xref: /openbmc/linux/drivers/scsi/bnx2fc/bnx2fc_hwi.c (revision 31af04cd)
1 /* bnx2fc_hwi.c: QLogic Linux FCoE offload driver.
2  * This file contains the code that low level functions that interact
3  * with 57712 FCoE firmware.
4  *
5  * Copyright (c) 2008-2013 Broadcom Corporation
6  * Copyright (c) 2014-2016 QLogic Corporation
7  * Copyright (c) 2016-2017 Cavium Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation.
12  *
13  * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
14  */
15 
16 #include "bnx2fc.h"
17 
18 DECLARE_PER_CPU(struct bnx2fc_percpu_s, bnx2fc_percpu);
19 
20 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
21 					struct fcoe_kcqe *new_cqe_kcqe);
22 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
23 					struct fcoe_kcqe *ofld_kcqe);
24 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
25 						struct fcoe_kcqe *ofld_kcqe);
26 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code);
27 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
28 					struct fcoe_kcqe *destroy_kcqe);
29 
30 int bnx2fc_send_stat_req(struct bnx2fc_hba *hba)
31 {
32 	struct fcoe_kwqe_stat stat_req;
33 	struct kwqe *kwqe_arr[2];
34 	int num_kwqes = 1;
35 	int rc = 0;
36 
37 	memset(&stat_req, 0x00, sizeof(struct fcoe_kwqe_stat));
38 	stat_req.hdr.op_code = FCOE_KWQE_OPCODE_STAT;
39 	stat_req.hdr.flags =
40 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
41 
42 	stat_req.stat_params_addr_lo = (u32) hba->stats_buf_dma;
43 	stat_req.stat_params_addr_hi = (u32) ((u64)hba->stats_buf_dma >> 32);
44 
45 	kwqe_arr[0] = (struct kwqe *) &stat_req;
46 
47 	if (hba->cnic && hba->cnic->submit_kwqes)
48 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
49 
50 	return rc;
51 }
52 
53 /**
54  * bnx2fc_send_fw_fcoe_init_msg - initiates initial handshake with FCoE f/w
55  *
56  * @hba:	adapter structure pointer
57  *
58  * Send down FCoE firmware init KWQEs which initiates the initial handshake
59  *	with the f/w.
60  *
61  */
62 int bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba *hba)
63 {
64 	struct fcoe_kwqe_init1 fcoe_init1;
65 	struct fcoe_kwqe_init2 fcoe_init2;
66 	struct fcoe_kwqe_init3 fcoe_init3;
67 	struct kwqe *kwqe_arr[3];
68 	int num_kwqes = 3;
69 	int rc = 0;
70 
71 	if (!hba->cnic) {
72 		printk(KERN_ERR PFX "hba->cnic NULL during fcoe fw init\n");
73 		return -ENODEV;
74 	}
75 
76 	/* fill init1 KWQE */
77 	memset(&fcoe_init1, 0x00, sizeof(struct fcoe_kwqe_init1));
78 	fcoe_init1.hdr.op_code = FCOE_KWQE_OPCODE_INIT1;
79 	fcoe_init1.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
80 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
81 
82 	fcoe_init1.num_tasks = hba->max_tasks;
83 	fcoe_init1.sq_num_wqes = BNX2FC_SQ_WQES_MAX;
84 	fcoe_init1.rq_num_wqes = BNX2FC_RQ_WQES_MAX;
85 	fcoe_init1.rq_buffer_log_size = BNX2FC_RQ_BUF_LOG_SZ;
86 	fcoe_init1.cq_num_wqes = BNX2FC_CQ_WQES_MAX;
87 	fcoe_init1.dummy_buffer_addr_lo = (u32) hba->dummy_buf_dma;
88 	fcoe_init1.dummy_buffer_addr_hi = (u32) ((u64)hba->dummy_buf_dma >> 32);
89 	fcoe_init1.task_list_pbl_addr_lo = (u32) hba->task_ctx_bd_dma;
90 	fcoe_init1.task_list_pbl_addr_hi =
91 				(u32) ((u64) hba->task_ctx_bd_dma >> 32);
92 	fcoe_init1.mtu = BNX2FC_MINI_JUMBO_MTU;
93 
94 	fcoe_init1.flags = (PAGE_SHIFT <<
95 				FCOE_KWQE_INIT1_LOG_PAGE_SIZE_SHIFT);
96 
97 	fcoe_init1.num_sessions_log = BNX2FC_NUM_MAX_SESS_LOG;
98 
99 	/* fill init2 KWQE */
100 	memset(&fcoe_init2, 0x00, sizeof(struct fcoe_kwqe_init2));
101 	fcoe_init2.hdr.op_code = FCOE_KWQE_OPCODE_INIT2;
102 	fcoe_init2.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
103 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
104 
105 	fcoe_init2.hsi_major_version = FCOE_HSI_MAJOR_VERSION;
106 	fcoe_init2.hsi_minor_version = FCOE_HSI_MINOR_VERSION;
107 
108 
109 	fcoe_init2.hash_tbl_pbl_addr_lo = (u32) hba->hash_tbl_pbl_dma;
110 	fcoe_init2.hash_tbl_pbl_addr_hi = (u32)
111 					   ((u64) hba->hash_tbl_pbl_dma >> 32);
112 
113 	fcoe_init2.t2_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_dma;
114 	fcoe_init2.t2_hash_tbl_addr_hi = (u32)
115 					  ((u64) hba->t2_hash_tbl_dma >> 32);
116 
117 	fcoe_init2.t2_ptr_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_ptr_dma;
118 	fcoe_init2.t2_ptr_hash_tbl_addr_hi = (u32)
119 					((u64) hba->t2_hash_tbl_ptr_dma >> 32);
120 
121 	fcoe_init2.free_list_count = BNX2FC_NUM_MAX_SESS;
122 
123 	/* fill init3 KWQE */
124 	memset(&fcoe_init3, 0x00, sizeof(struct fcoe_kwqe_init3));
125 	fcoe_init3.hdr.op_code = FCOE_KWQE_OPCODE_INIT3;
126 	fcoe_init3.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
127 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
128 	fcoe_init3.error_bit_map_lo = 0xffffffff;
129 	fcoe_init3.error_bit_map_hi = 0xffffffff;
130 
131 	/*
132 	 * enable both cached connection and cached tasks
133 	 * 0 = none, 1 = cached connection, 2 = cached tasks, 3 = both
134 	 */
135 	fcoe_init3.perf_config = 3;
136 
137 	kwqe_arr[0] = (struct kwqe *) &fcoe_init1;
138 	kwqe_arr[1] = (struct kwqe *) &fcoe_init2;
139 	kwqe_arr[2] = (struct kwqe *) &fcoe_init3;
140 
141 	if (hba->cnic && hba->cnic->submit_kwqes)
142 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
143 
144 	return rc;
145 }
146 int bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba *hba)
147 {
148 	struct fcoe_kwqe_destroy fcoe_destroy;
149 	struct kwqe *kwqe_arr[2];
150 	int num_kwqes = 1;
151 	int rc = -1;
152 
153 	/* fill destroy KWQE */
154 	memset(&fcoe_destroy, 0x00, sizeof(struct fcoe_kwqe_destroy));
155 	fcoe_destroy.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY;
156 	fcoe_destroy.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
157 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
158 	kwqe_arr[0] = (struct kwqe *) &fcoe_destroy;
159 
160 	if (hba->cnic && hba->cnic->submit_kwqes)
161 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
162 	return rc;
163 }
164 
165 /**
166  * bnx2fc_send_session_ofld_req - initiates FCoE Session offload process
167  *
168  * @port:		port structure pointer
169  * @tgt:		bnx2fc_rport structure pointer
170  */
171 int bnx2fc_send_session_ofld_req(struct fcoe_port *port,
172 					struct bnx2fc_rport *tgt)
173 {
174 	struct fc_lport *lport = port->lport;
175 	struct bnx2fc_interface *interface = port->priv;
176 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
177 	struct bnx2fc_hba *hba = interface->hba;
178 	struct kwqe *kwqe_arr[4];
179 	struct fcoe_kwqe_conn_offload1 ofld_req1;
180 	struct fcoe_kwqe_conn_offload2 ofld_req2;
181 	struct fcoe_kwqe_conn_offload3 ofld_req3;
182 	struct fcoe_kwqe_conn_offload4 ofld_req4;
183 	struct fc_rport_priv *rdata = tgt->rdata;
184 	struct fc_rport *rport = tgt->rport;
185 	int num_kwqes = 4;
186 	u32 port_id;
187 	int rc = 0;
188 	u16 conn_id;
189 
190 	/* Initialize offload request 1 structure */
191 	memset(&ofld_req1, 0x00, sizeof(struct fcoe_kwqe_conn_offload1));
192 
193 	ofld_req1.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN1;
194 	ofld_req1.hdr.flags =
195 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
196 
197 
198 	conn_id = (u16)tgt->fcoe_conn_id;
199 	ofld_req1.fcoe_conn_id = conn_id;
200 
201 
202 	ofld_req1.sq_addr_lo = (u32) tgt->sq_dma;
203 	ofld_req1.sq_addr_hi = (u32)((u64) tgt->sq_dma >> 32);
204 
205 	ofld_req1.rq_pbl_addr_lo = (u32) tgt->rq_pbl_dma;
206 	ofld_req1.rq_pbl_addr_hi = (u32)((u64) tgt->rq_pbl_dma >> 32);
207 
208 	ofld_req1.rq_first_pbe_addr_lo = (u32) tgt->rq_dma;
209 	ofld_req1.rq_first_pbe_addr_hi =
210 				(u32)((u64) tgt->rq_dma >> 32);
211 
212 	ofld_req1.rq_prod = 0x8000;
213 
214 	/* Initialize offload request 2 structure */
215 	memset(&ofld_req2, 0x00, sizeof(struct fcoe_kwqe_conn_offload2));
216 
217 	ofld_req2.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN2;
218 	ofld_req2.hdr.flags =
219 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
220 
221 	ofld_req2.tx_max_fc_pay_len = rdata->maxframe_size;
222 
223 	ofld_req2.cq_addr_lo = (u32) tgt->cq_dma;
224 	ofld_req2.cq_addr_hi = (u32)((u64)tgt->cq_dma >> 32);
225 
226 	ofld_req2.xferq_addr_lo = (u32) tgt->xferq_dma;
227 	ofld_req2.xferq_addr_hi = (u32)((u64)tgt->xferq_dma >> 32);
228 
229 	ofld_req2.conn_db_addr_lo = (u32)tgt->conn_db_dma;
230 	ofld_req2.conn_db_addr_hi = (u32)((u64)tgt->conn_db_dma >> 32);
231 
232 	/* Initialize offload request 3 structure */
233 	memset(&ofld_req3, 0x00, sizeof(struct fcoe_kwqe_conn_offload3));
234 
235 	ofld_req3.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN3;
236 	ofld_req3.hdr.flags =
237 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
238 
239 	ofld_req3.vlan_tag = interface->vlan_id <<
240 				FCOE_KWQE_CONN_OFFLOAD3_VLAN_ID_SHIFT;
241 	ofld_req3.vlan_tag |= 3 << FCOE_KWQE_CONN_OFFLOAD3_PRIORITY_SHIFT;
242 
243 	port_id = fc_host_port_id(lport->host);
244 	if (port_id == 0) {
245 		BNX2FC_HBA_DBG(lport, "ofld_req: port_id = 0, link down?\n");
246 		return -EINVAL;
247 	}
248 
249 	/*
250 	 * Store s_id of the initiator for further reference. This will
251 	 * be used during disable/destroy during linkdown processing as
252 	 * when the lport is reset, the port_id also is reset to 0
253 	 */
254 	tgt->sid = port_id;
255 	ofld_req3.s_id[0] = (port_id & 0x000000FF);
256 	ofld_req3.s_id[1] = (port_id & 0x0000FF00) >> 8;
257 	ofld_req3.s_id[2] = (port_id & 0x00FF0000) >> 16;
