1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Aic94xx SAS/SATA driver SCB management.
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  */
8 
9 #include <linux/gfp.h>
10 #include <scsi/scsi_host.h>
11 
12 #include "aic94xx.h"
13 #include "aic94xx_reg.h"
14 #include "aic94xx_hwi.h"
15 #include "aic94xx_seq.h"
16 
17 #include "aic94xx_dump.h"
18 
19 /* ---------- EMPTY SCB ---------- */
20 
21 #define DL_PHY_MASK      7
22 #define BYTES_DMAED      0
23 #define PRIMITIVE_RECVD  0x08
24 #define PHY_EVENT        0x10
25 #define LINK_RESET_ERROR 0x18
26 #define TIMER_EVENT      0x20
27 #define REQ_TASK_ABORT   0xF0
28 #define REQ_DEVICE_RESET 0xF1
29 #define SIGNAL_NCQ_ERROR 0xF2
30 #define CLEAR_NCQ_ERROR  0xF3
31 
32 #define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE   \
33 			   | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
34 			   | CURRENT_OOB_ERROR)
35 
36 static void get_lrate_mode(struct asd_phy *phy, u8 oob_mode)
37 {
38 	struct sas_phy *sas_phy = phy->sas_phy.phy;
39 
40 	switch (oob_mode & 7) {
41 	case PHY_SPEED_60:
42 		/* FIXME: sas transport class doesn't have this */
43 		phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
44 		phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
45 		break;
46 	case PHY_SPEED_30:
47 		phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
48 		phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
49 		break;
50 	case PHY_SPEED_15:
51 		phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
52 		phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
53 		break;
54 	}
55 	sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
56 	sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS;
57 	sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
58 	sas_phy->maximum_linkrate = phy->phy_desc->max_sas_lrate;
59 	sas_phy->minimum_linkrate = phy->phy_desc->min_sas_lrate;
60 
61 	if (oob_mode & SAS_MODE)
62 		phy->sas_phy.oob_mode = SAS_OOB_MODE;
63 	else if (oob_mode & SATA_MODE)
64 		phy->sas_phy.oob_mode = SATA_OOB_MODE;
65 }
66 
67 static void asd_phy_event_tasklet(struct asd_ascb *ascb,
68 					 struct done_list_struct *dl)
69 {
70 	struct asd_ha_struct *asd_ha = ascb->ha;
71 	struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
72 	int phy_id = dl->status_block[0] & DL_PHY_MASK;
73 	struct asd_phy *phy = &asd_ha->phys[phy_id];
74 
75 	u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS;
76 	u8 oob_mode   = dl->status_block[2];
77 
78 	switch (oob_status) {
79 	case CURRENT_LOSS_OF_SIGNAL:
80 		/* directly attached device was removed */
81 		ASD_DPRINTK("phy%d: device unplugged\n", phy_id);
82 		asd_turn_led(asd_ha, phy_id, 0);
83 		sas_phy_disconnected(&phy->sas_phy);
84 		sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
85 		break;
86 	case CURRENT_OOB_DONE:
87 		/* hot plugged device */
88 		asd_turn_led(asd_ha, phy_id, 1);
89 		get_lrate_mode(phy, oob_mode);
90 		ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n",
91 			    phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto);
92 		sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
93 		break;
94 	case CURRENT_SPINUP_HOLD:
95 		/* hot plug SATA, no COMWAKE sent */
96 		asd_turn_led(asd_ha, phy_id, 1);
97 		sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
98 		break;
99 	case CURRENT_GTO_TIMEOUT:
100 	case CURRENT_OOB_ERROR:
101 		ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id,
102 			    dl->status_block[1]);
103 		asd_turn_led(asd_ha, phy_id, 0);
104 		sas_phy_disconnected(&phy->sas_phy);
105 		sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
106 		break;
107 	}
108 }
109 
110 /* If phys are enabled sparsely, this will do the right thing. */
111 static unsigned ord_phy(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
112 {
113 	u8 enabled_mask = asd_ha->hw_prof.enabled_phys;
114 	int i, k = 0;
115 
116 	for_each_phy(enabled_mask, enabled_mask, i) {
117 		if (&asd_ha->phys[i] == phy)
118 			return k;
119 		k++;
120 	}
121 	return 0;
122 }
123 
124 /**
125  * asd_get_attached_sas_addr -- extract/generate attached SAS address
126  * @phy: pointer to asd_phy
127  * @sas_addr: pointer to buffer where the SAS address is to be written
128  *
129  * This function extracts the SAS address from an IDENTIFY frame
130  * received.  If OOB is SATA, then a SAS address is generated from the
131  * HA tables.
