1 /*
2  * Aic94xx SAS/SATA driver hardware interface.
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This file is part of the aic94xx driver.
10  *
11  * The aic94xx driver is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; version 2 of the
14  * License.
15  *
16  * The aic94xx driver is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with the aic94xx driver; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
24  *
25  */
26 
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/module.h>
31 #include <linux/firmware.h>
32 
33 #include "aic94xx.h"
34 #include "aic94xx_reg.h"
35 #include "aic94xx_hwi.h"
36 #include "aic94xx_seq.h"
37 #include "aic94xx_dump.h"
38 
39 u32 MBAR0_SWB_SIZE;
40 
41 /* ---------- Initialization ---------- */
42 
43 static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
44 {
45 	/* adapter came with a sas address */
46 	if (asd_ha->hw_prof.sas_addr[0])
47 		return 0;
48 
49 	return sas_request_addr(asd_ha->sas_ha.core.shost,
50 				asd_ha->hw_prof.sas_addr);
51 }
52 
53 static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
54 {
55 	int i;
56 
57 	for (i = 0; i < ASD_MAX_PHYS; i++) {
58 		if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
59 			continue;
60 		/* Set a phy's address only if it has none.
61 		 */
62 		ASD_DPRINTK("setting phy%d addr to %llx\n", i,
63 			    SAS_ADDR(asd_ha->hw_prof.sas_addr));
64 		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
65 		       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
66 	}
67 }
68 
69 /* ---------- PHY initialization ---------- */
70 
71 static void asd_init_phy_identify(struct asd_phy *phy)
72 {
73 	phy->identify_frame = phy->id_frm_tok->vaddr;
74 
75 	memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
76 
77 	phy->identify_frame->dev_type = SAS_END_DEVICE;
78 	if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
79 		phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
80 	if (phy->sas_phy.role & PHY_ROLE_TARGET)
81 		phy->identify_frame->target_bits = phy->sas_phy.tproto;
82 	memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
83 	       SAS_ADDR_SIZE);
84 	phy->identify_frame->phy_id = phy->sas_phy.id;
85 }
86 
87 static int asd_init_phy(struct asd_phy *phy)
88 {
89 	struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
90 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
91 
92 	sas_phy->enabled = 1;
93 	sas_phy->class = SAS;
94 	sas_phy->iproto = SAS_PROTOCOL_ALL;
95 	sas_phy->tproto = 0;
96 	sas_phy->type = PHY_TYPE_PHYSICAL;
97 	sas_phy->role = PHY_ROLE_INITIATOR;
98 	sas_phy->oob_mode = OOB_NOT_CONNECTED;
99 	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
100 
101 	phy->id_frm_tok = asd_alloc_coherent(asd_ha,
102 					     sizeof(*phy->identify_frame),
103 					     GFP_KERNEL);
104 	if (!phy->id_frm_tok) {
105 		asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
106 		return -ENOMEM;
107 	} else
108 		asd_init_phy_identify(phy);
109 
110 	memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
111 
112 	return 0;
113 }
114 
115 static void asd_init_ports(struct asd_ha_struct *asd_ha)
116 {
117 	int i;
118 
119 	spin_lock_init(&asd_ha->asd_ports_lock);
120 	for (i = 0; i < ASD_MAX_PHYS; i++) {
121 		struct asd_port *asd_port = &asd_ha->asd_ports[i];
122 
123 		memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
124 		memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
125 		asd_port->phy_mask = 0;
126 		asd_port->num_phys = 0;
127 	}
128 }
129 
130 static int asd_init_phys(struct asd_ha_struct *asd_ha)
131 {
132 	u8 i;
133 	u8 phy_mask = asd_ha->hw_prof.enabled_phys;
134 
135 	for (i = 0; i < ASD_MAX_PHYS; i++) {
136 		struct asd_phy *phy = &asd_ha->phys[i];
137 
138 		phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
139 		phy->asd_port = NULL;
140 
141 		phy->sas_phy.enabled = 0;
142 		phy->sas_phy.id = i;
143 		phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
144 		phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
145 		phy->sas_phy.ha = &asd_ha->sas_ha;
146 		phy->sas_phy.lldd_phy = phy;
147 	}
148 
149 	/* Now enable and initialize only the enabled phys. */
150 	for_each_phy(phy_mask, phy_mask, i) {
151 		int err = asd_init_phy(&asd_ha->phys[i]);
152 		if (err)
153 			return err;
154 	}
155 
156 	return 0;
157 }
158 
159 /* ---------- Sliding windows ---------- */
160 
161 static int asd_init_sw(struct asd_ha_struct *asd_ha)
162 {
163 	struct pci_dev *pcidev = asd_ha->pcidev;
164 	int err;
165 	u32 v;
166 
167 	/* Unlock MBARs */
168 	err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
169 	if (err) {
170 		asd_printk("couldn't access conf. space of %s\n",
171 			   pci_name(pcidev));
172 		goto Err;
173 	}
174 	if (v)
175 		err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
176 	if (err) {
177 		asd_printk("couldn't write to MBAR_KEY of %s\n",
178 			   pci_name(pcidev));
179 		goto Err;
180 	}
181 
182 	/* Set sliding windows A, B and C to point to proper internal
183 	 * memory regions.
184 	 */
185 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
186 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
187 			       REG_BASE_ADDR_CSEQCIO);
188 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
189 	asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
190 	asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
191 	asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
192 	MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
193 	if (!asd_ha->iospace) {
194 		/* MBAR1 will point to OCM (On Chip Memory) */
195 		pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
196 		asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
197 	}
198 	spin_lock_init(&asd_ha->iolock);
199 Err:
200 	return err;
201 }
202 
203 /* ---------- SCB initialization ---------- */
204 
205 /**
206  * asd_init_scbs - manually allocate the first SCB.