258 
259 	port_id = rport->port_id;
260 	ofld_req3.d_id[0] = (port_id & 0x000000FF);
261 	ofld_req3.d_id[1] = (port_id & 0x0000FF00) >> 8;
262 	ofld_req3.d_id[2] = (port_id & 0x00FF0000) >> 16;
263 
264 	ofld_req3.tx_total_conc_seqs = rdata->max_seq;
265 
266 	ofld_req3.tx_max_conc_seqs_c3 = rdata->max_seq;
267 	ofld_req3.rx_max_fc_pay_len  = lport->mfs;
268 
269 	ofld_req3.rx_total_conc_seqs = BNX2FC_MAX_SEQS;
270 	ofld_req3.rx_max_conc_seqs_c3 = BNX2FC_MAX_SEQS;
271 	ofld_req3.rx_open_seqs_exch_c3 = 1;
272 
273 	ofld_req3.confq_first_pbe_addr_lo = tgt->confq_dma;
274 	ofld_req3.confq_first_pbe_addr_hi = (u32)((u64) tgt->confq_dma >> 32);
275 
276 	/* set mul_n_port_ids supported flag to 0, until it is supported */
277 	ofld_req3.flags = 0;
278 	/*
279 	ofld_req3.flags |= (((lport->send_sp_features & FC_SP_FT_MNA) ? 1:0) <<
280 			    FCOE_KWQE_CONN_OFFLOAD3_B_MUL_N_PORT_IDS_SHIFT);
281 	*/
282 	/* Info from PLOGI response */
283 	ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_EDTR) ? 1 : 0) <<
284 			     FCOE_KWQE_CONN_OFFLOAD3_B_E_D_TOV_RES_SHIFT);
285 
286 	ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) <<
287 			     FCOE_KWQE_CONN_OFFLOAD3_B_CONT_INCR_SEQ_CNT_SHIFT);
288 
289 	/*
290 	 * Info from PRLI response, this info is used for sequence level error
291 	 * recovery support
292 	 */
293 	if (tgt->dev_type == TYPE_TAPE) {
294 		ofld_req3.flags |= 1 <<
295 				    FCOE_KWQE_CONN_OFFLOAD3_B_CONF_REQ_SHIFT;
296 		ofld_req3.flags |= (((rdata->flags & FC_RP_FLAGS_REC_SUPPORTED)
297 				    ? 1 : 0) <<
298 				    FCOE_KWQE_CONN_OFFLOAD3_B_REC_VALID_SHIFT);
299 	}
300 
301 	/* vlan flag */
302 	ofld_req3.flags |= (interface->vlan_enabled <<
303 			    FCOE_KWQE_CONN_OFFLOAD3_B_VLAN_FLAG_SHIFT);
304 
305 	/* C2_VALID and ACK flags are not set as they are not supported */
306 
307 
308 	/* Initialize offload request 4 structure */
309 	memset(&ofld_req4, 0x00, sizeof(struct fcoe_kwqe_conn_offload4));
310 	ofld_req4.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN4;
311 	ofld_req4.hdr.flags =
312 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
313 
314 	ofld_req4.e_d_tov_timer_val = lport->e_d_tov / 20;
315 
316 
317 	ofld_req4.src_mac_addr_lo[0] =  port->data_src_addr[5];
318 							/* local mac */
319 	ofld_req4.src_mac_addr_lo[1] =  port->data_src_addr[4];
320 	ofld_req4.src_mac_addr_mid[0] =  port->data_src_addr[3];
321 	ofld_req4.src_mac_addr_mid[1] =  port->data_src_addr[2];
322 	ofld_req4.src_mac_addr_hi[0] =  port->data_src_addr[1];
323 	ofld_req4.src_mac_addr_hi[1] =  port->data_src_addr[0];
324 	ofld_req4.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
325 							/* fcf mac */
326 	ofld_req4.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
327 	ofld_req4.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
328 	ofld_req4.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
329 	ofld_req4.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
330 	ofld_req4.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
331 
332 	ofld_req4.lcq_addr_lo = (u32) tgt->lcq_dma;
333 	ofld_req4.lcq_addr_hi = (u32)((u64) tgt->lcq_dma >> 32);
334 
335 	ofld_req4.confq_pbl_base_addr_lo = (u32) tgt->confq_pbl_dma;
336 	ofld_req4.confq_pbl_base_addr_hi =
337 					(u32)((u64) tgt->confq_pbl_dma >> 32);
338 
339 	kwqe_arr[0] = (struct kwqe *) &ofld_req1;
340 	kwqe_arr[1] = (struct kwqe *) &ofld_req2;
341 	kwqe_arr[2] = (struct kwqe *) &ofld_req3;
342 	kwqe_arr[3] = (struct kwqe *) &ofld_req4;
343 
344 	if (hba->cnic && hba->cnic->submit_kwqes)
345 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
346 
347 	return rc;
348 }
349 
350 /**
351  * bnx2fc_send_session_enable_req - initiates FCoE Session enablement
352  *
353  * @port:		port structure pointer
354  * @tgt:		bnx2fc_rport structure pointer
355  */
356 int bnx2fc_send_session_enable_req(struct fcoe_port *port,
357 					struct bnx2fc_rport *tgt)
358 {
359 	struct kwqe *kwqe_arr[2];
360 	struct bnx2fc_interface *interface = port->priv;
361 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
362 	struct bnx2fc_hba *hba = interface->hba;
363 	struct fcoe_kwqe_conn_enable_disable enbl_req;
364 	struct fc_lport *lport = port->lport;
365 	struct fc_rport *rport = tgt->rport;
366 	int num_kwqes = 1;
367 	int rc = 0;
368 	u32 port_id;
369 
370 	memset(&enbl_req, 0x00,
371 	       sizeof(struct fcoe_kwqe_conn_enable_disable));
372 	enbl_req.hdr.op_code = FCOE_KWQE_OPCODE_ENABLE_CONN;
373 	enbl_req.hdr.flags =
374 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
375 
376 	enbl_req.src_mac_addr_lo[0] =  port->data_src_addr[5];
377 							/* local mac */
378 	enbl_req.src_mac_addr_lo[1] =  port->data_src_addr[4];
379 	enbl_req.src_mac_addr_mid[0] =  port->data_src_addr[3];
380 	enbl_req.src_mac_addr_mid[1] =  port->data_src_addr[2];
381 	enbl_req.src_mac_addr_hi[0] =  port->data_src_addr[1];
382 	enbl_req.src_mac_addr_hi[1] =  port->data_src_addr[0];
383 	memcpy(tgt->src_addr, port->data_src_addr, ETH_ALEN);
384 
385 	enbl_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
386 	enbl_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
387 	enbl_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
388 	enbl_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
389 	enbl_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
390 	enbl_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
391 
392 	port_id = fc_host_port_id(lport->host);
393 	if (port_id != tgt->sid) {
394 		printk(KERN_ERR PFX "WARN: enable_req port_id = 0x%x,"
395 				"sid = 0x%x\n", port_id, tgt->sid);
396 		port_id = tgt->sid;
397 	}
398 	enbl_req.s_id[0] = (port_id & 0x000000FF);
399 	enbl_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
400 	enbl_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
401 
402 	port_id = rport->port_id;
403 	enbl_req.d_id[0] = (port_id & 0x000000FF);
404 	enbl_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
405 	enbl_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
406 	enbl_req.vlan_tag = interface->vlan_id <<
407 				FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
408 	enbl_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
409 	enbl_req.vlan_flag = interface->vlan_enabled;
410 	enbl_req.context_id = tgt->context_id;
411 	enbl_req.conn_id = tgt->fcoe_conn_id;
412 
413 	kwqe_arr[0] = (struct kwqe *) &enbl_req;
414 
415 	if (hba->cnic && hba->cnic->submit_kwqes)
416 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
417 	return rc;
418 }
419 
420 /**
421  * bnx2fc_send_session_disable_req - initiates FCoE Session disable
422  *
423  * @port:		port structure pointer
424  * @tgt:		bnx2fc_rport structure pointer
425  */
426 int bnx2fc_send_session_disable_req(struct fcoe_port *port,
427 				    struct bnx2fc_rport *tgt)
428 {
429 	struct bnx2fc_interface *interface = port->priv;
430 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
431 	struct bnx2fc_hba *hba = interface->hba;
432 	struct fcoe_kwqe_conn_enable_disable disable_req;
433 	struct kwqe *kwqe_arr[2];
434 	struct fc_rport *rport = tgt->rport;
435 	int num_kwqes = 1;
436 	int rc = 0;
437 	u32 port_id;
438 
439 	memset(&disable_req, 0x00,
440 	       sizeof(struct fcoe_kwqe_conn_enable_disable));
441 	disable_req.hdr.op_code = FCOE_KWQE_OPCODE_DISABLE_CONN;
442 	disable_req.hdr.flags =
443 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
444 
445 	disable_req.src_mac_addr_lo[0] =  tgt->src_addr[5];
446 	disable_req.src_mac_addr_lo[1] =  tgt->src_addr[4];
447 	disable_req.src_mac_addr_mid[0] =  tgt->src_addr[3];
448 	disable_req.src_mac_addr_mid[1] =  tgt->src_addr[2];
449 	disable_req.src_mac_addr_hi[0] =  tgt->src_addr[1];
450 	disable_req.src_mac_addr_hi[1] =  tgt->src_addr[0];
451 
452 	disable_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
453 	disable_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
454 	disable_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
455 	disable_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
456 	disable_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
457 	disable_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
458 
459 	port_id = tgt->sid;
460 	disable_req.s_id[0] = (port_id & 0x000000FF);
461 	disable_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
462 	disable_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
463 
464 
465 	port_id = rport->port_id;
466 	disable_req.d_id[0] = (port_id & 0x000000FF);
467 	disable_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
468 	disable_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
469 	disable_req.context_id = tgt->context_id;
470 	disable_req.conn_id = tgt->fcoe_conn_id;
471 	disable_req.vlan_tag = interface->vlan_id <<
472 				FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
473 	disable_req.vlan_tag |=
474 			3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
475 	disable_req.vlan_flag = interface->vlan_enabled;
476 
477 	kwqe_arr[0] = (struct kwqe *) &disable_req;
478 
479 	if (hba->cnic && hba->cnic->submit_kwqes)
480 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
481 
482 	return rc;
483 }
484 
485 /**
486  * bnx2fc_send_session_destroy_req - initiates FCoE Session destroy
487  *
488  * @port:		port structure pointer
489  * @tgt:		bnx2fc_rport structure pointer
490  */
