xref: /openbmc/linux/drivers/scsi/aic94xx/aic94xx_hwi.c (revision c83eeec79ff64f777cbd59a8bd15d0a3fe1f92c0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Aic94xx SAS/SATA driver hardware interface.
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  */
8 
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/module.h>
13 #include <linux/firmware.h>
14 
15 #include "aic94xx.h"
16 #include "aic94xx_reg.h"
17 #include "aic94xx_hwi.h"
18 #include "aic94xx_seq.h"
19 #include "aic94xx_dump.h"
20 
21 u32 MBAR0_SWB_SIZE;
22 
23 /* ---------- Initialization ---------- */
24 
25 static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
26 {
27 	/* adapter came with a sas address */
28 	if (asd_ha->hw_prof.sas_addr[0])
29 		return 0;
30 
31 	return sas_request_addr(asd_ha->sas_ha.core.shost,
32 				asd_ha->hw_prof.sas_addr);
33 }
34 
35 static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
36 {
37 	int i;
38 
39 	for (i = 0; i < ASD_MAX_PHYS; i++) {
40 		if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
41 			continue;
42 		/* Set a phy's address only if it has none.
43 		 */
44 		ASD_DPRINTK("setting phy%d addr to %llx\n", i,
45 			    SAS_ADDR(asd_ha->hw_prof.sas_addr));
46 		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
47 		       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
48 	}
49 }
50 
51 /* ---------- PHY initialization ---------- */
52 
53 static void asd_init_phy_identify(struct asd_phy *phy)
54 {
55 	phy->identify_frame = phy->id_frm_tok->vaddr;
56 
57 	memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
58 
59 	phy->identify_frame->dev_type = SAS_END_DEVICE;
60 	if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
61 		phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
62 	if (phy->sas_phy.role & PHY_ROLE_TARGET)
63 		phy->identify_frame->target_bits = phy->sas_phy.tproto;
64 	memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
65 	       SAS_ADDR_SIZE);
66 	phy->identify_frame->phy_id = phy->sas_phy.id;
67 }
68 
69 static int asd_init_phy(struct asd_phy *phy)
70 {
71 	struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
72 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
73 
74 	sas_phy->enabled = 1;
75 	sas_phy->class = SAS;
76 	sas_phy->iproto = SAS_PROTOCOL_ALL;
77 	sas_phy->tproto = 0;
78 	sas_phy->type = PHY_TYPE_PHYSICAL;
79 	sas_phy->role = PHY_ROLE_INITIATOR;
80 	sas_phy->oob_mode = OOB_NOT_CONNECTED;
81 	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
82 
83 	phy->id_frm_tok = asd_alloc_coherent(asd_ha,
84 					     sizeof(*phy->identify_frame),
85 					     GFP_KERNEL);
86 	if (!phy->id_frm_tok) {
87 		asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
88 		return -ENOMEM;
89 	} else
90 		asd_init_phy_identify(phy);
91 
92 	memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
93 
94 	return 0;
95 }
96 
97 static void asd_init_ports(struct asd_ha_struct *asd_ha)
98 {
99 	int i;
100 
101 	spin_lock_init(&asd_ha->asd_ports_lock);
102 	for (i = 0; i < ASD_MAX_PHYS; i++) {
103 		struct asd_port *asd_port = &asd_ha->asd_ports[i];
104 
105 		memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
106 		memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
107 		asd_port->phy_mask = 0;
108 		asd_port->num_phys = 0;
109 	}
110 }
111 
112 static int asd_init_phys(struct asd_ha_struct *asd_ha)
113 {
114 	u8 i;
115 	u8 phy_mask = asd_ha->hw_prof.enabled_phys;
116 
117 	for (i = 0; i < ASD_MAX_PHYS; i++) {
118 		struct asd_phy *phy = &asd_ha->phys[i];
119 
120 		phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
121 		phy->asd_port = NULL;
122 
123 		phy->sas_phy.enabled = 0;
124 		phy->sas_phy.id = i;
125 		phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
126 		phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
127 		phy->sas_phy.ha = &asd_ha->sas_ha;
128 		phy->sas_phy.lldd_phy = phy;
129 	}
130 
131 	/* Now enable and initialize only the enabled phys. */
132 	for_each_phy(phy_mask, phy_mask, i) {
133 		int err = asd_init_phy(&asd_ha->phys[i]);
134 		if (err)
135 			return err;
136 	}
137 
138 	return 0;
139 }
140 
141 /* ---------- Sliding windows ---------- */
142 
143 static int asd_init_sw(struct asd_ha_struct *asd_ha)
144 {
145 	struct pci_dev *pcidev = asd_ha->pcidev;
146 	int err;
147 	u32 v;
148 
149 	/* Unlock MBARs */
150 	err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
151 	if (err) {
152 		asd_printk("couldn't access conf. space of %s\n",
153 			   pci_name(pcidev));
154 		goto Err;
155 	}
156 	if (v)
157 		err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
158 	if (err) {
159 		asd_printk("couldn't write to MBAR_KEY of %s\n",
160 			   pci_name(pcidev));
161 		goto Err;
162 	}
163 
164 	/* Set sliding windows A, B and C to point to proper internal
165 	 * memory regions.
166 	 */
167 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
168 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
169 			       REG_BASE_ADDR_CSEQCIO);
170 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
171 	asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
172 	asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
173 	asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
174 	MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
175 	if (!asd_ha->iospace) {
176 		/* MBAR1 will point to OCM (On Chip Memory) */
177 		pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
178 		asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
179 	}
180 	spin_lock_init(&asd_ha->iolock);
181 Err:
182 	return err;
183 }
184 
185 /* ---------- SCB initialization ---------- */
186 
187 /**
188  * asd_init_scbs - manually allocate the first SCB.
