1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Aic94xx SAS/SATA driver access to shared data structures and memory
4 * maps.
5 *
6 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
7 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
8 */
9
10 #include <linux/pci.h>
11 #include <linux/slab.h>
12 #include <linux/delay.h>
13
14 #include "aic94xx.h"
15 #include "aic94xx_reg.h"
16 #include "aic94xx_sds.h"
17
18 /* ---------- OCM stuff ---------- */
19
20 struct asd_ocm_dir_ent {
21 u8 type;
22 u8 offs[3];
23 u8 _r1;
24 u8 size[3];
25 } __attribute__ ((packed));
26
27 struct asd_ocm_dir {
28 char sig[2];
29 u8 _r1[2];
30 u8 major; /* 0 */
31 u8 minor; /* 0 */
32 u8 _r2;
33 u8 num_de;
34 struct asd_ocm_dir_ent entry[15];
35 } __attribute__ ((packed));
36
37 #define OCM_DE_OCM_DIR 0x00
38 #define OCM_DE_WIN_DRVR 0x01
39 #define OCM_DE_BIOS_CHIM 0x02
40 #define OCM_DE_RAID_ENGN 0x03
41 #define OCM_DE_BIOS_INTL 0x04
42 #define OCM_DE_BIOS_CHIM_OSM 0x05
43 #define OCM_DE_BIOS_CHIM_DYNAMIC 0x06
44 #define OCM_DE_ADDC2C_RES0 0x07
45 #define OCM_DE_ADDC2C_RES1 0x08
46 #define OCM_DE_ADDC2C_RES2 0x09
47 #define OCM_DE_ADDC2C_RES3 0x0A
48
49 #define OCM_INIT_DIR_ENTRIES 5
50 /***************************************************************************
51 * OCM directory default
52 ***************************************************************************/
53 static struct asd_ocm_dir OCMDirInit =
54 {
55 .sig = {0x4D, 0x4F}, /* signature */
56 .num_de = OCM_INIT_DIR_ENTRIES, /* no. of directory entries */
57 };
58
59 /***************************************************************************
60 * OCM directory Entries default
61 ***************************************************************************/
62 static struct asd_ocm_dir_ent OCMDirEntriesInit[OCM_INIT_DIR_ENTRIES] =
63 {
64 {
65 .type = (OCM_DE_ADDC2C_RES0), /* Entry type */
66 .offs = {128}, /* Offset */
67 .size = {0, 4}, /* size */
68 },
69 {
70 .type = (OCM_DE_ADDC2C_RES1), /* Entry type */
71 .offs = {128, 4}, /* Offset */
72 .size = {0, 4}, /* size */
73 },
74 {
75 .type = (OCM_DE_ADDC2C_RES2), /* Entry type */
76 .offs = {128, 8}, /* Offset */
77 .size = {0, 4}, /* size */
78 },
79 {
80 .type = (OCM_DE_ADDC2C_RES3), /* Entry type */
81 .offs = {128, 12}, /* Offset */
82 .size = {0, 4}, /* size */
83 },
84 {
85 .type = (OCM_DE_WIN_DRVR), /* Entry type */
86 .offs = {128, 16}, /* Offset */
87 .size = {128, 235, 1}, /* size */
88 },
89 };
90
91 struct asd_bios_chim_struct {
92 char sig[4];
93 u8 major; /* 1 */
94 u8 minor; /* 0 */
95 u8 bios_major;
96 u8 bios_minor;
97 __le32 bios_build;
98 u8 flags;
99 u8 pci_slot;
100 __le16 ue_num;
101 __le16 ue_size;
102 u8 _r[14];
103 /* The unit element array is right here.
104 */
105 } __attribute__ ((packed));
106
107 /**
108 * asd_read_ocm_seg - read an on chip memory (OCM) segment
109 * @asd_ha: pointer to the host adapter structure
110 * @buffer: where to write the read data
111 * @offs: offset into OCM where to read from
112 * @size: how many bytes to read
113 *
114 * Return the number of bytes not read. Return 0 on success.
115 */
asd_read_ocm_seg(struct asd_ha_struct * asd_ha,void * buffer,u32 offs,int size)116 static int asd_read_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
117 u32 offs, int size)
118 {
119 u8 *p = buffer;
120 if (unlikely(asd_ha->iospace))
121 asd_read_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
122 else {
123 for ( ; size > 0; size--, offs++, p++)
124 *p = asd_read_ocm_byte(asd_ha, offs);
125 }
126 return size;
127 }
128
asd_read_ocm_dir(struct asd_ha_struct * asd_ha,struct asd_ocm_dir * dir,u32 offs)129 static int asd_read_ocm_dir(struct asd_ha_struct *asd_ha,
130 struct asd_ocm_dir *dir, u32 offs)
131 {
132 int err = asd_read_ocm_seg(asd_ha, dir, offs, sizeof(*dir));
133 if (err) {
134 ASD_DPRINTK("couldn't read ocm segment\n");
135 return err;
136 }
137
138 if (dir->sig[0] != 'M' || dir->sig[1] != 'O') {
139 ASD_DPRINTK("no valid dir signature(%c%c) at start of OCM\n",
140 dir->sig[0], dir->sig[1]);
141 return -ENOENT;
142 }
143 if (dir->major != 0) {
144 asd_printk("unsupported major version of ocm dir:0x%x\n",
145 dir->major);
146 return -ENOENT;
147 }
148 dir->num_de &= 0xf;
149 return 0;
150 }
151
152 /**
153 * asd_write_ocm_seg - write an on chip memory (OCM) segment
154 * @asd_ha: pointer to the host adapter structure
155 * @buffer: where to read the write data
156 * @offs: offset into OCM to write to
157 * @size: how many bytes to write
158 *
159 * Return the number of bytes not written. Return 0 on success.