491 int bnx2fc_send_session_destroy_req(struct bnx2fc_hba *hba,
492 					struct bnx2fc_rport *tgt)
493 {
494 	struct fcoe_kwqe_conn_destroy destroy_req;
495 	struct kwqe *kwqe_arr[2];
496 	int num_kwqes = 1;
497 	int rc = 0;
498 
499 	memset(&destroy_req, 0x00, sizeof(struct fcoe_kwqe_conn_destroy));
500 	destroy_req.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY_CONN;
501 	destroy_req.hdr.flags =
502 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
503 
504 	destroy_req.context_id = tgt->context_id;
505 	destroy_req.conn_id = tgt->fcoe_conn_id;
506 
507 	kwqe_arr[0] = (struct kwqe *) &destroy_req;
508 
509 	if (hba->cnic && hba->cnic->submit_kwqes)
510 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
511 
512 	return rc;
513 }
514 
515 static bool is_valid_lport(struct bnx2fc_hba *hba, struct fc_lport *lport)
516 {
517 	struct bnx2fc_lport *blport;
518 
519 	spin_lock_bh(&hba->hba_lock);
520 	list_for_each_entry(blport, &hba->vports, list) {
521 		if (blport->lport == lport) {
522 			spin_unlock_bh(&hba->hba_lock);
523 			return true;
524 		}
525 	}
526 	spin_unlock_bh(&hba->hba_lock);
527 	return false;
528 
529 }
530 
531 
532 static void bnx2fc_unsol_els_work(struct work_struct *work)
533 {
534 	struct bnx2fc_unsol_els *unsol_els;
535 	struct fc_lport *lport;
536 	struct bnx2fc_hba *hba;
537 	struct fc_frame *fp;
538 
539 	unsol_els = container_of(work, struct bnx2fc_unsol_els, unsol_els_work);
540 	lport = unsol_els->lport;
541 	fp = unsol_els->fp;
542 	hba = unsol_els->hba;
543 	if (is_valid_lport(hba, lport))
544 		fc_exch_recv(lport, fp);
545 	kfree(unsol_els);
546 }
547 
548 void bnx2fc_process_l2_frame_compl(struct bnx2fc_rport *tgt,
549 				   unsigned char *buf,
550 				   u32 frame_len, u16 l2_oxid)
551 {
552 	struct fcoe_port *port = tgt->port;
553 	struct fc_lport *lport = port->lport;
554 	struct bnx2fc_interface *interface = port->priv;
555 	struct bnx2fc_unsol_els *unsol_els;
556 	struct fc_frame_header *fh;
557 	struct fc_frame *fp;
558 	struct sk_buff *skb;
559 	u32 payload_len;
560 	u32 crc;
561 	u8 op;
562 
563 
564 	unsol_els = kzalloc(sizeof(*unsol_els), GFP_ATOMIC);
565 	if (!unsol_els) {
566 		BNX2FC_TGT_DBG(tgt, "Unable to allocate unsol_work\n");
567 		return;
568 	}
569 
570 	BNX2FC_TGT_DBG(tgt, "l2_frame_compl l2_oxid = 0x%x, frame_len = %d\n",
571 		l2_oxid, frame_len);
572 
573 	payload_len = frame_len - sizeof(struct fc_frame_header);
574 
575 	fp = fc_frame_alloc(lport, payload_len);
576 	if (!fp) {
577 		printk(KERN_ERR PFX "fc_frame_alloc failure\n");
578 		kfree(unsol_els);
579 		return;
580 	}
581 
582 	fh = (struct fc_frame_header *) fc_frame_header_get(fp);
583 	/* Copy FC Frame header and payload into the frame */
584 	memcpy(fh, buf, frame_len);
585 
586 	if (l2_oxid != FC_XID_UNKNOWN)
587 		fh->fh_ox_id = htons(l2_oxid);
588 
589 	skb = fp_skb(fp);
590 
591 	if ((fh->fh_r_ctl == FC_RCTL_ELS_REQ) ||
592 	    (fh->fh_r_ctl == FC_RCTL_ELS_REP)) {
593 
594 		if (fh->fh_type == FC_TYPE_ELS) {
595 			op = fc_frame_payload_op(fp);
596 			if ((op == ELS_TEST) ||	(op == ELS_ESTC) ||
597 			    (op == ELS_FAN) || (op == ELS_CSU)) {
598 				/*
599 				 * No need to reply for these
600 				 * ELS requests
601 				 */
602 				printk(KERN_ERR PFX "dropping ELS 0x%x\n", op);
603 				kfree_skb(skb);
604 				kfree(unsol_els);
605 				return;
606 			}
607 		}
608 		crc = fcoe_fc_crc(fp);
609 		fc_frame_init(fp);
610 		fr_dev(fp) = lport;
611 		fr_sof(fp) = FC_SOF_I3;
612 		fr_eof(fp) = FC_EOF_T;
613 		fr_crc(fp) = cpu_to_le32(~crc);
614 		unsol_els->lport = lport;
615 		unsol_els->hba = interface->hba;
616 		unsol_els->fp = fp;
617 		INIT_WORK(&unsol_els->unsol_els_work, bnx2fc_unsol_els_work);
618 		queue_work(bnx2fc_wq, &unsol_els->unsol_els_work);
619 	} else {
620 		BNX2FC_HBA_DBG(lport, "fh_r_ctl = 0x%x\n", fh->fh_r_ctl);
621 		kfree_skb(skb);
622 		kfree(unsol_els);
623 	}
624 }
625 
626 static void bnx2fc_process_unsol_compl(struct bnx2fc_rport *tgt, u16 wqe)
627 {
628 	u8 num_rq;
629 	struct fcoe_err_report_entry *err_entry;
630 	unsigned char *rq_data;
631 	unsigned char *buf = NULL, *buf1;
632 	int i;
633 	u16 xid;
634 	u32 frame_len, len;
635 	struct bnx2fc_cmd *io_req = NULL;
636 	struct fcoe_task_ctx_entry *task, *task_page;
637 	struct bnx2fc_interface *interface = tgt->port->priv;
638 	struct bnx2fc_hba *hba = interface->hba;
639 	int task_idx, index;
640 	int rc = 0;
641 	u64 err_warn_bit_map;
642 	u8 err_warn = 0xff;
643 
644 
645 	BNX2FC_TGT_DBG(tgt, "Entered UNSOL COMPLETION wqe = 0x%x\n", wqe);
646 	switch (wqe & FCOE_UNSOLICITED_CQE_SUBTYPE) {
647 	case FCOE_UNSOLICITED_FRAME_CQE_TYPE:
648 		frame_len = (wqe & FCOE_UNSOLICITED_CQE_PKT_LEN) >>
649 			     FCOE_UNSOLICITED_CQE_PKT_LEN_SHIFT;
650 
651 		num_rq = (frame_len + BNX2FC_RQ_BUF_SZ - 1) / BNX2FC_RQ_BUF_SZ;
652 
653 		spin_lock_bh(&tgt->tgt_lock);
654 		rq_data = (unsigned char *)bnx2fc_get_next_rqe(tgt, num_rq);
655 		spin_unlock_bh(&tgt->tgt_lock);
656 
657 		if (rq_data) {
658 			buf = rq_data;
659 		} else {
660 			buf1 = buf = kmalloc((num_rq * BNX2FC_RQ_BUF_SZ),
661 					      GFP_ATOMIC);
662 
663 			if (!buf1) {
664 				BNX2FC_TGT_DBG(tgt, "Memory alloc failure\n");
665 				break;
666 			}
667 
668 			for (i = 0; i < num_rq; i++) {
669 				spin_lock_bh(&tgt->tgt_lock);
670 				rq_data = (unsigned char *)
671 					   bnx2fc_get_next_rqe(tgt, 1);
672 				spin_unlock_bh(&tgt->tgt_lock);
673 				len = BNX2FC_RQ_BUF_SZ;
674 				memcpy(buf1, rq_data, len);
675 				buf1 += len;
676 			}
677 		}
678 		bnx2fc_process_l2_frame_compl(tgt, buf, frame_len,
679 					      FC_XID_UNKNOWN);
680 
681 		if (buf != rq_data)
682 			kfree(buf);
683 		spin_lock_bh(&tgt->tgt_lock);
684 		bnx2fc_return_rqe(tgt, num_rq);
685 		spin_unlock_bh(&tgt->tgt_lock);
686 		break;
687 
688 	case FCOE_ERROR_DETECTION_CQE_TYPE:
689 		/*
690 		 * In case of error reporting CQE a single RQ entry
691 		 * is consumed.
692 		 */
693 		spin_lock_bh(&tgt->tgt_lock);
694 		num_rq = 1;
695 		err_entry = (struct fcoe_err_report_entry *)
696 			     bnx2fc_get_next_rqe(tgt, 1);
697 		xid = err_entry->fc_hdr.ox_id;
698 		BNX2FC_TGT_DBG(tgt, "Unsol Error Frame OX_ID = 0x%x\n", xid);
699 		BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x\n",
700 			err_entry->data.err_warn_bitmap_hi,
701 			err_entry->data.err_warn_bitmap_lo);
702 		BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x\n",
703 			err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
704 
705 
706 		if (xid > hba->max_xid) {
707 			BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n",
708 				   xid);
709 			goto ret_err_rqe;
710 		}
711 
712 		task_idx = xid / BNX2FC_TASKS_PER_PAGE;
713 		index = xid % BNX2FC_TASKS_PER_PAGE;
714 		task_page = (struct fcoe_task_ctx_entry *)
715 					hba->task_ctx[task_idx];
716 		task = &(task_page[index]);
717 
718 		io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
719 		if (!io_req)
720 			goto ret_err_rqe;
721 
722 		if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
723 			printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
724 			goto ret_err_rqe;
725 		}
726 
727 		if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
728 				       &io_req->req_flags)) {
729 			BNX2FC_IO_DBG(io_req, "unsol_err: cleanup in "
730 					    "progress.. ignore unsol err\n");
731 			goto ret_err_rqe;
732 		}
733 
734 		err_warn_bit_map = (u64)
735 			((u64)err_entry->data.err_warn_bitmap_hi << 32) |
736 			(u64)err_entry->data.err_warn_bitmap_lo;
737 		for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
738 			if (err_warn_bit_map & (u64)((u64)1 << i)) {
739 				err_warn = i;
740 				break;
741 			}
742 		}
743 
744 		/*
745 		 * If ABTS is already in progress, and FW error is
746 		 * received after that, do not cancel the timeout_work
747 		 * and let the error recovery continue by explicitly
748 		 * logging out the target, when the ABTS eventually
749 		 * times out.
750 		 */
751 		if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
752 			printk(KERN_ERR PFX "err_warn: io_req (0x%x) already "
753 					    "in ABTS processing\n", xid);
754 			goto ret_err_rqe;
755 		}
756 		BNX2FC_TGT_DBG(tgt, "err = 0x%x\n", err_warn);
757 		if (tgt->dev_type != TYPE_TAPE)
758 			goto skip_rec;
759 		switch (err_warn) {
760 		case FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION:
761 		case FCOE_ERROR_CODE_DATA_OOO_RO:
762 		case FCOE_ERROR_CODE_COMMON_INCORRECT_SEQ_CNT:
763 		case FCOE_ERROR_CODE_DATA_SOFI3_SEQ_ACTIVE_SET:
764 		case FCOE_ERROR_CODE_FCP_RSP_OPENED_SEQ:
765 		case FCOE_ERROR_CODE_DATA_SOFN_SEQ_ACTIVE_RESET:
766 			BNX2FC_TGT_DBG(tgt, "REC TOV popped for xid - 0x%x\n",
767 				   xid);
768 			memcpy(&io_req->err_entry, err_entry,
769 			       sizeof(struct fcoe_err_report_entry));
770 			if (!test_bit(BNX2FC_FLAG_SRR_SENT,
771 				      &io_req->req_flags)) {
772 				spin_unlock_bh(&tgt->tgt_lock);
773 				rc = bnx2fc_send_rec(io_req);
774 				spin_lock_bh(&tgt->tgt_lock);
775 
776 				if (rc)
777 					goto skip_rec;
778 			} else
779 				printk(KERN_ERR PFX "SRR in progress\n");
780 			goto ret_err_rqe;
781 			break;
782 		default:
783 			break;
784 		}
785 
786 skip_rec:
787 		set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags);
788 		/*
789 		 * Cancel the timeout_work, as we received IO
790 		 * completion with FW error.