189  * @asd_ha: pointer to host adapter structure
190  *
191  * This allocates the very first SCB which would be sent to the
192  * sequencer for execution.  Its bus address is written to
193  * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
194  * the _next_ scb to be DMA-ed to the host adapter is read from the last
195  * SCB DMA-ed to the host adapter, we have to always stay one step
196  * ahead of the sequencer and keep one SCB already allocated.
197  */
198 static int asd_init_scbs(struct asd_ha_struct *asd_ha)
199 {
200 	struct asd_seq_data *seq = &asd_ha->seq;
201 	int bitmap_bytes;
202 
203 	/* allocate the index array and bitmap */
204 	asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
205 	asd_ha->seq.tc_index_array = kcalloc(asd_ha->seq.tc_index_bitmap_bits,
206 					     sizeof(void *),
207 					     GFP_KERNEL);
208 	if (!asd_ha->seq.tc_index_array)
209 		return -ENOMEM;
210 
211 	bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
212 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
213 	asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
214 	if (!asd_ha->seq.tc_index_bitmap) {
215 		kfree(asd_ha->seq.tc_index_array);
216 		asd_ha->seq.tc_index_array = NULL;
217 		return -ENOMEM;
218 	}
219 
220 	spin_lock_init(&seq->tc_index_lock);
221 
222 	seq->next_scb.size = sizeof(struct scb);
223 	seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
224 					     &seq->next_scb.dma_handle);
225 	if (!seq->next_scb.vaddr) {
226 		kfree(asd_ha->seq.tc_index_bitmap);
227 		kfree(asd_ha->seq.tc_index_array);
228 		asd_ha->seq.tc_index_bitmap = NULL;
229 		asd_ha->seq.tc_index_array = NULL;
230 		return -ENOMEM;
231 	}
232 
233 	seq->pending = 0;
234 	spin_lock_init(&seq->pend_q_lock);
235 	INIT_LIST_HEAD(&seq->pend_q);
236 
237 	return 0;
238 }
239 
240 static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
241 {
242 	asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
243 	asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
244 	ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
245 		    asd_ha->hw_prof.max_scbs,
246 		    asd_ha->hw_prof.max_ddbs);
247 }
248 
249 /* ---------- Done List initialization ---------- */
250 
251 static void asd_dl_tasklet_handler(unsigned long);
252 
253 static int asd_init_dl(struct asd_ha_struct *asd_ha)
254 {
255 	asd_ha->seq.actual_dl
256 		= asd_alloc_coherent(asd_ha,
257 			     ASD_DL_SIZE * sizeof(struct done_list_struct),
258 				     GFP_KERNEL);
259 	if (!asd_ha->seq.actual_dl)
260 		return -ENOMEM;
261 	asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
262 	asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
263 	asd_ha->seq.dl_next = 0;
264 	tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
265 		     (unsigned long) asd_ha);
266 
267 	return 0;
268 }
269 
270 /* ---------- EDB and ESCB init ---------- */
271 
272 static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
273 {
274 	struct asd_seq_data *seq = &asd_ha->seq;
275 	int i;
276 
277 	seq->edb_arr = kmalloc_array(seq->num_edbs, sizeof(*seq->edb_arr),
278 				     gfp_flags);
279 	if (!seq->edb_arr)
280 		return -ENOMEM;
281 
282 	for (i = 0; i < seq->num_edbs; i++) {
283 		seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
284 						     gfp_flags);
285 		if (!seq->edb_arr[i])
286 			goto Err_unroll;
287 		memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
288 	}
289 
290 	ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
291 
292 	return 0;
293 
294 Err_unroll:
295 	for (i-- ; i >= 0; i--)
296 		asd_free_coherent(asd_ha, seq->edb_arr[i]);
297 	kfree(seq->edb_arr);
298 	seq->edb_arr = NULL;
299 
300 	return -ENOMEM;
301 }
302 
303 static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
304 			   gfp_t gfp_flags)
305 {
306 	struct asd_seq_data *seq = &asd_ha->seq;
307 	struct asd_ascb *escb;
308 	int i, escbs;
309 
310 	seq->escb_arr = kmalloc_array(seq->num_escbs, sizeof(*seq->escb_arr),
311 				      gfp_flags);
312 	if (!seq->escb_arr)
313 		return -ENOMEM;
314 
315 	escbs = seq->num_escbs;
316 	escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
317 	if (!escb) {
318 		asd_printk("couldn't allocate list of escbs\n");
319 		goto Err;
320 	}
321 	seq->num_escbs -= escbs;  /* subtract what was not allocated */
322 	ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
323 
324 	for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
325 							       struct asd_ascb,
326 							       list)) {
327 		seq->escb_arr[i] = escb;
328 		escb->scb->header.opcode = EMPTY_SCB;
329 	}
330 
331 	return 0;
332 Err:
333 	kfree(seq->escb_arr);
334 	seq->escb_arr = NULL;
335 	return -ENOMEM;
336 
337 }
338 
339 static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
340 {
341 	struct asd_seq_data *seq = &asd_ha->seq;
342 	int i, k, z = 0;
343 
344 	for (i = 0; i < seq->num_escbs; i++) {
345 		struct asd_ascb *ascb = seq->escb_arr[i];
346 		struct empty_scb *escb = &ascb->scb->escb;
347 
348 		ascb->edb_index = z;
349 
350 		escb->num_valid = ASD_EDBS_PER_SCB;
351 
352 		for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
353 			struct sg_el *eb = &escb->eb[k];
354 			struct asd_dma_tok *edb = seq->edb_arr[z++];
355 
356 			memset(eb, 0, sizeof(*eb));
357 			eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
358 			eb->size = cpu_to_le32(((u32) edb->size));
359 		}
360 	}
361 }
362 
363 /**
364  * asd_init_escbs -- allocate and initialize empty scbs
365  * @asd_ha: pointer to host adapter structure
366  *
367  * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
368  * They transport sense data, etc.
