1 /* 2 * Adaptec AIC7xxx device driver for Linux. 3 * 4 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $ 5 * 6 * Copyright (c) 1994 John Aycock 7 * The University of Calgary Department of Computer Science. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2, or (at your option) 12 * any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, write to 21 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 * 23 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F 24 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA 25 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide, 26 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux, 27 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file 28 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual, 29 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the 30 * ANSI SCSI-2 specification (draft 10c), ... 31 * 32 * -------------------------------------------------------------------------- 33 * 34 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org): 35 * 36 * Substantially modified to include support for wide and twin bus 37 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes, 38 * SCB paging, and other rework of the code. 39 * 40 * -------------------------------------------------------------------------- 41 * Copyright (c) 1994-2000 Justin T. Gibbs. 42 * Copyright (c) 2000-2001 Adaptec Inc. 43 * All rights reserved. 44 * 45 * Redistribution and use in source and binary forms, with or without 46 * modification, are permitted provided that the following conditions 47 * are met: 48 * 1. Redistributions of source code must retain the above copyright 49 * notice, this list of conditions, and the following disclaimer, 50 * without modification. 51 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 52 * substantially similar to the "NO WARRANTY" disclaimer below 53 * ("Disclaimer") and any redistribution must be conditioned upon 54 * including a substantially similar Disclaimer requirement for further 55 * binary redistribution. 56 * 3. Neither the names of the above-listed copyright holders nor the names 57 * of any contributors may be used to endorse or promote products derived 58 * from this software without specific prior written permission. 59 * 60 * Alternatively, this software may be distributed under the terms of the 61 * GNU General Public License ("GPL") version 2 as published by the Free 62 * Software Foundation. 63 * 64 * NO WARRANTY 65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 66 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 67 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 68 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 69 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 73 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 74 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 75 * POSSIBILITY OF SUCH DAMAGES. 76 * 77 *--------------------------------------------------------------------------- 78 * 79 * Thanks also go to (in alphabetical order) the following: 80 * 81 * Rory Bolt - Sequencer bug fixes 82 * Jay Estabrook - Initial DEC Alpha support 83 * Doug Ledford - Much needed abort/reset bug fixes 84 * Kai Makisara - DMAing of SCBs 85 * 86 * A Boot time option was also added for not resetting the scsi bus. 87 * 88 * Form: aic7xxx=extended 89 * aic7xxx=no_reset 90 * aic7xxx=verbose 91 * 92 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97 93 * 94 * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp 95 */ 96 97 /* 98 * Further driver modifications made by Doug Ledford <dledford@redhat.com> 99 * 100 * Copyright (c) 1997-1999 Doug Ledford 101 * 102 * These changes are released under the same licensing terms as the FreeBSD 103 * driver written by Justin Gibbs. Please see his Copyright notice above 104 * for the exact terms and conditions covering my changes as well as the 105 * warranty statement. 106 * 107 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include 108 * but are not limited to: 109 * 110 * 1: Import of the latest FreeBSD sequencer code for this driver 111 * 2: Modification of kernel code to accommodate different sequencer semantics 112 * 3: Extensive changes throughout kernel portion of driver to improve 113 * abort/reset processing and error hanndling 114 * 4: Other work contributed by various people on the Internet 115 * 5: Changes to printk information and verbosity selection code 116 * 6: General reliability related changes, especially in IRQ management 117 * 7: Modifications to the default probe/attach order for supported cards 118 * 8: SMP friendliness has been improved 119 * 120 */ 121 122 #include "aic7xxx_osm.h" 123 #include "aic7xxx_inline.h" 124 #include <scsi/scsicam.h> 125 126 /* 127 * Include aiclib.c as part of our 128 * "module dependencies are hard" work around. 129 */ 130 #include "aiclib.c" 131 132 #include <linux/init.h> /* __setup */ 133 134 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 135 #include "sd.h" /* For geometry detection */ 136 #endif 137 138 #include <linux/mm.h> /* For fetching system memory size */ 139 #include <linux/blkdev.h> /* For block_size() */ 140 #include <linux/delay.h> /* For ssleep/msleep */ 141 142 /* 143 * Lock protecting manipulation of the ahc softc list. 144 */ 145 spinlock_t ahc_list_spinlock; 146 147 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 148 /* For dynamic sglist size calculation. */ 149 u_int ahc_linux_nseg; 150 #endif 151 152 /* 153 * Set this to the delay in seconds after SCSI bus reset. 154 * Note, we honor this only for the initial bus reset. 155 * The scsi error recovery code performs its own bus settle 156 * delay handling for error recovery actions. 157 */ 158 #ifdef CONFIG_AIC7XXX_RESET_DELAY_MS 159 #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS 160 #else 161 #define AIC7XXX_RESET_DELAY 5000 162 #endif 163 164 /* 165 * Control collection of SCSI transfer statistics for the /proc filesystem. 166 * 167 * NOTE: Do NOT enable this when running on kernels version 1.2.x and below. 168 * NOTE: This does affect performance since it has to maintain statistics. 169 */ 170 #ifdef CONFIG_AIC7XXX_PROC_STATS 171 #define AIC7XXX_PROC_STATS 172 #endif 173 174 /* 175 * To change the default number of tagged transactions allowed per-device, 176 * add a line to the lilo.conf file like: 177 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}" 178 * which will result in the first four devices on the first two 179 * controllers being set to a tagged queue depth of 32. 180 * 181 * The tag_commands is an array of 16 to allow for wide and twin adapters. 182 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15 183 * for channel 1. 184 */ 185 typedef struct { 186 uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */ 187 } adapter_tag_info_t; 188 189 /* 190 * Modify this as you see fit for your system. 191 * 192 * 0 tagged queuing disabled 193 * 1 <= n <= 253 n == max tags ever dispatched. 194 * 195 * The driver will throttle the number of commands dispatched to a 196 * device if it returns queue full. For devices with a fixed maximum 197 * queue depth, the driver will eventually determine this depth and 198 * lock it in (a console message is printed to indicate that a lock 199 * has occurred). On some devices, queue full is returned for a temporary 200 * resource shortage. These devices will return queue full at varying 201 * depths. The driver will throttle back when the queue fulls occur and 202 * attempt to slowly increase the depth over time as the device recovers 203 * from the resource shortage. 204 * 205 * In this example, the first line will disable tagged queueing for all 206 * the devices on the first probed aic7xxx adapter. 207 * 208 * The second line enables tagged queueing with 4 commands/LUN for IDs 209 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the 210 * driver to attempt to use up to 64 tags for ID 1. 211 * 212 * The third line is the same as the first line. 213 * 214 * The fourth line disables tagged queueing for devices 0 and 3. It 215 * enables tagged queueing for the other IDs, with 16 commands/LUN 216 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for 217 * IDs 2, 5-7, and 9-15. 218 */ 219 220 /* 221 * NOTE: The below structure is for reference only, the actual structure 222 * to modify in order to change things is just below this comment block. 223 adapter_tag_info_t aic7xxx_tag_info[] = 224 { 225 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 226 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}}, 227 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 228 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}} 229 }; 230 */ 231 232 #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE 233 #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE 234 #else 235 #define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE 236 #endif 237 238 #define AIC7XXX_CONFIGED_TAG_COMMANDS { \ 239 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 240 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 241 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 242 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 243 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 244 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 245 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 246 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \ 247 } 248 249 /* 250 * By default, use the number of commands specified by 251 * the users kernel configuration. 252 */ 253 static adapter_tag_info_t aic7xxx_tag_info[] = 254 { 255 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 256 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 257 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 258 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 259 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 260 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 261 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 262 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 263 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 264 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 265 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 266 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 267 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 268 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 269 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 270 {AIC7XXX_CONFIGED_TAG_COMMANDS} 271 }; 272 273 /* 274 * DV option: 275 * 276 * positive value = DV Enabled 277 * zero = DV Disabled 278 * negative value = DV Default for adapter type/seeprom 279 */ 280 #ifdef CONFIG_AIC7XXX_DV_SETTING 281 #define AIC7XXX_CONFIGED_DV CONFIG_AIC7XXX_DV_SETTING 282 #else 283 #define AIC7XXX_CONFIGED_DV -1 284 #endif 285 286 static int8_t aic7xxx_dv_settings[] = 287 { 288 AIC7XXX_CONFIGED_DV, 289 AIC7XXX_CONFIGED_DV, 290 AIC7XXX_CONFIGED_DV, 291 AIC7XXX_CONFIGED_DV, 292 AIC7XXX_CONFIGED_DV, 293 AIC7XXX_CONFIGED_DV, 294 AIC7XXX_CONFIGED_DV, 295 AIC7XXX_CONFIGED_DV, 296 AIC7XXX_CONFIGED_DV, 297 AIC7XXX_CONFIGED_DV, 298 AIC7XXX_CONFIGED_DV, 299 AIC7XXX_CONFIGED_DV, 300 AIC7XXX_CONFIGED_DV, 301 AIC7XXX_CONFIGED_DV, 302 AIC7XXX_CONFIGED_DV, 303 AIC7XXX_CONFIGED_DV 304 }; 305 306 /* 307 * There should be a specific return value for this in scsi.h, but 308 * it seems that most drivers ignore it. 309 */ 310 #define DID_UNDERFLOW DID_ERROR 311 312 void 313 ahc_print_path(struct ahc_softc *ahc, struct scb *scb) 314 { 315 printk("(scsi%d:%c:%d:%d): ", 316 ahc->platform_data->host->host_no, 317 scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X', 318 scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1, 319 scb != NULL ? SCB_GET_LUN(scb) : -1); 320 } 321 322 /* 323 * XXX - these options apply unilaterally to _all_ 274x/284x/294x 324 * cards in the system. This should be fixed. Exceptions to this 325 * rule are noted in the comments. 326 */ 327 328 /* 329 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This 330 * has no effect on any later resets that might occur due to things like 331 * SCSI bus timeouts. 332 */ 333 static uint32_t aic7xxx_no_reset; 334 335 /* 336 * Certain PCI motherboards will scan PCI devices from highest to lowest, 337 * others scan from lowest to highest, and they tend to do all kinds of 338 * strange things when they come into contact with PCI bridge chips. The 339 * net result of all this is that the PCI card that is actually used to boot 340 * the machine is very hard to detect. Most motherboards go from lowest 341 * PCI slot number to highest, and the first SCSI controller found is the 342 * one you boot from. The only exceptions to this are when a controller 343 * has its BIOS disabled. So, we by default sort all of our SCSI controllers 344 * from lowest PCI slot number to highest PCI slot number. We also force 345 * all controllers with their BIOS disabled to the end of the list. This 346 * works on *almost* all computers. Where it doesn't work, we have this 347 * option. Setting this option to non-0 will reverse the order of the sort 348 * to highest first, then lowest, but will still leave cards with their BIOS 349 * disabled at the very end. That should fix everyone up unless there are 350 * really strange cirumstances. 