		spin_lock_bh(&tgt->tgt_lock);
685 		num_rq = 1;
686 		err_entry = (struct fcoe_err_report_entry *)
687 			     bnx2fc_get_next_rqe(tgt, 1);
688 		xid = err_entry->fc_hdr.ox_id;
689 		BNX2FC_TGT_DBG(tgt, "Unsol Error Frame OX_ID = 0x%x\n", xid);
690 		BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x\n",
691 			err_entry->data.err_warn_bitmap_hi,
692 			err_entry->data.err_warn_bitmap_lo);
693 		BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x\n",
694 			err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
695 
696 
697 		if (xid > BNX2FC_MAX_XID) {
698 			BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n",
699 				   xid);
700 			goto ret_err_rqe;
701 		}
702 
703 		task_idx = xid / BNX2FC_TASKS_PER_PAGE;
704 		index = xid % BNX2FC_TASKS_PER_PAGE;
705 		task_page = (struct fcoe_task_ctx_entry *)
706 					hba->task_ctx[task_idx];
707 		task = &(task_page[index]);
708 
709 		io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
710 		if (!io_req)
711 			goto ret_err_rqe;
712 
713 		if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
714 			printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
715 			goto ret_err_rqe;
716 		}
717 
718 		if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
719 				       &io_req->req_flags)) {
720 			BNX2FC_IO_DBG(io_req, "unsol_err: cleanup in "
721 					    "progress.. ignore unsol err\n");
722 			goto ret_err_rqe;
723 		}
724 
725 		err_warn_bit_map = (u64)
726 			((u64)err_entry->data.err_warn_bitmap_hi << 32) |
727 			(u64)err_entry->data.err_warn_bitmap_lo;
728 		for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
729 			if (err_warn_bit_map & (u64)((u64)1 << i)) {
730 				err_warn = i;
731 				break;
732 			}
733 		}
734 
735 		/*
736 		 * If ABTS is already in progress, and FW error is
737 		 * received after that, do not cancel the timeout_work
738 		 * and let the error recovery continue by explicitly
739 		 * logging out the target, when the ABTS eventually
740 		 * times out.
741 		 */
742 		if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
743 			printk(KERN_ERR PFX "err_warn: io_req (0x%x) already "
744 					    "in ABTS processing\n", xid);
745 			goto ret_err_rqe;
746 		}
747 		BNX2FC_TGT_DBG(tgt, "err = 0x%x\n", err_warn);
748 		if (tgt->dev_type != TYPE_TAPE)
749 			goto skip_rec;
750 		switch (err_warn) {
751 		case FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION:
752 		case FCOE_ERROR_CODE_DATA_OOO_RO:
753 		case FCOE_ERROR_CODE_COMMON_INCORRECT_SEQ_CNT:
754 		case FCOE_ERROR_CODE_DATA_SOFI3_SEQ_ACTIVE_SET:
755 		case FCOE_ERROR_CODE_FCP_RSP_OPENED_SEQ:
756 		case FCOE_ERROR_CODE_DATA_SOFN_SEQ_ACTIVE_RESET:
757 			BNX2FC_TGT_DBG(tgt, "REC TOV popped for xid - 0x%x\n",
758 				   xid);
759 			memset(&io_req->err_entry, 0,
760 			       sizeof(struct fcoe_err_report_entry));
761 			memcpy(&io_req->err_entry, err_entry,
762 			       sizeof(struct fcoe_err_report_entry));
763 			if (!test_bit(BNX2FC_FLAG_SRR_SENT,
764 				      &io_req->req_flags)) {
765 				spin_unlock_bh(&tgt->tgt_lock);
766 				rc = bnx2fc_send_rec(io_req);
767 				spin_lock_bh(&tgt->tgt_lock);
768 
769 				if (rc)
770 					goto skip_rec;
771 			} else
772 				printk(KERN_ERR PFX "SRR in progress\n");
773 			goto ret_err_rqe;
774 			break;
775 		default:
776 			break;
777 		}
778 
779 skip_rec:
780 		set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags);
781 		/*
782 		 * Cancel the timeout_work, as we received IO
783 		 * completion with FW error.
784 		 */
785 		if (cancel_delayed_work(&io_req->timeout_work))
786 			kref_put(&io_req->refcount, bnx2fc_cmd_release);
787 
788 		rc = bnx2fc_initiate_abts(io_req);
789 		if (rc != SUCCESS) {
790 			printk(KERN_ERR PFX "err_warn: initiate_abts "
791 				"failed xid = 0x%x. issue cleanup\n",
792 				io_req->xid);
793 			bnx2fc_initiate_cleanup(io_req);
794 		}
795 ret_err_rqe:
796 		bnx2fc_return_rqe(tgt, 1);
797 		spin_unlock_bh(&tgt->tgt_lock);
798 		break;
799 
800 	case FCOE_WARNING_DETECTION_CQE_TYPE:
801 		/*
802 		 *In case of warning reporting CQE a single RQ entry
803 		 * is consumes.
804 		 */
805 		spin_lock_bh(&tgt->tgt_lock);
806 		num_rq = 1;
807 		err_entry = (struct fcoe_err_report_entry *)
808 			     bnx2fc_get_next_rqe(tgt, 1);
809 		xid = cpu_to_be16(err_entry->fc_hdr.ox_id);
810 		BNX2FC_TGT_DBG(tgt, "Unsol Warning Frame OX_ID = 0x%x\n", xid);
811 		BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x",
812 			err_entry->data.err_warn_bitmap_hi,
813 			err_entry->data.err_warn_bitmap_lo);
814 		BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x",
815 			err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
816 
817 		if (xid > BNX2FC_MAX_XID) {
818 			BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid);
819 			goto ret_warn_rqe;
820 		}
821 
822 		err_warn_bit_map = (u64)
823 			((u64)err_entry->data.err_warn_bitmap_hi << 32) |
824 			(u64)err_entry->data.err_warn_bitmap_lo;
825 		for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
826 			if (err_warn_bit_map & (u64) (1 << i)) {
827 				err_warn = i;
828 				break;
829 			}
830 		}
831 		BNX2FC_TGT_DBG(tgt, "warn = 0x%x\n", err_warn);
832 
833 		task_idx = xid / BNX2FC_TASKS_PER_PAGE;
834 		index = xid % BNX2FC_TASKS_PER_PAGE;
835 		task_page = (struct fcoe_task_ctx_entry *)
836 			     interface->hba->task_ctx[task_idx];
837 		task = &(task_page[index]);
838 		io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
839 		if (!io_req)
840 			goto ret_warn_rqe;
841 
842 		if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
843 			printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
844 			goto ret_warn_rqe;
845 		}
846 
847 		memset(&io_req->err_entry, 0,
848 		       sizeof(struct fcoe_err_report_entry));
849 		memcpy(&io_req->err_entry, err_entry,
850 		       sizeof(struct fcoe_err_report_entry));
851 
852 		if (err_warn == FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION)
853 			/* REC_TOV is not a warning code */
854 			BUG_ON(1);
855 		else
856 			BNX2FC_TGT_DBG(tgt, "Unsolicited warning\n");
857 ret_warn_rqe:
858 		bnx2fc_return_rqe(tgt, 1);
859 		spin_unlock_bh(&tgt->tgt_lock);
860 		break;
861 
862 	default:
863 		printk(KERN_ERR PFX "Unsol Compl: Invalid CQE Subtype\n");
864 		break;
865 	}
866 }
867 
868 void bnx2fc_process_cq_compl(struct bnx2fc_rport *tgt, u16 wqe)
869 {
870 	struct fcoe_task_ctx_entry *task;
871 	struct fcoe_task_ctx_entry *task_page;
872 	struct fcoe_port *port = tgt->port;
873 	struct bnx2fc_interface *interface = port->priv;
874 	struct bnx2fc_hba *hba = interface->hba;
875 	struct bnx2fc_cmd *io_req;
876 	int task_idx, index;
877 	u16 xid;
878 	u8  cmd_type;
879 	u8 rx_state = 0;
880 	u8 num_rq;
881 
882 	spin_lock_bh(&tgt->tgt_lock);
883 	xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
884 	if (xid >= BNX2FC_MAX_TASKS) {
885 		printk(KERN_ERR PFX "ERROR:xid out of range\n");
886 		spin_unlock_bh(&tgt->tgt_lock);
887 		return;
888 	}