160 */
asd_write_ocm_seg(struct asd_ha_struct * asd_ha,void * buffer,u32 offs,int size)161 static void asd_write_ocm_seg(struct asd_ha_struct *asd_ha, void *buffer,
162 u32 offs, int size)
163 {
164 u8 *p = buffer;
165 if (unlikely(asd_ha->iospace))
166 asd_write_reg_string(asd_ha, buffer, offs+OCM_BASE_ADDR, size);
167 else {
168 for ( ; size > 0; size--, offs++, p++)
169 asd_write_ocm_byte(asd_ha, offs, *p);
170 }
171 return;
172 }
173
174 #define THREE_TO_NUM(X) ((X)[0] | ((X)[1] << 8) | ((X)[2] << 16))
175
asd_find_dir_entry(struct asd_ocm_dir * dir,u8 type,u32 * offs,u32 * size)176 static int asd_find_dir_entry(struct asd_ocm_dir *dir, u8 type,
177 u32 *offs, u32 *size)
178 {
179 int i;
180 struct asd_ocm_dir_ent *ent;
181
182 for (i = 0; i < dir->num_de; i++) {
183 if (dir->entry[i].type == type)
184 break;
185 }
186 if (i >= dir->num_de)
187 return -ENOENT;
188 ent = &dir->entry[i];
189 *offs = (u32) THREE_TO_NUM(ent->offs);
190 *size = (u32) THREE_TO_NUM(ent->size);
191 return 0;
192 }
193
194 #define OCM_BIOS_CHIM_DE 2
195 #define BC_BIOS_PRESENT 1
196
asd_get_bios_chim(struct asd_ha_struct * asd_ha,struct asd_ocm_dir * dir)197 static int asd_get_bios_chim(struct asd_ha_struct *asd_ha,
198 struct asd_ocm_dir *dir)
199 {
200 int err;
201 struct asd_bios_chim_struct *bc_struct;
202 u32 offs, size;
203
204 err = asd_find_dir_entry(dir, OCM_BIOS_CHIM_DE, &offs, &size);
205 if (err) {
206 ASD_DPRINTK("couldn't find BIOS_CHIM dir ent\n");
207 goto out;
208 }
209 err = -ENOMEM;
210 bc_struct = kmalloc(sizeof(*bc_struct), GFP_KERNEL);
211 if (!bc_struct) {
212 asd_printk("no memory for bios_chim struct\n");
213 goto out;
214 }
215 err = asd_read_ocm_seg(asd_ha, (void *)bc_struct, offs,
216 sizeof(*bc_struct));
217 if (err) {
218 ASD_DPRINTK("couldn't read ocm segment\n");
219 goto out2;
220 }
221 if (strncmp(bc_struct->sig, "SOIB", 4)
222 && strncmp(bc_struct->sig, "IPSA", 4)) {
223 ASD_DPRINTK("BIOS_CHIM entry has no valid sig(%c%c%c%c)\n",
224 bc_struct->sig[0], bc_struct->sig[1],
225 bc_struct->sig[2], bc_struct->sig[3]);
226 err = -ENOENT;
227 goto out2;
228 }
229 if (bc_struct->major != 1) {
230 asd_printk("BIOS_CHIM unsupported major version:0x%x\n",
231 bc_struct->major);
232 err = -ENOENT;
233 goto out2;
234 }
235 if (bc_struct->flags & BC_BIOS_PRESENT) {
236 asd_ha->hw_prof.bios.present = 1;
237 asd_ha->hw_prof.bios.maj = bc_struct->bios_major;
238 asd_ha->hw_prof.bios.min = bc_struct->bios_minor;
239 asd_ha->hw_prof.bios.bld = le32_to_cpu(bc_struct->bios_build);
240 ASD_DPRINTK("BIOS present (%d,%d), %d\n",
241 asd_ha->hw_prof.bios.maj,
242 asd_ha->hw_prof.bios.min,
243 asd_ha->hw_prof.bios.bld);
244 }
245 asd_ha->hw_prof.ue.num = le16_to_cpu(bc_struct->ue_num);
246 asd_ha->hw_prof.ue.size= le16_to_cpu(bc_struct->ue_size);
247 ASD_DPRINTK("ue num:%d, ue size:%d\n", asd_ha->hw_prof.ue.num,
248 asd_ha->hw_prof.ue.size);
249 size = asd_ha->hw_prof.ue.num * asd_ha->hw_prof.ue.size;
250 if (size > 0) {
251 err = -ENOMEM;
252 asd_ha->hw_prof.ue.area = kmalloc(size, GFP_KERNEL);
253 if (!asd_ha->hw_prof.ue.area)
254 goto out2;
255 err = asd_read_ocm_seg(asd_ha, (void *)asd_ha->hw_prof.ue.area,
256 offs + sizeof(*bc_struct), size);
257 if (err) {
258 kfree(asd_ha->hw_prof.ue.area);
259 asd_ha->hw_prof.ue.area = NULL;
260 asd_ha->hw_prof.ue.num = 0;
261 asd_ha->hw_prof.ue.size = 0;
262 ASD_DPRINTK("couldn't read ue entries(%d)\n", err);
263 }
264 }
265 out2:
266 kfree(bc_struct);
267 out:
268 return err;
269 }
270
271 static void
asd_hwi_initialize_ocm_dir(struct asd_ha_struct * asd_ha)272 asd_hwi_initialize_ocm_dir (struct asd_ha_struct *asd_ha)
273 {
274 int i;
275
276 /* Zero OCM */
277 for (i = 0; i < OCM_MAX_SIZE; i += 4)
278 asd_write_ocm_dword(asd_ha, i, 0);
279
280 /* Write Dir */
281 asd_write_ocm_seg(asd_ha, &OCMDirInit, 0,
282 sizeof(struct asd_ocm_dir));
283
284 /* Write Dir Entries */
285 for (i = 0; i < OCM_INIT_DIR_ENTRIES; i++)
286 asd_write_ocm_seg(asd_ha, &OCMDirEntriesInit[i],
287 sizeof(struct asd_ocm_dir) +
288 (i * sizeof(struct asd_ocm_dir_ent))
289 , sizeof(struct asd_ocm_dir_ent));
290
291 }
292
293 static int
asd_hwi_check_ocm_access(struct asd_ha_struct * asd_ha)294 asd_hwi_check_ocm_access (struct asd_ha_struct *asd_ha)
295 {
296 struct pci_dev *pcidev = asd_ha->pcidev;
297 u32 reg;
298 int err = 0;
299 u32 v;
300
301 /* check if OCM has been initialized by BIOS */
302 reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
303
304 if (!(reg & OCMINITIALIZED)) {
305 err = pci_read_config_dword(pcidev, PCIC_INTRPT_STAT, &v);
306 if (err) {
307 asd_printk("couldn't access PCIC_INTRPT_STAT of %s\n",
308 pci_name(pcidev));
309 goto out;
310 }
311
312 printk(KERN_INFO "OCM is not initialized by BIOS,"
313 "reinitialize it and ignore it, current IntrptStatus"
314 "is 0x%x\n", v);
315
316 if (v)
317 err = pci_write_config_dword(pcidev,
318 PCIC_INTRPT_STAT, v);
319 if (err) {
320 asd_printk("couldn't write PCIC_INTRPT_STAT of %s\n",
321 pci_name(pcidev));
322 goto out;
323 }
324
325 asd_hwi_initialize_ocm_dir(asd_ha);
326
327 }
328 out:
329 return err;
330 }
331
332 /**
333 * asd_read_ocm - read on chip memory (OCM)
334 * @asd_ha: pointer to the host adapter structure
335 */
asd_read_ocm(struct asd_ha_struct * asd_ha)336 int asd_read_ocm(struct asd_ha_struct *asd_ha)
337 {
338 int err;
339 struct asd_ocm_dir *dir;
340
341 if (asd_hwi_check_ocm_access(asd_ha))
342 return -1;
343
344 dir = kmalloc(sizeof(*dir), GFP_KERNEL);
345 if (!dir) {
346 asd_printk("no memory for ocm dir\n");
347 return -ENOMEM;
348 }
349
350 err = asd_read_ocm_dir(asd_ha, dir, 0);
351 if (err)
352 goto out;
353
354 err = asd_get_bios_chim(asd_ha, dir);
355 out:
356 kfree(dir);
357 return err;
358 }
359
360 /* ---------- FLASH stuff ---------- */