351 */ 352 static uint32_t aic7xxx_reverse_scan; 353 354 /* 355 * Should we force EXTENDED translation on a controller. 356 * 0 == Use whatever is in the SEEPROM or default to off 357 * 1 == Use whatever is in the SEEPROM or default to on 358 */ 359 static uint32_t aic7xxx_extended; 360 361 /* 362 * PCI bus parity checking of the Adaptec controllers. This is somewhat 363 * dubious at best. To my knowledge, this option has never actually 364 * solved a PCI parity problem, but on certain machines with broken PCI 365 * chipset configurations where stray PCI transactions with bad parity are 366 * the norm rather than the exception, the error messages can be overwelming. 367 * It's included in the driver for completeness. 368 * 0 = Shut off PCI parity check 369 * non-0 = reverse polarity pci parity checking 370 */ 371 static uint32_t aic7xxx_pci_parity = ~0; 372 373 /* 374 * Certain newer motherboards have put new PCI based devices into the 375 * IO spaces that used to typically be occupied by VLB or EISA cards. 376 * This overlap can cause these newer motherboards to lock up when scanned 377 * for older EISA and VLB devices. Setting this option to non-0 will 378 * cause the driver to skip scanning for any VLB or EISA controllers and 379 * only support the PCI controllers. NOTE: this means that if the kernel 380 * os compiled with PCI support disabled, then setting this to non-0 381 * would result in never finding any devices :) 382 */ 383 #ifndef CONFIG_AIC7XXX_PROBE_EISA_VL 384 uint32_t aic7xxx_probe_eisa_vl; 385 #else 386 uint32_t aic7xxx_probe_eisa_vl = ~0; 387 #endif 388 389 /* 390 * There are lots of broken chipsets in the world. Some of them will 391 * violate the PCI spec when we issue byte sized memory writes to our 392 * controller. I/O mapped register access, if allowed by the given 393 * platform, will work in almost all cases. 394 */ 395 uint32_t aic7xxx_allow_memio = ~0; 396 397 /* 398 * aic7xxx_detect() has been run, so register all device arrivals 399 * immediately with the system rather than deferring to the sorted 400 * attachment performed by aic7xxx_detect(). 401 */ 402 int aic7xxx_detect_complete; 403 404 /* 405 * So that we can set how long each device is given as a selection timeout. 406 * The table of values goes like this: 407 * 0 - 256ms 408 * 1 - 128ms 409 * 2 - 64ms 410 * 3 - 32ms 411 * We default to 256ms because some older devices need a longer time 412 * to respond to initial selection. 413 */ 414 static uint32_t aic7xxx_seltime; 415 416 /* 417 * Certain devices do not perform any aging on commands. Should the 418 * device be saturated by commands in one portion of the disk, it is 419 * possible for transactions on far away sectors to never be serviced. 420 * To handle these devices, we can periodically send an ordered tag to 421 * force all outstanding transactions to be serviced prior to a new 422 * transaction. 423 */ 424 uint32_t aic7xxx_periodic_otag; 425 426 /* 427 * Module information and settable options. 428 */ 429 static char *aic7xxx = NULL; 430 431 MODULE_AUTHOR("Maintainer: Justin T. Gibbs <gibbs@scsiguy.com>"); 432 MODULE_DESCRIPTION("Adaptec Aic77XX/78XX SCSI Host Bus Adapter driver"); 433 MODULE_LICENSE("Dual BSD/GPL"); 434 MODULE_VERSION(AIC7XXX_DRIVER_VERSION); 435 module_param(aic7xxx, charp, 0444); 436 MODULE_PARM_DESC(aic7xxx, 437 "period delimited, options string.\n" 438 " verbose Enable verbose/diagnostic logging\n" 439 " allow_memio Allow device registers to be memory mapped\n" 440 " debug Bitmask of debug values to enable\n" 441 " no_probe Toggle EISA/VLB controller probing\n" 442 " probe_eisa_vl Toggle EISA/VLB controller probing\n" 443 " no_reset Supress initial bus resets\n" 444 " extended Enable extended geometry on all controllers\n" 445 " periodic_otag Send an ordered tagged transaction\n" 446 " periodically to prevent tag starvation.\n" 447 " This may be required by some older disk\n" 448 " drives or RAID arrays.\n" 449 " reverse_scan Sort PCI devices highest Bus/Slot to lowest\n" 450 " tag_info:<tag_str> Set per-target tag depth\n" 451 " global_tag_depth:<int> Global tag depth for every target\n" 452 " on every bus\n" 453 " dv:<dv_settings> Set per-controller Domain Validation Setting.\n" 454 " seltime:<int> Selection Timeout\n" 455 " (0/256ms,1/128ms,2/64ms,3/32ms)\n" 456 "\n" 457 " Sample /etc/modprobe.conf line:\n" 458 " Toggle EISA/VLB probing\n" 459 " Set tag depth on Controller 1/Target 1 to 10 tags\n" 460 " Shorten the selection timeout to 128ms\n" 461 "\n" 462 " options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n" 463 ); 464 465 static void ahc_linux_handle_scsi_status(struct ahc_softc *, 466 struct ahc_linux_device *, 467 struct scb *); 468 static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, 469 Scsi_Cmnd *cmd); 470 static void ahc_linux_filter_inquiry(struct ahc_softc*, struct ahc_devinfo*); 471 static void ahc_linux_sem_timeout(u_long arg); 472 static void ahc_linux_freeze_simq(struct ahc_softc *ahc); 473 static void ahc_linux_release_simq(u_long arg); 474 static void ahc_linux_dev_timed_unfreeze(u_long arg); 475 static int ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag); 476 static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc); 477 static void ahc_linux_size_nseg(void); 478 static void ahc_linux_thread_run_complete_queue(struct ahc_softc *ahc); 479 static void ahc_linux_start_dv(struct ahc_softc *ahc); 480 static void ahc_linux_dv_timeout(struct scsi_cmnd *cmd); 481 static int ahc_linux_dv_thread(void *data); 482 static void ahc_linux_kill_dv_thread(struct ahc_softc *ahc); 483 static void ahc_linux_dv_target(struct ahc_softc *ahc, u_int target); 484 static void ahc_linux_dv_transition(struct ahc_softc *ahc, 485 struct scsi_cmnd *cmd, 486 struct ahc_devinfo *devinfo, 487 struct ahc_linux_target *targ); 488 static void ahc_linux_dv_fill_cmd(struct ahc_softc *ahc, 489 struct scsi_cmnd *cmd, 490 struct ahc_devinfo *devinfo); 491 static void ahc_linux_dv_inq(struct ahc_softc *ahc, 492 struct scsi_cmnd *cmd, 493 struct ahc_devinfo *devinfo, 494 struct ahc_linux_target *targ, 495 u_int request_length); 496 static void ahc_linux_dv_tur(struct ahc_softc *ahc, 497 struct scsi_cmnd *cmd, 498 struct ahc_devinfo *devinfo); 499 static void ahc_linux_dv_rebd(struct ahc_softc *ahc, 500 struct scsi_cmnd *cmd, 501 struct ahc_devinfo *devinfo, 502 struct ahc_linux_target *targ); 503 static void ahc_linux_dv_web(struct ahc_softc *ahc, 504 struct scsi_cmnd *cmd, 505 struct ahc_devinfo *devinfo, 506 struct ahc_linux_target *targ); 507 static void ahc_linux_dv_reb(struct ahc_softc *ahc, 508 struct scsi_cmnd *cmd, 509 struct ahc_devinfo *devinfo, 510 struct ahc_linux_target *targ); 511 static void ahc_linux_dv_su(struct ahc_softc *ahc, 512 struct scsi_cmnd *cmd, 513 struct ahc_devinfo *devinfo, 514 struct ahc_linux_target *targ); 515 static int ahc_linux_fallback(struct ahc_softc *ahc, 516 struct ahc_devinfo *devinfo); 517 static void ahc_linux_dv_complete(Scsi_Cmnd *cmd); 518 static void ahc_linux_generate_dv_pattern(struct ahc_linux_target *targ); 519 static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc, 520 struct ahc_devinfo *devinfo); 521 static u_int ahc_linux_user_dv_setting(struct ahc_softc *ahc); 522 static void ahc_linux_device_queue_depth(struct ahc_softc *ahc, 523 struct ahc_linux_device *dev); 524 static struct ahc_linux_target* ahc_linux_alloc_target(struct ahc_softc*, 525 u_int, u_int); 526 static void ahc_linux_free_target(struct ahc_softc*, 527 struct ahc_linux_target*); 528 static struct ahc_linux_device* ahc_linux_alloc_device(struct ahc_softc*, 529 struct ahc_linux_target*, 530 u_int); 531 static void ahc_linux_free_device(struct ahc_softc*, 532 struct ahc_linux_device*); 533 static void ahc_linux_run_device_queue(struct ahc_softc*, 534 struct ahc_linux_device*); 535 static void ahc_linux_setup_tag_info_global(char *p); 536 static aic_option_callback_t ahc_linux_setup_tag_info; 537 static aic_option_callback_t ahc_linux_setup_dv; 538 static int aic7xxx_setup(char *s); 539 static int ahc_linux_next_unit(void); 540 static void ahc_runq_tasklet(unsigned long data); 541 static struct ahc_cmd *ahc_linux_run_complete_queue(struct ahc_softc *ahc); 542 543 /********************************* Inlines ************************************/ 544 static __inline void ahc_schedule_runq(struct ahc_softc *ahc); 545 static __inline struct ahc_linux_device* 546 ahc_linux_get_device(struct ahc_softc *ahc, u_int channel, 547 u_int target, u_int lun, int alloc); 548 static __inline void ahc_schedule_completeq(struct ahc_softc *ahc); 549 static __inline void ahc_linux_check_device_queue(struct ahc_softc *ahc, 550 struct ahc_linux_device *dev); 551 static __inline struct ahc_linux_device * 552 ahc_linux_next_device_to_run(struct ahc_softc *ahc); 553 static __inline void ahc_linux_run_device_queues(struct ahc_softc *ahc); 554 static __inline void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*); 555 556 static __inline int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, 557 struct ahc_dma_seg *sg, 558 dma_addr_t addr, bus_size_t len); 559 560 static __inline void 561 ahc_schedule_completeq(struct ahc_softc *ahc) 562 { 563 if ((ahc->platform_data->flags & AHC_RUN_CMPLT_Q_TIMER) == 0) { 564 ahc->platform_data->flags |= AHC_RUN_CMPLT_Q_TIMER; 565 ahc->platform_data->completeq_timer.expires = jiffies; 566 add_timer(&ahc->platform_data->completeq_timer); 567 } 568 } 569 570 /* 571 * Must be called with our lock held. 572 */ 573 static __inline void 574 ahc_schedule_runq(struct ahc_softc *ahc) 575 { 576 tasklet_schedule(&ahc->platform_data->runq_tasklet); 577 } 578 579 static __inline struct ahc_linux_device* 580 ahc_linux_get_device(struct ahc_softc *ahc, u_int channel, u_int target, 581 u_int lun, int alloc) 582 { 583 struct ahc_linux_target *targ; 584 struct ahc_linux_device *dev; 585 u_int target_offset; 586 587 target_offset = target; 588 if (channel != 0) 589 target_offset += 8; 590 targ = ahc->platform_data->targets[target_offset]; 591 if (targ == NULL) { 592 if (alloc != 0) { 593 targ = ahc_linux_alloc_target(ahc, channel, target); 594 if (targ == NULL) 595 return (NULL); 596 } else 597 return (NULL); 598 } 599 dev = targ->devices[lun]; 600 if (dev == NULL && alloc != 0) 601 dev = ahc_linux_alloc_device(ahc, targ, lun); 602 return (dev); 603 } 604 605 #define AHC_LINUX_MAX_RETURNED_ERRORS 4 606 static struct ahc_cmd * 607 ahc_linux_run_complete_queue(struct ahc_softc *ahc) 608 { 609 struct ahc_cmd *acmd; 610 u_long done_flags; 611 int with_errors; 612 613 with_errors = 0; 614 ahc_done_lock(ahc, &done_flags); 615 while ((acmd = TAILQ_FIRST(&ahc->platform_data->completeq)) != NULL) { 616 Scsi_Cmnd *cmd; 617 618 if (with_errors > AHC_LINUX_MAX_RETURNED_ERRORS) { 619 /* 620 * Linux uses stack recursion to requeue 621 * commands that need to be retried. Avoid 622 * blowing out the stack by "spoon feeding" 623 * commands that completed with error back 624 * the operating system in case they are going 625 * to be retried. "ick" 626 */ 627 ahc_schedule_completeq(ahc); 628 break; 629 } 630 TAILQ_REMOVE(&ahc->platform_data->completeq, 631 acmd, acmd_links.tqe); 632 cmd = &acmd_scsi_cmd(acmd); 633 cmd->host_scribble = NULL; 634 if (ahc_cmd_get_transaction_status(cmd) != DID_OK 635 || (cmd->result & 0xFF) != SCSI_STATUS_OK) 636 with_errors++; 637 638 cmd->scsi_done(cmd); 639 } 640 ahc_done_unlock(ahc, &done_flags); 641 return (acmd); 642 } 643 644 static __inline void 645 ahc_linux_check_device_queue(struct ahc_softc *ahc, 646 struct ahc_linux_device *dev) 647 { 648 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) != 0 649 && dev->active == 0) { 650 dev->flags &= ~AHC_DEV_FREEZE_TIL_EMPTY; 651 dev->qfrozen--; 652 } 653 654 if (TAILQ_FIRST(&dev->busyq) == NULL 655 || dev->openings == 0 || dev->qfrozen != 0) 656 return; 657 658 ahc_linux_run_device_queue(ahc, dev); 659 } 660 661 static __inline struct ahc_linux_device * 662 ahc_linux_next_device_to_run(struct ahc_softc *ahc) 663 { 664 665 if ((ahc->flags & AHC_RESOURCE_SHORTAGE) != 0 666 || (ahc->platform_data->qfrozen != 0 667 && AHC_DV_SIMQ_FROZEN(ahc) == 0)) 668 return (NULL); 669 return (TAILQ_FIRST(&ahc->platform_data->device_runq)); 670 } 671 672 static __inline void 673 ahc_linux_run_device_queues(struct ahc_softc *ahc) 674 { 675 struct ahc_linux_device *dev; 676 677 while ((dev = ahc_linux_next_device_to_run(ahc)) != NULL) { 678 TAILQ_REMOVE(&ahc->platform_data->device_runq, dev, links); 679 dev->flags &= ~AHC_DEV_ON_RUN_LIST; 680 ahc_linux_check_device_queue(ahc, dev); 681 } 682 } 683 684 static __inline void 685 ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb) 686 { 687 Scsi_Cmnd *cmd; 688 689 cmd = scb->io_ctx; 690 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE); 691 if (cmd->use_sg != 0) { 692 struct scatterlist *sg; 693 694 sg = (struct scatterlist *)cmd->request_buffer; 695 pci_unmap_sg(ahc->dev_softc, sg, cmd->use_sg, 696 scsi_to_pci_dma_dir(cmd->sc_data_direction)); 697 } else if (cmd->request_bufflen != 0) { 698 pci_unmap_single(ahc->dev_softc, 699 scb->platform_data->buf_busaddr, 700 cmd->request_bufflen, 701 scsi_to_pci_dma_dir(cmd->sc_data_direction)); 702 } 703 } 704 705 static __inline int 706 ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, 707 struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len) 708 { 709 int consumed; 710 711 if ((scb->sg_count + 1) > AHC_NSEG) 712 panic("Too few segs for dma mapping. " 713 "Increase AHC_NSEG\n"); 714 715 consumed = 1; 716 sg->addr = ahc_htole32(addr & 0xFFFFFFFF); 717 scb->platform_data->xfer_len += len; 718 719 if (sizeof(dma_addr_t) > 4 720 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0) 721 len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK; 722 723 sg->len = ahc_htole32(len); 724 return (consumed); 725 } 726 727 /************************ Host template entry points *************************/ 728 static int ahc_linux_detect(Scsi_Host_Template *); 729 static int ahc_linux_queue(Scsi_Cmnd *, void (*)(Scsi_Cmnd *)); 730 static const char *ahc_linux_info(struct Scsi_Host *); 731 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 732 static int ahc_linux_slave_alloc(Scsi_Device *); 733 static int ahc_linux_slave_configure(Scsi_Device *); 734 static void ahc_linux_slave_destroy(Scsi_Device *); 735 #if defined(__i386__) 736 static int ahc_linux_biosparam(struct scsi_device*, 737 struct block_device*, 738 sector_t, int[]); 739 #endif 740 #else 741 static int ahc_linux_release(struct Scsi_Host *); 742 static void ahc_linux_select_queue_depth(struct Scsi_Host *host, 743 Scsi_Device *scsi_devs); 744 #if defined(__i386__) 745 static int ahc_linux_biosparam(Disk *, kdev_t, int[]); 746 #endif 747 #endif 748 static int ahc_linux_bus_reset(Scsi_Cmnd *); 749 static int ahc_linux_dev_reset(Scsi_Cmnd *); 750 static int ahc_linux_abort(Scsi_Cmnd *); 751 752 /* 753 * Calculate a safe value for AHC_NSEG (as expressed through ahc_linux_nseg). 754 * 755 * In pre-2.5.X... 756 * The midlayer allocates an S/G array dynamically when a command is issued 757 * using SCSI malloc. This array, which is in an OS dependent format that 758 * must later be copied to our private S/G list, is sized to house just the 759 * number of segments needed for the current transfer. Since the code that 760 * sizes the SCSI malloc pool does not take into consideration fragmentation 761 * of the pool, executing transactions numbering just a fraction of our 762 * concurrent transaction limit with list lengths aproaching AHC_NSEG will 763 * quickly depleat the SCSI malloc pool of usable space. Unfortunately, the 764 * mid-layer does not properly handle this scsi malloc failures for the S/G 765 * array and the result can be a lockup of the I/O subsystem. We try to size 766 * our S/G list so that it satisfies our drivers allocation requirements in 767 * addition to avoiding fragmentation of the SCSI malloc pool. 768 */ 769 static void 770 ahc_linux_size_nseg(void) 771 { 772 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 773 u_int cur_size; 774 u_int best_size; 775 776 /* 777 * The SCSI allocator rounds to the nearest 512 bytes 778 * an cannot allocate across a page boundary. Our algorithm 779 * is to start at 1K of scsi malloc space per-command and 780 * loop through all factors of the PAGE_SIZE and pick the best. 781 */ 782 best_size = 0; 783 for (cur_size = 1024; cur_size <= PAGE_SIZE; cur_size *= 2) { 784 u_int nseg; 785 786 nseg = cur_size / sizeof(struct scatterlist); 787 if (nseg < AHC_LINUX_MIN_NSEG) 788 continue; 789 790 if (best_size == 0) { 791 best_size = cur_size; 792 ahc_linux_nseg = nseg; 793 } else { 794 u_int best_rem; 795 u_int cur_rem; 796 797 /* 798 * Compare the traits of the current "best_size" 799 * with the current size to determine if the 800 * current size is a better size. 801 */ 802 best_rem = best_size % sizeof(struct scatterlist); 803 cur_rem = cur_size % sizeof(struct scatterlist); 804 if (cur_rem < best_rem) { 805 best_size = cur_size; 806 ahc_linux_nseg = nseg; 807 } 808 } 809 } 810 #endif 811 } 812 813 /* 814 * Try to detect an Adaptec 7XXX controller. 815 */ 816 static int 817 ahc_linux_detect(Scsi_Host_Template *template) 818 { 819 struct ahc_softc *ahc; 820 int found = 0; 821 822 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 823 /* 824 * It is a bug that the upper layer takes 825 * this lock just prior to calling us. 826 */ 827 spin_unlock_irq(&io_request_lock); 828 #endif 829 830 /* 831 * Sanity checking of Linux SCSI data structures so 832 * that some of our hacks^H^H^H^H^Hassumptions aren't 833 * violated. 834 */ 835 if (offsetof(struct ahc_cmd_internal, end) 836 > offsetof(struct scsi_cmnd, host_scribble)) { 837 printf("ahc_linux_detect: SCSI data structures changed.\n"); 838 printf("ahc_linux_detect: Unable to attach\n"); 839 return (0); 840 } 841 ahc_linux_size_nseg(); 842 /* 843 * If we've been passed any parameters, process them now. 844 */ 845 if (aic7xxx) 846 aic7xxx_setup(aic7xxx); 847 848 template->proc_name = "aic7xxx"; 849 850 /* 851 * Initialize our softc list lock prior to 852 * probing for any adapters. 853 */ 854 ahc_list_lockinit(); 855 856 found = ahc_linux_pci_init(); 857 if (!ahc_linux_eisa_init()) 858 found++; 859 860 /* 861 * Register with the SCSI layer all 862 * controllers we've found. 863 */ 864 TAILQ_FOREACH(ahc, &ahc_tailq, links) { 865 866 if (ahc_linux_register_host(ahc, template) == 0) 867 found++; 868 } 869 870 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 871 spin_lock_irq(&io_request_lock); 872 #endif 873 aic7xxx_detect_complete++; 874 875 return (found); 876 } 877 878 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 879 /* 880 * Free the passed in Scsi_Host memory structures prior to unloading the 881 * module. 882 */ 883 int 884 ahc_linux_release(struct Scsi_Host * host) 885 { 886 struct ahc_softc *ahc; 887 u_long l; 888 889 ahc_list_lock(&l); 890 if (host != NULL) { 891 892 /* 893 * We should be able to just perform 894 * the free directly, but check our 895 * list for extra sanity. 896 */ 897 ahc = ahc_find_softc(*(struct ahc_softc **)host->hostdata); 898 if (ahc != NULL) { 899 u_long s; 900 901 ahc_lock(ahc, &s); 902 ahc_intr_enable(ahc, FALSE); 903 ahc_unlock(ahc, &s); 904 ahc_free(ahc); 905 } 906 } 907 ahc_list_unlock(&l); 908 return (0); 909 } 910 #endif 911 912 /* 913 * Return a string describing the driver. 914 */ 915 static const char * 916 ahc_linux_info(struct Scsi_Host *host) 917 { 918 static char buffer[512]; 919 char ahc_info[256]; 920 char *bp; 921 struct ahc_softc *ahc; 922 923 bp = &buffer[0]; 924 ahc = *(struct ahc_softc **)host->hostdata; 925 memset(bp, 0, sizeof(buffer)); 926 strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev "); 927 strcat(bp, AIC7XXX_DRIVER_VERSION); 928 strcat(bp, "\n"); 929 strcat(bp, " <"); 930 strcat(bp, ahc->description); 931 strcat(bp, ">\n"); 932 strcat(bp, " "); 933 ahc_controller_info(ahc, ahc_info); 934 strcat(bp, ahc_info); 935 strcat(bp, "\n"); 936 937 return (bp); 938 } 939 940 /* 941 * Queue an SCB to the controller. 942 */ 943 static int 944 ahc_linux_queue(Scsi_Cmnd * cmd, void (*scsi_done) (Scsi_Cmnd *)) 945 { 946 struct ahc_softc *ahc; 947 struct ahc_linux_device *dev; 948 u_long flags; 949 950 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 951 952 /* 953 * Save the callback on completion function. 954 */ 955 cmd->scsi_done = scsi_done; 956 957 ahc_midlayer_entrypoint_lock(ahc, &flags); 958 959 /* 960 * Close the race of a command that was in the process of 961 * being queued to us just as our simq was frozen. Let 962 * DV commands through so long as we are only frozen to 963 * perform DV. 964 */ 965 if (ahc->platform_data->qfrozen != 0 966 && AHC_DV_CMD(cmd) == 0) { 967 968 ahc_cmd_set_transaction_status(cmd, CAM_REQUEUE_REQ); 969 ahc_linux_queue_cmd_complete(ahc, cmd); 970 ahc_schedule_completeq(ahc); 971 ahc_midlayer_entrypoint_unlock(ahc, &flags); 972 return (0); 973 } 974 dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id, 975 cmd->device->lun, /*alloc*/TRUE); 976 if (dev == NULL) { 977 ahc_cmd_set_transaction_status(cmd, CAM_RESRC_UNAVAIL); 978 ahc_linux_queue_cmd_complete(ahc, cmd); 979 ahc_schedule_completeq(ahc); 980 ahc_midlayer_entrypoint_unlock(ahc, &flags); 981 printf("%s: aic7xxx_linux_queue - Unable to allocate device!\n", 982 ahc_name(ahc)); 983 return (0); 984 } 985 cmd->result = CAM_REQ_INPROG << 16; 986 TAILQ_INSERT_TAIL(&dev->busyq, (struct ahc_cmd *)cmd, acmd_links.tqe); 987 if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) { 988 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links); 989 dev->flags |= AHC_DEV_ON_RUN_LIST; 990 ahc_linux_run_device_queues(ahc); 991 } 992 ahc_midlayer_entrypoint_unlock(ahc, &flags); 993 return (0); 994 } 995 996 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 997 static int 998 ahc_linux_slave_alloc(Scsi_Device *device) 999 { 1000 struct ahc_softc *ahc; 1001 1002 ahc = *((struct ahc_softc **)device->host->hostdata); 1003 if (bootverbose) 1004 printf("%s: Slave Alloc %d\n", ahc_name(ahc), device->id); 1005 return (0); 1006 } 1007 1008 static int 1009 ahc_linux_slave_configure(Scsi_Device *device) 1010 { 1011 struct ahc_softc *ahc; 1012 struct ahc_linux_device *dev; 1013 u_long flags; 1014 1015 ahc = *((struct ahc_softc **)device->host->hostdata); 1016 if (bootverbose) 1017 printf("%s: Slave Configure %d\n", ahc_name(ahc), device->id); 1018 ahc_midlayer_entrypoint_lock(ahc, &flags); 1019 /* 1020 * Since Linux has attached to the device, configure 1021 * it so we don't free and allocate the device 1022 * structure on every command. 1023 */ 1024 dev = ahc_linux_get_device(ahc, device->channel, 1025 device->id, device->lun, 1026 /*alloc*/TRUE); 1027 if (dev != NULL) { 1028 dev->flags &= ~AHC_DEV_UNCONFIGURED; 1029 dev->scsi_device = device; 1030 ahc_linux_device_queue_depth(ahc, dev); 1031 } 1032 ahc_midlayer_entrypoint_unlock(ahc, &flags); 1033 return (0); 1034 } 1035 1036 static void 1037 ahc_linux_slave_destroy(Scsi_Device *device) 1038 { 1039 struct ahc_softc *ahc; 1040 struct ahc_linux_device *dev; 1041 u_long flags; 1042 1043 ahc = *((struct ahc_softc **)device->host->hostdata); 1044 if (bootverbose) 1045 printf("%s: Slave Destroy %d\n", ahc_name(ahc), device->id); 1046 ahc_midlayer_entrypoint_lock(ahc, &flags); 1047 dev = ahc_linux_get_device(ahc, device->channel, 1048 device->id, device->lun, 1049 /*alloc*/FALSE); 1050 /* 1051 * Filter out "silly" deletions of real devices by only 1052 * deleting devices that have had slave_configure() 1053 * called on them. All other devices that have not 1054 * been configured will automatically be deleted by 1055 * the refcounting process. 1056 */ 1057 if (dev != NULL 1058 && (dev->flags & AHC_DEV_SLAVE_CONFIGURED) != 0) { 1059 dev->flags |= AHC_DEV_UNCONFIGURED; 1060 if (TAILQ_EMPTY(&dev->busyq) 1061 && dev->active == 0 1062 && (dev->flags & AHC_DEV_TIMER_ACTIVE) == 0) 1063 ahc_linux_free_device(ahc, dev); 1064 } 1065 ahc_midlayer_entrypoint_unlock(ahc, &flags); 1066 } 1067 #else 1068 /* 1069 * Sets the queue depth for each SCSI device hanging 1070 * off the input host adapter. 1071 */ 1072 static void 1073 ahc_linux_select_queue_depth(struct Scsi_Host *host, Scsi_Device *scsi_devs) 1074 { 1075 Scsi_Device *device; 1076 Scsi_Device *ldev; 1077 struct ahc_softc *ahc; 1078 u_long flags; 1079 1080 ahc = *((struct ahc_softc **)host->hostdata); 1081 ahc_lock(ahc, &flags); 1082 for (device = scsi_devs; device != NULL; device = device->next) { 1083 1084 /* 1085 * Watch out for duplicate devices. This works around 1086 * some quirks in how the SCSI scanning code does its 1087 * device management. 1088 */ 1089 for (ldev = scsi_devs; ldev != device; ldev = ldev->next) { 1090 if (ldev->host == device->host 1091 && ldev->channel == device->channel 1092 && ldev->id == device->id 1093 && ldev->lun == device->lun) 1094 break; 1095 } 1096 /* Skip duplicate. */ 1097 if (ldev != device) 1098 continue; 1099 1100 if (device->host == host) { 1101 struct ahc_linux_device *dev; 1102 1103 /* 1104 * Since Linux has attached to the device, configure 1105 * it so we don't free and allocate the device 1106 * structure on every command. 1107 */ 1108 dev = ahc_linux_get_device(ahc, device->channel, 1109 device->id, device->lun, 1110 /*alloc*/TRUE); 1111 if (dev != NULL) { 1112 dev->flags &= ~AHC_DEV_UNCONFIGURED; 1113 dev->scsi_device = device; 1114 ahc_linux_device_queue_depth(ahc, dev); 1115 device->queue_depth = dev->openings 1116 + dev->active; 1117 if ((dev->flags & (AHC_DEV_Q_BASIC 1118 | AHC_DEV_Q_TAGGED)) == 0) { 1119 /* 1120 * We allow the OS to queue 2 untagged 1121 * transactions to us at any time even 1122 * though we can only execute them 1123 * serially on the controller/device. 