1 /* 2 * Adaptec AIC7xxx device driver for Linux. 3 * 4 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $ 5 * 6 * Copyright (c) 1994 John Aycock 7 * The University of Calgary Department of Computer Science. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2, or (at your option) 12 * any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, write to 21 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 * 23 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F 24 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA 25 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide, 26 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux, 27 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file 28 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual, 29 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the 30 * ANSI SCSI-2 specification (draft 10c), ... 31 * 32 * -------------------------------------------------------------------------- 33 * 34 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org): 35 * 36 * Substantially modified to include support for wide and twin bus 37 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes, 38 * SCB paging, and other rework of the code. 39 * 40 * -------------------------------------------------------------------------- 41 * Copyright (c) 1994-2000 Justin T. Gibbs. 42 * Copyright (c) 2000-2001 Adaptec Inc. 43 * All rights reserved. 44 * 45 * Redistribution and use in source and binary forms, with or without 46 * modification, are permitted provided that the following conditions 47 * are met: 48 * 1. Redistributions of source code must retain the above copyright 49 * notice, this list of conditions, and the following disclaimer, 50 * without modification. 51 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 52 * substantially similar to the "NO WARRANTY" disclaimer below 53 * ("Disclaimer") and any redistribution must be conditioned upon 54 * including a substantially similar Disclaimer requirement for further 55 * binary redistribution. 56 * 3. Neither the names of the above-listed copyright holders nor the names 57 * of any contributors may be used to endorse or promote products derived 58 * from this software without specific prior written permission. 59 * 60 * Alternatively, this software may be distributed under the terms of the 61 * GNU General Public License ("GPL") version 2 as published by the Free 62 * Software Foundation. 63 * 64 * NO WARRANTY 65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 66 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 67 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 68 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 69 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 73 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 74 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 75 * POSSIBILITY OF SUCH DAMAGES. 76 * 77 *--------------------------------------------------------------------------- 78 * 79 * Thanks also go to (in alphabetical order) the following: 80 * 81 * Rory Bolt - Sequencer bug fixes 82 * Jay Estabrook - Initial DEC Alpha support 83 * Doug Ledford - Much needed abort/reset bug fixes 84 * Kai Makisara - DMAing of SCBs 85 * 86 * A Boot time option was also added for not resetting the scsi bus. 87 * 88 * Form: aic7xxx=extended 89 * aic7xxx=no_reset 90 * aic7xxx=verbose 91 * 92 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97 93 * 94 * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp 95 */ 96 97 /* 98 * Further driver modifications made by Doug Ledford <dledford@redhat.com> 99 * 100 * Copyright (c) 1997-1999 Doug Ledford 101 * 102 * These changes are released under the same licensing terms as the FreeBSD 103 * driver written by Justin Gibbs. Please see his Copyright notice above 104 * for the exact terms and conditions covering my changes as well as the 105 * warranty statement. 106 * 107 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include 108 * but are not limited to: 109 * 110 * 1: Import of the latest FreeBSD sequencer code for this driver 111 * 2: Modification of kernel code to accommodate different sequencer semantics 112 * 3: Extensive changes throughout kernel portion of driver to improve 113 * abort/reset processing and error hanndling 114 * 4: Other work contributed by various people on the Internet 115 * 5: Changes to printk information and verbosity selection code 116 * 6: General reliability related changes, especially in IRQ management 117 * 7: Modifications to the default probe/attach order for supported cards 118 * 8: SMP friendliness has been improved 119 * 120 */ 121 122 #include "aic7xxx_osm.h" 123 #include "aic7xxx_inline.h" 124 #include <scsi/scsicam.h> 125 126 static struct scsi_transport_template *ahc_linux_transport_template = NULL; 127 128 #include <linux/init.h> /* __setup */ 129 #include <linux/mm.h> /* For fetching system memory size */ 130 #include <linux/blkdev.h> /* For block_size() */ 131 #include <linux/delay.h> /* For ssleep/msleep */ 132 #include <linux/slab.h> 133 134 135 /* 136 * Set this to the delay in seconds after SCSI bus reset. 137 * Note, we honor this only for the initial bus reset. 138 * The scsi error recovery code performs its own bus settle 139 * delay handling for error recovery actions. 140 */ 141 #ifdef CONFIG_AIC7XXX_RESET_DELAY_MS 142 #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS 143 #else 144 #define AIC7XXX_RESET_DELAY 5000 145 #endif 146 147 /* 148 * Control collection of SCSI transfer statistics for the /proc filesystem. 149 * 150 * NOTE: Do NOT enable this when running on kernels version 1.2.x and below. 151 * NOTE: This does affect performance since it has to maintain statistics. 152 */ 153 #ifdef CONFIG_AIC7XXX_PROC_STATS 154 #define AIC7XXX_PROC_STATS 155 #endif 156 157 /* 158 * To change the default number of tagged transactions allowed per-device, 159 * add a line to the lilo.conf file like: 160 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}" 161 * which will result in the first four devices on the first two 162 * controllers being set to a tagged queue depth of 32. 163 * 164 * The tag_commands is an array of 16 to allow for wide and twin adapters. 165 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15 166 * for channel 1. 167 */ 168 typedef struct { 169 uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */ 170 } adapter_tag_info_t; 171 172 /* 173 * Modify this as you see fit for your system. 174 * 175 * 0 tagged queuing disabled 176 * 1 <= n <= 253 n == max tags ever dispatched. 177 * 178 * The driver will throttle the number of commands dispatched to a 179 * device if it returns queue full. For devices with a fixed maximum 180 * queue depth, the driver will eventually determine this depth and 181 * lock it in (a console message is printed to indicate that a lock 182 * has occurred). On some devices, queue full is returned for a temporary 183 * resource shortage. These devices will return queue full at varying 184 * depths. The driver will throttle back when the queue fulls occur and 185 * attempt to slowly increase the depth over time as the device recovers 186 * from the resource shortage. 187 * 188 * In this example, the first line will disable tagged queueing for all 189 * the devices on the first probed aic7xxx adapter. 190 * 191 * The second line enables tagged queueing with 4 commands/LUN for IDs 192 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the 193 * driver to attempt to use up to 64 tags for ID 1. 194 * 195 * The third line is the same as the first line. 196 * 197 * The fourth line disables tagged queueing for devices 0 and 3. It 198 * enables tagged queueing for the other IDs, with 16 commands/LUN 199 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for 200 * IDs 2, 5-7, and 9-15. 201 */ 202 203 /* 204 * NOTE: The below structure is for reference only, the actual structure 205 * to modify in order to change things is just below this comment block. 206 adapter_tag_info_t aic7xxx_tag_info[] = 207 { 208 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 209 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}}, 210 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 211 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}} 212 }; 213 */ 214 215 #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE 216 #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE 217 #else 218 #define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE 219 #endif 220 221 #define AIC7XXX_CONFIGED_TAG_COMMANDS { \ 222 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 223 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 224 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 225 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 226 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 227 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 228 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 229 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \ 230 } 231 232 /* 233 * By default, use the number of commands specified by 234 * the users kernel configuration. 