361
362 #define FLASH_RESET 0xF0
363
364 #define ASD_FLASH_SIZE 0x200000
365 #define FLASH_DIR_COOKIE "*** ADAPTEC FLASH DIRECTORY *** "
366 #define FLASH_NEXT_ENTRY_OFFS 0x2000
367 #define FLASH_MAX_DIR_ENTRIES 32
368
369 #define FLASH_DE_TYPE_MASK 0x3FFFFFFF
370 #define FLASH_DE_MS 0x120
371 #define FLASH_DE_CTRL_A_USER 0xE0
372
373 struct asd_flash_de {
374 __le32 type;
375 __le32 offs;
376 __le32 pad_size;
377 __le32 image_size;
378 __le32 chksum;
379 u8 _r[12];
380 u8 version[32];
381 } __attribute__ ((packed));
382
383 struct asd_flash_dir {
384 u8 cookie[32];
385 __le32 rev; /* 2 */
386 __le32 chksum;
387 __le32 chksum_antidote;
388 __le32 bld;
389 u8 bld_id[32]; /* build id data */
390 u8 ver_data[32]; /* date and time of build */
391 __le32 ae_mask;
392 __le32 v_mask;
393 __le32 oc_mask;
394 u8 _r[20];
395 struct asd_flash_de dir_entry[FLASH_MAX_DIR_ENTRIES];
396 } __attribute__ ((packed));
397
398 struct asd_manuf_sec {
399 char sig[2]; /* 'S', 'M' */
400 u16 offs_next;
401 u8 maj; /* 0 */
402 u8 min; /* 0 */
403 u16 chksum;
404 u16 size;
405 u8 _r[6];
406 u8 sas_addr[SAS_ADDR_SIZE];
407 u8 pcba_sn[ASD_PCBA_SN_SIZE];
408 /* Here start the other segments */
409 u8 linked_list[];
410 } __attribute__ ((packed));
411
412 struct asd_manuf_phy_desc {
413 u8 state; /* low 4 bits */
414 #define MS_PHY_STATE_ENABLED 0
415 #define MS_PHY_STATE_REPORTED 1
416 #define MS_PHY_STATE_HIDDEN 2
417 u8 phy_id;
418 u16 _r;
419 u8 phy_control_0; /* mode 5 reg 0x160 */
420 u8 phy_control_1; /* mode 5 reg 0x161 */
421 u8 phy_control_2; /* mode 5 reg 0x162 */
422 u8 phy_control_3; /* mode 5 reg 0x163 */
423 } __attribute__ ((packed));
424
425 struct asd_manuf_phy_param {
426 char sig[2]; /* 'P', 'M' */
427 u16 next;
428 u8 maj; /* 0 */
429 u8 min; /* 2 */
430 u8 num_phy_desc; /* 8 */
431 u8 phy_desc_size; /* 8 */
432 u8 _r[3];
433 u8 usage_model_id;
434 u32 _r2;
435 struct asd_manuf_phy_desc phy_desc[ASD_MAX_PHYS];
436 } __attribute__ ((packed));
437
438 #if 0
439 static const char *asd_sb_type[] = {
440 "unknown",
441 "SGPIO",
442 [2 ... 0x7F] = "unknown",
443 [0x80] = "ADPT_I2C",
444 [0x81 ... 0xFF] = "VENDOR_UNIQUExx"
445 };
446 #endif
447
448 struct asd_ms_sb_desc {
449 u8 type;
450 u8 node_desc_index;
451 u8 conn_desc_index;
452 u8 _recvd[];
453 } __attribute__ ((packed));
454
455 #if 0
456 static const char *asd_conn_type[] = {
457 [0 ... 7] = "unknown",
458 "SFF8470",
459 "SFF8482",
460 "SFF8484",
461 [0x80] = "PCIX_DAUGHTER0",
462 [0x81] = "SAS_DAUGHTER0",
463 [0x82 ... 0xFF] = "VENDOR_UNIQUExx"
464 };
465
466 static const char *asd_conn_location[] = {
467 "unknown",
468 "internal",
469 "external",
470 "board_to_board",
471 };
472 #endif
473
474 struct asd_ms_conn_desc {
475 u8 type;
476 u8 location;
477 u8 num_sideband_desc;
478 u8 size_sideband_desc;
479 u32 _resvd;
480 u8 name[16];
481 struct asd_ms_sb_desc sb_desc[];
482 } __attribute__ ((packed));
483
484 struct asd_nd_phy_desc {
485 u8 vp_attch_type;
486 u8 attch_specific[];
487 } __attribute__ ((packed));
488
489 #if 0
490 static const char *asd_node_type[] = {
491 "IOP",
492 "IO_CONTROLLER",
493 "EXPANDER",
494 "PORT_MULTIPLIER",
495 "PORT_MULTIPLEXER",
496 "MULTI_DROP_I2C_BUS",
497 };
498 #endif
499
500 struct asd_ms_node_desc {
501 u8 type;
502 u8 num_phy_desc;
503 u8 size_phy_desc;
504 u8 _resvd;
505 u8 name[16];
506 struct asd_nd_phy_desc phy_desc[];
507 } __attribute__ ((packed));
508
509 struct asd_ms_conn_map {
510 char sig[2]; /* 'M', 'C' */
511 __le16 next;
512 u8 maj; /* 0 */
513 u8 min; /* 0 */
514 __le16 cm_size; /* size of this struct */
515 u8 num_conn;
516 u8 conn_size;
517 u8 num_nodes;
518 u8 usage_model_id;
519 u32 _resvd;
520 union {
521 DECLARE_FLEX_ARRAY(struct asd_ms_conn_desc, conn_desc);
522 DECLARE_FLEX_ARRAY(struct asd_ms_node_desc, node_desc);
523 };
524 } __attribute__ ((packed));
525
526 struct asd_ctrla_phy_entry {
527 u8 sas_addr[SAS_ADDR_SIZE];
528 u8 sas_link_rates; /* max in hi bits, min in low bits */
529 u8 flags;
530 u8 sata_link_rates;
531 u8 _r[5];
532 } __attribute__ ((packed));
533
534 struct asd_ctrla_phy_settings {
535 u8 id0; /* P'h'y */
536 u8 _r;
537 u16 next;
538 u8 num_phys; /* number of PHYs in the PCI function */
539 u8 _r2[3];
540 struct asd_ctrla_phy_entry phy_ent[ASD_MAX_PHYS];
541 } __attribute__ ((packed));
542
543 struct asd_ll_el {
544 u8 id0;
545 u8 id1;
546 __le16 next;
547 u8 something_here[];
548 } __attribute__ ((packed));
549
asd_poll_flash(struct asd_ha_struct * asd_ha)550 static int asd_poll_flash(struct asd_ha_struct *asd_ha)
551 {
552 int c;
553 u8 d;
554
555 for (c = 5000; c > 0; c--) {
556 d = asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
557 d ^= asd_read_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar);
558 if (!d)
559 return 0;
560 udelay(5);
561 }
562 return -ENOENT;
563 }
564
asd_reset_flash(struct asd_ha_struct * asd_ha)565 static int asd_reset_flash(struct asd_ha_struct *asd_ha)
566 {
567 int err;
568
569 err = asd_poll_flash(asd_ha);
570 if (err)
571 return err;
572 asd_write_reg_byte(asd_ha, asd_ha->hw_prof.flash.bar, FLASH_RESET);
573 err = asd_poll_flash(asd_ha);
574
575 return err;
576 }
577
asd_read_flash_seg(struct asd_ha_struct * asd_ha,void * buffer,u32 offs,int size)578 static int asd_read_flash_seg(struct asd_ha_struct *asd_ha,
579 void *buffer, u32 offs, int size)
580 {
581 asd_read_reg_string(asd_ha, buffer, asd_ha->hw_prof.flash.bar+offs,
582 size);
583 return 0;
584 }
585
586 /**
587 * asd_find_flash_dir - finds and reads the flash directory
588 * @asd_ha: pointer to the host adapter structure
589 * @flash_dir: pointer to flash directory structure
590 *
591 * If found, the flash directory segment will be copied to
592 * @flash_dir. Return 1 if found, 0 if not.