889 	task_idx = xid / BNX2FC_TASKS_PER_PAGE;
890 	index = xid % BNX2FC_TASKS_PER_PAGE;
891 	task_page = (struct fcoe_task_ctx_entry *)hba->task_ctx[task_idx];
892 	task = &(task_page[index]);
893 
894 	num_rq = ((task->rxwr_txrd.var_ctx.rx_flags &
895 		   FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE) >>
896 		   FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE_SHIFT);
897 
898 	io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
899 
900 	if (io_req == NULL) {
901 		printk(KERN_ERR PFX "ERROR? cq_compl - io_req is NULL\n");
902 		spin_unlock_bh(&tgt->tgt_lock);
903 		return;
904 	}
905 
906 	/* Timestamp IO completion time */
907 	cmd_type = io_req->cmd_type;
908 
909 	rx_state = ((task->rxwr_txrd.var_ctx.rx_flags &
910 		    FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE) >>
911 		    FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE_SHIFT);
912 
913 	/* Process other IO completion types */
914 	switch (cmd_type) {
915 	case BNX2FC_SCSI_CMD:
916 		if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) {
917 			bnx2fc_process_scsi_cmd_compl(io_req, task, num_rq);
918 			spin_unlock_bh(&tgt->tgt_lock);
919 			return;
920 		}
921 
922 		if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
923 			bnx2fc_process_abts_compl(io_req, task, num_rq);
924 		else if (rx_state ==
925 			 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
926 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
927 		else
928 			printk(KERN_ERR PFX "Invalid rx state - %d\n",
929 				rx_state);
930 		break;
931 
932 	case BNX2FC_TASK_MGMT_CMD:
933 		BNX2FC_IO_DBG(io_req, "Processing TM complete\n");
934 		bnx2fc_process_tm_compl(io_req, task, num_rq);
935 		break;
936 
937 	case BNX2FC_ABTS:
938 		/*
939 		 * ABTS request received by firmware. ABTS response
940 		 * will be delivered to the task belonging to the IO
941 		 * that was aborted
942 		 */
943 		BNX2FC_IO_DBG(io_req, "cq_compl- ABTS sent out by fw\n");
944 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
945 		break;
946 
947 	case BNX2FC_ELS:
948 		if (rx_state == FCOE_TASK_RX_STATE_COMPLETED)
949 			bnx2fc_process_els_compl(io_req, task, num_rq);
950 		else if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
951 			bnx2fc_process_abts_compl(io_req, task, num_rq);
952 		else if (rx_state ==
953 			 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
954 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
955 		else
956 			printk(KERN_ERR PFX "Invalid rx state =  %d\n",
957 				rx_state);
958 		break;
959 
960 	case BNX2FC_CLEANUP:
961 		BNX2FC_IO_DBG(io_req, "cq_compl- cleanup resp rcvd\n");
962 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
963 		break;
964 
965 	case BNX2FC_SEQ_CLEANUP:
966 		BNX2FC_IO_DBG(io_req, "cq_compl(0x%x) - seq cleanup resp\n",
967 			      io_req->xid);
968 		bnx2fc_process_seq_cleanup_compl(io_req, task, rx_state);
969 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
970 		break;
971 
972 	default:
973 		printk(KERN_ERR PFX "Invalid cmd_type %d\n", cmd_type);
974 		break;
975 	}
976 	spin_unlock_bh(&tgt->tgt_lock);
977 }
978 
979 void bnx2fc_arm_cq(struct bnx2fc_rport *tgt)
980 {
981 	struct b577xx_fcoe_rx_doorbell *rx_db = &tgt->rx_db;
982 	u32 msg;
983 
984 	wmb();
985 	rx_db->doorbell_cq_cons = tgt->cq_cons_idx | (tgt->cq_curr_toggle_bit <<
986 			FCOE_CQE_TOGGLE_BIT_SHIFT);
987 	msg = *((u32 *)rx_db);
988 	writel(cpu_to_le32(msg), tgt->ctx_base);
989 	mmiowb();
990 
991 }
992 
993 struct bnx2fc_work *bnx2fc_alloc_work(struct bnx2fc_rport *tgt, u16 wqe)
994 {
995 	struct bnx2fc_work *work;
996 	work = kzalloc(sizeof(struct bnx2fc_work), GFP_ATOMIC);
997 	if (!work)
998 		return NULL;
999 
1000 	INIT_LIST_HEAD(&work->list);
1001 	work->tgt = tgt;
1002 	work->wqe = wqe;
1003 	return work;
1004 }
1005 
1006 int bnx2fc_process_new_cqes(struct bnx2fc_rport *tgt)
1007 {
1008 	struct fcoe_cqe *cq;
1009 	u32 cq_cons;
1010 	struct fcoe_cqe *cqe;
1011 	u32 num_free_sqes = 0;
1012 	u32 num_cqes = 0;
1013 	u16 wqe;
1014 
1015 	/*
1016 	 * cq_lock is a low contention lock used to protect
1017 	 * the CQ data structure from being freed up during
1018 	 * the upload operation
1019 	 */
1020 	spin_lock_bh(&tgt->cq_lock);
1021 
1022 	if (!tgt->cq) {
1023 		printk(KERN_ERR PFX "process_new_cqes: cq is NULL\n");
1024 		spin_unlock_bh(&tgt->cq_lock);
1025 		return 0;
1026 	}
1027 	cq = tgt->cq;
1028 	cq_cons = tgt->cq_cons_idx;
1029 	cqe = &cq[cq_cons];
1030 
1031 	while (((wqe = cqe->wqe) & FCOE_CQE_TOGGLE_BIT) ==
1032 	       (tgt->cq_curr_toggle_bit <<
1033 	       FCOE_CQE_TOGGLE_BIT_SHIFT)) {
1034 
1035 		/* new entry on the cq */
1036 		if (wqe & FCOE_CQE_CQE_TYPE) {
1037 			/* Unsolicited event notification */
1038 			bnx2fc_process_unsol_compl(tgt, wqe);
1039 		} else {
1040 			/* Pending work request completion */
1041 			struct bnx2fc_work *work = NULL;
1042 			struct bnx2fc_percpu_s *fps = NULL;
1043 			unsigned int cpu = wqe % num_possible_cpus();
1044 
1045 			fps = &per_cpu(bnx2fc_percpu, cpu);
1046 			spin_lock_bh(&fps->fp_work_lock);
1047 			if (unlikely(!fps->iothread))
1048 				goto unlock;
1049 
1050 			work = bnx2fc_alloc_work(tgt, wqe);
1051 			if (work)
1052 				list_add_tail(&work->list,
1053 					      &fps->work_list);
1054 unlock:
1055 			spin_unlock_bh(&fps->fp_work_lock);
1056 
1057 			/* Pending work request completion */
1058 			if (fps->iothread && work)
1059 				wake_up_process(fps->iothread);
1060 			else
1061 				bnx2fc_process_cq_compl(tgt, wqe);
1062 			num_free_sqes++;
1063 		}
1064 		cqe++;
1065 		tgt->cq_cons_idx++;
1066 		num_cqes++;
1067 
1068 		if (tgt->cq_cons_idx == BNX2FC_CQ_WQES_MAX) {
1069 			tgt->cq_cons_idx = 0;
1070 			cqe = cq;
1071 			tgt->cq_curr_toggle_bit =
1072 				1 - tgt->cq_curr_toggle_bit;
1073 		}
1074 	}
1075 	if (num_cqes) {
1076 		/* Arm CQ only if doorbell is mapped */
1077 		if (tgt->ctx_base)
1078 			bnx2fc_arm_cq(tgt);
1079 		atomic_add(num_free_sqes, &tgt->free_sqes);
1080 	}
1081 	spin_unlock_bh(&tgt->cq_lock);
1082 	return 0;
1083 }
1084 
1085 /**
1086  * bnx2fc_fastpath_notification - process global event queue (KCQ)
1087  *
1088  * @hba:		adapter structure pointer
1089  * @new_cqe_kcqe:	pointer to newly DMA'd KCQ entry
1090  *
1091  * Fast path event notification handler
1092  */
1093 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
1094 					struct fcoe_kcqe *new_cqe_kcqe)
1095 {
1096 	u32 conn_id = new_cqe_kcqe->fcoe_conn_id;
1097 	struct bnx2fc_rport *tgt = hba->tgt_ofld_list[conn_id];
1098 
1099 	if (!tgt) {
1100 		printk(KERN_ERR PFX "conn_id 0x%x not valid\n", conn_id);
1101 		return;
1102 	}
1103 
1104 	bnx2fc_process_new_cqes(tgt);
1105 }
1106 
1107 /**
1108  * bnx2fc_process_ofld_cmpl - process FCoE session offload completion
1109  *
1110  * @hba:	adapter structure pointer
1111  * @ofld_kcqe:	connection offload kcqe pointer
1112  *
1113  * handle session offload completion, enable the session if offload is
1114  * successful.