369  */
370 static int asd_init_escbs(struct asd_ha_struct *asd_ha)
371 {
372 	struct asd_seq_data *seq = &asd_ha->seq;
373 	int err = 0;
374 
375 	/* Allocate two empty data buffers (edb) per sequencer. */
376 	int edbs = 2*(1+asd_ha->hw_prof.num_phys);
377 
378 	seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
379 	seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
380 
381 	err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
382 	if (err) {
383 		asd_printk("couldn't allocate edbs\n");
384 		return err;
385 	}
386 
387 	err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
388 	if (err) {
389 		asd_printk("couldn't allocate escbs\n");
390 		return err;
391 	}
392 
393 	asd_assign_edbs2escbs(asd_ha);
394 	/* In order to insure that normal SCBs do not overfill sequencer
395 	 * memory and leave no space for escbs (halting condition),
396 	 * we increment pending here by the number of escbs.  However,
397 	 * escbs are never pending.
398 	 */
399 	seq->pending   = seq->num_escbs;
400 	seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
401 
402 	return 0;
403 }
404 
405 /* ---------- HW initialization ---------- */
406 
407 /**
408  * asd_chip_hardrst -- hard reset the chip
409  * @asd_ha: pointer to host adapter structure
410  *
411  * This takes 16 cycles and is synchronous to CFCLK, which runs
412  * at 200 MHz, so this should take at most 80 nanoseconds.
413  */
414 int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
415 {
416 	int i;
417 	int count = 100;
418 	u32 reg;
419 
420 	for (i = 0 ; i < 4 ; i++) {
421 		asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
422 	}
423 
424 	do {
425 		udelay(1);
426 		reg = asd_read_reg_dword(asd_ha, CHIMINT);
427 		if (reg & HARDRSTDET) {
428 			asd_write_reg_dword(asd_ha, CHIMINT,
429 					    HARDRSTDET|PORRSTDET);
430 			return 0;
431 		}
432 	} while (--count > 0);
433 
434 	return -ENODEV;
435 }
436 
437 /**
438  * asd_init_chip -- initialize the chip
439  * @asd_ha: pointer to host adapter structure
440  *
441  * Hard resets the chip, disables HA interrupts, downloads the sequnecer
442  * microcode and starts the sequencers.  The caller has to explicitly
443  * enable HA interrupts with asd_enable_ints(asd_ha).
444  */
445 static int asd_init_chip(struct asd_ha_struct *asd_ha)
446 {
447 	int err;
448 
449 	err = asd_chip_hardrst(asd_ha);
450 	if (err) {
451 		asd_printk("couldn't hard reset %s\n",
452 			    pci_name(asd_ha->pcidev));
453 		goto out;
454 	}
455 
456 	asd_disable_ints(asd_ha);
457 
458 	err = asd_init_seqs(asd_ha);
459 	if (err) {
460 		asd_printk("couldn't init seqs for %s\n",
461 			   pci_name(asd_ha->pcidev));
462 		goto out;
463 	}
464 
465 	err = asd_start_seqs(asd_ha);
466 	if (err) {
467 		asd_printk("couldn't start seqs for %s\n",
468 			   pci_name(asd_ha->pcidev));
469 		goto out;
470 	}
471 out:
472 	return err;
473 }
474 
475 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
476 
477 static int max_devs = 0;
478 module_param_named(max_devs, max_devs, int, S_IRUGO);
479 MODULE_PARM_DESC(max_devs, "\n"
480 	"\tMaximum number of SAS devices to support (not LUs).\n"
481 	"\tDefault: 2176, Maximum: 65663.\n");
482 
483 static int max_cmnds = 0;
484 module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
485 MODULE_PARM_DESC(max_cmnds, "\n"
486 	"\tMaximum number of commands queuable.\n"
487 	"\tDefault: 512, Maximum: 66047.\n");
488 
489 static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
490 {
491 	unsigned long dma_addr = OCM_BASE_ADDR;
492 	u32 d;
493 
494 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
495 	asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
496 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
497 	d |= 4;
498 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
499 	asd_ha->hw_prof.max_ddbs += MAX_DEVS;
500 }
501 
502 static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
503 {
504 	dma_addr_t dma_handle;
505 	unsigned long dma_addr;
506 	u32 d;
507 	int size;
508 
509 	asd_extend_devctx_ocm(asd_ha);
510 
511 	asd_ha->hw_prof.ddb_ext = NULL;
512 	if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
513 		max_devs = asd_ha->hw_prof.max_ddbs;
514 		return 0;
515 	}
516 
517 	size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
518 
519 	asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
520 	if (!asd_ha->hw_prof.ddb_ext) {
521 		asd_printk("couldn't allocate memory for %d devices\n",
522 			   max_devs);
523 		max_devs = asd_ha->hw_prof.max_ddbs;
524 		return -ENOMEM;
525 	}
526 	dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
527 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
528 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
529 	dma_handle = (dma_addr_t) dma_addr;
530 	asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
531 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
532 	d &= ~4;
533 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
534 
535 	asd_ha->hw_prof.max_ddbs = max_devs;
536 
537 	return 0;
538 }
539 
540 static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
541 {
542 	dma_addr_t dma_handle;
543 	unsigned long dma_addr;
544 	u32 d;
545 	int size;
546 
547 	asd_ha->hw_prof.scb_ext = NULL;
548 	if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
549 		max_cmnds = asd_ha->hw_prof.max_scbs;
550 		return 0;
551 	}
552 
553 	size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
554 
555 	asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
556 	if (!asd_ha->hw_prof.scb_ext) {
557 		asd_printk("couldn't allocate memory for %d commands\n",
558 			   max_cmnds);
559 		max_cmnds = asd_ha->hw_prof.max_scbs;
560 		return -ENOMEM;
561 	}
562 	dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
563 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
564 	dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
565 	dma_handle = (dma_addr_t) dma_addr;
566 	asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
567 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
568 	d &= ~1;
569 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
570 
571 	asd_ha->hw_prof.max_scbs = max_cmnds;
572 
573 	return 0;
574 }
575 
576 /**
577  * asd_init_ctxmem -- initialize context memory
578  * @asd_ha: pointer to host adapter structure
579  *
580  * This function sets the maximum number of SCBs and
581  * DDBs which can be used by the sequencer.  This is normally
582  * 512 and 128 respectively.  If support for more SCBs or more DDBs
583  * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
584  * initialized here to extend context memory to point to host memory,
585  * thus allowing unlimited support for SCBs and DDBs -- only limited
586  * by host memory.