207  * @asd_ha: pointer to host adapter structure
208  *
209  * This allocates the very first SCB which would be sent to the
210  * sequencer for execution.  Its bus address is written to
211  * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
212  * the _next_ scb to be DMA-ed to the host adapter is read from the last
213  * SCB DMA-ed to the host adapter, we have to always stay one step
214  * ahead of the sequencer and keep one SCB already allocated.
215  */
216 static int asd_init_scbs(struct asd_ha_struct *asd_ha)
217 {
218 	struct asd_seq_data *seq = &asd_ha->seq;
219 	int bitmap_bytes;
220 
221 	/* allocate the index array and bitmap */
222 	asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
223 	asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
224 					     sizeof(void *), GFP_KERNEL);
225 	if (!asd_ha->seq.tc_index_array)
226 		return -ENOMEM;
227 
228 	bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
229 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
230 	asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
231 	if (!asd_ha->seq.tc_index_bitmap) {
232 		kfree(asd_ha->seq.tc_index_array);
233 		asd_ha->seq.tc_index_array = NULL;
234 		return -ENOMEM;
235 	}
236 
237 	spin_lock_init(&seq->tc_index_lock);
238 
239 	seq->next_scb.size = sizeof(struct scb);
240 	seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
241 					     &seq->next_scb.dma_handle);
242 	if (!seq->next_scb.vaddr) {
243 		kfree(asd_ha->seq.tc_index_bitmap);
244 		kfree(asd_ha->seq.tc_index_array);
245 		asd_ha->seq.tc_index_bitmap = NULL;
246 		asd_ha->seq.tc_index_array = NULL;
247 		return -ENOMEM;
248 	}
249 
250 	seq->pending = 0;
251 	spin_lock_init(&seq->pend_q_lock);
252 	INIT_LIST_HEAD(&seq->pend_q);
253 
254 	return 0;
255 }
256 
257 static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
258 {
259 	asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
260 	asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
261 	ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
262 		    asd_ha->hw_prof.max_scbs,
263 		    asd_ha->hw_prof.max_ddbs);
264 }
265 
266 /* ---------- Done List initialization ---------- */
267 
268 static void asd_dl_tasklet_handler(unsigned long);
269 
270 static int asd_init_dl(struct asd_ha_struct *asd_ha)
271 {
272 	asd_ha->seq.actual_dl
273 		= asd_alloc_coherent(asd_ha,
274 			     ASD_DL_SIZE * sizeof(struct done_list_struct),
275 				     GFP_KERNEL);
276 	if (!asd_ha->seq.actual_dl)
277 		return -ENOMEM;
278 	asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
279 	asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
280 	asd_ha->seq.dl_next = 0;
281 	tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
282 		     (unsigned long) asd_ha);
283 
284 	return 0;
285 }
286 
287 /* ---------- EDB and ESCB init ---------- */
288 
289 static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
290 {
291 	struct asd_seq_data *seq = &asd_ha->seq;
292 	int i;
293 
294 	seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
295 	if (!seq->edb_arr)
296 		return -ENOMEM;
297 
298 	for (i = 0; i < seq->num_edbs; i++) {
299 		seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
300 						     gfp_flags);
301 		if (!seq->edb_arr[i])
302 			goto Err_unroll;
303 		memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
304 	}
305 
306 	ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
307 
308 	return 0;
309 
310 Err_unroll:
311 	for (i-- ; i >= 0; i--)
312 		asd_free_coherent(asd_ha, seq->edb_arr[i]);
313 	kfree(seq->edb_arr);
314 	seq->edb_arr = NULL;
315 
316 	return -ENOMEM;
317 }
318 
319 static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
320 			   gfp_t gfp_flags)
321 {
322 	struct asd_seq_data *seq = &asd_ha->seq;
323 	struct asd_ascb *escb;
324 	int i, escbs;
325 
326 	seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
327 				gfp_flags);
328 	if (!seq->escb_arr)
329 		return -ENOMEM;
330 
331 	escbs = seq->num_escbs;
332 	escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
333 	if (!escb) {
334 		asd_printk("couldn't allocate list of escbs\n");
335 		goto Err;
336 	}
337 	seq->num_escbs -= escbs;  /* subtract what was not allocated */
338 	ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
339 
340 	for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
341 							       struct asd_ascb,
342 							       list)) {
343 		seq->escb_arr[i] = escb;
344 		escb->scb->header.opcode = EMPTY_SCB;
345 	}
346 
347 	return 0;
348 Err:
349 	kfree(seq->escb_arr);
350 	seq->escb_arr = NULL;
351 	return -ENOMEM;
352 
353 }
354 
355 static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
356 {
357 	struct asd_seq_data *seq = &asd_ha->seq;
358 	int i, k, z = 0;
359 
360 	for (i = 0; i < seq->num_escbs; i++) {
361 		struct asd_ascb *ascb = seq->escb_arr[i];
362 		struct empty_scb *escb = &ascb->scb->escb;
363 
364 		ascb->edb_index = z;
365 
366 		escb->num_valid = ASD_EDBS_PER_SCB;
367 
368 		for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
369 			struct sg_el *eb = &escb->eb[k];
370 			struct asd_dma_tok *edb = seq->edb_arr[z++];
371 
372 			memset(eb, 0, sizeof(*eb));
373 			eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
374 			eb->size = cpu_to_le32(((u32) edb->size));
375 		}
376 	}
377 }
378 
379 /**
380  * asd_init_escbs -- allocate and initialize empty scbs
381  * @asd_ha: pointer to host adapter structure
382  *
383  * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
384  * They transport sense data, etc.
