xref: /openbmc/linux/drivers/scsi/aic94xx/aic94xx_sds.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Aic94xx SAS/SATA driver access to shared data structures and memory
4  * maps.
5  *
6  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
7  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
8  */
9 
10 #include <linux/pci.h>
11 #include <linux/slab.h>
12 #include <linux/delay.h>
13 
14 #include "aic94xx.h"
15 #include "aic94xx_reg.h"
16 #include "aic94xx_sds.h"
17 
18 /* ---------- OCM stuff ---------- */
19 
20 struct asd_ocm_dir_ent {
21 	u8 type;
22 	u8 offs[3];
23 	u8 _r1;
24 	u8 size[3];
25 } __attribute__ ((packed));
26 
27 struct asd_ocm_dir {
28 	char sig[2];
29 	u8   _r1[2];
30 	u8   major;          /* 0 */
31 	u8   minor;          /* 0 */
32 	u8   _r2;
33 	u8   num_de;
34 	struct asd_ocm_dir_ent entry[15];
35 } __attribute__ ((packed));
36 
37 #define	OCM_DE_OCM_DIR			0x00
38 #define	OCM_DE_WIN_DRVR			0x01
39 #define	OCM_DE_BIOS_CHIM		0x02
40 #define	OCM_DE_RAID_ENGN		0x03
41 #define	OCM_DE_BIOS_INTL		0x04
42 #define	OCM_DE_BIOS_CHIM_OSM		0x05
43 #define	OCM_DE_BIOS_CHIM_DYNAMIC	0x06
44 #define	OCM_DE_ADDC2C_RES0		0x07
45 #define	OCM_DE_ADDC2C_RES1		0x08
46 #define	OCM_DE_ADDC2C_RES2		0x09
47 #define	OCM_DE_ADDC2C_RES3		0x0A
48 
49 #define OCM_INIT_DIR_ENTRIES	5
50 /***************************************************************************
51 *  OCM directory default
52 ***************************************************************************/
53 static struct asd_ocm_dir OCMDirInit =
54 {
55 	.sig = {0x4D, 0x4F},	/* signature */
56 	.num_de = OCM_INIT_DIR_ENTRIES,	/* no. of directory entries */
57 };
58 
59 /***************************************************************************
60 *  OCM directory Entries default
61 ***************************************************************************/
62 static struct asd_ocm_dir_ent OCMDirEntriesInit[OCM_INIT_DIR_ENTRIES] =
63 {
64 	{
65 		.type = (OCM_DE_ADDC2C_RES0),	/* Entry type  */
66 		.offs = {128},			/* Offset */
67 		.size = {0, 4},			/* size */
68 	},
69 	{
70 		.type = (OCM_DE_ADDC2C_RES1),	/* Entry type  */
71 		.offs = {128, 4},		/* Offset */
72 		.size = {0, 4},			/* size */
73 	},
74 	{
75 		.type = (OCM_DE_ADDC2C_RES2),	/* Entry type  */
76 		.offs = {128, 8},		/* Offset */
77 		.size = {0, 4},			/* size */
78 	},
79 	{
80 		.type = (OCM_DE_ADDC2C_RES3),	/* Entry type  */
81 		.offs = {128, 12},		/* Offset */
82 		.size = {0, 4},			/* size */
83 	},
84 	{
85 		.type = (OCM_DE_WIN_DRVR),	/* Entry type  */
86 		.offs = {128, 16},		/* Offset */
87 		.size = {128, 235, 1},		/* size */
88 	},
89 };
90 
91 struct asd_bios_chim_struct {
92 	char sig[4];
93 	u8   major;          /* 1 */
94 	u8   minor;          /* 0 */
95 	u8   bios_major;
96 	u8   bios_minor;
97 	__le32  bios_build;
98 	u8   flags;
99 	u8   pci_slot;
100 	__le16  ue_num;
101 	__le16  ue_size;
102 	u8  _r[14];
103 	/* The unit element array is right here.
104 	 */
105 } __attribute__ ((packed));
106 
107 /**
108  * asd_read_ocm_seg - read an on chip memory (OCM) segment
109  * @asd_ha: pointer to the host adapter structure
110  * @buffer: where to write the read data
111  * @offs: offset into OCM where to read from
112  * @size: how many bytes to read
113  *
114  * Return the number of bytes not read. Return 0 on success.
115  */
116 static int asd_read_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
117 			    u32 offs, int size)
118 {
119 	u8 *p = buffer;
120 	if (unlikely(asd_ha->iospace))
121 		asd_read_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
122 	else {
123 		for ( ; size > 0; size--, offs++, p++)
124 			*p = asd_read_ocm_byte(asd_ha, offs);
125 	}
126 	return size;
127 }
128 
129 static int asd_read_ocm_dir(struct asd_ha_struct *asd_ha,
130 			    struct asd_ocm_dir *dir, u32 offs)
131 {
132 	int err = asd_read_ocm_seg(asd_ha, dir, offs, sizeof(*dir));
133 	if (err) {
134 		ASD_DPRINTK("couldn't read ocm segment\n");
135 		return err;
136 	}
137 
138 	if (dir->sig[0] != 'M' || dir->sig[1] != 'O') {
139 		ASD_DPRINTK("no valid dir signature(%c%c) at start of OCM\n",
140 			    dir->sig[0], dir->sig[1]);
141 		return -ENOENT;
142 	}
143 	if (dir->major != 0) {
144 		asd_printk("unsupported major version of ocm dir:0x%x\n",
145 			   dir->major);
146 		return -ENOENT;
147 	}
148 	dir->num_de &= 0xf;
149 	return 0;
150 }
151 
152 /**
153  * asd_write_ocm_seg - write an on chip memory (OCM) segment
154  * @asd_ha: pointer to the host adapter structure
155  * @buffer: where to read the write data
156  * @offs: offset into OCM to write to
157  * @size: how many bytes to write
158  *
159  * Return the number of bytes not written. Return 0 on success.