132  *
133  * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
134  * buffer.
135  */
136 static void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr)
137 {
138 	if (phy->sas_phy.frame_rcvd[0] == 0x34
139 	    && phy->sas_phy.oob_mode == SATA_OOB_MODE) {
140 		struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
141 		/* FIS device-to-host */
142 		u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr);
143 
144 		addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy);
145 		*(__be64 *)sas_addr = cpu_to_be64(addr);
146 	} else {
147 		struct sas_identify_frame *idframe =
148 			(void *) phy->sas_phy.frame_rcvd;
149 		memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
150 	}
151 }
152 
153 static void asd_form_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
154 {
155 	int i;
156 	struct asd_port *free_port = NULL;
157 	struct asd_port *port;
158 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
159 	unsigned long flags;
160 
161 	spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
162 	if (!phy->asd_port) {
163 		for (i = 0; i < ASD_MAX_PHYS; i++) {
164 			port = &asd_ha->asd_ports[i];
165 
166 			/* Check for wide port */
167 			if (port->num_phys > 0 &&
168 			    memcmp(port->sas_addr, sas_phy->sas_addr,
169 				   SAS_ADDR_SIZE) == 0 &&
170 			    memcmp(port->attached_sas_addr,
171 				   sas_phy->attached_sas_addr,
172 				   SAS_ADDR_SIZE) == 0) {
173 				break;
174 			}
175 
176 			/* Find a free port */
177 			if (port->num_phys == 0 && free_port == NULL) {
178 				free_port = port;
179 			}
180 		}
181 
182 		/* Use a free port if this doesn't form a wide port */
183 		if (i >= ASD_MAX_PHYS) {
184 			port = free_port;
185 			BUG_ON(!port);
186 			memcpy(port->sas_addr, sas_phy->sas_addr,
187 			       SAS_ADDR_SIZE);
188 			memcpy(port->attached_sas_addr,
189 			       sas_phy->attached_sas_addr,
190 			       SAS_ADDR_SIZE);
191 		}
192 		port->num_phys++;
193 		port->phy_mask |= (1U << sas_phy->id);
194 		phy->asd_port = port;
195 	}
196 	ASD_DPRINTK("%s: updating phy_mask 0x%x for phy%d\n",
197 		    __func__, phy->asd_port->phy_mask, sas_phy->id);
198 	asd_update_port_links(asd_ha, phy);
199 	spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
200 }
201 
202 static void asd_deform_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
203 {
204 	struct asd_port *port = phy->asd_port;
205 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
206 	unsigned long flags;
207 
208 	spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
209 	if (port) {
210 		port->num_phys--;
211 		port->phy_mask &= ~(1U << sas_phy->id);
212 		phy->asd_port = NULL;
213 	}
214 	spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
215 }
216 
217 static void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb,
218 				    struct done_list_struct *dl,
219 				    int edb_id, int phy_id)
220 {
221 	unsigned long flags;
222 	int edb_el = edb_id + ascb->edb_index;
223 	struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el];
224 	struct asd_phy *phy = &ascb->ha->phys[phy_id];
225 	struct sas_ha_struct *sas_ha = phy->sas_phy.ha;
226 	u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2];
227 
228 	size = min(size, (u16) sizeof(phy->frame_rcvd));
229 
230 	spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
231 	memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size);
232 	phy->sas_phy.frame_rcvd_size = size;
233 	asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
234 	spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
235 	asd_dump_frame_rcvd(phy, dl);
236 	asd_form_port(ascb->ha, phy);
237 	sas_ha->notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED);
238 }
239 
240 static void asd_link_reset_err_tasklet(struct asd_ascb *ascb,
241 				       struct done_list_struct *dl,
