1 /*
2  * Aic94xx SAS/SATA driver hardware interface.
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This file is part of the aic94xx driver.
10  *
11  * The aic94xx driver is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License as
13  * published by the Free Software Foundation; version 2 of the
14  * License.
15  *
16  * The aic94xx driver is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with the aic94xx driver; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
24  *
25  */
26 
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/module.h>
31 #include <linux/firmware.h>
32 
33 #include "aic94xx.h"
34 #include "aic94xx_reg.h"
35 #include "aic94xx_hwi.h"
36 #include "aic94xx_seq.h"
37 #include "aic94xx_dump.h"
38 
39 u32 MBAR0_SWB_SIZE;
40 
41 /* ---------- Initialization ---------- */
42 
43 static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
44 {
45 	/* adapter came with a sas address */
46 	if (asd_ha->hw_prof.sas_addr[0])
47 		return 0;
48 
49 	return sas_request_addr(asd_ha->sas_ha.core.shost,
50 				asd_ha->hw_prof.sas_addr);
51 }
52 
53 static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
54 {
55 	int i;
56 
57 	for (i = 0; i < ASD_MAX_PHYS; i++) {
58 		if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
59 			continue;
60 		/* Set a phy's address only if it has none.
61 		 */
62 		ASD_DPRINTK("setting phy%d addr to %llx\n", i,
63 			    SAS_ADDR(asd_ha->hw_prof.sas_addr));
64 		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
65 		       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
66 	}
67 }
68 
69 /* ---------- PHY initialization ---------- */
70 
71 static void asd_init_phy_identify(struct asd_phy *phy)
72 {
73 	phy->identify_frame = phy->id_frm_tok->vaddr;
74 
75 	memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
76 
77 	phy->identify_frame->dev_type = SAS_END_DEVICE;
78 	if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
79 		phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
80 	if (phy->sas_phy.role & PHY_ROLE_TARGET)
81 		phy->identify_frame->target_bits = phy->sas_phy.tproto;
82 	memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
83 	       SAS_ADDR_SIZE);
84 	phy->identify_frame->phy_id = phy->sas_phy.id;
85 }
86 
87 static int asd_init_phy(struct asd_phy *phy)
88 {
89 	struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
90 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
91 
92 	sas_phy->enabled = 1;
93 	sas_phy->class = SAS;
94 	sas_phy->iproto = SAS_PROTOCOL_ALL;
95 	sas_phy->tproto = 0;
96 	sas_phy->type = PHY_TYPE_PHYSICAL;
97 	sas_phy->role = PHY_ROLE_INITIATOR;
98 	sas_phy->oob_mode = OOB_NOT_CONNECTED;
99 	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
100 
101 	phy->id_frm_tok = asd_alloc_coherent(asd_ha,
102 					     sizeof(*phy->identify_frame),
103 					     GFP_KERNEL);
104 	if (!phy->id_frm_tok) {
105 		asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
106 		return -ENOMEM;
107 	} else
108 		asd_init_phy_identify(phy);
109 
110 	memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
111 
112 	return 0;
113 }
114 
115 static void asd_init_ports(struct asd_ha_struct *asd_ha)
116 {
117 	int i;
118 
119 	spin_lock_init(&asd_ha->asd_ports_lock);
120 	for (i = 0; i < ASD_MAX_PHYS; i++) {
121 		struct asd_port *asd_port = &asd_ha->asd_ports[i];
122 
123 		memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
124 		memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
125 		asd_port->phy_mask = 0;
126 		asd_port->num_phys = 0;
127 	}
128 }
129 
130 static int asd_init_phys(struct asd_ha_struct *asd_ha)
131 {
132 	u8 i;
133 	u8 phy_mask = asd_ha->hw_prof.enabled_phys;
134 
135 	for (i = 0; i < ASD_MAX_PHYS; i++) {
136 		struct asd_phy *phy = &asd_ha->phys[i];
137 
138 		phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
139 		phy->asd_port = NULL;
140 
141 		phy->sas_phy.enabled = 0;
142 		phy->sas_phy.id = i;
143 		phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
144 		phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
145 		phy->sas_phy.ha = &asd_ha->sas_ha;
146 		phy->sas_phy.lldd_phy = phy;
147 	}
148 
149 	/* Now enable and initialize only the enabled phys. */
150 	for_each_phy(phy_mask, phy_mask, i) {
151 		int err = asd_init_phy(&asd_ha->phys[i]);
152 		if (err)
153 			return err;
154 	}
155 
156 	return 0;
157 }
158 
159 /* ---------- Sliding windows ---------- */
160 
161 static int asd_init_sw(struct asd_ha_struct *asd_ha)
162 {
163 	struct pci_dev *pcidev = asd_ha->pcidev;
164 	int err;
165 	u32 v;
166 
167 	/* Unlock MBARs */
168 	err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
169 	if (err) {
170 		asd_printk("couldn't access conf. space of %s\n",
171 			   pci_name(pcidev));
172 		goto Err;
173 	}
174 	if (v)
175 		err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
176 	if (err) {
177 		asd_printk("couldn't write to MBAR_KEY of %s\n",
178 			   pci_name(pcidev));
179 		goto Err;
180 	}
181 
182 	/* Set sliding windows A, B and C to point to proper internal
183 	 * memory regions.
184 	 */
185 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
186 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
187 			       REG_BASE_ADDR_CSEQCIO);
188 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
189 	asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
190 	asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
191 	asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
192 	MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
193 	if (!asd_ha->iospace) {
194 		/* MBAR1 will point to OCM (On Chip Memory) */
195 		pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
196 		asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
197 	}
198 	spin_lock_init(&asd_ha->iolock);
199 Err:
200 	return err;
201 }
202 
203 /* ---------- SCB initialization ---------- */
204 
205 /**
206  * asd_init_scbs - manually allocate the first SCB.