385  */
386 static int asd_init_escbs(struct asd_ha_struct *asd_ha)
387 {
388 	struct asd_seq_data *seq = &asd_ha->seq;
389 	int err = 0;
390 
391 	/* Allocate two empty data buffers (edb) per sequencer. */
392 	int edbs = 2*(1+asd_ha->hw_prof.num_phys);
393 
394 	seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
395 	seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
396 
397 	err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
398 	if (err) {
399 		asd_printk("couldn't allocate edbs\n");
400 		return err;
401 	}
402 
403 	err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
404 	if (err) {
405 		asd_printk("couldn't allocate escbs\n");
406 		return err;
407 	}
408 
409 	asd_assign_edbs2escbs(asd_ha);
410 	/* In order to insure that normal SCBs do not overfill sequencer
411 	 * memory and leave no space for escbs (halting condition),
412 	 * we increment pending here by the number of escbs.  However,
413 	 * escbs are never pending.
414 	 */
415 	seq->pending   = seq->num_escbs;
416 	seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
417 
418 	return 0;
419 }
420 
421 /* ---------- HW initialization ---------- */
422 
423 /**
424  * asd_chip_hardrst -- hard reset the chip
425  * @asd_ha: pointer to host adapter structure
426  *
427  * This takes 16 cycles and is synchronous to CFCLK, which runs
428  * at 200 MHz, so this should take at most 80 nanoseconds.
429  */
430 int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
431 {
432 	int i;
433 	int count = 100;
434 	u32 reg;
435 
436 	for (i = 0 ; i < 4 ; i++) {
437 		asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
438 	}
439 
440 	do {
441 		udelay(1);
442 		reg = asd_read_reg_dword(asd_ha, CHIMINT);
443 		if (reg & HARDRSTDET) {
444 			asd_write_reg_dword(asd_ha, CHIMINT,
445 					    HARDRSTDET|PORRSTDET);
446 			return 0;
447 		}
448 	} while (--count > 0);
449 
450 	return -ENODEV;
451 }
452 
453 /**
454  * asd_init_chip -- initialize the chip
455  * @asd_ha: pointer to host adapter structure
456  *
457  * Hard resets the chip, disables HA interrupts, downloads the sequnecer
458  * microcode and starts the sequencers.  The caller has to explicitly
459  * enable HA interrupts with asd_enable_ints(asd_ha).
460  */
461 static int asd_init_chip(struct asd_ha_struct *asd_ha)
462 {
463 	int err;
464 
465 	err = asd_chip_hardrst(asd_ha);
466 	if (err) {
467 		asd_printk("couldn't hard reset %s\n",
468 			    pci_name(asd_ha->pcidev));
469 		goto out;
470 	}
471 
472 	asd_disable_ints(asd_ha);
473 
474 	err = asd_init_seqs(asd_ha);
475 	if (err) {
476 		asd_printk("couldn't init seqs for %s\n",
477 			   pci_name(asd_ha->pcidev));
478 		goto out;
479 	}
480 
481 	err = asd_start_seqs(asd_ha);
482 	if (err) {
483 		asd_printk("couldn't start seqs for %s\n",
484 			   pci_name(asd_ha->pcidev));
485 		goto out;
486 	}
487 out:
488 	return err;
489 }
490 
491 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
492 
493 static int max_devs = 0;
494 module_param_named(max_devs, max_devs, int, S_IRUGO);
495 MODULE_PARM_DESC(max_devs, "\n"
496 	"\tMaximum number of SAS devices to support (not LUs).\n"
497 	"\tDefault: 2176, Maximum: 65663.\n");
498 
499 static int max_cmnds = 0;
500 module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
501 MODULE_PARM_DESC(max_cmnds, "\n"
502 	"\tMaximum number of commands queuable.\n"
503 	"\tDefault: 512, Maximum: 66047.\n");
504 
505 static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
506 {
507 	unsigned long dma_addr = OCM_BASE_ADDR;
508 	u32 d;
509 
510 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
511 	asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
512 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
513 	d |= 4;
514 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
515 	asd_ha->hw_prof.max_ddbs += MAX_DEVS;
516 }
517 
518 static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
519 {
520 	dma_addr_t dma_handle;
521 	unsigned long dma_addr;
522 	u32 d;
523 	int size;
524 
525 	asd_extend_devctx_ocm(asd_ha);
526 
527 	asd_ha->hw_prof.ddb_ext = NULL;
528 	if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
529 		max_devs = asd_ha->hw_prof.max_ddbs;
530 		return 0;
531 	}
532 
533 	size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
534 
535 	asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
536 	if (!asd_ha->hw_prof.ddb_ext) {
537 		asd_printk("couldn't allocate memory for %d devices\n",
538 			   max_devs);
539 		max_devs = asd_ha->hw_prof.max_ddbs;
540 		return -ENOMEM;
541 	}
542 	dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
543 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
544 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
545 	dma_handle = (dma_addr_t) dma_addr;
546 	asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
547 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
548 	d &= ~4;
549 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
550 
551 	asd_ha->hw_prof.max_ddbs = max_devs;
552 
553 	return 0;
554 }
555 
556 static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
557 {
558 	dma_addr_t dma_handle;
559 	unsigned long dma_addr;
560 	u32 d;
561 	int size;
562 
563 	asd_ha->hw_prof.scb_ext = NULL;
564 	if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
565 		max_cmnds = asd_ha->hw_prof.max_scbs;
566 		return 0;
567 	}
568 
569 	size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
570 
571 	asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
572 	if (!asd_ha->hw_prof.scb_ext) {
573 		asd_printk("couldn't allocate memory for %d commands\n",
574 			   max_cmnds);
575 		max_cmnds = asd_ha->hw_prof.max_scbs;
576 		return -ENOMEM;
577 	}
578 	dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
579 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
580 	dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
581 	dma_handle = (dma_addr_t) dma_addr;
582 	asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
583 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
584 	d &= ~1;
585 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
586 
587 	asd_ha->hw_prof.max_scbs = max_cmnds;
588 
589 	return 0;
590 }
591 
592 /**
593  * asd_init_ctxmem -- initialize context memory
594  * asd_ha: pointer to host adapter structure
595  *
596  * This function sets the maximum number of SCBs and
597  * DDBs which can be used by the sequencer.  This is normally
598  * 512 and 128 respectively.  If support for more SCBs or more DDBs
599  * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
600  * initialized here to extend context memory to point to host memory,
601  * thus allowing unlimited support for SCBs and DDBs -- only limited
602  * by host memory.