235 */ 236 static adapter_tag_info_t aic7xxx_tag_info[] = 237 { 238 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 239 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 240 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 241 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 242 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 243 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 244 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 245 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 246 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 247 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 248 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 249 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 250 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 251 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 252 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 253 {AIC7XXX_CONFIGED_TAG_COMMANDS} 254 }; 255 256 /* 257 * There should be a specific return value for this in scsi.h, but 258 * it seems that most drivers ignore it. 259 */ 260 #define DID_UNDERFLOW DID_ERROR 261 262 void 263 ahc_print_path(struct ahc_softc *ahc, struct scb *scb) 264 { 265 printk("(scsi%d:%c:%d:%d): ", 266 ahc->platform_data->host->host_no, 267 scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X', 268 scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1, 269 scb != NULL ? SCB_GET_LUN(scb) : -1); 270 } 271 272 /* 273 * XXX - these options apply unilaterally to _all_ 274x/284x/294x 274 * cards in the system. This should be fixed. Exceptions to this 275 * rule are noted in the comments. 276 */ 277 278 /* 279 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This 280 * has no effect on any later resets that might occur due to things like 281 * SCSI bus timeouts. 282 */ 283 static uint32_t aic7xxx_no_reset; 284 285 /* 286 * Should we force EXTENDED translation on a controller. 287 * 0 == Use whatever is in the SEEPROM or default to off 288 * 1 == Use whatever is in the SEEPROM or default to on 289 */ 290 static uint32_t aic7xxx_extended; 291 292 /* 293 * PCI bus parity checking of the Adaptec controllers. This is somewhat 294 * dubious at best. To my knowledge, this option has never actually 295 * solved a PCI parity problem, but on certain machines with broken PCI 296 * chipset configurations where stray PCI transactions with bad parity are 297 * the norm rather than the exception, the error messages can be overwelming. 298 * It's included in the driver for completeness. 299 * 0 = Shut off PCI parity check 300 * non-0 = reverse polarity pci parity checking 301 */ 302 static uint32_t aic7xxx_pci_parity = ~0; 303 304 /* 305 * There are lots of broken chipsets in the world. Some of them will 306 * violate the PCI spec when we issue byte sized memory writes to our 307 * controller. I/O mapped register access, if allowed by the given 308 * platform, will work in almost all cases. 309 */ 310 uint32_t aic7xxx_allow_memio = ~0; 311 312 /* 313 * So that we can set how long each device is given as a selection timeout. 314 * The table of values goes like this: 315 * 0 - 256ms 316 * 1 - 128ms 317 * 2 - 64ms 318 * 3 - 32ms 319 * We default to 256ms because some older devices need a longer time 320 * to respond to initial selection. 321 */ 322 static uint32_t aic7xxx_seltime; 323 324 /* 325 * Certain devices do not perform any aging on commands. Should the 326 * device be saturated by commands in one portion of the disk, it is 327 * possible for transactions on far away sectors to never be serviced. 328 * To handle these devices, we can periodically send an ordered tag to 329 * force all outstanding transactions to be serviced prior to a new 330 * transaction. 331 */ 332 static uint32_t aic7xxx_periodic_otag; 333 334 /* 335 * Module information and settable options. 336 */ 337 static char *aic7xxx = NULL; 338 339 MODULE_AUTHOR("Maintainer: Hannes Reinecke <hare@suse.de>"); 340 MODULE_DESCRIPTION("Adaptec AIC77XX/78XX SCSI Host Bus Adapter driver"); 341 MODULE_LICENSE("Dual BSD/GPL"); 342 MODULE_VERSION(AIC7XXX_DRIVER_VERSION); 343 module_param(aic7xxx, charp, 0444); 344 MODULE_PARM_DESC(aic7xxx, 345 "period-delimited options string:\n" 346 " verbose Enable verbose/diagnostic logging\n" 347 " allow_memio Allow device registers to be memory mapped\n" 348 " debug Bitmask of debug values to enable\n" 349 " no_probe Toggle EISA/VLB controller probing\n" 350 " probe_eisa_vl Toggle EISA/VLB controller probing\n" 351 " no_reset Suppress initial bus resets\n" 352 " extended Enable extended geometry on all controllers\n" 353 " periodic_otag Send an ordered tagged transaction\n" 354 " periodically to prevent tag starvation.\n" 355 " This may be required by some older disk\n" 356 " drives or RAID arrays.\n" 357 " tag_info:<tag_str> Set per-target tag depth\n" 358 " global_tag_depth:<int> Global tag depth for every target\n" 359 " on every bus\n" 360 " seltime:<int> Selection Timeout\n" 361 " (0/256ms,1/128ms,2/64ms,3/32ms)\n" 362 "\n" 363 " Sample /etc/modprobe.conf line:\n" 364 " Toggle EISA/VLB probing\n" 365 " Set tag depth on Controller 1/Target 1 to 10 tags\n" 366 " Shorten the selection timeout to 128ms\n" 367 "\n" 368 " options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n" 369 ); 370 371 static void ahc_linux_handle_scsi_status(struct ahc_softc *, 372 struct scsi_device *, 373 struct scb *); 374 static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, 375 struct scsi_cmnd *cmd); 376 static void ahc_linux_freeze_simq(struct ahc_softc *ahc); 377 static void ahc_linux_release_simq(struct ahc_softc *ahc); 378 static int ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag); 379 static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc); 380 static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc, 381 struct ahc_devinfo *devinfo); 382 static void ahc_linux_device_queue_depth(struct scsi_device *); 383 static int ahc_linux_run_command(struct ahc_softc*, 384 struct ahc_linux_device *, 385 struct scsi_cmnd *); 386 static void ahc_linux_setup_tag_info_global(char *p); 387 static int aic7xxx_setup(char *s); 388 389 static int ahc_linux_unit; 390 391 392 /************************** OS Utility Wrappers *******************************/ 393 void 394 ahc_delay(long usec) 395 { 396 /* 397 * udelay on Linux can have problems for 398 * multi-millisecond waits. Wait at most 399 * 1024us per call. 400 */ 401 while (usec > 0) { 402 udelay(usec % 1024); 403 usec -= 1024; 404 } 405 } 406 407 /***************************** Low Level I/O **********************************/ 408 uint8_t 409 ahc_inb(struct ahc_softc * ahc, long port) 410 { 411 uint8_t x; 412 413 if (ahc->tag == BUS_SPACE_MEMIO) { 414 x = readb(ahc->bsh.maddr + port); 415 } else { 416 x = inb(ahc->bsh.ioport + port); 417 } 418 mb(); 419 return (x); 420 } 421 422 void 423 ahc_outb(struct ahc_softc * ahc, long port, uint8_t val) 424 { 425 if (ahc->tag == BUS_SPACE_MEMIO) { 426 writeb(val, ahc->bsh.maddr + port); 427 } else { 428 outb(val, ahc->bsh.ioport + port); 429 } 430 mb(); 431 } 432 433 void 434 ahc_outsb(struct ahc_softc * ahc, long port, uint8_t *array, int count) 435 { 436 int i; 437 438 /* 439 * There is probably a more efficient way to do this on Linux 440 * but we don't use this for anything speed critical and this 441 * should work. 442 */ 443 for (i = 0; i < count; i++) 444 ahc_outb(ahc, port, *array++); 445 } 446 447 void 448 ahc_insb(struct ahc_softc * ahc, long port, uint8_t *array, int count) 449 { 450 int i; 451 452 /* 453 * There is probably a more efficient way to do this on Linux 454 * but we don't use this for anything speed critical and this 455 * should work. 456 */ 457 for (i = 0; i < count; i++) 458 *array++ = ahc_inb(ahc, port); 459 } 460 461 /********************************* Inlines ************************************/ 462 static void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*); 463 464 static int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, 465 struct ahc_dma_seg *sg, 466 dma_addr_t addr, bus_size_t len); 467 468 static void 469 ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb) 470 { 471 struct scsi_cmnd *cmd; 472 473 cmd = scb->io_ctx; 474 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE); 475 476 scsi_dma_unmap(cmd); 477 } 478 479 static int 480 ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, 481 struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len) 482 { 483 int consumed; 484 485 if ((scb->sg_count + 1) > AHC_NSEG) 486 panic("Too few segs for dma mapping. " 487 "Increase AHC_NSEG\n"); 488 489 consumed = 1; 490 sg->addr = ahc_htole32(addr & 0xFFFFFFFF); 491 scb->platform_data->xfer_len += len; 492 493 if (sizeof(dma_addr_t) > 4 494 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0) 495 len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK; 496 497 sg->len = ahc_htole32(len); 498 return (consumed); 499 } 500 501 /* 502 * Return a string describing the driver. 503 */ 504 static const char * 505 ahc_linux_info(struct Scsi_Host *host) 506 { 507 static char buffer[512]; 508 char ahc_info[256]; 509 char *bp; 510 struct ahc_softc *ahc; 511 512 bp = &buffer[0]; 513 ahc = *(struct ahc_softc **)host->hostdata; 514 memset(bp, 0, sizeof(buffer)); 515 strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev " AIC7XXX_DRIVER_VERSION "\n" 516 " <"); 517 strcat(bp, ahc->description); 518 strcat(bp, ">\n" 519 " "); 520 ahc_controller_info(ahc, ahc_info); 521 strcat(bp, ahc_info); 522 strcat(bp, "\n"); 523 524 return (bp); 525 } 526 527 /* 528 * Queue an SCB to the controller. 