1 /* 2 * Aic94xx SAS/SATA driver hardware interface. 3 * 4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved. 5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com> 6 * 7 * This file is licensed under GPLv2. 8 * 9 * This file is part of the aic94xx driver. 10 * 11 * The aic94xx driver is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License as 13 * published by the Free Software Foundation; version 2 of the 14 * License. 15 * 16 * The aic94xx driver is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with the aic94xx driver; if not, write to the Free Software 23 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 24 * 25 */ 26 27 #include <linux/pci.h> 28 #include <linux/slab.h> 29 #include <linux/delay.h> 30 #include <linux/module.h> 31 #include <linux/firmware.h> 32 33 #include "aic94xx.h" 34 #include "aic94xx_reg.h" 35 #include "aic94xx_hwi.h" 36 #include "aic94xx_seq.h" 37 #include "aic94xx_dump.h" 38 39 u32 MBAR0_SWB_SIZE; 40 41 /* ---------- Initialization ---------- */ 42 43 static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha) 44 { 45 /* adapter came with a sas address */ 46 if (asd_ha->hw_prof.sas_addr[0]) 47 return 0; 48 49 return sas_request_addr(asd_ha->sas_ha.core.shost, 50 asd_ha->hw_prof.sas_addr); 51 } 52 53 static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha) 54 { 55 int i; 56 57 for (i = 0; i < ASD_MAX_PHYS; i++) { 58 if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0) 59 continue; 60 /* Set a phy's address only if it has none. 61 */ 62 ASD_DPRINTK("setting phy%d addr to %llx\n", i, 63 SAS_ADDR(asd_ha->hw_prof.sas_addr)); 64 memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr, 65 asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE); 66 } 67 } 68 69 /* ---------- PHY initialization ---------- */ 70 71 static void asd_init_phy_identify(struct asd_phy *phy) 72 { 73 phy->identify_frame = phy->id_frm_tok->vaddr; 74 75 memset(phy->identify_frame, 0, sizeof(*phy->identify_frame)); 76 77 phy->identify_frame->dev_type = SAS_END_DEVICE; 78 if (phy->sas_phy.role & PHY_ROLE_INITIATOR) 79 phy->identify_frame->initiator_bits = phy->sas_phy.iproto; 80 if (phy->sas_phy.role & PHY_ROLE_TARGET) 81 phy->identify_frame->target_bits = phy->sas_phy.tproto; 82 memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr, 83 SAS_ADDR_SIZE); 84 phy->identify_frame->phy_id = phy->sas_phy.id; 85 } 86 87 static int asd_init_phy(struct asd_phy *phy) 88 { 89 struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha; 90 struct asd_sas_phy *sas_phy = &phy->sas_phy; 91 92 sas_phy->enabled = 1; 93 sas_phy->class = SAS; 94 sas_phy->iproto = SAS_PROTOCOL_ALL; 95 sas_phy->tproto = 0; 96 sas_phy->type = PHY_TYPE_PHYSICAL; 97 sas_phy->role = PHY_ROLE_INITIATOR; 98 sas_phy->oob_mode = OOB_NOT_CONNECTED; 99 sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN; 100 101 phy->id_frm_tok = asd_alloc_coherent(asd_ha, 102 sizeof(*phy->identify_frame), 103 GFP_KERNEL); 104 if (!phy->id_frm_tok) { 105 asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id); 106 return -ENOMEM; 107 } else 108 asd_init_phy_identify(phy); 109 110 memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd)); 111 112 return 0; 113 } 114 115 static void asd_init_ports(struct asd_ha_struct *asd_ha) 116 { 117 int i; 118 119 spin_lock_init(&asd_ha->asd_ports_lock); 120 for (i = 0; i < ASD_MAX_PHYS; i++) { 121 struct asd_port *asd_port = &asd_ha->asd_ports[i]; 122 123 memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE); 124 memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE); 125 asd_port->phy_mask = 0; 126 asd_port->num_phys = 0; 127 } 128 } 129 130 static int asd_init_phys(struct asd_ha_struct *asd_ha) 131 { 132 u8 i; 133 u8 phy_mask = asd_ha->hw_prof.enabled_phys; 134 135 for (i = 0; i < ASD_MAX_PHYS; i++) { 136 struct asd_phy *phy = &asd_ha->phys[i]; 137 138 phy->phy_desc = &asd_ha->hw_prof.phy_desc[i]; 139 phy->asd_port = NULL; 140 141 phy->sas_phy.enabled = 0; 142 phy->sas_phy.id = i; 143 phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0]; 144 phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0]; 145 phy->sas_phy.ha = &asd_ha->sas_ha; 146 phy->sas_phy.lldd_phy = phy; 147 } 148 149 /* Now enable and initialize only the enabled phys. */ 150 for_each_phy(phy_mask, phy_mask, i) { 151 int err = asd_init_phy(&asd_ha->phys[i]); 152 if (err) 153 return err; 154 } 155 156 return 0; 157 } 158 159 /* ---------- Sliding windows ---------- */ 160 161 static int asd_init_sw(struct asd_ha_struct *asd_ha) 162 { 163 struct pci_dev *pcidev = asd_ha->pcidev; 164 int err; 165 u32 v; 166 167 /* Unlock MBARs */ 168 err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v); 169 if (err) { 170 asd_printk("couldn't access conf. space of %s\n", 171 pci_name(pcidev)); 172 goto Err; 173 } 174 if (v) 175 err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v); 176 if (err) { 177 asd_printk("couldn't write to MBAR_KEY of %s\n", 178 pci_name(pcidev)); 179 goto Err; 180 } 181 182 /* Set sliding windows A, B and C to point to proper internal 183 * memory regions. 