603  */
604 static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
605 {
606 	int bitmap_bytes;
607 
608 	asd_get_max_scb_ddb(asd_ha);
609 	asd_extend_devctx(asd_ha);
610 	asd_extend_cmdctx(asd_ha);
611 
612 	/* The kernel wants bitmaps to be unsigned long sized. */
613 	bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
614 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
615 	asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
616 	if (!asd_ha->hw_prof.ddb_bitmap)
617 		return -ENOMEM;
618 	spin_lock_init(&asd_ha->hw_prof.ddb_lock);
619 
620 	return 0;
621 }
622 
623 int asd_init_hw(struct asd_ha_struct *asd_ha)
624 {
625 	int err;
626 	u32 v;
627 
628 	err = asd_init_sw(asd_ha);
629 	if (err)
630 		return err;
631 
632 	err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
633 	if (err) {
634 		asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
635 			   pci_name(asd_ha->pcidev));
636 		return err;
637 	}
638 	err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
639 					v | SC_TMR_DIS);
640 	if (err) {
641 		asd_printk("couldn't disable split completion timer of %s\n",
642 			   pci_name(asd_ha->pcidev));
643 		return err;
644 	}
645 
646 	err = asd_read_ocm(asd_ha);
647 	if (err) {
648 		asd_printk("couldn't read ocm(%d)\n", err);
649 		/* While suspicios, it is not an error that we
650 		 * couldn't read the OCM. */
651 	}
652 
653 	err = asd_read_flash(asd_ha);
654 	if (err) {
655 		asd_printk("couldn't read flash(%d)\n", err);
656 		/* While suspicios, it is not an error that we
657 		 * couldn't read FLASH memory.
658 		 */
659 	}
660 
661 	asd_init_ctxmem(asd_ha);
662 
663 	if (asd_get_user_sas_addr(asd_ha)) {
664 		asd_printk("No SAS Address provided for %s\n",
665 			   pci_name(asd_ha->pcidev));
666 		err = -ENODEV;
667 		goto Out;
668 	}
669 
670 	asd_propagate_sas_addr(asd_ha);
671 
672 	err = asd_init_phys(asd_ha);
673 	if (err) {
674 		asd_printk("couldn't initialize phys for %s\n",
675 			    pci_name(asd_ha->pcidev));
676 		goto Out;
677 	}
678 
679 	asd_init_ports(asd_ha);
680 
681 	err = asd_init_scbs(asd_ha);
682 	if (err) {
683 		asd_printk("couldn't initialize scbs for %s\n",
684 			    pci_name(asd_ha->pcidev));
685 		goto Out;
686 	}
687 
688 	err = asd_init_dl(asd_ha);
689 	if (err) {
690 		asd_printk("couldn't initialize the done list:%d\n",
691 			    err);
692 		goto Out;
693 	}
694 
695 	err = asd_init_escbs(asd_ha);
696 	if (err) {
697 		asd_printk("couldn't initialize escbs\n");
698 		goto Out;
699 	}
700 
701 	err = asd_init_chip(asd_ha);
702 	if (err) {
703 		asd_printk("couldn't init the chip\n");
704 		goto Out;
705 	}
706 Out:
707 	return err;
708 }
709 
710 /* ---------- Chip reset ---------- */
711 
712 /**
713  * asd_chip_reset -- reset the host adapter, etc
714  * @asd_ha: pointer to host adapter structure of interest
715  *
716  * Called from the ISR.  Hard reset the chip.  Let everything
717  * timeout.  This should be no different than hot-unplugging the
718  * host adapter.  Once everything times out we'll init the chip with
719  * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
720  * XXX finish.