160  */
161 static void asd_write_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
162 			    u32 offs, int size)
163 {
164 	u8 *p = buffer;
165 	if (unlikely(asd_ha->iospace))
166 		asd_write_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
167 	else {
168 		for ( ; size > 0; size--, offs++, p++)
169 			asd_write_ocm_byte(asd_ha, offs, *p);
170 	}
171 	return;
172 }
173 
174 #define THREE_TO_NUM(X) ((X)[0] | ((X)[1] << 8) | ((X)[2] << 16))
175 
176 static int asd_find_dir_entry(struct asd_ocm_dir *dir, u8 type,
177 			      u32 *offs, u32 *size)
178 {
179 	int i;
180 	struct asd_ocm_dir_ent *ent;
181 
182 	for (i = 0; i < dir->num_de; i++) {
183 		if (dir->entry[i].type == type)
184 			break;
185 	}
186 	if (i >= dir->num_de)
187 		return -ENOENT;
188 	ent = &dir->entry[i];
189 	*offs = (u32) THREE_TO_NUM(ent->offs);
190 	*size = (u32) THREE_TO_NUM(ent->size);
191 	return 0;
192 }
193 
194 #define OCM_BIOS_CHIM_DE  2
195 #define BC_BIOS_PRESENT   1
196 
197 static int asd_get_bios_chim(struct asd_ha_struct *asd_ha,
198 			     struct asd_ocm_dir *dir)
199 {
200 	int err;
201 	struct asd_bios_chim_struct *bc_struct;
202 	u32 offs, size;
203 
204 	err = asd_find_dir_entry(dir, OCM_BIOS_CHIM_DE, &offs, &size);
205 	if (err) {
206 		ASD_DPRINTK("couldn't find BIOS_CHIM dir ent\n");
207 		goto out;
208 	}
209 	err = -ENOMEM;
210 	bc_struct = kmalloc(sizeof(*bc_struct), GFP_KERNEL);
211 	if (!bc_struct) {
212 		asd_printk("no memory for bios_chim struct\n");
213 		goto out;
214 	}
215 	err = asd_read_ocm_seg(asd_ha, (void *)bc_struct, offs,
216 			       sizeof(*bc_struct));
217 	if (err) {
218 		ASD_DPRINTK("couldn't read ocm segment\n");
219 		goto out2;
220 	}
221 	if (strncmp(bc_struct->sig, "SOIB", 4)
222 	    && strncmp(bc_struct->sig, "IPSA", 4)) {
223 		ASD_DPRINTK("BIOS_CHIM entry has no valid sig(%c%c%c%c)\n",
224 			    bc_struct->sig[0], bc_struct->sig[1],
225 			    bc_struct->sig[2], bc_struct->sig[3]);
226 		err = -ENOENT;
227 		goto out2;
228 	}
229 	if (bc_struct->major != 1) {
230 		asd_printk("BIOS_CHIM unsupported major version:0x%x\n",
231 			   bc_struct->major);
232 		err = -ENOENT;
233 		goto out2;
234 	}
235 	if (bc_struct->flags & BC_BIOS_PRESENT) {
236 		asd_ha->hw_prof.bios.present = 1;
237 		asd_ha->hw_prof.bios.maj = bc_struct->bios_major;
238 		asd_ha->hw_prof.bios.min = bc_struct->bios_minor;
239 		asd_ha->hw_prof.bios.bld = le32_to_cpu(bc_struct->bios_build);
240 		ASD_DPRINTK("BIOS present (%d,%d), %d\n",
241 			    asd_ha->hw_prof.bios.maj,
242 			    asd_ha->hw_prof.bios.min,
243 			    asd_ha->hw_prof.bios.bld);
244 	}
245 	asd_ha->hw_prof.ue.num = le16_to_cpu(bc_struct->ue_num);
246 	asd_ha->hw_prof.ue.size= le16_to_cpu(bc_struct->ue_size);
247 	ASD_DPRINTK("ue num:%d, ue size:%d\n", asd_ha->hw_prof.ue.num,
248 		    asd_ha->hw_prof.ue.size);
249 	size = asd_ha->hw_prof.ue.num * asd_ha->hw_prof.ue.size;
250 	if (size > 0) {
251 		err = -ENOMEM;
252 		asd_ha->hw_prof.ue.area = kmalloc(size, GFP_KERNEL);
253 		if (!asd_ha->hw_prof.ue.area)
254 			goto out2;
255 		err = asd_read_ocm_seg(asd_ha, (void *)asd_ha->hw_prof.ue.area,
256 				       offs + sizeof(*bc_struct), size);
257 		if (err) {
258 			kfree(asd_ha->hw_prof.ue.area);
259 			asd_ha->hw_prof.ue.area = NULL;
260 			asd_ha->hw_prof.ue.num  = 0;
261 			asd_ha->hw_prof.ue.size = 0;
262 			ASD_DPRINTK("couldn't read ue entries(%d)\n", err);
263 		}
264 	}
265 out2:
266 	kfree(bc_struct);
267 out:
268 	return err;
269 }
270 
271 static void
272 asd_hwi_initialize_ocm_dir (struct asd_ha_struct *asd_ha)
273 {
274 	int i;
275 
276 	/* Zero OCM */
277 	for (i = 0; i < OCM_MAX_SIZE; i += 4)
278 		asd_write_ocm_dword(asd_ha, i, 0);
279 
280 	/* Write Dir */
281 	asd_write_ocm_seg(asd_ha, &OCMDirInit, 0,
282 			  sizeof(struct asd_ocm_dir));
283 
284 	/* Write Dir Entries */
285 	for (i = 0; i < OCM_INIT_DIR_ENTRIES; i++)
286 		asd_write_ocm_seg(asd_ha, &OCMDirEntriesInit[i],
287 				  sizeof(struct asd_ocm_dir) +
288 				  (i * sizeof(struct asd_ocm_dir_ent))
289 				  , sizeof(struct asd_ocm_dir_ent));
290 
291 }
292 
293 static int
294 asd_hwi_check_ocm_access (struct asd_ha_struct *asd_ha)
295 {
296 	struct pci_dev *pcidev = asd_ha->pcidev;
297 	u32 reg;
298 	int err = 0;
299 	u32 v;
300 
301 	/* check if OCM has been initialized by BIOS */
302 	reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
303 
304 	if (!(reg & OCMINITIALIZED)) {
305 		err = pci_read_config_dword(pcidev, PCIC_INTRPT_STAT, &v);
306 		if (err) {
307 			asd_printk("couldn't access PCIC_INTRPT_STAT of %s\n",
308 					pci_name(pcidev));
309 			goto out;
310 		}
311 
312 		printk(KERN_INFO "OCM is not initialized by BIOS,"
313 		       "reinitialize it and ignore it, current IntrptStatus"
314 		       "is 0x%x\n", v);
315 
316 		if (v)
317 			err = pci_write_config_dword(pcidev,
318 						     PCIC_INTRPT_STAT, v);
319 		if (err) {
320 			asd_printk("couldn't write PCIC_INTRPT_STAT of %s\n",
321 					pci_name(pcidev));
322 			goto out;
323 		}
324 
325 		asd_hwi_initialize_ocm_dir(asd_ha);
326 
327 	}
328 out:
329 	return err;
330 }
331 
332 /**
333  * asd_read_ocm - read on chip memory (OCM)
334  * @asd_ha: pointer to the host adapter structure
335  */
336 int asd_read_ocm(struct asd_ha_struct *asd_ha)
337 {
338 	int err;
339 	struct asd_ocm_dir *dir;
340 
341 	if (asd_hwi_check_ocm_access(asd_ha))
342 		return -1;
343 
344 	dir = kmalloc(sizeof(*dir), GFP_KERNEL);
345 	if (!dir) {
346 		asd_printk("no memory for ocm dir\n");
347 		return -ENOMEM;
348 	}
349 
350 	err = asd_read_ocm_dir(asd_ha, dir, 0);
351 	if (err)
352 		goto out;
353 
354 	err = asd_get_bios_chim(asd_ha, dir);
355 out:
356 	kfree(dir);
357 	return err;
358 }
359 
360 /* ---------- FLASH stuff ---------- */
361 
362 #define FLASH_RESET			0xF0
363 
364 #define ASD_FLASH_SIZE                  0x200000
365 #define FLASH_DIR_COOKIE                "*** ADAPTEC FLASH DIRECTORY *** "