1124 * This should remove some latency. 1125 */ 1126 device->queue_depth = 2; 1127 } 1128 } 1129 } 1130 } 1131 ahc_unlock(ahc, &flags); 1132 } 1133 #endif 1134 1135 #if defined(__i386__) 1136 /* 1137 * Return the disk geometry for the given SCSI device. 1138 */ 1139 static int 1140 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 1141 ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev, 1142 sector_t capacity, int geom[]) 1143 { 1144 uint8_t *bh; 1145 #else 1146 ahc_linux_biosparam(Disk *disk, kdev_t dev, int geom[]) 1147 { 1148 struct scsi_device *sdev = disk->device; 1149 u_long capacity = disk->capacity; 1150 struct buffer_head *bh; 1151 #endif 1152 int heads; 1153 int sectors; 1154 int cylinders; 1155 int ret; 1156 int extended; 1157 struct ahc_softc *ahc; 1158 u_int channel; 1159 1160 ahc = *((struct ahc_softc **)sdev->host->hostdata); 1161 channel = sdev->channel; 1162 1163 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 1164 bh = scsi_bios_ptable(bdev); 1165 #elif LINUX_VERSION_CODE >= KERNEL_VERSION(2,4,17) 1166 bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, block_size(dev)); 1167 #else 1168 bh = bread(MKDEV(MAJOR(dev), MINOR(dev) & ~0xf), 0, 1024); 1169 #endif 1170 1171 if (bh) { 1172 ret = scsi_partsize(bh, capacity, 1173 &geom[2], &geom[0], &geom[1]); 1174 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 1175 kfree(bh); 1176 #else 1177 brelse(bh); 1178 #endif 1179 if (ret != -1) 1180 return (ret); 1181 } 1182 heads = 64; 1183 sectors = 32; 1184 cylinders = aic_sector_div(capacity, heads, sectors); 1185 1186 if (aic7xxx_extended != 0) 1187 extended = 1; 1188 else if (channel == 0) 1189 extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0; 1190 else 1191 extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0; 1192 if (extended && cylinders >= 1024) { 1193 heads = 255; 1194 sectors = 63; 1195 cylinders = aic_sector_div(capacity, heads, sectors); 1196 } 1197 geom[0] = heads; 1198 geom[1] = sectors; 1199 geom[2] = cylinders; 1200 return (0); 1201 } 1202 #endif 1203 1204 /* 1205 * Abort the current SCSI command(s). 1206 */ 1207 static int 1208 ahc_linux_abort(Scsi_Cmnd *cmd) 1209 { 1210 int error; 1211 1212 error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT); 1213 if (error != 0) 1214 printf("aic7xxx_abort returns 0x%x\n", error); 1215 return (error); 1216 } 1217 1218 /* 1219 * Attempt to send a target reset message to the device that timed out. 1220 */ 1221 static int 1222 ahc_linux_dev_reset(Scsi_Cmnd *cmd) 1223 { 1224 int error; 1225 1226 error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET); 1227 if (error != 0) 1228 printf("aic7xxx_dev_reset returns 0x%x\n", error); 1229 return (error); 1230 } 1231 1232 /* 1233 * Reset the SCSI bus. 1234 */ 1235 static int 1236 ahc_linux_bus_reset(Scsi_Cmnd *cmd) 1237 { 1238 struct ahc_softc *ahc; 1239 u_long s; 1240 int found; 1241 1242 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 1243 ahc_midlayer_entrypoint_lock(ahc, &s); 1244 found = ahc_reset_channel(ahc, cmd->device->channel + 'A', 1245 /*initiate reset*/TRUE); 1246 ahc_linux_run_complete_queue(ahc); 1247 ahc_midlayer_entrypoint_unlock(ahc, &s); 1248 1249 if (bootverbose) 1250 printf("%s: SCSI bus reset delivered. " 1251 "%d SCBs aborted.\n", ahc_name(ahc), found); 1252 1253 return SUCCESS; 1254 } 1255 1256 Scsi_Host_Template aic7xxx_driver_template = { 1257 .module = THIS_MODULE, 1258 .name = "aic7xxx", 1259 .proc_info = ahc_linux_proc_info, 1260 .info = ahc_linux_info, 1261 .queuecommand = ahc_linux_queue, 1262 .eh_abort_handler = ahc_linux_abort, 1263 .eh_device_reset_handler = ahc_linux_dev_reset, 1264 .eh_bus_reset_handler = ahc_linux_bus_reset, 1265 #if defined(__i386__) 1266 .bios_param = ahc_linux_biosparam, 1267 #endif 1268 .can_queue = AHC_MAX_QUEUE, 1269 .this_id = -1, 1270 .cmd_per_lun = 2, 1271 .use_clustering = ENABLE_CLUSTERING, 1272 .slave_alloc = ahc_linux_slave_alloc, 1273 .slave_configure = ahc_linux_slave_configure, 1274 .slave_destroy = ahc_linux_slave_destroy, 1275 }; 1276 1277 /**************************** Tasklet Handler *********************************/ 1278 1279 /* 1280 * In 2.4.X and above, this routine is called from a tasklet, 1281 * so we must re-acquire our lock prior to executing this code. 1282 * In all prior kernels, ahc_schedule_runq() calls this routine 1283 * directly and ahc_schedule_runq() is called with our lock held. 1284 */ 1285 static void 1286 ahc_runq_tasklet(unsigned long data) 1287 { 1288 struct ahc_softc* ahc; 1289 struct ahc_linux_device *dev; 1290 u_long flags; 1291 1292 ahc = (struct ahc_softc *)data; 1293 ahc_lock(ahc, &flags); 1294 while ((dev = ahc_linux_next_device_to_run(ahc)) != NULL) { 1295 1296 TAILQ_REMOVE(&ahc->platform_data->device_runq, dev, links); 1297 dev->flags &= ~AHC_DEV_ON_RUN_LIST; 1298 ahc_linux_check_device_queue(ahc, dev); 1299 /* Yeild to our interrupt handler */ 1300 ahc_unlock(ahc, &flags); 1301 ahc_lock(ahc, &flags); 1302 } 1303 ahc_unlock(ahc, &flags); 1304 } 1305 1306 /******************************** Macros **************************************/ 1307 #define BUILD_SCSIID(ahc, cmd) \ 1308 ((((cmd)->device->id << TID_SHIFT) & TID) \ 1309 | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \ 1310 | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB)) 1311 1312 /******************************** Bus DMA *************************************/ 1313 int 1314 ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent, 1315 bus_size_t alignment, bus_size_t boundary, 1316 dma_addr_t lowaddr, dma_addr_t highaddr, 1317 bus_dma_filter_t *filter, void *filterarg, 1318 bus_size_t maxsize, int nsegments, 1319 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag) 1320 { 1321 bus_dma_tag_t dmat; 1322 1323 dmat = malloc(sizeof(*dmat), M_DEVBUF, M_NOWAIT); 1324 if (dmat == NULL) 1325 return (ENOMEM); 1326 1327 /* 1328 * Linux is very simplistic about DMA memory. For now don't 1329 * maintain all specification information. Once Linux supplies 1330 * better facilities for doing these operations, or the 1331 * needs of this particular driver change, we might need to do 1332 * more here. 1333 */ 1334 dmat->alignment = alignment; 1335 dmat->boundary = boundary; 1336 dmat->maxsize = maxsize; 1337 *ret_tag = dmat; 1338 return (0); 1339 } 1340 1341 void 1342 ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat) 1343 { 1344 free(dmat, M_DEVBUF); 1345 } 1346 1347 int 1348 ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr, 1349 int flags, bus_dmamap_t *mapp) 1350 { 1351 bus_dmamap_t map; 1352 1353 map = malloc(sizeof(*map), M_DEVBUF, M_NOWAIT); 1354 if (map == NULL) 1355 return (ENOMEM); 1356 /* 1357 * Although we can dma data above 4GB, our 1358 * "consistent" memory is below 4GB for 1359 * space efficiency reasons (only need a 4byte 1360 * address). For this reason, we have to reset 1361 * our dma mask when doing allocations. 1362 */ 1363 if (ahc->dev_softc != NULL) 1364 if (pci_set_dma_mask(ahc->dev_softc, 0xFFFFFFFF)) { 1365 printk(KERN_WARNING "aic7xxx: No suitable DMA available.\n"); 1366 kfree(map); 1367 return (ENODEV); 1368 } 1369 *vaddr = pci_alloc_consistent(ahc->dev_softc, 1370 dmat->maxsize, &map->bus_addr); 1371 if (ahc->dev_softc != NULL) 1372 if (pci_set_dma_mask(ahc->dev_softc, 1373 ahc->platform_data->hw_dma_mask)) { 1374 printk(KERN_WARNING "aic7xxx: No suitable DMA available.\n"); 1375 kfree(map); 1376 return (ENODEV); 1377 } 1378 if (*vaddr == NULL) 1379 return (ENOMEM); 1380 *mapp = map; 1381 return(0); 1382 } 1383 1384 void 1385 ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat, 1386 void* vaddr, bus_dmamap_t map) 1387 { 1388 pci_free_consistent(ahc->dev_softc, dmat->maxsize, 1389 vaddr, map->bus_addr); 1390 } 1391 1392 int 1393 ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map, 1394 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb, 1395 void *cb_arg, int flags) 1396 { 1397 /* 1398 * Assume for now that this will only be used during 1399 * initialization and not for per-transaction buffer mapping. 1400 */ 1401 bus_dma_segment_t stack_sg; 1402 1403 stack_sg.ds_addr = map->bus_addr; 1404 stack_sg.ds_len = dmat->maxsize; 1405 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0); 1406 return (0); 1407 } 1408 1409 void 1410 ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) 1411 { 1412 /* 1413 * The map may is NULL in our < 2.3.X implementation. 1414 * Now it's 2.6.5, but just in case... 1415 */ 1416 BUG_ON(map == NULL); 1417 free(map, M_DEVBUF); 1418 } 1419 1420 int 1421 ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) 1422 { 1423 /* Nothing to do */ 1424 return (0); 1425 } 1426 1427 /********************* Platform Dependent Functions ***************************/ 1428 /* 1429 * Compare "left hand" softc with "right hand" softc, returning: 1430 * < 0 - lahc has a lower priority than rahc 1431 * 0 - Softcs are equal 1432 * > 0 - lahc has a higher priority than rahc 1433 */ 1434 int 1435 ahc_softc_comp(struct ahc_softc *lahc, struct ahc_softc *rahc) 1436 { 1437 int value; 1438 int rvalue; 1439 int lvalue; 1440 1441 /* 1442 * Under Linux, cards are ordered as follows: 1443 * 1) VLB/EISA BIOS enabled devices sorted by BIOS address. 1444 * 2) PCI devices with BIOS enabled sorted by bus/slot/func. 1445 * 3) All remaining VLB/EISA devices sorted by ioport. 1446 * 4) All remaining PCI devices sorted by bus/slot/func. 1447 */ 1448 value = (lahc->flags & AHC_BIOS_ENABLED) 1449 - (rahc->flags & AHC_BIOS_ENABLED); 1450 if (value != 0) 1451 /* Controllers with BIOS enabled have a *higher* priority */ 1452 return (value); 1453 1454 /* 1455 * Same BIOS setting, now sort based on bus type. 1456 * EISA and VL controllers sort together. EISA/VL 1457 * have higher priority than PCI. 1458 */ 1459 rvalue = (rahc->chip & AHC_BUS_MASK); 1460 if (rvalue == AHC_VL) 1461 rvalue = AHC_EISA; 1462 lvalue = (lahc->chip & AHC_BUS_MASK); 1463 if (lvalue == AHC_VL) 1464 lvalue = AHC_EISA; 1465 value = rvalue - lvalue; 1466 if (value != 0) 1467 return (value); 1468 1469 /* Still equal. Sort by BIOS address, ioport, or bus/slot/func. */ 1470 switch (rvalue) { 1471 #ifdef CONFIG_PCI 1472 case AHC_PCI: 1473 { 1474 char primary_channel; 1475 1476 if (aic7xxx_reverse_scan != 0) 1477 value = ahc_get_pci_bus(lahc->dev_softc) 1478 - ahc_get_pci_bus(rahc->dev_softc); 1479 else 1480 value = ahc_get_pci_bus(rahc->dev_softc) 1481 - ahc_get_pci_bus(lahc->dev_softc); 1482 if (value != 0) 1483 break; 1484 if (aic7xxx_reverse_scan != 0) 1485 value = ahc_get_pci_slot(lahc->dev_softc) 1486 - ahc_get_pci_slot(rahc->dev_softc); 1487 else 1488 value = ahc_get_pci_slot(rahc->dev_softc) 1489 - ahc_get_pci_slot(lahc->dev_softc); 1490 if (value != 0) 1491 break; 1492 /* 1493 * On multi-function devices, the user can choose 1494 * to have function 1 probed before function 0. 1495 * Give whichever channel is the primary channel 1496 * the highest priority. 1497 */ 1498 primary_channel = (lahc->flags & AHC_PRIMARY_CHANNEL) + 'A'; 1499 value = -1; 1500 if (lahc->channel == primary_channel) 1501 value = 1; 1502 break; 1503 } 1504 #endif 1505 case AHC_EISA: 1506 if ((rahc->flags & AHC_BIOS_ENABLED) != 0) { 1507 value = rahc->platform_data->bios_address 1508 - lahc->platform_data->bios_address; 1509 } else { 1510 value = rahc->bsh.ioport 1511 - lahc->bsh.ioport; 1512 } 1513 break; 1514 default: 1515 panic("ahc_softc_sort: invalid bus type"); 1516 } 1517 return (value); 1518 } 1519 1520 static void 1521 ahc_linux_setup_tag_info_global(char *p) 1522 { 1523 int tags, i, j; 1524 1525 tags = simple_strtoul(p + 1, NULL, 0) & 0xff; 1526 printf("Setting Global Tags= %d\n", tags); 1527 1528 for (i = 0; i < NUM_ELEMENTS(aic7xxx_tag_info); i++) { 1529 for (j = 0; j < AHC_NUM_TARGETS; j++) { 1530 aic7xxx_tag_info[i].tag_commands[j] = tags; 1531 } 1532 } 1533 } 1534 1535 static void 1536 ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value) 1537 { 1538 1539 if ((instance >= 0) && (targ >= 0) 1540 && (instance < NUM_ELEMENTS(aic7xxx_tag_info)) 1541 && (targ < AHC_NUM_TARGETS)) { 1542 aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff; 1543 if (bootverbose) 1544 printf("tag_info[%d:%d] = %d\n", instance, targ, value); 1545 } 1546 } 1547 1548 static void 1549 ahc_linux_setup_dv(u_long arg, int instance, int targ, int32_t value) 1550 { 1551 1552 if ((instance >= 0) 1553 && (instance < NUM_ELEMENTS(aic7xxx_dv_settings))) { 1554 aic7xxx_dv_settings[instance] = value; 1555 if (bootverbose) 1556 printf("dv[%d] = %d\n", instance, value); 1557 } 1558 } 1559 1560 /* 1561 * Handle Linux boot parameters. This routine allows for assigning a value 1562 * to a parameter with a ':' between the parameter and the value. 