721  */
722 static void asd_chip_reset(struct asd_ha_struct *asd_ha)
723 {
724 	ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
725 	asd_chip_hardrst(asd_ha);
726 }
727 
728 /* ---------- Done List Routines ---------- */
729 
730 static void asd_dl_tasklet_handler(unsigned long data)
731 {
732 	struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
733 	struct asd_seq_data *seq = &asd_ha->seq;
734 	unsigned long flags;
735 
736 	while (1) {
737 		struct done_list_struct *dl = &seq->dl[seq->dl_next];
738 		struct asd_ascb *ascb;
739 
740 		if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
741 			break;
742 
743 		/* find the aSCB */
744 		spin_lock_irqsave(&seq->tc_index_lock, flags);
745 		ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
746 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
747 		if (unlikely(!ascb)) {
748 			ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
749 			goto next_1;
750 		} else if (ascb->scb->header.opcode == EMPTY_SCB) {
751 			goto out;
752 		} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
753 			goto next_1;
754 		}
755 		spin_lock_irqsave(&seq->pend_q_lock, flags);
756 		list_del_init(&ascb->list);
757 		seq->pending--;
758 		spin_unlock_irqrestore(&seq->pend_q_lock, flags);
759 	out:
760 		ascb->tasklet_complete(ascb, dl);
761 
762 	next_1:
763 		seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
764 		if (!seq->dl_next)
765 			seq->dl_toggle ^= DL_TOGGLE_MASK;
766 	}
767 }
768 
769 /* ---------- Interrupt Service Routines ---------- */
770 
771 /**
772  * asd_process_donelist_isr -- schedule processing of done list entries
773  * @asd_ha: pointer to host adapter structure
774  */
775 static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
776 {
777 	tasklet_schedule(&asd_ha->seq.dl_tasklet);
778 }
779 
780 /**
781  * asd_com_sas_isr -- process device communication interrupt (COMINT)
782  * @asd_ha: pointer to host adapter structure
783  */
784 static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
785 {
786 	u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
787 
788 	/* clear COMSTAT int */
789 	asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
790 
791 	if (comstat & CSBUFPERR) {
792 		asd_printk("%s: command/status buffer dma parity error\n",
793 			   pci_name(asd_ha->pcidev));
794 	} else if (comstat & CSERR) {
795 		int i;
796 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
797 		dmaerr &= 0xFF;
798 		asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
799 			   "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
800 			   pci_name(asd_ha->pcidev),
801 			   dmaerr,
802 			   asd_read_reg_dword(asd_ha, CSDMAADR),
803 			   asd_read_reg_dword(asd_ha, CSDMAADR+4));
804 		asd_printk("CSBUFFER:\n");
805 		for (i = 0; i < 8; i++) {
806 			asd_printk("%08x %08x %08x %08x\n",
807 				   asd_read_reg_dword(asd_ha, CSBUFFER),
808 				   asd_read_reg_dword(asd_ha, CSBUFFER+4),
809 				   asd_read_reg_dword(asd_ha, CSBUFFER+8),
810 				   asd_read_reg_dword(asd_ha, CSBUFFER+12));
811 		}
812 		asd_dump_seq_state(asd_ha, 0);
813 	} else if (comstat & OVLYERR) {
814 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
815 		dmaerr = (dmaerr >> 8) & 0xFF;
816 		asd_printk("%s: overlay dma error:0x%x\n",
817 			   pci_name(asd_ha->pcidev),
818 			   dmaerr);
819 	}
820 	asd_chip_reset(asd_ha);
821 }
822 
823 static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
824 {
825 	static const char *halt_code[256] = {
826 		"UNEXPECTED_INTERRUPT0",
827 		"UNEXPECTED_INTERRUPT1",
828 		"UNEXPECTED_INTERRUPT2",
829 		"UNEXPECTED_INTERRUPT3",
830 		"UNEXPECTED_INTERRUPT4",
831 		"UNEXPECTED_INTERRUPT5",
832 		"UNEXPECTED_INTERRUPT6",
833 		"UNEXPECTED_INTERRUPT7",
834 		"UNEXPECTED_INTERRUPT8",
835 		"UNEXPECTED_INTERRUPT9",
836 		"UNEXPECTED_INTERRUPT10",
837 		[11 ... 19] = "unknown[11,19]",
838 		"NO_FREE_SCB_AVAILABLE",
839 		"INVALID_SCB_OPCODE",
840 		"INVALID_MBX_OPCODE",
841 		"INVALID_ATA_STATE",
842 		"ATA_QUEUE_FULL",
843 		"ATA_TAG_TABLE_FAULT",
844 		"ATA_TAG_MASK_FAULT",
845 		"BAD_LINK_QUEUE_STATE",
846 		"DMA2CHIM_QUEUE_ERROR",
847 		"EMPTY_SCB_LIST_FULL",
848 		"unknown[30]",
849 		"IN_USE_SCB_ON_FREE_LIST",
850 		"BAD_OPEN_WAIT_STATE",
851 		"INVALID_STP_AFFILIATION",
852 		"unknown[34]",
853 		"EXEC_QUEUE_ERROR",
854 		"TOO_MANY_EMPTIES_NEEDED",
855 		"EMPTY_REQ_QUEUE_ERROR",
856 		"Q_MONIRTT_MGMT_ERROR",
857 		"TARGET_MODE_FLOW_ERROR",
858 		"DEVICE_QUEUE_NOT_FOUND",
859 		"START_IRTT_TIMER_ERROR",
860 		"ABORT_TASK_ILLEGAL_REQ",
861 		[43 ... 255] = "unknown[43,255]"
862 	};
863 
864 	if (dchstatus & CSEQINT) {
865 		u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
866 
867 		if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
868 			asd_printk("%s: CSEQ arp2int:0x%x\n",
869 				   pci_name(asd_ha->pcidev),
870 				   arp2int);
871 		} else if (arp2int & ARP2HALTC)
872 			asd_printk("%s: CSEQ halted: %s\n",
873 				   pci_name(asd_ha->pcidev),
874 				   halt_code[(arp2int>>16)&0xFF]);
875 		else
876 			asd_printk("%s: CARP2INT:0x%x\n",
877 				   pci_name(asd_ha->pcidev),
878 				   arp2int);
879 	}
880 	if (dchstatus & LSEQINT_MASK) {
881 		int lseq;
882 		u8  lseq_mask = dchstatus & LSEQINT_MASK;
883 
884 		for_each_sequencer(lseq_mask, lseq_mask, lseq) {
885 			u32 arp2int = asd_read_reg_dword(asd_ha,
886 							 LmARP2INT(lseq));
887 			if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
888 				       | ARP2CIOPERR)) {
889 				asd_printk("%s: LSEQ%d arp2int:0x%x\n",
890 					   pci_name(asd_ha->pcidev),
891 					   lseq, arp2int);
892 				/* XXX we should only do lseq reset */
893 			} else if (arp2int & ARP2HALTC)
894 				asd_printk("%s: LSEQ%d halted: %s\n",
895 					   pci_name(asd_ha->pcidev),
896 					   lseq,halt_code[(arp2int>>16)&0xFF]);
897 			else
898 				asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
899 					   pci_name(asd_ha->pcidev), lseq,
900 					   arp2int);
901 		}
902 	}
903 	asd_chip_reset(asd_ha);
904 }
905 
906 /**
907  * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
908  * @asd_ha: pointer to host adapter structure