184 */ 185 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR); 186 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB, 187 REG_BASE_ADDR_CSEQCIO); 188 pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI); 189 asd_ha->io_handle[0].swa_base = REG_BASE_ADDR; 190 asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO; 191 asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI; 192 MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80; 193 if (!asd_ha->iospace) { 194 /* MBAR1 will point to OCM (On Chip Memory) */ 195 pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR); 196 asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR; 197 } 198 spin_lock_init(&asd_ha->iolock); 199 Err: 200 return err; 201 } 202 203 /* ---------- SCB initialization ---------- */ 204 205 /** 206 * asd_init_scbs - manually allocate the first SCB. 207 * @asd_ha: pointer to host adapter structure 208 * 209 * This allocates the very first SCB which would be sent to the 210 * sequencer for execution. Its bus address is written to 211 * CSEQ_Q_NEW_POINTER, mode page 2, mode 8. Since the bus address of 212 * the _next_ scb to be DMA-ed to the host adapter is read from the last 213 * SCB DMA-ed to the host adapter, we have to always stay one step 214 * ahead of the sequencer and keep one SCB already allocated. 215 */ 216 static int asd_init_scbs(struct asd_ha_struct *asd_ha) 217 { 218 struct asd_seq_data *seq = &asd_ha->seq; 219 int bitmap_bytes; 220 221 /* allocate the index array and bitmap */ 222 asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs; 223 asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits* 224 sizeof(void *), GFP_KERNEL); 225 if (!asd_ha->seq.tc_index_array) 226 return -ENOMEM; 227 228 bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8; 229 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long); 230 asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL); 231 if (!asd_ha->seq.tc_index_bitmap) { 232 kfree(asd_ha->seq.tc_index_array); 233 asd_ha->seq.tc_index_array = NULL; 234 return -ENOMEM; 235 } 236 237 spin_lock_init(&seq->tc_index_lock); 238 239 seq->next_scb.size = sizeof(struct scb); 240 seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL, 241 &seq->next_scb.dma_handle); 242 if (!seq->next_scb.vaddr) { 243 kfree(asd_ha->seq.tc_index_bitmap); 244 kfree(asd_ha->seq.tc_index_array); 245 asd_ha->seq.tc_index_bitmap = NULL; 246 asd_ha->seq.tc_index_array = NULL; 247 return -ENOMEM; 248 } 249 250 seq->pending = 0; 251 spin_lock_init(&seq->pend_q_lock); 252 INIT_LIST_HEAD(&seq->pend_q); 253 254 return 0; 255 } 256 257 static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha) 258 { 259 asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE; 260 asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE; 261 ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n", 262 asd_ha->hw_prof.max_scbs, 263 asd_ha->hw_prof.max_ddbs); 264 } 265 266 /* ---------- Done List initialization ---------- */ 267 268 static void asd_dl_tasklet_handler(unsigned long); 269 270 static int asd_init_dl(struct asd_ha_struct *asd_ha) 271 { 272 asd_ha->seq.actual_dl 273 = asd_alloc_coherent(asd_ha, 274 ASD_DL_SIZE * sizeof(struct done_list_struct), 275 GFP_KERNEL); 276 if (!asd_ha->seq.actual_dl) 277 return -ENOMEM; 278 asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr; 279 asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE; 280 asd_ha->seq.dl_next = 0; 281 tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler, 282 (unsigned long) asd_ha); 283 284 return 0; 285 } 286 287 /* ---------- EDB and ESCB init ---------- */ 288 289 static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags) 290 { 291 struct asd_seq_data *seq = &asd_ha->seq; 292 int i; 293 294 seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags); 295 if (!seq->edb_arr) 296 return -ENOMEM; 297 298 for (i = 0; i < seq->num_edbs; i++) { 299 seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE, 300 gfp_flags); 301 if (!seq->edb_arr[i]) 302 goto Err_unroll; 303 memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE); 304 } 305 306 ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs); 307 308 return 0; 309 310 Err_unroll: 311 for (i-- ; i >= 0; i--) 312 asd_free_coherent(asd_ha, seq->edb_arr[i]); 313 kfree(seq->edb_arr); 314 seq->edb_arr = NULL; 315 316 return -ENOMEM; 317 } 318 319 static int asd_alloc_escbs(struct asd_ha_struct *asd_ha, 320 gfp_t gfp_flags) 321 { 322 struct asd_seq_data *seq = &asd_ha->seq; 323 struct asd_ascb *escb; 324 int i, escbs; 325 326 seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr), 327 gfp_flags); 328 if (!seq->escb_arr) 329 return -ENOMEM; 330 331 escbs = seq->num_escbs; 332 escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags); 333 if (!escb) { 334 asd_printk("couldn't allocate list of escbs\n"); 335 goto Err; 336 } 337 seq->num_escbs -= escbs; /* subtract what was not allocated */ 338 ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs); 339 340 for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next, 341 struct asd_ascb, 342 list)) { 343 seq->escb_arr[i] = escb; 344 escb->scb->header.opcode = EMPTY_SCB; 345 } 346 347 return 0; 348 Err: 349 kfree(seq->escb_arr); 350 seq->escb_arr = NULL; 351 return -ENOMEM; 352 353 } 354 355 static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha) 356 { 357 struct asd_seq_data *seq = &asd_ha->seq; 358 int i, k, z = 0; 359 360 for (i = 0; i < seq->num_escbs; i++) { 361 struct