593 */
asd_find_flash_dir(struct asd_ha_struct * asd_ha,struct asd_flash_dir * flash_dir)594 static int asd_find_flash_dir(struct asd_ha_struct *asd_ha,
595 struct asd_flash_dir *flash_dir)
596 {
597 u32 v;
598 for (v = 0; v < ASD_FLASH_SIZE; v += FLASH_NEXT_ENTRY_OFFS) {
599 asd_read_flash_seg(asd_ha, flash_dir, v,
600 sizeof(FLASH_DIR_COOKIE)-1);
601 if (memcmp(flash_dir->cookie, FLASH_DIR_COOKIE,
602 sizeof(FLASH_DIR_COOKIE)-1) == 0) {
603 asd_ha->hw_prof.flash.dir_offs = v;
604 asd_read_flash_seg(asd_ha, flash_dir, v,
605 sizeof(*flash_dir));
606 return 1;
607 }
608 }
609 return 0;
610 }
611
asd_flash_getid(struct asd_ha_struct * asd_ha)612 static int asd_flash_getid(struct asd_ha_struct *asd_ha)
613 {
614 int err = 0;
615 u32 reg;
616
617 reg = asd_read_reg_dword(asd_ha, EXSICNFGR);
618
619 if (pci_read_config_dword(asd_ha->pcidev, PCI_CONF_FLSH_BAR,
620 &asd_ha->hw_prof.flash.bar)) {
621 asd_printk("couldn't read PCI_CONF_FLSH_BAR of %s\n",
622 pci_name(asd_ha->pcidev));
623 return -ENOENT;
624 }
625 asd_ha->hw_prof.flash.present = 1;
626 asd_ha->hw_prof.flash.wide = reg & FLASHW ? 1 : 0;
627 err = asd_reset_flash(asd_ha);
628 if (err) {
629 ASD_DPRINTK("couldn't reset flash(%d)\n", err);
630 return err;
631 }
632 return 0;
633 }
634
asd_calc_flash_chksum(u16 * p,int size)635 static u16 asd_calc_flash_chksum(u16 *p, int size)
636 {
637 u16 chksum = 0;
638
639 while (size-- > 0)
640 chksum += *p++;
641
642 return chksum;
643 }
644
645
asd_find_flash_de(struct asd_flash_dir * flash_dir,u32 entry_type,u32 * offs,u32 * size)646 static int asd_find_flash_de(struct asd_flash_dir *flash_dir, u32 entry_type,
647 u32 *offs, u32 *size)
648 {
649 int i;
650 struct asd_flash_de *de;
651
652 for (i = 0; i < FLASH_MAX_DIR_ENTRIES; i++) {
653 u32 type = le32_to_cpu(flash_dir->dir_entry[i].type);
654
655 type &= FLASH_DE_TYPE_MASK;
656 if (type == entry_type)
657 break;
658 }
659 if (i >= FLASH_MAX_DIR_ENTRIES)
660 return -ENOENT;
661 de = &flash_dir->dir_entry[i];
662 *offs = le32_to_cpu(de->offs);
663 *size = le32_to_cpu(de->pad_size);
664 return 0;
665 }
666
asd_validate_ms(struct asd_manuf_sec * ms)667 static int asd_validate_ms(struct asd_manuf_sec *ms)
668 {
669 if (ms->sig[0] != 'S' || ms->sig[1] != 'M') {
670 ASD_DPRINTK("manuf sec: no valid sig(%c%c)\n",
671 ms->sig[0], ms->sig[1]);
672 return -ENOENT;
673 }
674 if (ms->maj != 0) {
675 asd_printk("unsupported manuf. sector. major version:%x\n",
676 ms->maj);
677 return -ENOENT;
678 }
679 ms->offs_next = le16_to_cpu((__force __le16) ms->offs_next);
680 ms->chksum = le16_to_cpu((__force __le16) ms->chksum);
681 ms->size = le16_to_cpu((__force __le16) ms->size);
682
683 if (asd_calc_flash_chksum((u16 *)ms, ms->size/2)) {
684 asd_printk("failed manuf sector checksum\n");
685 }
686
687 return 0;
688 }
689
asd_ms_get_sas_addr(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * ms)690 static int asd_ms_get_sas_addr(struct asd_ha_struct *asd_ha,
691 struct asd_manuf_sec *ms)
692 {
693 memcpy(asd_ha->hw_prof.sas_addr, ms->sas_addr, SAS_ADDR_SIZE);
694 return 0;
695 }
696
asd_ms_get_pcba_sn(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * ms)697 static int asd_ms_get_pcba_sn(struct asd_ha_struct *asd_ha,
698 struct asd_manuf_sec *ms)
699 {
700 memcpy(asd_ha->hw_prof.pcba_sn, ms->pcba_sn, ASD_PCBA_SN_SIZE);
701 asd_ha->hw_prof.pcba_sn[ASD_PCBA_SN_SIZE] = '\0';
702 return 0;
703 }
704
705 /**
706 * asd_find_ll_by_id - find a linked list entry by its id
707 * @start: void pointer to the first element in the linked list
708 * @id0: the first byte of the id (offs 0)
709 * @id1: the second byte of the id (offs 1)
710 *
711 * @start has to be the _base_ element start, since the
712 * linked list entries's offset is from this pointer.
713 * Some linked list entries use only the first id, in which case
714 * you can pass 0xFF for the second.
715 */
asd_find_ll_by_id(void * const start,const u8 id0,const u8 id1)716 static void *asd_find_ll_by_id(void * const start, const u8 id0, const u8 id1)
717 {
718 struct asd_ll_el *el = start;
719
720 do {
721 switch (id1) {
722 default:
723 if (el->id1 == id1) {
724 fallthrough;
725 case 0xFF:
726 if (el->id0 == id0)
727 return el;
728 }
729 }
730 el = start + le16_to_cpu(el->next);
731 } while (el != start);
732
733 return NULL;
734 }
735
736 /**
737 * asd_ms_get_phy_params - get phy parameters from the manufacturing sector
738 * @asd_ha: pointer to the host adapter structure
739 * @manuf_sec: pointer to the manufacturing sector
740 *
741 * The manufacturing sector contans also the linked list of sub-segments,
742 * since when it was read, its size was taken from the flash directory,
743 * not from the structure size.
744 *
745 * HIDDEN phys do not count in the total count. REPORTED phys cannot
746 * be enabled but are reported and counted towards the total.
747 * ENABLED phys are enabled by default and count towards the total.