791 		 */
792 		if (cancel_delayed_work(&io_req->timeout_work))
793 			kref_put(&io_req->refcount, bnx2fc_cmd_release);
794 
795 		rc = bnx2fc_initiate_abts(io_req);
796 		if (rc != SUCCESS) {
797 			printk(KERN_ERR PFX "err_warn: initiate_abts "
798 				"failed xid = 0x%x. issue cleanup\n",
799 				io_req->xid);
800 			bnx2fc_initiate_cleanup(io_req);
801 		}
802 ret_err_rqe:
803 		bnx2fc_return_rqe(tgt, 1);
804 		spin_unlock_bh(&tgt->tgt_lock);
805 		break;
806 
807 	case FCOE_WARNING_DETECTION_CQE_TYPE:
808 		/*
809 		 *In case of warning reporting CQE a single RQ entry
810 		 * is consumes.
811 		 */
812 		spin_lock_bh(&tgt->tgt_lock);
813 		num_rq = 1;
814 		err_entry = (struct fcoe_err_report_entry *)
815 			     bnx2fc_get_next_rqe(tgt, 1);
816 		xid = cpu_to_be16(err_entry->fc_hdr.ox_id);
817 		BNX2FC_TGT_DBG(tgt, "Unsol Warning Frame OX_ID = 0x%x\n", xid);
818 		BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x",
819 			err_entry->data.err_warn_bitmap_hi,
820 			err_entry->data.err_warn_bitmap_lo);
821 		BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x",
822 			err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
823 
824 		if (xid > hba->max_xid) {
825 			BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid);
826 			goto ret_warn_rqe;
827 		}
828 
829 		err_warn_bit_map = (u64)
830 			((u64)err_entry->data.err_warn_bitmap_hi << 32) |
831 			(u64)err_entry->data.err_warn_bitmap_lo;
832 		for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
833 			if (err_warn_bit_map & (u64) (1 << i)) {
834 				err_warn = i;
835 				break;
836 			}
837 		}
838 		BNX2FC_TGT_DBG(tgt, "warn = 0x%x\n", err_warn);
839 
840 		task_idx = xid / BNX2FC_TASKS_PER_PAGE;
841 		index = xid % BNX2FC_TASKS_PER_PAGE;
842 		task_page = (struct fcoe_task_ctx_entry *)
843 			     interface->hba->task_ctx[task_idx];
844 		task = &(task_page[index]);
845 		io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
846 		if (!io_req)
847 			goto ret_warn_rqe;
848 
849 		if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
850 			printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
851 			goto ret_warn_rqe;
852 		}
853 
854 		memcpy(&io_req->err_entry, err_entry,
855 		       sizeof(struct fcoe_err_report_entry));
856 
857 		if (err_warn == FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION)
858 			/* REC_TOV is not a warning code */
859 			BUG_ON(1);
860 		else
861 			BNX2FC_TGT_DBG(tgt, "Unsolicited warning\n");
862 ret_warn_rqe:
863 		bnx2fc_return_rqe(tgt, 1);
864 		spin_unlock_bh(&tgt->tgt_lock);
865 		break;
866 
867 	default:
868 		printk(KERN_ERR PFX "Unsol Compl: Invalid CQE Subtype\n");
869 		break;
870 	}
871 }
872 
873 void bnx2fc_process_cq_compl(struct bnx2fc_rport *tgt, u16 wqe)
874 {
875 	struct fcoe_task_ctx_entry *task;
876 	struct fcoe_task_ctx_entry *task_page;
877 	struct fcoe_port *port = tgt->port;
878 	struct bnx2fc_interface *interface = port->priv;
879 	struct bnx2fc_hba *hba = interface->hba;
880 	struct bnx2fc_cmd *io_req;
881 	int task_idx, index;
882 	u16 xid;
883 	u8  cmd_type;
884 	u8 rx_state = 0;
885 	u8 num_rq;
886 
887 	spin_lock_bh(&tgt->tgt_lock);
888 	xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
889 	if (xid >= hba->max_tasks) {
890 		printk(KERN_ERR PFX "ERROR:xid out of range\n");
891 		spin_unlock_bh(&tgt->tgt_lock);
892 		return;
893 	}
894 	task_idx = xid / BNX2FC_TASKS_PER_PAGE;
895 	index = xid % BNX2FC_TASKS_PER_PAGE;
896 	task_page = (struct fcoe_task_ctx_entry *)hba->task_ctx[task_idx];
897 	task = &(task_page[index]);
898 
899 	num_rq = ((task->rxwr_txrd.var_ctx.rx_flags &
900 		   FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE) >>
901 		   FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE_SHIFT);
902 
903 	io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
904 
905 	if (io_req == NULL) {
906 		printk(KERN_ERR PFX "ERROR? cq_compl - io_req is NULL\n");
907 		spin_unlock_bh(&tgt->tgt_lock);
908 		return;
909 	}
910 
911 	/* Timestamp IO completion time */
912 	cmd_type = io_req->cmd_type;
913 
914 	rx_state = ((task->rxwr_txrd.var_ctx.rx_flags &
915 		    FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE) >>
916 		    FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE_SHIFT);
917 
918 	/* Process other IO completion types */
919 	switch (cmd_type) {
920 	case BNX2FC_SCSI_CMD:
921 		if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) {
922 			bnx2fc_process_scsi_cmd_compl(io_req, task, num_rq);
923 			spin_unlock_bh(&tgt->tgt_lock);
924 			return;
925 		}
926 
927 		if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
928 			bnx2fc_process_abts_compl(io_req, task, num_rq);
929 		else if (rx_state ==
930 			 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
931 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
932 		else
933 			printk(KERN_ERR PFX "Invalid rx state - %d\n",
934 				rx_state);
935 		break;
936 
937 	case BNX2FC_TASK_MGMT_CMD:
938 		BNX2FC_IO_DBG(io_req, "Processing TM complete\n");
939 		bnx2fc_process_tm_compl(io_req, task, num_rq);
940 		break;
941 
942 	case BNX2FC_ABTS:
943 		/*
944 		 * ABTS request received by firmware. ABTS response
945 		 * will be delivered to the task belonging to the IO
946 		 * that was aborted
947 		 */
948 		BNX2FC_IO_DBG(io_req, "cq_compl- ABTS sent out by fw\n");
949 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
950 		break;
951 
952 	case BNX2FC_ELS:
953 		if (rx_state == FCOE_TASK_RX_STATE_COMPLETED)
954 			bnx2fc_process_els_compl(io_req, task, num_rq);
955 		else if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
956 			bnx2fc_process_abts_compl(io_req, task, num_rq);
957 		else if (rx_state ==
958 			 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
959 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
960 		else
961 			printk(KERN_ERR PFX "Invalid rx state =  %d\n",
962 				rx_state);
963 		break;
964 
965 	case BNX2FC_CLEANUP:
966 		BNX2FC_IO_DBG(io_req, "cq_compl- cleanup resp rcvd\n");
967 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
968 		break;
969 
970 	case BNX2FC_SEQ_CLEANUP:
971 		BNX2FC_IO_DBG(io_req, "cq_compl(0x%x) - seq cleanup resp\n",
972 			      io_req->xid);
973 		bnx2fc_process_seq_cleanup_compl(io_req, task, rx_state);
974 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
975 		break;
976 
977 	default:
978 		printk(KERN_ERR PFX "Invalid cmd_type %d\n", cmd_type);
979 		break;
980 	}
981 	spin_unlock_bh(&tgt->tgt_lock);
982 }
983 
984 void bnx2fc_arm_cq(struct bnx2fc_rport *tgt)
985 {
986 	struct b577xx_fcoe_rx_doorbell *rx_db = &tgt->rx_db;
987 	u32 msg;
988 
989 	wmb();
990 	rx_db->doorbell_cq_cons = tgt->cq_cons_idx | (tgt->cq_curr_toggle_bit <<
991 			FCOE_CQE_TOGGLE_BIT_SHIFT);
992 	msg = *((u32 *)rx_db);
993 	writel(cpu_to_le32(msg), tgt->ctx_base);
994 	mmiowb();
995 
996 }
997 
998 static struct bnx2fc_work *bnx2fc_alloc_work(struct bnx2fc_rport *tgt, u16 wqe)
999 {
1000 	struct bnx2fc_work *work;
1001 	work = kzalloc(sizeof(struct bnx2fc_work), GFP_ATOMIC);
1002 	if (!work)
1003 		return NULL;
1004 
1005 	INIT_LIST_HEAD(&work->list);
1006 	work->tgt = tgt;
1007 	work->wqe = wqe;
1008 	return work;
1009 }
1010 
1011 /* Pending work request completion */
1012 static void bnx2fc_pending_work(struct bnx2fc_rport *tgt, unsigned int wqe)
1013 {
1014 	unsigned int cpu = wqe % num_possible_cpus();
1015 	struct bnx2fc_percpu_s *fps;
1016 	struct bnx2fc_work *work;
1017 
1018 	fps = &per_cpu(bnx2fc_percpu, cpu);
1019 	spin_lock_bh(&fps->fp_work_lock);
1020 	if (fps->iothread) {
1021 		work = bnx2fc_alloc_work(tgt, wqe);
1022 		if (work) {
1023 			list_add_tail(&work->list, &fps->work_list);
1024 			wake_up_process(fps->iothread);
1025 			spin_unlock_bh(&fps->fp_work_lock);
1026 			return;
1027 		}
1028 	}
1029 	spin_unlock_bh(&fps->fp_work_lock);
1030 	bnx2fc_process_cq_compl(tgt, wqe);
1031 }
1032 
1033 int bnx2fc_process_new_cqes(struct bnx2fc_rport *tgt)
1034 {
1035 	struct fcoe_cqe *cq;
1036 	u32 cq_cons;
1037 	struct fcoe_cqe *cqe;
1038 	u32 num_free_sqes = 0;
1039 	u32 num_cqes = 0;
1040 	u16 wqe;
1041 
1042 	/*
1043 	 * cq_lock is a low contention lock used to protect
1044 	 * the CQ data structure from being freed up during
1045 	 * the upload operation
1046 	 */
1047 	spin_lock_bh(&tgt->cq_lock);
1048 
1049 	if (!tgt->cq) {
1050 		printk(KERN_ERR PFX "process_new_cqes: cq is NULL\n");
1051 		spin_unlock_bh(&tgt->cq_lock);
1052 		return 0;
1053 	}
1054 	cq = tgt->cq;
1055 	cq_cons = tgt->cq_cons_idx;
1056 	cqe = &cq[cq_cons];
1057 
1058 	while (((wqe = cqe->wqe) & FCOE_CQE_TOGGLE_BIT) ==
1059 	       (tgt->cq_curr_toggle_bit <<
1060 	       FCOE_CQE_TOGGLE_BIT_SHIFT)) {
1061 
1062 		/* new entry on the cq */
1063 		if (wqe & FCOE_CQE_CQE_TYPE) {
1064 			/* Unsolicited event notification */
1065 			bnx2fc_process_unsol_compl(tgt, wqe);
1066 		} else {
1067 			bnx2fc_pending_work(tgt, wqe);
1068 			num_free_sqes++;
1069 		}
1070 		cqe++;
1071 		tgt->cq_cons_idx++;
1072 		num_cqes++;
1073 
1074 		if (tgt->cq_cons_idx == BNX2FC_CQ_WQES_MAX) {
1075 			tgt->cq_cons_idx = 0;
1076 			cqe = cq;
1077 			tgt->cq_curr_toggle_bit =
1078 				1 - tgt->cq_curr_toggle_bit;
1079 		}
1080 	}
1081 	if (num_cqes) {
1082 		/* Arm CQ only if doorbell is mapped */
1083 		if (tgt->ctx_base)
1084 			bnx2fc_arm_cq(tgt);
1085 		atomic_add(num_free_sqes, &tgt->free_sqes);
1086 	}
1087 	spin_unlock_bh(&tgt->cq_lock);
1088 	return 0;
1089 }
1090 
1091 /**
1092  * bnx2fc_fastpath_notification - process global event queue (KCQ)
1093  *
1094  * @hba:		adapter structure pointer
1095  * @new_cqe_kcqe:	pointer to newly DMA'd KCQ entry
1096  *
1097  * Fast path event notification handler
1098  */
1099 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
1100 					struct fcoe_kcqe *new_cqe_kcqe)
1101 {
1102 	u32 conn_id = new_cqe_kcqe->fcoe_conn_id;
1103 	struct bnx2fc_rport *tgt = hba->tgt_ofld_list[conn_id];
1104 
1105 	if (!tgt) {
1106 		printk(KERN_ERR PFX "conn_id 0x%x not valid\n", conn_id);
1107 		return;
1108 	}
1109 
1110 	bnx2fc_process_new_cqes(tgt);
1111 }
1112 
1113 /**
1114  * bnx2fc_process_ofld_cmpl - process FCoE session offload completion
1115  *
1116  * @hba:	adapter structure pointer
1117  * @ofld_kcqe:	connection offload kcqe pointer
1118  *
1119  * handle session offload completion, enable the session if offload is
1120  * successful.