909  */
910 static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
911 {
912 	u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
913 
914 	if (dchstatus & CFIFTOERR) {
915 		asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
916 		asd_chip_reset(asd_ha);
917 	} else
918 		asd_arp2_err(asd_ha, dchstatus);
919 }
920 
921 /**
922  * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
923  * @asd_ha: pointer to host adapter structure
924  */
925 static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
926 {
927 	u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
928 
929 	if (!(stat0r & ASIERR)) {
930 		asd_printk("hmm, EXSI interrupted but no error?\n");
931 		return;
932 	}
933 
934 	if (stat0r & ASIFMTERR) {
935 		asd_printk("ASI SEEPROM format error for %s\n",
936 			   pci_name(asd_ha->pcidev));
937 	} else if (stat0r & ASISEECHKERR) {
938 		u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
939 		asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
940 			   stat1r & CHECKSUM_MASK,
941 			   pci_name(asd_ha->pcidev));
942 	} else {
943 		u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
944 
945 		if (!(statr & CPI2ASIMSTERR_MASK)) {
946 			ASD_DPRINTK("hmm, ASIERR?\n");
947 			return;
948 		} else {
949 			u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
950 			u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
951 
952 			asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
953 				   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
954 				   "master id: 0x%x, master err: 0x%x\n",
955 				   pci_name(asd_ha->pcidev),
956 				   addr, data,
957 				   (statr & CPI2ASIBYTECNT_MASK) >> 16,
958 				   (statr & CPI2ASIBYTEEN_MASK) >> 12,
959 				   (statr & CPI2ASITARGERR_MASK) >> 8,
960 				   (statr & CPI2ASITARGMID_MASK) >> 4,
961 				   (statr & CPI2ASIMSTERR_MASK));
962 		}
963 	}
964 	asd_chip_reset(asd_ha);
965 }
966 
967 /**
968  * asd_hst_pcix_isr -- process host interface interrupts
969  * @asd_ha: pointer to host adapter structure
970  *
971  * Asserted on PCIX errors: target abort, etc.
972  */
973 static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
974 {
975 	u16 status;
976 	u32 pcix_status;
977 	u32 ecc_status;
978 
979 	pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
980 	pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
981 	pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
982 
983 	if (status & PCI_STATUS_DETECTED_PARITY)
984 		asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
985 	else if (status & PCI_STATUS_REC_MASTER_ABORT)
986 		asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
987 	else if (status & PCI_STATUS_REC_TARGET_ABORT)
988 		asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
989 	else if (status & PCI_STATUS_PARITY)
990 		asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
991 	else if (pcix_status & RCV_SCE) {
992 		asd_printk("received split completion error for %s\n",
993 			   pci_name(asd_ha->pcidev));
994 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
995 		/* XXX: Abort task? */
996 		return;
997 	} else if (pcix_status & UNEXP_SC) {
998 		asd_printk("unexpected split completion for %s\n",
999 			   pci_name(asd_ha->pcidev));
1000 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
1001 		/* ignore */
1002 		return;
1003 	} else if (pcix_status & SC_DISCARD)
1004 		asd_printk("split completion discarded for %s\n",
1005 			   pci_name(asd_ha->pcidev));
1006 	else if (ecc_status & UNCOR_ECCERR)
1007 		asd_printk("uncorrectable ECC error for %s\n",
1008 			   pci_name(asd_ha->pcidev));
1009 	asd_chip_reset(asd_ha);
1010 }
1011 
1012 /**
1013  * asd_hw_isr -- host adapter interrupt service routine
1014  * @irq: ignored
1015  * @dev_id: pointer to host adapter structure
1016  *
1017  * The ISR processes done list entries and level 3 error handling.
1018  */
1019 irqreturn_t asd_hw_isr(int irq, void *dev_id)
1020 {
1021 	struct asd_ha_struct *asd_ha = dev_id;
1022 	u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1023 
1024 	if (!chimint)
1025 		return IRQ_NONE;
1026 
1027 	asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1028 	(void) asd_read_reg_dword(asd_ha, CHIMINT);
1029 
1030 	if (chimint & DLAVAIL)
1031 		asd_process_donelist_isr(asd_ha);
1032 	if (chimint & COMINT)
1033 		asd_com_sas_isr(asd_ha);
1034 	if (chimint & DEVINT)
1035 		asd_dch_sas_isr(asd_ha);
1036 	if (chimint & INITERR)
1037 		asd_rbi_exsi_isr(asd_ha);
1038 	if (chimint & HOSTERR)
1039 		asd_hst_pcix_isr(asd_ha);
1040 
1041 	return IRQ_HANDLED;
1042 }
1043 
1044 /* ---------- SCB handling ---------- */
1045 
1046 static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1047 				       gfp_t gfp_flags)
1048 {
1049 	extern struct kmem_cache *asd_ascb_cache;
1050 	struct asd_seq_data *seq = &asd_ha->seq;
1051 	struct asd_ascb *ascb;
1052 	unsigned long flags;
1053 
1054 	ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1055 
1056 	if (ascb) {
1057 		ascb->dma_scb.size = sizeof(struct scb);
1058 		ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
1059 						     gfp_flags,
1060 						    &ascb->dma_scb.dma_handle);
1061 		if (!ascb->dma_scb.vaddr) {
1062 			kmem_cache_free(asd_ascb_cache, ascb);
1063 			return NULL;
1064 		}
1065 		memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
1066 		asd_init_ascb(asd_ha, ascb);
1067 
1068 		spin_lock_irqsave(&seq->tc_index_lock, flags);
1069 		ascb->tc_index = asd_tc_index_get(seq, ascb);
1070 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1071 		if (ascb->tc_index == -1)
1072 			goto undo;
1073 
1074 		ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1075 	}
1076 
1077 	return ascb;
1078 undo:
1079 	dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1080 		      ascb->dma_scb.dma_handle);
1081 	kmem_cache_free(asd_ascb_cache, ascb);
1082 	ASD_DPRINTK("no index for ascb\n");
1083 	return NULL;
1084 }
1085 
1086 /**
1087  * asd_ascb_alloc_list -- allocate a list of aSCBs
1088  * @asd_ha: pointer to host adapter structure
1089  * @num: pointer to integer number of aSCBs
1090  * @gfp_flags: GFP_ flags.
