1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Aic94xx SAS/SATA driver hardware interface.
4  *
5  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
6  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
7  */
8 
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/module.h>
13 #include <linux/firmware.h>
14 
15 #include "aic94xx.h"
16 #include "aic94xx_reg.h"
17 #include "aic94xx_hwi.h"
18 #include "aic94xx_seq.h"
19 #include "aic94xx_dump.h"
20 
21 u32 MBAR0_SWB_SIZE;
22 
23 /* ---------- Initialization ---------- */
24 
25 static int asd_get_user_sas_addr(struct asd_ha_struct *asd_ha)
26 {
27 	/* adapter came with a sas address */
28 	if (asd_ha->hw_prof.sas_addr[0])
29 		return 0;
30 
31 	return sas_request_addr(asd_ha->sas_ha.shost,
32 				asd_ha->hw_prof.sas_addr);
33 }
34 
35 static void asd_propagate_sas_addr(struct asd_ha_struct *asd_ha)
36 {
37 	int i;
38 
39 	for (i = 0; i < ASD_MAX_PHYS; i++) {
40 		if (asd_ha->hw_prof.phy_desc[i].sas_addr[0] == 0)
41 			continue;
42 		/* Set a phy's address only if it has none.
43 		 */
44 		ASD_DPRINTK("setting phy%d addr to %llx\n", i,
45 			    SAS_ADDR(asd_ha->hw_prof.sas_addr));
46 		memcpy(asd_ha->hw_prof.phy_desc[i].sas_addr,
47 		       asd_ha->hw_prof.sas_addr, SAS_ADDR_SIZE);
48 	}
49 }
50 
51 /* ---------- PHY initialization ---------- */
52 
53 static void asd_init_phy_identify(struct asd_phy *phy)
54 {
55 	phy->identify_frame = phy->id_frm_tok->vaddr;
56 
57 	memset(phy->identify_frame, 0, sizeof(*phy->identify_frame));
58 
59 	phy->identify_frame->dev_type = SAS_END_DEVICE;
60 	if (phy->sas_phy.role & PHY_ROLE_INITIATOR)
61 		phy->identify_frame->initiator_bits = phy->sas_phy.iproto;
62 	if (phy->sas_phy.role & PHY_ROLE_TARGET)
63 		phy->identify_frame->target_bits = phy->sas_phy.tproto;
64 	memcpy(phy->identify_frame->sas_addr, phy->phy_desc->sas_addr,
65 	       SAS_ADDR_SIZE);
66 	phy->identify_frame->phy_id = phy->sas_phy.id;
67 }
68 
69 static int asd_init_phy(struct asd_phy *phy)
70 {
71 	struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
72 	struct asd_sas_phy *sas_phy = &phy->sas_phy;
73 
74 	sas_phy->enabled = 1;
75 	sas_phy->iproto = SAS_PROTOCOL_ALL;
76 	sas_phy->tproto = 0;
77 	sas_phy->role = PHY_ROLE_INITIATOR;
78 	sas_phy->oob_mode = OOB_NOT_CONNECTED;
79 	sas_phy->linkrate = SAS_LINK_RATE_UNKNOWN;
80 
81 	phy->id_frm_tok = asd_alloc_coherent(asd_ha,
82 					     sizeof(*phy->identify_frame),
83 					     GFP_KERNEL);
84 	if (!phy->id_frm_tok) {
85 		asd_printk("no mem for IDENTIFY for phy%d\n", sas_phy->id);
86 		return -ENOMEM;
87 	} else
88 		asd_init_phy_identify(phy);
89 
90 	memset(phy->frame_rcvd, 0, sizeof(phy->frame_rcvd));
91 
92 	return 0;
93 }
94 
95 static void asd_init_ports(struct asd_ha_struct *asd_ha)
96 {
97 	int i;
98 
99 	spin_lock_init(&asd_ha->asd_ports_lock);
100 	for (i = 0; i < ASD_MAX_PHYS; i++) {
101 		struct asd_port *asd_port = &asd_ha->asd_ports[i];
102 
103 		memset(asd_port->sas_addr, 0, SAS_ADDR_SIZE);
104 		memset(asd_port->attached_sas_addr, 0, SAS_ADDR_SIZE);
105 		asd_port->phy_mask = 0;
106 		asd_port->num_phys = 0;
107 	}
108 }
109 
110 static int asd_init_phys(struct asd_ha_struct *asd_ha)
111 {
112 	u8 i;
113 	u8 phy_mask = asd_ha->hw_prof.enabled_phys;
114 
115 	for (i = 0; i < ASD_MAX_PHYS; i++) {
116 		struct asd_phy *phy = &asd_ha->phys[i];
117 
118 		phy->phy_desc = &asd_ha->hw_prof.phy_desc[i];
119 		phy->asd_port = NULL;
120 
121 		phy->sas_phy.enabled = 0;
122 		phy->sas_phy.id = i;
123 		phy->sas_phy.sas_addr = &phy->phy_desc->sas_addr[0];
124 		phy->sas_phy.frame_rcvd = &phy->frame_rcvd[0];
125 		phy->sas_phy.ha = &asd_ha->sas_ha;
126 		phy->sas_phy.lldd_phy = phy;
127 	}
128 
129 	/* Now enable and initialize only the enabled phys. */
130 	for_each_phy(phy_mask, phy_mask, i) {
131 		int err = asd_init_phy(&asd_ha->phys[i]);
132 		if (err)
133 			return err;
134 	}
135 
136 	return 0;
137 }
138 
139 /* ---------- Sliding windows ---------- */
140 
141 static int asd_init_sw(struct asd_ha_struct *asd_ha)
142 {
143 	struct pci_dev *pcidev = asd_ha->pcidev;
144 	int err;
145 	u32 v;
146 
147 	/* Unlock MBARs */
148 	err = pci_read_config_dword(pcidev, PCI_CONF_MBAR_KEY, &v);
149 	if (err) {
150 		asd_printk("couldn't access conf. space of %s\n",
151 			   pci_name(pcidev));
152 		goto Err;
153 	}
154 	if (v)
155 		err = pci_write_config_dword(pcidev, PCI_CONF_MBAR_KEY, v);
156 	if (err) {
157 		asd_printk("couldn't write to MBAR_KEY of %s\n",
158 			   pci_name(pcidev));
159 		goto Err;
160 	}
161 
162 	/* Set sliding windows A, B and C to point to proper internal
163 	 * memory regions.
164 	 */
165 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWA, REG_BASE_ADDR);
166 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWB,
167 			       REG_BASE_ADDR_CSEQCIO);
168 	pci_write_config_dword(pcidev, PCI_CONF_MBAR0_SWC, REG_BASE_ADDR_EXSI);
169 	asd_ha->io_handle[0].swa_base = REG_BASE_ADDR;
170 	asd_ha->io_handle[0].swb_base = REG_BASE_ADDR_CSEQCIO;
171 	asd_ha->io_handle[0].swc_base = REG_BASE_ADDR_EXSI;
172 	MBAR0_SWB_SIZE = asd_ha->io_handle[0].len - 0x80;
173 	if (!asd_ha->iospace) {
174 		/* MBAR1 will point to OCM (On Chip Memory) */
175 		pci_write_config_dword(pcidev, PCI_CONF_MBAR1, OCM_BASE_ADDR);
176 		asd_ha->io_handle[1].swa_base = OCM_BASE_ADDR;
177 	}
178 	spin_lock_init(&asd_ha->iolock);
179 Err:
180 	return err;
181 }
182 
183 /* ---------- SCB initialization ---------- */
184 
185 /**
186  * asd_init_scbs - manually allocate the first SCB.