1115  */
1116 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
1117 					struct fcoe_kcqe *ofld_kcqe)
1118 {
1119 	struct bnx2fc_rport		*tgt;
1120 	struct fcoe_port		*port;
1121 	struct bnx2fc_interface		*interface;
1122 	u32				conn_id;
1123 	u32				context_id;
1124 	int				rc;
1125 
1126 	conn_id = ofld_kcqe->fcoe_conn_id;
1127 	context_id = ofld_kcqe->fcoe_conn_context_id;
1128 	tgt = hba->tgt_ofld_list[conn_id];
1129 	if (!tgt) {
1130 		printk(KERN_ALERT PFX "ERROR:ofld_cmpl: No pending ofld req\n");
1131 		return;
1132 	}
1133 	BNX2FC_TGT_DBG(tgt, "Entered ofld compl - context_id = 0x%x\n",
1134 		ofld_kcqe->fcoe_conn_context_id);
1135 	port = tgt->port;
1136 	interface = tgt->port->priv;
1137 	if (hba != interface->hba) {
1138 		printk(KERN_ERR PFX "ERROR:ofld_cmpl: HBA mis-match\n");
1139 		goto ofld_cmpl_err;
1140 	}
1141 	/*
1142 	 * cnic has allocated a context_id for this session; use this
1143 	 * while enabling the session.
1144 	 */
1145 	tgt->context_id = context_id;
1146 	if (ofld_kcqe->completion_status) {
1147 		if (ofld_kcqe->completion_status ==
1148 				FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE) {
1149 			printk(KERN_ERR PFX "unable to allocate FCoE context "
1150 				"resources\n");
1151 			set_bit(BNX2FC_FLAG_CTX_ALLOC_FAILURE, &tgt->flags);
1152 		}
1153 		goto ofld_cmpl_err;
1154 	} else {
1155 
1156 		/* now enable the session */
1157 		rc = bnx2fc_send_session_enable_req(port, tgt);
1158 		if (rc) {
1159 			printk(KERN_ERR PFX "enable session failed\n");
1160 			goto ofld_cmpl_err;
1161 		}
1162 	}
1163 	return;
1164 ofld_cmpl_err:
1165 	set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1166 	wake_up_interruptible(&tgt->ofld_wait);
1167 }
1168 
1169 /**
1170  * bnx2fc_process_enable_conn_cmpl - process FCoE session enable completion
1171  *
1172  * @hba:	adapter structure pointer
1173  * @ofld_kcqe:	connection offload kcqe pointer
1174  *
1175  * handle session enable completion, mark the rport as ready
1176  */
1177 
1178 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
1179 						struct fcoe_kcqe *ofld_kcqe)
1180 {
1181 	struct bnx2fc_rport		*tgt;
1182 	struct bnx2fc_interface		*interface;
1183 	u32				conn_id;
1184 	u32				context_id;
1185 
1186 	context_id = ofld_kcqe->fcoe_conn_context_id;
1187 	conn_id = ofld_kcqe->fcoe_conn_id;
1188 	tgt = hba->tgt_ofld_list[conn_id];
1189 	if (!tgt) {
1190 		printk(KERN_ERR PFX "ERROR:enbl_cmpl: No pending ofld req\n");
1191 		return;
1192 	}
1193 
1194 	BNX2FC_TGT_DBG(tgt, "Enable compl - context_id = 0x%x\n",
1195 		ofld_kcqe->fcoe_conn_context_id);
1196 
1197 	/*
1198 	 * context_id should be the same for this target during offload
1199 	 * and enable
1200 	 */
1201 	if (tgt->context_id != context_id) {
1202 		printk(KERN_ERR PFX "context id mis-match\n");
1203 		return;
1204 	}
1205 	interface = tgt->port->priv;
1206 	if (hba != interface->hba) {
1207 		printk(KERN_ERR PFX "bnx2fc-enbl_cmpl: HBA mis-match\n");
1208 		goto enbl_cmpl_err;
1209 	}
1210 	if (ofld_kcqe->completion_status)
1211 		goto enbl_cmpl_err;
1212 	else {
1213 		/* enable successful - rport ready for issuing IOs */
1214 		set_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1215 		set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1216 		wake_up_interruptible(&tgt->ofld_wait);
1217 	}
1218 	return;
1219 
1220 enbl_cmpl_err:
1221 	set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1222 	wake_up_interruptible(&tgt->ofld_wait);
1223 }
1224 
1225 static void bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba *hba,
1226 					struct fcoe_kcqe *disable_kcqe)
1227 {
1228 
1229 	struct bnx2fc_rport		*tgt;
1230 	u32				conn_id;
1231 
1232 	conn_id = disable_kcqe->fcoe_conn_id;
1233 	tgt = hba->tgt_ofld_list[conn_id];
1234 	if (!tgt) {
1235 		printk(KERN_ERR PFX "ERROR: disable_cmpl: No disable req\n");
1236 		return;
1237 	}
1238 
1239 	BNX2FC_TGT_DBG(tgt, PFX "disable_cmpl: conn_id %d\n", conn_id);
1240 
1241 	if (disable_kcqe->completion_status) {
1242 		printk(KERN_ERR PFX "Disable failed with cmpl status %d\n",
1243 			disable_kcqe->completion_status);
1244 		return;
1245 	} else {
1246 		/* disable successful */
1247 		BNX2FC_TGT_DBG(tgt, "disable successful\n");
1248 		clear_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1249 		set_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1250 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1251 		wake_up_interruptible(&tgt->upld_wait);
1252 	}
1253 }
1254 
1255 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
1256 					struct fcoe_kcqe *destroy_kcqe)
1257 {
1258 	struct bnx2fc_rport		*tgt;
1259 	u32				conn_id;
1260 
1261 	conn_id = destroy_kcqe->fcoe_conn_id;
1262 	tgt = hba->tgt_ofld_list[conn_id];
1263 	if (!tgt) {
1264 		printk(KERN_ERR PFX "destroy_cmpl: No destroy req\n");
1265 		return;
1266 	}
1267 
1268 	BNX2FC_TGT_DBG(tgt, "destroy_cmpl: conn_id %d\n", conn_id);
1269 
1270 	if (destroy_kcqe->completion_status) {
1271 		printk(KERN_ERR PFX "Destroy conn failed, cmpl status %d\n",
1272 			destroy_kcqe->completion_status);
1273 		return;
1274 	} else {
1275 		/* destroy successful */
1276 		BNX2FC_TGT_DBG(tgt, "upload successful\n");
1277 		clear_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1278 		set_bit(BNX2FC_FLAG_DESTROYED, &tgt->flags);
1279 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1280 		wake_up_interruptible(&tgt->upld_wait);
1281 	}
1282 }
1283 
1284 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code)
1285 {
1286 	switch (err_code) {
1287 	case FCOE_KCQE_COMPLETION_STATUS_INVALID_OPCODE:
1288 		printk(KERN_ERR PFX "init_failure due to invalid opcode\n");
1289 		break;
1290 
1291 	case FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE:
1292 		printk(KERN_ERR PFX "init failed due to ctx alloc failure\n");
1293 		break;
1294 
1295 	case FCOE_KCQE_COMPLETION_STATUS_NIC_ERROR:
1296 		printk(KERN_ERR PFX "init_failure due to NIC error\n");
1297 		break;
1298 	case FCOE_KCQE_COMPLETION_STATUS_ERROR:
1299 		printk(KERN_ERR PFX "init failure due to compl status err\n");
1300 		break;
1301 	case FCOE_KCQE_COMPLETION_STATUS_WRONG_HSI_VERSION:
1302 		printk(KERN_ERR PFX "init failure due to HSI mismatch\n");
1303 		break;
1304 	default:
1305 		printk(KERN_ERR PFX "Unknown Error code %d\n", err_code);
1306 	}
1307 }
1308 
1309 /**
1310  * bnx2fc_indicae_kcqe - process KCQE
1311  *
1312  * @hba:	adapter structure pointer
1313  * @kcqe:	kcqe pointer
1314  * @num_cqe:	Number of completion queue elements
1315  *