207  * @asd_ha: pointer to host adapter structure
208  *
209  * This allocates the very first SCB which would be sent to the
210  * sequencer for execution.  Its bus address is written to
211  * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
212  * the _next_ scb to be DMA-ed to the host adapter is read from the last
213  * SCB DMA-ed to the host adapter, we have to always stay one step
214  * ahead of the sequencer and keep one SCB already allocated.
215  */
216 static int asd_init_scbs(struct asd_ha_struct *asd_ha)
217 {
218 	struct asd_seq_data *seq = &asd_ha->seq;
219 	int bitmap_bytes;
220 
221 	/* allocate the index array and bitmap */
222 	asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
223 	asd_ha->seq.tc_index_array = kzalloc(asd_ha->seq.tc_index_bitmap_bits*
224 					     sizeof(void *), GFP_KERNEL);
225 	if (!asd_ha->seq.tc_index_array)
226 		return -ENOMEM;
227 
228 	bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
229 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
230 	asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
231 	if (!asd_ha->seq.tc_index_bitmap)
232 		return -ENOMEM;
233 
234 	spin_lock_init(&seq->tc_index_lock);
235 
236 	seq->next_scb.size = sizeof(struct scb);
237 	seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
238 					     &seq->next_scb.dma_handle);
239 	if (!seq->next_scb.vaddr) {
240 		kfree(asd_ha->seq.tc_index_bitmap);
241 		kfree(asd_ha->seq.tc_index_array);
242 		asd_ha->seq.tc_index_bitmap = NULL;
243 		asd_ha->seq.tc_index_array = NULL;
244 		return -ENOMEM;
245 	}
246 
247 	seq->pending = 0;
248 	spin_lock_init(&seq->pend_q_lock);
249 	INIT_LIST_HEAD(&seq->pend_q);
250 
251 	return 0;
252 }
253 
254 static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
255 {
256 	asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
257 	asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
258 	ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
259 		    asd_ha->hw_prof.max_scbs,
260 		    asd_ha->hw_prof.max_ddbs);
261 }
262 
263 /* ---------- Done List initialization ---------- */
264 
265 static void asd_dl_tasklet_handler(unsigned long);
266 
267 static int asd_init_dl(struct asd_ha_struct *asd_ha)
268 {
269 	asd_ha->seq.actual_dl
270 		= asd_alloc_coherent(asd_ha,
271 			     ASD_DL_SIZE * sizeof(struct done_list_struct),
272 				     GFP_KERNEL);
273 	if (!asd_ha->seq.actual_dl)
274 		return -ENOMEM;
275 	asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
276 	asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
277 	asd_ha->seq.dl_next = 0;
278 	tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
279 		     (unsigned long) asd_ha);
280 
281 	return 0;
282 }
283 
284 /* ---------- EDB and ESCB init ---------- */
285 
286 static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
287 {
288 	struct asd_seq_data *seq = &asd_ha->seq;
289 	int i;
290 
291 	seq->edb_arr = kmalloc(seq->num_edbs*sizeof(*seq->edb_arr), gfp_flags);
292 	if (!seq->edb_arr)
293 		return -ENOMEM;
294 
295 	for (i = 0; i < seq->num_edbs; i++) {
296 		seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
297 						     gfp_flags);
298 		if (!seq->edb_arr[i])
299 			goto Err_unroll;
300 		memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
301 	}
302 
303 	ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
304 
305 	return 0;
306 
307 Err_unroll:
308 	for (i-- ; i >= 0; i--)
309 		asd_free_coherent(asd_ha, seq->edb_arr[i]);
310 	kfree(seq->edb_arr);
311 	seq->edb_arr = NULL;
312 
313 	return -ENOMEM;
314 }
315 
316 static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
317 			   gfp_t gfp_flags)
318 {
319 	struct asd_seq_data *seq = &asd_ha->seq;
320 	struct asd_ascb *escb;
321 	int i, escbs;
322 
323 	seq->escb_arr = kmalloc(seq->num_escbs*sizeof(*seq->escb_arr),
324 				gfp_flags);
325 	if (!seq->escb_arr)
326 		return -ENOMEM;
327 
328 	escbs = seq->num_escbs;
329 	escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
330 	if (!escb) {
331 		asd_printk("couldn't allocate list of escbs\n");
332 		goto Err;
333 	}
334 	seq->num_escbs -= escbs;  /* subtract what was not allocated */
335 	ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
336 
337 	for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
338 							       struct asd_ascb,
339 							       list)) {
340 		seq->escb_arr[i] = escb;
341 		escb->scb->header.opcode = EMPTY_SCB;
342 	}
343 
344 	return 0;
345 Err:
346 	kfree(seq->escb_arr);
347 	seq->escb_arr = NULL;
348 	return -ENOMEM;
349 
350 }
351 
352 static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
353 {
354 	struct asd_seq_data *seq = &asd_ha->seq;
355 	int i, k, z = 0;
356 
357 	for (i = 0; i < seq->num_escbs; i++) {
358 		struct asd_ascb *ascb = seq->escb_arr[i];
359 		struct empty_scb *escb = &ascb->scb->escb;
360 
361 		ascb->edb_index = z;
362 
363 		escb->num_valid = ASD_EDBS_PER_SCB;
364 
365 		for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
366 			struct sg_el *eb = &escb->eb[k];
367 			struct asd_dma_tok *edb = seq->edb_arr[z++];
368 
369 			memset(eb, 0, sizeof(*eb));
370 			eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
371 			eb->size = cpu_to_le32(((u32) edb->size));
372 		}
373 	}
374 }
375 
376 /**
377  * asd_init_escbs -- allocate and initialize empty scbs
378  * @asd_ha: pointer to host adapter structure
379  *
380  * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
381  * They transport sense data, etc.