187  * @asd_ha: pointer to host adapter structure
188  *
189  * This allocates the very first SCB which would be sent to the
190  * sequencer for execution.  Its bus address is written to
191  * CSEQ_Q_NEW_POINTER, mode page 2, mode 8.  Since the bus address of
192  * the _next_ scb to be DMA-ed to the host adapter is read from the last
193  * SCB DMA-ed to the host adapter, we have to always stay one step
194  * ahead of the sequencer and keep one SCB already allocated.
195  */
196 static int asd_init_scbs(struct asd_ha_struct *asd_ha)
197 {
198 	struct asd_seq_data *seq = &asd_ha->seq;
199 	int bitmap_bytes;
200 
201 	/* allocate the index array and bitmap */
202 	asd_ha->seq.tc_index_bitmap_bits = asd_ha->hw_prof.max_scbs;
203 	asd_ha->seq.tc_index_array = kcalloc(asd_ha->seq.tc_index_bitmap_bits,
204 					     sizeof(void *),
205 					     GFP_KERNEL);
206 	if (!asd_ha->seq.tc_index_array)
207 		return -ENOMEM;
208 
209 	bitmap_bytes = (asd_ha->seq.tc_index_bitmap_bits+7)/8;
210 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
211 	asd_ha->seq.tc_index_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
212 	if (!asd_ha->seq.tc_index_bitmap) {
213 		kfree(asd_ha->seq.tc_index_array);
214 		asd_ha->seq.tc_index_array = NULL;
215 		return -ENOMEM;
216 	}
217 
218 	spin_lock_init(&seq->tc_index_lock);
219 
220 	seq->next_scb.size = sizeof(struct scb);
221 	seq->next_scb.vaddr = dma_pool_alloc(asd_ha->scb_pool, GFP_KERNEL,
222 					     &seq->next_scb.dma_handle);
223 	if (!seq->next_scb.vaddr) {
224 		kfree(asd_ha->seq.tc_index_bitmap);
225 		kfree(asd_ha->seq.tc_index_array);
226 		asd_ha->seq.tc_index_bitmap = NULL;
227 		asd_ha->seq.tc_index_array = NULL;
228 		return -ENOMEM;
229 	}
230 
231 	seq->pending = 0;
232 	spin_lock_init(&seq->pend_q_lock);
233 	INIT_LIST_HEAD(&seq->pend_q);
234 
235 	return 0;
236 }
237 
238 static void asd_get_max_scb_ddb(struct asd_ha_struct *asd_ha)
239 {
240 	asd_ha->hw_prof.max_scbs = asd_get_cmdctx_size(asd_ha)/ASD_SCB_SIZE;
241 	asd_ha->hw_prof.max_ddbs = asd_get_devctx_size(asd_ha)/ASD_DDB_SIZE;
242 	ASD_DPRINTK("max_scbs:%d, max_ddbs:%d\n",
243 		    asd_ha->hw_prof.max_scbs,
244 		    asd_ha->hw_prof.max_ddbs);
245 }
246 
247 /* ---------- Done List initialization ---------- */
248 
249 static void asd_dl_tasklet_handler(unsigned long);
250 
251 static int asd_init_dl(struct asd_ha_struct *asd_ha)
252 {
253 	asd_ha->seq.actual_dl
254 		= asd_alloc_coherent(asd_ha,
255 			     ASD_DL_SIZE * sizeof(struct done_list_struct),
256 				     GFP_KERNEL);
257 	if (!asd_ha->seq.actual_dl)
258 		return -ENOMEM;
259 	asd_ha->seq.dl = asd_ha->seq.actual_dl->vaddr;
260 	asd_ha->seq.dl_toggle = ASD_DEF_DL_TOGGLE;
261 	asd_ha->seq.dl_next = 0;
262 	tasklet_init(&asd_ha->seq.dl_tasklet, asd_dl_tasklet_handler,
263 		     (unsigned long) asd_ha);
264 
265 	return 0;
266 }
267 
268 /* ---------- EDB and ESCB init ---------- */
269 
270 static int asd_alloc_edbs(struct asd_ha_struct *asd_ha, gfp_t gfp_flags)
271 {
272 	struct asd_seq_data *seq = &asd_ha->seq;
273 	int i;
274 
275 	seq->edb_arr = kmalloc_array(seq->num_edbs, sizeof(*seq->edb_arr),
276 				     gfp_flags);
277 	if (!seq->edb_arr)
278 		return -ENOMEM;
279 
280 	for (i = 0; i < seq->num_edbs; i++) {
281 		seq->edb_arr[i] = asd_alloc_coherent(asd_ha, ASD_EDB_SIZE,
282 						     gfp_flags);
283 		if (!seq->edb_arr[i])
284 			goto Err_unroll;
285 		memset(seq->edb_arr[i]->vaddr, 0, ASD_EDB_SIZE);
286 	}
287 
288 	ASD_DPRINTK("num_edbs:%d\n", seq->num_edbs);
289 
290 	return 0;
291 
292 Err_unroll:
293 	for (i-- ; i >= 0; i--)
294 		asd_free_coherent(asd_ha, seq->edb_arr[i]);
295 	kfree(seq->edb_arr);
296 	seq->edb_arr = NULL;
297 
298 	return -ENOMEM;
299 }
300 
301 static int asd_alloc_escbs(struct asd_ha_struct *asd_ha,
302 			   gfp_t gfp_flags)
303 {
304 	struct asd_seq_data *seq = &asd_ha->seq;
305 	struct asd_ascb *escb;
306 	int i, escbs;
307 
308 	seq->escb_arr = kmalloc_array(seq->num_escbs, sizeof(*seq->escb_arr),
309 				      gfp_flags);
310 	if (!seq->escb_arr)
311 		return -ENOMEM;
312 
313 	escbs = seq->num_escbs;
314 	escb = asd_ascb_alloc_list(asd_ha, &escbs, gfp_flags);
315 	if (!escb) {
316 		asd_printk("couldn't allocate list of escbs\n");
317 		goto Err;
318 	}
319 	seq->num_escbs -= escbs;  /* subtract what was not allocated */
320 	ASD_DPRINTK("num_escbs:%d\n", seq->num_escbs);
321 
322 	for (i = 0; i < seq->num_escbs; i++, escb = list_entry(escb->list.next,
323 							       struct asd_ascb,
324 							       list)) {
325 		seq->escb_arr[i] = escb;
326 		escb->scb->header.opcode = EMPTY_SCB;
327 	}
328 
329 	return 0;
330 Err:
331 	kfree(seq->escb_arr);
332 	seq->escb_arr = NULL;
333 	return -ENOMEM;
334 
335 }
336 
337 static void asd_assign_edbs2escbs(struct asd_ha_struct *asd_ha)
338 {
339 	struct asd_seq_data *seq = &asd_ha->seq;
340 	int i, k, z = 0;
341 
342 	for (i = 0; i < seq->num_escbs; i++) {
343 		struct asd_ascb *ascb = seq->escb_arr[i];
344 		struct empty_scb *escb = &ascb->scb->escb;
345 
346 		ascb->edb_index = z;
347 
348 		escb->num_valid = ASD_EDBS_PER_SCB;
349 
350 		for (k = 0; k < ASD_EDBS_PER_SCB; k++) {
351 			struct sg_el *eb = &escb->eb[k];
352 			struct asd_dma_tok *edb = seq->edb_arr[z++];
353 
354 			memset(eb, 0, sizeof(*eb));
355 			eb->bus_addr = cpu_to_le64(((u64) edb->dma_handle));
356 			eb->size = cpu_to_le32(((u32) edb->size));
357 		}
358 	}
359 }
360 
361 /**
362  * asd_init_escbs -- allocate and initialize empty scbs
363  * @asd_ha: pointer to host adapter structure
364  *
365  * An empty SCB has sg_elements of ASD_EDBS_PER_SCB (7) buffers.