748 * The absolute total phy number is ASD_MAX_PHYS. hw_prof->num_phys
749 * merely specifies the number of phys the host adapter decided to
750 * report. E.g., it is possible for phys 0, 1 and 2 to be HIDDEN,
751 * phys 3, 4 and 5 to be REPORTED and phys 6 and 7 to be ENABLED.
752 * In this case ASD_MAX_PHYS is 8, hw_prof->num_phys is 5, and only 2
753 * are actually enabled (enabled by default, max number of phys
754 * enableable in this case).
755 */
asd_ms_get_phy_params(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * manuf_sec)756 static int asd_ms_get_phy_params(struct asd_ha_struct *asd_ha,
757 struct asd_manuf_sec *manuf_sec)
758 {
759 int i;
760 int en_phys = 0;
761 int rep_phys = 0;
762 struct asd_manuf_phy_param *phy_param;
763 struct asd_manuf_phy_param dflt_phy_param;
764
765 phy_param = asd_find_ll_by_id(manuf_sec, 'P', 'M');
766 if (!phy_param) {
767 ASD_DPRINTK("ms: no phy parameters found\n");
768 ASD_DPRINTK("ms: Creating default phy parameters\n");
769 dflt_phy_param.sig[0] = 'P';
770 dflt_phy_param.sig[1] = 'M';
771 dflt_phy_param.maj = 0;
772 dflt_phy_param.min = 2;
773 dflt_phy_param.num_phy_desc = 8;
774 dflt_phy_param.phy_desc_size = sizeof(struct asd_manuf_phy_desc);
775 for (i =0; i < ASD_MAX_PHYS; i++) {
776 dflt_phy_param.phy_desc[i].state = 0;
777 dflt_phy_param.phy_desc[i].phy_id = i;
778 dflt_phy_param.phy_desc[i].phy_control_0 = 0xf6;
779 dflt_phy_param.phy_desc[i].phy_control_1 = 0x10;
780 dflt_phy_param.phy_desc[i].phy_control_2 = 0x43;
781 dflt_phy_param.phy_desc[i].phy_control_3 = 0xeb;
782 }
783
784 phy_param = &dflt_phy_param;
785
786 }
787
788 if (phy_param->maj != 0) {
789 asd_printk("unsupported manuf. phy param major version:0x%x\n",
790 phy_param->maj);
791 return -ENOENT;
792 }
793
794 ASD_DPRINTK("ms: num_phy_desc: %d\n", phy_param->num_phy_desc);
795 asd_ha->hw_prof.enabled_phys = 0;
796 for (i = 0; i < phy_param->num_phy_desc; i++) {
797 struct asd_manuf_phy_desc *pd = &phy_param->phy_desc[i];
798 switch (pd->state & 0xF) {
799 case MS_PHY_STATE_HIDDEN:
800 ASD_DPRINTK("ms: phy%d: HIDDEN\n", i);
801 continue;
802 case MS_PHY_STATE_REPORTED:
803 ASD_DPRINTK("ms: phy%d: REPORTED\n", i);
804 asd_ha->hw_prof.enabled_phys &= ~(1 << i);
805 rep_phys++;
806 continue;
807 case MS_PHY_STATE_ENABLED:
808 ASD_DPRINTK("ms: phy%d: ENABLED\n", i);
809 asd_ha->hw_prof.enabled_phys |= (1 << i);
810 en_phys++;
811 break;
812 }
813 asd_ha->hw_prof.phy_desc[i].phy_control_0 = pd->phy_control_0;
814 asd_ha->hw_prof.phy_desc[i].phy_control_1 = pd->phy_control_1;
815 asd_ha->hw_prof.phy_desc[i].phy_control_2 = pd->phy_control_2;
816 asd_ha->hw_prof.phy_desc[i].phy_control_3 = pd->phy_control_3;
817 }
818 asd_ha->hw_prof.max_phys = rep_phys + en_phys;
819 asd_ha->hw_prof.num_phys = en_phys;
820 ASD_DPRINTK("ms: max_phys:0x%x, num_phys:0x%x\n",
821 asd_ha->hw_prof.max_phys, asd_ha->hw_prof.num_phys);
822 ASD_DPRINTK("ms: enabled_phys:0x%x\n", asd_ha->hw_prof.enabled_phys);
823 return 0;
824 }
825
asd_ms_get_connector_map(struct asd_ha_struct * asd_ha,struct asd_manuf_sec * manuf_sec)826 static int asd_ms_get_connector_map(struct asd_ha_struct *asd_ha,
827 struct asd_manuf_sec *manuf_sec)
828 {
829 struct asd_ms_conn_map *cm;
830
831 cm = asd_find_ll_by_id(manuf_sec, 'M', 'C');
832 if (!cm) {
833 ASD_DPRINTK("ms: no connector map found\n");
834 return 0;
835 }
836
837 if (cm->maj != 0) {
838 ASD_DPRINTK("ms: unsupported: connector map major version 0x%x"
839 "\n", cm->maj);
840 return -ENOENT;
841 }
842
843 /* XXX */
844
845 return 0;
846 }
847
848
849 /**
850 * asd_process_ms - find and extract information from the manufacturing sector
851 * @asd_ha: pointer to the host adapter structure
852 * @flash_dir: pointer to the flash directory
853 */
asd_process_ms(struct asd_ha_struct * asd_ha,struct asd_flash_dir * flash_dir)854 static int asd_process_ms(struct asd_ha_struct *asd_ha,
855 struct asd_flash_dir *flash_dir)
856 {
857 int err;
858 struct asd_manuf_sec *manuf_sec;
859 u32 offs, size;
860
861 err = asd_find_flash_de(flash_dir, FLASH_DE_MS, &offs, &size);
862 if (err) {
863 ASD_DPRINTK("Couldn't find the manuf. sector\n");
864 goto out;
865 }
866
867 if (size == 0)
868 goto out;
869
870 err = -ENOMEM;
871 manuf_sec = kmalloc(size, GFP_KERNEL);
872 if (!manuf_sec) {
873 ASD_DPRINTK("no mem for manuf sector\n");
874 goto out;
875 }
876
877 err = asd_read_flash_seg(asd_ha, (void *)manuf_sec, offs, size);
878 if (err) {
879 ASD_DPRINTK("couldn't read manuf sector at 0x%x, size 0x%x\n",
880 offs, size);
881 goto out2;
882 }
883
884 err = asd_validate_ms(manuf_sec);
885 if (err) {
886 ASD_DPRINTK("couldn't validate manuf sector\n");
887 goto out2;
888 }
889
890 err = asd_ms_get_sas_addr(asd_ha, manuf_sec);
891 if (err) {
892 ASD_DPRINTK("couldn't read the SAS_ADDR\n");
893 goto out2;
894 }
895 ASD_DPRINTK("manuf sect SAS_ADDR %llx\n",
896 SAS_ADDR(asd_ha->hw_prof.sas_addr));
897
898 err = asd_ms_get_pcba_sn(asd_ha, manuf_sec);
899 if (err) {
900 ASD_DPRINTK("couldn't read the PCBA SN\n");
901 goto out2;
902 }
903 ASD_DPRINTK("manuf sect PCBA SN %s\n", asd_ha->hw_prof.pcba_sn);
904
905 err = asd_ms_get_phy_params(asd_ha, manuf_sec);
906 if (err) {
907 ASD_DPRINTK("ms: couldn't get phy parameters\n");