382  */
383 static int asd_init_escbs(struct asd_ha_struct *asd_ha)
384 {
385 	struct asd_seq_data *seq = &asd_ha->seq;
386 	int err = 0;
387 
388 	/* Allocate two empty data buffers (edb) per sequencer. */
389 	int edbs = 2*(1+asd_ha->hw_prof.num_phys);
390 
391 	seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
392 	seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
393 
394 	err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
395 	if (err) {
396 		asd_printk("couldn't allocate edbs\n");
397 		return err;
398 	}
399 
400 	err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
401 	if (err) {
402 		asd_printk("couldn't allocate escbs\n");
403 		return err;
404 	}
405 
406 	asd_assign_edbs2escbs(asd_ha);
407 	/* In order to insure that normal SCBs do not overfill sequencer
408 	 * memory and leave no space for escbs (halting condition),
409 	 * we increment pending here by the number of escbs.  However,
410 	 * escbs are never pending.
411 	 */
412 	seq->pending   = seq->num_escbs;
413 	seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
414 
415 	return 0;
416 }
417 
418 /* ---------- HW initialization ---------- */
419 
420 /**
421  * asd_chip_hardrst -- hard reset the chip
422  * @asd_ha: pointer to host adapter structure
423  *
424  * This takes 16 cycles and is synchronous to CFCLK, which runs
425  * at 200 MHz, so this should take at most 80 nanoseconds.
426  */
427 int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
428 {
429 	int i;
430 	int count = 100;
431 	u32 reg;
432 
433 	for (i = 0 ; i < 4 ; i++) {
434 		asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
435 	}
436 
437 	do {
438 		udelay(1);
439 		reg = asd_read_reg_dword(asd_ha, CHIMINT);
440 		if (reg & HARDRSTDET) {
441 			asd_write_reg_dword(asd_ha, CHIMINT,
442 					    HARDRSTDET|PORRSTDET);
443 			return 0;
444 		}
445 	} while (--count > 0);
446 
447 	return -ENODEV;
448 }
449 
450 /**
451  * asd_init_chip -- initialize the chip
452  * @asd_ha: pointer to host adapter structure
453  *
454  * Hard resets the chip, disables HA interrupts, downloads the sequnecer
455  * microcode and starts the sequencers.  The caller has to explicitly
456  * enable HA interrupts with asd_enable_ints(asd_ha).
457  */
458 static int asd_init_chip(struct asd_ha_struct *asd_ha)
459 {
460 	int err;
461 
462 	err = asd_chip_hardrst(asd_ha);
463 	if (err) {
464 		asd_printk("couldn't hard reset %s\n",
465 			    pci_name(asd_ha->pcidev));
466 		goto out;
467 	}
468 
469 	asd_disable_ints(asd_ha);
470 
471 	err = asd_init_seqs(asd_ha);
472 	if (err) {
473 		asd_printk("couldn't init seqs for %s\n",
474 			   pci_name(asd_ha->pcidev));
475 		goto out;
476 	}
477 
478 	err = asd_start_seqs(asd_ha);
479 	if (err) {
480 		asd_printk("couldn't start seqs for %s\n",
481 			   pci_name(asd_ha->pcidev));
482 		goto out;
483 	}
484 out:
485 	return err;
486 }
487 
488 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
489 
490 static int max_devs = 0;
491 module_param_named(max_devs, max_devs, int, S_IRUGO);
492 MODULE_PARM_DESC(max_devs, "\n"
493 	"\tMaximum number of SAS devices to support (not LUs).\n"
494 	"\tDefault: 2176, Maximum: 65663.\n");
495 
496 static int max_cmnds = 0;
497 module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
498 MODULE_PARM_DESC(max_cmnds, "\n"
499 	"\tMaximum number of commands queuable.\n"
500 	"\tDefault: 512, Maximum: 66047.\n");
501 
502 static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
503 {
504 	unsigned long dma_addr = OCM_BASE_ADDR;
505 	u32 d;
506 
507 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
508 	asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
509 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
510 	d |= 4;
511 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
512 	asd_ha->hw_prof.max_ddbs += MAX_DEVS;
513 }
514 
515 static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
516 {
517 	dma_addr_t dma_handle;
518 	unsigned long dma_addr;
519 	u32 d;
520 	int size;
521 
522 	asd_extend_devctx_ocm(asd_ha);
523 
524 	asd_ha->hw_prof.ddb_ext = NULL;
525 	if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
526 		max_devs = asd_ha->hw_prof.max_ddbs;
527 		return 0;
528 	}
529 
530 	size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
531 
532 	asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
533 	if (!asd_ha->hw_prof.ddb_ext) {
534 		asd_printk("couldn't allocate memory for %d devices\n",
535 			   max_devs);
536 		max_devs = asd_ha->hw_prof.max_ddbs;
537 		return -ENOMEM;
538 	}
539 	dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
540 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
541 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
542 	dma_handle = (dma_addr_t) dma_addr;
543 	asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
544 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
545 	d &= ~4;
546 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
547 
548 	asd_ha->hw_prof.max_ddbs = max_devs;
549 
550 	return 0;
551 }
552 
553 static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
554 {
555 	dma_addr_t dma_handle;
556 	unsigned long dma_addr;
557 	u32 d;
558 	int size;
559 
560 	asd_ha->hw_prof.scb_ext = NULL;
561 	if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
562 		max_cmnds = asd_ha->hw_prof.max_scbs;
563 		return 0;
564 	}
565 
566 	size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
567 
568 	asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
569 	if (!asd_ha->hw_prof.scb_ext) {
570 		asd_printk("couldn't allocate memory for %d commands\n",
571 			   max_cmnds);
572 		max_cmnds = asd_ha->hw_prof.max_scbs;
573 		return -ENOMEM;
574 	}
575 	dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
576 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
577 	dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
578 	dma_handle = (dma_addr_t) dma_addr;
579 	asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
580 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
581 	d &= ~1;
582 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
583 
584 	asd_ha->hw_prof.max_scbs = max_cmnds;
585 
586 	return 0;
587 }
588 
589 /**
590  * asd_init_ctxmem -- initialize context memory
591  * asd_ha: pointer to host adapter structure
592  *
593  * This function sets the maximum number of SCBs and
594  * DDBs which can be used by the sequencer.  This is normally
595  * 512 and 128 respectively.  If support for more SCBs or more DDBs
596  * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
597  * initialized here to extend context memory to point to host memory,
598  * thus allowing unlimited support for SCBs and DDBs -- only limited
599  * by host memory.