529 */ 530 static int 531 ahc_linux_queue_lck(struct scsi_cmnd * cmd, void (*scsi_done) (struct scsi_cmnd *)) 532 { 533 struct ahc_softc *ahc; 534 struct ahc_linux_device *dev = scsi_transport_device_data(cmd->device); 535 int rtn = SCSI_MLQUEUE_HOST_BUSY; 536 unsigned long flags; 537 538 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 539 540 ahc_lock(ahc, &flags); 541 if (ahc->platform_data->qfrozen == 0) { 542 cmd->scsi_done = scsi_done; 543 cmd->result = CAM_REQ_INPROG << 16; 544 rtn = ahc_linux_run_command(ahc, dev, cmd); 545 } 546 ahc_unlock(ahc, &flags); 547 548 return rtn; 549 } 550 551 static DEF_SCSI_QCMD(ahc_linux_queue) 552 553 static inline struct scsi_target ** 554 ahc_linux_target_in_softc(struct scsi_target *starget) 555 { 556 struct ahc_softc *ahc = 557 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata); 558 unsigned int target_offset; 559 560 target_offset = starget->id; 561 if (starget->channel != 0) 562 target_offset += 8; 563 564 return &ahc->platform_data->starget[target_offset]; 565 } 566 567 static int 568 ahc_linux_target_alloc(struct scsi_target *starget) 569 { 570 struct ahc_softc *ahc = 571 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata); 572 struct seeprom_config *sc = ahc->seep_config; 573 unsigned long flags; 574 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget); 575 unsigned short scsirate; 576 struct ahc_devinfo devinfo; 577 struct ahc_initiator_tinfo *tinfo; 578 struct ahc_tmode_tstate *tstate; 579 char channel = starget->channel + 'A'; 580 unsigned int our_id = ahc->our_id; 581 unsigned int target_offset; 582 583 target_offset = starget->id; 584 if (starget->channel != 0) 585 target_offset += 8; 586 587 if (starget->channel) 588 our_id = ahc->our_id_b; 589 590 ahc_lock(ahc, &flags); 591 592 BUG_ON(*ahc_targp != NULL); 593 594 *ahc_targp = starget; 595 596 if (sc) { 597 int maxsync = AHC_SYNCRATE_DT; 598 int ultra = 0; 599 int flags = sc->device_flags[target_offset]; 600 601 if (ahc->flags & AHC_NEWEEPROM_FMT) { 602 if (flags & CFSYNCHISULTRA) 603 ultra = 1; 604 } else if (flags & CFULTRAEN) 605 ultra = 1; 606 /* AIC nutcase; 10MHz appears as ultra = 1, CFXFER = 0x04 607 * change it to ultra=0, CFXFER = 0 */ 608 if(ultra && (flags & CFXFER) == 0x04) { 609 ultra = 0; 610 flags &= ~CFXFER; 611 } 612 613 if ((ahc->features & AHC_ULTRA2) != 0) { 614 scsirate = (flags & CFXFER) | (ultra ? 0x8 : 0); 615 } else { 616 scsirate = (flags & CFXFER) << 4; 617 maxsync = ultra ? AHC_SYNCRATE_ULTRA : 618 AHC_SYNCRATE_FAST; 619 } 620 spi_max_width(starget) = (flags & CFWIDEB) ? 1 : 0; 621 if (!(flags & CFSYNCH)) 622 spi_max_offset(starget) = 0; 623 spi_min_period(starget) = 624 ahc_find_period(ahc, scsirate, maxsync); 625 626 tinfo = ahc_fetch_transinfo(ahc, channel, ahc->our_id, 627 starget->id, &tstate); 628 } 629 ahc_compile_devinfo(&devinfo, our_id, starget->id, 630 CAM_LUN_WILDCARD, channel, 631 ROLE_INITIATOR); 632 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0, 633 AHC_TRANS_GOAL, /*paused*/FALSE); 634 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, 635 AHC_TRANS_GOAL, /*paused*/FALSE); 636 ahc_unlock(ahc, &flags); 637 638 return 0; 639 } 640 641 static void 642 ahc_linux_target_destroy(struct scsi_target *starget) 643 { 644 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget); 645 646 *ahc_targp = NULL; 647 } 648 649 static int 650 ahc_linux_slave_alloc(struct scsi_device *sdev) 651 { 652 struct ahc_softc *ahc = 653 *((struct ahc_softc **)sdev->host->hostdata); 654 struct scsi_target *starget = sdev->sdev_target; 655 struct ahc_linux_device *dev; 656 657 if (bootverbose) 658 printk("%s: Slave Alloc %d\n", ahc_name(ahc), sdev->id); 659 660 dev = scsi_transport_device_data(sdev); 661 memset(dev, 0, sizeof(*dev)); 662 663 /* 664 * We start out life using untagged 665 * transactions of which we allow one. 666 */ 667 dev->openings = 1; 668 669 /* 670 * Set maxtags to 0. This will be changed if we 671 * later determine that we are dealing with 672 * a tagged queuing capable device. 673 */ 674 dev->maxtags = 0; 675 676 spi_period(starget) = 0; 677 678 return 0; 679 } 680 681 static int 682 ahc_linux_slave_configure(struct scsi_device *sdev) 683 { 684 struct ahc_softc *ahc; 685 686 ahc = *((struct ahc_softc **)sdev->host->hostdata); 687 688 if (bootverbose) 689 sdev_printk(KERN_INFO, sdev, "Slave Configure\n"); 690 691 ahc_linux_device_queue_depth(sdev); 692 693 /* Initial Domain Validation */ 694 if (!spi_initial_dv(sdev->sdev_target)) 695 spi_dv_device(sdev); 696 697 return 0; 698 } 699 700 #if defined(__i386__) 701 /* 702 * Return the disk geometry for the given SCSI device. 703 */ 704 static int 705 ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev, 706 sector_t capacity, int geom[]) 707 { 708 uint8_t *bh; 709 int heads; 710 int sectors; 711 int cylinders; 712 int ret; 713 int extended; 714 struct ahc_softc *ahc; 715 u_int channel; 716 717 ahc = *((struct ahc_softc **)sdev->host->hostdata); 718 channel = sdev_channel(sdev); 719 720 bh = scsi_bios_ptable(bdev); 721 if (bh) { 722 ret = scsi_partsize(bh, capacity, 723 &geom[2], &geom[0], &geom[1]); 724 kfree(bh); 725 if (ret != -1) 726 return (ret); 727 } 728 heads = 64; 729 sectors = 32; 730 cylinders = aic_sector_div(capacity, heads, sectors); 731 732 if (aic7xxx_extended != 0) 733 extended = 1; 734 else if (channel == 0) 735 extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0; 736 else 737 extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0; 738 if (extended && cylinders >= 1024) { 739 heads = 255; 740 sectors = 63; 741 cylinders = aic_sector_div(capacity, heads, sectors); 742 } 743 geom[0] = heads; 744 geom[1] = sectors; 745 geom[2] = cylinders; 746 return (0); 747 } 748 #endif 749 750 /* 751 * Abort the current SCSI command(s). 752 */ 753 static int 754 ahc_linux_abort(struct scsi_cmnd *cmd) 755 { 756 int error; 757 758 error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT); 759 if (error != 0) 760 printk("aic7xxx_abort returns 0x%x\n", error); 761 return (error); 762 } 763 764 /* 765 * Attempt to send a target reset message to the device that timed out. 766 */ 767 static int 768 ahc_linux_dev_reset(struct scsi_cmnd *cmd) 769 { 770 int error; 771 772 error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET); 773 if (error != 0) 774 printk("aic7xxx_dev_reset returns 0x%x\n", error); 775 return (error); 776 } 777 778 /* 779 * Reset the SCSI bus. 780 */ 781 static int 782 ahc_linux_bus_reset(struct scsi_cmnd *cmd) 783 { 784 struct ahc_softc *ahc; 785 int found; 786 unsigned long flags; 787 788 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 789 790 ahc_lock(ahc, &flags); 791 found = ahc_reset_channel(ahc, scmd_channel(cmd) + 'A', 792 /*initiate reset*/TRUE); 793 ahc_unlock(ahc, &flags); 794 795 if (bootverbose) 796 printk("%s: SCSI bus reset delivered. " 797 "%d SCBs aborted.\n", ahc_name(ahc), found); 798 799 return SUCCESS; 800 } 801 802 struct scsi_host_template aic7xxx_driver_template = { 803 .module = THIS_MODULE, 804 .name = "aic7xxx", 805 .proc_name = "aic7xxx", 806 .proc_info = ahc_linux_proc_info, 807 .info = ahc_linux_info, 808 .queuecommand = ahc_linux_queue, 809 .eh_abort_handler = ahc_linux_abort, 810 .eh_device_reset_handler = ahc_linux_dev_reset, 811 .eh_bus_reset_handler = ahc_linux_bus_reset, 812 #if defined(__i386__) 813 .bios_param = ahc_linux_biosparam, 814 #endif 815 .can_queue = AHC_MAX_QUEUE, 816 .this_id = -1, 817 .max_sectors = 8192, 818 .cmd_per_lun = 2, 819 .use_clustering = ENABLE_CLUSTERING, 820 .slave_alloc = ahc_linux_slave_alloc, 821 .slave_configure = ahc_linux_slave_configure, 822 .target_alloc = ahc_linux_target_alloc, 823 .target_destroy = ahc_linux_target_destroy, 824 }; 825 826 /**************************** Tasklet Handler *********************************/ 827 828 /******************************** Macros **************************************/ 829 #define BUILD_SCSIID(ahc, cmd) \ 830 ((((cmd)->device->id << TID_SHIFT) & TID) \ 831 | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \ 832 | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB)) 833 834 /******************************** Bus DMA *************************************/ 835 int 836 ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent, 837 bus_size_t alignment, bus_size_t boundary, 838 dma_addr_t lowaddr, dma_addr_t highaddr, 839 bus_dma_filter_t *filter, void *filterarg, 840 bus_size_t maxsize, int nsegments, 841 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag) 842 { 843 bus_dma_tag_t dmat; 844 845 dmat = kmalloc(sizeof(*dmat), GFP_ATOMIC); 846 if (dmat == NULL) 847 return (ENOMEM); 848 849 /* 850 * Linux is very simplistic about DMA memory. For now don't 851 * maintain all specification information. Once Linux supplies 852 * better facilities for doing these operations, or the 853 * needs of this particular driver change, we might need to do 854 * more here. 855 */ 856 dmat->alignment = alignment; 857 dmat->boundary = boundary; 858 dmat->maxsize = maxsize; 859 *ret_tag = dmat; 860 return (0); 861 } 862 863 void 864 ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat) 865 { 866 kfree(dmat); 867 } 868 869 int 870 ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr, 871 int flags, bus_dmamap_t *mapp) 872 { 873 *vaddr = pci_alloc_consistent(ahc->dev_softc, 874 dmat->maxsize, mapp); 875 if (*vaddr == NULL) 876 return ENOMEM; 877 return 0; 878 } 879 880 void 881 ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat, 882 void* vaddr, bus_dmamap_t map) 883 { 884 pci_free_consistent(ahc->dev_softc, dmat->maxsize, 885 vaddr, map); 886 } 887 888 int 889 ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map, 890 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb, 891 void *cb_arg, int flags) 892 { 893 /* 894 * Assume for now that this will only be used during 895 * initialization and not for per-transaction buffer mapping. 896 */ 897 bus_dma_segment_t stack_sg; 898 899 stack_sg.ds_addr = map; 900 stack_sg.ds_len = dmat->maxsize; 901 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0); 902 return (0); 903 } 904 905 void 906 ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) 907 { 908 } 909 910 int 911 ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) 912 { 913 /* Nothing to do */ 914 return (0); 915 } 916 917 static void 918 ahc_linux_setup_tag_info_global(char *p) 919 { 920 int tags, i, j; 921 922 tags = simple_strtoul(p + 1, NULL, 0) & 0xff; 923 printk("Setting Global Tags= %d\n", tags); 924 925 for (i = 0; i < ARRAY_SIZE(aic7xxx_tag_info); i++) { 926 for (j = 0; j < AHC_NUM_TARGETS; j++) { 927 aic7xxx_tag_info[i].tag_commands[j] = tags; 928 } 929 } 930 } 931 932 static void 933 ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value) 934 { 935 936 if ((instance >= 0) && (targ >= 0) 937 && (instance < ARRAY_SIZE(aic7xxx_tag_info)) 938 && (targ < AHC_NUM_TARGETS)) { 939 aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff; 940 if (bootverbose) 941 printk("tag_info[%d:%d] = %d\n", instance, targ, value); 942 } 943 } 944 945 static char * 946 ahc_parse_brace_option(char *opt_name, char *opt_arg, char *end, int depth, 947 void (*callback)(u_long, int, int, int32_t), 948 u_long callback_arg) 949 { 950 char *tok_end; 951 char *tok_end2; 952 int i; 953 int instance; 954 int targ; 955 int done; 956 char tok_list[] = {'.', ',', '{', '}', '\0'}; 957 958 /* All options use a ':' name/arg separator */ 959 if (*opt_arg != ':') 960 return (opt_arg); 961 opt_arg++; 962 instance = -1; 963 targ = -1; 964 done = FALSE; 965 /* 966 * Restore separator that may be in 967 * the middle of our option argument. 