asd_ascb *ascb = seq->escb_arr[i]; 362 struct empty_scb *escb = &ascb->scb->escb; 363 364 ascb->edb_index = z; 365 366 escb->num_valid = ASD_EDBS_PER_SCB; 367 368 for (k = 0; k < ASD_EDBS_PER_SCB; k++) { 369 struct sg_el *eb = &escb->eb[k]; 370 struct asd_dma_tok *edb = seq->edb_arr[z++]; 371 372 memset(eb, 0, sizeof(*eb)); 373 eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle)); 374 eb->size = cpu_to_le32(((u32) edb->size)); 375 } 376 } 377 } 378 379 /** 380 * asd_init_escbs -- allocate and initialize empty scbs 381 * @asd_ha: pointer to host adapter structure 382 * 383 * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers. 384 * They transport sense data, etc. 385 */ 386 static int asd_init_escbs(struct asd_ha_struct *asd_ha) 387 { 388 struct asd_seq_data *seq = &asd_ha->seq; 389 int err = 0; 390 391 /* Allocate two empty data buffers (edb) per sequencer. */ 392 int edbs = 2*(1+asd_ha->hw_prof.num_phys); 393 394 seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB; 395 seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB; 396 397 err = asd_alloc_edbs(asd_ha, GFP_KERNEL); 398 if (err) { 399 asd_printk("couldn't allocate edbs\n"); 400 return err; 401 } 402 403 err = asd_alloc_escbs(asd_ha, GFP_KERNEL); 404 if (err) { 405 asd_printk("couldn't allocate escbs\n"); 406 return err; 407 } 408 409 asd_assign_edbs2escbs(asd_ha); 410 /* In order to insure that normal SCBs do not overfill sequencer 411 * memory and leave no space for escbs (halting condition), 412 * we increment pending here by the number of escbs. However, 413 * escbs are never pending. 414 */ 415 seq->pending = seq->num_escbs; 416 seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2; 417 418 return 0; 419 } 420 421 /* ---------- HW initialization ---------- */ 422 423 /** 424 * asd_chip_hardrst -- hard reset the chip 425 * @asd_ha: pointer to host adapter structure 426 * 427 * This takes 16 cycles and is synchronous to CFCLK, which runs 428 * at 200 MHz, so this should take at most 80 nanoseconds. 429 */ 430 int asd_chip_hardrst(struct asd_ha_struct *asd_ha) 431 { 432 int i; 433 int count = 100; 434 u32 reg; 435 436 for (i = 0 ; i < 4 ; i++) { 437 asd_write_reg_dword(asd_ha, COMBIST, HARDRST); 438 } 439 440 do { 441 udelay(1); 442 reg = asd_read_reg_dword(asd_ha, CHIMINT); 443 if (reg & HARDRSTDET) { 444 asd_write_reg_dword(asd_ha, CHIMINT, 445 HARDRSTDET|PORRSTDET); 446 return 0; 447 } 448 } while (--count > 0); 449 450 return -ENODEV; 451 } 452 453 /** 454 * asd_init_chip -- initialize the chip 455 * @asd_ha: pointer to host adapter structure 456 * 457 * Hard resets the chip, disables HA interrupts, downloads the sequnecer 458 * microcode and starts the sequencers. The caller has to explicitly 459 * enable HA interrupts with asd_enable_ints(asd_ha). 460 */ 461 static int asd_init_chip(struct asd_ha_struct *asd_ha) 462 { 463 int err; 464 465 err = asd_chip_hardrst(asd_ha); 466 if (err) { 467 asd_printk("couldn't hard reset %s\n", 468 pci_name(asd_ha->pcidev)); 469 goto out; 470 } 471 472 asd_disable_ints(asd_ha); 473 474 err = asd_init_seqs(asd_ha); 475 if (err) { 476 asd_printk("couldn't init seqs for %s\n", 477 pci_name(asd_ha->pcidev)); 478 goto out; 479 } 480 481 err = asd_start_seqs(asd_ha); 482 if (err) { 483 asd_printk("couldn't start seqs for %s\n", 484 pci_name(asd_ha->pcidev)); 485 goto out; 486 } 487 out: 488 return err; 489 } 490 491 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE)) 492 493 static int max_devs = 0; 494 module_param_named(max_devs, max_devs, int, S_IRUGO); 495 MODULE_PARM_DESC(max_devs, "\n" 496 "\tMaximum number of SAS devices to support (not LUs).\n" 497 "\tDefault: 2176, Maximum: 65663.\n"); 498 499 static int max_cmnds = 0; 500 module_param_named(max_cmnds, max_cmnds, int, S_IRUGO); 501 MODULE_PARM_DESC(max_cmnds, "\n" 502 "\tMaximum number of commands queuable.\n" 503 "\tDefault: 512, Maximum: 66047.\n"); 504 505 static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha) 506 { 507 unsigned long dma_addr = OCM_BASE_ADDR; 508 u32 d; 509 510 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE; 511 asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr); 512 d = asd_read_reg_dword(asd_ha, CTXDOMAIN); 513 d |= 4; 514 asd_write_reg_dword(asd_ha, CTXDOMAIN, d); 515 asd_ha->hw_prof.max_ddbs += MAX_DEVS; 516 } 517 518 static int asd_extend_devctx(struct asd_ha_struct *asd_ha) 519 { 520 dma_addr_t dma_handle; 521 unsigned long dma_addr; 522 u32 d; 523 int size; 524 525 asd_extend_devctx_ocm(asd_ha); 526 527 asd_ha->hw_prof.ddb_ext = NULL; 528 if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) { 529 max_devs = asd_ha->hw_prof.max_ddbs; 530 return 0; 531 } 532 533 size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE; 534 535 asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL); 536 if (!asd_ha->hw_prof.ddb_ext) { 537 asd_printk("couldn't allocate memory for %d devices\n", 538 max_devs); 539 max_devs = asd_ha->hw_prof.max_ddbs; 540 return -ENOMEM; 541 } 542 dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle; 543 dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE); 544 dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE; 545 dma_handle = (dma_addr_t) dma_addr; 546 asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle); 