1563 * ie. aic7xxx=stpwlev:1,extended 1564 */ 1565 static int 1566 aic7xxx_setup(char *s) 1567 { 1568 int i, n; 1569 char *p; 1570 char *end; 1571 1572 static struct { 1573 const char *name; 1574 uint32_t *flag; 1575 } options[] = { 1576 { "extended", &aic7xxx_extended }, 1577 { "no_reset", &aic7xxx_no_reset }, 1578 { "verbose", &aic7xxx_verbose }, 1579 { "allow_memio", &aic7xxx_allow_memio}, 1580 #ifdef AHC_DEBUG 1581 { "debug", &ahc_debug }, 1582 #endif 1583 { "reverse_scan", &aic7xxx_reverse_scan }, 1584 { "no_probe", &aic7xxx_probe_eisa_vl }, 1585 { "probe_eisa_vl", &aic7xxx_probe_eisa_vl }, 1586 { "periodic_otag", &aic7xxx_periodic_otag }, 1587 { "pci_parity", &aic7xxx_pci_parity }, 1588 { "seltime", &aic7xxx_seltime }, 1589 { "tag_info", NULL }, 1590 { "global_tag_depth", NULL }, 1591 { "dv", NULL } 1592 }; 1593 1594 end = strchr(s, '\0'); 1595 1596 /* 1597 * XXX ia64 gcc isn't smart enough to know that NUM_ELEMENTS 1598 * will never be 0 in this case. 1599 */ 1600 n = 0; 1601 1602 while ((p = strsep(&s, ",.")) != NULL) { 1603 if (*p == '\0') 1604 continue; 1605 for (i = 0; i < NUM_ELEMENTS(options); i++) { 1606 1607 n = strlen(options[i].name); 1608 if (strncmp(options[i].name, p, n) == 0) 1609 break; 1610 } 1611 if (i == NUM_ELEMENTS(options)) 1612 continue; 1613 1614 if (strncmp(p, "global_tag_depth", n) == 0) { 1615 ahc_linux_setup_tag_info_global(p + n); 1616 } else if (strncmp(p, "tag_info", n) == 0) { 1617 s = aic_parse_brace_option("tag_info", p + n, end, 1618 2, ahc_linux_setup_tag_info, 0); 1619 } else if (strncmp(p, "dv", n) == 0) { 1620 s = aic_parse_brace_option("dv", p + n, end, 1, 1621 ahc_linux_setup_dv, 0); 1622 } else if (p[n] == ':') { 1623 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0); 1624 } else if (strncmp(p, "verbose", n) == 0) { 1625 *(options[i].flag) = 1; 1626 } else { 1627 *(options[i].flag) ^= 0xFFFFFFFF; 1628 } 1629 } 1630 return 1; 1631 } 1632 1633 __setup("aic7xxx=", aic7xxx_setup); 1634 1635 uint32_t aic7xxx_verbose; 1636 1637 int 1638 ahc_linux_register_host(struct ahc_softc *ahc, Scsi_Host_Template *template) 1639 { 1640 char buf[80]; 1641 struct Scsi_Host *host; 1642 char *new_name; 1643 u_long s; 1644 u_int targ_offset; 1645 1646 template->name = ahc->description; 1647 host = scsi_host_alloc(template, sizeof(struct ahc_softc *)); 1648 if (host == NULL) 1649 return (ENOMEM); 1650 1651 *((struct ahc_softc **)host->hostdata) = ahc; 1652 ahc_lock(ahc, &s); 1653 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 1654 scsi_assign_lock(host, &ahc->platform_data->spin_lock); 1655 #elif AHC_SCSI_HAS_HOST_LOCK != 0 1656 host->lock = &ahc->platform_data->spin_lock; 1657 #endif 1658 ahc->platform_data->host = host; 1659 host->can_queue = AHC_MAX_QUEUE; 1660 host->cmd_per_lun = 2; 1661 /* XXX No way to communicate the ID for multiple channels */ 1662 host->this_id = ahc->our_id; 1663 host->irq = ahc->platform_data->irq; 1664 host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8; 1665 host->max_lun = AHC_NUM_LUNS; 1666 host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0; 1667 host->sg_tablesize = AHC_NSEG; 1668 ahc_set_unit(ahc, ahc_linux_next_unit()); 1669 sprintf(buf, "scsi%d", host->host_no); 1670 new_name = malloc(strlen(buf) + 1, M_DEVBUF, M_NOWAIT); 1671 if (new_name != NULL) { 1672 strcpy(new_name, buf); 1673 ahc_set_name(ahc, new_name); 1674 } 1675 host->unique_id = ahc->unit; 1676 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 1677 scsi_set_pci_device(host, ahc->dev_softc); 1678 #endif 1679 ahc_linux_initialize_scsi_bus(ahc); 1680 ahc_unlock(ahc, &s); 1681 ahc->platform_data->dv_pid = kernel_thread(ahc_linux_dv_thread, ahc, 0); 1682 ahc_lock(ahc, &s); 1683 if (ahc->platform_data->dv_pid < 0) { 1684 printf("%s: Failed to create DV thread, error= %d\n", 1685 ahc_name(ahc), ahc->platform_data->dv_pid); 1686 return (-ahc->platform_data->dv_pid); 1687 } 1688 /* 1689 * Initially allocate *all* of our linux target objects 1690 * so that the DV thread will scan them all in parallel 1691 * just after driver initialization. Any device that 1692 * does not exist will have its target object destroyed 1693 * by the selection timeout handler. In the case of a 1694 * device that appears after the initial DV scan, async 1695 * negotiation will occur for the first command, and DV 1696 * will comence should that first command be successful. 1697 */ 1698 for (targ_offset = 0; 1699 targ_offset < host->max_id * (host->max_channel + 1); 1700 targ_offset++) { 1701 u_int channel; 1702 u_int target; 1703 1704 channel = 0; 1705 target = targ_offset; 1706 if (target > 7 1707 && (ahc->features & AHC_TWIN) != 0) { 1708 channel = 1; 1709 target &= 0x7; 1710 } 1711 /* 1712 * Skip our own ID. Some Compaq/HP storage devices 1713 * have enclosure management devices that respond to 1714 * single bit selection (i.e. selecting ourselves). 1715 * It is expected that either an external application 1716 * or a modified kernel will be used to probe this 1717 * ID if it is appropriate. To accommodate these 1718 * installations, ahc_linux_alloc_target() will allocate 1719 * for our ID if asked to do so. 1720 */ 1721 if ((channel == 0 && target == ahc->our_id) 1722 || (channel == 1 && target == ahc->our_id_b)) 1723 continue; 1724 1725 ahc_linux_alloc_target(ahc, channel, target); 1726 } 1727 ahc_intr_enable(ahc, TRUE); 1728 ahc_linux_start_dv(ahc); 1729 ahc_unlock(ahc, &s); 1730 1731 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 1732 scsi_add_host(host, (ahc->dev_softc ? &ahc->dev_softc->dev : NULL)); /* XXX handle failure */ 1733 scsi_scan_host(host); 1734 #endif 1735 return (0); 1736 } 1737 1738 uint64_t 1739 ahc_linux_get_memsize(void) 1740 { 1741 struct sysinfo si; 1742 1743 si_meminfo(&si); 1744 return ((uint64_t)si.totalram << PAGE_SHIFT); 1745 } 1746 1747 /* 1748 * Find the smallest available unit number to use 1749 * for a new device. We don't just use a static 1750 * count to handle the "repeated hot-(un)plug" 1751 * scenario. 1752 */ 1753 static int 1754 ahc_linux_next_unit(void) 1755 { 1756 struct ahc_softc *ahc; 1757 int unit; 1758 1759 unit = 0; 1760 retry: 1761 TAILQ_FOREACH(ahc, &ahc_tailq, links) { 1762 if (ahc->unit == unit) { 1763 unit++; 1764 goto retry; 1765 } 1766 } 1767 return (unit); 1768 } 1769 1770 /* 1771 * Place the SCSI bus into a known state by either resetting it, 1772 * or forcing transfer negotiations on the next command to any 1773 * target. 1774 */ 1775 void 1776 ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc) 1777 { 1778 int i; 1779 int numtarg; 1780 1781 i = 0; 1782 numtarg = 0; 1783 1784 if (aic7xxx_no_reset != 0) 1785 ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B); 1786 1787 if ((ahc->flags & AHC_RESET_BUS_A) != 0) 1788 ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE); 1789 else 1790 numtarg = (ahc->features & AHC_WIDE) ? 16 : 8; 1791 1792 if ((ahc->features & AHC_TWIN) != 0) { 1793 1794 if ((ahc->flags & AHC_RESET_BUS_B) != 0) { 1795 ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE); 1796 } else { 1797 if (numtarg == 0) 1798 i = 8; 1799 numtarg += 8; 1800 } 1801 } 1802 1803 /* 1804 * Force negotiation to async for all targets that 1805 * will not see an initial bus reset. 1806 */ 1807 for (; i < numtarg; i++) { 1808 struct ahc_devinfo devinfo; 1809 struct ahc_initiator_tinfo *tinfo; 1810 struct ahc_tmode_tstate *tstate; 1811 u_int our_id; 1812 u_int target_id; 1813 char channel; 1814 1815 channel = 'A'; 1816 our_id = ahc->our_id; 1817 target_id = i; 1818 if (i > 7 && (ahc->features & AHC_TWIN) != 0) { 1819 channel = 'B'; 1820 our_id = ahc->our_id_b; 1821 target_id = i % 8; 1822 } 1823 tinfo = ahc_fetch_transinfo(ahc, channel, our_id, 1824 target_id, &tstate); 1825 ahc_compile_devinfo(&devinfo, our_id, target_id, 1826 CAM_LUN_WILDCARD, channel, ROLE_INITIATOR); 1827 ahc_update_neg_request(ahc, &devinfo, tstate, 1828 tinfo, AHC_NEG_ALWAYS); 1829 } 1830 /* Give the bus some time to recover */ 1831 if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) { 1832 ahc_linux_freeze_simq(ahc); 1833 init_timer(&ahc->platform_data->reset_timer); 1834 ahc->platform_data->reset_timer.data = (u_long)ahc; 1835 ahc->platform_data->reset_timer.expires = 1836 jiffies + (AIC7XXX_RESET_DELAY * HZ)/1000; 1837 ahc->platform_data->reset_timer.function = 1838 ahc_linux_release_simq; 1839 add_timer(&ahc->platform_data->reset_timer); 1840 } 1841 } 1842 1843 int 1844 ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg) 1845 { 1846 1847 ahc->platform_data = 1848 malloc(sizeof(struct ahc_platform_data), M_DEVBUF, M_NOWAIT); 1849 if (ahc->platform_data == NULL) 1850 return (ENOMEM); 1851 memset(ahc->platform_data, 0, sizeof(struct ahc_platform_data)); 1852 TAILQ_INIT(&ahc->platform_data->completeq); 1853 TAILQ_INIT(&ahc->platform_data->device_runq); 1854 ahc->platform_data->irq = AHC_LINUX_NOIRQ; 1855 ahc->platform_data->hw_dma_mask = 0xFFFFFFFF; 1856 ahc_lockinit(ahc); 1857 ahc_done_lockinit(ahc); 1858 init_timer(&ahc->platform_data->completeq_timer); 1859 ahc->platform_data->completeq_timer.data = (u_long)ahc; 1860 ahc->platform_data->completeq_timer.function = 1861 (ahc_linux_callback_t *)ahc_linux_thread_run_complete_queue; 1862 init_MUTEX_LOCKED(&ahc->platform_data->eh_sem); 1863 init_MUTEX_LOCKED(&ahc->platform_data->dv_sem); 1864 init_MUTEX_LOCKED(&ahc->platform_data->dv_cmd_sem); 1865 tasklet_init(&ahc->platform_data->runq_tasklet, ahc_runq_tasklet, 1866 (unsigned long)ahc); 1867 ahc->seltime = (aic7xxx_seltime & 0x3) << 4; 1868 ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4; 1869 if (aic7xxx_pci_parity == 0) 1870 ahc->flags |= AHC_DISABLE_PCI_PERR; 1871 1872 return (0); 1873 } 1874 1875 void 1876 ahc_platform_free(struct ahc_softc *ahc) 1877 { 1878 struct ahc_linux_target *targ; 1879 struct ahc_linux_device *dev; 1880 int i, j; 1881 1882 if (ahc->platform_data != NULL) { 1883 del_timer_sync(&ahc->platform_data->completeq_timer); 1884 ahc_linux_kill_dv_thread(ahc); 1885 tasklet_kill(&ahc->platform_data->runq_tasklet); 1886 if (ahc->platform_data->host != NULL) { 1887 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 1888 scsi_remove_host(ahc->platform_data->host); 1889 #endif 1890 scsi_host_put(ahc->platform_data->host); 1891 } 1892 1893 /* destroy all of the device and target objects */ 1894 for (i = 0; i < AHC_NUM_TARGETS; i++) { 1895 targ = ahc->platform_data->targets[i]; 1896 if (targ != NULL) { 1897 /* Keep target around through the loop. */ 1898 targ->refcount++; 1899 for (j = 0; j < AHC_NUM_LUNS; j++) { 1900 1901 if (targ->devices[j] == NULL) 1902 continue; 1903 dev = targ->devices[j]; 1904 ahc_linux_free_device(ahc, dev); 1905 } 1906 /* 1907 * Forcibly free the target now that 1908 * all devices are gone. 1909 */ 1910 ahc_linux_free_target(ahc, targ); 1911 } 1912 } 1913 1914 if (ahc->platform_data->irq != AHC_LINUX_NOIRQ) 1915 free_irq(ahc->platform_data->irq, ahc); 1916 if (ahc->tag == BUS_SPACE_PIO 1917 && ahc->bsh.ioport != 0) 1918 release_region(ahc->bsh.ioport, 256); 1919 if (ahc->tag == BUS_SPACE_MEMIO 1920 && ahc->bsh.maddr != NULL) { 1921 iounmap(ahc->bsh.maddr); 1922 release_mem_region(ahc->platform_data->mem_busaddr, 1923 0x1000); 1924 } 1925 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 1926 /* 1927 * In 2.4 we detach from the scsi midlayer before the PCI 1928 * layer invokes our remove callback. No per-instance 1929 * detach is provided, so we must reach inside the PCI 1930 * subsystem's internals and detach our driver manually. 1931 */ 1932 if (ahc->dev_softc != NULL) 1933 ahc->dev_softc->driver = NULL; 1934 #endif 1935 free(ahc->platform_data, M_DEVBUF); 1936 } 1937 } 1938 1939 void 1940 ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb) 1941 { 1942 ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb), 1943 SCB_GET_CHANNEL(ahc, scb), 1944 SCB_GET_LUN(scb), SCB_LIST_NULL, 1945 ROLE_UNKNOWN, CAM_REQUEUE_REQ); 1946 } 1947 1948 void 1949 ahc_platform_set_tags(struct ahc_softc *ahc, struct ahc_devinfo *devinfo, 1950 ahc_queue_alg alg) 1951 { 1952 struct ahc_linux_device *dev; 1953 int was_queuing; 1954 int now_queuing; 1955 1956 dev = ahc_linux_get_device(ahc, devinfo->channel - 'A', 1957 devinfo->target, 1958 devinfo->lun, /*alloc*/FALSE); 1959 if (dev == NULL) 1960 return; 1961 was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED); 1962 switch (alg) { 1963 default: 1964 case AHC_QUEUE_NONE: 1965 now_queuing = 0; 1966 break; 1967 case AHC_QUEUE_BASIC: 1968 now_queuing = AHC_DEV_Q_BASIC; 1969 break; 1970 case AHC_QUEUE_TAGGED: 1971 now_queuing = AHC_DEV_Q_TAGGED; 1972 break; 1973 } 1974 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0 1975 && (was_queuing != now_queuing) 1976 && (dev->active != 0)) { 1977 dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY; 1978 dev->qfrozen++; 1979 } 1980 1981 dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG); 1982 if (now_queuing) { 1983 u_int usertags; 1984 1985 usertags = ahc_linux_user_tagdepth(ahc, devinfo); 1986 if (!was_queuing) { 1987 /* 1988 * Start out agressively and allow our 1989 * dynamic queue depth algorithm to take 1990 * care of the rest. 1991 */ 1992 dev->maxtags = usertags; 1993 dev->openings = dev->maxtags - dev->active; 1994 } 1995 if (dev->maxtags == 0) { 1996 /* 1997 * Queueing is disabled by the user. 1998 */ 1999 dev->openings = 1; 2000 } else if (alg == AHC_QUEUE_TAGGED) { 2001 dev->flags |= AHC_DEV_Q_TAGGED; 2002 if (aic7xxx_periodic_otag != 0) 2003 dev->flags |= AHC_DEV_PERIODIC_OTAG; 2004 } else 2005 dev->flags |= AHC_DEV_Q_BASIC; 2006 } else { 2007 /* We can only have one opening. */ 2008 dev->maxtags = 0; 2009 dev->openings = 1 - dev->active; 2010 } 2011 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 2012 if (dev->scsi_device != NULL) { 2013 switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) { 2014 case AHC_DEV_Q_BASIC: 2015 scsi_adjust_queue_depth(dev->scsi_device, 2016 MSG_SIMPLE_TASK, 2017 dev->openings + dev->active); 2018 break; 2019 case AHC_DEV_Q_TAGGED: 2020 scsi_adjust_queue_depth(dev->scsi_device, 2021 MSG_ORDERED_TASK, 2022 dev->openings + dev->active); 2023 break; 2024 default: 2025 /* 2026 * We allow the OS to queue 2 untagged transactions to 2027 * us at any time even though we can only execute them 2028 * serially on the controller/device. This should 2029 * remove some latency. 