968 */ 969 tok_end = strchr(opt_arg, '\0'); 970 if (tok_end < end) 971 *tok_end = ','; 972 while (!done) { 973 switch (*opt_arg) { 974 case '{': 975 if (instance == -1) { 976 instance = 0; 977 } else { 978 if (depth > 1) { 979 if (targ == -1) 980 targ = 0; 981 } else { 982 printk("Malformed Option %s\n", 983 opt_name); 984 done = TRUE; 985 } 986 } 987 opt_arg++; 988 break; 989 case '}': 990 if (targ != -1) 991 targ = -1; 992 else if (instance != -1) 993 instance = -1; 994 opt_arg++; 995 break; 996 case ',': 997 case '.': 998 if (instance == -1) 999 done = TRUE; 1000 else if (targ >= 0) 1001 targ++; 1002 else if (instance >= 0) 1003 instance++; 1004 opt_arg++; 1005 break; 1006 case '\0': 1007 done = TRUE; 1008 break; 1009 default: 1010 tok_end = end; 1011 for (i = 0; tok_list[i]; i++) { 1012 tok_end2 = strchr(opt_arg, tok_list[i]); 1013 if ((tok_end2) && (tok_end2 < tok_end)) 1014 tok_end = tok_end2; 1015 } 1016 callback(callback_arg, instance, targ, 1017 simple_strtol(opt_arg, NULL, 0)); 1018 opt_arg = tok_end; 1019 break; 1020 } 1021 } 1022 return (opt_arg); 1023 } 1024 1025 /* 1026 * Handle Linux boot parameters. This routine allows for assigning a value 1027 * to a parameter with a ':' between the parameter and the value. 1028 * ie. aic7xxx=stpwlev:1,extended 1029 */ 1030 static int 1031 aic7xxx_setup(char *s) 1032 { 1033 int i, n; 1034 char *p; 1035 char *end; 1036 1037 static const struct { 1038 const char *name; 1039 uint32_t *flag; 1040 } options[] = { 1041 { "extended", &aic7xxx_extended }, 1042 { "no_reset", &aic7xxx_no_reset }, 1043 { "verbose", &aic7xxx_verbose }, 1044 { "allow_memio", &aic7xxx_allow_memio}, 1045 #ifdef AHC_DEBUG 1046 { "debug", &ahc_debug }, 1047 #endif 1048 { "periodic_otag", &aic7xxx_periodic_otag }, 1049 { "pci_parity", &aic7xxx_pci_parity }, 1050 { "seltime", &aic7xxx_seltime }, 1051 { "tag_info", NULL }, 1052 { "global_tag_depth", NULL }, 1053 { "dv", NULL } 1054 }; 1055 1056 end = strchr(s, '\0'); 1057 1058 /* 1059 * XXX ia64 gcc isn't smart enough to know that ARRAY_SIZE 1060 * will never be 0 in this case. 1061 */ 1062 n = 0; 1063 1064 while ((p = strsep(&s, ",.")) != NULL) { 1065 if (*p == '\0') 1066 continue; 1067 for (i = 0; i < ARRAY_SIZE(options); i++) { 1068 1069 n = strlen(options[i].name); 1070 if (strncmp(options[i].name, p, n) == 0) 1071 break; 1072 } 1073 if (i == ARRAY_SIZE(options)) 1074 continue; 1075 1076 if (strncmp(p, "global_tag_depth", n) == 0) { 1077 ahc_linux_setup_tag_info_global(p + n); 1078 } else if (strncmp(p, "tag_info", n) == 0) { 1079 s = ahc_parse_brace_option("tag_info", p + n, end, 1080 2, ahc_linux_setup_tag_info, 0); 1081 } else if (p[n] == ':') { 1082 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0); 1083 } else if (strncmp(p, "verbose", n) == 0) { 1084 *(options[i].flag) = 1; 1085 } else { 1086 *(options[i].flag) ^= 0xFFFFFFFF; 1087 } 1088 } 1089 return 1; 1090 } 1091 1092 __setup("aic7xxx=", aic7xxx_setup); 1093 1094 uint32_t aic7xxx_verbose; 1095 1096 int 1097 ahc_linux_register_host(struct ahc_softc *ahc, struct scsi_host_template *template) 1098 { 1099 char buf[80]; 1100 struct Scsi_Host *host; 1101 char *new_name; 1102 u_long s; 1103 int retval; 1104 1105 template->name = ahc->description; 1106 host = scsi_host_alloc(template, sizeof(struct ahc_softc *)); 1107 if (host == NULL) 1108 return (ENOMEM); 1109 1110 *((struct ahc_softc **)host->hostdata) = ahc; 1111 ahc->platform_data->host = host; 1112 host->can_queue = AHC_MAX_QUEUE; 1113 host->cmd_per_lun = 2; 1114 /* XXX No way to communicate the ID for multiple channels */ 1115 host->this_id = ahc->our_id; 1116 host->irq = ahc->platform_data->irq; 1117 host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8; 1118 host->max_lun = AHC_NUM_LUNS; 1119 host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0; 1120 host->sg_tablesize = AHC_NSEG; 1121 ahc_lock(ahc, &s); 1122 ahc_set_unit(ahc, ahc_linux_unit++); 1123 ahc_unlock(ahc, &s); 1124 sprintf(buf, "scsi%d", host->host_no); 1125 new_name = kmalloc(strlen(buf) + 1, GFP_ATOMIC); 1126 if (new_name != NULL) { 1127 strcpy(new_name, buf); 1128 ahc_set_name(ahc, new_name); 1129 } 1130 host->unique_id = ahc->unit; 1131 ahc_linux_initialize_scsi_bus(ahc); 1132 ahc_intr_enable(ahc, TRUE); 1133 1134 host->transportt = ahc_linux_transport_template; 1135 1136 retval = scsi_add_host(host, 1137 (ahc->dev_softc ? &ahc->dev_softc->dev : NULL)); 1138 if (retval) { 1139 printk(KERN_WARNING "aic7xxx: scsi_add_host failed\n"); 1140 scsi_host_put(host); 1141 return retval; 1142 } 1143 1144 scsi_scan_host(host); 1145 return 0; 1146 } 1147 1148 /* 1149 * Place the SCSI bus into a known state by either resetting it, 1150 * or forcing transfer negotiations on the next command to any 1151 * target. 1152 */ 1153 void 1154 ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc) 1155 { 1156 int i; 1157 int numtarg; 1158 unsigned long s; 1159 1160 i = 0; 1161 numtarg = 0; 1162 1163 ahc_lock(ahc, &s); 1164 1165 if (aic7xxx_no_reset != 0) 1166 ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B); 1167 1168 if ((ahc->flags & AHC_RESET_BUS_A) != 0) 1169 ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE); 1170 else 1171 numtarg = (ahc->features & AHC_WIDE) ? 16 : 8; 1172 1173 if ((ahc->features & AHC_TWIN) != 0) { 1174 1175 if ((ahc->flags & AHC_RESET_BUS_B) != 0) { 1176 ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE); 1177 } else { 1178 if (numtarg == 0) 1179 i = 8; 1180 numtarg += 8; 1181 } 1182 } 1183 1184 /* 1185 * Force negotiation to async for all targets that 1186 * will not see an initial bus reset. 1187 */ 1188 for (; i < numtarg; i++) { 1189 struct ahc_devinfo devinfo; 1190 struct ahc_initiator_tinfo *tinfo; 1191 struct ahc_tmode_tstate *tstate; 1192 u_int our_id; 1193 u_int target_id; 1194 char channel; 1195 1196 channel = 'A'; 1197 our_id = ahc->our_id; 1198 target_id = i; 1199 if (i > 7 && (ahc->features & AHC_TWIN) != 0) { 1200 channel = 'B'; 1201 our_id = ahc->our_id_b; 1202 target_id = i % 8; 1203 } 1204 tinfo = ahc_fetch_transinfo(ahc, channel, our_id, 1205 target_id, &tstate); 1206 ahc_compile_devinfo(&devinfo, our_id, target_id, 1207 CAM_LUN_WILDCARD, channel, ROLE_INITIATOR); 1208 ahc_update_neg_request(ahc, &devinfo, tstate, 1209 tinfo, AHC_NEG_ALWAYS); 1210 } 1211 ahc_unlock(ahc, &s); 1212 /* Give the bus some time to recover */ 1213 if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) { 1214 ahc_linux_freeze_simq(ahc); 1215 msleep(AIC7XXX_RESET_DELAY); 1216 ahc_linux_release_simq(ahc); 1217 } 1218 } 1219 1220 int 1221 ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg) 1222 { 1223 1224 ahc->platform_data = 1225 kmalloc(sizeof(struct ahc_platform_data), GFP_ATOMIC); 1226 if (ahc->platform_data == NULL) 1227 return (ENOMEM); 1228 memset(ahc->platform_data, 0, sizeof(struct ahc_platform_data)); 1229 ahc->platform_data->irq = AHC_LINUX_NOIRQ; 1230 ahc_lockinit(ahc); 1231 ahc->seltime = (aic7xxx_seltime & 0x3) << 4; 1232 ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4; 1233 if (aic7xxx_pci_parity == 0) 1234 ahc->flags |= AHC_DISABLE_PCI_PERR; 1235 1236 return (0); 1237 } 1238 1239 void 1240 ahc_platform_free(struct ahc_softc *ahc) 1241 { 1242 struct scsi_target *starget; 1243 int i; 1244 1245 if (ahc->platform_data != NULL) { 1246 /* destroy all of the device and target objects */ 1247 for (i = 0; i < AHC_NUM_TARGETS; i++) { 1248 starget = ahc->platform_data->starget[i]; 1249 if (starget != NULL) { 1250 ahc->platform_data->starget[i] = NULL; 1251 } 1252 } 1253 1254 if (ahc->platform_data->irq != AHC_LINUX_NOIRQ) 1255 free_irq(ahc->platform_data->irq, ahc); 1256 if (ahc->tag == BUS_SPACE_PIO 1257 && ahc->bsh.ioport != 0) 1258 release_region(ahc->bsh.ioport, 256); 1259 if (ahc->tag == BUS_SPACE_MEMIO 1260 && ahc->bsh.maddr != NULL) { 1261 iounmap(ahc->bsh.maddr); 1262 release_mem_region(ahc->platform_data->mem_busaddr, 1263 0x1000); 1264 } 1265 1266 if (ahc->platform_data->host) 1267 scsi_host_put(ahc->platform_data->host); 1268 1269 kfree(ahc->platform_data); 1270 } 1271 } 1272 1273 void 1274 ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb) 1275 { 1276 ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb), 1277 SCB_GET_CHANNEL(ahc, scb), 1278 SCB_GET_LUN(scb), SCB_LIST_NULL, 1279 ROLE_UNKNOWN, CAM_REQUEUE_REQ); 1280 } 1281 1282 void 1283 ahc_platform_set_tags(struct ahc_softc *ahc, struct scsi_device *sdev, 1284 struct ahc_devinfo *devinfo, ahc_queue_alg alg) 1285 { 1286 struct ahc_linux_device *dev; 1287 int was_queuing; 1288 int now_queuing; 1289 1290 if (sdev == NULL) 1291 return; 1292 dev = scsi_transport_device_data(sdev); 1293 1294 was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED); 1295 switch (alg) { 1296 default: 1297 case AHC_QUEUE_NONE: 1298 now_queuing = 0; 1299 break; 1300 case AHC_QUEUE_BASIC: 1301 now_queuing = AHC_DEV_Q_BASIC; 1302 break; 1303 case AHC_QUEUE_TAGGED: 1304 now_queuing = AHC_DEV_Q_TAGGED; 1305 break; 1306 } 1307 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0 1308 && (was_queuing != now_queuing) 1309 && (dev->active != 0)) { 1310 dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY; 1311 dev->qfrozen++; 1312 } 1313 1314 dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG); 1315 if (now_queuing) { 1316 u_int usertags; 1317 1318 usertags = ahc_linux_user_tagdepth(ahc, devinfo); 1319 if (!was_queuing) { 1320 /* 1321 * Start out agressively and allow our 1322 * dynamic queue depth algorithm to take 1323 * care of the rest. 1324 */ 1325 dev->maxtags = usertags; 1326 dev->openings = dev->maxtags - dev->active; 1327 } 1328 if (dev->maxtags == 0) { 1329 /* 1330 * Queueing is disabled by the user. 1331 */ 1332 dev->openings = 1; 1333 } else if (alg == AHC_QUEUE_TAGGED) { 1334 dev->flags |= AHC_DEV_Q_TAGGED; 1335 if (aic7xxx_periodic_otag != 0) 1336 dev->flags |= AHC_DEV_PERIODIC_OTAG; 1337 } else 1338 dev->flags |= AHC_DEV_Q_BASIC; 1339 } else { 1340 /* We can only have one opening. */ 1341 dev->maxtags = 0; 1342 dev->openings = 1 - dev->active; 1343 } 1344 switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) { 1345 case AHC_DEV_Q_BASIC: 1346 scsi_set_tag_type(sdev, MSG_SIMPLE_TAG); 1347 scsi_activate_tcq(sdev, dev->openings + dev->active); 1348 break; 1349 case AHC_DEV_Q_TAGGED: 1350 scsi_set_tag_type(sdev, MSG_ORDERED_TAG); 1351 scsi_activate_tcq(sdev, dev->openings + dev->active); 1352 break; 1353 default: 1354 /* 1355 * We allow the OS to queue 2 untagged transactions to 1356 * us at any time even though we can only execute them 1357 * serially on the controller/device. This should 1358 * remove some latency. 