1316  * Generic KCQ event handler
1317  */
1318 void bnx2fc_indicate_kcqe(void *context, struct kcqe *kcq[],
1319 					u32 num_cqe)
1320 {
1321 	struct bnx2fc_hba *hba = (struct bnx2fc_hba *)context;
1322 	int i = 0;
1323 	struct fcoe_kcqe *kcqe = NULL;
1324 
1325 	while (i < num_cqe) {
1326 		kcqe = (struct fcoe_kcqe *) kcq[i++];
1327 
1328 		switch (kcqe->op_code) {
1329 		case FCOE_KCQE_OPCODE_CQ_EVENT_NOTIFICATION:
1330 			bnx2fc_fastpath_notification(hba, kcqe);
1331 			break;
1332 
1333 		case FCOE_KCQE_OPCODE_OFFLOAD_CONN:
1334 			bnx2fc_process_ofld_cmpl(hba, kcqe);
1335 			break;
1336 
1337 		case FCOE_KCQE_OPCODE_ENABLE_CONN:
1338 			bnx2fc_process_enable_conn_cmpl(hba, kcqe);
1339 			break;
1340 
1341 		case FCOE_KCQE_OPCODE_INIT_FUNC:
1342 			if (kcqe->completion_status !=
1343 					FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1344 				bnx2fc_init_failure(hba,
1345 						kcqe->completion_status);
1346 			} else {
1347 				set_bit(ADAPTER_STATE_UP, &hba->adapter_state);
1348 				bnx2fc_get_link_state(hba);
1349 				printk(KERN_INFO PFX "[%.2x]: FCOE_INIT passed\n",
1350 					(u8)hba->pcidev->bus->number);
1351 			}
1352 			break;
1353 
1354 		case FCOE_KCQE_OPCODE_DESTROY_FUNC:
1355 			if (kcqe->completion_status !=
1356 					FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1357 
1358 				printk(KERN_ERR PFX "DESTROY failed\n");
1359 			} else {
1360 				printk(KERN_ERR PFX "DESTROY success\n");
1361 			}
1362 			set_bit(BNX2FC_FLAG_DESTROY_CMPL, &hba->flags);
1363 			wake_up_interruptible(&hba->destroy_wait);
1364 			break;
1365 
1366 		case FCOE_KCQE_OPCODE_DISABLE_CONN:
1367 			bnx2fc_process_conn_disable_cmpl(hba, kcqe);
1368 			break;
1369 
1370 		case FCOE_KCQE_OPCODE_DESTROY_CONN:
1371 			bnx2fc_process_conn_destroy_cmpl(hba, kcqe);
1372 			break;
1373 
1374 		case FCOE_KCQE_OPCODE_STAT_FUNC:
1375 			if (kcqe->completion_status !=
1376 			    FCOE_KCQE_COMPLETION_STATUS_SUCCESS)
1377 				printk(KERN_ERR PFX "STAT failed\n");
1378 			complete(&hba->stat_req_done);
1379 			break;
1380 
1381 		case FCOE_KCQE_OPCODE_FCOE_ERROR:
1382 			/* fall thru */
1383 		default:
1384 			printk(KERN_ERR PFX "unknown opcode 0x%x\n",
1385 								kcqe->op_code);
1386 		}
1387 	}
1388 }
1389 
1390 void bnx2fc_add_2_sq(struct bnx2fc_rport *tgt, u16 xid)
1391 {
1392 	struct fcoe_sqe *sqe;
1393 
1394 	sqe = &tgt->sq[tgt->sq_prod_idx];
1395 
1396 	/* Fill SQ WQE */
1397 	sqe->wqe = xid << FCOE_SQE_TASK_ID_SHIFT;
1398 	sqe->wqe |= tgt->sq_curr_toggle_bit << FCOE_SQE_TOGGLE_BIT_SHIFT;
1399 
1400 	/* Advance SQ Prod Idx */
1401 	if (++tgt->sq_prod_idx == BNX2FC_SQ_WQES_MAX) {
1402 		tgt->sq_prod_idx = 0;
1403 		tgt->sq_curr_toggle_bit = 1 - tgt->sq_curr_toggle_bit;
1404 	}
1405 }
1406 
1407 void bnx2fc_ring_doorbell(struct bnx2fc_rport *tgt)
1408 {
1409 	struct b577xx_doorbell_set_prod *sq_db = &tgt->sq_db;
1410 	u32 msg;
1411 
1412 	wmb();
1413 	sq_db->prod = tgt->sq_prod_idx |
1414 				(tgt->sq_curr_toggle_bit << 15);
1415 	msg = *((u32 *)sq_db);
1416 	writel(cpu_to_le32(msg), tgt->ctx_base);
1417 	mmiowb();
1418 
1419 }
1420 
1421 int bnx2fc_map_doorbell(struct bnx2fc_rport *tgt)
1422 {
1423 	u32 context_id = tgt->context_id;
1424 	struct fcoe_port *port = tgt->port;
1425 	u32 reg_off;
1426 	resource_size_t reg_base;
1427 	struct bnx2fc_interface *interface = port->priv;
1428 	struct bnx2fc_hba *hba = interface->hba;
1429 
1430 	reg_base = pci_resource_start(hba->pcidev,
1431 					BNX2X_DOORBELL_PCI_BAR);
1432 	reg_off = BNX2FC_5771X_DB_PAGE_SIZE *
1433 			(context_id & 0x1FFFF) + DPM_TRIGER_TYPE;
1434 	tgt->ctx_base = ioremap_nocache(reg_base + reg_off, 4);
1435 	if (!tgt->ctx_base)
1436 		return -ENOMEM;
1437 	return 0;
1438 }
1439 
1440 char *bnx2fc_get_next_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1441 {
1442 	char *buf = (char *)tgt->rq + (tgt->rq_cons_idx * BNX2FC_RQ_BUF_SZ);
1443 
1444 	if (tgt->rq_cons_idx + num_items > BNX2FC_RQ_WQES_MAX)
1445 		return NULL;
1446 
1447 	tgt->rq_cons_idx += num_items;
1448 
1449 	if (tgt->rq_cons_idx >= BNX2FC_RQ_WQES_MAX)
1450 		tgt->rq_cons_idx -= BNX2FC_RQ_WQES_MAX;
1451 
1452 	return buf;
1453 }
1454 
1455 void bnx2fc_return_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1456 {
1457 	/* return the rq buffer */
1458 	u32 next_prod_idx = tgt->rq_prod_idx + num_items;
1459 	if ((next_prod_idx & 0x7fff) == BNX2FC_RQ_WQES_MAX) {
1460 		/* Wrap around RQ */
1461 		next_prod_idx += 0x8000 - BNX2FC_RQ_WQES_MAX;
1462 	}
1463 	tgt->rq_prod_idx = next_prod_idx;
1464 	tgt->conn_db->rq_prod = tgt->rq_prod_idx;
1465 }
1466 
1467 void bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd *seq_clnp_req,
1468 				  struct fcoe_task_ctx_entry *task,
1469 				  struct bnx2fc_cmd *orig_io_req,
1470 				  u32 offset)
1471 {
1472 	struct scsi_cmnd *sc_cmd = orig_io_req->sc_cmd;
1473 	struct bnx2fc_rport *tgt = seq_clnp_req->tgt;
1474 	struct bnx2fc_interface *interface = tgt->port->priv;
1475 	struct fcoe_bd_ctx *bd = orig_io_req->bd_tbl->bd_tbl;
1476 	struct fcoe_task_ctx_entry *orig_task;
1477 	struct fcoe_task_ctx_entry *task_page;
1478 	struct fcoe_ext_mul_sges_ctx *sgl;
1479 	u8 task_type = FCOE_TASK_TYPE_SEQUENCE_CLEANUP;
1480 	u8 orig_task_type;
1481 	u16 orig_xid = orig_io_req->xid;
1482 	u32 context_id = tgt->context_id;
1483 	u64 phys_addr = (u64)orig_io_req->bd_tbl->bd_tbl_dma;
1484 	u32 orig_offset = offset;
1485 	int bd_count;
1486 	int orig_task_idx, index;
1487 	int i;
1488 
1489 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1490 
1491 	if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1492 		orig_task_type = FCOE_TASK_TYPE_WRITE;
1493 	else
1494 		orig_task_type = FCOE_TASK_TYPE_READ;
1495 
1496 	/* Tx flags */
1497 	task->txwr_rxrd.const_ctx.tx_flags =
1498 				FCOE_TASK_TX_STATE_SEQUENCE_CLEANUP <<
1499 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1500 	/* init flags */
1501 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1502 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1503 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1504 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1505 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1506 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1507 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1508 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1509 
1510 	task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1511 
1512 	task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_seq_cnt = 0;
1513 	task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_data_offset = offset;