2030 */ 2031 scsi_adjust_queue_depth(dev->scsi_device, 2032 /*NON-TAGGED*/0, 2033 /*queue depth*/2); 2034 break; 2035 } 2036 } 2037 #endif 2038 } 2039 2040 int 2041 ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel, 2042 int lun, u_int tag, role_t role, uint32_t status) 2043 { 2044 int chan; 2045 int maxchan; 2046 int targ; 2047 int maxtarg; 2048 int clun; 2049 int maxlun; 2050 int count; 2051 2052 if (tag != SCB_LIST_NULL) 2053 return (0); 2054 2055 chan = 0; 2056 if (channel != ALL_CHANNELS) { 2057 chan = channel - 'A'; 2058 maxchan = chan + 1; 2059 } else { 2060 maxchan = (ahc->features & AHC_TWIN) ? 2 : 1; 2061 } 2062 targ = 0; 2063 if (target != CAM_TARGET_WILDCARD) { 2064 targ = target; 2065 maxtarg = targ + 1; 2066 } else { 2067 maxtarg = (ahc->features & AHC_WIDE) ? 16 : 8; 2068 } 2069 clun = 0; 2070 if (lun != CAM_LUN_WILDCARD) { 2071 clun = lun; 2072 maxlun = clun + 1; 2073 } else { 2074 maxlun = AHC_NUM_LUNS; 2075 } 2076 2077 count = 0; 2078 for (; chan < maxchan; chan++) { 2079 2080 for (; targ < maxtarg; targ++) { 2081 2082 for (; clun < maxlun; clun++) { 2083 struct ahc_linux_device *dev; 2084 struct ahc_busyq *busyq; 2085 struct ahc_cmd *acmd; 2086 2087 dev = ahc_linux_get_device(ahc, chan, 2088 targ, clun, 2089 /*alloc*/FALSE); 2090 if (dev == NULL) 2091 continue; 2092 2093 busyq = &dev->busyq; 2094 while ((acmd = TAILQ_FIRST(busyq)) != NULL) { 2095 Scsi_Cmnd *cmd; 2096 2097 cmd = &acmd_scsi_cmd(acmd); 2098 TAILQ_REMOVE(busyq, acmd, 2099 acmd_links.tqe); 2100 count++; 2101 cmd->result = status << 16; 2102 ahc_linux_queue_cmd_complete(ahc, cmd); 2103 } 2104 } 2105 } 2106 } 2107 2108 return (count); 2109 } 2110 2111 static void 2112 ahc_linux_thread_run_complete_queue(struct ahc_softc *ahc) 2113 { 2114 u_long flags; 2115 2116 ahc_lock(ahc, &flags); 2117 del_timer(&ahc->platform_data->completeq_timer); 2118 ahc->platform_data->flags &= ~AHC_RUN_CMPLT_Q_TIMER; 2119 ahc_linux_run_complete_queue(ahc); 2120 ahc_unlock(ahc, &flags); 2121 } 2122 2123 static void 2124 ahc_linux_start_dv(struct ahc_softc *ahc) 2125 { 2126 2127 /* 2128 * Freeze the simq and signal ahc_linux_queue to not let any 2129 * more commands through. 2130 */ 2131 if ((ahc->platform_data->flags & AHC_DV_ACTIVE) == 0) { 2132 #ifdef AHC_DEBUG 2133 if (ahc_debug & AHC_SHOW_DV) 2134 printf("%s: Waking DV thread\n", ahc_name(ahc)); 2135 #endif 2136 2137 ahc->platform_data->flags |= AHC_DV_ACTIVE; 2138 ahc_linux_freeze_simq(ahc); 2139 2140 /* Wake up the DV kthread */ 2141 up(&ahc->platform_data->dv_sem); 2142 } 2143 } 2144 2145 static void 2146 ahc_linux_kill_dv_thread(struct ahc_softc *ahc) 2147 { 2148 u_long s; 2149 2150 ahc_lock(ahc, &s); 2151 if (ahc->platform_data->dv_pid != 0) { 2152 ahc->platform_data->flags |= AHC_DV_SHUTDOWN; 2153 ahc_unlock(ahc, &s); 2154 up(&ahc->platform_data->dv_sem); 2155 2156 /* 2157 * Use the eh_sem as an indicator that the 2158 * dv thread is exiting. Note that the dv 2159 * thread must still return after performing 2160 * the up on our semaphore before it has 2161 * completely exited this module. Unfortunately, 2162 * there seems to be no easy way to wait for the 2163 * exit of a thread for which you are not the 2164 * parent (dv threads are parented by init). 2165 * Cross your fingers... 2166 */ 2167 down(&ahc->platform_data->eh_sem); 2168 2169 /* 2170 * Mark the dv thread as already dead. This 2171 * avoids attempting to kill it a second time. 2172 * This is necessary because we must kill the 2173 * DV thread before calling ahc_free() in the 2174 * module shutdown case to avoid bogus locking 2175 * in the SCSI mid-layer, but we ahc_free() is 2176 * called without killing the DV thread in the 2177 * instance detach case, so ahc_platform_free() 2178 * calls us again to verify that the DV thread 2179 * is dead. 2180 */ 2181 ahc->platform_data->dv_pid = 0; 2182 } else { 2183 ahc_unlock(ahc, &s); 2184 } 2185 } 2186 2187 static int 2188 ahc_linux_dv_thread(void *data) 2189 { 2190 struct ahc_softc *ahc; 2191 int target; 2192 u_long s; 2193 2194 ahc = (struct ahc_softc *)data; 2195 2196 #ifdef AHC_DEBUG 2197 if (ahc_debug & AHC_SHOW_DV) 2198 printf("Launching DV Thread\n"); 2199 #endif 2200 2201 /* 2202 * Complete thread creation. 2203 */ 2204 lock_kernel(); 2205 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 2206 /* 2207 * Don't care about any signals. 2208 */ 2209 siginitsetinv(¤t->blocked, 0); 2210 2211 daemonize(); 2212 sprintf(current->comm, "ahc_dv_%d", ahc->unit); 2213 #else 2214 daemonize("ahc_dv_%d", ahc->unit); 2215 current->flags |= PF_FREEZE; 2216 #endif 2217 unlock_kernel(); 2218 2219 while (1) { 2220 /* 2221 * Use down_interruptible() rather than down() to 2222 * avoid inclusion in the load average. 2223 */ 2224 down_interruptible(&ahc->platform_data->dv_sem); 2225 2226 /* Check to see if we've been signaled to exit */ 2227 ahc_lock(ahc, &s); 2228 if ((ahc->platform_data->flags & AHC_DV_SHUTDOWN) != 0) { 2229 ahc_unlock(ahc, &s); 2230 break; 2231 } 2232 ahc_unlock(ahc, &s); 2233 2234 #ifdef AHC_DEBUG 2235 if (ahc_debug & AHC_SHOW_DV) 2236 printf("%s: Beginning Domain Validation\n", 2237 ahc_name(ahc)); 2238 #endif 2239 2240 /* 2241 * Wait for any pending commands to drain before proceeding. 2242 */ 2243 ahc_lock(ahc, &s); 2244 while (LIST_FIRST(&ahc->pending_scbs) != NULL) { 2245 ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_EMPTY; 2246 ahc_unlock(ahc, &s); 2247 down_interruptible(&ahc->platform_data->dv_sem); 2248 ahc_lock(ahc, &s); 2249 } 2250 2251 /* 2252 * Wait for the SIMQ to be released so that DV is the 2253 * only reason the queue is frozen. 2254 */ 2255 while (AHC_DV_SIMQ_FROZEN(ahc) == 0) { 2256 ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_RELEASE; 2257 ahc_unlock(ahc, &s); 2258 down_interruptible(&ahc->platform_data->dv_sem); 2259 ahc_lock(ahc, &s); 2260 } 2261 ahc_unlock(ahc, &s); 2262 2263 for (target = 0; target < AHC_NUM_TARGETS; target++) 2264 ahc_linux_dv_target(ahc, target); 2265 2266 ahc_lock(ahc, &s); 2267 ahc->platform_data->flags &= ~AHC_DV_ACTIVE; 2268 ahc_unlock(ahc, &s); 2269 2270 /* 2271 * Release the SIMQ so that normal commands are 2272 * allowed to continue on the bus. 2273 */ 2274 ahc_linux_release_simq((u_long)ahc); 2275 } 2276 up(&ahc->platform_data->eh_sem); 2277 return (0); 2278 } 2279 2280 #define AHC_LINUX_DV_INQ_SHORT_LEN 36 2281 #define AHC_LINUX_DV_INQ_LEN 256 2282 #define AHC_LINUX_DV_TIMEOUT (HZ / 4) 2283 2284 #define AHC_SET_DV_STATE(ahc, targ, newstate) \ 2285 ahc_set_dv_state(ahc, targ, newstate, __LINE__) 2286 2287 static __inline void 2288 ahc_set_dv_state(struct ahc_softc *ahc, struct ahc_linux_target *targ, 2289 ahc_dv_state newstate, u_int line) 2290 { 2291 ahc_dv_state oldstate; 2292 2293 oldstate = targ->dv_state; 2294 #ifdef AHC_DEBUG 2295 if (ahc_debug & AHC_SHOW_DV) 2296 printf("%s:%d: Going from state %d to state %d\n", 2297 ahc_name(ahc), line, oldstate, newstate); 2298 #endif 2299 2300 if (oldstate == newstate) 2301 targ->dv_state_retry++; 2302 else 2303 targ->dv_state_retry = 0; 2304 targ->dv_state = newstate; 2305 } 2306 2307 static void 2308 ahc_linux_dv_target(struct ahc_softc *ahc, u_int target_offset) 2309 { 2310 struct ahc_devinfo devinfo; 2311 struct ahc_linux_target *targ; 2312 struct scsi_cmnd *cmd; 2313 struct scsi_device *scsi_dev; 2314 struct scsi_sense_data *sense; 2315 uint8_t *buffer; 2316 u_long s; 2317 u_int timeout; 2318 int echo_size; 2319 2320 sense = NULL; 2321 buffer = NULL; 2322 echo_size = 0; 2323 ahc_lock(ahc, &s); 2324 targ = ahc->platform_data->targets[target_offset]; 2325 if (targ == NULL || (targ->flags & AHC_DV_REQUIRED) == 0) { 2326 ahc_unlock(ahc, &s); 2327 return; 2328 } 2329 ahc_compile_devinfo(&devinfo, 2330 targ->channel == 0 ? ahc->our_id : ahc->our_id_b, 2331 targ->target, /*lun*/0, targ->channel + 'A', 2332 ROLE_INITIATOR); 2333 #ifdef AHC_DEBUG 2334 if (ahc_debug & AHC_SHOW_DV) { 2335 ahc_print_devinfo(ahc, &devinfo); 2336 printf("Performing DV\n"); 2337 } 2338 #endif 2339 2340 ahc_unlock(ahc, &s); 2341 2342 cmd = malloc(sizeof(struct scsi_cmnd), M_DEVBUF, M_WAITOK); 2343 scsi_dev = malloc(sizeof(struct scsi_device), M_DEVBUF, M_WAITOK); 2344 scsi_dev->host = ahc->platform_data->host; 2345 scsi_dev->id = devinfo.target; 2346 scsi_dev->lun = devinfo.lun; 2347 scsi_dev->channel = devinfo.channel - 'A'; 2348 ahc->platform_data->dv_scsi_dev = scsi_dev; 2349 2350 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_SHORT_ASYNC); 2351 2352 while (targ->dv_state != AHC_DV_STATE_EXIT) { 2353 timeout = AHC_LINUX_DV_TIMEOUT; 2354 switch (targ->dv_state) { 2355 case AHC_DV_STATE_INQ_SHORT_ASYNC: 2356 case AHC_DV_STATE_INQ_ASYNC: 2357 case AHC_DV_STATE_INQ_ASYNC_VERIFY: 2358 /* 2359 * Set things to async narrow to reduce the 2360 * chance that the INQ will fail. 2361 */ 2362 ahc_lock(ahc, &s); 2363 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0, 2364 AHC_TRANS_GOAL, /*paused*/FALSE); 2365 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, 2366 AHC_TRANS_GOAL, /*paused*/FALSE); 2367 ahc_unlock(ahc, &s); 2368 timeout = 10 * HZ; 2369 targ->flags &= ~AHC_INQ_VALID; 2370 /* FALLTHROUGH */ 2371 case AHC_DV_STATE_INQ_VERIFY: 2372 { 2373 u_int inq_len; 2374 2375 if (targ->dv_state == AHC_DV_STATE_INQ_SHORT_ASYNC) 2376 inq_len = AHC_LINUX_DV_INQ_SHORT_LEN; 2377 else 2378 inq_len = targ->inq_data->additional_length + 5; 2379 ahc_linux_dv_inq(ahc, cmd, &devinfo, targ, inq_len); 2380 break; 2381 } 2382 case AHC_DV_STATE_TUR: 2383 case AHC_DV_STATE_BUSY: 2384 timeout = 5 * HZ; 2385 ahc_linux_dv_tur(ahc, cmd, &devinfo); 2386 break; 2387 case AHC_DV_STATE_REBD: 2388 ahc_linux_dv_rebd(ahc, cmd, &devinfo, targ); 2389 break; 2390 case AHC_DV_STATE_WEB: 2391 ahc_linux_dv_web(ahc, cmd, &devinfo, targ); 2392 break; 2393 2394 case AHC_DV_STATE_REB: 2395 ahc_linux_dv_reb(ahc, cmd, &devinfo, targ); 2396 break; 2397 2398 case AHC_DV_STATE_SU: 2399 ahc_linux_dv_su(ahc, cmd, &devinfo, targ); 2400 timeout = 50 * HZ; 2401 break; 2402 2403 default: 2404 ahc_print_devinfo(ahc, &devinfo); 2405 printf("Unknown DV state %d\n", targ->dv_state); 2406 goto out; 2407 } 2408 2409 /* Queue the command and wait for it to complete */ 2410 /* Abuse eh_timeout in the scsi_cmnd struct for our purposes */ 2411 init_timer(&cmd->eh_timeout); 2412 #ifdef AHC_DEBUG 2413 if ((ahc_debug & AHC_SHOW_MESSAGES) != 0) 2414 /* 2415 * All of the printfs during negotiation 2416 * really slow down the negotiation. 2417 * Add a bit of time just to be safe. 2418 */ 2419 timeout += HZ; 2420 #endif 2421 scsi_add_timer(cmd, timeout, ahc_linux_dv_timeout); 2422 /* 2423 * In 2.5.X, it is assumed that all calls from the 2424 * "midlayer" (which we are emulating) will have the 2425 * ahc host lock held. For other kernels, the 2426 * io_request_lock must be held. 2427 */ 2428 #if AHC_SCSI_HAS_HOST_LOCK != 0 2429 ahc_lock(ahc, &s); 2430 #else 2431 spin_lock_irqsave(&io_request_lock, s); 2432 #endif 2433 ahc_linux_queue(cmd, ahc_linux_dv_complete); 2434 #if AHC_SCSI_HAS_HOST_LOCK != 0 2435 ahc_unlock(ahc, &s); 2436 #else 2437 spin_unlock_irqrestore(&io_request_lock, s); 2438 #endif 2439 down_interruptible(&ahc->platform_data->dv_cmd_sem); 2440 /* 2441 * Wait for the SIMQ to be released so that DV is the 2442 * only reason the queue is frozen. 2443 */ 2444 ahc_lock(ahc, &s); 2445 while (AHC_DV_SIMQ_FROZEN(ahc) == 0) { 2446 ahc->platform_data->flags |= AHC_DV_WAIT_SIMQ_RELEASE; 2447 ahc_unlock(ahc, &s); 2448 down_interruptible(&ahc->platform_data->dv_sem); 2449 ahc_lock(ahc, &s); 2450 } 2451 ahc_unlock(ahc, &s); 2452 2453 ahc_linux_dv_transition(ahc, cmd, &devinfo, targ); 2454 } 2455 2456 out: 2457 if ((targ->flags & AHC_INQ_VALID) != 0 2458 && ahc_linux_get_device(ahc, devinfo.channel - 'A', 2459 devinfo.target, devinfo.lun, 2460 /*alloc*/FALSE) == NULL) { 2461 /* 2462 * The DV state machine failed to configure this device. 2463 * This is normal if DV is disabled. Since we have inquiry 2464 * data, filter it and use the "optimistic" negotiation 2465 * parameters found in the inquiry string. 