1121  */
1122 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
1123 					struct fcoe_kcqe *ofld_kcqe)
1124 {
1125 	struct bnx2fc_rport		*tgt;
1126 	struct fcoe_port		*port;
1127 	struct bnx2fc_interface		*interface;
1128 	u32				conn_id;
1129 	u32				context_id;
1130 
1131 	conn_id = ofld_kcqe->fcoe_conn_id;
1132 	context_id = ofld_kcqe->fcoe_conn_context_id;
1133 	tgt = hba->tgt_ofld_list[conn_id];
1134 	if (!tgt) {
1135 		printk(KERN_ALERT PFX "ERROR:ofld_cmpl: No pending ofld req\n");
1136 		return;
1137 	}
1138 	BNX2FC_TGT_DBG(tgt, "Entered ofld compl - context_id = 0x%x\n",
1139 		ofld_kcqe->fcoe_conn_context_id);
1140 	port = tgt->port;
1141 	interface = tgt->port->priv;
1142 	if (hba != interface->hba) {
1143 		printk(KERN_ERR PFX "ERROR:ofld_cmpl: HBA mis-match\n");
1144 		goto ofld_cmpl_err;
1145 	}
1146 	/*
1147 	 * cnic has allocated a context_id for this session; use this
1148 	 * while enabling the session.
1149 	 */
1150 	tgt->context_id = context_id;
1151 	if (ofld_kcqe->completion_status) {
1152 		if (ofld_kcqe->completion_status ==
1153 				FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE) {
1154 			printk(KERN_ERR PFX "unable to allocate FCoE context "
1155 				"resources\n");
1156 			set_bit(BNX2FC_FLAG_CTX_ALLOC_FAILURE, &tgt->flags);
1157 		}
1158 	} else {
1159 		/* FW offload request successfully completed */
1160 		set_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1161 	}
1162 ofld_cmpl_err:
1163 	set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1164 	wake_up_interruptible(&tgt->ofld_wait);
1165 }
1166 
1167 /**
1168  * bnx2fc_process_enable_conn_cmpl - process FCoE session enable completion
1169  *
1170  * @hba:	adapter structure pointer
1171  * @ofld_kcqe:	connection offload kcqe pointer
1172  *
1173  * handle session enable completion, mark the rport as ready
1174  */
1175 
1176 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
1177 						struct fcoe_kcqe *ofld_kcqe)
1178 {
1179 	struct bnx2fc_rport		*tgt;
1180 	struct bnx2fc_interface		*interface;
1181 	u32				conn_id;
1182 	u32				context_id;
1183 
1184 	context_id = ofld_kcqe->fcoe_conn_context_id;
1185 	conn_id = ofld_kcqe->fcoe_conn_id;
1186 	tgt = hba->tgt_ofld_list[conn_id];
1187 	if (!tgt) {
1188 		printk(KERN_ERR PFX "ERROR:enbl_cmpl: No pending ofld req\n");
1189 		return;
1190 	}
1191 
1192 	BNX2FC_TGT_DBG(tgt, "Enable compl - context_id = 0x%x\n",
1193 		ofld_kcqe->fcoe_conn_context_id);
1194 
1195 	/*
1196 	 * context_id should be the same for this target during offload
1197 	 * and enable
1198 	 */
1199 	if (tgt->context_id != context_id) {
1200 		printk(KERN_ERR PFX "context id mis-match\n");
1201 		return;
1202 	}
1203 	interface = tgt->port->priv;
1204 	if (hba != interface->hba) {
1205 		printk(KERN_ERR PFX "bnx2fc-enbl_cmpl: HBA mis-match\n");
1206 		goto enbl_cmpl_err;
1207 	}
1208 	if (!ofld_kcqe->completion_status)
1209 		/* enable successful - rport ready for issuing IOs */
1210 		set_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1211 
1212 enbl_cmpl_err:
1213 	set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1214 	wake_up_interruptible(&tgt->ofld_wait);
1215 }
1216 
1217 static void bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba *hba,
1218 					struct fcoe_kcqe *disable_kcqe)
1219 {
1220 
1221 	struct bnx2fc_rport		*tgt;
1222 	u32				conn_id;
1223 
1224 	conn_id = disable_kcqe->fcoe_conn_id;
1225 	tgt = hba->tgt_ofld_list[conn_id];
1226 	if (!tgt) {
1227 		printk(KERN_ERR PFX "ERROR: disable_cmpl: No disable req\n");
1228 		return;
1229 	}
1230 
1231 	BNX2FC_TGT_DBG(tgt, PFX "disable_cmpl: conn_id %d\n", conn_id);
1232 
1233 	if (disable_kcqe->completion_status) {
1234 		printk(KERN_ERR PFX "Disable failed with cmpl status %d\n",
1235 			disable_kcqe->completion_status);
1236 		set_bit(BNX2FC_FLAG_DISABLE_FAILED, &tgt->flags);
1237 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1238 		wake_up_interruptible(&tgt->upld_wait);
1239 	} else {
1240 		/* disable successful */
1241 		BNX2FC_TGT_DBG(tgt, "disable successful\n");
1242 		clear_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1243 		clear_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1244 		set_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1245 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1246 		wake_up_interruptible(&tgt->upld_wait);
1247 	}
1248 }
1249 
1250 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
1251 					struct fcoe_kcqe *destroy_kcqe)
1252 {
1253 	struct bnx2fc_rport		*tgt;
1254 	u32				conn_id;
1255 
1256 	conn_id = destroy_kcqe->fcoe_conn_id;
1257 	tgt = hba->tgt_ofld_list[conn_id];
1258 	if (!tgt) {
1259 		printk(KERN_ERR PFX "destroy_cmpl: No destroy req\n");
1260 		return;
1261 	}
1262 
1263 	BNX2FC_TGT_DBG(tgt, "destroy_cmpl: conn_id %d\n", conn_id);
1264 
1265 	if (destroy_kcqe->completion_status) {
1266 		printk(KERN_ERR PFX "Destroy conn failed, cmpl status %d\n",
1267 			destroy_kcqe->completion_status);
1268 		return;
1269 	} else {
1270 		/* destroy successful */
1271 		BNX2FC_TGT_DBG(tgt, "upload successful\n");
1272 		clear_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1273 		set_bit(BNX2FC_FLAG_DESTROYED, &tgt->flags);
1274 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1275 		wake_up_interruptible(&tgt->upld_wait);
1276 	}
1277 }
1278 
1279 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code)
1280 {
1281 	switch (err_code) {
1282 	case FCOE_KCQE_COMPLETION_STATUS_INVALID_OPCODE:
1283 		printk(KERN_ERR PFX "init_failure due to invalid opcode\n");
1284 		break;
1285 
1286 	case FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE:
1287 		printk(KERN_ERR PFX "init failed due to ctx alloc failure\n");
1288 		break;
1289 
1290 	case FCOE_KCQE_COMPLETION_STATUS_NIC_ERROR:
1291 		printk(KERN_ERR PFX "init_failure due to NIC error\n");
1292 		break;
1293 	case FCOE_KCQE_COMPLETION_STATUS_ERROR:
1294 		printk(KERN_ERR PFX "init failure due to compl status err\n");
1295 		break;
1296 	case FCOE_KCQE_COMPLETION_STATUS_WRONG_HSI_VERSION:
1297 		printk(KERN_ERR PFX "init failure due to HSI mismatch\n");
1298 		break;
1299 	default:
1300 		printk(KERN_ERR PFX "Unknown Error code %d\n", err_code);
1301 	}
1302 }
1303 
1304 /**
1305  * bnx2fc_indicae_kcqe - process KCQE
1306  *
1307  * @hba:	adapter structure pointer
1308  * @kcqe:	kcqe pointer
1309  * @num_cqe:	Number of completion queue elements
1310  *
1311  * Generic KCQ event handler
1312  */
1313 void bnx2fc_indicate_kcqe(void *context, struct kcqe *kcq[],
1314 					u32 num_cqe)
1315 {
1316 	struct bnx2fc_hba *hba = (struct bnx2fc_hba *)context;
1317 	int i = 0;
1318 	struct fcoe_kcqe *kcqe = NULL;
1319 
1320 	while (i < num_cqe) {
1321 		kcqe = (struct fcoe_kcqe *) kcq[i++];
1322 
1323 		switch (kcqe->op_code) {
1324 		case FCOE_KCQE_OPCODE_CQ_EVENT_NOTIFICATION:
1325 			bnx2fc_fastpath_notification(hba, kcqe);
1326 			break;
1327 
1328 		case FCOE_KCQE_OPCODE_OFFLOAD_CONN:
1329 			bnx2fc_process_ofld_cmpl(hba, kcqe);
1330 			break;
1331 
1332 		case FCOE_KCQE_OPCODE_ENABLE_CONN:
1333 			bnx2fc_process_enable_conn_cmpl(hba, kcqe);
1334 			break;
1335 
1336 		case FCOE_KCQE_OPCODE_INIT_FUNC:
1337 			if (kcqe->completion_status !=
1338 					FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1339 				bnx2fc_init_failure(hba,
1340 						kcqe->completion_status);
1341 			} else {
1342 				set_bit(ADAPTER_STATE_UP, &hba->adapter_state);
1343 				bnx2fc_get_link_state(hba);
1344 				printk(KERN_INFO PFX "[%.2x]: FCOE_INIT passed\n",
1345 					(u8)hba->pcidev->bus->number);
1346 			}
1347 			break;
1348 
1349 		case FCOE_KCQE_OPCODE_DESTROY_FUNC:
1350 			if (kcqe->completion_status !=
1351 					FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1352 
1353 				printk(KERN_ERR PFX "DESTROY failed\n");
1354 			} else {
1355 				printk(KERN_ERR PFX "DESTROY success\n");
1356 			}
1357 			set_bit(BNX2FC_FLAG_DESTROY_CMPL, &hba->flags);
1358 			wake_up_interruptible(&hba->destroy_wait);
1359 			break;
1360 
1361 		case FCOE_KCQE_OPCODE_DISABLE_CONN:
1362 			bnx2fc_process_conn_disable_cmpl(hba, kcqe);
1363 			break;
1364 
1365 		case FCOE_KCQE_OPCODE_DESTROY_CONN:
1366 			bnx2fc_process_conn_destroy_cmpl(hba, kcqe);
1367 			break;
1368 
1369 		case FCOE_KCQE_OPCODE_STAT_FUNC:
1370 			if (kcqe->completion_status !=
1371 			    FCOE_KCQE_COMPLETION_STATUS_SUCCESS)
1372 				printk(KERN_ERR PFX "STAT failed\n");
1373 			complete(&hba->stat_req_done);
1374 			break;
1375 
1376 		case FCOE_KCQE_OPCODE_FCOE_ERROR:
1377 			/* fall thru */
1378 		default:
1379 			printk(KERN_ERR PFX "unknown opcode 0x%x\n",
1380 								kcqe->op_code);
1381 		}
1382 	}
1383 }
1384 