1514 
1515 	bd_count = orig_io_req->bd_tbl->bd_valid;
1516 
1517 	/* obtain the appropriate bd entry from relative offset */
1518 	for (i = 0; i < bd_count; i++) {
1519 		if (offset < bd[i].buf_len)
1520 			break;
1521 		offset -= bd[i].buf_len;
1522 	}
1523 	phys_addr += (i * sizeof(struct fcoe_bd_ctx));
1524 
1525 	if (orig_task_type == FCOE_TASK_TYPE_WRITE) {
1526 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1527 				(u32)phys_addr;
1528 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1529 				(u32)((u64)phys_addr >> 32);
1530 		task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1531 				bd_count;
1532 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_off =
1533 				offset; /* adjusted offset */
1534 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_idx = i;
1535 	} else {
1536 		orig_task_idx = orig_xid / BNX2FC_TASKS_PER_PAGE;
1537 		index = orig_xid % BNX2FC_TASKS_PER_PAGE;
1538 
1539 		task_page = (struct fcoe_task_ctx_entry *)
1540 			     interface->hba->task_ctx[orig_task_idx];
1541 		orig_task = &(task_page[index]);
1542 
1543 		/* Multiple SGEs were used for this IO */
1544 		sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1545 		sgl->mul_sgl.cur_sge_addr.lo = (u32)phys_addr;
1546 		sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32);
1547 		sgl->mul_sgl.sgl_size = bd_count;
1548 		sgl->mul_sgl.cur_sge_off = offset; /*adjusted offset */
1549 		sgl->mul_sgl.cur_sge_idx = i;
1550 
1551 		memset(&task->rxwr_only.rx_seq_ctx, 0,
1552 		       sizeof(struct fcoe_rx_seq_ctx));
1553 		task->rxwr_only.rx_seq_ctx.low_exp_ro = orig_offset;
1554 		task->rxwr_only.rx_seq_ctx.high_exp_ro = orig_offset;
1555 	}
1556 }
1557 void bnx2fc_init_cleanup_task(struct bnx2fc_cmd *io_req,
1558 			      struct fcoe_task_ctx_entry *task,
1559 			      u16 orig_xid)
1560 {
1561 	u8 task_type = FCOE_TASK_TYPE_EXCHANGE_CLEANUP;
1562 	struct bnx2fc_rport *tgt = io_req->tgt;
1563 	u32 context_id = tgt->context_id;
1564 
1565 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1566 
1567 	/* Tx Write Rx Read */
1568 	/* init flags */
1569 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1570 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1571 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1572 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1573 	if (tgt->dev_type == TYPE_TAPE)
1574 		task->txwr_rxrd.const_ctx.init_flags |=
1575 				FCOE_TASK_DEV_TYPE_TAPE <<
1576 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1577 	else
1578 		task->txwr_rxrd.const_ctx.init_flags |=
1579 				FCOE_TASK_DEV_TYPE_DISK <<
1580 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1581 	task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1582 
1583 	/* Tx flags */
1584 	task->txwr_rxrd.const_ctx.tx_flags =
1585 				FCOE_TASK_TX_STATE_EXCHANGE_CLEANUP <<
1586 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1587 
1588 	/* Rx Read Tx Write */
1589 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1590 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1591 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1592 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1593 }
1594 
1595 void bnx2fc_init_mp_task(struct bnx2fc_cmd *io_req,
1596 				struct fcoe_task_ctx_entry *task)
1597 {
1598 	struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
1599 	struct bnx2fc_rport *tgt = io_req->tgt;
1600 	struct fc_frame_header *fc_hdr;
1601 	struct fcoe_ext_mul_sges_ctx *sgl;
1602 	u8 task_type = 0;
1603 	u64 *hdr;
1604 	u64 temp_hdr[3];
1605 	u32 context_id;
1606 
1607 
1608 	/* Obtain task_type */
1609 	if ((io_req->cmd_type == BNX2FC_TASK_MGMT_CMD) ||
1610 	    (io_req->cmd_type == BNX2FC_ELS)) {
1611 		task_type = FCOE_TASK_TYPE_MIDPATH;
1612 	} else if (io_req->cmd_type == BNX2FC_ABTS) {
1613 		task_type = FCOE_TASK_TYPE_ABTS;
1614 	}
1615 
1616 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1617 
1618 	/* Setup the task from io_req for easy reference */
1619 	io_req->task = task;
1620 
1621 	BNX2FC_IO_DBG(io_req, "Init MP task for cmd_type = %d task_type = %d\n",
1622 		io_req->cmd_type, task_type);
1623 
1624 	/* Tx only */
1625 	if ((task_type == FCOE_TASK_TYPE_MIDPATH) ||
1626 	    (task_type == FCOE_TASK_TYPE_UNSOLICITED)) {
1627 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1628 				(u32)mp_req->mp_req_bd_dma;
1629 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1630 				(u32)((u64)mp_req->mp_req_bd_dma >> 32);
1631 		task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1;
1632 	}
1633 
1634 	/* Tx Write Rx Read */
1635 	/* init flags */
1636 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1637 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1638 	if (tgt->dev_type == TYPE_TAPE)
1639 		task->txwr_rxrd.const_ctx.init_flags |=
1640 				FCOE_TASK_DEV_TYPE_TAPE <<
1641 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1642 	else
1643 		task->txwr_rxrd.const_ctx.init_flags |=
1644 				FCOE_TASK_DEV_TYPE_DISK <<
1645 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1646 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1647 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1648 
1649 	/* tx flags */
1650 	task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_INIT <<
1651 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1652 
1653 	/* Rx Write Tx Read */
1654 	task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1655 
1656 	/* rx flags */
1657 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1658 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1659 
1660 	context_id = tgt->context_id;
1661 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1662 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1663 
1664 	fc_hdr = &(mp_req->req_fc_hdr);
1665 	if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1666 		fc_hdr->fh_ox_id = cpu_to_be16(io_req->xid);
1667 		fc_hdr->fh_rx_id = htons(0xffff);
1668 		task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1669 	} else if (task_type == FCOE_TASK_TYPE_UNSOLICITED) {
1670 		fc_hdr->fh_rx_id = cpu_to_be16(io_req->xid);
1671 	}
1672 
1673 	/* Fill FC Header into middle path buffer */
1674 	hdr = (u64 *) &task->txwr_rxrd.union_ctx.tx_frame.fc_hdr;
1675 	memcpy(temp_hdr, fc_hdr, sizeof(temp_hdr));
1676 	hdr[0] = cpu_to_be64(temp_hdr[0]);
1677 	hdr[1] = cpu_to_be64(temp_hdr[1]);
1678 	hdr[2] = cpu_to_be64(temp_hdr[2]);
1679 
1680 	/* Rx Only */
1681 	if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1682 		sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1683 