1359 */ 1360 scsi_deactivate_tcq(sdev, 2); 1361 break; 1362 } 1363 } 1364 1365 int 1366 ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel, 1367 int lun, u_int tag, role_t role, uint32_t status) 1368 { 1369 return 0; 1370 } 1371 1372 static u_int 1373 ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) 1374 { 1375 static int warned_user; 1376 u_int tags; 1377 1378 tags = 0; 1379 if ((ahc->user_discenable & devinfo->target_mask) != 0) { 1380 if (ahc->unit >= ARRAY_SIZE(aic7xxx_tag_info)) { 1381 if (warned_user == 0) { 1382 1383 printk(KERN_WARNING 1384 "aic7xxx: WARNING: Insufficient tag_info instances\n" 1385 "aic7xxx: for installed controllers. Using defaults\n" 1386 "aic7xxx: Please update the aic7xxx_tag_info array in\n" 1387 "aic7xxx: the aic7xxx_osm..c source file.\n"); 1388 warned_user++; 1389 } 1390 tags = AHC_MAX_QUEUE; 1391 } else { 1392 adapter_tag_info_t *tag_info; 1393 1394 tag_info = &aic7xxx_tag_info[ahc->unit]; 1395 tags = tag_info->tag_commands[devinfo->target_offset]; 1396 if (tags > AHC_MAX_QUEUE) 1397 tags = AHC_MAX_QUEUE; 1398 } 1399 } 1400 return (tags); 1401 } 1402 1403 /* 1404 * Determines the queue depth for a given device. 1405 */ 1406 static void 1407 ahc_linux_device_queue_depth(struct scsi_device *sdev) 1408 { 1409 struct ahc_devinfo devinfo; 1410 u_int tags; 1411 struct ahc_softc *ahc = *((struct ahc_softc **)sdev->host->hostdata); 1412 1413 ahc_compile_devinfo(&devinfo, 1414 sdev->sdev_target->channel == 0 1415 ? ahc->our_id : ahc->our_id_b, 1416 sdev->sdev_target->id, sdev->lun, 1417 sdev->sdev_target->channel == 0 ? 'A' : 'B', 1418 ROLE_INITIATOR); 1419 tags = ahc_linux_user_tagdepth(ahc, &devinfo); 1420 if (tags != 0 && sdev->tagged_supported != 0) { 1421 1422 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_TAGGED); 1423 ahc_send_async(ahc, devinfo.channel, devinfo.target, 1424 devinfo.lun, AC_TRANSFER_NEG); 1425 ahc_print_devinfo(ahc, &devinfo); 1426 printk("Tagged Queuing enabled. Depth %d\n", tags); 1427 } else { 1428 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_NONE); 1429 ahc_send_async(ahc, devinfo.channel, devinfo.target, 1430 devinfo.lun, AC_TRANSFER_NEG); 1431 } 1432 } 1433 1434 static int 1435 ahc_linux_run_command(struct ahc_softc *ahc, struct ahc_linux_device *dev, 1436 struct scsi_cmnd *cmd) 1437 { 1438 struct scb *scb; 1439 struct hardware_scb *hscb; 1440 struct ahc_initiator_tinfo *tinfo; 1441 struct ahc_tmode_tstate *tstate; 1442 uint16_t mask; 1443 struct scb_tailq *untagged_q = NULL; 1444 int nseg; 1445 1446 /* 1447 * Schedule us to run later. The only reason we are not 1448 * running is because the whole controller Q is frozen. 1449 */ 1450 if (ahc->platform_data->qfrozen != 0) 1451 return SCSI_MLQUEUE_HOST_BUSY; 1452 1453 /* 1454 * We only allow one untagged transaction 1455 * per target in the initiator role unless 1456 * we are storing a full busy target *lun* 1457 * table in SCB space. 1458 */ 1459 if (!blk_rq_tagged(cmd->request) 1460 && (ahc->features & AHC_SCB_BTT) == 0) { 1461 int target_offset; 1462 1463 target_offset = cmd->device->id + cmd->device->channel * 8; 1464 untagged_q = &(ahc->untagged_queues[target_offset]); 1465 if (!TAILQ_EMPTY(untagged_q)) 1466 /* if we're already executing an untagged command 1467 * we're busy to another */ 1468 return SCSI_MLQUEUE_DEVICE_BUSY; 1469 } 1470 1471 nseg = scsi_dma_map(cmd); 1472 if (nseg < 0) 1473 return SCSI_MLQUEUE_HOST_BUSY; 1474 1475 /* 1476 * Get an scb to use. 1477 */ 1478 scb = ahc_get_scb(ahc); 1479 if (!scb) { 1480 scsi_dma_unmap(cmd); 1481 return SCSI_MLQUEUE_HOST_BUSY; 1482 } 1483 1484 scb->io_ctx = cmd; 1485 scb->platform_data->dev = dev; 1486 hscb = scb->hscb; 1487 cmd->host_scribble = (char *)scb; 1488 1489 /* 1490 * Fill out basics of the HSCB. 1491 */ 1492 hscb->control = 0; 1493 hscb->scsiid = BUILD_SCSIID(ahc, cmd); 1494 hscb->lun = cmd->device->lun; 1495 mask = SCB_GET_TARGET_MASK(ahc, scb); 1496 tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb), 1497 SCB_GET_OUR_ID(scb), 1498 SCB_GET_TARGET(ahc, scb), &tstate); 1499 hscb->scsirate = tinfo->scsirate; 1500 hscb->scsioffset = tinfo->curr.offset; 1501 if ((tstate->ultraenb & mask) != 0) 1502 hscb->control |= ULTRAENB; 1503 1504 if ((ahc->user_discenable & mask) != 0) 1505 hscb->control |= DISCENB; 1506 1507 if ((tstate->auto_negotiate & mask) != 0) { 1508 scb->flags |= SCB_AUTO_NEGOTIATE; 1509 scb->hscb->control |= MK_MESSAGE; 1510 } 1511 1512 if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) { 1513 int msg_bytes; 1514 uint8_t tag_msgs[2]; 1515 1516 msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs); 1517 if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) { 1518 hscb->control |= tag_msgs[0]; 1519 if (tag_msgs[0] == MSG_ORDERED_TASK) 1520 dev->commands_since_idle_or_otag = 0; 1521 } else if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH 1522 && (dev->flags & AHC_DEV_Q_TAGGED) != 0) { 1523 hscb->control |= MSG_ORDERED_TASK; 1524 dev->commands_since_idle_or_otag = 0; 1525 } else { 1526 hscb->control |= MSG_SIMPLE_TASK; 1527 } 1528 } 1529 1530 hscb->cdb_len = cmd->cmd_len; 1531 if (hscb->cdb_len <= 12) { 1532 memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len); 1533 } else { 1534 memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len); 1535 scb->flags |= SCB_CDB32_PTR; 1536 } 1537 1538 scb->platform_data->xfer_len = 0; 1539 ahc_set_residual(scb, 0); 1540 ahc_set_sense_residual(scb, 0); 1541 scb->sg_count = 0; 1542 1543 if (nseg > 0) { 1544 struct ahc_dma_seg *sg; 1545 struct scatterlist *cur_seg; 1546 int i; 1547 1548 /* Copy the segments into the SG list. */ 1549 sg = scb->sg_list; 1550 /* 1551 * The sg_count may be larger than nseg if 1552 * a transfer crosses a 32bit page. 1553 */ 1554 scsi_for_each_sg(cmd, cur_seg, nseg, i) { 1555 dma_addr_t addr; 1556 bus_size_t len; 1557 int consumed; 1558 1559 addr = sg_dma_address(cur_seg); 1560 len = sg_dma_len(cur_seg); 1561 consumed = ahc_linux_map_seg(ahc, scb, 1562 sg, addr, len); 1563 sg += consumed; 1564 scb->sg_count += consumed; 1565 } 1566 sg--; 1567 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG); 1568 1569 /* 1570 * Reset the sg list pointer. 1571 */ 1572 scb->hscb->sgptr = 1573 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID); 1574 1575 /* 1576 * Copy the first SG into the "current" 1577 * data pointer area. 1578 */ 1579 scb->hscb->dataptr = scb->sg_list->addr; 1580 scb->hscb->datacnt = scb->sg_list->len; 1581 } else { 1582 scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL); 1583 scb->hscb->dataptr = 0; 1584 scb->hscb->datacnt = 0; 1585 scb->sg_count = 0; 1586 } 1587 1588 LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links); 1589 dev->openings--; 1590 dev->active++; 1591 dev->commands_issued++; 1592 if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0) 1593 dev->commands_since_idle_or_otag++; 1594 1595 scb->flags |= SCB_ACTIVE; 1596 if (untagged_q) { 1597 TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe); 1598 scb->flags |= SCB_UNTAGGEDQ; 1599 } 1600 ahc_queue_scb(ahc, scb); 1601 return 0; 1602 } 1603 1604 /* 1605 * SCSI controller interrupt handler. 1606 */ 1607 irqreturn_t 1608 ahc_linux_isr(int irq, void *dev_id) 1609 { 1610 struct ahc_softc *ahc; 1611 u_long flags; 1612 int ours; 1613 1614 ahc = (struct ahc_softc *) dev_id; 1615 ahc_lock(ahc, &flags); 1616 ours = ahc_intr(ahc); 1617 ahc_unlock(ahc, &flags); 1618 return IRQ_RETVAL(ours); 1619 } 1620 1621 void 1622 ahc_platform_flushwork(struct ahc_softc *ahc) 1623 { 1624 1625 } 1626 1627 void 1628 ahc_send_async(struct ahc_softc *ahc, char channel, 1629 u_int target, u_int lun, ac_code code) 1630 { 1631 switch (code) { 1632 case AC_TRANSFER_NEG: 1633 { 1634 char buf[80]; 1635 struct scsi_target *starget; 1636 struct ahc_linux_target *targ; 1637 struct info_str info; 1638 struct ahc_initiator_tinfo *tinfo; 1639 struct ahc_tmode_tstate *tstate; 1640 int target_offset; 1641 unsigned int target_ppr_options; 1642 1643 BUG_ON(target == CAM_TARGET_WILDCARD); 1644 1645 info.buffer = buf; 1646 info.length = sizeof(buf); 1647 info.offset = 0; 1648 info.pos = 0; 1649 tinfo = ahc_fetch_transinfo(ahc, channel, 1650 channel == 'A' ? ahc->our_id 1651 : ahc->our_id_b, 1652 target, &tstate); 1653 1654 /* 1655 * Don't bother reporting results while 1656 * negotiations are still pending. 1657 */ 1658 if (tinfo->curr.period != tinfo->goal.period 1659 || tinfo->curr.width != tinfo->goal.width 1660 || tinfo->curr.offset != tinfo->goal.offset 1661 || tinfo->curr.ppr_options != tinfo->goal.ppr_options) 1662 if (bootverbose == 0) 1663 break; 1664 1665 /* 1666 * Don't bother reporting results that 1667 * are identical to those last reported. 