366 #define FLASH_NEXT_ENTRY_OFFS		0x2000
367 #define FLASH_MAX_DIR_ENTRIES		32
368 
369 #define FLASH_DE_TYPE_MASK              0x3FFFFFFF
370 #define FLASH_DE_MS                     0x120
371 #define FLASH_DE_CTRL_A_USER            0xE0
372 
373 struct asd_flash_de {
374 	__le32   type;
375 	__le32   offs;
376 	__le32   pad_size;
377 	__le32   image_size;
378 	__le32   chksum;
379 	u8       _r[12];
380 	u8       version[32];
381 } __attribute__ ((packed));
382 
383 struct asd_flash_dir {
384 	u8    cookie[32];
385 	__le32   rev;		  /* 2 */
386 	__le32   chksum;
387 	__le32   chksum_antidote;
388 	__le32   bld;
389 	u8    bld_id[32];	  /* build id data */
390 	u8    ver_data[32];	  /* date and time of build */
391 	__le32   ae_mask;
392 	__le32   v_mask;
393 	__le32   oc_mask;
394 	u8    _r[20];
395 	struct asd_flash_de dir_entry[FLASH_MAX_DIR_ENTRIES];
396 } __attribute__ ((packed));
397 
398 struct asd_manuf_sec {
399 	char  sig[2];		  /* 'S', 'M' */
400 	u16   offs_next;
401 	u8    maj;           /* 0 */
402 	u8    min;           /* 0 */
403 	u16   chksum;
404 	u16   size;
405 	u8    _r[6];
406 	u8    sas_addr[SAS_ADDR_SIZE];
407 	u8    pcba_sn[ASD_PCBA_SN_SIZE];
408 	/* Here start the other segments */
409 	u8    linked_list[0];
410 } __attribute__ ((packed));
411 
412 struct asd_manuf_phy_desc {
413 	u8    state;         /* low 4 bits */
414 #define MS_PHY_STATE_ENABLED    0
415 #define MS_PHY_STATE_REPORTED   1
416 #define MS_PHY_STATE_HIDDEN     2
417 	u8    phy_id;
418 	u16   _r;
419 	u8    phy_control_0; /* mode 5 reg 0x160 */
420 	u8    phy_control_1; /* mode 5 reg 0x161 */
421 	u8    phy_control_2; /* mode 5 reg 0x162 */
422 	u8    phy_control_3; /* mode 5 reg 0x163 */
423 } __attribute__ ((packed));
424 
425 struct asd_manuf_phy_param {
426 	char  sig[2];		  /* 'P', 'M' */
427 	u16   next;
428 	u8    maj;           /* 0 */
429 	u8    min;           /* 2 */
430 	u8    num_phy_desc;  /* 8 */
431 	u8    phy_desc_size; /* 8 */
432 	u8    _r[3];
433 	u8    usage_model_id;
434 	u32   _r2;
435 	struct asd_manuf_phy_desc phy_desc[ASD_MAX_PHYS];
436 } __attribute__ ((packed));
437 
438 #if 0
439 static const char *asd_sb_type[] = {
440 	"unknown",
441 	"SGPIO",
442 	[2 ... 0x7F] = "unknown",
443 	[0x80] = "ADPT_I2C",
444 	[0x81 ... 0xFF] = "VENDOR_UNIQUExx"
445 };
446 #endif
447 
448 struct asd_ms_sb_desc {
449 	u8    type;
450 	u8    node_desc_index;
451 	u8    conn_desc_index;
452 	u8    _recvd[0];
453 } __attribute__ ((packed));
454 
455 #if 0
456 static const char *asd_conn_type[] = {
457 	[0 ... 7] = "unknown",
458 	"SFF8470",
459 	"SFF8482",
460 	"SFF8484",
461 	[0x80] = "PCIX_DAUGHTER0",
462 	[0x81] = "SAS_DAUGHTER0",
463 	[0x82 ... 0xFF] = "VENDOR_UNIQUExx"
464 };
465 
466 static const char *asd_conn_location[] = {
467 	"unknown",
468 	"internal",
469 	"external",
470 	"board_to_board",
471 };
472 #endif
473 
474 struct asd_ms_conn_desc {
475 	u8    type;
476 	u8    location;
477 	u8    num_sideband_desc;
478 	u8    size_sideband_desc;
479 	u32   _resvd;
480 	u8    name[16];
481 	struct asd_ms_sb_desc sb_desc[0];
482 } __attribute__ ((packed));
483 
484 struct asd_nd_phy_desc {
485 	u8    vp_attch_type;
486 	u8    attch_specific[0];
487 } __attribute__ ((packed));
488 
489 #if 0
490 static const char *asd_node_type[] = {
491 	"IOP",
492 	"IO_CONTROLLER",
493 	"EXPANDER",
494 	"PORT_MULTIPLIER",
495 	"PORT_MULTIPLEXER",
496 	"MULTI_DROP_I2C_BUS",
497 };
498 #endif
499 
500 struct asd_ms_node_desc {
501 	u8    type;
502 	u8    num_phy_desc;
503 	u8    size_phy_desc;
504 	u8    _resvd;
505 	u8    name[16];
506 	struct asd_nd_phy_desc phy_desc[0];
507 } __attribute__ ((packed));
508 
509 struct asd_ms_conn_map {
510 	char  sig[2];		  /* 'M', 'C' */
511 	__le16 next;
512 	u8    maj;		  /* 0 */
513 	u8    min;		  /* 0 */
514 	__le16 cm_size;		  /* size of this struct */
515 	u8    num_conn;
516 	u8    conn_size;
517 	u8    num_nodes;
518 	u8    usage_model_id;
519 	u32   _resvd;
520 	struct asd_ms_conn_desc conn_desc[0];
521 	struct asd_ms_node_desc node_desc[0];
522 } __attribute__ ((packed));
523 
524 struct asd_ctrla_phy_entry {
525 	u8    sas_addr[SAS_ADDR_SIZE];
526 	u8    sas_link_rates;  /* max in hi bits, min in low bits */
527 	u8    flags;
528 	u8    sata_link_rates;
529 	u8    _r[5];
530 } __attribute__ ((packed));
531 
532 struct asd_ctrla_phy_settings {
533 	u8    id0;		  /* P'h'y */
534 	u8    _r;
535 	u16   next;
536 	u8    num_phys;	      /* number of PHYs in the PCI function */
537 	u8    _r2[3];
538 	struct asd_ctrla_phy_entry phy_ent[ASD_MAX_PHYS];
539 } __attribute__ ((packed));
540 
541 struct asd_ll_el {
542 	u8   id0;
543 	u8   id1;
544 	__le16  next;
545 	u8   something_here[0];
546 } __attribute__ ((packed));
547 
548 static int asd_poll_flash(struct asd_ha_struct *asd_ha)
549 {
550 	int c;
551 	u8 d;
552 
553 	for (c = 5000; c > 0; c--) {
554 		d  = asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
555 		d ^= asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
556 		if (!d)
557 			return 0;
558 		udelay(5);
559 	}
560 	return -ENOENT;
561 }
562 
563 static int asd_reset_flash(struct asd_ha_struct *asd_ha)
564 {
565 	int err;
566 
567 	err = asd_poll_flash(asd_ha);
568 	if (err)
569 		return err;
570 	asd_write_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar, FLASH_RESET);
571 	err = asd_poll_flash(asd_ha);
572 
573 	return err;
574 }
575 
576 static int asd_read_flash_seg(struct asd_ha_struct *asd_ha,
577 			      void *buffer, u32 offs, int size)
578 {
579 	asd_read_reg_string(asd_ha, buffer, asd_ha->hw_prof.flash.bar+offs,
580 			    size);
581 	return 0;
582 }
583 
584 /**
585  * asd_find_flash_dir - finds and reads the flash directory
586  * @asd_ha: pointer to the host adapter structure
587  * @flash_dir: pointer to flash directory structure
588  *
589  * If found, the flash directory segment will be copied to
590  * @flash_dir.  Return 1 if found, 0 if not.