600  */
601 static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
602 {
603 	int bitmap_bytes;
604 
605 	asd_get_max_scb_ddb(asd_ha);
606 	asd_extend_devctx(asd_ha);
607 	asd_extend_cmdctx(asd_ha);
608 
609 	/* The kernel wants bitmaps to be unsigned long sized. */
610 	bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
611 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
612 	asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
613 	if (!asd_ha->hw_prof.ddb_bitmap)
614 		return -ENOMEM;
615 	spin_lock_init(&asd_ha->hw_prof.ddb_lock);
616 
617 	return 0;
618 }
619 
620 int asd_init_hw(struct asd_ha_struct *asd_ha)
621 {
622 	int err;
623 	u32 v;
624 
625 	err = asd_init_sw(asd_ha);
626 	if (err)
627 		return err;
628 
629 	err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
630 	if (err) {
631 		asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
632 			   pci_name(asd_ha->pcidev));
633 		return err;
634 	}
635 	err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
636 					v | SC_TMR_DIS);
637 	if (err) {
638 		asd_printk("couldn't disable split completion timer of %s\n",
639 			   pci_name(asd_ha->pcidev));
640 		return err;
641 	}
642 
643 	err = asd_read_ocm(asd_ha);
644 	if (err) {
645 		asd_printk("couldn't read ocm(%d)\n", err);
646 		/* While suspicios, it is not an error that we
647 		 * couldn't read the OCM. */
648 	}
649 
650 	err = asd_read_flash(asd_ha);
651 	if (err) {
652 		asd_printk("couldn't read flash(%d)\n", err);
653 		/* While suspicios, it is not an error that we
654 		 * couldn't read FLASH memory.
655 		 */
656 	}
657 
658 	asd_init_ctxmem(asd_ha);
659 
660 	if (asd_get_user_sas_addr(asd_ha)) {
661 		asd_printk("No SAS Address provided for %s\n",
662 			   pci_name(asd_ha->pcidev));
663 		err = -ENODEV;
664 		goto Out;
665 	}
666 
667 	asd_propagate_sas_addr(asd_ha);
668 
669 	err = asd_init_phys(asd_ha);
670 	if (err) {
671 		asd_printk("couldn't initialize phys for %s\n",
672 			    pci_name(asd_ha->pcidev));
673 		goto Out;
674 	}
675 
676 	asd_init_ports(asd_ha);
677 
678 	err = asd_init_scbs(asd_ha);
679 	if (err) {
680 		asd_printk("couldn't initialize scbs for %s\n",
681 			    pci_name(asd_ha->pcidev));
682 		goto Out;
683 	}
684 
685 	err = asd_init_dl(asd_ha);
686 	if (err) {
687 		asd_printk("couldn't initialize the done list:%d\n",
688 			    err);
689 		goto Out;
690 	}
691 
692 	err = asd_init_escbs(asd_ha);
693 	if (err) {
694 		asd_printk("couldn't initialize escbs\n");
695 		goto Out;
696 	}
697 
698 	err = asd_init_chip(asd_ha);
699 	if (err) {
700 		asd_printk("couldn't init the chip\n");
701 		goto Out;
702 	}
703 Out:
704 	return err;
705 }
706 
707 /* ---------- Chip reset ---------- */
708 
709 /**
710  * asd_chip_reset -- reset the host adapter, etc
711  * @asd_ha: pointer to host adapter structure of interest
712  *
713  * Called from the ISR.  Hard reset the chip.  Let everything
714  * timeout.  This should be no different than hot-unplugging the
715  * host adapter.  Once everything times out we'll init the chip with
716  * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
717  * XXX finish.