1668 */ 1669 target_offset = target; 1670 if (channel == 'B') 1671 target_offset += 8; 1672 starget = ahc->platform_data->starget[target_offset]; 1673 if (starget == NULL) 1674 break; 1675 targ = scsi_transport_target_data(starget); 1676 1677 target_ppr_options = 1678 (spi_dt(starget) ? MSG_EXT_PPR_DT_REQ : 0) 1679 + (spi_qas(starget) ? MSG_EXT_PPR_QAS_REQ : 0) 1680 + (spi_iu(starget) ? MSG_EXT_PPR_IU_REQ : 0); 1681 1682 if (tinfo->curr.period == spi_period(starget) 1683 && tinfo->curr.width == spi_width(starget) 1684 && tinfo->curr.offset == spi_offset(starget) 1685 && tinfo->curr.ppr_options == target_ppr_options) 1686 if (bootverbose == 0) 1687 break; 1688 1689 spi_period(starget) = tinfo->curr.period; 1690 spi_width(starget) = tinfo->curr.width; 1691 spi_offset(starget) = tinfo->curr.offset; 1692 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_DT_REQ ? 1 : 0; 1693 spi_qas(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_QAS_REQ ? 1 : 0; 1694 spi_iu(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ ? 1 : 0; 1695 spi_display_xfer_agreement(starget); 1696 break; 1697 } 1698 case AC_SENT_BDR: 1699 { 1700 WARN_ON(lun != CAM_LUN_WILDCARD); 1701 scsi_report_device_reset(ahc->platform_data->host, 1702 channel - 'A', target); 1703 break; 1704 } 1705 case AC_BUS_RESET: 1706 if (ahc->platform_data->host != NULL) { 1707 scsi_report_bus_reset(ahc->platform_data->host, 1708 channel - 'A'); 1709 } 1710 break; 1711 default: 1712 panic("ahc_send_async: Unexpected async event"); 1713 } 1714 } 1715 1716 /* 1717 * Calls the higher level scsi done function and frees the scb. 1718 */ 1719 void 1720 ahc_done(struct ahc_softc *ahc, struct scb *scb) 1721 { 1722 struct scsi_cmnd *cmd; 1723 struct ahc_linux_device *dev; 1724 1725 LIST_REMOVE(scb, pending_links); 1726 if ((scb->flags & SCB_UNTAGGEDQ) != 0) { 1727 struct scb_tailq *untagged_q; 1728 int target_offset; 1729 1730 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); 1731 untagged_q = &(ahc->untagged_queues[target_offset]); 1732 TAILQ_REMOVE(untagged_q, scb, links.tqe); 1733 BUG_ON(!TAILQ_EMPTY(untagged_q)); 1734 } else if ((scb->flags & SCB_ACTIVE) == 0) { 1735 /* 1736 * Transactions aborted from the untagged queue may 1737 * not have been dispatched to the controller, so 1738 * only check the SCB_ACTIVE flag for tagged transactions. 1739 */ 1740 printk("SCB %d done'd twice\n", scb->hscb->tag); 1741 ahc_dump_card_state(ahc); 1742 panic("Stopping for safety"); 1743 } 1744 cmd = scb->io_ctx; 1745 dev = scb->platform_data->dev; 1746 dev->active--; 1747 dev->openings++; 1748 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) { 1749 cmd->result &= ~(CAM_DEV_QFRZN << 16); 1750 dev->qfrozen--; 1751 } 1752 ahc_linux_unmap_scb(ahc, scb); 1753 1754 /* 1755 * Guard against stale sense data. 1756 * The Linux mid-layer assumes that sense 1757 * was retrieved anytime the first byte of 1758 * the sense buffer looks "sane". 1759 */ 1760 cmd->sense_buffer[0] = 0; 1761 if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) { 1762 uint32_t amount_xferred; 1763 1764 amount_xferred = 1765 ahc_get_transfer_length(scb) - ahc_get_residual(scb); 1766 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) { 1767 #ifdef AHC_DEBUG 1768 if ((ahc_debug & AHC_SHOW_MISC) != 0) { 1769 ahc_print_path(ahc, scb); 1770 printk("Set CAM_UNCOR_PARITY\n"); 1771 } 1772 #endif 1773 ahc_set_transaction_status(scb, CAM_UNCOR_PARITY); 1774 #ifdef AHC_REPORT_UNDERFLOWS 1775 /* 1776 * This code is disabled by default as some 1777 * clients of the SCSI system do not properly 1778 * initialize the underflow parameter. This 1779 * results in spurious termination of commands 1780 * that complete as expected (e.g. underflow is 1781 * allowed as command can return variable amounts 1782 * of data. 1783 */ 1784 } else if (amount_xferred < scb->io_ctx->underflow) { 1785 u_int i; 1786 1787 ahc_print_path(ahc, scb); 1788 printk("CDB:"); 1789 for (i = 0; i < scb->io_ctx->cmd_len; i++) 1790 printk(" 0x%x", scb->io_ctx->cmnd[i]); 1791 printk("\n"); 1792 ahc_print_path(ahc, scb); 1793 printk("Saw underflow (%ld of %ld bytes). " 1794 "Treated as error\n", 1795 ahc_get_residual(scb), 1796 ahc_get_transfer_length(scb)); 1797 ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR); 1798 #endif 1799 } else { 1800 ahc_set_transaction_status(scb, CAM_REQ_CMP); 1801 } 1802 } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) { 1803 ahc_linux_handle_scsi_status(ahc, cmd->device, scb); 1804 } 1805 1806 if (dev->openings == 1 1807 && ahc_get_transaction_status(scb) == CAM_REQ_CMP 1808 && ahc_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL) 1809 dev->tag_success_count++; 1810 /* 1811 * Some devices deal with temporary internal resource 1812 * shortages by returning queue full. When the queue 1813 * full occurrs, we throttle back. Slowly try to get 1814 * back to our previous queue depth. 1815 */ 1816 if ((dev->openings + dev->active) < dev->maxtags 1817 && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) { 1818 dev->tag_success_count = 0; 1819 dev->openings++; 1820 } 1821 1822 if (dev->active == 0) 1823 dev->commands_since_idle_or_otag = 0; 1824 1825 if ((scb->flags & SCB_RECOVERY_SCB) != 0) { 1826 printk("Recovery SCB completes\n"); 1827 if (ahc_get_transaction_status(scb) == CAM_BDR_SENT 1828 || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED) 1829 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT); 1830 1831 if (ahc->platform_data->eh_done) 1832 complete(ahc->platform_data->eh_done); 1833 } 1834 1835 ahc_free_scb(ahc, scb); 1836 ahc_linux_queue_cmd_complete(ahc, cmd); 1837 } 1838 1839 static void 1840 ahc_linux_handle_scsi_status(struct ahc_softc *ahc, 1841 struct scsi_device *sdev, struct scb *scb) 1842 { 1843 struct ahc_devinfo devinfo; 1844 struct ahc_linux_device *dev = scsi_transport_device_data(sdev); 1845 1846 ahc_compile_devinfo(&devinfo, 1847 ahc->our_id, 1848 sdev->sdev_target->id, sdev->lun, 1849 sdev->sdev_target->channel == 0 ? 'A' : 'B', 1850 ROLE_INITIATOR); 1851 1852 /* 1853 * We don't currently trust the mid-layer to 1854 * properly deal with queue full or busy. So, 1855 * when one occurs, we tell the mid-layer to 1856 * unconditionally requeue the command to us 1857 * so that we can retry it ourselves. We also 1858 * implement our own throttling mechanism so 1859 * we don't clobber the device with too many 1860 * commands. 1861 */ 1862 switch (ahc_get_scsi_status(scb)) { 1863 default: 1864 break; 1865 case SCSI_STATUS_CHECK_COND: 1866 case SCSI_STATUS_CMD_TERMINATED: 1867 { 1868 struct scsi_cmnd *cmd; 1869 1870 /* 1871 * Copy sense information to the OS's cmd 1872 * structure if it is available. 1873 */ 1874 cmd = scb->io_ctx; 1875 if (scb->flags & SCB_SENSE) { 1876 u_int sense_size; 1877 1878 sense_size = min(sizeof(struct scsi_sense_data) 1879 - ahc_get_sense_residual(scb), 1880 (u_long)SCSI_SENSE_BUFFERSIZE); 1881 memcpy(cmd->sense_buffer, 1882 ahc_get_sense_buf(ahc, scb), sense_size); 1883 if (sense_size < SCSI_SENSE_BUFFERSIZE) 1884 memset(&cmd->sense_buffer[sense_size], 0, 1885 SCSI_SENSE_BUFFERSIZE - sense_size); 1886 cmd->result |= (DRIVER_SENSE << 24); 1887 #ifdef AHC_DEBUG 1888 if (ahc_debug & AHC_SHOW_SENSE) { 1889 int i; 1890 1891 printk("Copied %d bytes of sense data:", 1892 sense_size); 1893 for (i = 0; i < sense_size; i++) { 1894 if ((i & 0xF) == 0) 1895 printk("\n"); 1896 printk("0x%x ", cmd->sense_buffer[i]); 1897 } 1898 printk("\n"); 1899 } 1900 #endif 1901 } 1902 break; 1903 } 1904 case SCSI_STATUS_QUEUE_FULL: 1905 { 1906 /* 1907 * By the time the core driver has returned this 1908 * command, all other commands that were queued 1909 * to us but not the device have been returned. 1910 * This ensures that dev->active is equal to 1911 * the number of commands actually queued to 1912 * the device. 1913 */ 1914 dev->tag_success_count = 0; 1915 if (dev->active != 0) { 1916 /* 1917 * Drop our opening count to the number 1918 * of commands currently outstanding. 1919 */ 1920 dev->openings = 0; 1921 /* 1922 ahc_print_path(ahc, scb); 1923 printk("Dropping tag count to %d\n", dev->active); 1924 */ 1925 if (dev->active == dev->tags_on_last_queuefull) { 1926 1927 dev->last_queuefull_same_count++; 1928 /* 1929 * If we repeatedly see a queue full 1930 * at the same queue depth, this 1931 * device has a fixed number of tag 1932 * slots. Lock in this tag depth 1933 * so we stop seeing queue fulls from 1934 * this device. 1935 */ 1936 if (dev->last_queuefull_same_count 1937 == AHC_LOCK_TAGS_COUNT) { 1938 dev->maxtags = dev->active; 1939 ahc_print_path(ahc, scb); 1940 printk("Locking max tag count at %d\n", 1941 dev->active); 1942 } 1943 } else { 1944 dev->tags_on_last_queuefull = dev->active; 1945 dev->last_queuefull_same_count = 0; 1946 } 1947 ahc_set_transaction_status(scb, CAM_REQUEUE_REQ); 1948 ahc_set_scsi_status(scb, SCSI_STATUS_OK); 1949 ahc_platform_set_tags(ahc, sdev, &devinfo, 1950 (dev->flags & AHC_DEV_Q_BASIC) 1951 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED); 1952 break; 1953 } 1954 /* 1955 * Drop down to a single opening, and treat this 1956 * as if the target returned BUSY SCSI status. 1957 */ 1958 dev->openings = 1; 1959 ahc_set_scsi_status(scb, SCSI_STATUS_BUSY); 1960 ahc_platform_set_tags(ahc, sdev, &devinfo, 1961 (dev->flags & AHC_DEV_Q_BASIC) 1962 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED); 1963 break; 1964 } 1965 } 1966 } 1967 1968 static void 1969 ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, struct scsi_cmnd *cmd) 1970 { 1971 /* 1972 * Map CAM error codes into Linux Error codes. We 1973 * avoid the conversion so that the DV code has the 1974 * full error information available when making 1975 * state change decisions. 