591  */
592 static int asd_find_flash_dir(struct asd_ha_struct *asd_ha,
593 			      struct asd_flash_dir *flash_dir)
594 {
595 	u32 v;
596 	for (v = 0; v < ASD_FLASH_SIZE; v += FLASH_NEXT_ENTRY_OFFS) {
597 		asd_read_flash_seg(asd_ha, flash_dir, v,
598 				   sizeof(FLASH_DIR_COOKIE)-1);
599 		if (memcmp(flash_dir->cookie, FLASH_DIR_COOKIE,
600 			   sizeof(FLASH_DIR_COOKIE)-1) == 0) {
601 			asd_ha->hw_prof.flash.dir_offs = v;
602 			asd_read_flash_seg(asd_ha, flash_dir, v,
603 					   sizeof(*flash_dir));
604 			return 1;
605 		}
606 	}
607 	return 0;
608 }
609 
610 static int asd_flash_getid(struct asd_ha_struct *asd_ha)
611 {
612 	int err = 0;
613 	u32 reg;
614 
615 	reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
616 
617 	if (pci_read_config_dword(asd_ha->pcidev, PCI_CONF_FLSH_BAR,
618 				  &asd_ha->hw_prof.flash.bar)) {
619 		asd_printk("couldn't read PCI_CONF_FLSH_BAR of %s\n",
620 			   pci_name(asd_ha->pcidev));
621 		return -ENOENT;
622 	}
623 	asd_ha->hw_prof.flash.present = 1;
624 	asd_ha->hw_prof.flash.wide = reg & FLASHW ? 1 : 0;
625 	err = asd_reset_flash(asd_ha);
626 	if (err) {
627 		ASD_DPRINTK("couldn't reset flash(%d)\n", err);
628 		return err;
629 	}
630 	return 0;
631 }
632 
633 static u16 asd_calc_flash_chksum(u16 *p, int size)
634 {
635 	u16 chksum = 0;
636 
637 	while (size-- > 0)
638 		chksum += *p++;
639 
640 	return chksum;
641 }
642 
643 
644 static int asd_find_flash_de(struct asd_flash_dir *flash_dir, u32 entry_type,
645 			     u32 *offs, u32 *size)
646 {
647 	int i;
648 	struct asd_flash_de *de;
649 
650 	for (i = 0; i < FLASH_MAX_DIR_ENTRIES; i++) {
651 		u32 type = le32_to_cpu(flash_dir->dir_entry[i].type);
652 
653 		type &= FLASH_DE_TYPE_MASK;
654 		if (type == entry_type)
655 			break;
656 	}
657 	if (i >= FLASH_MAX_DIR_ENTRIES)
658 		return -ENOENT;
659 	de = &flash_dir->dir_entry[i];
660 	*offs = le32_to_cpu(de->offs);
661 	*size = le32_to_cpu(de->pad_size);
662 	return 0;
663 }
664 
665 static int asd_validate_ms(struct asd_manuf_sec *ms)
666 {
667 	if (ms->sig[0] != 'S' || ms->sig[1] != 'M') {
668 		ASD_DPRINTK("manuf sec: no valid sig(%c%c)\n",
669 			    ms->sig[0], ms->sig[1]);
670 		return -ENOENT;
671 	}
672 	if (ms->maj != 0) {
673 		asd_printk("unsupported manuf. sector. major version:%x\n",
674 			   ms->maj);
675 		return -ENOENT;
676 	}
677 	ms->offs_next = le16_to_cpu((__force __le16) ms->offs_next);
678 	ms->chksum = le16_to_cpu((__force __le16) ms->chksum);
679 	ms->size = le16_to_cpu((__force __le16) ms->size);
680 
681 	if (asd_calc_flash_chksum((u16 *)ms, ms->size/2)) {
682 		asd_printk("failed manuf sector checksum\n");
683 	}
684 
685 	return 0;
686 }
687 
688 static int asd_ms_get_sas_addr(struct asd_ha_struct *asd_ha,
689 			       struct asd_manuf_sec *ms)
690 {
691 	memcpy(asd_ha->hw_prof.sas_addr, ms->sas_addr, SAS_ADDR_SIZE);
692 	return 0;
693 }
694 
695 static int asd_ms_get_pcba_sn(struct asd_ha_struct *asd_ha,
696 			      struct asd_manuf_sec *ms)
697 {
698 	memcpy(asd_ha->hw_prof.pcba_sn, ms->pcba_sn, ASD_PCBA_SN_SIZE);
699 	asd_ha->hw_prof.pcba_sn[ASD_PCBA_SN_SIZE] = '\0';
700 	return 0;
701 }
702 
703 /**
704  * asd_find_ll_by_id - find a linked list entry by its id
705  * @start: void pointer to the first element in the linked list
706  * @id0: the first byte of the id  (offs 0)
707  * @id1: the second byte of the id (offs 1)
708  *
709  * @start has to be the _base_ element start, since the
710  * linked list entries's offset is from this pointer.
711  * Some linked list entries use only the first id, in which case
712  * you can pass 0xFF for the second.
713  */
714 static void *asd_find_ll_by_id(void * const start, const u8 id0, const u8 id1)
715 {
716 	struct asd_ll_el *el = start;
717 
718 	do {
719 		switch (id1) {
720 		default:
721 			if (el->id1 == id1)
722 		case 0xFF:
723 				if (el->id0 == id0)
724 					return el;
725 		}
726 		el = start + le16_to_cpu(el->next);
727 	} while (el != start);
728 
729 	return NULL;
730 }
731 
732 /**
733  * asd_ms_get_phy_params - get phy parameters from the manufacturing sector
734  * @asd_ha: pointer to the host adapter structure
735  * @manuf_sec: pointer to the manufacturing sector
736  *
737  * The manufacturing sector contans also the linked list of sub-segments,
738  * since when it was read, its size was taken from the flash directory,
739  * not from the structure size.
740  *
741  * HIDDEN phys do not count in the total count.  REPORTED phys cannot
742  * be enabled but are reported and counted towards the total.
743  * ENABLED phys are enabled by default and count towards the total.