2466 */ 2467 ahc_linux_filter_inquiry(ahc, &devinfo); 2468 if ((targ->flags & (AHC_BASIC_DV|AHC_ENHANCED_DV)) != 0) { 2469 ahc_print_devinfo(ahc, &devinfo); 2470 printf("DV failed to configure device. " 2471 "Please file a bug report against " 2472 "this driver.\n"); 2473 } 2474 } 2475 2476 if (cmd != NULL) 2477 free(cmd, M_DEVBUF); 2478 2479 if (ahc->platform_data->dv_scsi_dev != NULL) { 2480 free(ahc->platform_data->dv_scsi_dev, M_DEVBUF); 2481 ahc->platform_data->dv_scsi_dev = NULL; 2482 } 2483 2484 ahc_lock(ahc, &s); 2485 if (targ->dv_buffer != NULL) { 2486 free(targ->dv_buffer, M_DEVBUF); 2487 targ->dv_buffer = NULL; 2488 } 2489 if (targ->dv_buffer1 != NULL) { 2490 free(targ->dv_buffer1, M_DEVBUF); 2491 targ->dv_buffer1 = NULL; 2492 } 2493 targ->flags &= ~AHC_DV_REQUIRED; 2494 if (targ->refcount == 0) 2495 ahc_linux_free_target(ahc, targ); 2496 ahc_unlock(ahc, &s); 2497 } 2498 2499 static void 2500 ahc_linux_dv_transition(struct ahc_softc *ahc, struct scsi_cmnd *cmd, 2501 struct ahc_devinfo *devinfo, 2502 struct ahc_linux_target *targ) 2503 { 2504 u_int32_t status; 2505 2506 status = aic_error_action(cmd, targ->inq_data, 2507 ahc_cmd_get_transaction_status(cmd), 2508 ahc_cmd_get_scsi_status(cmd)); 2509 2510 #ifdef AHC_DEBUG 2511 if (ahc_debug & AHC_SHOW_DV) { 2512 ahc_print_devinfo(ahc, devinfo); 2513 printf("Entering ahc_linux_dv_transition, state= %d, " 2514 "status= 0x%x, cmd->result= 0x%x\n", targ->dv_state, 2515 status, cmd->result); 2516 } 2517 #endif 2518 2519 switch (targ->dv_state) { 2520 case AHC_DV_STATE_INQ_SHORT_ASYNC: 2521 case AHC_DV_STATE_INQ_ASYNC: 2522 switch (status & SS_MASK) { 2523 case SS_NOP: 2524 { 2525 AHC_SET_DV_STATE(ahc, targ, targ->dv_state+1); 2526 break; 2527 } 2528 case SS_INQ_REFRESH: 2529 AHC_SET_DV_STATE(ahc, targ, 2530 AHC_DV_STATE_INQ_SHORT_ASYNC); 2531 break; 2532 case SS_TUR: 2533 case SS_RETRY: 2534 AHC_SET_DV_STATE(ahc, targ, targ->dv_state); 2535 if (ahc_cmd_get_transaction_status(cmd) 2536 == CAM_REQUEUE_REQ) 2537 targ->dv_state_retry--; 2538 if ((status & SS_ERRMASK) == EBUSY) 2539 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY); 2540 if (targ->dv_state_retry < 10) 2541 break; 2542 /* FALLTHROUGH */ 2543 default: 2544 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2545 #ifdef AHC_DEBUG 2546 if (ahc_debug & AHC_SHOW_DV) { 2547 ahc_print_devinfo(ahc, devinfo); 2548 printf("Failed DV inquiry, skipping\n"); 2549 } 2550 #endif 2551 break; 2552 } 2553 break; 2554 case AHC_DV_STATE_INQ_ASYNC_VERIFY: 2555 switch (status & SS_MASK) { 2556 case SS_NOP: 2557 { 2558 u_int xportflags; 2559 u_int spi3data; 2560 2561 if (memcmp(targ->inq_data, targ->dv_buffer, 2562 AHC_LINUX_DV_INQ_LEN) != 0) { 2563 /* 2564 * Inquiry data must have changed. 2565 * Try from the top again. 2566 */ 2567 AHC_SET_DV_STATE(ahc, targ, 2568 AHC_DV_STATE_INQ_SHORT_ASYNC); 2569 break; 2570 } 2571 2572 AHC_SET_DV_STATE(ahc, targ, targ->dv_state+1); 2573 targ->flags |= AHC_INQ_VALID; 2574 if (ahc_linux_user_dv_setting(ahc) == 0) 2575 break; 2576 2577 xportflags = targ->inq_data->flags; 2578 if ((xportflags & (SID_Sync|SID_WBus16)) == 0) 2579 break; 2580 2581 spi3data = targ->inq_data->spi3data; 2582 switch (spi3data & SID_SPI_CLOCK_DT_ST) { 2583 default: 2584 case SID_SPI_CLOCK_ST: 2585 /* Assume only basic DV is supported. */ 2586 targ->flags |= AHC_BASIC_DV; 2587 break; 2588 case SID_SPI_CLOCK_DT: 2589 case SID_SPI_CLOCK_DT_ST: 2590 targ->flags |= AHC_ENHANCED_DV; 2591 break; 2592 } 2593 break; 2594 } 2595 case SS_INQ_REFRESH: 2596 AHC_SET_DV_STATE(ahc, targ, 2597 AHC_DV_STATE_INQ_SHORT_ASYNC); 2598 break; 2599 case SS_TUR: 2600 case SS_RETRY: 2601 AHC_SET_DV_STATE(ahc, targ, targ->dv_state); 2602 if (ahc_cmd_get_transaction_status(cmd) 2603 == CAM_REQUEUE_REQ) 2604 targ->dv_state_retry--; 2605 2606 if ((status & SS_ERRMASK) == EBUSY) 2607 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY); 2608 if (targ->dv_state_retry < 10) 2609 break; 2610 /* FALLTHROUGH */ 2611 default: 2612 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2613 #ifdef AHC_DEBUG 2614 if (ahc_debug & AHC_SHOW_DV) { 2615 ahc_print_devinfo(ahc, devinfo); 2616 printf("Failed DV inquiry, skipping\n"); 2617 } 2618 #endif 2619 break; 2620 } 2621 break; 2622 case AHC_DV_STATE_INQ_VERIFY: 2623 switch (status & SS_MASK) { 2624 case SS_NOP: 2625 { 2626 2627 if (memcmp(targ->inq_data, targ->dv_buffer, 2628 AHC_LINUX_DV_INQ_LEN) == 0) { 2629 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2630 break; 2631 } 2632 #ifdef AHC_DEBUG 2633 if (ahc_debug & AHC_SHOW_DV) { 2634 int i; 2635 2636 ahc_print_devinfo(ahc, devinfo); 2637 printf("Inquiry buffer mismatch:"); 2638 for (i = 0; i < AHC_LINUX_DV_INQ_LEN; i++) { 2639 if ((i & 0xF) == 0) 2640 printf("\n "); 2641 printf("0x%x:0x0%x ", 2642 ((uint8_t *)targ->inq_data)[i], 2643 targ->dv_buffer[i]); 2644 } 2645 printf("\n"); 2646 } 2647 #endif 2648 2649 if (ahc_linux_fallback(ahc, devinfo) != 0) { 2650 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2651 break; 2652 } 2653 /* 2654 * Do not count "falling back" 2655 * against our retries. 2656 */ 2657 targ->dv_state_retry = 0; 2658 AHC_SET_DV_STATE(ahc, targ, targ->dv_state); 2659 break; 2660 } 2661 case SS_INQ_REFRESH: 2662 AHC_SET_DV_STATE(ahc, targ, 2663 AHC_DV_STATE_INQ_SHORT_ASYNC); 2664 break; 2665 case SS_TUR: 2666 case SS_RETRY: 2667 AHC_SET_DV_STATE(ahc, targ, targ->dv_state); 2668 if (ahc_cmd_get_transaction_status(cmd) 2669 == CAM_REQUEUE_REQ) { 2670 targ->dv_state_retry--; 2671 } else if ((status & SSQ_FALLBACK) != 0) { 2672 if (ahc_linux_fallback(ahc, devinfo) != 0) { 2673 AHC_SET_DV_STATE(ahc, targ, 2674 AHC_DV_STATE_EXIT); 2675 break; 2676 } 2677 /* 2678 * Do not count "falling back" 2679 * against our retries. 2680 */ 2681 targ->dv_state_retry = 0; 2682 } else if ((status & SS_ERRMASK) == EBUSY) 2683 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY); 2684 if (targ->dv_state_retry < 10) 2685 break; 2686 /* FALLTHROUGH */ 2687 default: 2688 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2689 #ifdef AHC_DEBUG 2690 if (ahc_debug & AHC_SHOW_DV) { 2691 ahc_print_devinfo(ahc, devinfo); 2692 printf("Failed DV inquiry, skipping\n"); 2693 } 2694 #endif 2695 break; 2696 } 2697 break; 2698 2699 case AHC_DV_STATE_TUR: 2700 switch (status & SS_MASK) { 2701 case SS_NOP: 2702 if ((targ->flags & AHC_BASIC_DV) != 0) { 2703 ahc_linux_filter_inquiry(ahc, devinfo); 2704 AHC_SET_DV_STATE(ahc, targ, 2705 AHC_DV_STATE_INQ_VERIFY); 2706 } else if ((targ->flags & AHC_ENHANCED_DV) != 0) { 2707 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_REBD); 2708 } else { 2709 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2710 } 2711 break; 2712 case SS_RETRY: 2713 case SS_TUR: 2714 if ((status & SS_ERRMASK) == EBUSY) { 2715 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_BUSY); 2716 break; 2717 } 2718 AHC_SET_DV_STATE(ahc, targ, targ->dv_state); 2719 if (ahc_cmd_get_transaction_status(cmd) 2720 == CAM_REQUEUE_REQ) { 2721 targ->dv_state_retry--; 2722 } else if ((status & SSQ_FALLBACK) != 0) { 2723 if (ahc_linux_fallback(ahc, devinfo) != 0) { 2724 AHC_SET_DV_STATE(ahc, targ, 2725 AHC_DV_STATE_EXIT); 2726 break; 2727 } 2728 /* 2729 * Do not count "falling back" 2730 * against our retries. 2731 */ 2732 targ->dv_state_retry = 0; 2733 } 2734 if (targ->dv_state_retry >= 10) { 2735 #ifdef AHC_DEBUG 2736 if (ahc_debug & AHC_SHOW_DV) { 2737 ahc_print_devinfo(ahc, devinfo); 2738 printf("DV TUR reties exhausted\n"); 2739 } 2740 #endif 2741 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2742 break; 2743 } 2744 if (status & SSQ_DELAY) 2745 ssleep(1); 2746 2747 break; 2748 case SS_START: 2749 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_SU); 2750 break; 2751 case SS_INQ_REFRESH: 2752 AHC_SET_DV_STATE(ahc, targ, 2753 AHC_DV_STATE_INQ_SHORT_ASYNC); 2754 break; 2755 default: 2756 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2757 break; 2758 } 2759 break; 2760 2761 case AHC_DV_STATE_REBD: 2762 switch (status & SS_MASK) { 2763 case SS_NOP: 2764 { 2765 uint32_t echo_size; 2766 2767 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_WEB); 2768 echo_size = scsi_3btoul(&targ->dv_buffer[1]); 2769 echo_size &= 0x1FFF; 2770 #ifdef AHC_DEBUG 2771 if (ahc_debug & AHC_SHOW_DV) { 2772 ahc_print_devinfo(ahc, devinfo); 2773 printf("Echo buffer size= %d\n", echo_size); 2774 } 2775 #endif 2776 if (echo_size == 0) { 2777 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2778 break; 2779 } 2780 2781 /* Generate the buffer pattern */ 2782 targ->dv_echo_size = echo_size; 2783 ahc_linux_generate_dv_pattern(targ); 2784 /* 2785 * Setup initial negotiation values. 2786 */ 2787 ahc_linux_filter_inquiry(ahc, devinfo); 2788 break; 2789 } 2790 case SS_INQ_REFRESH: 2791 AHC_SET_DV_STATE(ahc, targ, 2792 AHC_DV_STATE_INQ_SHORT_ASYNC); 2793 break; 2794 case SS_RETRY: 2795 AHC_SET_DV_STATE(ahc, targ, targ->dv_state); 2796 if (ahc_cmd_get_transaction_status(cmd) 2797 == CAM_REQUEUE_REQ) 2798 targ->dv_state_retry--; 2799 if (targ->dv_state_retry <= 10) 2800 break; 2801 #ifdef AHC_DEBUG 2802 if (ahc_debug & AHC_SHOW_DV) { 2803 ahc_print_devinfo(ahc, devinfo); 2804 printf("DV REBD reties exhausted\n"); 2805 } 2806 #endif 2807 /* FALLTHROUGH */ 2808 case SS_FATAL: 2809 default: 2810 /* 2811 * Setup initial negotiation values 2812 * and try level 1 DV. 2813 */ 2814 ahc_linux_filter_inquiry(ahc, devinfo); 2815 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_INQ_VERIFY); 2816 targ->dv_echo_size = 0; 2817 break; 2818 } 2819 break; 2820 2821 case AHC_DV_STATE_WEB: 2822 switch (status & SS_MASK) { 2823 case SS_NOP: 2824 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_REB); 2825 break; 2826 case SS_INQ_REFRESH: 2827 AHC_SET_DV_STATE(ahc, targ, 2828 AHC_DV_STATE_INQ_SHORT_ASYNC); 2829 break; 2830 case SS_RETRY: 2831 AHC_SET_DV_STATE(ahc, targ, targ->dv_state); 2832 if (ahc_cmd_get_transaction_status(cmd) 2833 == CAM_REQUEUE_REQ) { 2834 targ->dv_state_retry--; 2835 } else if ((status & SSQ_FALLBACK) != 0) { 2836 if (ahc_linux_fallback(ahc, devinfo) != 0) { 2837 AHC_SET_DV_STATE(ahc, targ, 2838 AHC_DV_STATE_EXIT); 2839 break; 2840 } 2841 /* 2842 * Do not count "falling back" 2843 * against our retries. 2844 */ 2845 targ->dv_state_retry = 0; 2846 } 2847 if (targ->dv_state_retry <= 10) 2848 break; 2849 /* FALLTHROUGH */ 2850 #ifdef AHC_DEBUG 2851 if (ahc_debug & AHC_SHOW_DV) { 2852 ahc_print_devinfo(ahc, devinfo); 2853 printf("DV WEB reties exhausted\n"); 2854 } 2855 #endif 2856 default: 2857 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2858 break; 2859 } 2860 break; 2861 2862 case AHC_DV_STATE_REB: 2863 switch (status & SS_MASK) { 2864 case SS_NOP: 2865 if (memcmp(targ->dv_buffer, targ->dv_buffer1, 2866 targ->dv_echo_size) != 0) { 2867 if (ahc_linux_fallback(ahc, devinfo) != 0) 2868 AHC_SET_DV_STATE(ahc, targ, 2869 AHC_DV_STATE_EXIT); 2870 else 2871 AHC_SET_DV_STATE(ahc, targ, 2872 AHC_DV_STATE_WEB); 2873 break; 2874 } 2875 2876 if (targ->dv_buffer != NULL) { 2877 free(targ->dv_buffer, M_DEVBUF); 2878 targ->dv_buffer = NULL; 2879 } 2880 if (targ->dv_buffer1 != NULL) { 2881 free(targ->dv_buffer1, M_DEVBUF); 2882 targ->dv_buffer1 = NULL; 2883 } 2884 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2885 break; 2886 case SS_INQ_REFRESH: 2887 AHC_SET_DV_STATE(ahc, targ, 2888 AHC_DV_STATE_INQ_SHORT_ASYNC); 2889 break; 2890 case SS_RETRY: 2891 AHC_SET_DV_STATE(ahc, targ, targ->dv_state); 2892 if (ahc_cmd_get_transaction_status(cmd) 2893 == CAM_REQUEUE_REQ) { 2894 targ->dv_state_retry--; 2895 } else if ((status & SSQ_FALLBACK) != 0) { 2896 if (ahc_linux_fallback(ahc, devinfo) != 0) { 2897 AHC_SET_DV_STATE(ahc, targ, 2898 AHC_DV_STATE_EXIT); 2899 break; 2900 } 2901 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_WEB); 2902 } 2903 if (targ->dv_state_retry <= 10) { 2904 if ((status & (SSQ_DELAY_RANDOM|SSQ_DELAY))!