366  * They transport sense data, etc.
367  */
368 static int asd_init_escbs(struct asd_ha_struct *asd_ha)
369 {
370 	struct asd_seq_data *seq = &asd_ha->seq;
371 	int err = 0;
372 
373 	/* Allocate two empty data buffers (edb) per sequencer. */
374 	int edbs = 2*(1+asd_ha->hw_prof.num_phys);
375 
376 	seq->num_escbs = (edbs+ASD_EDBS_PER_SCB-1)/ASD_EDBS_PER_SCB;
377 	seq->num_edbs = seq->num_escbs * ASD_EDBS_PER_SCB;
378 
379 	err = asd_alloc_edbs(asd_ha, GFP_KERNEL);
380 	if (err) {
381 		asd_printk("couldn't allocate edbs\n");
382 		return err;
383 	}
384 
385 	err = asd_alloc_escbs(asd_ha, GFP_KERNEL);
386 	if (err) {
387 		asd_printk("couldn't allocate escbs\n");
388 		return err;
389 	}
390 
391 	asd_assign_edbs2escbs(asd_ha);
392 	/* In order to insure that normal SCBs do not overfill sequencer
393 	 * memory and leave no space for escbs (halting condition),
394 	 * we increment pending here by the number of escbs.  However,
395 	 * escbs are never pending.
396 	 */
397 	seq->pending   = seq->num_escbs;
398 	seq->can_queue = 1 + (asd_ha->hw_prof.max_scbs - seq->pending)/2;
399 
400 	return 0;
401 }
402 
403 /* ---------- HW initialization ---------- */
404 
405 /**
406  * asd_chip_hardrst -- hard reset the chip
407  * @asd_ha: pointer to host adapter structure
408  *
409  * This takes 16 cycles and is synchronous to CFCLK, which runs
410  * at 200 MHz, so this should take at most 80 nanoseconds.
411  */
412 int asd_chip_hardrst(struct asd_ha_struct *asd_ha)
413 {
414 	int i;
415 	int count = 100;
416 	u32 reg;
417 
418 	for (i = 0 ; i < 4 ; i++) {
419 		asd_write_reg_dword(asd_ha, COMBIST, HARDRST);
420 	}
421 
422 	do {
423 		udelay(1);
424 		reg = asd_read_reg_dword(asd_ha, CHIMINT);
425 		if (reg & HARDRSTDET) {
426 			asd_write_reg_dword(asd_ha, CHIMINT,
427 					    HARDRSTDET|PORRSTDET);
428 			return 0;
429 		}
430 	} while (--count > 0);
431 
432 	return -ENODEV;
433 }
434 
435 /**
436  * asd_init_chip -- initialize the chip
437  * @asd_ha: pointer to host adapter structure
438  *
439  * Hard resets the chip, disables HA interrupts, downloads the sequnecer
440  * microcode and starts the sequencers.  The caller has to explicitly
441  * enable HA interrupts with asd_enable_ints(asd_ha).
442  */
443 static int asd_init_chip(struct asd_ha_struct *asd_ha)
444 {
445 	int err;
446 
447 	err = asd_chip_hardrst(asd_ha);
448 	if (err) {
449 		asd_printk("couldn't hard reset %s\n",
450 			    pci_name(asd_ha->pcidev));
451 		goto out;
452 	}
453 
454 	asd_disable_ints(asd_ha);
455 
456 	err = asd_init_seqs(asd_ha);
457 	if (err) {
458 		asd_printk("couldn't init seqs for %s\n",
459 			   pci_name(asd_ha->pcidev));
460 		goto out;
461 	}
462 
463 	err = asd_start_seqs(asd_ha);
464 	if (err) {
465 		asd_printk("couldn't start seqs for %s\n",
466 			   pci_name(asd_ha->pcidev));
467 		goto out;
468 	}
469 out:
470 	return err;
471 }
472 
473 #define MAX_DEVS ((OCM_MAX_SIZE) / (ASD_DDB_SIZE))
474 
475 static int max_devs = 0;
476 module_param_named(max_devs, max_devs, int, S_IRUGO);
477 MODULE_PARM_DESC(max_devs, "\n"
478 	"\tMaximum number of SAS devices to support (not LUs).\n"
479 	"\tDefault: 2176, Maximum: 65663.\n");
480 
481 static int max_cmnds = 0;
482 module_param_named(max_cmnds, max_cmnds, int, S_IRUGO);
483 MODULE_PARM_DESC(max_cmnds, "\n"
484 	"\tMaximum number of commands queuable.\n"
485 	"\tDefault: 512, Maximum: 66047.\n");
486 
487 static void asd_extend_devctx_ocm(struct asd_ha_struct *asd_ha)
488 {
489 	unsigned long dma_addr = OCM_BASE_ADDR;
490 	u32 d;
491 
492 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
493 	asd_write_reg_addr(asd_ha, DEVCTXBASE, (dma_addr_t) dma_addr);
494 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
495 	d |= 4;
496 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
497 	asd_ha->hw_prof.max_ddbs += MAX_DEVS;
498 }
499 
500 static int asd_extend_devctx(struct asd_ha_struct *asd_ha)
501 {
502 	dma_addr_t dma_handle;
503 	unsigned long dma_addr;
504 	u32 d;
505 	int size;
506 
507 	asd_extend_devctx_ocm(asd_ha);
508 
509 	asd_ha->hw_prof.ddb_ext = NULL;
510 	if (max_devs <= asd_ha->hw_prof.max_ddbs || max_devs > 0xFFFF) {
511 		max_devs = asd_ha->hw_prof.max_ddbs;
512 		return 0;
513 	}
514 
515 	size = (max_devs - asd_ha->hw_prof.max_ddbs + 1) * ASD_DDB_SIZE;
516 
517 	asd_ha->hw_prof.ddb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
518 	if (!asd_ha->hw_prof.ddb_ext) {
519 		asd_printk("couldn't allocate memory for %d devices\n",
520 			   max_devs);
521 		max_devs = asd_ha->hw_prof.max_ddbs;
522 		return -ENOMEM;
523 	}
524 	dma_handle = asd_ha->hw_prof.ddb_ext->dma_handle;
525 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_DDB_SIZE);
526 	dma_addr -= asd_ha->hw_prof.max_ddbs * ASD_DDB_SIZE;
527 	dma_handle = (dma_addr_t) dma_addr;
528 	asd_write_reg_addr(asd_ha, DEVCTXBASE, dma_handle);
529 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
530 	d &= ~4;
531 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