242 				       int phy_id)
243 {
244 	struct asd_ha_struct *asd_ha = ascb->ha;
245 	struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
246 	struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
247 	struct asd_phy *phy = &asd_ha->phys[phy_id];
248 	u8 lr_error = dl->status_block[1];
249 	u8 retries_left = dl->status_block[2];
250 
251 	switch (lr_error) {
252 	case 0:
253 		ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id);
254 		break;
255 	case 1:
256 		ASD_DPRINTK("phy%d: Loss of signal\n", phy_id);
257 		break;
258 	case 2:
259 		ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id);
260 		break;
261 	case 3:
262 		ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id);
263 		break;
264 	default:
265 		ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n",
266 			    phy_id, lr_error);
267 		break;
268 	}
269 
270 	asd_turn_led(asd_ha, phy_id, 0);
271 	sas_phy_disconnected(sas_phy);
272 	asd_deform_port(asd_ha, phy);
273 	sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
274 
275 	if (retries_left == 0) {
276 		int num = 1;
277 		struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num,
278 							  GFP_ATOMIC);
279 		if (!cp) {
280 			asd_printk("%s: out of memory\n", __func__);
281 			goto out;
282 		}
283 		ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n",
284 			    phy_id);
285 		asd_build_control_phy(cp, phy_id, ENABLE_PHY);
286 		if (asd_post_ascb_list(ascb->ha, cp, 1) != 0)
287 			asd_ascb_free(cp);
288 	}
289 out:
290 	;
291 }
292 
293 static void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb,
294 				       struct done_list_struct *dl,
295 				       int phy_id)
296 {
297 	unsigned long flags;
298 	struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha;
299 	struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
300 	struct asd_ha_struct *asd_ha = ascb->ha;
301 	struct asd_phy *phy = &asd_ha->phys[phy_id];
302 	u8  reg  = dl->status_block[1];
303 	u32 cont = dl->status_block[2] << ((reg & 3)*8);
304 
305 	reg &= ~3;
306 	switch (reg) {
307 	case LmPRMSTAT0BYTE0:
308 		switch (cont) {
309 		case LmBROADCH:
310 		case LmBROADRVCH0:
311 		case LmBROADRVCH1:
312 		case LmBROADSES:
313 			ASD_DPRINTK("phy%d: BROADCAST change received:%d\n",
314 				    phy_id, cont);
315 			spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
316 			sas_phy->sas_prim = ffs(cont);
317 			spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
318 			sas_ha->notify_port_event(sas_phy,PORTE_BROADCAST_RCVD);
319 			break;
320 
321 		case LmUNKNOWNP:
322 			ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id);
323 			break;
324 
325 		default:
326 			ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
327 				    phy_id, reg, cont);
328 			break;
329 		}
330 		break;
331 	case LmPRMSTAT1BYTE0:
332 		switch (cont) {
333 		case LmHARDRST:
334 			ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n",
335 				    phy_id);
336 			/* The sequencer disables all phys on that port.
337 			 * We have to re-enable the phys ourselves. */
338 			asd_deform_port(asd_ha, phy);
339 			sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
340 			break;
341 
342 		default:
343 			ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
344 				    phy_id, reg, cont);
345 			break;
346 		}
347 		break;
348 	default:
349 		ASD_DPRINTK("unknown primitive register:0x%x\n",
350 			    dl->status_block[1]);
351 		break;
352 	}
353 }
354 
355 /**
356  * asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB
357  * @ascb: pointer to Empty SCB
358  * @edb_id: index [0,6] to the empty data buffer which is to be invalidated
359  *
360  * After an EDB has been invalidated, if all EDBs in this ESCB have been
361  * invalidated, the ESCB is posted back to the sequencer.
362  * Context is tasklet/IRQ.