1684 		sgl->mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_resp_bd_dma;
1685 		sgl->mul_sgl.cur_sge_addr.hi =
1686 				(u32)((u64)mp_req->mp_resp_bd_dma >> 32);
1687 		sgl->mul_sgl.sgl_size = 1;
1688 	}
1689 }
1690 
1691 void bnx2fc_init_task(struct bnx2fc_cmd *io_req,
1692 			     struct fcoe_task_ctx_entry *task)
1693 {
1694 	u8 task_type;
1695 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1696 	struct io_bdt *bd_tbl = io_req->bd_tbl;
1697 	struct bnx2fc_rport *tgt = io_req->tgt;
1698 	struct fcoe_cached_sge_ctx *cached_sge;
1699 	struct fcoe_ext_mul_sges_ctx *sgl;
1700 	int dev_type = tgt->dev_type;
1701 	u64 *fcp_cmnd;
1702 	u64 tmp_fcp_cmnd[4];
1703 	u32 context_id;
1704 	int cnt, i;
1705 	int bd_count;
1706 
1707 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1708 
1709 	/* Setup the task from io_req for easy reference */
1710 	io_req->task = task;
1711 
1712 	if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1713 		task_type = FCOE_TASK_TYPE_WRITE;
1714 	else
1715 		task_type = FCOE_TASK_TYPE_READ;
1716 
1717 	/* Tx only */
1718 	bd_count = bd_tbl->bd_valid;
1719 	cached_sge = &task->rxwr_only.union_ctx.read_info.sgl_ctx.cached_sge;
1720 	if (task_type == FCOE_TASK_TYPE_WRITE) {
1721 		if ((dev_type == TYPE_DISK) && (bd_count == 1)) {
1722 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1723 
1724 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.lo =
1725 			cached_sge->cur_buf_addr.lo =
1726 					fcoe_bd_tbl->buf_addr_lo;
1727 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.hi =
1728 			cached_sge->cur_buf_addr.hi =
1729 					fcoe_bd_tbl->buf_addr_hi;
1730 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_rem =
1731 			cached_sge->cur_buf_rem =
1732 					fcoe_bd_tbl->buf_len;
1733 
1734 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1735 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1736 		} else {
1737 			task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1738 					(u32)bd_tbl->bd_tbl_dma;
1739 			task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1740 					(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1741 			task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1742 					bd_tbl->bd_valid;
1743 		}
1744 	}
1745 
1746 	/*Tx Write Rx Read */
1747 	/* Init state to NORMAL */
1748 	task->txwr_rxrd.const_ctx.init_flags |= task_type <<
1749 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1750 	if (dev_type == TYPE_TAPE) {
1751 		task->txwr_rxrd.const_ctx.init_flags |=
1752 				FCOE_TASK_DEV_TYPE_TAPE <<
1753 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1754 		io_req->rec_retry = 0;
1755 		io_req->rec_retry = 0;
1756 	} else
1757 		task->txwr_rxrd.const_ctx.init_flags |=
1758 				FCOE_TASK_DEV_TYPE_DISK <<
1759 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1760 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1761 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1762 	/* tx flags */
1763 	task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_NORMAL <<
1764 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1765 
1766 	/* Set initial seq counter */
1767 	task->txwr_rxrd.union_ctx.tx_seq.ctx.seq_cnt = 1;
1768 
1769 	/* Fill FCP_CMND IU */
1770 	fcp_cmnd = (u64 *)
1771 		    task->txwr_rxrd.union_ctx.fcp_cmd.opaque;
1772 	bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)&tmp_fcp_cmnd);
1773 
1774 	/* swap fcp_cmnd */
1775 	cnt = sizeof(struct fcp_cmnd) / sizeof(u64);
1776 
1777 	for (i = 0; i < cnt; i++) {
1778 		*fcp_cmnd = cpu_to_be64(tmp_fcp_cmnd[i]);
1779 		fcp_cmnd++;
1780 	}
1781 
1782 	/* Rx Write Tx Read */
1783 	task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1784 
1785 	context_id = tgt->context_id;
1786 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1787 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1788 
1789 	/* rx flags */
1790 	/* Set state to "waiting for the first packet" */
1791 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1792 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1793 
1794 	task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1795 
1796 	/* Rx Only */
1797 	if (task_type != FCOE_TASK_TYPE_READ)
1798 		return;
1799 
1800 	sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1801 	bd_count = bd_tbl->bd_valid;
1802 
1803 	if (dev_type == TYPE_DISK) {
1804 		if (bd_count == 1) {
1805 
1806 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1807 
1808 			cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1809 			cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1810 			cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1811 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1812 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1813 		} else if (bd_count == 2) {
1814 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1815 
1816 			cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1817 			cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1818 			cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1819 
1820 			fcoe_bd_tbl++;
1821 			cached_sge->second_buf_addr.lo =
1822 						 fcoe_bd_tbl->buf_addr_lo;
1823 			cached_sge->second_buf_addr.hi =
1824 						fcoe_bd_tbl->buf_addr_hi;
1825 			cached_sge->second_buf_rem = fcoe_bd_tbl->buf_len;
1826 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1827 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1828 		} else {
1829 
1830 			sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1831 			sgl->mul_sgl.cur_sge_addr.hi =
1832 					(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1833 			sgl->mul_sgl.sgl_size = bd_count;
1834 		}
1835 	} else {
1836 		sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1837 		sgl->mul_sgl.cur_sge_addr.hi =
1838 				(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1839 		sgl->mul_sgl.sgl_size = bd_count;
1840 	}
1841 }
1842 
1843 /**
1844  * bnx2fc_setup_task_ctx - allocate and map task context
1845  *
1846  * @hba:	pointer to adapter structure
1847  *
1848  * allocate memory for task context, and associated BD table to be used
1849  * by firmware
1850  *
1851  */
1852 int bnx2fc_setup_task_ctx(struct bnx2fc_hba *hba)
1853 {
1854 	int rc = 0;
1855 	struct regpair *task_ctx_bdt;
1856 	dma_addr_t addr;
1857 	int i;
1858 
1859 	/*
1860 	 * Allocate task context bd table. A page size of bd table
1861 	 * can map 256 buffers. Each buffer contains 32 task context
1862 	 * entries. Hence the limit with one page is 8192 task context
1863 	 * entries.