532 
533 	asd_ha->hw_prof.max_ddbs = max_devs;
534 
535 	return 0;
536 }
537 
538 static int asd_extend_cmdctx(struct asd_ha_struct *asd_ha)
539 {
540 	dma_addr_t dma_handle;
541 	unsigned long dma_addr;
542 	u32 d;
543 	int size;
544 
545 	asd_ha->hw_prof.scb_ext = NULL;
546 	if (max_cmnds <= asd_ha->hw_prof.max_scbs || max_cmnds > 0xFFFF) {
547 		max_cmnds = asd_ha->hw_prof.max_scbs;
548 		return 0;
549 	}
550 
551 	size = (max_cmnds - asd_ha->hw_prof.max_scbs + 1) * ASD_SCB_SIZE;
552 
553 	asd_ha->hw_prof.scb_ext = asd_alloc_coherent(asd_ha, size, GFP_KERNEL);
554 	if (!asd_ha->hw_prof.scb_ext) {
555 		asd_printk("couldn't allocate memory for %d commands\n",
556 			   max_cmnds);
557 		max_cmnds = asd_ha->hw_prof.max_scbs;
558 		return -ENOMEM;
559 	}
560 	dma_handle = asd_ha->hw_prof.scb_ext->dma_handle;
561 	dma_addr = ALIGN((unsigned long) dma_handle, ASD_SCB_SIZE);
562 	dma_addr -= asd_ha->hw_prof.max_scbs * ASD_SCB_SIZE;
563 	dma_handle = (dma_addr_t) dma_addr;
564 	asd_write_reg_addr(asd_ha, CMDCTXBASE, dma_handle);
565 	d = asd_read_reg_dword(asd_ha, CTXDOMAIN);
566 	d &= ~1;
567 	asd_write_reg_dword(asd_ha, CTXDOMAIN, d);
568 
569 	asd_ha->hw_prof.max_scbs = max_cmnds;
570 
571 	return 0;
572 }
573 
574 /**
575  * asd_init_ctxmem -- initialize context memory
576  * @asd_ha: pointer to host adapter structure
577  *
578  * This function sets the maximum number of SCBs and
579  * DDBs which can be used by the sequencer.  This is normally
580  * 512 and 128 respectively.  If support for more SCBs or more DDBs
581  * is required then CMDCTXBASE, DEVCTXBASE and CTXDOMAIN are
582  * initialized here to extend context memory to point to host memory,
583  * thus allowing unlimited support for SCBs and DDBs -- only limited
584  * by host memory.
585  */
586 static int asd_init_ctxmem(struct asd_ha_struct *asd_ha)
587 {
588 	int bitmap_bytes;
589 
590 	asd_get_max_scb_ddb(asd_ha);
591 	asd_extend_devctx(asd_ha);
592 	asd_extend_cmdctx(asd_ha);
593 
594 	/* The kernel wants bitmaps to be unsigned long sized. */
595 	bitmap_bytes = (asd_ha->hw_prof.max_ddbs+7)/8;
596 	bitmap_bytes = BITS_TO_LONGS(bitmap_bytes*8)*sizeof(unsigned long);
597 	asd_ha->hw_prof.ddb_bitmap = kzalloc(bitmap_bytes, GFP_KERNEL);
598 	if (!asd_ha->hw_prof.ddb_bitmap)
599 		return -ENOMEM;
600 	spin_lock_init(&asd_ha->hw_prof.ddb_lock);
601 
602 	return 0;
603 }
604 
605 int asd_init_hw(struct asd_ha_struct *asd_ha)
606 {
607 	int err;
608 	u32 v;
609 
610 	err = asd_init_sw(asd_ha);
611 	if (err)
612 		return err;
613 
614 	err = pci_read_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL, &v);
615 	if (err) {
616 		asd_printk("couldn't read PCIC_HSTPCIX_CNTRL of %s\n",
617 			   pci_name(asd_ha->pcidev));
618 		return err;
619 	}
620 	err = pci_write_config_dword(asd_ha->pcidev, PCIC_HSTPCIX_CNTRL,
621 					v | SC_TMR_DIS);
622 	if (err) {
623 		asd_printk("couldn't disable split completion timer of %s\n",
624 			   pci_name(asd_ha->pcidev));
625 		return err;
626 	}
627 
628 	err = asd_read_ocm(asd_ha);
629 	if (err) {
630 		asd_printk("couldn't read ocm(%d)\n", err);
631 		/* While suspicios, it is not an error that we
632 		 * couldn't read the OCM. */
633 	}
634 
635 	err = asd_read_flash(asd_ha);
636 	if (err) {
637 		asd_printk("couldn't read flash(%d)\n", err);
638 		/* While suspicios, it is not an error that we
639 		 * couldn't read FLASH memory.
640 		 */
641 	}
642 
643 	asd_init_ctxmem(asd_ha);
644 
645 	if (asd_get_user_sas_addr(asd_ha)) {
646 		asd_printk("No SAS Address provided for %s\n",
647 			   pci_name(asd_ha->pcidev));
648 		err = -ENODEV;
649 		goto Out;
650 	}
651 
652 	asd_propagate_sas_addr(asd_ha);
653 
654 	err = asd_init_phys(asd_ha);
655 	if (err) {
656 		asd_printk("couldn't initialize phys for %s\n",
657 			    pci_name(asd_ha->pcidev));
658 		goto Out;
659 	}
660 
661 	asd_init_ports(asd_ha);
662 
663 	err = asd_init_scbs(asd_ha);
664 	if (err) {
665 		asd_printk("couldn't initialize scbs for %s\n",
666 			    pci_name(asd_ha->pcidev));
667 		goto Out;
668 	}
669 
670 	err = asd_init_dl(asd_ha);
671 	if (err) {
672 		asd_printk("couldn't initialize the done list:%d\n",
673 			    err);
674 		goto Out;
675 	}
676 
677 	err = asd_init_escbs(asd_ha);
678 	if (err) {
679 		asd_printk("couldn't initialize escbs\n");
680 		goto Out;
681 	}
682 
683 	err = asd_init_chip(asd_ha);
684 	if (err) {
685 		asd_printk("couldn't init the chip\n");
686 		goto Out;
687 	}
688 Out:
689 	return err;
690 }
691 
692 /* ---------- Chip reset ---------- */
693 
694 /**
695  * asd_chip_reset -- reset the host adapter, etc
696  * @asd_ha: pointer to host adapter structure of interest
697  *
698  * Called from the ISR.  Hard reset the chip.  Let everything
699  * timeout.  This should be no different than hot-unplugging the
700  * host adapter.  Once everything times out we'll init the chip with
701  * a call to asd_init_chip() and enable interrupts with asd_enable_ints().
702  * XXX finish.