363  */
364 void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id)
365 {
366 	struct asd_seq_data *seq = &ascb->ha->seq;
367 	struct empty_scb *escb = &ascb->scb->escb;
368 	struct sg_el     *eb   = &escb->eb[edb_id];
369 	struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id];
370 
371 	memset(edb->vaddr, 0, ASD_EDB_SIZE);
372 	eb->flags |= ELEMENT_NOT_VALID;
373 	escb->num_valid--;
374 
375 	if (escb->num_valid == 0) {
376 		int i;
377 		/* ASD_DPRINTK("reposting escb: vaddr: 0x%p, "
378 			    "dma_handle: 0x%08llx, next: 0x%08llx, "
379 			    "index:%d, opcode:0x%02x\n",
380 			    ascb->dma_scb.vaddr,
381 			    (u64)ascb->dma_scb.dma_handle,
382 			    le64_to_cpu(ascb->scb->header.next_scb),
383 			    le16_to_cpu(ascb->scb->header.index),
384 			    ascb->scb->header.opcode);
385 		*/
386 		escb->num_valid = ASD_EDBS_PER_SCB;
387 		for (i = 0; i < ASD_EDBS_PER_SCB; i++)
388 			escb->eb[i].flags = 0;
389 		if (!list_empty(&ascb->list))
390 			list_del_init(&ascb->list);
391 		i = asd_post_escb_list(ascb->ha, ascb, 1);
392 		if (i)
393 			asd_printk("couldn't post escb, err:%d\n", i);
394 	}
395 }
396 
397 static void escb_tasklet_complete(struct asd_ascb *ascb,
398 				  struct done_list_struct *dl)
399 {
400 	struct asd_ha_struct *asd_ha = ascb->ha;
401 	struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
402 	int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */
403 	u8  sb_opcode = dl->status_block[0];
404 	int phy_id = sb_opcode & DL_PHY_MASK;
405 	struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
406 	struct asd_phy *phy = &asd_ha->phys[phy_id];
407 
408 	if (edb > 6 || edb < 0) {
409 		ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
410 			    edb, dl->opcode);
411 		ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
412 			    sb_opcode, phy_id);
413 		ASD_DPRINTK("escb: vaddr: 0x%p, "
414 			    "dma_handle: 0x%llx, next: 0x%llx, "
415 			    "index:%d, opcode:0x%02x\n",
416 			    ascb->dma_scb.vaddr,
417 			    (unsigned long long)ascb->dma_scb.dma_handle,
418 			    (unsigned long long)
419 			    le64_to_cpu(ascb->scb->header.next_scb),
420 			    le16_to_cpu(ascb->scb->header.index),
421 			    ascb->scb->header.opcode);
422 	}
423 
424 	/* Catch these before we mask off the sb_opcode bits */
425 	switch (sb_opcode) {
426 	case REQ_TASK_ABORT: {
427 		struct asd_ascb *a, *b;
428 		u16 tc_abort;
429 		struct domain_device *failed_dev = NULL;
430 
431 		ASD_DPRINTK("%s: REQ_TASK_ABORT, reason=0x%X\n",
432 			    __func__, dl->status_block[3]);
433 
434 		/*
435 		 * Find the task that caused the abort and abort it first.
436 		 * The sequencer won't put anything on the done list until
437 		 * that happens.
438 		 */
439 		tc_abort = *((u16*)(&dl->status_block[1]));
440 		tc_abort = le16_to_cpu(tc_abort);
441 
442 		list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
443 			struct sas_task *task = a->uldd_task;
444 
445 			if (a->tc_index != tc_abort)
446 				continue;
447 
448 			if (task) {
449 				failed_dev = task->dev;
450 				sas_task_abort(task);
451 			} else {
452 				ASD_DPRINTK("R_T_A for non TASK scb 0x%x\n",
453 					    a->scb->header.opcode);
454 			}
455 			break;
456 		}
457 
458 		if (!failed_dev) {
459 			ASD_DPRINTK("%s: Can't find task (tc=%d) to abort!\n",
460 				    __func__, tc_abort);
461 			goto out;
462 		}
463 
464 		/*
465 		 * Now abort everything else for that device (hba?) so
466 		 * that the EH will wake up and do something.