1864 	 */
1865 	hba->task_ctx_bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
1866 						  PAGE_SIZE,
1867 						  &hba->task_ctx_bd_dma,
1868 						  GFP_KERNEL);
1869 	if (!hba->task_ctx_bd_tbl) {
1870 		printk(KERN_ERR PFX "unable to allocate task context BDT\n");
1871 		rc = -1;
1872 		goto out;
1873 	}
1874 	memset(hba->task_ctx_bd_tbl, 0, PAGE_SIZE);
1875 
1876 	/*
1877 	 * Allocate task_ctx which is an array of pointers pointing to
1878 	 * a page containing 32 task contexts
1879 	 */
1880 	hba->task_ctx = kzalloc((BNX2FC_TASK_CTX_ARR_SZ * sizeof(void *)),
1881 				 GFP_KERNEL);
1882 	if (!hba->task_ctx) {
1883 		printk(KERN_ERR PFX "unable to allocate task context array\n");
1884 		rc = -1;
1885 		goto out1;
1886 	}
1887 
1888 	/*
1889 	 * Allocate task_ctx_dma which is an array of dma addresses
1890 	 */
1891 	hba->task_ctx_dma = kmalloc((BNX2FC_TASK_CTX_ARR_SZ *
1892 					sizeof(dma_addr_t)), GFP_KERNEL);
1893 	if (!hba->task_ctx_dma) {
1894 		printk(KERN_ERR PFX "unable to alloc context mapping array\n");
1895 		rc = -1;
1896 		goto out2;
1897 	}
1898 
1899 	task_ctx_bdt = (struct regpair *)hba->task_ctx_bd_tbl;
1900 	for (i = 0; i < BNX2FC_TASK_CTX_ARR_SZ; i++) {
1901 
1902 		hba->task_ctx[i] = dma_alloc_coherent(&hba->pcidev->dev,
1903 						      PAGE_SIZE,
1904 						      &hba->task_ctx_dma[i],
1905 						      GFP_KERNEL);
1906 		if (!hba->task_ctx[i]) {
1907 			printk(KERN_ERR PFX "unable to alloc task context\n");
1908 			rc = -1;
1909 			goto out3;
1910 		}
1911 		memset(hba->task_ctx[i], 0, PAGE_SIZE);
1912 		addr = (u64)hba->task_ctx_dma[i];
1913 		task_ctx_bdt->hi = cpu_to_le32((u64)addr >> 32);
1914 		task_ctx_bdt->lo = cpu_to_le32((u32)addr);
1915 		task_ctx_bdt++;
1916 	}
1917 	return 0;
1918 
1919 out3:
1920 	for (i = 0; i < BNX2FC_TASK_CTX_ARR_SZ; i++) {
1921 		if (hba->task_ctx[i]) {
1922 
1923 			dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1924 				hba->task_ctx[i], hba->task_ctx_dma[i]);
1925 			hba->task_ctx[i] = NULL;
1926 		}
1927 	}
1928 
1929 	kfree(hba->task_ctx_dma);
1930 	hba->task_ctx_dma = NULL;
1931 out2:
1932 	kfree(hba->task_ctx);
1933 	hba->task_ctx = NULL;
1934 out1:
1935 	dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1936 			hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma);
1937 	hba->task_ctx_bd_tbl = NULL;
1938 out:
1939 	return rc;
1940 }
1941 
1942 void bnx2fc_free_task_ctx(struct bnx2fc_hba *hba)
1943 {
1944 	int i;
1945 
1946 	if (hba->task_ctx_bd_tbl) {
1947 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1948 				    hba->task_ctx_bd_tbl,
1949 				    hba->task_ctx_bd_dma);
1950 		hba->task_ctx_bd_tbl = NULL;
1951 	}
1952 
1953 	if (hba->task_ctx) {
1954 		for (i = 0; i < BNX2FC_TASK_CTX_ARR_SZ; i++) {
1955 			if (hba->task_ctx[i]) {
1956 				dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1957 						    hba->task_ctx[i],
1958 						    hba->task_ctx_dma[i]);
1959 				hba->task_ctx[i] = NULL;
1960 			}
1961 		}
1962 		kfree(hba->task_ctx);
1963 		hba->task_ctx = NULL;
1964 	}
1965 
1966 	kfree(hba->task_ctx_dma);
1967 	hba->task_ctx_dma = NULL;
1968 }
1969 
1970 static void bnx2fc_free_hash_table(struct bnx2fc_hba *hba)
1971 {
1972 	int i;
1973 	int segment_count;
1974 	int hash_table_size;
1975 	u32 *pbl;
1976 
1977 	segment_count = hba->hash_tbl_segment_count;
1978 	hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL *
1979 		sizeof(struct fcoe_hash_table_entry);
1980 
1981 	pbl = hba->hash_tbl_pbl;
1982 	for (i = 0; i < segment_count; ++i) {
1983 		dma_addr_t dma_address;
1984 
1985 		dma_address = le32_to_cpu(*pbl);
1986 		++pbl;
1987 		dma_address += ((u64)le32_to_cpu(*pbl)) << 32;
1988 		++pbl;
1989 		dma_free_coherent(&hba->pcidev->dev,
1990 				  BNX2FC_HASH_TBL_CHUNK_SIZE,
1991 				  hba->hash_tbl_segments[i],
1992 				  dma_address);
1993 
1994 	}
1995 
1996 	if (hba->hash_tbl_pbl) {
1997 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1998 				    hba->hash_tbl_pbl,
1999 				    hba->hash_tbl_pbl_dma);
2000 		hba->hash_tbl_pbl = NULL;
2001 	}
2002 }
2003 
2004 static int bnx2fc_allocate_hash_table(struct bnx2fc_hba *hba)
2005 {
2006 	int i;
2007 	int hash_table_size;
2008 	int segment_count;
2009 	int segment_array_size;
2010 	int dma_segment_array_size;
2011 	dma_addr_t *dma_segment_array;
2012 	u32 *pbl;
2013 
2014 	hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL *
2015 		sizeof(struct fcoe_hash_table_entry);
2016 
2017 	segment_count = hash_table_size + BNX2FC_HASH_TBL_CHUNK_SIZE - 1;
2018 	segment_count /= BNX2FC_HASH_TBL_CHUNK_SIZE;
2019 	hba->hash_tbl_segment_count = segment_count;
2020 
2021 	segment_array_size = segment_count * sizeof(*hba->hash_tbl_segments);
2022 	hba->hash_tbl_segments = kzalloc(segment_array_size, GFP_KERNEL);
2023 	if (!hba->hash_tbl_segments) {
2024 		printk(KERN_ERR PFX "hash table pointers alloc failed\n");
2025 		return -ENOMEM;
2026 	}
2027 	dma_segment_array_size = segment_count * sizeof(*dma_segment_array);
2028 	dma_segment_array = kzalloc(dma_segment_array_size, GFP_KERNEL);