1091  *
1092  * This is the only function which is used to allocate aSCBs.
1093  * It can allocate one or many. If more than one, then they form
1094  * a linked list in two ways: by their list field of the ascb struct
1095  * and by the next_scb field of the scb_header.
1096  *
1097  * Returns NULL if no memory was available, else pointer to a list
1098  * of ascbs.  When this function returns, @num would be the number
1099  * of SCBs which were not able to be allocated, 0 if all requested
1100  * were able to be allocated.
1101  */
1102 struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1103 				     *asd_ha, int *num,
1104 				     gfp_t gfp_flags)
1105 {
1106 	struct asd_ascb *first = NULL;
1107 
1108 	for ( ; *num > 0; --*num) {
1109 		struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1110 
1111 		if (!ascb)
1112 			break;
1113 		else if (!first)
1114 			first = ascb;
1115 		else {
1116 			struct asd_ascb *last = list_entry(first->list.prev,
1117 							   struct asd_ascb,
1118 							   list);
1119 			list_add_tail(&ascb->list, &first->list);
1120 			last->scb->header.next_scb =
1121 				cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1122 		}
1123 	}
1124 
1125 	return first;
1126 }
1127 
1128 /**
1129  * asd_swap_head_scb -- swap the head scb
1130  * @asd_ha: pointer to host adapter structure
1131  * @ascb: pointer to the head of an ascb list
1132  *
1133  * The sequencer knows the DMA address of the next SCB to be DMAed to
1134  * the host adapter, from initialization or from the last list DMAed.
1135  * seq->next_scb keeps the address of this SCB.  The sequencer will
1136  * DMA to the host adapter this list of SCBs.  But the head (first
1137  * element) of this list is not known to the sequencer.  Here we swap
1138  * the head of the list with the known SCB (memcpy()).
1139  * Only one memcpy() is required per list so it is in our interest
1140  * to keep the list of SCB as long as possible so that the ratio
1141  * of number of memcpy calls to the number of SCB DMA-ed is as small
1142  * as possible.
1143  *
1144  * LOCKING: called with the pending list lock held.
1145  */
1146 static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1147 			      struct asd_ascb *ascb)
1148 {
1149 	struct asd_seq_data *seq = &asd_ha->seq;
1150 	struct asd_ascb *last = list_entry(ascb->list.prev,
1151 					   struct asd_ascb,
1152 					   list);
1153 	struct asd_dma_tok t = ascb->dma_scb;
1154 
1155 	memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1156 	ascb->dma_scb = seq->next_scb;
1157 	ascb->scb = ascb->dma_scb.vaddr;
1158 	seq->next_scb = t;
1159 	last->scb->header.next_scb =
1160 		cpu_to_le64(((u64)seq->next_scb.dma_handle));
1161 }
1162 
1163 /**
1164  * asd_start_timers -- (add and) start timers of SCBs
1165  * @list: pointer to struct list_head of the scbs
1166  * @to: timeout in jiffies
1167  *
1168  * If an SCB in the @list has no timer function, assign the default
1169  * one,  then start the timer of the SCB.  This function is
1170  * intended to be called from asd_post_ascb_list(), just prior to
1171  * posting the SCBs to the sequencer.
1172  */
1173 static void asd_start_scb_timers(struct list_head *list)
1174 {
1175 	struct asd_ascb *ascb;
1176 	list_for_each_entry(ascb, list, list) {
1177 		if (!ascb->uldd_timer) {
1178 			ascb->timer.function = asd_ascb_timedout;
1179 			ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1180 			add_timer(&ascb->timer);
1181 		}
1182 	}
1183 }
1184 
1185 /**
1186  * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1187  * @asd_ha: pointer to a host adapter structure
1188  * @ascb: pointer to the first aSCB in the list
1189  * @num: number of aSCBs in the list (to be posted)
1190  *
1191  * See queueing comment in asd_post_escb_list().
1192  *
1193  * Additional note on queuing: In order to minimize the ratio of memcpy()
1194  * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1195  * in one go.
1196  * Two cases are possible:
1197  *    A) can_queue >= num,
1198  *    B) can_queue < num.
1199  * Case A: we can send the whole batch at once.  Increment "pending"
1200  * in the beginning of this function, when it is checked, in order to
1201  * eliminate races when this function is called by multiple processes.
1202  * Case B: should never happen.