467 		 */
468 		list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
469 			struct sas_task *task = a->uldd_task;
470 
471 			if (task &&
472 			    task->dev == failed_dev &&
473 			    a->tc_index != tc_abort)
474 				sas_task_abort(task);
475 		}
476 
477 		goto out;
478 	}
479 	case REQ_DEVICE_RESET: {
480 		struct asd_ascb *a;
481 		u16 conn_handle;
482 		unsigned long flags;
483 		struct sas_task *last_dev_task = NULL;
484 
485 		conn_handle = *((u16*)(&dl->status_block[1]));
486 		conn_handle = le16_to_cpu(conn_handle);
487 
488 		ASD_DPRINTK("%s: REQ_DEVICE_RESET, reason=0x%X\n", __func__,
489 			    dl->status_block[3]);
490 
491 		/* Find the last pending task for the device... */
492 		list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
493 			u16 x;
494 			struct domain_device *dev;
495 			struct sas_task *task = a->uldd_task;
496 
497 			if (!task)
498 				continue;
499 			dev = task->dev;
500 
501 			x = (unsigned long)dev->lldd_dev;
502 			if (x == conn_handle)
503 				last_dev_task = task;
504 		}
505 
506 		if (!last_dev_task) {
507 			ASD_DPRINTK("%s: Device reset for idle device %d?\n",
508 				    __func__, conn_handle);
509 			goto out;
510 		}
511 
512 		/* ...and set the reset flag */
513 		spin_lock_irqsave(&last_dev_task->task_state_lock, flags);
514 		last_dev_task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
515 		spin_unlock_irqrestore(&last_dev_task->task_state_lock, flags);
516 
517 		/* Kill all pending tasks for the device */
518 		list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
519 			u16 x;
520 			struct domain_device *dev;
521 			struct sas_task *task = a->uldd_task;
522 
523 			if (!task)
524 				continue;
525 			dev = task->dev;
526 
527 			x = (unsigned long)dev->lldd_dev;
528 			if (x == conn_handle)
529 				sas_task_abort(task);
530 		}
531 
532 		goto out;
533 	}
534 	case SIGNAL_NCQ_ERROR:
535 		ASD_DPRINTK("%s: SIGNAL_NCQ_ERROR\n", __func__);
536 		goto out;
537 	case CLEAR_NCQ_ERROR:
538 		ASD_DPRINTK("%s: CLEAR_NCQ_ERROR\n", __func__);
539 		goto out;
540 	}
541 
542 	sb_opcode &= ~DL_PHY_MASK;
543 
544 	switch (sb_opcode) {
545 	case BYTES_DMAED:
546 		ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __func__, phy_id);
547 		asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id);
548 		break;
549 	case PRIMITIVE_RECVD:
550 		ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __func__,
551 			    phy_id);
552 		asd_primitive_rcvd_tasklet(ascb, dl, phy_id);
553 		break;
554 	case PHY_EVENT:
555 		ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __func__, phy_id);
556 		asd_phy_event_tasklet(ascb, dl);
557 		break;
558 	case LINK_RESET_ERROR:
559 		ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __func__,
560 			    phy_id);
561 		asd_link_reset_err_tasklet(ascb, dl, phy_id);
562 		break;
563 	case TIMER_EVENT:
564 		ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n",
565 			    __func__, phy_id);
566 		asd_turn_led(asd_ha, phy_id, 0);
567 		/* the device is gone */
568 		sas_phy_disconnected(sas_phy);
569 		asd_deform_port(asd_ha, phy);
570 		sas_ha->notify_port_event(sas_phy, PORTE_TIMER_EVENT);
571 		break;
572 	default:
573 		ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __func__,
574 			    phy_id, sb_opcode);
575 		ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
576 			    edb, dl->opcode);
577 		ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
578 			    sb_opcode, phy_id);
579 		ASD_DPRINTK("escb: vaddr: 0x%p, "
580 			    "dma_handle: 0x%llx, next: 0x%llx, "
581 			    "index:%d, opcode:0x%02x\n",
582 			    ascb->dma_scb.vaddr,
583 			    (unsigned long long)ascb->dma_scb.dma_handle,
584 			    (unsigned long long)
585 			    le64_to_cpu(ascb->scb->header.next_scb),
586 			    le16_to_cpu(ascb->scb->header.index),
587 			    ascb->scb->header.opcode);
588 
589 		break;
590 	}
591 out:
592 	asd_invalidate_edb(ascb, edb);
593 }
594 
595 int asd_init_post_escbs(struct asd_ha_struct *asd_ha)
596 {
597 	struct asd_seq_data *seq = &asd_ha->seq;
598 	int i;
599 
600 	for (i = 0; i < seq->num_escbs; i++)
601 		seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete;
602 
603 	ASD_DPRINTK("posting %d escbs\n", i);
604 	return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs);
605 }
606 
607 /* ---------- CONTROL PHY ---------- */
608 
609 #define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE   \
610 			    | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
611 			    | CURRENT_OOB_ERROR)
612 
613 /**
614  * control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb
615  * @ascb: pointer to an ascb
616  * @dl: pointer to the done list entry
617  *
618  * This function completes a CONTROL PHY scb and frees the ascb.