547 d = asd_read_reg_dword(asd_ha, CTXDOMAIN); 548 d &= ~4; 549 asd_write_reg_dword(asd_ha, CTXDOMAIN, d); 550 551 asd_ha->hw_prof.max_ddbs = max_devs; 552 553 return 0; 554 } 555 556 static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha) 557 { 558 dma_addr_t dma_handle; 559 unsigned long dma_addr; 560 u32 d; 561 int size; 562 563 asd_ha->hw_prof.scb_ext = NULL; 564 if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) { 565 max_cmnds = asd_ha->hw_prof.max_scbs; 566 return 0; 567 } 568 569 size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE; 570 571 asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL); 572 if (!asd_ha->hw_prof.scb_ext) { 573 asd_printk("couldn't allocate memory for %d commands\n", 574 max_cmnds); 575 max_cmnds = asd_ha->hw_prof.max_scbs; 576 return -ENOMEM; 577 } 578 dma_handle = asd_ha->hw_prof.scb_ext->dma_handle; 579 dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE); 580 dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE; 581 dma_handle = (dma_addr_t) dma_addr; 582 asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle); 583 d = asd_read_reg_dword(asd_ha, CTXDOMAIN); 584 d &= ~1; 585 asd_write_reg_dword(asd_ha, CTXDOMAIN, d); 586 587 asd_ha->hw_prof.max_scbs = max_cmnds; 588 589 return 0; 590 } 591 592 /** 593 * asd_init_ctxmem -- initialize context memory 594 * asd_ha: pointer to host adapter structure 595 * 596 * This function sets the maximum number of SCBs and 597 * DDBs which can be used by the sequencer. This is normally 598 * 512 and 128 respectively. If support for more SCBs or more DDBs 599 * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are 600 * initialized here to extend context memory to point to host memory, 601 * thus allowing unlimited support for SCBs and DDBs -- only limited 602 * by host memory. 603 */ 604 static int asd_init_ctxmem(struct asd_ha_struct *asd_ha) 605 { 606 int bitmap_bytes; 607 608 asd_get_max_scb_ddb(asd_ha); 609 asd_extend_devctx(asd_ha); 610 asd_extend_cmdctx(asd_ha); 611 612 /* The kernel wants bitmaps to be unsigned long sized. */ 613 bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8; 614 bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long); 615 asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL); 616 if (!asd_ha->hw_prof.ddb_bitmap) 617 return -ENOMEM; 618 spin_lock_init(&asd_ha->hw_prof.ddb_lock); 619 620 return 0; 621 } 622 623 int asd_init_hw(struct asd_ha_struct *asd_ha) 624 { 625 int err; 626 u32 v; 627 628 err = asd_init_sw(asd_ha); 629 if (err) 630 return err; 631 632 err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v); 633 if (err) { 634 asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n", 635 pci_name(asd_ha->pcidev)); 636 return err; 637 } 638 err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, 639 v | SC_TMR_DIS); 640 if (err) { 641 asd_printk("couldn't disable split completion timer of %s\n", 642 pci_name(asd_ha->pcidev)); 643 return err; 644 } 645 646 err = asd_read_ocm(asd_ha); 647 if (err) { 648 asd_printk("couldn't read ocm(%d)\n", err); 649 /* While suspicios, it is not an error that we 650 * couldn't read the OCM. */ 651 } 652 653 err = asd_read_flash(asd_ha); 654 if (err) { 655 asd_printk("couldn't read flash(%d)\n", err); 656 /* While suspicios, it is not an error that we 657 * couldn't read FLASH memory. 658 */ 659 } 660 661 asd_init_ctxmem(asd_ha); 662 663 if (asd_get_user_sas_addr(asd_ha)) { 664 asd_printk("No SAS Address provided for %s\n", 665 pci_name(asd_ha->pcidev)); 666 err = -ENODEV; 667 goto Out; 668 } 669 670 asd_propagate_sas_addr(asd_ha); 671 672 err = asd_init_phys(asd_ha); 673 if (err) { 674 asd_printk("couldn't initialize phys for %s\n", 675 pci_name(asd_ha->pcidev)); 676 goto Out; 677 } 678 679 asd_init_ports(asd_ha); 680 681 err = asd_init_scbs(asd_ha); 682 if (err) { 683 asd_printk("couldn't initialize scbs for %s\n", 684 pci_name(asd_ha->pcidev)); 685 goto Out; 686 } 687 688 err = asd_init_dl(asd_ha); 689 if (err) { 690 asd_printk("couldn't initialize the done list:%d\n", 691 err); 692 goto Out; 693 } 694 695 err = asd_init_escbs(asd_ha); 696 if (err) { 697 asd_printk("couldn't initialize escbs\n"); 698 goto Out; 699 } 700 701 err = asd_init_chip(asd_ha); 702 if (err) { 703 asd_printk("couldn't init the chip\n"); 704 goto Out; 705 } 706 Out: 707 return err; 708 } 709 710 /* ---------- Chip reset ---------- */ 711 712 /** 713 * asd_chip_reset -- reset the host adapter, etc 714 * @asd_ha: pointer to host adapter structure of interest 715 * 716 * Called from the ISR. Hard reset the chip. Let everything 717 * timeout. This should be no different than hot-unplugging the 718 * host adapter. Once everything times out we'll init the chip with 719 * a call to asd_init_chip() and enable interrupts with asd_enable_ints(). 720 * XXX finish. 