587  */
588 static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
589 {
590 	int bitmap_bytes;
591 
592 	asd_get_max_scb_ddb(asd_ha);
593 	asd_extend_devctx(asd_ha);
594 	asd_extend_cmdctx(asd_ha);
595 
596 	/* The kernel wants bitmaps to be unsigned long sized. */
597 	bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
598 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
599 	asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
600 	if (!asd_ha->hw_prof.ddb_bitmap)
601 		return -ENOMEM;
602 	spin_lock_init(&asd_ha->hw_prof.ddb_lock);
603 
604 	return 0;
605 }
606 
607 int asd_init_hw(struct asd_ha_struct *asd_ha)
608 {
609 	int err;
610 	u32 v;
611 
612 	err = asd_init_sw(asd_ha);
613 	if (err)
614 		return err;
615 
616 	err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
617 	if (err) {
618 		asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
619 			   pci_name(asd_ha->pcidev));
620 		return err;
621 	}
622 	err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
623 					v | SC_TMR_DIS);
624 	if (err) {
625 		asd_printk("couldn't disable split completion timer of %s\n",
626 			   pci_name(asd_ha->pcidev));
627 		return err;
628 	}
629 
630 	err = asd_read_ocm(asd_ha);
631 	if (err) {
632 		asd_printk("couldn't read ocm(%d)\n", err);
633 		/* While suspicios, it is not an error that we
634 		 * couldn't read the OCM. */
635 	}
636 
637 	err = asd_read_flash(asd_ha);
638 	if (err) {
639 		asd_printk("couldn't read flash(%d)\n", err);
640 		/* While suspicios, it is not an error that we
641 		 * couldn't read FLASH memory.
642 		 */
643 	}
644 
645 	asd_init_ctxmem(asd_ha);
646 
647 	if (asd_get_user_sas_addr(asd_ha)) {
648 		asd_printk("No SAS Address provided for %s\n",
649 			   pci_name(asd_ha->pcidev));
650 		err = -ENODEV;
651 		goto Out;
652 	}
653 
654 	asd_propagate_sas_addr(asd_ha);
655 
656 	err = asd_init_phys(asd_ha);
657 	if (err) {
658 		asd_printk("couldn't initialize phys for %s\n",
659 			    pci_name(asd_ha->pcidev));
660 		goto Out;
661 	}
662 
663 	asd_init_ports(asd_ha);
664 
665 	err = asd_init_scbs(asd_ha);
666 	if (err) {
667 		asd_printk("couldn't initialize scbs for %s\n",
668 			    pci_name(asd_ha->pcidev));
669 		goto Out;
670 	}
671 
672 	err = asd_init_dl(asd_ha);
673 	if (err) {
674 		asd_printk("couldn't initialize the done list:%d\n",
675 			    err);
676 		goto Out;
677 	}
678 
679 	err = asd_init_escbs(asd_ha);
680 	if (err) {
681 		asd_printk("couldn't initialize escbs\n");
682 		goto Out;
683 	}
684 
685 	err = asd_init_chip(asd_ha);
686 	if (err) {
687 		asd_printk("couldn't init the chip\n");
688 		goto Out;
689 	}
690 Out:
691 	return err;
692 }
693 
694 /* ---------- Chip reset ---------- */
695 
696 /**
697  * asd_chip_reset -- reset the host adapter, etc
698  * @asd_ha: pointer to host adapter structure of interest
699  *
700  * Called from the ISR.  Hard reset the chip.  Let everything
701  * timeout.  This should be no different than hot-unplugging the
702  * host adapter.  Once everything times out we'll init the chip with
703  * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
704  * XXX finish.