1976 */ 1977 { 1978 u_int new_status; 1979 1980 switch (ahc_cmd_get_transaction_status(cmd)) { 1981 case CAM_REQ_INPROG: 1982 case CAM_REQ_CMP: 1983 case CAM_SCSI_STATUS_ERROR: 1984 new_status = DID_OK; 1985 break; 1986 case CAM_REQ_ABORTED: 1987 new_status = DID_ABORT; 1988 break; 1989 case CAM_BUSY: 1990 new_status = DID_BUS_BUSY; 1991 break; 1992 case CAM_REQ_INVALID: 1993 case CAM_PATH_INVALID: 1994 new_status = DID_BAD_TARGET; 1995 break; 1996 case CAM_SEL_TIMEOUT: 1997 new_status = DID_NO_CONNECT; 1998 break; 1999 case CAM_SCSI_BUS_RESET: 2000 case CAM_BDR_SENT: 2001 new_status = DID_RESET; 2002 break; 2003 case CAM_UNCOR_PARITY: 2004 new_status = DID_PARITY; 2005 break; 2006 case CAM_CMD_TIMEOUT: 2007 new_status = DID_TIME_OUT; 2008 break; 2009 case CAM_UA_ABORT: 2010 case CAM_REQ_CMP_ERR: 2011 case CAM_AUTOSENSE_FAIL: 2012 case CAM_NO_HBA: 2013 case CAM_DATA_RUN_ERR: 2014 case CAM_UNEXP_BUSFREE: 2015 case CAM_SEQUENCE_FAIL: 2016 case CAM_CCB_LEN_ERR: 2017 case CAM_PROVIDE_FAIL: 2018 case CAM_REQ_TERMIO: 2019 case CAM_UNREC_HBA_ERROR: 2020 case CAM_REQ_TOO_BIG: 2021 new_status = DID_ERROR; 2022 break; 2023 case CAM_REQUEUE_REQ: 2024 new_status = DID_REQUEUE; 2025 break; 2026 default: 2027 /* We should never get here */ 2028 new_status = DID_ERROR; 2029 break; 2030 } 2031 2032 ahc_cmd_set_transaction_status(cmd, new_status); 2033 } 2034 2035 cmd->scsi_done(cmd); 2036 } 2037 2038 static void 2039 ahc_linux_freeze_simq(struct ahc_softc *ahc) 2040 { 2041 unsigned long s; 2042 2043 ahc_lock(ahc, &s); 2044 ahc->platform_data->qfrozen++; 2045 if (ahc->platform_data->qfrozen == 1) { 2046 scsi_block_requests(ahc->platform_data->host); 2047 2048 /* XXX What about Twin channels? */ 2049 ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS, 2050 CAM_LUN_WILDCARD, SCB_LIST_NULL, 2051 ROLE_INITIATOR, CAM_REQUEUE_REQ); 2052 } 2053 ahc_unlock(ahc, &s); 2054 } 2055 2056 static void 2057 ahc_linux_release_simq(struct ahc_softc *ahc) 2058 { 2059 u_long s; 2060 int unblock_reqs; 2061 2062 unblock_reqs = 0; 2063 ahc_lock(ahc, &s); 2064 if (ahc->platform_data->qfrozen > 0) 2065 ahc->platform_data->qfrozen--; 2066 if (ahc->platform_data->qfrozen == 0) 2067 unblock_reqs = 1; 2068 ahc_unlock(ahc, &s); 2069 /* 2070 * There is still a race here. The mid-layer 2071 * should keep its own freeze count and use 2072 * a bottom half handler to run the queues 2073 * so we can unblock with our own lock held. 2074 */ 2075 if (unblock_reqs) 2076 scsi_unblock_requests(ahc->platform_data->host); 2077 } 2078 2079 static int 2080 ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag) 2081 { 2082 struct ahc_softc *ahc; 2083 struct ahc_linux_device *dev; 2084 struct scb *pending_scb; 2085 u_int saved_scbptr; 2086 u_int active_scb_index; 2087 u_int last_phase; 2088 u_int saved_scsiid; 2089 u_int cdb_byte; 2090 int retval; 2091 int was_paused; 2092 int paused; 2093 int wait; 2094 int disconnected; 2095 unsigned long flags; 2096 2097 pending_scb = NULL; 2098 paused = FALSE; 2099 wait = FALSE; 2100 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 2101 2102 scmd_printk(KERN_INFO, cmd, "Attempting to queue a%s message\n", 2103 flag == SCB_ABORT ? "n ABORT" : " TARGET RESET"); 2104 2105 printk("CDB:"); 2106 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++) 2107 printk(" 0x%x", cmd->cmnd[cdb_byte]); 2108 printk("\n"); 2109 2110 ahc_lock(ahc, &flags); 2111 2112 /* 2113 * First determine if we currently own this command. 2114 * Start by searching the device queue. If not found 2115 * there, check the pending_scb list. If not found 2116 * at all, and the system wanted us to just abort the 2117 * command, return success. 2118 */ 2119 dev = scsi_transport_device_data(cmd->device); 2120 2121 if (dev == NULL) { 2122 /* 2123 * No target device for this command exists, 2124 * so we must not still own the command. 2125 */ 2126 printk("%s:%d:%d:%d: Is not an active device\n", 2127 ahc_name(ahc), cmd->device->channel, cmd->device->id, 2128 cmd->device->lun); 2129 retval = SUCCESS; 2130 goto no_cmd; 2131 } 2132 2133 if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0 2134 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id, 2135 cmd->device->channel + 'A', 2136 cmd->device->lun, 2137 CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) { 2138 printk("%s:%d:%d:%d: Command found on untagged queue\n", 2139 ahc_name(ahc), cmd->device->channel, cmd->device->id, 2140 cmd->device->lun); 2141 retval = SUCCESS; 2142 goto done; 2143 } 2144 2145 /* 2146 * See if we can find a matching cmd in the pending list. 2147 */ 2148 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { 2149 if (pending_scb->io_ctx == cmd) 2150 break; 2151 } 2152 2153 if (pending_scb == NULL && flag == SCB_DEVICE_RESET) { 2154 2155 /* Any SCB for this device will do for a target reset */ 2156 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { 2157 if (ahc_match_scb(ahc, pending_scb, scmd_id(cmd), 2158 scmd_channel(cmd) + 'A', 2159 CAM_LUN_WILDCARD, 2160 SCB_LIST_NULL, ROLE_INITIATOR)) 2161 break; 2162 } 2163 } 2164 2165 if (pending_scb == NULL) { 2166 scmd_printk(KERN_INFO, cmd, "Command not found\n"); 2167 goto no_cmd; 2168 } 2169 2170 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) { 2171 /* 2172 * We can't queue two recovery actions using the same SCB 2173 */ 2174 retval = FAILED; 2175 goto done; 2176 } 2177 2178 /* 2179 * Ensure that the card doesn't do anything 2180 * behind our back and that we didn't "just" miss 2181 * an interrupt that would affect this cmd. 2182 */ 2183 was_paused = ahc_is_paused(ahc); 2184 ahc_pause_and_flushwork(ahc); 2185 paused = TRUE; 2186 2187 if ((pending_scb->flags & SCB_ACTIVE) == 0) { 2188 scmd_printk(KERN_INFO, cmd, "Command already completed\n"); 2189 goto no_cmd; 2190 } 2191 2192 printk("%s: At time of recovery, card was %spaused\n", 2193 ahc_name(ahc), was_paused ? "" : "not "); 2194 ahc_dump_card_state(ahc); 2195 2196 disconnected = TRUE; 2197 if (flag == SCB_ABORT) { 2198 if (ahc_search_qinfifo(ahc, cmd->device->id, 2199 cmd->device->channel + 'A', 2200 cmd->device->lun, 2201 pending_scb->hscb->tag, 2202 ROLE_INITIATOR, CAM_REQ_ABORTED, 2203 SEARCH_COMPLETE) > 0) { 2204 printk("%s:%d:%d:%d: Cmd aborted from QINFIFO\n", 2205 ahc_name(ahc), cmd->device->channel, 2206 cmd->device->id, cmd->device->lun); 2207 retval = SUCCESS; 2208 goto done; 2209 } 2210 } else if (ahc_search_qinfifo(ahc, cmd->device->id, 2211 cmd->device->channel + 'A', 2212 cmd->device->lun, pending_scb->hscb->tag, 2213 ROLE_INITIATOR, /*status*/0, 2214 SEARCH_COUNT) > 0) { 2215 disconnected = FALSE; 2216 } 2217 2218 if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) { 2219 struct scb *bus_scb; 2220 2221 bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG)); 2222 if (bus_scb == pending_scb) 2223 disconnected = FALSE; 2224 else if (flag != SCB_ABORT 2225 && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid 2226 && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb)) 2227 disconnected = FALSE; 2228 } 2229 2230 /* 2231 * At this point, pending_scb is the scb associated with the 2232 * passed in command. That command is currently active on the 2233 * bus, is in the disconnected state, or we're hoping to find 2234 * a command for the same target active on the bus to abuse to 2235 * send a BDR. Queue the appropriate message based on which of 2236 * these states we are in. 2237 */ 2238 last_phase = ahc_inb(ahc, LASTPHASE); 2239 saved_scbptr = ahc_inb(ahc, SCBPTR); 2240 active_scb_index = ahc_inb(ahc, SCB_TAG); 2241 saved_scsiid = ahc_inb(ahc, SAVED_SCSIID); 2242 if (last_phase != P_BUSFREE 2243 && (pending_scb->hscb->tag == active_scb_index 2244 || (flag == SCB_DEVICE_RESET 2245 && SCSIID_TARGET(ahc, saved_scsiid) == scmd_id(cmd)))) { 2246 2247 /* 2248 * We're active on the bus, so assert ATN 2249 * and hope that the target responds. 2250 */ 2251 pending_scb = ahc_lookup_scb(ahc, active_scb_index); 2252 pending_scb->flags |= SCB_RECOVERY_SCB|flag; 2253 ahc_outb(ahc, MSG_OUT, HOST_MSG); 2254 ahc_outb(ahc, SCSISIGO, last_phase|ATNO); 2255 scmd_printk(KERN_INFO, cmd, "Device is active, asserting ATN\n"); 2256 wait = TRUE; 2257 } else if (disconnected) { 2258 2259 /* 2260 * Actually re-queue this SCB in an attempt 2261 * to select the device before it reconnects. 2262 * In either case (selection or reselection), 2263 * we will now issue the approprate message 2264 * to the timed-out device. 2265 * 2266 * Set the MK_MESSAGE control bit indicating 2267 * that we desire to send a message. We 2268 * also set the disconnected flag since 2269 * in the paging case there is no guarantee 2270 * that our SCB control byte matches the 2271 * version on the card. We don't want the 2272 * sequencer to abort the command thinking 2273 * an unsolicited reselection occurred. 