1385 void bnx2fc_add_2_sq(struct bnx2fc_rport *tgt, u16 xid)
1386 {
1387 	struct fcoe_sqe *sqe;
1388 
1389 	sqe = &tgt->sq[tgt->sq_prod_idx];
1390 
1391 	/* Fill SQ WQE */
1392 	sqe->wqe = xid << FCOE_SQE_TASK_ID_SHIFT;
1393 	sqe->wqe |= tgt->sq_curr_toggle_bit << FCOE_SQE_TOGGLE_BIT_SHIFT;
1394 
1395 	/* Advance SQ Prod Idx */
1396 	if (++tgt->sq_prod_idx == BNX2FC_SQ_WQES_MAX) {
1397 		tgt->sq_prod_idx = 0;
1398 		tgt->sq_curr_toggle_bit = 1 - tgt->sq_curr_toggle_bit;
1399 	}
1400 }
1401 
1402 void bnx2fc_ring_doorbell(struct bnx2fc_rport *tgt)
1403 {
1404 	struct b577xx_doorbell_set_prod *sq_db = &tgt->sq_db;
1405 	u32 msg;
1406 
1407 	wmb();
1408 	sq_db->prod = tgt->sq_prod_idx |
1409 				(tgt->sq_curr_toggle_bit << 15);
1410 	msg = *((u32 *)sq_db);
1411 	writel(cpu_to_le32(msg), tgt->ctx_base);
1412 	mmiowb();
1413 
1414 }
1415 
1416 int bnx2fc_map_doorbell(struct bnx2fc_rport *tgt)
1417 {
1418 	u32 context_id = tgt->context_id;
1419 	struct fcoe_port *port = tgt->port;
1420 	u32 reg_off;
1421 	resource_size_t reg_base;
1422 	struct bnx2fc_interface *interface = port->priv;
1423 	struct bnx2fc_hba *hba = interface->hba;
1424 
1425 	reg_base = pci_resource_start(hba->pcidev,
1426 					BNX2X_DOORBELL_PCI_BAR);
1427 	reg_off = (1 << BNX2X_DB_SHIFT) * (context_id & 0x1FFFF);
1428 	tgt->ctx_base = ioremap_nocache(reg_base + reg_off, 4);
1429 	if (!tgt->ctx_base)
1430 		return -ENOMEM;
1431 	return 0;
1432 }
1433 
1434 char *bnx2fc_get_next_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1435 {
1436 	char *buf = (char *)tgt->rq + (tgt->rq_cons_idx * BNX2FC_RQ_BUF_SZ);
1437 
1438 	if (tgt->rq_cons_idx + num_items > BNX2FC_RQ_WQES_MAX)
1439 		return NULL;
1440 
1441 	tgt->rq_cons_idx += num_items;
1442 
1443 	if (tgt->rq_cons_idx >= BNX2FC_RQ_WQES_MAX)
1444 		tgt->rq_cons_idx -= BNX2FC_RQ_WQES_MAX;
1445 
1446 	return buf;
1447 }
1448 
1449 void bnx2fc_return_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1450 {
1451 	/* return the rq buffer */
1452 	u32 next_prod_idx = tgt->rq_prod_idx + num_items;
1453 	if ((next_prod_idx & 0x7fff) == BNX2FC_RQ_WQES_MAX) {
1454 		/* Wrap around RQ */
1455 		next_prod_idx += 0x8000 - BNX2FC_RQ_WQES_MAX;
1456 	}
1457 	tgt->rq_prod_idx = next_prod_idx;
1458 	tgt->conn_db->rq_prod = tgt->rq_prod_idx;
1459 }
1460 
1461 void bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd *seq_clnp_req,
1462 				  struct fcoe_task_ctx_entry *task,
1463 				  struct bnx2fc_cmd *orig_io_req,
1464 				  u32 offset)
1465 {
1466 	struct scsi_cmnd *sc_cmd = orig_io_req->sc_cmd;
1467 	struct bnx2fc_rport *tgt = seq_clnp_req->tgt;
1468 	struct bnx2fc_interface *interface = tgt->port->priv;
1469 	struct fcoe_bd_ctx *bd = orig_io_req->bd_tbl->bd_tbl;
1470 	struct fcoe_task_ctx_entry *orig_task;
1471 	struct fcoe_task_ctx_entry *task_page;
1472 	struct fcoe_ext_mul_sges_ctx *sgl;
1473 	u8 task_type = FCOE_TASK_TYPE_SEQUENCE_CLEANUP;
1474 	u8 orig_task_type;
1475 	u16 orig_xid = orig_io_req->xid;
1476 	u32 context_id = tgt->context_id;
1477 	u64 phys_addr = (u64)orig_io_req->bd_tbl->bd_tbl_dma;
1478 	u32 orig_offset = offset;
1479 	int bd_count;
1480 	int orig_task_idx, index;
1481 	int i;
1482 
1483 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1484 
1485 	if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1486 		orig_task_type = FCOE_TASK_TYPE_WRITE;
1487 	else
1488 		orig_task_type = FCOE_TASK_TYPE_READ;
1489 
1490 	/* Tx flags */
1491 	task->txwr_rxrd.const_ctx.tx_flags =
1492 				FCOE_TASK_TX_STATE_SEQUENCE_CLEANUP <<
1493 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1494 	/* init flags */
1495 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1496 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1497 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1498 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1499 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1500 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1501 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1502 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1503 
1504 	task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1505 
1506 	task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_seq_cnt = 0;
1507 	task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_data_offset = offset;
1508 
1509 	bd_count = orig_io_req->bd_tbl->bd_valid;
1510 
1511 	/* obtain the appropriate bd entry from relative offset */
1512 	for (i = 0; i < bd_count; i++) {
1513 		if (offset < bd[i].buf_len)
1514 			break;
1515 		offset -= bd[i].buf_len;
1516 	}
1517 	phys_addr += (i * sizeof(struct fcoe_bd_ctx));
1518 
1519 	if (orig_task_type == FCOE_TASK_TYPE_WRITE) {
1520 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1521 				(u32)phys_addr;
1522 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1523 				(u32)((u64)phys_addr >> 32);
1524 		task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1525 				bd_count;
1526 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_off =
1527 				offset; /* adjusted offset */
1528 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_idx = i;
1529 	} else {
1530 		orig_task_idx = orig_xid / BNX2FC_TASKS_PER_PAGE;
1531 		index = orig_xid % BNX2FC_TASKS_PER_PAGE;
1532 
1533 		task_page = (struct fcoe_task_ctx_entry *)
1534 			     interface->hba->task_ctx[orig_task_idx];
1535 		orig_task = &(task_page[index]);
1536 
1537 		/* Multiple SGEs were used for this IO */
1538 		sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1539 		sgl->mul_sgl.cur_sge_addr.lo = (u32)phys_addr;
1540 		sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32);
1541 		sgl->mul_sgl.sgl_size = bd_count;
1542 		sgl->mul_sgl.cur_sge_off = offset; /*adjusted offset */
1543 		sgl->mul_sgl.cur_sge_idx = i;
1544 
1545 		memset(&task->rxwr_only.rx_seq_ctx, 0,
1546 		       sizeof(struct fcoe_rx_seq_ctx));
1547 		task->rxwr_only.rx_seq_ctx.low_exp_ro = orig_offset;
1548 		task->rxwr_only.rx_seq_ctx.high_exp_ro = orig_offset;
1549 	}
1550 }
1551 void bnx2fc_init_cleanup_task(struct bnx2fc_cmd *io_req,
1552 			      struct fcoe_task_ctx_entry *task,
1553 			      u16 orig_xid)
1554 {
1555 	u8 task_type = FCOE_TASK_TYPE_EXCHANGE_CLEANUP;
1556 	struct bnx2fc_rport *tgt = io_req->tgt;
1557 	u32 context_id = tgt->context_id;
1558 
1559 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1560 
1561 	/* Tx Write Rx Read */
1562 	/* init flags */
1563 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1564 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1565 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1566 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1567 	if (tgt->dev_type == TYPE_TAPE)
1568 		task->txwr_rxrd.const_ctx.init_flags |=
1569 				FCOE_TASK_DEV_TYPE_TAPE <<
1570 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1571 	else
1572 		task->txwr_rxrd.const_ctx.init_flags |=
1573 				FCOE_TASK_DEV_TYPE_DISK <<
1574 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1575 	task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1576 
1577 	/* Tx flags */
1578 	task->txwr_rxrd.const_ctx.tx_flags =
1579 				FCOE_TASK_TX_STATE_EXCHANGE_CLEANUP <<
1580 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1581 
1582 	/* Rx Read Tx Write */
1583 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1584 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1585 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1586 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1587 }
1588 
1589 void bnx2fc_init_mp_task(struct bnx2fc_cmd *io_req,
1590 				struct fcoe_task_ctx_entry *task)
1591 {
1592 	struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
1593 	struct bnx2fc_rport *tgt = io_req->tgt;
1594 	struct fc_frame_header *fc_hdr;
1595 	struct fcoe_ext_mul_sges_ctx *sgl;
1596 	u8 task_type = 0;
1597 	u64 *hdr;
1598 	u64 temp_hdr[3];
1599 	u32 context_id;
1600 
1601 
1602 	/* Obtain task_type */
1603 	if ((io_req->cmd_type == BNX2FC_TASK_MGMT_CMD) ||
1604 	    (io_req->cmd_type == BNX2FC_ELS)) {
1605 		task_type = FCOE_TASK_TYPE_MIDPATH;
1606 	} else if (io_req->cmd_type == BNX2FC_ABTS) {
1607 		task_type = FCOE_TASK_TYPE_ABTS;
1608 	}
1609 
1610 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1611 
1612 	/* Setup the task from io_req for easy reference */
1613 	io_req->task = task;
1614 
1615 	BNX2FC_IO_DBG(io_req, "Init MP task for cmd_type = %d task_type = %d\n",
1616 		io_req->cmd_type, task_type);
1617 
1618 	/* Tx only */
1619 	if ((task_type == FCOE_TASK_TYPE_MIDPATH) ||
1620 	    (task_type == FCOE_TASK_TYPE_UNSOLICITED)) {
1621 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1622 				(u32)mp_req->mp_req_bd_dma;