744  * The absolute total phy number is ASD_MAX_PHYS.  hw_prof->num_phys
745  * merely specifies the number of phys the host adapter decided to
746  * report.  E.g., it is possible for phys 0, 1 and 2 to be HIDDEN,
747  * phys 3, 4 and 5 to be REPORTED and phys 6 and 7 to be ENABLED.
748  * In this case ASD_MAX_PHYS is 8, hw_prof->num_phys is 5, and only 2
749  * are actually enabled (enabled by default, max number of phys
750  * enableable in this case).
751  */
752 static int asd_ms_get_phy_params(struct asd_ha_struct *asd_ha,
753 				 struct asd_manuf_sec *manuf_sec)
754 {
755 	int i;
756 	int en_phys = 0;
757 	int rep_phys = 0;
758 	struct asd_manuf_phy_param *phy_param;
759 	struct asd_manuf_phy_param dflt_phy_param;
760 
761 	phy_param = asd_find_ll_by_id(manuf_sec, 'P', 'M');
762 	if (!phy_param) {
763 		ASD_DPRINTK("ms: no phy parameters found\n");
764 		ASD_DPRINTK("ms: Creating default phy parameters\n");
765 		dflt_phy_param.sig[0] = 'P';
766 		dflt_phy_param.sig[1] = 'M';
767 		dflt_phy_param.maj = 0;
768 		dflt_phy_param.min = 2;
769 		dflt_phy_param.num_phy_desc = 8;
770 		dflt_phy_param.phy_desc_size = sizeof(struct asd_manuf_phy_desc);
771 		for (i =0; i < ASD_MAX_PHYS; i++) {
772 			dflt_phy_param.phy_desc[i].state = 0;
773 			dflt_phy_param.phy_desc[i].phy_id = i;
774 			dflt_phy_param.phy_desc[i].phy_control_0 = 0xf6;
775 			dflt_phy_param.phy_desc[i].phy_control_1 = 0x10;
776 			dflt_phy_param.phy_desc[i].phy_control_2 = 0x43;
777 			dflt_phy_param.phy_desc[i].phy_control_3 = 0xeb;
778 		}
779 
780 		phy_param = &dflt_phy_param;
781 
782 	}
783 
784 	if (phy_param->maj != 0) {
785 		asd_printk("unsupported manuf. phy param major version:0x%x\n",
786 			   phy_param->maj);
787 		return -ENOENT;
788 	}
789 
790 	ASD_DPRINTK("ms: num_phy_desc: %d\n", phy_param->num_phy_desc);
791 	asd_ha->hw_prof.enabled_phys = 0;
792 	for (i = 0; i < phy_param->num_phy_desc; i++) {
793 		struct asd_manuf_phy_desc *pd = &phy_param->phy_desc[i];
794 		switch (pd->state & 0xF) {
795 		case MS_PHY_STATE_HIDDEN:
796 			ASD_DPRINTK("ms: phy%d: HIDDEN\n", i);
797 			continue;
798 		case MS_PHY_STATE_REPORTED:
799 			ASD_DPRINTK("ms: phy%d: REPORTED\n", i);
800 			asd_ha->hw_prof.enabled_phys &= ~(1 << i);
801 			rep_phys++;
802 			continue;
803 		case MS_PHY_STATE_ENABLED:
804 			ASD_DPRINTK("ms: phy%d: ENABLED\n", i);
805 			asd_ha->hw_prof.enabled_phys |= (1 << i);
806 			en_phys++;
807 			break;
808 		}
809 		asd_ha->hw_prof.phy_desc[i].phy_control_0 = pd->phy_control_0;
810 		asd_ha->hw_prof.phy_desc[i].phy_control_1 = pd->phy_control_1;
811 		asd_ha->hw_prof.phy_desc[i].phy_control_2 = pd->phy_control_2;
812 		asd_ha->hw_prof.phy_desc[i].phy_control_3 = pd->phy_control_3;
813 	}
814 	asd_ha->hw_prof.max_phys = rep_phys + en_phys;
815 	asd_ha->hw_prof.num_phys = en_phys;
816 	ASD_DPRINTK("ms: max_phys:0x%x, num_phys:0x%x\n",
817 		    asd_ha->hw_prof.max_phys, asd_ha->hw_prof.num_phys);
818 	ASD_DPRINTK("ms: enabled_phys:0x%x\n", asd_ha->hw_prof.enabled_phys);
819 	return 0;
820 }
821 
822 static int asd_ms_get_connector_map(struct asd_ha_struct *asd_ha,
823 				    struct asd_manuf_sec *manuf_sec)
824 {
825 	struct asd_ms_conn_map *cm;
826 
827 	cm = asd_find_ll_by_id(manuf_sec, 'M', 'C');
828 	if (!cm) {
829 		ASD_DPRINTK("ms: no connector map found\n");
830 		return 0;
831 	}
832 
833 	if (cm->maj != 0) {
834 		ASD_DPRINTK("ms: unsupported: connector map major version 0x%x"
835 			    "\n", cm->maj);
836 		return -ENOENT;
837 	}
838 
839 	/* XXX */
840 
841 	return 0;
842 }
843 
844 
845 /**
846  * asd_process_ms - find and extract information from the manufacturing sector
847  * @asd_ha: pointer to the host adapter structure
848  * @flash_dir: pointer to the flash directory
849  */
850 static int asd_process_ms(struct asd_ha_struct *asd_ha,
851 			  struct asd_flash_dir *flash_dir)
852 {
853 	int err;
854 	struct asd_manuf_sec *manuf_sec;
855 	u32 offs, size;
856 
857 	err = asd_find_flash_de(flash_dir, FLASH_DE_MS, &offs, &size);
858 	if (err) {
859 		ASD_DPRINTK("Couldn't find the manuf. sector\n");
860 		goto out;
861 	}
862 
863 	if (size == 0)
864 		goto out;
865 
866 	err = -ENOMEM;
867 	manuf_sec = kmalloc(size, GFP_KERNEL);
868 	if (!manuf_sec) {
869 		ASD_DPRINTK("no mem for manuf sector\n");
870 		goto out;
871 	}
872 
873 	err = asd_read_flash_seg(asd_ha, (void *)manuf_sec, offs, size);
874 	if (err) {
875 		ASD_DPRINTK("couldn't read manuf sector at 0x%x, size 0x%x\n",
876 			    offs, size);
877 		goto out2;
878 	}
879 
880 	err = asd_validate_ms(manuf_sec);
881 	if (err) {
882 		ASD_DPRINTK("couldn't validate manuf sector\n");
883 		goto out2;
884 	}
885 
886 	err = asd_ms_get_sas_addr(asd_ha, manuf_sec);
887 	if (err) {
888 		ASD_DPRINTK("couldn't read the SAS_ADDR\n");
889 		goto out2;
890 	}
891 	ASD_DPRINTK("manuf sect SAS_ADDR %llx\n",
892 		    SAS_ADDR(asd_ha->hw_prof.sas_addr));
893 
894 	err = asd_ms_get_pcba_sn(asd_ha, manuf_sec);
895 	if (err) {
896 		ASD_DPRINTK("couldn't read the PCBA SN\n");
897 		goto out2;
898 	}
899 	ASD_DPRINTK("manuf sect PCBA SN %s\n", asd_ha->hw_prof.pcba_sn);
900 
901 	err = asd_ms_get_phy_params(asd_ha, manuf_sec);
902 	if (err) {
903 		ASD_DPRINTK("ms: couldn't get phy parameters\n");
904 		goto out2;
905 	}