705  */
706 static void asd_chip_reset(struct asd_ha_struct *asd_ha)
707 {
708 	ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
709 	asd_chip_hardrst(asd_ha);
710 }
711 
712 /* ---------- Done List Routines ---------- */
713 
714 static void asd_dl_tasklet_handler(unsigned long data)
715 {
716 	struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
717 	struct asd_seq_data *seq = &asd_ha->seq;
718 	unsigned long flags;
719 
720 	while (1) {
721 		struct done_list_struct *dl = &seq->dl[seq->dl_next];
722 		struct asd_ascb *ascb;
723 
724 		if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
725 			break;
726 
727 		/* find the aSCB */
728 		spin_lock_irqsave(&seq->tc_index_lock, flags);
729 		ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
730 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
731 		if (unlikely(!ascb)) {
732 			ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
733 			goto next_1;
734 		} else if (ascb->scb->header.opcode == EMPTY_SCB) {
735 			goto out;
736 		} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
737 			goto next_1;
738 		}
739 		spin_lock_irqsave(&seq->pend_q_lock, flags);
740 		list_del_init(&ascb->list);
741 		seq->pending--;
742 		spin_unlock_irqrestore(&seq->pend_q_lock, flags);
743 	out:
744 		ascb->tasklet_complete(ascb, dl);
745 
746 	next_1:
747 		seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
748 		if (!seq->dl_next)
749 			seq->dl_toggle ^= DL_TOGGLE_MASK;
750 	}
751 }
752 
753 /* ---------- Interrupt Service Routines ---------- */
754 
755 /**
756  * asd_process_donelist_isr -- schedule processing of done list entries
757  * @asd_ha: pointer to host adapter structure
758  */
759 static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
760 {
761 	tasklet_schedule(&asd_ha->seq.dl_tasklet);
762 }
763 
764 /**
765  * asd_com_sas_isr -- process device communication interrupt (COMINT)
766  * @asd_ha: pointer to host adapter structure
767  */
768 static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
769 {
770 	u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
771 
772 	/* clear COMSTAT int */
773 	asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
774 
775 	if (comstat & CSBUFPERR) {
776 		asd_printk("%s: command/status buffer dma parity error\n",
777 			   pci_name(asd_ha->pcidev));
778 	} else if (comstat & CSERR) {
779 		int i;
780 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
781 		dmaerr &= 0xFF;
782 		asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
783 			   "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
784 			   pci_name(asd_ha->pcidev),
785 			   dmaerr,
786 			   asd_read_reg_dword(asd_ha, CSDMAADR),
787 			   asd_read_reg_dword(asd_ha, CSDMAADR+4));
788 		asd_printk("CSBUFFER:\n");
789 		for (i = 0; i < 8; i++) {
790 			asd_printk("%08x %08x %08x %08x\n",
791 				   asd_read_reg_dword(asd_ha, CSBUFFER),
792 				   asd_read_reg_dword(asd_ha, CSBUFFER+4),
793 				   asd_read_reg_dword(asd_ha, CSBUFFER+8),
794 				   asd_read_reg_dword(asd_ha, CSBUFFER+12));
795 		}
796 		asd_dump_seq_state(asd_ha, 0);
797 	} else if (comstat & OVLYERR) {
798 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
799 		dmaerr = (dmaerr >> 8) & 0xFF;
800 		asd_printk("%s: overlay dma error:0x%x\n",
801 			   pci_name(asd_ha->pcidev),
802 			   dmaerr);
803 	}
804 	asd_chip_reset(asd_ha);
805 }
806 
807 static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
808 {
809 	static const char *halt_code[256] = {
810 		"UNEXPECTED_INTERRUPT0",
811 		"UNEXPECTED_INTERRUPT1",
812 		"UNEXPECTED_INTERRUPT2",
813 		"UNEXPECTED_INTERRUPT3",
814 		"UNEXPECTED_INTERRUPT4",
815 		"UNEXPECTED_INTERRUPT5",
816 		"UNEXPECTED_INTERRUPT6",
817 		"UNEXPECTED_INTERRUPT7",
818 		"UNEXPECTED_INTERRUPT8",
819 		"UNEXPECTED_INTERRUPT9",
820 		"UNEXPECTED_INTERRUPT10",
821 		[11 ... 19] = "unknown[11,19]",
822 		"NO_FREE_SCB_AVAILABLE",
823 		"INVALID_SCB_OPCODE",
824 		"INVALID_MBX_OPCODE",
825 		"INVALID_ATA_STATE",
826 		"ATA_QUEUE_FULL",
827 		"ATA_TAG_TABLE_FAULT",
828 		"ATA_TAG_MASK_FAULT",
829 		"BAD_LINK_QUEUE_STATE",
830 		"DMA2CHIM_QUEUE_ERROR",
831 		"EMPTY_SCB_LIST_FULL",
832 		"unknown[30]",
833 		"IN_USE_SCB_ON_FREE_LIST",
834 		"BAD_OPEN_WAIT_STATE",
835 		"INVALID_STP_AFFILIATION",
836 		"unknown[34]",
837 		"EXEC_QUEUE_ERROR",
838 		"TOO_MANY_EMPTIES_NEEDED",
839 		"EMPTY_REQ_QUEUE_ERROR",
840 		"Q_MONIRTT_MGMT_ERROR",
841 		"TARGET_MODE_FLOW_ERROR",
842 		"DEVICE_QUEUE_NOT_FOUND",
843 		"START_IRTT_TIMER_ERROR",
844 		"ABORT_TASK_ILLEGAL_REQ",
845 		[43 ... 255] = "unknown[43,255]"
846 	};
847 
848 	if (dchstatus & CSEQINT) {
849 		u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
850 
851 		if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
852 			asd_printk("%s: CSEQ arp2int:0x%x\n",
853 				   pci_name(asd_ha->pcidev),
854 				   arp2int);
855 		} else if (arp2int & ARP2HALTC)
856 			asd_printk("%s: CSEQ halted: %s\n",
857 				   pci_name(asd_ha->pcidev),
858 				   halt_code[(arp2int>>16)&0xFF]);
859 		else
860 			asd_printk("%s: CARP2INT:0x%x\n",
861 				   pci_name(asd_ha->pcidev),
862 				   arp2int);
863 	}
864 	if (dchstatus & LSEQINT_MASK) {
865 		int lseq;
866 		u8  lseq_mask = dchstatus & LSEQINT_MASK;
867 
868 		for_each_sequencer(lseq_mask, lseq_mask, lseq) {
869 			u32 arp2int = asd_read_reg_dword(asd_ha,
870 							 LmARP2INT(lseq));
871 			if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
872 				       | ARP2CIOPERR)) {
873 				asd_printk("%s: LSEQ%d arp2int:0x%x\n",
874 					   pci_name(asd_ha->pcidev),
875 					   lseq, arp2int);
876 				/* XXX we should only do lseq reset */
877 			} else if (arp2int & ARP2HALTC)
878 				asd_printk("%s: LSEQ%d halted: %s\n",
879 					   pci_name(asd_ha->pcidev),
880 					   lseq,halt_code[(arp2int>>16)&0xFF]);
881 			else
882 				asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
883 					   pci_name(asd_ha->pcidev), lseq,
884 					   arp2int);
885 		}
886 	}
887 	asd_chip_reset(asd_ha);
888 }
889 
890 /**
891  * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