619  * A note on LEDs:
620  *  - an LED blinks if there is IO though it,
621  *  - if a device is connected to the LED, it is lit,
622  *  - if no device is connected to the LED, is is dimmed (off).
623  */
624 static void control_phy_tasklet_complete(struct asd_ascb *ascb,
625 					 struct done_list_struct *dl)
626 {
627 	struct asd_ha_struct *asd_ha = ascb->ha;
628 	struct scb *scb = ascb->scb;
629 	struct control_phy *control_phy = &scb->control_phy;
630 	u8 phy_id = control_phy->phy_id;
631 	struct asd_phy *phy = &ascb->ha->phys[phy_id];
632 
633 	u8 status     = dl->status_block[0];
634 	u8 oob_status = dl->status_block[1];
635 	u8 oob_mode   = dl->status_block[2];
636 	/* u8 oob_signals= dl->status_block[3]; */
637 
638 	if (status != 0) {
639 		ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n",
640 			    __func__, phy_id, status);
641 		goto out;
642 	}
643 
644 	switch (control_phy->sub_func) {
645 	case DISABLE_PHY:
646 		asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id);
647 		asd_turn_led(asd_ha, phy_id, 0);
648 		asd_control_led(asd_ha, phy_id, 0);
649 		ASD_DPRINTK("%s: disable phy%d\n", __func__, phy_id);
650 		break;
651 
652 	case ENABLE_PHY:
653 		asd_control_led(asd_ha, phy_id, 1);
654 		if (oob_status & CURRENT_OOB_DONE) {
655 			asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
656 			get_lrate_mode(phy, oob_mode);
657 			asd_turn_led(asd_ha, phy_id, 1);
658 			ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n",
659 				    __func__, phy_id,phy->sas_phy.linkrate,
660 				    phy->sas_phy.iproto);
661 		} else if (oob_status & CURRENT_SPINUP_HOLD) {
662 			asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
663 			asd_turn_led(asd_ha, phy_id, 1);
664 			ASD_DPRINTK("%s: phy%d, spinup hold\n", __func__,
665 				    phy_id);
666 		} else if (oob_status & CURRENT_ERR_MASK) {
667 			asd_turn_led(asd_ha, phy_id, 0);
668 			ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n",
669 				    __func__, phy_id, oob_status);
670 		} else if (oob_status & (CURRENT_HOT_PLUG_CNCT
671 					 | CURRENT_DEVICE_PRESENT))  {
672 			asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
673 			asd_turn_led(asd_ha, phy_id, 1);
674 			ASD_DPRINTK("%s: phy%d: hot plug or device present\n",
675 				    __func__, phy_id);
676 		} else {
677 			asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
678 			asd_turn_led(asd_ha, phy_id, 0);
679 			ASD_DPRINTK("%s: phy%d: no device present: "
680 				    "oob_status:0x%x\n",
681 				    __func__, phy_id, oob_status);
682 		}
683 		break;
684 	case RELEASE_SPINUP_HOLD:
685 	case PHY_NO_OP:
686 	case EXECUTE_HARD_RESET:
687 		ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __func__,
688 			    phy_id, control_phy->sub_func);
689 		/* XXX finish */
690 		break;
691 	default:
692 		ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __func__,
693 			    phy_id, control_phy->sub_func);
694 		break;
695 	}
696 out:
697 	asd_ascb_free(ascb);
698 }
699 
700 static void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd)
701 {
702 	/* disable all speeds, then enable defaults */
703 	*speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS
704 		| SATA_SPEED_30_DIS | SATA_SPEED_15_DIS;
705 
706 	switch (pd->max_sas_lrate) {
707 	case SAS_LINK_RATE_6_0_GBPS:
708 		*speed_mask &= ~SAS_SPEED_60_DIS;
709 		/* fall through*/
710 	default:
711 	case SAS_LINK_RATE_3_0_GBPS:
712 		*speed_mask &= ~SAS_SPEED_30_DIS;
713 		/* fall through*/
714 	case SAS_LINK_RATE_1_5_GBPS:
715 		*speed_mask &= ~SAS_SPEED_15_DIS;
716 	}
717 
718 	switch (pd->min_sas_lrate) {
719 	case SAS_LINK_RATE_6_0_GBPS:
720 		*speed_mask |= SAS_SPEED_30_DIS;
721 		/* fall through*/
722 	case SAS_LINK_RATE_3_0_GBPS:
723 		*speed_mask |= SAS_SPEED_15_DIS;
724 	default:
725 	case SAS_LINK_RATE_1_5_GBPS:
726 		/* nothing to do */
727 		;
728 	}
729 
730 	switch (pd->max_sata_lrate) {
731 	case SAS_LINK_RATE_3_0_GBPS:
732 		*speed_mask &= ~SATA_SPEED_30_DIS;
733 		/* fall through*/
734 	default:
735 	case SAS_LINK_RATE_1_5_GBPS:
736 		*speed_mask &= ~SATA_SPEED_15_DIS;
737 	}
738 
739 	switch (pd->min_sata_lrate) {
740 	case SAS_LINK_RATE_3_0_GBPS:
741 		*speed_mask |= SATA_SPEED_15_DIS;
742 	default:
743 	case SAS_LINK_RATE_1_5_GBPS:
744 		/* nothing to do */
745 		;
746 	}
747 }
748 
749 /**
750  * asd_build_control_phy -- build a CONTROL PHY SCB
751  * @ascb: pointer to an ascb
752  * @phy_id: phy id to control, integer
753  * @subfunc: subfunction, what to actually to do the phy
754  *
755  * This function builds a CONTROL PHY scb.  No allocation of any kind
756  * is performed. @ascb is allocated with the list function.
757  * The caller can override the ascb->tasklet_complete to point
758  * to its own callback function.  It must call asd_ascb_free()
759  * at its tasklet complete function.
760  * See the default implementation.
761  */
762 void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc)
763 {
764 	struct asd_phy *phy = &ascb->ha->phys[phy_id];
765 	struct scb *scb = ascb->scb;
766 	struct control_phy *control_phy = &scb->control_phy;
767 
768 	scb->header.opcode = CONTROL_PHY;
769 	control_phy->phy_id = (u8) phy_id;
770 	control_phy->sub_func = subfunc;
771 
772 	switch (subfunc) {
773 	case EXECUTE_HARD_RESET:  /* 0x81 */
774 	case ENABLE_PHY:          /* 0x01 */
775 		/* decide hot plug delay */
776 		control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT;
777 
778 		/* decide speed mask */
779 		set_speed_mask(&control_phy->speed_mask, phy->phy_desc);
780 
781 		/* initiator port settings are in the hi nibble */
782 		if (phy->sas_phy.role == PHY_ROLE_INITIATOR)
783 			control_phy->port_type = SAS_PROTOCOL_ALL << 4;
784 		else if (phy->sas_phy.role == PHY_ROLE_TARGET)
785 			control_phy->port_type = SAS_PROTOCOL_ALL;
786 		else
787 			control_phy->port_type =
788 				(SAS_PROTOCOL_ALL << 4) | SAS_PROTOCOL_ALL;
789 
790 		/* link reset retries, this should be nominal */
791 		control_phy->link_reset_retries = 10;
792 		/* fall through */
793 
794 	case RELEASE_SPINUP_HOLD: /* 0x02 */
795 		/* decide the func_mask */
796 		control_phy->func_mask = FUNCTION_MASK_DEFAULT;
797 		if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD)
798 			control_phy->func_mask &= ~SPINUP_HOLD_DIS;
799 		else
800 			control_phy->func_mask |= SPINUP_HOLD_DIS;
801 	}
802 
803 	control_phy->conn_handle = cpu_to_le16(0xFFFF);
804 
805 	ascb->tasklet_complete = control_phy_tasklet_complete;
806 }
807 
808 /* ---------- INITIATE LINK ADM TASK ---------- */
809 
810 #if 0
811 
812 static void link_adm_tasklet_complete(struct asd_ascb *ascb,
813 				      struct done_list_struct *dl)
814 {
815 	u8 opcode = dl->opcode;
816 	struct initiate_link_adm *link_adm = &ascb->scb->link_adm;
817 	u8 phy_id = link_adm->phy_id;
818 