703  */
704 static void asd_chip_reset(struct asd_ha_struct *asd_ha)
705 {
706 	ASD_DPRINTK("chip reset for %s\n", pci_name(asd_ha->pcidev));
707 	asd_chip_hardrst(asd_ha);
708 }
709 
710 /* ---------- Done List Routines ---------- */
711 
712 static void asd_dl_tasklet_handler(unsigned long data)
713 {
714 	struct asd_ha_struct *asd_ha = (struct asd_ha_struct *) data;
715 	struct asd_seq_data *seq = &asd_ha->seq;
716 	unsigned long flags;
717 
718 	while (1) {
719 		struct done_list_struct *dl = &seq->dl[seq->dl_next];
720 		struct asd_ascb *ascb;
721 
722 		if ((dl->toggle & DL_TOGGLE_MASK) != seq->dl_toggle)
723 			break;
724 
725 		/* find the aSCB */
726 		spin_lock_irqsave(&seq->tc_index_lock, flags);
727 		ascb = asd_tc_index_find(seq, (int)le16_to_cpu(dl->index));
728 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
729 		if (unlikely(!ascb)) {
730 			ASD_DPRINTK("BUG:sequencer:dl:no ascb?!\n");
731 			goto next_1;
732 		} else if (ascb->scb->header.opcode == EMPTY_SCB) {
733 			goto out;
734 		} else if (!ascb->uldd_timer && !del_timer(&ascb->timer)) {
735 			goto next_1;
736 		}
737 		spin_lock_irqsave(&seq->pend_q_lock, flags);
738 		list_del_init(&ascb->list);
739 		seq->pending--;
740 		spin_unlock_irqrestore(&seq->pend_q_lock, flags);
741 	out:
742 		ascb->tasklet_complete(ascb, dl);
743 
744 	next_1:
745 		seq->dl_next = (seq->dl_next + 1) & (ASD_DL_SIZE-1);
746 		if (!seq->dl_next)
747 			seq->dl_toggle ^= DL_TOGGLE_MASK;
748 	}
749 }
750 
751 /* ---------- Interrupt Service Routines ---------- */
752 
753 /**
754  * asd_process_donelist_isr -- schedule processing of done list entries
755  * @asd_ha: pointer to host adapter structure
756  */
757 static void asd_process_donelist_isr(struct asd_ha_struct *asd_ha)
758 {
759 	tasklet_schedule(&asd_ha->seq.dl_tasklet);
760 }
761 
762 /**
763  * asd_com_sas_isr -- process device communication interrupt (COMINT)
764  * @asd_ha: pointer to host adapter structure
765  */
766 static void asd_com_sas_isr(struct asd_ha_struct *asd_ha)
767 {
768 	u32 comstat = asd_read_reg_dword(asd_ha, COMSTAT);
769 
770 	/* clear COMSTAT int */
771 	asd_write_reg_dword(asd_ha, COMSTAT, 0xFFFFFFFF);
772 
773 	if (comstat & CSBUFPERR) {
774 		asd_printk("%s: command/status buffer dma parity error\n",
775 			   pci_name(asd_ha->pcidev));
776 	} else if (comstat & CSERR) {
777 		int i;
778 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
779 		dmaerr &= 0xFF;
780 		asd_printk("%s: command/status dma error, DMAERR: 0x%02x, "
781 			   "CSDMAADR: 0x%04x, CSDMAADR+4: 0x%04x\n",
782 			   pci_name(asd_ha->pcidev),
783 			   dmaerr,
784 			   asd_read_reg_dword(asd_ha, CSDMAADR),
785 			   asd_read_reg_dword(asd_ha, CSDMAADR+4));
786 		asd_printk("CSBUFFER:\n");
787 		for (i = 0; i < 8; i++) {
788 			asd_printk("%08x %08x %08x %08x\n",
789 				   asd_read_reg_dword(asd_ha, CSBUFFER),
790 				   asd_read_reg_dword(asd_ha, CSBUFFER+4),
791 				   asd_read_reg_dword(asd_ha, CSBUFFER+8),
792 				   asd_read_reg_dword(asd_ha, CSBUFFER+12));
793 		}
794 		asd_dump_seq_state(asd_ha, 0);
795 	} else if (comstat & OVLYERR) {
796 		u32 dmaerr = asd_read_reg_dword(asd_ha, DMAERR);
797 		dmaerr = (dmaerr >> 8) & 0xFF;
798 		asd_printk("%s: overlay dma error:0x%x\n",
799 			   pci_name(asd_ha->pcidev),
800 			   dmaerr);
801 	}
802 	asd_chip_reset(asd_ha);
803 }
804 
805 static void asd_arp2_err(struct asd_ha_struct *asd_ha, u32 dchstatus)
806 {
807 	static const char *halt_code[256] = {
808 		"UNEXPECTED_INTERRUPT0",
809 		"UNEXPECTED_INTERRUPT1",
810 		"UNEXPECTED_INTERRUPT2",
811 		"UNEXPECTED_INTERRUPT3",
812 		"UNEXPECTED_INTERRUPT4",
813 		"UNEXPECTED_INTERRUPT5",
814 		"UNEXPECTED_INTERRUPT6",
815 		"UNEXPECTED_INTERRUPT7",
816 		"UNEXPECTED_INTERRUPT8",
817 		"UNEXPECTED_INTERRUPT9",
818 		"UNEXPECTED_INTERRUPT10",
819 		[11 ... 19] = "unknown[11,19]",
820 		"NO_FREE_SCB_AVAILABLE",
821 		"INVALID_SCB_OPCODE",
822 		"INVALID_MBX_OPCODE",
823 		"INVALID_ATA_STATE",
824 		"ATA_QUEUE_FULL",
825 		"ATA_TAG_TABLE_FAULT",
826 		"ATA_TAG_MASK_FAULT",
827 		"BAD_LINK_QUEUE_STATE",
828 		"DMA2CHIM_QUEUE_ERROR",
829 		"EMPTY_SCB_LIST_FULL",
830 		"unknown[30]",
831 		"IN_USE_SCB_ON_FREE_LIST",
832 		"BAD_OPEN_WAIT_STATE",
833 		"INVALID_STP_AFFILIATION",
834 		"unknown[34]",
835 		"EXEC_QUEUE_ERROR",
836 		"TOO_MANY_EMPTIES_NEEDED",
837 		"EMPTY_REQ_QUEUE_ERROR",
838 		"Q_MONIRTT_MGMT_ERROR",
839 		"TARGET_MODE_FLOW_ERROR",
840 		"DEVICE_QUEUE_NOT_FOUND",
841 		"START_IRTT_TIMER_ERROR",
842 		"ABORT_TASK_ILLEGAL_REQ",
843 		[43 ... 255] = "unknown[43,255]"
844 	};
845 
846 	if (dchstatus & CSEQINT) {
847 		u32 arp2int = asd_read_reg_dword(asd_ha, CARP2INT);
848 
849 		if (arp2int & (ARP2WAITTO|ARP2ILLOPC|ARP2PERR|ARP2CIOPERR)) {
850 			asd_printk("%s: CSEQ arp2int:0x%x\n",
851 				   pci_name(asd_ha->pcidev),
852 				   arp2int);
853 		} else if (arp2int & ARP2HALTC)
854 			asd_printk("%s: CSEQ halted: %s\n",
855 				   pci_name(asd_ha->pcidev),
856 				   halt_code[(arp2int>>16)&0xFF]);