718  */
719 static void asd_chip_reset(struct asd_ha_struct *asd_ha)
720 {
721 	struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
722 
723 	ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
724 	asd_chip_hardrst(asd_ha);
725 	sas_ha->notify_ha_event(sas_ha, HAE_RESET);
726 }
727 
728 /* ---------- Done List Routines ---------- */
729 
730 static void asd_dl_tasklet_handler(unsigned long data)
731 {
732 	struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
733 	struct asd_seq_data *seq = &asd_ha->seq;
734 	unsigned long flags;
735 
736 	while (1) {
737 		struct done_list_struct *dl = &seq->dl[seq->dl_next];
738 		struct asd_ascb *ascb;
739 
740 		if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
741 			break;
742 
743 		/* find the aSCB */
744 		spin_lock_irqsave(&seq->tc_index_lock, flags);
745 		ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
746 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
747 		if (unlikely(!ascb)) {
748 			ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
749 			goto next_1;
750 		} else if (ascb->scb->header.opcode == EMPTY_SCB) {
751 			goto out;
752 		} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
753 			goto next_1;
754 		}
755 		spin_lock_irqsave(&seq->pend_q_lock, flags);
756 		list_del_init(&ascb->list);
757 		seq->pending--;
758 		spin_unlock_irqrestore(&seq->pend_q_lock, flags);
759 	out:
760 		ascb->tasklet_complete(ascb, dl);
761 
762 	next_1:
763 		seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
764 		if (!seq->dl_next)
765 			seq->dl_toggle ^= DL_TOGGLE_MASK;
766 	}
767 }
768 
769 /* ---------- Interrupt Service Routines ---------- */
770 
771 /**
772  * asd_process_donelist_isr -- schedule processing of done list entries
773  * @asd_ha: pointer to host adapter structure
774  */
775 static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
776 {
777 	tasklet_schedule(&asd_ha->seq.dl_tasklet);
778 }
779 
780 /**
781  * asd_com_sas_isr -- process device communication interrupt (COMINT)
782  * @asd_ha: pointer to host adapter structure
783  */
784 static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
785 {
786 	u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
787 
788 	/* clear COMSTAT int */
789 	asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
790 
791 	if (comstat & CSBUFPERR) {
792 		asd_printk("%s: command/status buffer dma parity error\n",
793 			   pci_name(asd_ha->pcidev));
794 	} else if (comstat & CSERR) {
795 		int i;
796 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
797 		dmaerr &= 0xFF;
798 		asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
799 			   "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
800 			   pci_name(asd_ha->pcidev),
801 			   dmaerr,
802 			   asd_read_reg_dword(asd_ha, CSDMAADR),
803 			   asd_read_reg_dword(asd_ha, CSDMAADR+4));
804 		asd_printk("CSBUFFER:\n");
805 		for (i = 0; i < 8; i++) {
806 			asd_printk("%08x %08x %08x %08x\n",
807 				   asd_read_reg_dword(asd_ha, CSBUFFER),
808 				   asd_read_reg_dword(asd_ha, CSBUFFER+4),
809 				   asd_read_reg_dword(asd_ha, CSBUFFER+8),
810 				   asd_read_reg_dword(asd_ha, CSBUFFER+12));
811 		}
812 		asd_dump_seq_state(asd_ha, 0);
813 	} else if (comstat & OVLYERR) {
814 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
815 		dmaerr = (dmaerr >> 8) & 0xFF;
816 		asd_printk("%s: overlay dma error:0x%x\n",
817 			   pci_name(asd_ha->pcidev),
818 			   dmaerr);
819 	}
820 	asd_chip_reset(asd_ha);
821 }
822 
823 static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
824 {
825 	static const char *halt_code[256] = {
826 		"UNEXPECTED_INTERRUPT0",
827 		"UNEXPECTED_INTERRUPT1",
828 		"UNEXPECTED_INTERRUPT2",
829 		"UNEXPECTED_INTERRUPT3",
830 		"UNEXPECTED_INTERRUPT4",
831 		"UNEXPECTED_INTERRUPT5",
832 		"UNEXPECTED_INTERRUPT6",
833 		"UNEXPECTED_INTERRUPT7",
834 		"UNEXPECTED_INTERRUPT8",
835 		"UNEXPECTED_INTERRUPT9",
836 		"UNEXPECTED_INTERRUPT10",
837 		[11 ... 19] = "unknown[11,19]",
838 		"NO_FREE_SCB_AVAILABLE",
839 		"INVALID_SCB_OPCODE",
840 		"INVALID_MBX_OPCODE",
841 		"INVALID_ATA_STATE",
842 		"ATA_QUEUE_FULL",
843 		"ATA_TAG_TABLE_FAULT",
844 		"ATA_TAG_MASK_FAULT",
845 		"BAD_LINK_QUEUE_STATE",
846 		"DMA2CHIM_QUEUE_ERROR",
847 		"EMPTY_SCB_LIST_FULL",
848 		"unknown[30]",
849 		"IN_USE_SCB_ON_FREE_LIST",
850 		"BAD_OPEN_WAIT_STATE",
851 		"INVALID_STP_AFFILIATION",
852 		"unknown[34]",
853 		"EXEC_QUEUE_ERROR",
854 		"TOO_MANY_EMPTIES_NEEDED",
855 		"EMPTY_REQ_QUEUE_ERROR",
856 		"Q_MONIRTT_MGMT_ERROR",
857 		"TARGET_MODE_FLOW_ERROR",
858 		"DEVICE_QUEUE_NOT_FOUND",
859 		"START_IRTT_TIMER_ERROR",
860 		"ABORT_TASK_ILLEGAL_REQ",
861 		[43 ... 255] = "unknown[43,255]"
862 	};
863 
864 	if (dchstatus & CSEQINT) {
865 		u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
866 
867 		if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
868 			asd_printk("%s: CSEQ arp2int:0x%x\n",
869 				   pci_name(asd_ha->pcidev),
870 				   arp2int);
871 		} else if (arp2int & ARP2HALTC)
872 			asd_printk("%s: CSEQ halted: %s\n",
873 				   pci_name(asd_ha->pcidev),
874 				   halt_code[(arp2int>>16)&0xFF]);
875 		else
876 			asd_printk("%s: CARP2INT:0x%x\n",
877 				   pci_name(asd_ha->pcidev),
878 				   arp2int);
879 	}
880 	if (dchstatus & LSEQINT_MASK) {
881 		int lseq;
882 		u8  lseq_mask = dchstatus & LSEQINT_MASK;
883 
884 		for_each_sequencer(lseq_mask, lseq_mask, lseq) {
885 			u32 arp2int = asd_read_reg_dword(asd_ha,
886 							 LmARP2INT(lseq));
887 			if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
888 				       | ARP2CIOPERR)) {
889 				asd_printk("%s: LSEQ%d arp2int:0x%x\n",
890 					   pci_name(asd_ha->pcidev),
891 					   lseq, arp2int);
892 				/* XXX we should only do lseq reset */
893 			} else if (arp2int & ARP2HALTC)
894 				asd_printk("%s: LSEQ%d halted: %s\n",
895 					   pci_name(asd_ha->pcidev),
896 					   lseq,halt_code[(arp2int>>16)&0xFF]);
897 			else
898 				asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
899 					   pci_name(asd_ha->pcidev), lseq,
900 					   arp2int);
901 		}
902 	}
903 	asd_chip_reset(asd_ha);
904 }
905 
906 /**
907  * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