1203  */
1204 int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1205 		       int num)
1206 {
1207 	unsigned long flags;
1208 	LIST_HEAD(list);
1209 	int can_queue;
1210 
1211 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1212 	can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1213 	if (can_queue >= num)
1214 		asd_ha->seq.pending += num;
1215 	else
1216 		can_queue = 0;
1217 
1218 	if (!can_queue) {
1219 		spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1220 		asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1221 		return -SAS_QUEUE_FULL;
1222 	}
1223 
1224 	asd_swap_head_scb(asd_ha, ascb);
1225 
1226 	__list_add(&list, ascb->list.prev, &ascb->list);
1227 
1228 	asd_start_scb_timers(&list);
1229 
1230 	asd_ha->seq.scbpro += num;
1231 	list_splice_init(&list, asd_ha->seq.pend_q.prev);
1232 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1233 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1234 
1235 	return 0;
1236 }
1237 
1238 /**
1239  * asd_post_escb_list -- post a list of 1 or more empty scb
1240  * @asd_ha: pointer to a host adapter structure
1241  * @ascb: pointer to the first empty SCB in the list
1242  * @num: number of aSCBs in the list (to be posted)
1243  *
1244  * This is essentially the same as asd_post_ascb_list, but we do not
1245  * increment pending, add those to the pending list or get indexes.
1246  * See asd_init_escbs() and asd_init_post_escbs().
1247  *
1248  * Since sending a list of ascbs is a superset of sending a single
1249  * ascb, this function exists to generalize this.  More specifically,
1250  * when sending a list of those, we want to do only a _single_
1251  * memcpy() at swap head, as opposed to for each ascb sent (in the
1252  * case of sending them one by one).  That is, we want to minimize the
1253  * ratio of memcpy() operations to the number of ascbs sent.  The same
1254  * logic applies to asd_post_ascb_list().
1255  */
1256 int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1257 		       int num)
1258 {
1259 	unsigned long flags;
1260 
1261 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1262 	asd_swap_head_scb(asd_ha, ascb);
1263 	asd_ha->seq.scbpro += num;
1264 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1265 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1266 
1267 	return 0;
1268 }
1269 
1270 /* ---------- LED ---------- */
1271 
1272 /**
1273  * asd_turn_led -- turn on/off an LED
1274  * @asd_ha: pointer to host adapter structure
1275  * @phy_id: the PHY id whose LED we want to manupulate
1276  * @op: 1 to turn on, 0 to turn off
1277  */
1278 void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1279 {
1280 	if (phy_id < ASD_MAX_PHYS) {
1281 		u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1282 		if (op)
1283 			v |= LEDPOL;
1284 		else
1285 			v &= ~LEDPOL;
1286 		asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1287 	}
1288 }
1289 
1290 /**
1291  * asd_control_led -- enable/disable an LED on the board
1292  * @asd_ha: pointer to host adapter structure
1293  * @phy_id: integer, the phy id
1294  * @op: integer, 1 to enable, 0 to disable the LED
1295  *
1296  * First we output enable the LED, then we set the source
1297  * to be an external module.
1298  */
1299 void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1300 {
1301 	if (phy_id < ASD_MAX_PHYS) {
1302 		u32 v;
1303 
1304 		v = asd_read_reg_dword(asd_ha, GPIOOER);
1305 		if (op)
1306 			v |= (1 << phy_id);
1307 		else
1308 			v &= ~(1 << phy_id);
1309 		asd_write_reg_dword(asd_ha, GPIOOER, v);
1310 
1311 		v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1312 		if (op)
1313 			v |= (1 << phy_id);
1314 		else
1315 			v &= ~(1 << phy_id);
1316 		asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1317 	}
1318 }
1319 
1320 /* ---------- PHY enable ---------- */
1321 
1322 static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1323 {
1324 	struct asd_phy *phy = &asd_ha->phys[phy_id];
1325 
1326 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1327 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1328 			   HOTPLUG_DELAY_TIMEOUT);
1329 
1330 	/* Get defaults from manuf. sector */
1331 	/* XXX we need defaults for those in case MS is broken. */
1332 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1333 			   phy->phy_desc->phy_control_0);
1334 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1335 			   phy->phy_desc->phy_control_1);
1336 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1337 			   phy->phy_desc->phy_control_2);
1338 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1339 			   phy->phy_desc->phy_control_3);
1340 
1341 	asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1342 			    ASD_COMINIT_TIMEOUT);
1343 
1344 	asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1345 			   phy->id_frm_tok->dma_handle);
1346 
1347 	asd_control_led(asd_ha, phy_id, 1);
1348 
1349 	return 0;
1350 }
1351 
1352 int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1353 {
1354 	u8  phy_m;
1355 	u8  i;
1356 	int num = 0, k;
1357 	struct asd_ascb *ascb;
1358 	struct asd_ascb *ascb_list;
1359 
1360 	if (!phy_mask) {
1361 		asd_printk("%s called with phy_mask of 0!?\n", __func__);
1362 		return 0;
1363 	}
1364 
1365 	for_each_phy(phy_mask, phy_m, i) {
1366 		num++;
1367 		asd_enable_phy(asd_ha, i);
1368 	}
1369 
1370 	k = num;
1371 	ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1372 	if (!ascb_list) {
1373 		asd_printk("no memory for control phy ascb list\n");
1374 		return -ENOMEM;
1375 	}
1376 	num -= k;
1377 
1378 	ascb = ascb_list;
1379 	for_each_phy(phy_mask, phy_m, i) {
1380 		asd_build_control_phy(ascb, i, ENABLE_PHY);
1381 		ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1382 	}
1383 	ASD_DPRINTK("posting %d control phy scbs\n", num);
1384 	k = asd_post_ascb_list(asd_ha, ascb_list, num);
1385 	if (k)
1386 		asd_ascb_free_list(ascb_list);
1387 
1388 	return k;
1389 }
1390