2274 */ 2275 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED; 2276 pending_scb->flags |= SCB_RECOVERY_SCB|flag; 2277 2278 /* 2279 * Remove any cached copy of this SCB in the 2280 * disconnected list in preparation for the 2281 * queuing of our abort SCB. We use the 2282 * same element in the SCB, SCB_NEXT, for 2283 * both the qinfifo and the disconnected list. 2284 */ 2285 ahc_search_disc_list(ahc, cmd->device->id, 2286 cmd->device->channel + 'A', 2287 cmd->device->lun, pending_scb->hscb->tag, 2288 /*stop_on_first*/TRUE, 2289 /*remove*/TRUE, 2290 /*save_state*/FALSE); 2291 2292 /* 2293 * In the non-paging case, the sequencer will 2294 * never re-reference the in-core SCB. 2295 * To make sure we are notified during 2296 * reselection, set the MK_MESSAGE flag in 2297 * the card's copy of the SCB. 2298 */ 2299 if ((ahc->flags & AHC_PAGESCBS) == 0) { 2300 ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag); 2301 ahc_outb(ahc, SCB_CONTROL, 2302 ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE); 2303 } 2304 2305 /* 2306 * Clear out any entries in the QINFIFO first 2307 * so we are the next SCB for this target 2308 * to run. 2309 */ 2310 ahc_search_qinfifo(ahc, cmd->device->id, 2311 cmd->device->channel + 'A', 2312 cmd->device->lun, SCB_LIST_NULL, 2313 ROLE_INITIATOR, CAM_REQUEUE_REQ, 2314 SEARCH_COMPLETE); 2315 ahc_qinfifo_requeue_tail(ahc, pending_scb); 2316 ahc_outb(ahc, SCBPTR, saved_scbptr); 2317 ahc_print_path(ahc, pending_scb); 2318 printk("Device is disconnected, re-queuing SCB\n"); 2319 wait = TRUE; 2320 } else { 2321 scmd_printk(KERN_INFO, cmd, "Unable to deliver message\n"); 2322 retval = FAILED; 2323 goto done; 2324 } 2325 2326 no_cmd: 2327 /* 2328 * Our assumption is that if we don't have the command, no 2329 * recovery action was required, so we return success. Again, 2330 * the semantics of the mid-layer recovery engine are not 2331 * well defined, so this may change in time. 2332 */ 2333 retval = SUCCESS; 2334 done: 2335 if (paused) 2336 ahc_unpause(ahc); 2337 if (wait) { 2338 DECLARE_COMPLETION_ONSTACK(done); 2339 2340 ahc->platform_data->eh_done = &done; 2341 ahc_unlock(ahc, &flags); 2342 2343 printk("Recovery code sleeping\n"); 2344 if (!wait_for_completion_timeout(&done, 5 * HZ)) { 2345 ahc_lock(ahc, &flags); 2346 ahc->platform_data->eh_done = NULL; 2347 ahc_unlock(ahc, &flags); 2348 2349 printk("Timer Expired\n"); 2350 retval = FAILED; 2351 } 2352 printk("Recovery code awake\n"); 2353 } else 2354 ahc_unlock(ahc, &flags); 2355 return (retval); 2356 } 2357 2358 void 2359 ahc_platform_dump_card_state(struct ahc_softc *ahc) 2360 { 2361 } 2362 2363 static void ahc_linux_set_width(struct scsi_target *starget, int width) 2364 { 2365 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2366 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2367 struct ahc_devinfo devinfo; 2368 unsigned long flags; 2369 2370 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2371 starget->channel + 'A', ROLE_INITIATOR); 2372 ahc_lock(ahc, &flags); 2373 ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, FALSE); 2374 ahc_unlock(ahc, &flags); 2375 } 2376 2377 static void ahc_linux_set_period(struct scsi_target *starget, int period) 2378 { 2379 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2380 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2381 struct ahc_tmode_tstate *tstate; 2382 struct ahc_initiator_tinfo *tinfo 2383 = ahc_fetch_transinfo(ahc, 2384 starget->channel + 'A', 2385 shost->this_id, starget->id, &tstate); 2386 struct ahc_devinfo devinfo; 2387 unsigned int ppr_options = tinfo->goal.ppr_options; 2388 unsigned long flags; 2389 unsigned long offset = tinfo->goal.offset; 2390 const struct ahc_syncrate *syncrate; 2391 2392 if (offset == 0) 2393 offset = MAX_OFFSET; 2394 2395 if (period < 9) 2396 period = 9; /* 12.5ns is our minimum */ 2397 if (period == 9) { 2398 if (spi_max_width(starget)) 2399 ppr_options |= MSG_EXT_PPR_DT_REQ; 2400 else 2401 /* need wide for DT and need DT for 12.5 ns */ 2402 period = 10; 2403 } 2404 2405 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2406 starget->channel + 'A', ROLE_INITIATOR); 2407 2408 /* all PPR requests apart from QAS require wide transfers */ 2409 if (ppr_options & ~MSG_EXT_PPR_QAS_REQ) { 2410 if (spi_width(starget) == 0) 2411 ppr_options &= MSG_EXT_PPR_QAS_REQ; 2412 } 2413 2414 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT); 2415 ahc_lock(ahc, &flags); 2416 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset, 2417 ppr_options, AHC_TRANS_GOAL, FALSE); 2418 ahc_unlock(ahc, &flags); 2419 } 2420 2421 static void ahc_linux_set_offset(struct scsi_target *starget, int offset) 2422 { 2423 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2424 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2425 struct ahc_tmode_tstate *tstate; 2426 struct ahc_initiator_tinfo *tinfo 2427 = ahc_fetch_transinfo(ahc, 2428 starget->channel + 'A', 2429 shost->this_id, starget->id, &tstate); 2430 struct ahc_devinfo devinfo; 2431 unsigned int ppr_options = 0; 2432 unsigned int period = 0; 2433 unsigned long flags; 2434 const struct ahc_syncrate *syncrate = NULL; 2435 2436 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2437 starget->channel + 'A', ROLE_INITIATOR); 2438 if (offset != 0) { 2439 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT); 2440 period = tinfo->goal.period; 2441 ppr_options = tinfo->goal.ppr_options; 2442 } 2443 ahc_lock(ahc, &flags); 2444 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset, 2445 ppr_options, AHC_TRANS_GOAL, FALSE); 2446 ahc_unlock(ahc, &flags); 2447 } 2448 2449 static void ahc_linux_set_dt(struct scsi_target *starget, int dt) 2450 { 2451 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2452 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2453 struct ahc_tmode_tstate *tstate; 2454 struct ahc_initiator_tinfo *tinfo 2455 = ahc_fetch_transinfo(ahc, 2456 starget->channel + 'A', 2457 shost->this_id, starget->id, &tstate); 2458 struct ahc_devinfo devinfo; 2459 unsigned int ppr_options = tinfo->goal.ppr_options 2460 & ~MSG_EXT_PPR_DT_REQ; 2461 unsigned int period = tinfo->goal.period; 2462 unsigned int width = tinfo->goal.width; 2463 unsigned long flags; 2464 const struct ahc_syncrate *syncrate; 2465 2466 if (dt && spi_max_width(starget)) { 2467 ppr_options |= MSG_EXT_PPR_DT_REQ; 2468 if (!width) 2469 ahc_linux_set_width(starget, 1); 2470 } else if (period == 9) 2471 period = 10; /* if resetting DT, period must be >= 25ns */ 2472 2473 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2474 starget->channel + 'A', ROLE_INITIATOR); 2475 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,AHC_SYNCRATE_DT); 2476 ahc_lock(ahc, &flags); 2477 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset, 2478 ppr_options, AHC_TRANS_GOAL, FALSE); 2479 ahc_unlock(ahc, &flags); 2480 } 2481 2482 #if 0 2483 /* FIXME: This code claims to support IU and QAS. However, the actual 2484 * sequencer code and aic7xxx_core have no support for these parameters and 2485 * will get into a bad state if they're negotiated. Do not enable this 2486 * unless you know what you're doing */ 2487 static void ahc_linux_set_qas(struct scsi_target *starget, int qas) 2488 { 2489 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2490 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2491 struct ahc_tmode_tstate *tstate; 2492 struct ahc_initiator_tinfo *tinfo 2493 = ahc_fetch_transinfo(ahc, 2494 starget->channel + 'A', 2495 shost->this_id, starget->id, &tstate); 2496 struct ahc_devinfo devinfo; 2497 unsigned int ppr_options = tinfo->goal.ppr_options 2498 & ~MSG_EXT_PPR_QAS_REQ; 2499 unsigned int period = tinfo->goal.period; 2500 unsigned long flags; 2501 struct ahc_syncrate *syncrate; 2502 2503 if (qas) 2504 ppr_options |= MSG_EXT_PPR_QAS_REQ; 2505 2506 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2507 starget->channel + 'A', ROLE_INITIATOR); 2508 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT); 2509 ahc_lock(ahc, &flags); 2510 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset, 2511 ppr_options, AHC_TRANS_GOAL, FALSE); 2512 ahc_unlock(ahc, &flags); 2513 } 2514 2515 static void ahc_linux_set_iu(struct scsi_target *starget, int iu) 2516 { 2517 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2518 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2519 struct ahc_tmode_tstate *tstate; 2520 struct ahc_initiator_tinfo *tinfo 2521 = ahc_fetch_transinfo(ahc, 2522 starget->channel + 'A', 2523 shost->this_id, starget->id, &tstate); 2524 struct ahc_devinfo devinfo; 2525 unsigned int ppr_options = tinfo->goal.ppr_options 2526 & ~MSG_EXT_PPR_IU_REQ; 2527 unsigned int period = tinfo->goal.period; 2528 unsigned long flags; 2529 struct ahc_syncrate *syncrate; 2530 2531 if (iu) 2532 ppr_options |= MSG_EXT_PPR_IU_REQ; 2533 2534 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2535 starget->channel + 'A', ROLE_INITIATOR); 2536 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT); 2537 ahc_lock(ahc, &flags); 2538 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset, 2539 ppr_options, AHC_TRANS_GOAL, FALSE); 2540 ahc_unlock(ahc, &flags); 2541 } 2542 #endif 2543 2544 static void ahc_linux_get_signalling(struct Scsi_Host *shost) 2545 { 2546 struct ahc_softc *ahc = *(struct ahc_softc **)shost->hostdata; 2547 unsigned long flags; 2548 u8 mode; 2549 2550 if (!(ahc->features & AHC_ULTRA2)) { 2551 /* non-LVD chipset, may not have SBLKCTL reg */ 2552 spi_signalling(shost) = 2553 ahc->features & AHC_HVD ? 2554 SPI_SIGNAL_HVD : 2555 SPI_SIGNAL_SE; 2556 return; 2557 } 2558 2559 ahc_lock(ahc, &flags); 2560 ahc_pause(ahc); 2561 mode = ahc_inb(ahc, SBLKCTL); 2562 ahc_unpause(ahc); 2563 ahc_unlock(ahc, &flags); 2564 2565 if (mode & ENAB40) 2566 spi_signalling(shost) = SPI_SIGNAL_LVD; 2567 else if (mode & ENAB20) 2568 spi_signalling(shost) = SPI_SIGNAL_SE; 2569 else 2570 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; 2571 } 2572 2573 static struct spi_function_template ahc_linux_transport_functions = { 2574 .set_offset = ahc_linux_set_offset, 2575 .show_offset = 1, 2576 .set_period = ahc_linux_set_period, 2577 .show_period = 1, 2578 .set_width = ahc_linux_set_width, 2579 .show_width = 1, 2580 .set_dt = ahc_linux_set_dt, 2581 .show_dt = 1, 2582 #if 0 2583 .set_iu = ahc_linux_set_iu, 2584 .show_iu = 1, 2585 .set_qas = ahc_linux_set_qas, 2586 .show_qas = 1, 2587 #endif 2588 .get_signalling = ahc_linux_get_signalling, 2589 }; 2590 2591 2592 2593 static int __init 2594 ahc_linux_init(void) 2595 { 2596 /* 2597 * If we've been passed any parameters, process them now. 2598 */ 2599 if (aic7xxx) 2600 aic7xxx_setup(aic7xxx); 2601 2602 ahc_linux_transport_template = 2603 spi_attach_transport(&ahc_linux_transport_functions); 2604 if (!ahc_linux_transport_template) 2605 return -ENODEV; 2606 2607 scsi_transport_reserve_device(ahc_linux_transport_template, 2608 sizeof(struct ahc_linux_device)); 2609 2610 ahc_linux_pci_init(); 2611 ahc_linux_eisa_init(); 2612 return 0; 2613 } 2614 2615 static void 2616 ahc_linux_exit(void) 2617 { 2618 ahc_linux_pci_exit(); 2619 ahc_linux_eisa_exit(); 2620 spi_release_transport(ahc_linux_transport_template); 2621 } 2622 2623 module_init(ahc_linux_init); 2624 module_exit(ahc_linux_exit); 2625