908  * @asd_ha: pointer to host adapter structure
909  */
910 static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
911 {
912 	u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
913 
914 	if (dchstatus & CFIFTOERR) {
915 		asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
916 		asd_chip_reset(asd_ha);
917 	} else
918 		asd_arp2_err(asd_ha, dchstatus);
919 }
920 
921 /**
922  * ads_rbi_exsi_isr -- process external system interface interrupt (INITERR)
923  * @asd_ha: pointer to host adapter structure
924  */
925 static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
926 {
927 	u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
928 
929 	if (!(stat0r & ASIERR)) {
930 		asd_printk("hmm, EXSI interrupted but no error?\n");
931 		return;
932 	}
933 
934 	if (stat0r & ASIFMTERR) {
935 		asd_printk("ASI SEEPROM format error for %s\n",
936 			   pci_name(asd_ha->pcidev));
937 	} else if (stat0r & ASISEECHKERR) {
938 		u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
939 		asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
940 			   stat1r & CHECKSUM_MASK,
941 			   pci_name(asd_ha->pcidev));
942 	} else {
943 		u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
944 
945 		if (!(statr & CPI2ASIMSTERR_MASK)) {
946 			ASD_DPRINTK("hmm, ASIERR?\n");
947 			return;
948 		} else {
949 			u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
950 			u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
951 
952 			asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
953 				   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
954 				   "master id: 0x%x, master err: 0x%x\n",
955 				   pci_name(asd_ha->pcidev),
956 				   addr, data,
957 				   (statr & CPI2ASIBYTECNT_MASK) >> 16,
958 				   (statr & CPI2ASIBYTEEN_MASK) >> 12,
959 				   (statr & CPI2ASITARGERR_MASK) >> 8,
960 				   (statr & CPI2ASITARGMID_MASK) >> 4,
961 				   (statr & CPI2ASIMSTERR_MASK));
962 		}
963 	}
964 	asd_chip_reset(asd_ha);
965 }
966 
967 /**
968  * asd_hst_pcix_isr -- process host interface interrupts
969  * @asd_ha: pointer to host adapter structure
970  *
971  * Asserted on PCIX errors: target abort, etc.
972  */
973 static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
974 {
975 	u16 status;
976 	u32 pcix_status;
977 	u32 ecc_status;
978 
979 	pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
980 	pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
981 	pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
982 
983 	if (status & PCI_STATUS_DETECTED_PARITY)
984 		asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
985 	else if (status & PCI_STATUS_REC_MASTER_ABORT)
986 		asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
987 	else if (status & PCI_STATUS_REC_TARGET_ABORT)
988 		asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
989 	else if (status & PCI_STATUS_PARITY)
990 		asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
991 	else if (pcix_status & RCV_SCE) {
992 		asd_printk("received split completion error for %s\n",
993 			   pci_name(asd_ha->pcidev));
994 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
995 		/* XXX: Abort task? */
996 		return;
997 	} else if (pcix_status & UNEXP_SC) {
998 		asd_printk("unexpected split completion for %s\n",
999 			   pci_name(asd_ha->pcidev));
1000 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
1001 		/* ignore */
1002 		return;
1003 	} else if (pcix_status & SC_DISCARD)
1004 		asd_printk("split completion discarded for %s\n",
1005 			   pci_name(asd_ha->pcidev));
1006 	else if (ecc_status & UNCOR_ECCERR)
1007 		asd_printk("uncorrectable ECC error for %s\n",
1008 			   pci_name(asd_ha->pcidev));
1009 	asd_chip_reset(asd_ha);
1010 }
1011 
1012 /**
1013  * asd_hw_isr -- host adapter interrupt service routine
1014  * @irq: ignored
1015  * @dev_id: pointer to host adapter structure
1016  *
1017  * The ISR processes done list entries and level 3 error handling.
1018  */
1019 irqreturn_t asd_hw_isr(int irq, void *dev_id)
1020 {
1021 	struct asd_ha_struct *asd_ha = dev_id;
1022 	u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1023 
1024 	if (!chimint)
1025 		return IRQ_NONE;
1026 
1027 	asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1028 	(void) asd_read_reg_dword(asd_ha, CHIMINT);
1029 
1030 	if (chimint & DLAVAIL)
1031 		asd_process_donelist_isr(asd_ha);
1032 	if (chimint & COMINT)
1033 		asd_com_sas_isr(asd_ha);
1034 	if (chimint & DEVINT)
1035 		asd_dch_sas_isr(asd_ha);
1036 	if (chimint & INITERR)
1037 		asd_rbi_exsi_isr(asd_ha);
1038 	if (chimint & HOSTERR)
1039 		asd_hst_pcix_isr(asd_ha);
1040 
1041 	return IRQ_HANDLED;
1042 }
1043 
1044 /* ---------- SCB handling ---------- */
1045 
1046 static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1047 				       gfp_t gfp_flags)
1048 {
1049 	extern struct kmem_cache *asd_ascb_cache;
1050 	struct asd_seq_data *seq = &asd_ha->seq;
1051 	struct asd_ascb *ascb;
1052 	unsigned long flags;
1053 
1054 	ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1055 
1056 	if (ascb) {
1057 		ascb->dma_scb.size = sizeof(struct scb);
1058 		ascb->dma_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool,
1059 						     gfp_flags,
1060 						    &ascb->dma_scb.dma_handle);
1061 		if (!ascb->dma_scb.vaddr) {
1062 			kmem_cache_free(asd_ascb_cache, ascb);
1063 			return NULL;
1064 		}
1065 		memset(ascb->dma_scb.vaddr, 0, sizeof(struct scb));
1066 		asd_init_ascb(asd_ha, ascb);
1067 
1068 		spin_lock_irqsave(&seq->tc_index_lock, flags);
1069 		ascb->tc_index = asd_tc_index_get(seq, ascb);
1070 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1071 		if (ascb->tc_index == -1)
1072 			goto undo;
1073 
1074 		ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1075 	}
1076 
1077 	return ascb;
1078 undo:
1079 	dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1080 		      ascb->dma_scb.dma_handle);
1081 	kmem_cache_free(asd_ascb_cache, ascb);
1082 	ASD_DPRINTK("no index for ascb\n");
1083 	return NULL;
1084 }
1085 
1086 /**
1087  * asd_ascb_alloc_list -- allocate a list of aSCBs
1088  * @asd_ha: pointer to host adapter structure
1089  * @num: pointer to integer number of aSCBs
1090  * @gfp_flags: GFP_ flags.