906 
907 	err = asd_ms_get_connector_map(asd_ha, manuf_sec);
908 	if (err) {
909 		ASD_DPRINTK("ms: couldn't get connector map\n");
910 		goto out2;
911 	}
912 
913 out2:
914 	kfree(manuf_sec);
915 out:
916 	return err;
917 }
918 
919 static int asd_process_ctrla_phy_settings(struct asd_ha_struct *asd_ha,
920 					  struct asd_ctrla_phy_settings *ps)
921 {
922 	int i;
923 	for (i = 0; i < ps->num_phys; i++) {
924 		struct asd_ctrla_phy_entry *pe = &ps->phy_ent[i];
925 
926 		if (!PHY_ENABLED(asd_ha, i))
927 			continue;
928 		if (*(u64 *)pe->sas_addr == 0) {
929 			asd_ha->hw_prof.enabled_phys &= ~(1 << i);
930 			continue;
931 		}
932 		/* This is the SAS address which should be sent in IDENTIFY. */
933 		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr, pe->sas_addr,
934 		       SAS_ADDR_SIZE);
935 		asd_ha->hw_prof.phy_desc[i].max_sas_lrate =
936 			(pe->sas_link_rates & 0xF0) >> 4;
937 		asd_ha->hw_prof.phy_desc[i].min_sas_lrate =
938 			(pe->sas_link_rates & 0x0F);
939 		asd_ha->hw_prof.phy_desc[i].max_sata_lrate =
940 			(pe->sata_link_rates & 0xF0) >> 4;
941 		asd_ha->hw_prof.phy_desc[i].min_sata_lrate =
942 			(pe->sata_link_rates & 0x0F);
943 		asd_ha->hw_prof.phy_desc[i].flags = pe->flags;
944 		ASD_DPRINTK("ctrla: phy%d: sas_addr: %llx, sas rate:0x%x-0x%x,"
945 			    " sata rate:0x%x-0x%x, flags:0x%x\n",
946 			    i,
947 			    SAS_ADDR(asd_ha->hw_prof.phy_desc[i].sas_addr),
948 			    asd_ha->hw_prof.phy_desc[i].max_sas_lrate,
949 			    asd_ha->hw_prof.phy_desc[i].min_sas_lrate,
950 			    asd_ha->hw_prof.phy_desc[i].max_sata_lrate,
951 			    asd_ha->hw_prof.phy_desc[i].min_sata_lrate,
952 			    asd_ha->hw_prof.phy_desc[i].flags);
953 	}
954 
955 	return 0;
956 }
957 
958 /**
959  * asd_process_ctrl_a_user - process CTRL-A user settings
960  * @asd_ha: pointer to the host adapter structure
961  * @flash_dir: pointer to the flash directory
962  */
963 static int asd_process_ctrl_a_user(struct asd_ha_struct *asd_ha,
964 				   struct asd_flash_dir *flash_dir)
965 {
966 	int err, i;
967 	u32 offs, size;
968 	struct asd_ll_el *el = NULL;
969 	struct asd_ctrla_phy_settings *ps;
970 	struct asd_ctrla_phy_settings dflt_ps;
971 
972 	err = asd_find_flash_de(flash_dir, FLASH_DE_CTRL_A_USER, &offs, &size);
973 	if (err) {
974 		ASD_DPRINTK("couldn't find CTRL-A user settings section\n");
975 		ASD_DPRINTK("Creating default CTRL-A user settings section\n");
976 
977 		dflt_ps.id0 = 'h';
978 		dflt_ps.num_phys = 8;
979 		for (i =0; i < ASD_MAX_PHYS; i++) {
980 			memcpy(dflt_ps.phy_ent[i].sas_addr,
981 			       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
982 			dflt_ps.phy_ent[i].sas_link_rates = 0x98;
983 			dflt_ps.phy_ent[i].flags = 0x0;
984 			dflt_ps.phy_ent[i].sata_link_rates = 0x0;
985 		}
986 
987 		size = sizeof(struct asd_ctrla_phy_settings);
988 		ps = &dflt_ps;
989 		goto out_process;
990 	}
991 
992 	if (size == 0)
993 		goto out;
994 
995 	err = -ENOMEM;
996 	el = kmalloc(size, GFP_KERNEL);
997 	if (!el) {
998 		ASD_DPRINTK("no mem for ctrla user settings section\n");
999 		goto out;
1000 	}
1001 
1002 	err = asd_read_flash_seg(asd_ha, (void *)el, offs, size);
1003 	if (err) {
1004 		ASD_DPRINTK("couldn't read ctrla phy settings section\n");
1005 		goto out2;
1006 	}
1007 
1008 	err = -ENOENT;
1009 	ps = asd_find_ll_by_id(el, 'h', 0xFF);
1010 	if (!ps) {
1011 		ASD_DPRINTK("couldn't find ctrla phy settings struct\n");
1012 		goto out2;
1013 	}
1014 out_process:
1015 	err = asd_process_ctrla_phy_settings(asd_ha, ps);
1016 	if (err) {
1017 		ASD_DPRINTK("couldn't process ctrla phy settings\n");
1018 		goto out2;
1019 	}
1020 out2:
1021 	kfree(el);
1022 out:
1023 	return err;
1024 }
1025 
1026 /**
1027  * asd_read_flash - read flash memory
1028  * @asd_ha: pointer to the host adapter structure
1029  */
1030 int asd_read_flash(struct asd_ha_struct *asd_ha)
1031 {
1032 	int err;
1033 	struct asd_flash_dir *flash_dir;
1034 
1035 	err = asd_flash_getid(asd_ha);
1036 	if (err)
1037 		return err;
1038 
1039 	flash_dir = kmalloc(sizeof(*flash_dir), GFP_KERNEL);
1040 	if (!flash_dir)
1041 		return -ENOMEM;
1042 
1043 	err = -ENOENT;
1044 	if (!asd_find_flash_dir(asd_ha, flash_dir)) {
1045 		ASD_DPRINTK("couldn't find flash directory\n");
1046 		goto out;
1047 	}
1048 
1049 	if (le32_to_cpu(flash_dir->rev) != 2) {
1050 		asd_printk("unsupported flash dir version:0x%x\n",
1051 			   le32_to_cpu(flash_dir->rev));
1052 		goto out;
1053 	}
1054 
1055 	err = asd_process_ms(asd_ha, flash_dir);
1056 	if (err) {
1057 		ASD_DPRINTK("couldn't process manuf sector settings\n");
1058 		goto out;
1059 	}
1060 
1061 	err = asd_process_ctrl_a_user(asd_ha, flash_dir);
1062 	if (err) {
1063 		ASD_DPRINTK("couldn't process CTRL-A user settings\n");
1064 		goto out;
1065 	}
1066 
1067 out:
1068 	kfree(flash_dir);
1069 	return err;
1070 }
1071 
1072 /**
1073  * asd_verify_flash_seg - verify data with flash memory
1074  * @asd_ha: pointer to the host adapter structure
1075  * @src: pointer to the source data to be verified
1076  * @dest_offset: offset from flash memory
1077  * @bytes_to_verify: total bytes to verify
1078  */
1079 int asd_verify_flash_seg(struct asd_ha_struct *asd_ha,
1080 			 const void *src, u32 dest_offset, u32 bytes_to_verify)
1081 {