892  * @asd_ha: pointer to host adapter structure
893  */
894 static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
895 {
896 	u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
897 
898 	if (dchstatus & CFIFTOERR) {
899 		asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
900 		asd_chip_reset(asd_ha);
901 	} else
902 		asd_arp2_err(asd_ha, dchstatus);
903 }
904 
905 /**
906  * asd_rbi_exsi_isr -- process external system interface interrupt (INITERR)
907  * @asd_ha: pointer to host adapter structure
908  */
909 static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
910 {
911 	u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
912 
913 	if (!(stat0r & ASIERR)) {
914 		asd_printk("hmm, EXSI interrupted but no error?\n");
915 		return;
916 	}
917 
918 	if (stat0r & ASIFMTERR) {
919 		asd_printk("ASI SEEPROM format error for %s\n",
920 			   pci_name(asd_ha->pcidev));
921 	} else if (stat0r & ASISEECHKERR) {
922 		u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
923 		asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
924 			   stat1r & CHECKSUM_MASK,
925 			   pci_name(asd_ha->pcidev));
926 	} else {
927 		u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
928 
929 		if (!(statr & CPI2ASIMSTERR_MASK)) {
930 			ASD_DPRINTK("hmm, ASIERR?\n");
931 			return;
932 		} else {
933 			u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
934 			u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
935 
936 			asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
937 				   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
938 				   "master id: 0x%x, master err: 0x%x\n",
939 				   pci_name(asd_ha->pcidev),
940 				   addr, data,
941 				   (statr & CPI2ASIBYTECNT_MASK) >> 16,
942 				   (statr & CPI2ASIBYTEEN_MASK) >> 12,
943 				   (statr & CPI2ASITARGERR_MASK) >> 8,
944 				   (statr & CPI2ASITARGMID_MASK) >> 4,
945 				   (statr & CPI2ASIMSTERR_MASK));
946 		}
947 	}
948 	asd_chip_reset(asd_ha);
949 }
950 
951 /**
952  * asd_hst_pcix_isr -- process host interface interrupts
953  * @asd_ha: pointer to host adapter structure
954  *
955  * Asserted on PCIX errors: target abort, etc.
956  */
957 static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
958 {
959 	u16 status;
960 	u32 pcix_status;
961 	u32 ecc_status;
962 
963 	pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
964 	pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
965 	pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
966 
967 	if (status & PCI_STATUS_DETECTED_PARITY)
968 		asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
969 	else if (status & PCI_STATUS_REC_MASTER_ABORT)
970 		asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
971 	else if (status & PCI_STATUS_REC_TARGET_ABORT)
972 		asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
973 	else if (status & PCI_STATUS_PARITY)
974 		asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
975 	else if (pcix_status & RCV_SCE) {
976 		asd_printk("received split completion error for %s\n",
977 			   pci_name(asd_ha->pcidev));
978 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
979 		/* XXX: Abort task? */
980 		return;
981 	} else if (pcix_status & UNEXP_SC) {
982 		asd_printk("unexpected split completion for %s\n",
983 			   pci_name(asd_ha->pcidev));
984 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
985 		/* ignore */
986 		return;
987 	} else if (pcix_status & SC_DISCARD)
988 		asd_printk("split completion discarded for %s\n",
989 			   pci_name(asd_ha->pcidev));
990 	else if (ecc_status & UNCOR_ECCERR)
991 		asd_printk("uncorrectable ECC error for %s\n",
992 			   pci_name(asd_ha->pcidev));
993 	asd_chip_reset(asd_ha);
994 }
995 
996 /**
997  * asd_hw_isr -- host adapter interrupt service routine
998  * @irq: ignored
999  * @dev_id: pointer to host adapter structure
1000  *
1001  * The ISR processes done list entries and level 3 error handling.
1002  */
1003 irqreturn_t asd_hw_isr(int irq, void *dev_id)
1004 {
1005 	struct asd_ha_struct *asd_ha = dev_id;
1006 	u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1007 
1008 	if (!chimint)
1009 		return IRQ_NONE;
1010 
1011 	asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1012 	(void) asd_read_reg_dword(asd_ha, CHIMINT);
1013 
1014 	if (chimint & DLAVAIL)
1015 		asd_process_donelist_isr(asd_ha);
1016 	if (chimint & COMINT)
1017 		asd_com_sas_isr(asd_ha);
1018 	if (chimint & DEVINT)
1019 		asd_dch_sas_isr(asd_ha);
1020 	if (chimint & INITERR)
1021 		asd_rbi_exsi_isr(asd_ha);
1022 	if (chimint & HOSTERR)
1023 		asd_hst_pcix_isr(asd_ha);
1024 
1025 	return IRQ_HANDLED;
1026 }
1027 
1028 /* ---------- SCB handling ---------- */
1029 
1030 static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1031 				       gfp_t gfp_flags)
1032 {
1033 	extern struct kmem_cache *asd_ascb_cache;
1034 	struct asd_seq_data *seq = &asd_ha->seq;
1035 	struct asd_ascb *ascb;
1036 	unsigned long flags;
1037 
1038 	ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1039 
1040 	if (ascb) {
1041 		ascb->dma_scb.size = sizeof(struct scb);
1042 		ascb->dma_scb.vaddr = dma_pool_zalloc(asd_ha->scb_pool,
1043 						     gfp_flags,
1044 						    &ascb->dma_scb.dma_handle);
1045 		if (!ascb->dma_scb.vaddr) {
1046 			kmem_cache_free(asd_ascb_cache, ascb);
1047 			return NULL;
1048 		}
1049 		asd_init_ascb(asd_ha, ascb);
1050 
1051 		spin_lock_irqsave(&seq->tc_index_lock, flags);
1052 		ascb->tc_index = asd_tc_index_get(seq, ascb);
1053 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1054 		if (ascb->tc_index == -1)
1055 			goto undo;
1056 
1057 		ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1058 	}
1059 
1060 	return ascb;
1061 undo:
1062 	dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1063 		      ascb->dma_scb.dma_handle);
1064 	kmem_cache_free(asd_ascb_cache, ascb);
1065 	ASD_DPRINTK("no index for ascb\n");
1066 	return NULL;
1067 }
1068 
1069 /**
1070  * asd_ascb_alloc_list -- allocate a list of aSCBs
1071  * @asd_ha: pointer to host adapter structure
1072  * @num: pointer to integer number of aSCBs
1073  * @gfp_flags: GFP_ flags.