1091  *
1092  * This is the only function which is used to allocate aSCBs.
1093  * It can allocate one or many. If more than one, then they form
1094  * a linked list in two ways: by their list field of the ascb struct
1095  * and by the next_scb field of the scb_header.
1096  *
1097  * Returns NULL if no memory was available, else pointer to a list
1098  * of ascbs.  When this function returns, @num would be the number
1099  * of SCBs which were not able to be allocated, 0 if all requested
1100  * were able to be allocated.
1101  */
1102 struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1103 				     *asd_ha, int *num,
1104 				     gfp_t gfp_flags)
1105 {
1106 	struct asd_ascb *first = NULL;
1107 
1108 	for ( ; *num > 0; --*num) {
1109 		struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1110 
1111 		if (!ascb)
1112 			break;
1113 		else if (!first)
1114 			first = ascb;
1115 		else {
1116 			struct asd_ascb *last = list_entry(first->list.prev,
1117 							   struct asd_ascb,
1118 							   list);
1119 			list_add_tail(&ascb->list, &first->list);
1120 			last->scb->header.next_scb =
1121 				cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1122 		}
1123 	}
1124 
1125 	return first;
1126 }
1127 
1128 /**
1129  * asd_swap_head_scb -- swap the head scb
1130  * @asd_ha: pointer to host adapter structure
1131  * @ascb: pointer to the head of an ascb list
1132  *
1133  * The sequencer knows the DMA address of the next SCB to be DMAed to
1134  * the host adapter, from initialization or from the last list DMAed.
1135  * seq->next_scb keeps the address of this SCB.  The sequencer will
1136  * DMA to the host adapter this list of SCBs.  But the head (first
1137  * element) of this list is not known to the sequencer.  Here we swap
1138  * the head of the list with the known SCB (memcpy()).
1139  * Only one memcpy() is required per list so it is in our interest
1140  * to keep the list of SCB as long as possible so that the ratio
1141  * of number of memcpy calls to the number of SCB DMA-ed is as small
1142  * as possible.
1143  *
1144  * LOCKING: called with the pending list lock held.
1145  */
1146 static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1147 			      struct asd_ascb *ascb)
1148 {
1149 	struct asd_seq_data *seq = &asd_ha->seq;
1150 	struct asd_ascb *last = list_entry(ascb->list.prev,
1151 					   struct asd_ascb,
1152 					   list);
1153 	struct asd_dma_tok t = ascb->dma_scb;
1154 
1155 	memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1156 	ascb->dma_scb = seq->next_scb;
1157 	ascb->scb = ascb->dma_scb.vaddr;
1158 	seq->next_scb = t;
1159 	last->scb->header.next_scb =
1160 		cpu_to_le64(((u64)seq->next_scb.dma_handle));
1161 }
1162 
1163 /**
1164  * asd_start_timers -- (add and) start timers of SCBs
1165  * @list: pointer to struct list_head of the scbs
1166  * @to: timeout in jiffies
1167  *
1168  * If an SCB in the @list has no timer function, assign the default
1169  * one,  then start the timer of the SCB.  This function is
1170  * intended to be called from asd_post_ascb_list(), just prior to
1171  * posting the SCBs to the sequencer.
1172  */
1173 static void asd_start_scb_timers(struct list_head *list)
1174 {
1175 	struct asd_ascb *ascb;
1176 	list_for_each_entry(ascb, list, list) {
1177 		if (!ascb->uldd_timer) {
1178 			ascb->timer.data = (unsigned long) ascb;
1179 			ascb->timer.function = asd_ascb_timedout;
1180 			ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1181 			add_timer(&ascb->timer);
1182 		}
1183 	}
1184 }
1185 
1186 /**
1187  * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1188  * @asd_ha: pointer to a host adapter structure
1189  * @ascb: pointer to the first aSCB in the list
1190  * @num: number of aSCBs in the list (to be posted)
1191  *
1192  * See queueing comment in asd_post_escb_list().
1193  *
1194  * Additional note on queuing: In order to minimize the ratio of memcpy()
1195  * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1196  * in one go.
1197  * Two cases are possible:
1198  *    A) can_queue >= num,
1199  *    B) can_queue < num.
1200  * Case A: we can send the whole batch at once.  Increment "pending"
1201  * in the beginning of this function, when it is checked, in order to
1202  * eliminate races when this function is called by multiple processes.
1203  * Case B: should never happen.