721 */ 722 static void asd_chip_reset(struct asd_ha_struct *asd_ha) 723 { 724 ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev)); 725 asd_chip_hardrst(asd_ha); 726 } 727 728 /* ---------- Done List Routines ---------- */ 729 730 static void asd_dl_tasklet_handler(unsigned long data) 731 { 732 struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data; 733 struct asd_seq_data *seq = &asd_ha->seq; 734 unsigned long flags; 735 736 while (1) { 737 struct done_list_struct *dl = &seq->dl[seq->dl_next]; 738 struct asd_ascb *ascb; 739 740 if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle) 741 break; 742 743 /* find the aSCB */ 744 spin_lock_irqsave(&seq->tc_index_lock, flags); 745 ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index)); 746 spin_unlock_irqrestore(&seq->tc_index_lock, flags); 747 if (unlikely(!ascb)) { 748 ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n"); 749 goto next_1; 750 } else if (ascb->scb->header.opcode == EMPTY_SCB) { 751 goto out; 752 } else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) { 753 goto next_1; 754 } 755 spin_lock_irqsave(&seq->pend_q_lock, flags); 756 list_del_init(&ascb->list); 757 seq->pending--; 758 spin_unlock_irqrestore(&seq->pend_q_lock, flags); 759 out: 760 ascb->tasklet_complete(ascb, dl); 761 762 next_1: 763 seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1); 764 if (!seq->dl_next) 765 seq->dl_toggle ^= DL_TOGGLE_MASK; 766 } 767 } 768 769 /* ---------- Interrupt Service Routines ---------- */ 770 771 /** 772 * asd_process_donelist_isr -- schedule processing of done list entries 773 * @asd_ha: pointer to host adapter structure 774 */ 775 static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha) 776 { 777 tasklet_schedule(&asd_ha->seq.dl_tasklet); 778 } 779 780 /** 781 * asd_com_sas_isr -- process device communication interrupt (COMINT) 782 * @asd_ha: pointer to host adapter structure 783 */ 784 static void asd_com_sas_isr(struct asd_ha_struct *asd_ha) 785 { 786 u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT); 787 788 /* clear COMSTAT int */ 789 asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF); 790 791 if (comstat & CSBUFPERR) { 792 asd_printk("%s: command/status buffer dma parity error\n", 793 pci_name(asd_ha->pcidev)); 794 } else if (comstat & CSERR) { 795 int i; 796 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR); 797 dmaerr &= 0xFF; 798 asd_printk("%s: command/status dma error, DMAERR: 0x%02x, " 799 "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n", 800 pci_name(asd_ha->pcidev), 801 dmaerr, 802 asd_read_reg_dword(asd_ha, CSDMAADR), 803 asd_read_reg_dword(asd_ha, CSDMAADR+4)); 804 asd_printk("CSBUFFER:\n"); 805 for (i = 0; i < 8; i++) { 806 asd_printk("%08x %08x %08x %08x\n", 807 asd_read_reg_dword(asd_ha, CSBUFFER), 808 asd_read_reg_dword(asd_ha, CSBUFFER+4), 809 asd_read_reg_dword(asd_ha, CSBUFFER+8), 810 asd_read_reg_dword(asd_ha, CSBUFFER+12)); 811 } 812 asd_dump_seq_state(asd_ha, 0); 813 } else if (comstat & OVLYERR) { 814 u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR); 815 dmaerr = (dmaerr >> 8) & 0xFF; 816 asd_printk("%s: overlay dma error:0x%x\n", 817 pci_name(asd_ha->pcidev), 818 dmaerr); 819 } 820 asd_chip_reset(asd_ha); 821 } 822 823 static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus) 824 { 825 static const char *halt_code[256] = { 826 "UNEXPECTED_INTERRUPT0", 827 "UNEXPECTED_INTERRUPT1", 828 "UNEXPECTED_INTERRUPT2", 829 "UNEXPECTED_INTERRUPT3", 830 "UNEXPECTED_INTERRUPT4", 831 "UNEXPECTED_INTERRUPT5", 832 "UNEXPECTED_INTERRUPT6", 833 "UNEXPECTED_INTERRUPT7", 834 "UNEXPECTED_INTERRUPT8", 835 "UNEXPECTED_INTERRUPT9", 836 "UNEXPECTED_INTERRUPT10", 837 [11 ... 19] = "unknown[11,19]", 838 "NO_FREE_SCB_AVAILABLE", 839 "INVALID_SCB_OPCODE", 840 "INVALID_MBX_OPCODE", 841 "INVALID_ATA_STATE", 842 "ATA_QUEUE_FULL", 843 "ATA_TAG_TABLE_FAULT", 844 "ATA_TAG_MASK_FAULT", 845 "BAD_LINK_QUEUE_STATE", 846 "DMA2CHIM_QUEUE_ERROR", 847 "EMPTY_SCB_LIST_FULL", 848 "unknown[30]", 849 "IN_USE_SCB_ON_FREE_LIST", 850 "BAD_OPEN_WAIT_STATE", 851 "INVALID_STP_AFFILIATION", 852 "unknown[34]", 853 "EXEC_QUEUE_ERROR", 854 "TOO_MANY_EMPTIES_NEEDED", 855 "EMPTY_REQ_QUEUE_ERROR", 856 "Q_MONIRTT_MGMT_ERROR", 857 "TARGET_MODE_FLOW_ERROR", 858 "DEVICE_QUEUE_NOT_FOUND", 859 "START_IRTT_TIMER_ERROR", 860 "ABORT_TASK_ILLEGAL_REQ", 861 [43 ... 255] = "unknown[43,255]" 862 }; 863 864 if (dchstatus & CSEQINT) { 865 u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT); 866 867 if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) { 868 asd_printk("%s: CSEQ arp2int:0x%x\n", 869 pci_name(asd_ha->pcidev), 870 arp2int); 871 } else if (arp2int & ARP2HALTC) 872 asd_printk("%s: CSEQ halted: %s\n", 873 pci_name(asd_ha->pcidev), 874 halt_code[(arp2int>>16)&0xFF]); 875 else 876 asd_printk("%s: CARP2INT:0x%x\n", 877 pci_name(asd_ha->pcidev), 878 arp2int); 879 } 880 if (dchstatus & LSEQINT_MASK) { 881 int lseq; 882 u8 lseq_mask = dchstatus & LSEQINT_MASK; 883 884 for_each_sequencer(lseq_mask, lseq_mask, lseq) { 885 u32 arp2int = asd_read_reg_dword(asd_ha, 886 LmARP2INT(lseq)); 887 if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR 888 | ARP2CIOPERR)) { 889 asd_printk("%s: LSEQ%d arp2int:0x%x\n", 890 pci_name(asd_ha->pcidev), 891 lseq, arp2int); 892 /* XXX we should only do lseq reset */ 893 } else if (arp2int & ARP2HALTC) 894 asd_printk("%s: LSEQ%d halted: %s\n", 895 pci_name(asd_ha->pcidev), 896 lseq,halt_code[(arp2int>>16)&0xFF]); 897 else 898 asd_printk("%s: LSEQ%d ARP2INT:0x%x\n", 899 pci_name(asd_ha->pcidev), lseq, 900 arp2int); 901 } 902 } 903 asd_chip_reset(asd_ha); 904 } 905 906 /** 907 * asd_dch_sas_isr -- process device channel interrupt (DEVINT) 908 * @asd_ha: pointer to host adapter structure 909 */ 910 static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha) 911 { 912 u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS); 913 914 if (dchstatus & CFIFTOERR) { 915 asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev)); 916 asd_chip_reset(asd_ha); 917 } else 918 asd_arp2_err(asd_ha, dchstatus); 919 } 920 921 /** 922 * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR) 923 * @asd_ha: pointer to host adapter structure 924 */ 925 static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha) 926 { 927 u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R); 928 929 if (!