857 		else
858 			asd_printk("%s: CARP2INT:0x%x\n",
859 				   pci_name(asd_ha->pcidev),
860 				   arp2int);
861 	}
862 	if (dchstatus & LSEQINT_MASK) {
863 		int lseq;
864 		u8  lseq_mask = dchstatus & LSEQINT_MASK;
865 
866 		for_each_sequencer(lseq_mask, lseq_mask, lseq) {
867 			u32 arp2int = asd_read_reg_dword(asd_ha,
868 							 LmARP2INT(lseq));
869 			if (arp2int & (ARP2WAITTO | ARP2ILLOPC | ARP2PERR
870 				       | ARP2CIOPERR)) {
871 				asd_printk("%s: LSEQ%d arp2int:0x%x\n",
872 					   pci_name(asd_ha->pcidev),
873 					   lseq, arp2int);
874 				/* XXX we should only do lseq reset */
875 			} else if (arp2int & ARP2HALTC)
876 				asd_printk("%s: LSEQ%d halted: %s\n",
877 					   pci_name(asd_ha->pcidev),
878 					   lseq,halt_code[(arp2int>>16)&0xFF]);
879 			else
880 				asd_printk("%s: LSEQ%d ARP2INT:0x%x\n",
881 					   pci_name(asd_ha->pcidev), lseq,
882 					   arp2int);
883 		}
884 	}
885 	asd_chip_reset(asd_ha);
886 }
887 
888 /**
889  * asd_dch_sas_isr -- process device channel interrupt (DEVINT)
890  * @asd_ha: pointer to host adapter structure
891  */
892 static void asd_dch_sas_isr(struct asd_ha_struct *asd_ha)
893 {
894 	u32 dchstatus = asd_read_reg_dword(asd_ha, DCHSTATUS);
895 
896 	if (dchstatus & CFIFTOERR) {
897 		asd_printk("%s: CFIFTOERR\n", pci_name(asd_ha->pcidev));
898 		asd_chip_reset(asd_ha);
899 	} else
900 		asd_arp2_err(asd_ha, dchstatus);
901 }
902 
903 /**
904  * asd_rbi_exsi_isr -- process external system interface interrupt (INITERR)
905  * @asd_ha: pointer to host adapter structure
906  */
907 static void asd_rbi_exsi_isr(struct asd_ha_struct *asd_ha)
908 {
909 	u32 stat0r = asd_read_reg_dword(asd_ha, ASISTAT0R);
910 
911 	if (!(stat0r & ASIERR)) {
912 		asd_printk("hmm, EXSI interrupted but no error?\n");
913 		return;
914 	}
915 
916 	if (stat0r & ASIFMTERR) {
917 		asd_printk("ASI SEEPROM format error for %s\n",
918 			   pci_name(asd_ha->pcidev));
919 	} else if (stat0r & ASISEECHKERR) {
920 		u32 stat1r = asd_read_reg_dword(asd_ha, ASISTAT1R);
921 		asd_printk("ASI SEEPROM checksum 0x%x error for %s\n",
922 			   stat1r & CHECKSUM_MASK,
923 			   pci_name(asd_ha->pcidev));
924 	} else {
925 		u32 statr = asd_read_reg_dword(asd_ha, ASIERRSTATR);
926 
927 		if (!(statr & CPI2ASIMSTERR_MASK)) {
928 			ASD_DPRINTK("hmm, ASIERR?\n");
929 			return;
930 		} else {
931 			u32 addr = asd_read_reg_dword(asd_ha, ASIERRADDR);
932 			u32 data = asd_read_reg_dword(asd_ha, ASIERRDATAR);
933 
934 			asd_printk("%s: CPI2 xfer err: addr: 0x%x, wdata: 0x%x, "
935 				   "count: 0x%x, byteen: 0x%x, targerr: 0x%x "
936 				   "master id: 0x%x, master err: 0x%x\n",
937 				   pci_name(asd_ha->pcidev),
938 				   addr, data,
939 				   (statr & CPI2ASIBYTECNT_MASK) >> 16,
940 				   (statr & CPI2ASIBYTEEN_MASK) >> 12,
941 				   (statr & CPI2ASITARGERR_MASK) >> 8,
942 				   (statr & CPI2ASITARGMID_MASK) >> 4,
943 				   (statr & CPI2ASIMSTERR_MASK));
944 		}
945 	}
946 	asd_chip_reset(asd_ha);
947 }
948 
949 /**
950  * asd_hst_pcix_isr -- process host interface interrupts
951  * @asd_ha: pointer to host adapter structure
952  *
953  * Asserted on PCIX errors: target abort, etc.
954  */
955 static void asd_hst_pcix_isr(struct asd_ha_struct *asd_ha)
956 {
957 	u16 status;
958 	u32 pcix_status;
959 	u32 ecc_status;
960 
961 	pci_read_config_word(asd_ha->pcidev, PCI_STATUS, &status);
962 	pci_read_config_dword(asd_ha->pcidev, PCIX_STATUS, &pcix_status);
963 	pci_read_config_dword(asd_ha->pcidev, ECC_CTRL_STAT, &ecc_status);
964 
965 	if (status & PCI_STATUS_DETECTED_PARITY)
966 		asd_printk("parity error for %s\n", pci_name(asd_ha->pcidev));
967 	else if (status & PCI_STATUS_REC_MASTER_ABORT)
968 		asd_printk("master abort for %s\n", pci_name(asd_ha->pcidev));
969 	else if (status & PCI_STATUS_REC_TARGET_ABORT)
970 		asd_printk("target abort for %s\n", pci_name(asd_ha->pcidev));
971 	else if (status & PCI_STATUS_PARITY)
972 		asd_printk("data parity for %s\n", pci_name(asd_ha->pcidev));
973 	else if (pcix_status & RCV_SCE) {
974 		asd_printk("received split completion error for %s\n",
975 			   pci_name(asd_ha->pcidev));
976 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
977 		/* XXX: Abort task? */
978 		return;
979 	} else if (pcix_status & UNEXP_SC) {
980 		asd_printk("unexpected split completion for %s\n",
981 			   pci_name(asd_ha->pcidev));
982 		pci_write_config_dword(asd_ha->pcidev,PCIX_STATUS,pcix_status);
983 		/* ignore */
984 		return;
985 	} else if (pcix_status & SC_DISCARD)
986 		asd_printk("split completion discarded for %s\n",
987 			   pci_name(asd_ha->pcidev));
988 	else if (ecc_status & UNCOR_ECCERR)
989 		asd_printk("uncorrectable ECC error for %s\n",
990 			   pci_name(asd_ha->pcidev));
991 	asd_chip_reset(asd_ha);
992 }
993 
994 /**
995  * asd_hw_isr -- host adapter interrupt service routine
996  * @irq: ignored
997  * @dev_id: pointer to host adapter structure
998  *
999  * The ISR processes done list entries and level 3 error handling.