1204  */
1205 int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1206 		       int num)
1207 {
1208 	unsigned long flags;
1209 	LIST_HEAD(list);
1210 	int can_queue;
1211 
1212 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1213 	can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1214 	if (can_queue >= num)
1215 		asd_ha->seq.pending += num;
1216 	else
1217 		can_queue = 0;
1218 
1219 	if (!can_queue) {
1220 		spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1221 		asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1222 		return -SAS_QUEUE_FULL;
1223 	}
1224 
1225 	asd_swap_head_scb(asd_ha, ascb);
1226 
1227 	__list_add(&list, ascb->list.prev, &ascb->list);
1228 
1229 	asd_start_scb_timers(&list);
1230 
1231 	asd_ha->seq.scbpro += num;
1232 	list_splice_init(&list, asd_ha->seq.pend_q.prev);
1233 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1234 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1235 
1236 	return 0;
1237 }
1238 
1239 /**
1240  * asd_post_escb_list -- post a list of 1 or more empty scb
1241  * @asd_ha: pointer to a host adapter structure
1242  * @ascb: pointer to the first empty SCB in the list
1243  * @num: number of aSCBs in the list (to be posted)
1244  *
1245  * This is essentially the same as asd_post_ascb_list, but we do not
1246  * increment pending, add those to the pending list or get indexes.
1247  * See asd_init_escbs() and asd_init_post_escbs().
1248  *
1249  * Since sending a list of ascbs is a superset of sending a single
1250  * ascb, this function exists to generalize this.  More specifically,
1251  * when sending a list of those, we want to do only a _single_
1252  * memcpy() at swap head, as opposed to for each ascb sent (in the
1253  * case of sending them one by one).  That is, we want to minimize the
1254  * ratio of memcpy() operations to the number of ascbs sent.  The same
1255  * logic applies to asd_post_ascb_list().
1256  */
1257 int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1258 		       int num)
1259 {
1260 	unsigned long flags;
1261 
1262 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1263 	asd_swap_head_scb(asd_ha, ascb);
1264 	asd_ha->seq.scbpro += num;
1265 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1266 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1267 
1268 	return 0;
1269 }
1270 
1271 /* ---------- LED ---------- */
1272 
1273 /**
1274  * asd_turn_led -- turn on/off an LED
1275  * @asd_ha: pointer to host adapter structure
1276  * @phy_id: the PHY id whose LED we want to manupulate
1277  * @op: 1 to turn on, 0 to turn off
1278  */
1279 void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1280 {
1281 	if (phy_id < ASD_MAX_PHYS) {
1282 		u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1283 		if (op)
1284 			v |= LEDPOL;
1285 		else
1286 			v &= ~LEDPOL;
1287 		asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1288 	}
1289 }
1290 
1291 /**
1292  * asd_control_led -- enable/disable an LED on the board
1293  * @asd_ha: pointer to host adapter structure
1294  * @phy_id: integer, the phy id
1295  * @op: integer, 1 to enable, 0 to disable the LED
1296  *
1297  * First we output enable the LED, then we set the source
1298  * to be an external module.
1299  */
1300 void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1301 {
1302 	if (phy_id < ASD_MAX_PHYS) {
1303 		u32 v;
1304 
1305 		v = asd_read_reg_dword(asd_ha, GPIOOER);
1306 		if (op)
1307 			v |= (1 << phy_id);
1308 		else
1309 			v &= ~(1 << phy_id);
1310 		asd_write_reg_dword(asd_ha, GPIOOER, v);
1311 
1312 		v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1313 		if (op)
1314 			v |= (1 << phy_id);
1315 		else
1316 			v &= ~(1 << phy_id);
1317 		asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1318 	}
1319 }
1320 
1321 /* ---------- PHY enable ---------- */
1322 
1323 static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1324 {
1325 	struct asd_phy *phy = &asd_ha->phys[phy_id];
1326 
1327 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1328 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1329 			   HOTPLUG_DELAY_TIMEOUT);
1330 
1331 	/* Get defaults from manuf. sector */
1332 	/* XXX we need defaults for those in case MS is broken. */
1333 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1334 			   phy->phy_desc->phy_control_0);
1335 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1336 			   phy->phy_desc->phy_control_1);
1337 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1338 			   phy->phy_desc->phy_control_2);
1339 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1340 			   phy->phy_desc->phy_control_3);
1341 
1342 	asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1343 			    ASD_COMINIT_TIMEOUT);
1344 
1345 	asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1346 			   phy->id_frm_tok->dma_handle);
1347 
1348 	asd_control_led(asd_ha, phy_id, 1);
1349 
1350 	return 0;
1351 }
1352 
1353 int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1354 {
1355 	u8  phy_m;
1356 	u8  i;
1357 	int num = 0, k;
1358 	struct asd_ascb *ascb;
1359 	struct asd_ascb *ascb_list;
1360 
1361 	if (!phy_mask) {
1362 		asd_printk("%s called with phy_mask of 0!?\n", __func__);
1363 		return 0;
1364 	}
1365 
1366 	for_each_phy(phy_mask, phy_m, i) {
1367 		num++;
1368 		asd_enable_phy(asd_ha, i);
1369 	}
1370 
1371 	k = num;
1372 	ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1373 	if (!ascb_list) {
1374 		asd_printk("no memory for control phy ascb list\n");
1375 		return -ENOMEM;
1376 	}
1377 	num -= k;
1378 
1379 	ascb = ascb_list;
1380 	for_each_phy(phy_mask, phy_m, i) {
1381 		asd_build_control_phy(ascb, i, ENABLE_PHY);
1382 		ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1383 	}
1384 	ASD_DPRINTK("posting %d control phy scbs\n", num);
1385 	k = asd_post_ascb_list(asd_ha, ascb_list, num);
1386 	if (k)
1387 		asd_ascb_free_list(ascb_list);
1388 
1389 	return k;
1390 }
1391