908 goto out2;
909 }
910
911 err = asd_ms_get_connector_map(asd_ha, manuf_sec);
912 if (err) {
913 ASD_DPRINTK("ms: couldn't get connector map\n");
914 goto out2;
915 }
916
917 out2:
918 kfree(manuf_sec);
919 out:
920 return err;
921 }
922
asd_process_ctrla_phy_settings(struct asd_ha_struct * asd_ha,struct asd_ctrla_phy_settings * ps)923 static int asd_process_ctrla_phy_settings(struct asd_ha_struct *asd_ha,
924 struct asd_ctrla_phy_settings *ps)
925 {
926 int i;
927 for (i = 0; i < ps->num_phys; i++) {
928 struct asd_ctrla_phy_entry *pe = &ps->phy_ent[i];
929
930 if (!PHY_ENABLED(asd_ha, i))
931 continue;
932 if (*(u64 *)pe->sas_addr == 0) {
933 asd_ha->hw_prof.enabled_phys &= ~(1 << i);
934 continue;
935 }
936 /* This is the SAS address which should be sent in IDENTIFY. */
937 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr, pe->sas_addr,
938 SAS_ADDR_SIZE);
939 asd_ha->hw_prof.phy_desc[i].max_sas_lrate =
940 (pe->sas_link_rates & 0xF0) >> 4;
941 asd_ha->hw_prof.phy_desc[i].min_sas_lrate =
942 (pe->sas_link_rates & 0x0F);
943 asd_ha->hw_prof.phy_desc[i].max_sata_lrate =
944 (pe->sata_link_rates & 0xF0) >> 4;
945 asd_ha->hw_prof.phy_desc[i].min_sata_lrate =
946 (pe->sata_link_rates & 0x0F);
947 asd_ha->hw_prof.phy_desc[i].flags = pe->flags;
948 ASD_DPRINTK("ctrla: phy%d: sas_addr: %llx, sas rate:0x%x-0x%x,"
949 " sata rate:0x%x-0x%x, flags:0x%x\n",
950 i,
951 SAS_ADDR(asd_ha->hw_prof.phy_desc[i].sas_addr),
952 asd_ha->hw_prof.phy_desc[i].max_sas_lrate,
953 asd_ha->hw_prof.phy_desc[i].min_sas_lrate,
954 asd_ha->hw_prof.phy_desc[i].max_sata_lrate,
955 asd_ha->hw_prof.phy_desc[i].min_sata_lrate,
956 asd_ha->hw_prof.phy_desc[i].flags);
957 }
958
959 return 0;
960 }
961
962 /**
963 * asd_process_ctrl_a_user - process CTRL-A user settings
964 * @asd_ha: pointer to the host adapter structure
965 * @flash_dir: pointer to the flash directory
966 */
asd_process_ctrl_a_user(struct asd_ha_struct * asd_ha,struct asd_flash_dir * flash_dir)967 static int asd_process_ctrl_a_user(struct asd_ha_struct *asd_ha,
968 struct asd_flash_dir *flash_dir)
969 {
970 int err, i;
971 u32 offs, size;
972 struct asd_ll_el *el = NULL;
973 struct asd_ctrla_phy_settings *ps;
974 struct asd_ctrla_phy_settings dflt_ps;
975
976 err = asd_find_flash_de(flash_dir, FLASH_DE_CTRL_A_USER, &offs, &size);
977 if (err) {
978 ASD_DPRINTK("couldn't find CTRL-A user settings section\n");
979 ASD_DPRINTK("Creating default CTRL-A user settings section\n");
980
981 dflt_ps.id0 = 'h';
982 dflt_ps.num_phys = 8;
983 for (i =0; i < ASD_MAX_PHYS; i++) {
984 memcpy(dflt_ps.phy_ent[i].sas_addr,
985 asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
986 dflt_ps.phy_ent[i].sas_link_rates = 0x98;
987 dflt_ps.phy_ent[i].flags = 0x0;
988 dflt_ps.phy_ent[i].sata_link_rates = 0x0;
989 }
990
991 size = sizeof(struct asd_ctrla_phy_settings);
992 ps = &dflt_ps;
993 goto out_process;
994 }
995
996 if (size == 0)
997 goto out;
998
999 err = -ENOMEM;
1000 el = kmalloc(size, GFP_KERNEL);
1001 if (!el) {
1002 ASD_DPRINTK("no mem for ctrla user settings section\n");
1003 goto out;
1004 }
1005
1006 err = asd_read_flash_seg(asd_ha, (void *)el, offs, size);
1007 if (err) {
1008 ASD_DPRINTK("couldn't read ctrla phy settings section\n");
1009 goto out2;
1010 }
1011
1012 err = -ENOENT;
1013 ps = asd_find_ll_by_id(el, 'h', 0xFF);
1014 if (!ps) {
1015 ASD_DPRINTK("couldn't find ctrla phy settings struct\n");
1016 goto out2;
1017 }
1018 out_process:
1019 err = asd_process_ctrla_phy_settings(asd_ha, ps);
1020 if (err) {
1021 ASD_DPRINTK("couldn't process ctrla phy settings\n");
1022 goto out2;
1023 }
1024 out2:
1025 kfree(el);
1026 out:
1027 return err;
1028 }
1029
1030 /**
1031 * asd_read_flash - read flash memory
1032 * @asd_ha: pointer to the host adapter structure
1033 */
asd_read_flash(struct asd_ha_struct * asd_ha)1034 int asd_read_flash(struct asd_ha_struct *asd_ha)
1035 {
1036 int err;
1037 struct asd_flash_dir *flash_dir;
1038
1039 err = asd_flash_getid(asd_ha);
1040 if (err)
1041 return err;
1042
1043 flash_dir = kmalloc(sizeof(*flash_dir), GFP_KERNEL);
1044 if (!flash_dir)
1045 return -ENOMEM;
1046
1047 err = -ENOENT;
1048 if (!asd_find_flash_dir(asd_ha, flash_dir)) {
1049 ASD_DPRINTK("couldn't find flash directory\n");
1050 goto out;
1051 }
1052
1053 if (le32_to_cpu(flash_dir->rev) != 2) {
1054 asd_printk("unsupported flash dir version:0x%x\n",
1055 le32_to_cpu(flash_dir->rev));
1056 goto out;
1057 }
1058
1059 err = asd_process_ms(asd_ha, flash_dir);
1060 if (err) {
1061 ASD_DPRINTK("couldn't process manuf sector settings\n");
1062 goto out;
1063 }
1064
1065 err = asd_process_ctrl_a_user(asd_ha, flash_dir);
1066 if (err) {
1067 ASD_DPRINTK("couldn't process CTRL-A user settings\n");
1068 goto out;
1069 }
1070
1071 out:
1072 kfree(flash_dir);
1073 return err;
1074 }
1075
1076 /**
1077 * asd_verify_flash_seg - verify data with flash memory
1078 * @asd_ha: pointer to the host adapter structure
1079 * @src: pointer to the source data to be verified
1080 * @dest_offset: offset from flash memory
1081 * @bytes_to_verify: total bytes to verify
1082 */
asd_verify_flash_seg(struct asd_ha_struct * asd_ha,const void * src,u32 dest_offset,u32 bytes_to_verify)1083 int asd_verify_flash_seg(struct asd_ha_struct *asd_ha,