(stat0r & ASIERR)) { 930 asd_printk("hmm, EXSI interrupted but no error?\n"); 931 return; 932 } 933 934 if (stat0r & ASIFMTERR) { 935 asd_printk("ASI SEEPROM format error for %s\n", 936 pci_name(asd_ha->pcidev)); 937 } else if (stat0r & ASISEECHKERR) { 938 u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R); 939 asd_printk("ASI SEEPROM checksum 0x%x error for %s\n", 940 stat1r & CHECKSUM_MASK, 941 pci_name(asd_ha->pcidev)); 942 } else { 943 u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR); 944 945 if (!(statr & CPI2ASIMSTERR_MASK)) { 946 ASD_DPRINTK("hmm, ASIERR?\n"); 947 return; 948 } else { 949 u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR); 950 u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR); 951 952 asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, " 953 "count: 0x%x, byteen: 0x%x, targerr: 0x%x " 954 "master id: 0x%x, master err: 0x%x\n", 955 pci_name(asd_ha->pcidev), 956 addr, data, 957 (statr & CPI2ASIBYTECNT_MASK) >> 16, 958 (statr & CPI2ASIBYTEEN_MASK) >> 12, 959 (statr & CPI2ASITARGERR_MASK) >> 8, 960 (statr & CPI2ASITARGMID_MASK) >> 4, 961 (statr & CPI2ASIMSTERR_MASK)); 962 } 963 } 964 asd_chip_reset(asd_ha); 965 } 966 967 /** 968 * asd_hst_pcix_isr -- process host interface interrupts 969 * @asd_ha: pointer to host adapter structure 970 * 971 * Asserted on PCIX errors: target abort, etc. 972 */ 973 static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha) 974 { 975 u16 status; 976 u32 pcix_status; 977 u32 ecc_status; 978 979 pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status); 980 pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status); 981 pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status); 982 983 if (status & PCI_STATUS_DETECTED_PARITY) 984 asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev)); 985 else if (status & PCI_STATUS_REC_MASTER_ABORT) 986 asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev)); 987 else if (status & PCI_STATUS_REC_TARGET_ABORT) 988 asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev)); 989 else if (status & PCI_STATUS_PARITY) 990 asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev)); 991 else if (pcix_status & RCV_SCE) { 992 asd_printk("received split completion error for %s\n", 993 pci_name(asd_ha->pcidev)); 994 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status); 995 /* XXX: Abort task? */ 996 return; 997 } else if (pcix_status & UNEXP_SC) { 998 asd_printk("unexpected split completion for %s\n", 999 pci_name(asd_ha->pcidev)); 1000 pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status); 1001 /* ignore */ 1002 return; 1003 } else if (pcix_status & SC_DISCARD) 1004 asd_printk("split completion discarded for %s\n", 1005 pci_name(asd_ha->pcidev)); 1006 else if (ecc_status & UNCOR_ECCERR) 1007 asd_printk("uncorrectable ECC error for %s\n", 1008 pci_name(asd_ha->pcidev)); 1009 asd_chip_reset(asd_ha); 1010 } 1011 1012 /** 1013 * asd_hw_isr -- host adapter interrupt service routine 1014 * @irq: ignored 1015 * @dev_id: pointer to host adapter structure 1016 * 1017 * The ISR processes done list entries and level 3 error handling. 1018 */ 1019 irqreturn_t asd_hw_isr(int irq, void *dev_id) 1020 { 1021 struct asd_ha_struct *asd_ha = dev_id; 1022 u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT); 1023 1024 if (!chimint) 1025 return IRQ_NONE; 1026 1027 asd_write_reg_dword(asd_ha, CHIMINT, chimint); 1028 (void) asd_read_reg_dword(asd_ha, CHIMINT); 1029 1030 if (chimint & DLAVAIL) 1031 asd_process_donelist_isr(asd_ha); 1032 if (chimint & COMINT) 1033 asd_com_sas_isr(asd_ha); 1034 if (chimint & DEVINT) 1035 asd_dch_sas_isr(asd_ha); 1036 if (chimint & INITERR) 1037 asd_rbi_exsi_isr(asd_ha); 1038 if (chimint & HOSTERR) 1039 asd_hst_pcix_isr(asd_ha); 1040 1041 return IRQ_HANDLED; 1042 } 1043 1044 /* ---------- SCB handling ---------- */ 1045 1046 static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha, 1047 gfp_t gfp_flags) 1048 { 1049 extern struct kmem_cache *asd_ascb_cache; 1050 struct asd_seq_data *seq = &asd_ha->seq; 1051 struct asd_ascb *ascb; 1052 unsigned long flags; 1053 1054 ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags); 1055 1056 if (ascb) { 1057 ascb->dma_scb.size = sizeof(struct scb); 1058 ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, 1059 gfp_flags, 1060 &ascb->dma_scb.dma_handle); 1061 if (!ascb->dma_scb.vaddr) { 1062 kmem_cache_free(asd_ascb_cache, ascb); 1063 return NULL; 1064 } 1065 memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb)); 1066 asd_init_ascb(asd_ha, ascb); 1067 1068 spin_lock_irqsave(&seq->tc_index_lock, flags); 1069 ascb->tc_index = asd_tc_index_get(seq, ascb); 1070 spin_unlock_irqrestore(&seq->tc_index_lock, flags); 1071 if (ascb->tc_index == -1) 1072 goto undo; 1073 1074 ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index); 1075 } 1076 1077 return ascb; 1078 undo: 1079 dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr, 1080 ascb->dma_scb.dma_handle); 1081 kmem_cache_free(asd_ascb_cache, ascb); 1082 ASD_DPRINTK("no index for ascb\n"); 1083 return NULL; 1084 } 1085 1086 /** 1087 * asd_ascb_alloc_list -- allocate a list of aSCBs 1088 * @asd_ha: pointer to host adapter structure 1089 * @num: pointer to integer number of aSCBs 1090 * @gfp_flags: GFP_ flags. 