1623 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1624 				(u32)((u64)mp_req->mp_req_bd_dma >> 32);
1625 		task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1;
1626 	}
1627 
1628 	/* Tx Write Rx Read */
1629 	/* init flags */
1630 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1631 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1632 	if (tgt->dev_type == TYPE_TAPE)
1633 		task->txwr_rxrd.const_ctx.init_flags |=
1634 				FCOE_TASK_DEV_TYPE_TAPE <<
1635 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1636 	else
1637 		task->txwr_rxrd.const_ctx.init_flags |=
1638 				FCOE_TASK_DEV_TYPE_DISK <<
1639 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1640 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1641 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1642 
1643 	/* tx flags */
1644 	task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_INIT <<
1645 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1646 
1647 	/* Rx Write Tx Read */
1648 	task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1649 
1650 	/* rx flags */
1651 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1652 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1653 
1654 	context_id = tgt->context_id;
1655 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1656 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1657 
1658 	fc_hdr = &(mp_req->req_fc_hdr);
1659 	if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1660 		fc_hdr->fh_ox_id = cpu_to_be16(io_req->xid);
1661 		fc_hdr->fh_rx_id = htons(0xffff);
1662 		task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1663 	} else if (task_type == FCOE_TASK_TYPE_UNSOLICITED) {
1664 		fc_hdr->fh_rx_id = cpu_to_be16(io_req->xid);
1665 	}
1666 
1667 	/* Fill FC Header into middle path buffer */
1668 	hdr = (u64 *) &task->txwr_rxrd.union_ctx.tx_frame.fc_hdr;
1669 	memcpy(temp_hdr, fc_hdr, sizeof(temp_hdr));
1670 	hdr[0] = cpu_to_be64(temp_hdr[0]);
1671 	hdr[1] = cpu_to_be64(temp_hdr[1]);
1672 	hdr[2] = cpu_to_be64(temp_hdr[2]);
1673 
1674 	/* Rx Only */
1675 	if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1676 		sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1677 
1678 		sgl->mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_resp_bd_dma;
1679 		sgl->mul_sgl.cur_sge_addr.hi =
1680 				(u32)((u64)mp_req->mp_resp_bd_dma >> 32);
1681 		sgl->mul_sgl.sgl_size = 1;
1682 	}
1683 }
1684 
1685 void bnx2fc_init_task(struct bnx2fc_cmd *io_req,
1686 			     struct fcoe_task_ctx_entry *task)
1687 {
1688 	u8 task_type;
1689 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1690 	struct io_bdt *bd_tbl = io_req->bd_tbl;
1691 	struct bnx2fc_rport *tgt = io_req->tgt;
1692 	struct fcoe_cached_sge_ctx *cached_sge;
1693 	struct fcoe_ext_mul_sges_ctx *sgl;
1694 	int dev_type = tgt->dev_type;
1695 	u64 *fcp_cmnd;
1696 	u64 tmp_fcp_cmnd[4];
1697 	u32 context_id;
1698 	int cnt, i;
1699 	int bd_count;
1700 
1701 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1702 
1703 	/* Setup the task from io_req for easy reference */
1704 	io_req->task = task;
1705 
1706 	if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1707 		task_type = FCOE_TASK_TYPE_WRITE;
1708 	else
1709 		task_type = FCOE_TASK_TYPE_READ;
1710 
1711 	/* Tx only */
1712 	bd_count = bd_tbl->bd_valid;
1713 	cached_sge = &task->rxwr_only.union_ctx.read_info.sgl_ctx.cached_sge;
1714 	if (task_type == FCOE_TASK_TYPE_WRITE) {
1715 		if ((dev_type == TYPE_DISK) && (bd_count == 1)) {
1716 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1717 
1718 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.lo =
1719 			cached_sge->cur_buf_addr.lo =
1720 					fcoe_bd_tbl->buf_addr_lo;
1721 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.hi =
1722 			cached_sge->cur_buf_addr.hi =
1723 					fcoe_bd_tbl->buf_addr_hi;
1724 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_rem =
1725 			cached_sge->cur_buf_rem =
1726 					fcoe_bd_tbl->buf_len;
1727 
1728 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1729 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1730 		} else {
1731 			task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1732 					(u32)bd_tbl->bd_tbl_dma;
1733 			task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1734 					(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1735 			task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1736 					bd_tbl->bd_valid;
1737 		}
1738 	}
1739 
1740 	/*Tx Write Rx Read */
1741 	/* Init state to NORMAL */
1742 	task->txwr_rxrd.const_ctx.init_flags |= task_type <<
1743 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1744 	if (dev_type == TYPE_TAPE) {
1745 		task->txwr_rxrd.const_ctx.init_flags |=
1746 				FCOE_TASK_DEV_TYPE_TAPE <<
1747 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1748 		io_req->rec_retry = 0;
1749 		io_req->rec_retry = 0;
1750 	} else
1751 		task->txwr_rxrd.const_ctx.init_flags |=
1752 				FCOE_TASK_DEV_TYPE_DISK <<
1753 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1754 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1755 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1756 	/* tx flags */
1757 	task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_NORMAL <<
1758 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1759 
1760 	/* Set initial seq counter */
1761 	task->txwr_rxrd.union_ctx.tx_seq.ctx.seq_cnt = 1;
1762 
1763 	/* Fill FCP_CMND IU */
1764 	fcp_cmnd = (u64 *)
1765 		    task->txwr_rxrd.union_ctx.fcp_cmd.opaque;
1766 	bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)&tmp_fcp_cmnd);
1767 
1768 	/* swap fcp_cmnd */
1769 	cnt = sizeof(struct fcp_cmnd) / sizeof(u64);
1770 
1771 	for (i = 0; i < cnt; i++) {
1772 		*fcp_cmnd = cpu_to_be64(tmp_fcp_cmnd[i]);
1773 		fcp_cmnd++;
1774 	}
1775 
1776 	/* Rx Write Tx Read */
1777 	task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1778 
1779 	context_id = tgt->context_id;
1780 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1781 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1782 
1783 	/* rx flags */
1784 	/* Set state to "waiting for the first packet" */
1785 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1786 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1787 
1788 	task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1789 
1790 	/* Rx Only */
1791 	if (task_type != FCOE_TASK_TYPE_READ)
1792 		return;
1793 
1794 	sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1795 	bd_count = bd_tbl->bd_valid;
1796 
1797 	if (dev_type == TYPE_DISK) {
1798 		if (bd_count == 1) {
1799 
1800 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1801 
1802 			cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1803 			cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1804 			cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1805 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1806 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1807 		} else if (bd_count == 2) {
1808 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1809 
1810 			cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1811 			cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1812 			cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1813 
1814 			fcoe_bd_tbl++;
1815 			cached_sge->second_buf_addr.lo =
1816 						 fcoe_bd_tbl->buf_addr_lo;
1817 			cached_sge->second_buf_addr.hi =
1818 						fcoe_bd_tbl->buf_addr_hi;
1819 			cached_sge->second_buf_rem = fcoe_bd_tbl->buf_len;
1820 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1821 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1822 		} else {
1823 
1824 			sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1825 			sgl->mul_sgl.cur_sge_addr.hi =
1826 					(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1827 			sgl->mul_sgl.sgl_size = bd_count;
1828 		}
1829 	} else {
1830 		sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1831 		sgl->mul_sgl.cur_sge_addr.hi =
1832 				(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1833 		sgl->mul_sgl.sgl_size = bd_count;
1834 	}
1835 }
1836 
1837 /**
1838  * bnx2fc_setup_task_ctx - allocate and map task context
1839  *
1840  * @hba:	pointer to adapter structure
1841  *
1842  * allocate memory for task context, and associated BD table to be used
1843  * by firmware
1844  *
1845  */
1846 int bnx2fc_setup_task_ctx(struct bnx2fc_hba *hba)
1847 {
1848 	int rc = 0;
1849 	struct regpair *task_ctx_bdt;
1850 	dma_addr_t addr;
1851 	int task_ctx_arr_sz;
1852 	int i;
1853 
1854 	/*
1855 	 * Allocate task context bd table. A page size of bd table
1856 	 * can map 256 buffers. Each buffer contains 32 task context
1857 	 * entries. Hence the limit with one page is 8192 task context
1858 	 * entries.