819 	if (opcode != TC_NO_ERROR) {
820 		asd_printk("phy%d: link adm task 0x%x completed with error "
821 			   "0x%x\n", phy_id, link_adm->sub_func, opcode);
822 	}
823 	ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n",
824 		    phy_id, link_adm->sub_func, opcode);
825 
826 	asd_ascb_free(ascb);
827 }
828 
829 void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id,
830 				      u8 subfunc)
831 {
832 	struct scb *scb = ascb->scb;
833 	struct initiate_link_adm *link_adm = &scb->link_adm;
834 
835 	scb->header.opcode = INITIATE_LINK_ADM_TASK;
836 
837 	link_adm->phy_id = phy_id;
838 	link_adm->sub_func = subfunc;
839 	link_adm->conn_handle = cpu_to_le16(0xFFFF);
840 
841 	ascb->tasklet_complete = link_adm_tasklet_complete;
842 }
843 
844 #endif  /*  0  */
845 
846 /* ---------- SCB timer ---------- */
847 
848 /**
849  * asd_ascb_timedout -- called when a pending SCB's timer has expired
850  * @t: Timer context used to fetch the SCB
851  *
852  * This is the default timeout function which does the most necessary.
853  * Upper layers can implement their own timeout function, say to free
854  * resources they have with this SCB, and then call this one at the
855  * end of their timeout function.  To do this, one should initialize
856  * the ascb->timer.{function, expires} prior to calling the post
857  * function. The timer is started by the post function.
858  */
859 void asd_ascb_timedout(struct timer_list *t)
860 {
861 	struct asd_ascb *ascb = from_timer(ascb, t, timer);
862 	struct asd_seq_data *seq = &ascb->ha->seq;
863 	unsigned long flags;
864 
865 	ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode);
866 
867 	spin_lock_irqsave(&seq->pend_q_lock, flags);
868 	seq->pending--;
869 	list_del_init(&ascb->list);
870 	spin_unlock_irqrestore(&seq->pend_q_lock, flags);
871 
872 	asd_ascb_free(ascb);
873 }
874 
875 /* ---------- CONTROL PHY ---------- */
876 
877 /* Given the spec value, return a driver value. */
878 static const int phy_func_table[] = {
879 	[PHY_FUNC_NOP]        = PHY_NO_OP,
880 	[PHY_FUNC_LINK_RESET] = ENABLE_PHY,
881 	[PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET,
882 	[PHY_FUNC_DISABLE]    = DISABLE_PHY,
883 	[PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD,
884 };
885 
886 int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func, void *arg)
887 {
888 	struct asd_ha_struct *asd_ha = phy->ha->lldd_ha;
889 	struct asd_phy_desc *pd = asd_ha->phys[phy->id].phy_desc;
890 	struct asd_ascb *ascb;
891 	struct sas_phy_linkrates *rates;
892 	int res = 1;
893 
894 	switch (func) {
895 	case PHY_FUNC_CLEAR_ERROR_LOG:
896 	case PHY_FUNC_GET_EVENTS:
897 		return -ENOSYS;
898 	case PHY_FUNC_SET_LINK_RATE:
899 		rates = arg;
900 		if (rates->minimum_linkrate) {
901 			pd->min_sas_lrate = rates->minimum_linkrate;
902 			pd->min_sata_lrate = rates->minimum_linkrate;
903 		}
904 		if (rates->maximum_linkrate) {
905 			pd->max_sas_lrate = rates->maximum_linkrate;
906 			pd->max_sata_lrate = rates->maximum_linkrate;
907 		}
908 		func = PHY_FUNC_LINK_RESET;
909 		break;
910 	default:
911 		break;
912 	}
913 
914 	ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL);
915 	if (!ascb)
916 		return -ENOMEM;
917 
918 	asd_build_control_phy(ascb, phy->id, phy_func_table[func]);
919 	res = asd_post_ascb_list(asd_ha, ascb , 1);
920 	if (res)
921 		asd_ascb_free(ascb);
922 
923 	return res;
924 }
925