1000  */
1001 irqreturn_t asd_hw_isr(int irq, void *dev_id)
1002 {
1003 	struct asd_ha_struct *asd_ha = dev_id;
1004 	u32 chimint = asd_read_reg_dword(asd_ha, CHIMINT);
1005 
1006 	if (!chimint)
1007 		return IRQ_NONE;
1008 
1009 	asd_write_reg_dword(asd_ha, CHIMINT, chimint);
1010 	(void) asd_read_reg_dword(asd_ha, CHIMINT);
1011 
1012 	if (chimint & DLAVAIL)
1013 		asd_process_donelist_isr(asd_ha);
1014 	if (chimint & COMINT)
1015 		asd_com_sas_isr(asd_ha);
1016 	if (chimint & DEVINT)
1017 		asd_dch_sas_isr(asd_ha);
1018 	if (chimint & INITERR)
1019 		asd_rbi_exsi_isr(asd_ha);
1020 	if (chimint & HOSTERR)
1021 		asd_hst_pcix_isr(asd_ha);
1022 
1023 	return IRQ_HANDLED;
1024 }
1025 
1026 /* ---------- SCB handling ---------- */
1027 
1028 static struct asd_ascb *asd_ascb_alloc(struct asd_ha_struct *asd_ha,
1029 				       gfp_t gfp_flags)
1030 {
1031 	extern struct kmem_cache *asd_ascb_cache;
1032 	struct asd_seq_data *seq = &asd_ha->seq;
1033 	struct asd_ascb *ascb;
1034 	unsigned long flags;
1035 
1036 	ascb = kmem_cache_zalloc(asd_ascb_cache, gfp_flags);
1037 
1038 	if (ascb) {
1039 		ascb->dma_scb.size = sizeof(struct scb);
1040 		ascb->dma_scb.vaddr = dma_pool_zalloc(asd_ha->scb_pool,
1041 						     gfp_flags,
1042 						    &ascb->dma_scb.dma_handle);
1043 		if (!ascb->dma_scb.vaddr) {
1044 			kmem_cache_free(asd_ascb_cache, ascb);
1045 			return NULL;
1046 		}
1047 		asd_init_ascb(asd_ha, ascb);
1048 
1049 		spin_lock_irqsave(&seq->tc_index_lock, flags);
1050 		ascb->tc_index = asd_tc_index_get(seq, ascb);
1051 		spin_unlock_irqrestore(&seq->tc_index_lock, flags);
1052 		if (ascb->tc_index == -1)
1053 			goto undo;
1054 
1055 		ascb->scb->header.index = cpu_to_le16((u16)ascb->tc_index);
1056 	}
1057 
1058 	return ascb;
1059 undo:
1060 	dma_pool_free(asd_ha->scb_pool, ascb->dma_scb.vaddr,
1061 		      ascb->dma_scb.dma_handle);
1062 	kmem_cache_free(asd_ascb_cache, ascb);
1063 	ASD_DPRINTK("no index for ascb\n");
1064 	return NULL;
1065 }
1066 
1067 /**
1068  * asd_ascb_alloc_list -- allocate a list of aSCBs
1069  * @asd_ha: pointer to host adapter structure
1070  * @num: pointer to integer number of aSCBs
1071  * @gfp_flags: GFP_ flags.
1072  *
1073  * This is the only function which is used to allocate aSCBs.
1074  * It can allocate one or many. If more than one, then they form
1075  * a linked list in two ways: by their list field of the ascb struct
1076  * and by the next_scb field of the scb_header.
1077  *
1078  * Returns NULL if no memory was available, else pointer to a list
1079  * of ascbs.  When this function returns, @num would be the number
1080  * of SCBs which were not able to be allocated, 0 if all requested
1081  * were able to be allocated.
1082  */
1083 struct asd_ascb *asd_ascb_alloc_list(struct asd_ha_struct
1084 				     *asd_ha, int *num,
1085 				     gfp_t gfp_flags)
1086 {
1087 	struct asd_ascb *first = NULL;
1088 
1089 	for ( ; *num > 0; --*num) {
1090 		struct asd_ascb *ascb = asd_ascb_alloc(asd_ha, gfp_flags);
1091 
1092 		if (!ascb)
1093 			break;
1094 		else if (!first)
1095 			first = ascb;
1096 		else {
1097 			struct asd_ascb *last = list_entry(first->list.prev,
1098 							   struct asd_ascb,
1099 							   list);
1100 			list_add_tail(&ascb->list, &first->list);
1101 			last->scb->header.next_scb =
1102 				cpu_to_le64(((u64)ascb->dma_scb.dma_handle));
1103 		}
1104 	}
1105 
1106 	return first;
1107 }
1108 
1109 /**
1110  * asd_swap_head_scb -- swap the head scb
1111  * @asd_ha: pointer to host adapter structure
1112  * @ascb: pointer to the head of an ascb list
1113  *
1114  * The sequencer knows the DMA address of the next SCB to be DMAed to
1115  * the host adapter, from initialization or from the last list DMAed.
1116  * seq->next_scb keeps the address of this SCB.  The sequencer will
1117  * DMA to the host adapter this list of SCBs.  But the head (first
1118  * element) of this list is not known to the sequencer.  Here we swap
1119  * the head of the list with the known SCB (memcpy()).
1120  * Only one memcpy() is required per list so it is in our interest
1121  * to keep the list of SCB as long as possible so that the ratio
1122  * of number of memcpy calls to the number of SCB DMA-ed is as small
1123  * as possible.
1124  *
1125  * LOCKING: called with the pending list lock held.
1126  */
1127 static void asd_swap_head_scb(struct asd_ha_struct *asd_ha,
1128 			      struct asd_ascb *ascb)
1129 {
1130 	struct asd_seq_data *seq = &asd_ha->seq;
1131 	struct asd_ascb *last = list_entry(ascb->list.prev,
1132 					   struct asd_ascb,
1133 					   list);
1134 	struct asd_dma_tok t = ascb->dma_scb;
1135 
1136 	memcpy(seq->next_scb.vaddr, ascb->scb, sizeof(*ascb->scb));
1137 	ascb->dma_scb = seq->next_scb;
1138 	ascb->scb = ascb->dma_scb.vaddr;
1139 	seq->next_scb = t;
1140 	last->scb->header.next_scb =
1141 		cpu_to_le64(((u64)seq->next_scb.dma_handle));
1142 }
1143 
1144 /**
1145  * asd_start_scb_timers -- (add and) start timers of SCBs
1146  * @list: pointer to struct list_head of the scbs
1147  *
1148  * If an SCB in the @list has no timer function, assign the default
1149  * one,  then start the timer of the SCB.  This function is
1150  * intended to be called from asd_post_ascb_list(), just prior to
1151  * posting the SCBs to the sequencer.
1152  */
1153 static void asd_start_scb_timers(struct list_head *list)
1154 {
1155 	struct asd_ascb *ascb;
1156 	list_for_each_entry(ascb, list, list) {
1157 		if (!ascb->uldd_timer) {
1158 			ascb->timer.function = asd_ascb_timedout;
1159 			ascb->timer.expires = jiffies + AIC94XX_SCB_TIMEOUT;
1160 			add_timer(&ascb->timer);
1161 		}
1162 	}
1163 }
1164 
1165 /**
1166  * asd_post_ascb_list -- post a list of 1 or more aSCBs to the host adapter
1167  * @asd_ha: pointer to a host adapter structure
1168  * @ascb: pointer to the first aSCB in the list
1169  * @num: number of aSCBs in the list (to be posted)
1170  *
1171  * See queueing comment in asd_post_escb_list().
1172  *
1173  * Additional note on queuing: In order to minimize the ratio of memcpy()
1174  * to the number of ascbs sent, we try to batch-send as many ascbs as possible
1175  * in one go.
1176  * Two cases are possible:
1177  *    A) can_queue >= num,
1178  *    B) can_queue < num.
1179  * Case A: we can send the whole batch at once.  Increment "pending"
1180  * in the beginning of this function, when it is checked, in order to
1181  * eliminate races when this function is called by multiple processes.
1182  * Case B: should never happen.