1082 	const u8 *src_buf;
1083 	u8 flash_char;
1084 	int err;
1085 	u32 nv_offset, reg, i;
1086 
1087 	reg = asd_ha->hw_prof.flash.bar;
1088 	src_buf = NULL;
1089 
1090 	err = FLASH_OK;
1091 	nv_offset = dest_offset;
1092 	src_buf = (const u8 *)src;
1093 	for (i = 0; i < bytes_to_verify; i++) {
1094 		flash_char = asd_read_reg_byte(asd_ha, reg + nv_offset + i);
1095 		if (flash_char != src_buf[i]) {
1096 			err = FAIL_VERIFY;
1097 			break;
1098 		}
1099 	}
1100 	return err;
1101 }
1102 
1103 /**
1104  * asd_write_flash_seg - write data into flash memory
1105  * @asd_ha: pointer to the host adapter structure
1106  * @src: pointer to the source data to be written
1107  * @dest_offset: offset from flash memory
1108  * @bytes_to_write: total bytes to write
1109  */
1110 int asd_write_flash_seg(struct asd_ha_struct *asd_ha,
1111 			const void *src, u32 dest_offset, u32 bytes_to_write)
1112 {
1113 	const u8 *src_buf;
1114 	u32 nv_offset, reg, i;
1115 	int err;
1116 
1117 	reg = asd_ha->hw_prof.flash.bar;
1118 	src_buf = NULL;
1119 
1120 	err = asd_check_flash_type(asd_ha);
1121 	if (err) {
1122 		ASD_DPRINTK("couldn't find the type of flash. err=%d\n", err);
1123 		return err;
1124 	}
1125 
1126 	nv_offset = dest_offset;
1127 	err = asd_erase_nv_sector(asd_ha, nv_offset, bytes_to_write);
1128 	if (err) {
1129 		ASD_DPRINTK("Erase failed at offset:0x%x\n",
1130 			nv_offset);
1131 		return err;
1132 	}
1133 
1134 	err = asd_reset_flash(asd_ha);
1135 	if (err) {
1136 		ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1137 		return err;
1138 	}
1139 
1140 	src_buf = (const u8 *)src;
1141 	for (i = 0; i < bytes_to_write; i++) {
1142 		/* Setup program command sequence */
1143 		switch (asd_ha->hw_prof.flash.method) {
1144 		case FLASH_METHOD_A:
1145 		{
1146 			asd_write_reg_byte(asd_ha,
1147 					(reg + 0xAAA), 0xAA);
1148 			asd_write_reg_byte(asd_ha,
1149 					(reg + 0x555), 0x55);
1150 			asd_write_reg_byte(asd_ha,
1151 					(reg + 0xAAA), 0xA0);
1152 			asd_write_reg_byte(asd_ha,
1153 					(reg + nv_offset + i),
1154 					(*(src_buf + i)));
1155 			break;
1156 		}
1157 		case FLASH_METHOD_B:
1158 		{
1159 			asd_write_reg_byte(asd_ha,
1160 					(reg + 0x555), 0xAA);
1161 			asd_write_reg_byte(asd_ha,
1162 					(reg + 0x2AA), 0x55);
1163 			asd_write_reg_byte(asd_ha,
1164 					(reg + 0x555), 0xA0);
1165 			asd_write_reg_byte(asd_ha,
1166 					(reg + nv_offset + i),
1167 					(*(src_buf + i)));
1168 			break;
1169 		}
1170 		default:
1171 			break;
1172 		}
1173 		if (asd_chk_write_status(asd_ha,
1174 				(nv_offset + i), 0) != 0) {
1175 			ASD_DPRINTK("aicx: Write failed at offset:0x%x\n",
1176 				reg + nv_offset + i);
1177 			return FAIL_WRITE_FLASH;
1178 		}
1179 	}
1180 
1181 	err = asd_reset_flash(asd_ha);
1182 	if (err) {
1183 		ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1184 		return err;
1185 	}
1186 	return 0;
1187 }
1188 
1189 int asd_chk_write_status(struct asd_ha_struct *asd_ha,
1190 	 u32 sector_addr, u8 erase_flag)
1191 {
1192 	u32 reg;
1193 	u32 loop_cnt;
1194 	u8  nv_data1, nv_data2;
1195 	u8  toggle_bit1;
1196 
1197 	/*
1198 	 * Read from DQ2 requires sector address
1199 	 * while it's dont care for DQ6
1200 	 */
1201 	reg = asd_ha->hw_prof.flash.bar;
1202 
1203 	for (loop_cnt = 0; loop_cnt < 50000; loop_cnt++) {
1204 		nv_data1 = asd_read_reg_byte(asd_ha, reg);
1205 		nv_data2 = asd_read_reg_byte(asd_ha, reg);
1206 
1207 		toggle_bit1 = ((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6)
1208 				 ^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6));
1209 
1210 		if (toggle_bit1 == 0) {
1211 			return 0;
1212 		} else {
1213 			if (nv_data2 & FLASH_STATUS_BIT_MASK_DQ5) {
1214 				nv_data1 = asd_read_reg_byte(asd_ha,
1215 								reg);
1216 				nv_data2 = asd_read_reg_byte(asd_ha,
1217 								reg);
1218 				toggle_bit1 =
1219 				((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6)
1220 				^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6));
1221 
1222 				if (toggle_bit1 == 0)
1223 					return 0;
1224 			}
1225 		}
1226 
1227 		/*
1228 		 * ERASE is a sector-by-sector operation and requires
1229 		 * more time to finish while WRITE is byte-byte-byte
1230 		 * operation and takes lesser time to finish.
1231 		 *
1232 		 * For some strange reason a reduced ERASE delay gives different
1233 		 * behaviour across different spirit boards. Hence we set
1234 		 * a optimum balance of 50mus for ERASE which works well
1235 		 * across all boards.
1236 		 */
1237 		if (erase_flag) {
1238 			udelay(FLASH_STATUS_ERASE_DELAY_COUNT);
1239 		} else {
1240 			udelay(FLASH_STATUS_WRITE_DELAY_COUNT);
1241 		}
1242 	}
1243 	return -1;
1244 }
1245 
1246 /**
1247  * asd_hwi_erase_nv_sector - Erase the flash memory sectors.
1248  * @asd_ha: pointer to the host adapter structure
1249  * @flash_addr: pointer to offset from flash memory
1250  * @size: total bytes to erase.
1251  */
1252 int asd_erase_nv_sector(struct asd_ha_struct *asd_ha, u32 flash_addr, u32 size)
1253 {
1254 	u32 reg;
1255 	u32 sector_addr;
1256 
1257 	reg = asd_ha->hw_prof.flash.bar;
1258 
1259 	/* sector staring address */
1260 	sector_addr = flash_addr & FLASH_SECTOR_SIZE_MASK;
1261 
1262 	/*
1263 	 * Erasing an flash sector needs to be done in six consecutive
1264 	 * write cyles.