1084 const void *src, u32 dest_offset, u32 bytes_to_verify)
1085 {
1086 const u8 *src_buf;
1087 u8 flash_char;
1088 int err;
1089 u32 nv_offset, reg, i;
1090
1091 reg = asd_ha->hw_prof.flash.bar;
1092 src_buf = NULL;
1093
1094 err = FLASH_OK;
1095 nv_offset = dest_offset;
1096 src_buf = (const u8 *)src;
1097 for (i = 0; i < bytes_to_verify; i++) {
1098 flash_char = asd_read_reg_byte(asd_ha, reg + nv_offset + i);
1099 if (flash_char != src_buf[i]) {
1100 err = FAIL_VERIFY;
1101 break;
1102 }
1103 }
1104 return err;
1105 }
1106
1107 /**
1108 * asd_write_flash_seg - write data into flash memory
1109 * @asd_ha: pointer to the host adapter structure
1110 * @src: pointer to the source data to be written
1111 * @dest_offset: offset from flash memory
1112 * @bytes_to_write: total bytes to write
1113 */
asd_write_flash_seg(struct asd_ha_struct * asd_ha,const void * src,u32 dest_offset,u32 bytes_to_write)1114 int asd_write_flash_seg(struct asd_ha_struct *asd_ha,
1115 const void *src, u32 dest_offset, u32 bytes_to_write)
1116 {
1117 const u8 *src_buf;
1118 u32 nv_offset, reg, i;
1119 int err;
1120
1121 reg = asd_ha->hw_prof.flash.bar;
1122 src_buf = NULL;
1123
1124 err = asd_check_flash_type(asd_ha);
1125 if (err) {
1126 ASD_DPRINTK("couldn't find the type of flash. err=%d\n", err);
1127 return err;
1128 }
1129
1130 nv_offset = dest_offset;
1131 err = asd_erase_nv_sector(asd_ha, nv_offset, bytes_to_write);
1132 if (err) {
1133 ASD_DPRINTK("Erase failed at offset:0x%x\n",
1134 nv_offset);
1135 return err;
1136 }
1137
1138 err = asd_reset_flash(asd_ha);
1139 if (err) {
1140 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1141 return err;
1142 }
1143
1144 src_buf = (const u8 *)src;
1145 for (i = 0; i < bytes_to_write; i++) {
1146 /* Setup program command sequence */
1147 switch (asd_ha->hw_prof.flash.method) {
1148 case FLASH_METHOD_A:
1149 {
1150 asd_write_reg_byte(asd_ha,
1151 (reg + 0xAAA), 0xAA);
1152 asd_write_reg_byte(asd_ha,
1153 (reg + 0x555), 0x55);
1154 asd_write_reg_byte(asd_ha,
1155 (reg + 0xAAA), 0xA0);
1156 asd_write_reg_byte(asd_ha,
1157 (reg + nv_offset + i),
1158 (*(src_buf + i)));
1159 break;
1160 }
1161 case FLASH_METHOD_B:
1162 {
1163 asd_write_reg_byte(asd_ha,
1164 (reg + 0x555), 0xAA);
1165 asd_write_reg_byte(asd_ha,
1166 (reg + 0x2AA), 0x55);
1167 asd_write_reg_byte(asd_ha,
1168 (reg + 0x555), 0xA0);
1169 asd_write_reg_byte(asd_ha,
1170 (reg + nv_offset + i),
1171 (*(src_buf + i)));
1172 break;
1173 }
1174 default:
1175 break;
1176 }
1177 if (asd_chk_write_status(asd_ha,
1178 (nv_offset + i), 0) != 0) {
1179 ASD_DPRINTK("aicx: Write failed at offset:0x%x\n",
1180 reg + nv_offset + i);
1181 return FAIL_WRITE_FLASH;
1182 }
1183 }
1184
1185 err = asd_reset_flash(asd_ha);
1186 if (err) {
1187 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1188 return err;
1189 }
1190 return 0;
1191 }
1192
asd_chk_write_status(struct asd_ha_struct * asd_ha,u32 sector_addr,u8 erase_flag)1193 int asd_chk_write_status(struct asd_ha_struct *asd_ha,
1194 u32 sector_addr, u8 erase_flag)
1195 {
1196 u32 reg;
1197 u32 loop_cnt;
1198 u8 nv_data1, nv_data2;
1199 u8 toggle_bit1;
1200
1201 /*
1202 * Read from DQ2 requires sector address
1203 * while it's dont care for DQ6
1204 */
1205 reg = asd_ha->hw_prof.flash.bar;
1206
1207 for (loop_cnt = 0; loop_cnt < 50000; loop_cnt++) {
1208 nv_data1 = asd_read_reg_byte(asd_ha, reg);
1209 nv_data2 = asd_read_reg_byte(asd_ha, reg);
1210
1211 toggle_bit1 = ((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6)
1212 ^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6));
1213
1214 if (toggle_bit1 == 0) {
1215 return 0;
1216 } else {
1217 if (nv_data2 & FLASH_STATUS_BIT_MASK_DQ5) {
1218 nv_data1 = asd_read_reg_byte(asd_ha,
1219 reg);
1220 nv_data2 = asd_read_reg_byte(asd_ha,
1221 reg);
1222 toggle_bit1 =
1223 ((nv_data1 & FLASH_STATUS_BIT_MASK_DQ6)
1224 ^ (nv_data2 & FLASH_STATUS_BIT_MASK_DQ6));
1225
1226 if (toggle_bit1 == 0)
1227 return 0;
1228 }
1229 }
1230
1231 /*
1232 * ERASE is a sector-by-sector operation and requires
1233 * more time to finish while WRITE is byte-byte-byte
1234 * operation and takes lesser time to finish.
1235 *
1236 * For some strange reason a reduced ERASE delay gives different
1237 * behaviour across different spirit boards. Hence we set
1238 * a optimum balance of 50mus for ERASE which works well
1239 * across all boards.
1240 */
1241 if (erase_flag) {
1242 udelay(FLASH_STATUS_ERASE_DELAY_COUNT);
1243 } else {
1244 udelay(FLASH_STATUS_WRITE_DELAY_COUNT);
1245 }
1246 }
1247 return -1;
1248 }
1249
1250 /**
1251 * asd_erase_nv_sector - Erase the flash memory sectors.
1252 * @asd_ha: pointer to the host adapter structure
1253 * @flash_addr: pointer to offset from flash memory
1254 * @size: total bytes to erase.
1255 */
asd_erase_nv_sector(struct asd_ha_struct * asd_ha,u32 flash_addr,u32 size)1256 int asd_erase_nv_sector(struct asd_ha_struct *asd_ha, u32 flash_addr, u32 size)
1257 {
1258 u32 reg;
1259 u32 sector_addr;
1260
1261 reg = asd_ha->hw_prof.flash.bar;
1262
1263 /* sector staring address */
1264 sector_addr = flash_addr & FLASH_SECTOR_SIZE_MASK;
1265
1266 /*
1267 * Erasing an flash sector needs to be done in six consecutive
1268 * write cyles.