2029 	if (!dma_segment_array) {
2030 		printk(KERN_ERR PFX "hash table pointers (dma) alloc failed\n");
2031 		return -ENOMEM;
2032 	}
2033 
2034 	for (i = 0; i < segment_count; ++i) {
2035 		hba->hash_tbl_segments[i] =
2036 			dma_alloc_coherent(&hba->pcidev->dev,
2037 					   BNX2FC_HASH_TBL_CHUNK_SIZE,
2038 					   &dma_segment_array[i],
2039 					   GFP_KERNEL);
2040 		if (!hba->hash_tbl_segments[i]) {
2041 			printk(KERN_ERR PFX "hash segment alloc failed\n");
2042 			while (--i >= 0) {
2043 				dma_free_coherent(&hba->pcidev->dev,
2044 						    BNX2FC_HASH_TBL_CHUNK_SIZE,
2045 						    hba->hash_tbl_segments[i],
2046 						    dma_segment_array[i]);
2047 				hba->hash_tbl_segments[i] = NULL;
2048 			}
2049 			kfree(dma_segment_array);
2050 			return -ENOMEM;
2051 		}
2052 		memset(hba->hash_tbl_segments[i], 0,
2053 		       BNX2FC_HASH_TBL_CHUNK_SIZE);
2054 	}
2055 
2056 	hba->hash_tbl_pbl = dma_alloc_coherent(&hba->pcidev->dev,
2057 					       PAGE_SIZE,
2058 					       &hba->hash_tbl_pbl_dma,
2059 					       GFP_KERNEL);
2060 	if (!hba->hash_tbl_pbl) {
2061 		printk(KERN_ERR PFX "hash table pbl alloc failed\n");
2062 		kfree(dma_segment_array);
2063 		return -ENOMEM;
2064 	}
2065 	memset(hba->hash_tbl_pbl, 0, PAGE_SIZE);
2066 
2067 	pbl = hba->hash_tbl_pbl;
2068 	for (i = 0; i < segment_count; ++i) {
2069 		u64 paddr = dma_segment_array[i];
2070 		*pbl = cpu_to_le32((u32) paddr);
2071 		++pbl;
2072 		*pbl = cpu_to_le32((u32) (paddr >> 32));
2073 		++pbl;
2074 	}
2075 	pbl = hba->hash_tbl_pbl;
2076 	i = 0;
2077 	while (*pbl && *(pbl + 1)) {
2078 		u32 lo;
2079 		u32 hi;
2080 		lo = *pbl;
2081 		++pbl;
2082 		hi = *pbl;
2083 		++pbl;
2084 		++i;
2085 	}
2086 	kfree(dma_segment_array);
2087 	return 0;
2088 }
2089 
2090 /**
2091  * bnx2fc_setup_fw_resc - Allocate and map hash table and dummy buffer
2092  *
2093  * @hba:	Pointer to adapter structure
2094  *
2095  */
2096 int bnx2fc_setup_fw_resc(struct bnx2fc_hba *hba)
2097 {
2098 	u64 addr;
2099 	u32 mem_size;
2100 	int i;
2101 
2102 	if (bnx2fc_allocate_hash_table(hba))
2103 		return -ENOMEM;
2104 
2105 	mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2106 	hba->t2_hash_tbl_ptr = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2107 						  &hba->t2_hash_tbl_ptr_dma,
2108 						  GFP_KERNEL);
2109 	if (!hba->t2_hash_tbl_ptr) {
2110 		printk(KERN_ERR PFX "unable to allocate t2 hash table ptr\n");
2111 		bnx2fc_free_fw_resc(hba);
2112 		return -ENOMEM;
2113 	}
2114 	memset(hba->t2_hash_tbl_ptr, 0x00, mem_size);
2115 
2116 	mem_size = BNX2FC_NUM_MAX_SESS *
2117 				sizeof(struct fcoe_t2_hash_table_entry);
2118 	hba->t2_hash_tbl = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2119 					      &hba->t2_hash_tbl_dma,
2120 					      GFP_KERNEL);
2121 	if (!hba->t2_hash_tbl) {
2122 		printk(KERN_ERR PFX "unable to allocate t2 hash table\n");
2123 		bnx2fc_free_fw_resc(hba);
2124 		return -ENOMEM;
2125 	}
2126 	memset(hba->t2_hash_tbl, 0x00, mem_size);
2127 	for (i = 0; i < BNX2FC_NUM_MAX_SESS; i++) {
2128 		addr = (unsigned long) hba->t2_hash_tbl_dma +
2129 			 ((i+1) * sizeof(struct fcoe_t2_hash_table_entry));
2130 		hba->t2_hash_tbl[i].next.lo = addr & 0xffffffff;
2131 		hba->t2_hash_tbl[i].next.hi = addr >> 32;
2132 	}
2133 
2134 	hba->dummy_buffer = dma_alloc_coherent(&hba->pcidev->dev,
2135 					       PAGE_SIZE, &hba->dummy_buf_dma,
2136 					       GFP_KERNEL);
2137 	if (!hba->dummy_buffer) {
2138 		printk(KERN_ERR PFX "unable to alloc MP Dummy Buffer\n");
2139 		bnx2fc_free_fw_resc(hba);
2140 		return -ENOMEM;
2141 	}
2142 
2143 	hba->stats_buffer = dma_alloc_coherent(&hba->pcidev->dev,
2144 					       PAGE_SIZE,
2145 					       &hba->stats_buf_dma,
2146 					       GFP_KERNEL);
2147 	if (!hba->stats_buffer) {
2148 		printk(KERN_ERR PFX "unable to alloc Stats Buffer\n");
2149 		bnx2fc_free_fw_resc(hba);
2150 		return -ENOMEM;
2151 	}
2152 	memset(hba->stats_buffer, 0x00, PAGE_SIZE);
2153 
2154 	return 0;
2155 }
2156 
2157 void bnx2fc_free_fw_resc(struct bnx2fc_hba *hba)
2158 {
2159 	u32 mem_size;
2160 
2161 	if (hba->stats_buffer) {
2162 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2163 				  hba->stats_buffer, hba->stats_buf_dma);
2164 		hba->stats_buffer = NULL;
2165 	}
2166 
2167 	if (hba->dummy_buffer) {
2168 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2169 				  hba->dummy_buffer, hba->dummy_buf_dma);
2170 		hba->dummy_buffer = NULL;
2171 	}
2172 
2173 	if (hba->t2_hash_tbl_ptr) {
2174 		mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2175 		dma_free_coherent(&hba->pcidev->dev, mem_size,
2176 				    hba->t2_hash_tbl_ptr,
2177 				    hba->t2_hash_tbl_ptr_dma);
2178 		hba->t2_hash_tbl_ptr = NULL;
2179 	}
2180 
2181 	if (hba->t2_hash_tbl) {
2182 		mem_size = BNX2FC_NUM_MAX_SESS *
2183 			    sizeof(struct fcoe_t2_hash_table_entry);
2184 		dma_free_coherent(&hba->pcidev->dev, mem_size,
2185 				    hba->t2_hash_tbl, hba->t2_hash_tbl_dma);
2186 		hba->t2_hash_tbl = NULL;
2187 	}
2188 	bnx2fc_free_hash_table(hba);
2189 }
2190