1091 * 1092 * This is the only function which is used to allocate aSCBs. 1093 * It can allocate one or many. If more than one, then they form 1094 * a linked list in two ways: by their list field of the ascb struct 1095 * and by the next_scb field of the scb_header. 1096 * 1097 * Returns NULL if no memory was available, else pointer to a list 1098 * of ascbs. When this function returns, @num would be the number 1099 * of SCBs which were not able to be allocated, 0 if all requested 1100 * were able to be allocated. 1101 */ 1102 struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct 1103 *asd_ha, int *num, 1104 gfp_t gfp_flags) 1105 { 1106 struct asd_ascb *first = NULL; 1107 1108 for ( ; *num > 0; --*num) { 1109 struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags); 1110 1111 if (!ascb) 1112 break; 1113 else if (!first) 1114 first = ascb; 1115 else { 1116 struct asd_ascb *last = list_entry(first->list.prev, 1117 struct asd_ascb, 1118 list); 1119 list_add_tail(&ascb->list, &first->list); 1120 last->scb->header.next_scb = 1121 cpu_to_le64(((u64)ascb->dma_scb.dma_handle)); 1122 } 1123 } 1124 1125 return first; 1126 } 1127 1128 /** 1129 * asd_swap_head_scb -- swap the head scb 1130 * @asd_ha: pointer to host adapter structure 1131 * @ascb: pointer to the head of an ascb list 1132 * 1133 * The sequencer knows the DMA address of the next SCB to be DMAed to 1134 * the host adapter, from initialization or from the last list DMAed. 1135 * seq->next_scb keeps the address of this SCB. The sequencer will 1136 * DMA to the host adapter this list of SCBs. But the head (first 1137 * element) of this list is not known to the sequencer. Here we swap 1138 * the head of the list with the known SCB (memcpy()). 1139 * Only one memcpy() is required per list so it is in our interest 1140 * to keep the list of SCB as long as possible so that the ratio 1141 * of number of memcpy calls to the number of SCB DMA-ed is as small 1142 * as possible. 1143 * 1144 * LOCKING: called with the pending list lock held. 1145 */ 1146 static void asd_swap_head_scb(struct asd_ha_struct *asd_ha, 1147 struct asd_ascb *ascb) 1148 { 1149 struct asd_seq_data *seq = &asd_ha->seq; 1150 struct asd_ascb *last = list_entry(ascb->list.prev, 1151 struct asd_ascb, 1152 list); 1153 struct asd_dma_tok t = ascb->dma_scb; 1154 1155 memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb)); 1156 ascb->dma_scb = seq->next_scb; 1157 ascb->scb = ascb->dma_scb.vaddr; 1158 seq->next_scb = t; 1159 last->scb->header.next_scb = 1160 cpu_to_le64(((u64)seq->next_scb.dma_handle)); 1161 } 1162 1163 /** 1164 * asd_start_timers -- (add and) start timers of SCBs 1165 * @list: pointer to struct list_head of the scbs 1166 * @to: timeout in jiffies 1167 * 1168 * If an SCB in the @list has no timer function, assign the default 1169 * one, then start the timer of the SCB. This function is 1170 * intended to be called from asd_post_ascb_list(), just prior to 1171 * posting the SCBs to the sequencer. 1172 */ 1173 static void asd_start_scb_timers(struct list_head *list) 1174 { 1175 struct asd_ascb *ascb; 1176 list_for_each_entry(ascb, list, list) { 1177 if (!ascb->uldd_timer) { 1178 ascb->timer.function = asd_ascb_timedout; 1179 ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT; 1180 add_timer(&ascb->timer); 1181 } 1182 } 1183 } 1184 1185 /** 1186 * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter 1187 * @asd_ha: pointer to a host adapter structure 1188 * @ascb: pointer to the first aSCB in the list 1189 * @num: number of aSCBs in the list (to be posted) 1190 * 1191 * See queueing comment in asd_post_escb_list(). 1192 * 1193 * Additional note on queuing: In order to minimize the ratio of memcpy() 1194 * to the number of ascbs sent, we try to batch-send as many ascbs as possible 1195 * in one go. 1196 * Two cases are possible: 1197 * A) can_queue >= num, 1198 * B) can_queue < num. 1199 * Case A: we can send the whole batch at once. Increment "pending" 1200 * in the beginning of this function, when it is checked, in order to 1201 * eliminate races when this function is called by multiple processes. 1202 * Case B: should never happen. 