1269 */
1270 while (sector_addr < flash_addr+size) {
1271 switch (asd_ha->hw_prof.flash.method) {
1272 case FLASH_METHOD_A:
1273 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA);
1274 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55);
1275 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0x80);
1276 asd_write_reg_byte(asd_ha, (reg + 0xAAA), 0xAA);
1277 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x55);
1278 asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30);
1279 break;
1280 case FLASH_METHOD_B:
1281 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1282 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1283 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x80);
1284 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1285 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1286 asd_write_reg_byte(asd_ha, (reg + sector_addr), 0x30);
1287 break;
1288 default:
1289 break;
1290 }
1291
1292 if (asd_chk_write_status(asd_ha, sector_addr, 1) != 0)
1293 return FAIL_ERASE_FLASH;
1294
1295 sector_addr += FLASH_SECTOR_SIZE;
1296 }
1297
1298 return 0;
1299 }
1300
asd_check_flash_type(struct asd_ha_struct * asd_ha)1301 int asd_check_flash_type(struct asd_ha_struct *asd_ha)
1302 {
1303 u8 manuf_id;
1304 u8 dev_id;
1305 u8 sec_prot;
1306 u32 inc;
1307 u32 reg;
1308 int err;
1309
1310 /* get Flash memory base address */
1311 reg = asd_ha->hw_prof.flash.bar;
1312
1313 /* Determine flash info */
1314 err = asd_reset_flash(asd_ha);
1315 if (err) {
1316 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1317 return err;
1318 }
1319
1320 asd_ha->hw_prof.flash.method = FLASH_METHOD_UNKNOWN;
1321 asd_ha->hw_prof.flash.manuf = FLASH_MANUF_ID_UNKNOWN;
1322 asd_ha->hw_prof.flash.dev_id = FLASH_DEV_ID_UNKNOWN;
1323
1324 /* Get flash info. This would most likely be AMD Am29LV family flash.
1325 * First try the sequence for word mode. It is the same as for
1326 * 008B (byte mode only), 160B (word mode) and 800D (word mode).
1327 */
1328 inc = asd_ha->hw_prof.flash.wide ? 2 : 1;
1329 asd_write_reg_byte(asd_ha, reg + 0xAAA, 0xAA);
1330 asd_write_reg_byte(asd_ha, reg + 0x555, 0x55);
1331 asd_write_reg_byte(asd_ha, reg + 0xAAA, 0x90);
1332 manuf_id = asd_read_reg_byte(asd_ha, reg);
1333 dev_id = asd_read_reg_byte(asd_ha, reg + inc);
1334 sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc);
1335 /* Get out of autoselect mode. */
1336 err = asd_reset_flash(asd_ha);
1337 if (err) {
1338 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1339 return err;
1340 }
1341 ASD_DPRINTK("Flash MethodA manuf_id(0x%x) dev_id(0x%x) "
1342 "sec_prot(0x%x)\n", manuf_id, dev_id, sec_prot);
1343 err = asd_reset_flash(asd_ha);
1344 if (err != 0)
1345 return err;
1346
1347 switch (manuf_id) {
1348 case FLASH_MANUF_ID_AMD:
1349 switch (sec_prot) {
1350 case FLASH_DEV_ID_AM29LV800DT:
1351 case FLASH_DEV_ID_AM29LV640MT:
1352 case FLASH_DEV_ID_AM29F800B:
1353 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1354 break;
1355 default:
1356 break;
1357 }
1358 break;
1359 case FLASH_MANUF_ID_ST:
1360 switch (sec_prot) {
1361 case FLASH_DEV_ID_STM29W800DT:
1362 case FLASH_DEV_ID_STM29LV640:
1363 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1364 break;
1365 default:
1366 break;
1367 }
1368 break;
1369 case FLASH_MANUF_ID_FUJITSU:
1370 switch (sec_prot) {
1371 case FLASH_DEV_ID_MBM29LV800TE:
1372 case FLASH_DEV_ID_MBM29DL800TA:
1373 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1374 break;
1375 }
1376 break;
1377 case FLASH_MANUF_ID_MACRONIX:
1378 switch (sec_prot) {
1379 case FLASH_DEV_ID_MX29LV800BT:
1380 asd_ha->hw_prof.flash.method = FLASH_METHOD_A;
1381 break;
1382 }
1383 break;
1384 }
1385
1386 if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN) {
1387 err = asd_reset_flash(asd_ha);
1388 if (err) {
1389 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1390 return err;
1391 }
1392
1393 /* Issue Unlock sequence for AM29LV008BT */
1394 asd_write_reg_byte(asd_ha, (reg + 0x555), 0xAA);
1395 asd_write_reg_byte(asd_ha, (reg + 0x2AA), 0x55);
1396 asd_write_reg_byte(asd_ha, (reg + 0x555), 0x90);
1397 manuf_id = asd_read_reg_byte(asd_ha, reg);
1398 dev_id = asd_read_reg_byte(asd_ha, reg + inc);
1399 sec_prot = asd_read_reg_byte(asd_ha, reg + inc + inc);
1400
1401 ASD_DPRINTK("Flash MethodB manuf_id(0x%x) dev_id(0x%x) sec_prot"
1402 "(0x%x)\n", manuf_id, dev_id, sec_prot);
1403
1404 err = asd_reset_flash(asd_ha);
1405 if (err != 0) {
1406 ASD_DPRINTK("couldn't reset flash. err=%d\n", err);
1407 return err;
1408 }
1409
1410 switch (manuf_id) {
1411 case FLASH_MANUF_ID_AMD:
1412 switch (dev_id) {
1413 case FLASH_DEV_ID_AM29LV008BT:
1414 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1415 break;
1416 default:
1417 break;
1418 }
1419 break;
1420 case FLASH_MANUF_ID_ST:
1421 switch (dev_id) {
1422 case FLASH_DEV_ID_STM29008:
1423 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1424 break;
1425 default:
1426 break;
1427 }
1428 break;
1429 case FLASH_MANUF_ID_FUJITSU:
1430 switch (dev_id) {
1431 case FLASH_DEV_ID_MBM29LV008TA:
1432 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1433 break;
1434 }
1435 break;
1436 case FLASH_MANUF_ID_INTEL:
1437 switch (dev_id) {
1438 case FLASH_DEV_ID_I28LV00TAT:
1439 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1440 break;
1441 }
1442 break;
1443 case FLASH_MANUF_ID_MACRONIX:
1444 switch (dev_id) {
1445 case FLASH_DEV_ID_I28LV00TAT:
1446 asd_ha->hw_prof.flash.method = FLASH_METHOD_B;
1447 break;
1448 }
1449 break;
1450 default:
1451 return FAIL_FIND_FLASH_ID;
1452 }
1453 }
1454
1455 if (asd_ha->hw_prof.flash.method == FLASH_METHOD_UNKNOWN)
1456 return FAIL_FIND_FLASH_ID;
1457
1458 asd_ha->hw_prof.flash.manuf = manuf_id;
1459 asd_ha->hw_prof.flash.dev_id = dev_id;
1460 asd_ha->hw_prof.flash.sec_prot = sec_prot;
1461 return 0;
1462 }
1463