1183  */
1184 int asd_post_ascb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1185 		       int num)
1186 {
1187 	unsigned long flags;
1188 	LIST_HEAD(list);
1189 	int can_queue;
1190 
1191 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1192 	can_queue = asd_ha->hw_prof.max_scbs - asd_ha->seq.pending;
1193 	if (can_queue >= num)
1194 		asd_ha->seq.pending += num;
1195 	else
1196 		can_queue = 0;
1197 
1198 	if (!can_queue) {
1199 		spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1200 		asd_printk("%s: scb queue full\n", pci_name(asd_ha->pcidev));
1201 		return -SAS_QUEUE_FULL;
1202 	}
1203 
1204 	asd_swap_head_scb(asd_ha, ascb);
1205 
1206 	__list_add(&list, ascb->list.prev, &ascb->list);
1207 
1208 	asd_start_scb_timers(&list);
1209 
1210 	asd_ha->seq.scbpro += num;
1211 	list_splice_init(&list, asd_ha->seq.pend_q.prev);
1212 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1213 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1214 
1215 	return 0;
1216 }
1217 
1218 /**
1219  * asd_post_escb_list -- post a list of 1 or more empty scb
1220  * @asd_ha: pointer to a host adapter structure
1221  * @ascb: pointer to the first empty SCB in the list
1222  * @num: number of aSCBs in the list (to be posted)
1223  *
1224  * This is essentially the same as asd_post_ascb_list, but we do not
1225  * increment pending, add those to the pending list or get indexes.
1226  * See asd_init_escbs() and asd_init_post_escbs().
1227  *
1228  * Since sending a list of ascbs is a superset of sending a single
1229  * ascb, this function exists to generalize this.  More specifically,
1230  * when sending a list of those, we want to do only a _single_
1231  * memcpy() at swap head, as opposed to for each ascb sent (in the
1232  * case of sending them one by one).  That is, we want to minimize the
1233  * ratio of memcpy() operations to the number of ascbs sent.  The same
1234  * logic applies to asd_post_ascb_list().
1235  */
1236 int asd_post_escb_list(struct asd_ha_struct *asd_ha, struct asd_ascb *ascb,
1237 		       int num)
1238 {
1239 	unsigned long flags;
1240 
1241 	spin_lock_irqsave(&asd_ha->seq.pend_q_lock, flags);
1242 	asd_swap_head_scb(asd_ha, ascb);
1243 	asd_ha->seq.scbpro += num;
1244 	asd_write_reg_dword(asd_ha, SCBPRO, (u32)asd_ha->seq.scbpro);
1245 	spin_unlock_irqrestore(&asd_ha->seq.pend_q_lock, flags);
1246 
1247 	return 0;
1248 }
1249 
1250 /* ---------- LED ---------- */
1251 
1252 /**
1253  * asd_turn_led -- turn on/off an LED
1254  * @asd_ha: pointer to host adapter structure
1255  * @phy_id: the PHY id whose LED we want to manupulate
1256  * @op: 1 to turn on, 0 to turn off
1257  */
1258 void asd_turn_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1259 {
1260 	if (phy_id < ASD_MAX_PHYS) {
1261 		u32 v = asd_read_reg_dword(asd_ha, LmCONTROL(phy_id));
1262 		if (op)
1263 			v |= LEDPOL;
1264 		else
1265 			v &= ~LEDPOL;
1266 		asd_write_reg_dword(asd_ha, LmCONTROL(phy_id), v);
1267 	}
1268 }
1269 
1270 /**
1271  * asd_control_led -- enable/disable an LED on the board
1272  * @asd_ha: pointer to host adapter structure
1273  * @phy_id: integer, the phy id
1274  * @op: integer, 1 to enable, 0 to disable the LED
1275  *
1276  * First we output enable the LED, then we set the source
1277  * to be an external module.
1278  */
1279 void asd_control_led(struct asd_ha_struct *asd_ha, int phy_id, int op)
1280 {
1281 	if (phy_id < ASD_MAX_PHYS) {
1282 		u32 v;
1283 
1284 		v = asd_read_reg_dword(asd_ha, GPIOOER);
1285 		if (op)
1286 			v |= (1 << phy_id);
1287 		else
1288 			v &= ~(1 << phy_id);
1289 		asd_write_reg_dword(asd_ha, GPIOOER, v);
1290 
1291 		v = asd_read_reg_dword(asd_ha, GPIOCNFGR);
1292 		if (op)
1293 			v |= (1 << phy_id);
1294 		else
1295 			v &= ~(1 << phy_id);
1296 		asd_write_reg_dword(asd_ha, GPIOCNFGR, v);
1297 	}
1298 }
1299 
1300 /* ---------- PHY enable ---------- */
1301 
1302 static int asd_enable_phy(struct asd_ha_struct *asd_ha, int phy_id)
1303 {
1304 	struct asd_phy *phy = &asd_ha->phys[phy_id];
1305 
1306 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, INT_ENABLE_2), 0);
1307 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, HOT_PLUG_DELAY),
1308 			   HOTPLUG_DELAY_TIMEOUT);
1309 
1310 	/* Get defaults from manuf. sector */
1311 	/* XXX we need defaults for those in case MS is broken. */
1312 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_0),
1313 			   phy->phy_desc->phy_control_0);
1314 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_1),
1315 			   phy->phy_desc->phy_control_1);
1316 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_2),
1317 			   phy->phy_desc->phy_control_2);
1318 	asd_write_reg_byte(asd_ha, LmSEQ_OOB_REG(phy_id, PHY_CONTROL_3),
1319 			   phy->phy_desc->phy_control_3);
1320 
1321 	asd_write_reg_dword(asd_ha, LmSEQ_TEN_MS_COMINIT_TIMEOUT(phy_id),
1322 			    ASD_COMINIT_TIMEOUT);
1323 
1324 	asd_write_reg_addr(asd_ha, LmSEQ_TX_ID_ADDR_FRAME(phy_id),
1325 			   phy->id_frm_tok->dma_handle);
1326 
1327 	asd_control_led(asd_ha, phy_id, 1);
1328 
1329 	return 0;
1330 }
1331 
1332 int asd_enable_phys(struct asd_ha_struct *asd_ha, const u8 phy_mask)
1333 {
1334 	u8  phy_m;
1335 	u8  i;
1336 	int num = 0, k;
1337 	struct asd_ascb *ascb;
1338 	struct asd_ascb *ascb_list;
1339 
1340 	if (!phy_mask) {
1341 		asd_printk("%s called with phy_mask of 0!?\n", __func__);
1342 		return 0;
1343 	}
1344 
1345 	for_each_phy(phy_mask, phy_m, i) {
1346 		num++;
1347 		asd_enable_phy(asd_ha, i);
1348 	}
1349 
1350 	k = num;
1351 	ascb_list = asd_ascb_alloc_list(asd_ha, &k, GFP_KERNEL);
1352 	if (!ascb_list) {
1353 		asd_printk("no memory for control phy ascb list\n");
1354 		return -ENOMEM;
1355 	}
1356 	num -= k;
1357 
1358 	ascb = ascb_list;
1359 	for_each_phy(phy_mask, phy_m, i) {
1360 		asd_build_control_phy(ascb, i, ENABLE_PHY);
1361 		ascb = list_entry(ascb->list.next, struct asd_ascb, list);
1362 	}
1363 	ASD_DPRINTK("posting %d control phy scbs\n", num);
1364 	k = asd_post_ascb_list(asd_ha, ascb_list, num);
1365 	if (k)
1366 		asd_ascb_free_list(ascb_list);
1367 
1368 	return k;
1369 }
1370