1074  *
1075  * This is the only function which is used to allocate aSCBs.
1076  * It can allocate one or many. If more than one, then they form
1077  * a linked list in two ways: by their list field of the ascb struct
1078  * and by the next_scb field of the scb_header.
1079  *
1080  * Returns NULL if no memory was available, else pointer to a list
1081  * of ascbs.  When this function returns, @num would be the number
1082  * of SCBs which were not able to be allocated, 0 if all requested
1083  * were able to be allocated.
1084  */
1085 struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1086 				     *asd_ha, int *num,
1087 				     gfp_t gfp_flags)
1088 {
1089 	struct asd_ascb *first = NULL;
1090 
1091 	for ( ; *num > 0; --*num) {
1092 		struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1093 
1094 		if (!ascb)
1095 			break;
1096 		else if (!first)
1097 			first = ascb;
1098 		else {
1099 			struct asd_ascb *last = list_entry(first->list.prev,
1100 							   struct asd_ascb,
1101 							   list);
1102 			list_add_tail(&ascb->list, &first->list);
1103 			last->scb->header.next_scb =
1104 				cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1105 		}
1106 	}
1107 
1108 	return first;
1109 }
1110 
1111 /**
1112  * asd_swap_head_scb -- swap the head scb
1113  * @asd_ha: pointer to host adapter structure
1114  * @ascb: pointer to the head of an ascb list
1115  *
1116  * The sequencer knows the DMA address of the next SCB to be DMAed to
1117  * the host adapter, from initialization or from the last list DMAed.
1118  * seq->next_scb keeps the address of this SCB.  The sequencer will
1119  * DMA to the host adapter this list of SCBs.  But the head (first
1120  * element) of this list is not known to the sequencer.  Here we swap
1121  * the head of the list with the known SCB (memcpy()).
1122  * Only one memcpy() is required per list so it is in our interest
1123  * to keep the list of SCB as long as possible so that the ratio
1124  * of number of memcpy calls to the number of SCB DMA-ed is as small
1125  * as possible.
1126  *
1127  * LOCKING: called with the pending list lock held.
1128  */
1129 static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1130 			      struct asd_ascb *ascb)
1131 {
1132 	struct asd_seq_data *seq = &asd_ha->seq;
1133 	struct asd_ascb *last = list_entry(ascb->list.prev,
1134 					   struct asd_ascb,
1135 					   list);
1136 	struct asd_dma_tok t = ascb->dma_scb;
1137 
1138 	memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1139 	ascb->dma_scb = seq->next_scb;
1140 	ascb->scb = ascb->dma_scb.vaddr;
1141 	seq->next_scb = t;
1142 	last->scb->header.next_scb =
1143 		cpu_to_le64(((u64)seq->next_scb.dma_handle));
1144 }
1145 
1146 /**
1147  * asd_start_scb_timers -- (add and) start timers of SCBs
1148  * @list: pointer to struct list_head of the scbs
1149  *
1150  * If an SCB in the @list has no timer function, assign the default
1151  * one,  then start the timer of the SCB.  This function is
1152  * intended to be called from asd_post_ascb_list(), just prior to
1153  * posting the SCBs to the sequencer.
1154  */
1155 static void asd_start_scb_timers(struct list_head *list)
1156 {
1157 	struct asd_ascb *ascb;
1158 	list_for_each_entry(ascb, list, list) {
1159 		if (!ascb->uldd_timer) {
1160 			ascb->timer.function = asd_ascb_timedout;
1161 			ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1162 			add_timer(&ascb->timer);
1163 		}
1164 	}
1165 }
1166 
1167 /**
1168  * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1169  * @asd_ha: pointer to a host adapter structure
1170  * @ascb: pointer to the first aSCB in the list
1171  * @num: number of aSCBs in the list (to be posted)
1172  *
1173  * See queueing comment in asd_post_escb_list().
1174  *
1175  * Additional note on queuing: In order to minimize the ratio of memcpy()
1176  * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1177  * in one go.
1178  * Two cases are possible:
1179  *    A) can_queue >= num,
1180  *    B) can_queue < num.
1181  * Case A: we can send the whole batch at once.  Increment "pending"
1182  * in the beginning of this function, when it is checked, in order to
1183  * eliminate races when this function is called by multiple processes.
1184  * Case B: should never happen.