1265 	 */
1266 	while (sector_addr < flash_addr+size) {
1267 		switch (asd_ha->hw_prof.flash.method) {
1268 		case FLASH_METHOD_A:
1269 			asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA);
1270 			asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55);
1271 			asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0x80);
1272 			asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA);
1273 			asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55);
1274 			asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30);
1275 			break;
1276 		case FLASH_METHOD_B:
1277 			asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1278 			asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1279 			asd_write_reg_byte(asd_ha, (reg + 0x555), 0x80);
1280 			asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1281 			asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1282 			asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30);
1283 			break;
1284 		default:
1285 			break;
1286 		}
1287 
1288 		if (asd_chk_write_status(asd_ha, sector_addr, 1) != 0)
1289 			return FAIL_ERASE_FLASH;
1290 
1291 		sector_addr += FLASH_SECTOR_SIZE;
1292 	}
1293 
1294 	return 0;
1295 }
1296 
1297 int asd_check_flash_type(struct asd_ha_struct *asd_ha)
1298 {
1299 	u8 manuf_id;
1300 	u8 dev_id;
1301 	u8 sec_prot;
1302 	u32 inc;
1303 	u32 reg;
1304 	int err;
1305 
1306 	/* get Flash memory base address */
1307 	reg = asd_ha->hw_prof.flash.bar;
1308 
1309 	/* Determine flash info */
1310 	err = asd_reset_flash(asd_ha);
1311 	if (err) {
1312 		ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1313 		return err;
1314 	}
1315 
1316 	asd_ha->hw_prof.flash.method = FLASH_METHOD_UNKNOWN;
1317 	asd_ha->hw_prof.flash.manuf = FLASH_MANUF_ID_UNKNOWN;
1318 	asd_ha->hw_prof.flash.dev_id = FLASH_DEV_ID_UNKNOWN;
1319 
1320 	/* Get flash info. This would most likely be AMD Am29LV family flash.
1321 	 * First try the sequence for word mode.  It is the same as for
1322 	 * 008B (byte mode only), 160B (word mode) and 800D (word mode).
1323 	 */
1324 	inc = asd_ha->hw_prof.flash.wide ? 2 : 1;
1325 	asd_write_reg_byte(asd_ha, reg + 0xAAA, 0xAA);
1326 	asd_write_reg_byte(asd_ha, reg + 0x555, 0x55);
1327 	asd_write_reg_byte(asd_ha, reg + 0xAAA, 0x90);
1328 	manuf_id = asd_read_reg_byte(asd_ha, reg);
1329 	dev_id = asd_read_reg_byte(asd_ha, reg + inc);
1330 	sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc);
1331 	/* Get out of autoselect mode. */
1332 	err = asd_reset_flash(asd_ha);
1333 	if (err) {
1334 		ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1335 		return err;
1336 	}
1337 	ASD_DPRINTK("Flash MethodA manuf_id(0x%x) dev_id(0x%x) "
1338 		"sec_prot(0x%x)\n", manuf_id, dev_id, sec_prot);
1339 	err = asd_reset_flash(asd_ha);
1340 	if (err != 0)
1341 		return err;
1342 
1343 	switch (manuf_id) {
1344 	case FLASH_MANUF_ID_AMD:
1345 		switch (sec_prot) {
1346 		case FLASH_DEV_ID_AM29LV800DT:
1347 		case FLASH_DEV_ID_AM29LV640MT:
1348 		case FLASH_DEV_ID_AM29F800B:
1349 			asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1350 			break;
1351 		default:
1352 			break;
1353 		}
1354 		break;
1355 	case FLASH_MANUF_ID_ST:
1356 		switch (sec_prot) {
1357 		case FLASH_DEV_ID_STM29W800DT:
1358 		case FLASH_DEV_ID_STM29LV640:
1359 			asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1360 			break;
1361 		default:
1362 			break;
1363 		}
1364 		break;
1365 	case FLASH_MANUF_ID_FUJITSU:
1366 		switch (sec_prot) {
1367 		case FLASH_DEV_ID_MBM29LV800TE:
1368 		case FLASH_DEV_ID_MBM29DL800TA:
1369 			asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1370 			break;
1371 		}
1372 		break;
1373 	case FLASH_MANUF_ID_MACRONIX:
1374 		switch (sec_prot) {
1375 		case FLASH_DEV_ID_MX29LV800BT:
1376 			asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1377 			break;
1378 		}
1379 		break;
1380 	}
1381 
1382 	if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN) {
1383 		err = asd_reset_flash(asd_ha);
1384 		if (err) {
1385 			ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1386 			return err;
1387 		}
1388 
1389 		/* Issue Unlock sequence for AM29LV008BT */
1390 		asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1391 		asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1392 		asd_write_reg_byte(asd_ha, (reg + 0x555), 0x90);
1393 		manuf_id = asd_read_reg_byte(asd_ha, reg);
1394 		dev_id = asd_read_reg_byte(asd_ha, reg + inc);
1395 		sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc);
1396 
1397 		ASD_DPRINTK("Flash MethodB manuf_id(0x%x) dev_id(0x%x) sec_prot"
1398 			"(0x%x)\n", manuf_id, dev_id, sec_prot);
1399 
1400 		err = asd_reset_flash(asd_ha);
1401 		if (err != 0) {
1402 			ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1403 			return err;
1404 		}
1405 
1406 		switch (manuf_id) {
1407 		case FLASH_MANUF_ID_AMD:
1408 			switch (dev_id) {
1409 			case FLASH_DEV_ID_AM29LV008BT:
1410 				asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1411 				break;
1412 			default:
1413 				break;
1414 			}
1415 			break;
1416 		case FLASH_MANUF_ID_ST:
1417 			switch (dev_id) {
1418 			case FLASH_DEV_ID_STM29008:
1419 				asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1420 				break;
1421 			default:
1422 				break;
1423 			}
1424 			break;
1425 		case FLASH_MANUF_ID_FUJITSU:
1426 			switch (dev_id) {
1427 			case FLASH_DEV_ID_MBM29LV008TA:
1428 				asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1429 				break;
1430 			}
1431 			break;
1432 		case FLASH_MANUF_ID_INTEL:
1433 			switch (dev_id) {
1434 			case FLASH_DEV_ID_I28LV00TAT:
1435 				asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1436 				break;
1437 			}
1438 			break;
1439 		case FLASH_MANUF_ID_MACRONIX:
1440 			switch (dev_id) {
1441 			case FLASH_DEV_ID_I28LV00TAT:
1442 				asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1443 				break;
1444 			}
1445 			break;
1446 		default:
1447 			return FAIL_FIND_FLASH_ID;
1448 		}
1449 	}
1450 
1451 	if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN)
1452 	      return FAIL_FIND_FLASH_ID;
1453 
1454 	asd_ha->hw_prof.flash.manuf = manuf_id;
1455 	asd_ha->hw_prof.flash.dev_id = dev_id;
1456 	asd_ha->hw_prof.flash.sec_prot = sec_prot;
1457 	return 0;
1458 }
1459