1859 	 */
1860 	hba->task_ctx_bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
1861 						  PAGE_SIZE,
1862 						  &hba->task_ctx_bd_dma,
1863 						  GFP_KERNEL);
1864 	if (!hba->task_ctx_bd_tbl) {
1865 		printk(KERN_ERR PFX "unable to allocate task context BDT\n");
1866 		rc = -1;
1867 		goto out;
1868 	}
1869 
1870 	/*
1871 	 * Allocate task_ctx which is an array of pointers pointing to
1872 	 * a page containing 32 task contexts
1873 	 */
1874 	task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1875 	hba->task_ctx = kzalloc((task_ctx_arr_sz * sizeof(void *)),
1876 				 GFP_KERNEL);
1877 	if (!hba->task_ctx) {
1878 		printk(KERN_ERR PFX "unable to allocate task context array\n");
1879 		rc = -1;
1880 		goto out1;
1881 	}
1882 
1883 	/*
1884 	 * Allocate task_ctx_dma which is an array of dma addresses
1885 	 */
1886 	hba->task_ctx_dma = kmalloc((task_ctx_arr_sz *
1887 					sizeof(dma_addr_t)), GFP_KERNEL);
1888 	if (!hba->task_ctx_dma) {
1889 		printk(KERN_ERR PFX "unable to alloc context mapping array\n");
1890 		rc = -1;
1891 		goto out2;
1892 	}
1893 
1894 	task_ctx_bdt = (struct regpair *)hba->task_ctx_bd_tbl;
1895 	for (i = 0; i < task_ctx_arr_sz; i++) {
1896 
1897 		hba->task_ctx[i] = dma_alloc_coherent(&hba->pcidev->dev,
1898 						      PAGE_SIZE,
1899 						      &hba->task_ctx_dma[i],
1900 						      GFP_KERNEL);
1901 		if (!hba->task_ctx[i]) {
1902 			printk(KERN_ERR PFX "unable to alloc task context\n");
1903 			rc = -1;
1904 			goto out3;
1905 		}
1906 		addr = (u64)hba->task_ctx_dma[i];
1907 		task_ctx_bdt->hi = cpu_to_le32((u64)addr >> 32);
1908 		task_ctx_bdt->lo = cpu_to_le32((u32)addr);
1909 		task_ctx_bdt++;
1910 	}
1911 	return 0;
1912 
1913 out3:
1914 	for (i = 0; i < task_ctx_arr_sz; i++) {
1915 		if (hba->task_ctx[i]) {
1916 
1917 			dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1918 				hba->task_ctx[i], hba->task_ctx_dma[i]);
1919 			hba->task_ctx[i] = NULL;
1920 		}
1921 	}
1922 
1923 	kfree(hba->task_ctx_dma);
1924 	hba->task_ctx_dma = NULL;
1925 out2:
1926 	kfree(hba->task_ctx);
1927 	hba->task_ctx = NULL;
1928 out1:
1929 	dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1930 			hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma);
1931 	hba->task_ctx_bd_tbl = NULL;
1932 out:
1933 	return rc;
1934 }
1935 
1936 void bnx2fc_free_task_ctx(struct bnx2fc_hba *hba)
1937 {
1938 	int task_ctx_arr_sz;
1939 	int i;
1940 
1941 	if (hba->task_ctx_bd_tbl) {
1942 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1943 				    hba->task_ctx_bd_tbl,
1944 				    hba->task_ctx_bd_dma);
1945 		hba->task_ctx_bd_tbl = NULL;
1946 	}
1947 
1948 	task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1949 	if (hba->task_ctx) {
1950 		for (i = 0; i < task_ctx_arr_sz; i++) {
1951 			if (hba->task_ctx[i]) {
1952 				dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1953 						    hba->task_ctx[i],
1954 						    hba->task_ctx_dma[i]);
1955 				hba->task_ctx[i] = NULL;
1956 			}
1957 		}
1958 		kfree(hba->task_ctx);
1959 		hba->task_ctx = NULL;
1960 	}
1961 
1962 	kfree(hba->task_ctx_dma);
1963 	hba->task_ctx_dma = NULL;
1964 }
1965 
1966 static void bnx2fc_free_hash_table(struct bnx2fc_hba *hba)
1967 {
1968 	int i;
1969 	int segment_count;
1970 	u32 *pbl;
1971 
1972 	if (hba->hash_tbl_segments) {
1973 
1974 		pbl = hba->hash_tbl_pbl;
1975 		if (pbl) {
1976 			segment_count = hba->hash_tbl_segment_count;
1977 			for (i = 0; i < segment_count; ++i) {
1978 				dma_addr_t dma_address;
1979 
1980 				dma_address = le32_to_cpu(*pbl);
1981 				++pbl;
1982 				dma_address += ((u64)le32_to_cpu(*pbl)) << 32;
1983 				++pbl;
1984 				dma_free_coherent(&hba->pcidev->dev,
1985 						  BNX2FC_HASH_TBL_CHUNK_SIZE,
1986 						  hba->hash_tbl_segments[i],
1987 						  dma_address);
1988 			}
1989 		}
1990 
1991 		kfree(hba->hash_tbl_segments);
1992 		hba->hash_tbl_segments = NULL;
1993 	}
1994 
1995 	if (hba->hash_tbl_pbl) {
1996 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1997 				    hba->hash_tbl_pbl,
1998 				    hba->hash_tbl_pbl_dma);
1999 		hba->hash_tbl_pbl = NULL;
2000 	}
2001 }
2002 
2003 static int bnx2fc_allocate_hash_table(struct bnx2fc_hba *hba)
2004 {
2005 	int i;
2006 	int hash_table_size;
2007 	int segment_count;
2008 	int segment_array_size;
2009 	int dma_segment_array_size;
2010 	dma_addr_t *dma_segment_array;
2011 	u32 *pbl;
2012 
2013 	hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL *
2014 		sizeof(struct fcoe_hash_table_entry);
2015 
2016 	segment_count = hash_table_size + BNX2FC_HASH_TBL_CHUNK_SIZE - 1;
2017 	segment_count /= BNX2FC_HASH_TBL_CHUNK_SIZE;
2018 	hba->hash_tbl_segment_count = segment_count;
2019 
2020 	segment_array_size = segment_count * sizeof(*hba->hash_tbl_segments);
2021 	hba->hash_tbl_segments = kzalloc(segment_array_size, GFP_KERNEL);
2022 	if (!hba->hash_tbl_segments) {
2023 		printk(KERN_ERR PFX "hash table pointers alloc failed\n");
2024 		return -ENOMEM;
2025 	}
2026 	dma_segment_array_size = segment_count * sizeof(*dma_segment_array);
2027 	dma_segment_array = kzalloc(dma_segment_array_size, GFP_KERNEL);
2028 	if (!dma_segment_array) {
2029 		printk(KERN_ERR PFX "hash table pointers (dma) alloc failed\n");
2030 		goto cleanup_ht;
2031 	}
2032 
2033 	for (i = 0; i < segment_count; ++i) {
2034 		hba->hash_tbl_segments[i] = dma_alloc_coherent(&hba->pcidev->dev,
2035 							       BNX2FC_HASH_TBL_CHUNK_SIZE,
2036 							       &dma_segment_array[i],
2037 							       GFP_KERNEL);
2038 		if (!hba->hash_tbl_segments[i]) {
2039 			printk(KERN_ERR PFX "hash segment alloc failed\n");
2040 			goto cleanup_dma;
2041 		}
2042 	}
2043 
2044 	hba->hash_tbl_pbl = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
2045 					       &hba->hash_tbl_pbl_dma,
2046 					       GFP_KERNEL);
2047 	if (!hba->hash_tbl_pbl) {
2048 		printk(KERN_ERR PFX "hash table pbl alloc failed\n");
2049 		goto cleanup_dma;
2050 	}
2051 
2052 	pbl = hba->hash_tbl_pbl;
2053 	for (i = 0; i < segment_count; ++i) {
2054 		u64 paddr = dma_segment_array[i];
2055 		*pbl = cpu_to_le32((u32) paddr);
2056 		++pbl;
2057 		*pbl = cpu_to_le32((u32) (paddr >> 32));
2058 		++pbl;
2059 	}
2060 	pbl = hba->hash_tbl_pbl;
2061 	i = 0;
2062 	while (*pbl && *(pbl + 1)) {
2063 		u32 lo;
2064 		u32 hi;
2065 		lo = *pbl;
2066 		++pbl;
2067 		hi = *pbl;
2068 		++pbl;
2069 		++i;
2070 	}
2071 	kfree(dma_segment_array);
2072 	return 0;
2073 
2074 cleanup_dma:
2075 	for (i = 0; i < segment_count; ++i) {
2076 		if (hba->hash_tbl_segments[i])
2077 			dma_free_coherent(&hba->pcidev->dev,
2078 					    BNX2FC_HASH_TBL_CHUNK_SIZE,
2079 					    hba->hash_tbl_segments[i],
2080 					    dma_segment_array[i]);
2081 	}
2082 
2083 	kfree(dma_segment_array);
2084 
2085 cleanup_ht:
2086 	kfree(hba->hash_tbl_segments);
2087 	hba->hash_tbl_segments = NULL;
2088 	return -ENOMEM;
2089 }
2090 
2091 /**
2092  * bnx2fc_setup_fw_resc - Allocate and map hash table and dummy buffer
2093  *
2094  * @hba:	Pointer to adapter structure
2095  *
2096  */
2097 int bnx2fc_setup_fw_resc(struct bnx2fc_hba *hba)
2098 {
2099 	u64 addr;
2100 	u32 mem_size;
2101 	int i;
2102 
2103 	if (bnx2fc_allocate_hash_table(hba))
2104 		return -ENOMEM;
2105 
2106 	mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2107 	hba->t2_hash_tbl_ptr = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2108 						  &hba->t2_hash_tbl_ptr_dma,
2109 						  GFP_KERNEL);
2110 	if (!hba->t2_hash_tbl_ptr) {
2111 		printk(KERN_ERR PFX "unable to allocate t2 hash table ptr\n");
2112 		bnx2fc_free_fw_resc(hba);
2113 		return -ENOMEM;
2114 	}
2115 
2116 	mem_size = BNX2FC_NUM_MAX_SESS *
2117 				sizeof(struct fcoe_t2_hash_table_entry);
2118 	hba->t2_hash_tbl = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2119 					      &hba->t2_hash_tbl_dma,
2120 					      GFP_KERNEL);
2121 	if (!hba->t2_hash_tbl) {
2122 		printk(KERN_ERR PFX "unable to allocate t2 hash table\n");
2123 		bnx2fc_free_fw_resc(hba);
2124 		return -ENOMEM;
2125 	}
2126 	for (i = 0; i < BNX2FC_NUM_MAX_SESS; i++) {
2127 		addr = (unsigned long) hba->t2_hash_tbl_dma +
2128 			 ((i+1) * sizeof(struct fcoe_t2_hash_table_entry));
2129 		hba->t2_hash_tbl[i].next.lo = addr & 0xffffffff;
2130 		hba->t2_hash_tbl[i].next.hi = addr >> 32;
2131 	}
2132 
2133 	hba->dummy_buffer = dma_alloc_coherent(&hba->pcidev->dev,
2134 					       PAGE_SIZE, &hba->dummy_buf_dma,
2135 					       GFP_KERNEL);
2136 	if (!hba->dummy_buffer) {
2137 		printk(KERN_ERR PFX "unable to alloc MP Dummy Buffer\n");
2138 		bnx2fc_free_fw_resc(hba);
2139 		return -ENOMEM;
2140 	}
2141 
2142 	hba->stats_buffer = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
2143 					       &hba->stats_buf_dma,
2144 					       GFP_KERNEL);
2145 	if (!hba->stats_buffer) {
2146 		printk(KERN_ERR PFX "unable to alloc Stats Buffer\n");
2147 		bnx2fc_free_fw_resc(hba);
2148 		return -ENOMEM;
2149 	}
2150 
2151 	return 0;
2152 }
2153 
2154 void bnx2fc_free_fw_resc(struct bnx2fc_hba *hba)
2155 {
2156 	u32 mem_size;
2157 
2158 	if (hba->stats_buffer) {
2159 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2160 				  hba->stats_buffer, hba->stats_buf_dma);
2161 		hba->stats_buffer = NULL;
2162 	}
2163 
2164 	if (hba->dummy_buffer) {
2165 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2166 				  hba->dummy_buffer, hba->dummy_buf_dma);
2167 		hba->dummy_buffer = NULL;
2168 	}
2169 
2170 	if (hba->t2_hash_tbl_ptr) {
2171 		mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2172 		dma_free_coherent(&hba->pcidev->dev, mem_size,
2173 				    hba->t2_hash_tbl_ptr,
2174 				    hba->t2_hash_tbl_ptr_dma);
2175 		hba->t2_hash_tbl_ptr = NULL;
2176 	}
2177 
2178 	if (hba->t2_hash_tbl) {
2179 		mem_size = BNX2FC_NUM_MAX_SESS *
2180 			    sizeof(struct fcoe_t2_hash_table_entry);
2181 		dma_free_coherent(&hba->pcidev->dev, mem_size,
2182 				    hba->t2_hash_tbl, hba->t2_hash_tbl_dma);
2183 		hba->t2_hash_tbl = NULL;
2184 	}
2185 	bnx2fc_free_hash_table(hba);
2186 }
2187