1185  */
1186 int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1187 		       int num)
1188 {
1189 	unsigned long flags;
1190 	LIST_HEAD(list);
1191 	int can_queue;
1192 
1193 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1194 	can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1195 	if (can_queue >= num)
1196 		asd_ha->seq.pending += num;
1197 	else
1198 		can_queue = 0;
1199 
1200 	if (!can_queue) {
1201 		spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1202 		asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1203 		return -SAS_QUEUE_FULL;
1204 	}
1205 
1206 	asd_swap_head_scb(asd_ha, ascb);
1207 
1208 	__list_add(&list, ascb->list.prev, &ascb->list);
1209 
1210 	asd_start_scb_timers(&list);
1211 
1212 	asd_ha->seq.scbpro += num;
1213 	list_splice_init(&list, asd_ha->seq.pend_q.prev);
1214 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1215 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1216 
1217 	return 0;
1218 }
1219 
1220 /**
1221  * asd_post_escb_list -- post a list of 1 or more empty scb
1222  * @asd_ha: pointer to a host adapter structure
1223  * @ascb: pointer to the first empty SCB in the list
1224  * @num: number of aSCBs in the list (to be posted)
1225  *
1226  * This is essentially the same as asd_post_ascb_list, but we do not
1227  * increment pending, add those to the pending list or get indexes.
1228  * See asd_init_escbs() and asd_init_post_escbs().
1229  *
1230  * Since sending a list of ascbs is a superset of sending a single
1231  * ascb, this function exists to generalize this.  More specifically,
1232  * when sending a list of those, we want to do only a _single_
1233  * memcpy() at swap head, as opposed to for each ascb sent (in the
1234  * case of sending them one by one).  That is, we want to minimize the
1235  * ratio of memcpy() operations to the number of ascbs sent.  The same
1236  * logic applies to asd_post_ascb_list().
1237  */
1238 int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1239 		       int num)
1240 {
1241 	unsigned long flags;
1242 
1243 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1244 	asd_swap_head_scb(asd_ha, ascb);
1245 	asd_ha->seq.scbpro += num;
1246 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1247 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1248 
1249 	return 0;
1250 }
1251 
1252 /* ---------- LED ---------- */
1253 
1254 /**
1255  * asd_turn_led -- turn on/off an LED
1256  * @asd_ha: pointer to host adapter structure
1257  * @phy_id: the PHY id whose LED we want to manupulate
1258  * @op: 1 to turn on, 0 to turn off
1259  */
1260 void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1261 {
1262 	if (phy_id < ASD_MAX_PHYS) {
1263 		u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1264 		if (op)
1265 			v |= LEDPOL;
1266 		else
1267 			v &= ~LEDPOL;
1268 		asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1269 	}
1270 }
1271 
1272 /**
1273  * asd_control_led -- enable/disable an LED on the board
1274  * @asd_ha: pointer to host adapter structure
1275  * @phy_id: integer, the phy id
1276  * @op: integer, 1 to enable, 0 to disable the LED
1277  *
1278  * First we output enable the LED, then we set the source
1279  * to be an external module.
1280  */
1281 void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1282 {
1283 	if (phy_id < ASD_MAX_PHYS) {
1284 		u32 v;
1285 
1286 		v = asd_read_reg_dword(asd_ha, GPIOOER);
1287 		if (op)
1288 			v |= (1 << phy_id);
1289 		else
1290 			v &= ~(1 << phy_id);
1291 		asd_write_reg_dword(asd_ha, GPIOOER, v);
1292 
1293 		v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1294 		if (op)
1295 			v |= (1 << phy_id);
1296 		else
1297 			v &= ~(1 << phy_id);
1298 		asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1299 	}
1300 }
1301 
1302 /* ---------- PHY enable ---------- */
1303 
1304 static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1305 {
1306 	struct asd_phy *phy = &asd_ha->phys[phy_id];
1307 
1308 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1309 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1310 			   HOTPLUG_DELAY_TIMEOUT);
1311 
1312 	/* Get defaults from manuf. sector */
1313 	/* XXX we need defaults for those in case MS is broken. */
1314 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1315 			   phy->phy_desc->phy_control_0);
1316 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1317 			   phy->phy_desc->phy_control_1);
1318 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1319 			   phy->phy_desc->phy_control_2);
1320 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1321 			   phy->phy_desc->phy_control_3);
1322 
1323 	asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1324 			    ASD_COMINIT_TIMEOUT);
1325 
1326 	asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1327 			   phy->id_frm_tok->dma_handle);
1328 
1329 	asd_control_led(asd_ha, phy_id, 1);
1330 
1331 	return 0;
1332 }
1333 
1334 int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1335 {
1336 	u8  phy_m;
1337 	u8  i;
1338 	int num = 0, k;
1339 	struct asd_ascb *ascb;
1340 	struct asd_ascb *ascb_list;
1341 
1342 	if (!phy_mask) {
1343 		asd_printk("%s called with phy_mask of 0!?\n", __func__);
1344 		return 0;
1345 	}
1346 
1347 	for_each_phy(phy_mask, phy_m, i) {
1348 		num++;
1349 		asd_enable_phy(asd_ha, i);
1350 	}
1351 
1352 	k = num;
1353 	ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1354 	if (!ascb_list) {
1355 		asd_printk("no memory for control phy ascb list\n");
1356 		return -ENOMEM;
1357 	}
1358 	num -= k;
1359 
1360 	ascb = ascb_list;
1361 	for_each_phy(phy_mask, phy_m, i) {
1362 		asd_build_control_phy(ascb, i, ENABLE_PHY);
1363 		ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1364 	}
1365 	ASD_DPRINTK("posting %d control phy scbs\n", num);
1366 	k = asd_post_ascb_list(asd_ha, ascb_list, num);
1367 	if (k)
1368 		asd_ascb_free_list(ascb_list);
1369 
1370 	return k;
1371 }
1372