1203 */ 1204 int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb, 1205 int num) 1206 { 1207 unsigned long flags; 1208 LIST_HEAD(list); 1209 int can_queue; 1210 1211 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags); 1212 can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending; 1213 if (can_queue >= num) 1214 asd_ha->seq.pending += num; 1215 else 1216 can_queue = 0; 1217 1218 if (!can_queue) { 1219 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); 1220 asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev)); 1221 return -SAS_QUEUE_FULL; 1222 } 1223 1224 asd_swap_head_scb(asd_ha, ascb); 1225 1226 __list_add(&list, ascb->list.prev, &ascb->list); 1227 1228 asd_start_scb_timers(&list); 1229 1230 asd_ha->seq.scbpro += num; 1231 list_splice_init(&list, asd_ha->seq.pend_q.prev); 1232 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro); 1233 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); 1234 1235 return 0; 1236 } 1237 1238 /** 1239 * asd_post_escb_list -- post a list of 1 or more empty scb 1240 * @asd_ha: pointer to a host adapter structure 1241 * @ascb: pointer to the first empty SCB in the list 1242 * @num: number of aSCBs in the list (to be posted) 1243 * 1244 * This is essentially the same as asd_post_ascb_list, but we do not 1245 * increment pending, add those to the pending list or get indexes. 1246 * See asd_init_escbs() and asd_init_post_escbs(). 1247 * 1248 * Since sending a list of ascbs is a superset of sending a single 1249 * ascb, this function exists to generalize this. More specifically, 1250 * when sending a list of those, we want to do only a _single_ 1251 * memcpy() at swap head, as opposed to for each ascb sent (in the 1252 * case of sending them one by one). That is, we want to minimize the 1253 * ratio of memcpy() operations to the number of ascbs sent. The same 1254 * logic applies to asd_post_ascb_list(). 1255 */ 1256 int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb, 1257 int num) 1258 { 1259 unsigned long flags; 1260 1261 spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags); 1262 asd_swap_head_scb(asd_ha, ascb); 1263 asd_ha->seq.scbpro += num; 1264 asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro); 1265 spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags); 1266 1267 return 0; 1268 } 1269 1270 /* ---------- LED ---------- */ 1271 1272 /** 1273 * asd_turn_led -- turn on/off an LED 1274 * @asd_ha: pointer to host adapter structure 1275 * @phy_id: the PHY id whose LED we want to manupulate 1276 * @op: 1 to turn on, 0 to turn off 1277 */ 1278 void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op) 1279 { 1280 if (phy_id < ASD_MAX_PHYS) { 1281 u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id)); 1282 if (op) 1283 v |= LEDPOL; 1284 else 1285 v &= ~LEDPOL; 1286 asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v); 1287 } 1288 } 1289 1290 /** 1291 * asd_control_led -- enable/disable an LED on the board 1292 * @asd_ha: pointer to host adapter structure 1293 * @phy_id: integer, the phy id 1294 * @op: integer, 1 to enable, 0 to disable the LED 1295 * 1296 * First we output enable the LED, then we set the source 1297 * to be an external module. 1298 */ 1299 void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op) 1300 { 1301 if (phy_id < ASD_MAX_PHYS) { 1302 u32 v; 1303 1304 v = asd_read_reg_dword(asd_ha, GPIOOER); 1305 if (op) 1306 v |= (1 << phy_id); 1307 else 1308 v &= ~(1 << phy_id); 1309 asd_write_reg_dword(asd_ha, GPIOOER, v); 1310 1311 v = asd_read_reg_dword(asd_ha, GPIOCNFGR); 1312 if (op) 1313 v |= (1 << phy_id); 1314 else 1315 v &= ~(1 << phy_id); 1316 asd_write_reg_dword(asd_ha, GPIOCNFGR, v); 1317 } 1318 } 1319 1320 /* ---------- PHY enable ---------- */ 1321 1322 static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id) 1323 { 1324 struct asd_phy *phy = &asd_ha->phys[phy_id]; 1325 1326 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0); 1327 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY), 1328 HOTPLUG_DELAY_TIMEOUT); 1329 1330 /* Get defaults from manuf. sector */ 1331 /* XXX we need defaults for those in case MS is broken. */ 1332 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0), 1333 phy->phy_desc->phy_control_0); 1334 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1), 1335 phy->phy_desc->phy_control_1); 1336 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2), 1337 phy->phy_desc->phy_control_2); 1338 asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3), 1339 phy->phy_desc->phy_control_3); 1340 1341 asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id), 1342 ASD_COMINIT_TIMEOUT); 1343 1344 asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id), 1345 phy->id_frm_tok->dma_handle); 1346 1347 asd_control_led(asd_ha, phy_id, 1); 1348 1349 return 0; 1350 } 1351 1352 int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask) 1353 { 1354 u8 phy_m; 1355 u8 i; 1356 int num = 0, k; 1357 struct asd_ascb *ascb; 1358 struct asd_ascb *ascb_list; 1359 1360 if (!phy_mask) { 1361 asd_printk("%s called with phy_mask of 0!?\n", __func__); 1362 return 0; 1363 } 1364 1365 for_each_phy(phy_mask, phy_m, i) { 1366 num++; 1367 asd_enable_phy(asd_ha, i); 1368 } 1369 1370 k = num; 1371 ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL); 1372 if (!ascb_list) { 1373 asd_printk("no memory for control phy ascb list\n"); 1374 return -ENOMEM; 1375 } 1376 num -= k; 1377 1378 ascb = ascb_list; 1379 for_each_phy(phy_mask, phy_m, i) { 1380 asd_build_control_phy(ascb, i, ENABLE_PHY); 1381 ascb = list_entry(ascb->list.next, struct asd_ascb, list); 1382 } 1383 ASD_DPRINTK("posting %d control phy scbs\n", num); 1384 k = asd_post_ascb_list(asd_ha, ascb_list, num); 1385 if (k) 1386 asd_ascb_free_list(ascb_list); 1387 1388 return k; 1389 } 1390