= 0) 2905 msleep(ahc->our_id*1000/10); 2906 break; 2907 } 2908 #ifdef AHC_DEBUG 2909 if (ahc_debug & AHC_SHOW_DV) { 2910 ahc_print_devinfo(ahc, devinfo); 2911 printf("DV REB reties exhausted\n"); 2912 } 2913 #endif 2914 /* FALLTHROUGH */ 2915 default: 2916 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2917 break; 2918 } 2919 break; 2920 2921 case AHC_DV_STATE_SU: 2922 switch (status & SS_MASK) { 2923 case SS_NOP: 2924 case SS_INQ_REFRESH: 2925 AHC_SET_DV_STATE(ahc, targ, 2926 AHC_DV_STATE_INQ_SHORT_ASYNC); 2927 break; 2928 default: 2929 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2930 break; 2931 } 2932 break; 2933 2934 case AHC_DV_STATE_BUSY: 2935 switch (status & SS_MASK) { 2936 case SS_NOP: 2937 case SS_INQ_REFRESH: 2938 AHC_SET_DV_STATE(ahc, targ, 2939 AHC_DV_STATE_INQ_SHORT_ASYNC); 2940 break; 2941 case SS_TUR: 2942 case SS_RETRY: 2943 AHC_SET_DV_STATE(ahc, targ, targ->dv_state); 2944 if (ahc_cmd_get_transaction_status(cmd) 2945 == CAM_REQUEUE_REQ) { 2946 targ->dv_state_retry--; 2947 } else if (targ->dv_state_retry < 60) { 2948 if ((status & SSQ_DELAY) != 0) 2949 ssleep(1); 2950 } else { 2951 #ifdef AHC_DEBUG 2952 if (ahc_debug & AHC_SHOW_DV) { 2953 ahc_print_devinfo(ahc, devinfo); 2954 printf("DV BUSY reties exhausted\n"); 2955 } 2956 #endif 2957 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2958 } 2959 break; 2960 default: 2961 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2962 break; 2963 } 2964 break; 2965 2966 default: 2967 printf("%s: Invalid DV completion state %d\n", ahc_name(ahc), 2968 targ->dv_state); 2969 AHC_SET_DV_STATE(ahc, targ, AHC_DV_STATE_EXIT); 2970 break; 2971 } 2972 } 2973 2974 static void 2975 ahc_linux_dv_fill_cmd(struct ahc_softc *ahc, struct scsi_cmnd *cmd, 2976 struct ahc_devinfo *devinfo) 2977 { 2978 memset(cmd, 0, sizeof(struct scsi_cmnd)); 2979 cmd->device = ahc->platform_data->dv_scsi_dev; 2980 cmd->scsi_done = ahc_linux_dv_complete; 2981 } 2982 2983 /* 2984 * Synthesize an inquiry command. On the return trip, it'll be 2985 * sniffed and the device transfer settings set for us. 2986 */ 2987 static void 2988 ahc_linux_dv_inq(struct ahc_softc *ahc, struct scsi_cmnd *cmd, 2989 struct ahc_devinfo *devinfo, struct ahc_linux_target *targ, 2990 u_int request_length) 2991 { 2992 2993 #ifdef AHC_DEBUG 2994 if (ahc_debug & AHC_SHOW_DV) { 2995 ahc_print_devinfo(ahc, devinfo); 2996 printf("Sending INQ\n"); 2997 } 2998 #endif 2999 if (targ->inq_data == NULL) 3000 targ->inq_data = malloc(AHC_LINUX_DV_INQ_LEN, 3001 M_DEVBUF, M_WAITOK); 3002 if (targ->dv_state > AHC_DV_STATE_INQ_ASYNC) { 3003 if (targ->dv_buffer != NULL) 3004 free(targ->dv_buffer, M_DEVBUF); 3005 targ->dv_buffer = malloc(AHC_LINUX_DV_INQ_LEN, 3006 M_DEVBUF, M_WAITOK); 3007 } 3008 3009 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); 3010 cmd->sc_data_direction = SCSI_DATA_READ; 3011 cmd->cmd_len = 6; 3012 cmd->cmnd[0] = INQUIRY; 3013 cmd->cmnd[4] = request_length; 3014 cmd->request_bufflen = request_length; 3015 if (targ->dv_state > AHC_DV_STATE_INQ_ASYNC) 3016 cmd->request_buffer = targ->dv_buffer; 3017 else 3018 cmd->request_buffer = targ->inq_data; 3019 memset(cmd->request_buffer, 0, AHC_LINUX_DV_INQ_LEN); 3020 } 3021 3022 static void 3023 ahc_linux_dv_tur(struct ahc_softc *ahc, struct scsi_cmnd *cmd, 3024 struct ahc_devinfo *devinfo) 3025 { 3026 3027 #ifdef AHC_DEBUG 3028 if (ahc_debug & AHC_SHOW_DV) { 3029 ahc_print_devinfo(ahc, devinfo); 3030 printf("Sending TUR\n"); 3031 } 3032 #endif 3033 /* Do a TUR to clear out any non-fatal transitional state */ 3034 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); 3035 cmd->sc_data_direction = SCSI_DATA_NONE; 3036 cmd->cmd_len = 6; 3037 cmd->cmnd[0] = TEST_UNIT_READY; 3038 } 3039 3040 #define AHC_REBD_LEN 4 3041 3042 static void 3043 ahc_linux_dv_rebd(struct ahc_softc *ahc, struct scsi_cmnd *cmd, 3044 struct ahc_devinfo *devinfo, struct ahc_linux_target *targ) 3045 { 3046 3047 #ifdef AHC_DEBUG 3048 if (ahc_debug & AHC_SHOW_DV) { 3049 ahc_print_devinfo(ahc, devinfo); 3050 printf("Sending REBD\n"); 3051 } 3052 #endif 3053 if (targ->dv_buffer != NULL) 3054 free(targ->dv_buffer, M_DEVBUF); 3055 targ->dv_buffer = malloc(AHC_REBD_LEN, M_DEVBUF, M_WAITOK); 3056 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); 3057 cmd->sc_data_direction = SCSI_DATA_READ; 3058 cmd->cmd_len = 10; 3059 cmd->cmnd[0] = READ_BUFFER; 3060 cmd->cmnd[1] = 0x0b; 3061 scsi_ulto3b(AHC_REBD_LEN, &cmd->cmnd[6]); 3062 cmd->request_bufflen = AHC_REBD_LEN; 3063 cmd->underflow = cmd->request_bufflen; 3064 cmd->request_buffer = targ->dv_buffer; 3065 } 3066 3067 static void 3068 ahc_linux_dv_web(struct ahc_softc *ahc, struct scsi_cmnd *cmd, 3069 struct ahc_devinfo *devinfo, struct ahc_linux_target *targ) 3070 { 3071 3072 #ifdef AHC_DEBUG 3073 if (ahc_debug & AHC_SHOW_DV) { 3074 ahc_print_devinfo(ahc, devinfo); 3075 printf("Sending WEB\n"); 3076 } 3077 #endif 3078 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); 3079 cmd->sc_data_direction = SCSI_DATA_WRITE; 3080 cmd->cmd_len = 10; 3081 cmd->cmnd[0] = WRITE_BUFFER; 3082 cmd->cmnd[1] = 0x0a; 3083 scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]); 3084 cmd->request_bufflen = targ->dv_echo_size; 3085 cmd->underflow = cmd->request_bufflen; 3086 cmd->request_buffer = targ->dv_buffer; 3087 } 3088 3089 static void 3090 ahc_linux_dv_reb(struct ahc_softc *ahc, struct scsi_cmnd *cmd, 3091 struct ahc_devinfo *devinfo, struct ahc_linux_target *targ) 3092 { 3093 3094 #ifdef AHC_DEBUG 3095 if (ahc_debug & AHC_SHOW_DV) { 3096 ahc_print_devinfo(ahc, devinfo); 3097 printf("Sending REB\n"); 3098 } 3099 #endif 3100 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); 3101 cmd->sc_data_direction = SCSI_DATA_READ; 3102 cmd->cmd_len = 10; 3103 cmd->cmnd[0] = READ_BUFFER; 3104 cmd->cmnd[1] = 0x0a; 3105 scsi_ulto3b(targ->dv_echo_size, &cmd->cmnd[6]); 3106 cmd->request_bufflen = targ->dv_echo_size; 3107 cmd->underflow = cmd->request_bufflen; 3108 cmd->request_buffer = targ->dv_buffer1; 3109 } 3110 3111 static void 3112 ahc_linux_dv_su(struct ahc_softc *ahc, struct scsi_cmnd *cmd, 3113 struct ahc_devinfo *devinfo, 3114 struct ahc_linux_target *targ) 3115 { 3116 u_int le; 3117 3118 le = SID_IS_REMOVABLE(targ->inq_data) ? SSS_LOEJ : 0; 3119 3120 #ifdef AHC_DEBUG 3121 if (ahc_debug & AHC_SHOW_DV) { 3122 ahc_print_devinfo(ahc, devinfo); 3123 printf("Sending SU\n"); 3124 } 3125 #endif 3126 ahc_linux_dv_fill_cmd(ahc, cmd, devinfo); 3127 cmd->sc_data_direction = SCSI_DATA_NONE; 3128 cmd->cmd_len = 6; 3129 cmd->cmnd[0] = START_STOP_UNIT; 3130 cmd->cmnd[4] = le | SSS_START; 3131 } 3132 3133 static int 3134 ahc_linux_fallback(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) 3135 { 3136 struct ahc_linux_target *targ; 3137 struct ahc_initiator_tinfo *tinfo; 3138 struct ahc_transinfo *goal; 3139 struct ahc_tmode_tstate *tstate; 3140 struct ahc_syncrate *syncrate; 3141 u_long s; 3142 u_int width; 3143 u_int period; 3144 u_int offset; 3145 u_int ppr_options; 3146 u_int cur_speed; 3147 u_int wide_speed; 3148 u_int narrow_speed; 3149 u_int fallback_speed; 3150 3151 #ifdef AHC_DEBUG 3152 if (ahc_debug & AHC_SHOW_DV) { 3153 ahc_print_devinfo(ahc, devinfo); 3154 printf("Trying to fallback\n"); 3155 } 3156 #endif 3157 ahc_lock(ahc, &s); 3158 targ = ahc->platform_data->targets[devinfo->target_offset]; 3159 tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, 3160 devinfo->our_scsiid, 3161 devinfo->target, &tstate); 3162 goal = &tinfo->goal; 3163 width = goal->width; 3164 period = goal->period; 3165 offset = goal->offset; 3166 ppr_options = goal->ppr_options; 3167 if (offset == 0) 3168 period = AHC_ASYNC_XFER_PERIOD; 3169 if (targ->dv_next_narrow_period == 0) 3170 targ->dv_next_narrow_period = MAX(period, AHC_SYNCRATE_ULTRA2); 3171 if (targ->dv_next_wide_period == 0) 3172 targ->dv_next_wide_period = period; 3173 if (targ->dv_max_width == 0) 3174 targ->dv_max_width = width; 3175 if (targ->dv_max_ppr_options == 0) 3176 targ->dv_max_ppr_options = ppr_options; 3177 if (targ->dv_last_ppr_options == 0) 3178 targ->dv_last_ppr_options = ppr_options; 3179 3180 cur_speed = aic_calc_speed(width, period, offset, AHC_SYNCRATE_MIN); 3181 wide_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_16_BIT, 3182 targ->dv_next_wide_period, 3183 MAX_OFFSET, 3184 AHC_SYNCRATE_MIN); 3185 narrow_speed = aic_calc_speed(MSG_EXT_WDTR_BUS_8_BIT, 3186 targ->dv_next_narrow_period, 3187 MAX_OFFSET, 3188 AHC_SYNCRATE_MIN); 3189 fallback_speed = aic_calc_speed(width, period+1, offset, 3190 AHC_SYNCRATE_MIN); 3191 #ifdef AHC_DEBUG 3192 if (ahc_debug & AHC_SHOW_DV) { 3193 printf("cur_speed= %d, wide_speed= %d, narrow_speed= %d, " 3194 "fallback_speed= %d\n", cur_speed, wide_speed, 3195 narrow_speed, fallback_speed); 3196 } 3197 #endif 3198 3199 if (cur_speed > 160000) { 3200 /* 3201 * Paced/DT/IU_REQ only transfer speeds. All we 3202 * can do is fallback in terms of syncrate. 3203 */ 3204 period++; 3205 } else if (cur_speed > 80000) { 3206 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { 3207 /* 3208 * Try without IU_REQ as it may be confusing 3209 * an expander. 3210 */ 3211 ppr_options &= ~MSG_EXT_PPR_IU_REQ; 3212 } else { 3213 /* 3214 * Paced/DT only transfer speeds. All we 3215 * can do is fallback in terms of syncrate. 3216 */ 3217 period++; 3218 ppr_options = targ->dv_max_ppr_options; 3219 } 3220 } else if (cur_speed > 3300) { 3221 3222 /* 3223 * In this range we the following 3224 * options ordered from highest to 3225 * lowest desireability: 3226 * 3227 * o Wide/DT 3228 * o Wide/non-DT 3229 * o Narrow at a potentally higher sync rate. 3230 * 3231 * All modes are tested with and without IU_REQ 3232 * set since using IUs may confuse an expander. 3233 */ 3234 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { 3235 3236 ppr_options &= ~MSG_EXT_PPR_IU_REQ; 3237 } else if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) { 3238 /* 3239 * Try going non-DT. 3240 */ 3241 ppr_options = targ->dv_max_ppr_options; 3242 ppr_options &= ~MSG_EXT_PPR_DT_REQ; 3243 } else if (targ->dv_last_ppr_options != 0) { 3244 /* 3245 * Try without QAS or any other PPR options. 3246 * We may need a non-PPR message to work with 3247 * an expander. We look at the "last PPR options" 3248 * so we will perform this fallback even if the 3249 * target responded to our PPR negotiation with 3250 * no option bits set. 3251 */ 3252 ppr_options = 0; 3253 } else if (width == MSG_EXT_WDTR_BUS_16_BIT) { 3254 /* 3255 * If the next narrow speed is greater than 3256 * the next wide speed, fallback to narrow. 3257 * Otherwise fallback to the next DT/Wide setting. 3258 * The narrow async speed will always be smaller 3259 * than the wide async speed, so handle this case 3260 * specifically. 3261 */ 3262 ppr_options = targ->dv_max_ppr_options; 3263 if (narrow_speed > fallback_speed 3264 || period >= AHC_ASYNC_XFER_PERIOD) { 3265 targ->dv_next_wide_period = period+1; 3266 width = MSG_EXT_WDTR_BUS_8_BIT; 3267 period = targ->dv_next_narrow_period; 3268 } else { 3269 period++; 3270 } 3271 } else if ((ahc->features & AHC_WIDE) != 0 3272 && targ->dv_max_width != 0 3273 && wide_speed >= fallback_speed 3274 && (targ->dv_next_wide_period <= AHC_ASYNC_XFER_PERIOD 3275 || period >= AHC_ASYNC_XFER_PERIOD)) { 3276 3277 /* 3278 * We are narrow. Try falling back 3279 * to the next wide speed with 3280 * all supported ppr options set. 3281 */ 3282 targ->dv_next_narrow_period = period+1; 3283 width = MSG_EXT_WDTR_BUS_16_BIT; 3284 period = targ->dv_next_wide_period; 3285 ppr_options = targ->dv_max_ppr_options; 3286 } else { 3287 /* Only narrow fallback is allowed. */ 3288 period++; 3289 ppr_options = targ->dv_max_ppr_options; 3290 } 3291 } else { 3292 ahc_unlock(ahc, &s); 3293 return (-1); 3294 } 3295 offset = MAX_OFFSET; 3296 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, 3297 AHC_SYNCRATE_DT); 3298 ahc_set_width(ahc, devinfo, width, AHC_TRANS_GOAL, FALSE); 3299 if (period == 0) { 3300 period = 0; 3301 offset = 0; 3302 ppr_options = 0; 3303 if (width == MSG_EXT_WDTR_BUS_8_BIT) 3304 targ->dv_next_narrow_period = AHC_ASYNC_XFER_PERIOD; 3305 else 3306 targ->dv_next_wide_period = AHC_ASYNC_XFER_PERIOD; 3307 } 3308 ahc_set_syncrate(ahc, devinfo, syncrate, period, offset, 3309 ppr_options, AHC_TRANS_GOAL, FALSE); 3310 targ->dv_last_ppr_options = ppr_options; 3311 ahc_unlock(ahc, &s); 3312 return (0); 3313 } 3314 3315 static void 3316 ahc_linux_dv_timeout(struct scsi_cmnd *cmd) 3317 { 3318 struct ahc_softc *ahc; 3319 struct scb *scb; 3320 u_long flags; 3321 3322 ahc = *((struct ahc_softc **)cmd->device->host->hostdata); 3323 ahc_lock(ahc, &flags); 3324 3325 #ifdef AHC_DEBUG 3326 if (ahc_debug & AHC_SHOW_DV) { 3327 printf("%s: Timeout while doing DV command %x.\n", 3328 ahc_name(ahc), cmd->cmnd[0]); 3329 ahc_dump_card_state(ahc); 3330 } 3331 #endif 3332 3333 /* 3334 * Guard against "done race". No action is 3335 * required if we just completed. 3336 */ 3337 if ((scb = (struct scb *)cmd->host_scribble) == NULL) { 3338 ahc_unlock(ahc, &flags); 3339 return; 3340 } 3341 3342 /* 3343 * Command has not completed. Mark this 3344 * SCB as having failing status prior to 3345 * resetting the bus, so we get the correct 3346 * error code. 3347 */ 3348 if ((scb->flags & SCB_SENSE) != 0) 3349 ahc_set_transaction_status(scb, CAM_AUTOSENSE_FAIL); 3350 else 3351 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT); 3352 ahc_reset_channel(ahc, cmd->device->channel + 'A', /*initiate*/TRUE); 3353 3354 /* 3355 * Add a minimal bus settle delay for devices that are slow to 3356 * respond after bus resets. 3357 */ 3358 ahc_linux_freeze_simq(ahc); 3359 init_timer(&ahc->platform_data->reset_timer); 3360 ahc->platform_data->reset_timer.data = (u_long)ahc; 3361 ahc->platform_data->reset_timer.expires = jiffies + HZ / 2; 3362 ahc->platform_data->reset_timer.function = 3363 (ahc_linux_callback_t *)ahc_linux_release_simq; 3364 add_timer(&ahc->platform_data->reset_timer); 3365 if (ahc_linux_next_device_to_run(ahc) != NULL) 3366 ahc_schedule_runq(ahc); 3367 ahc_linux_run_complete_queue(ahc); 3368 ahc_unlock(ahc, &flags); 3369 } 3370 3371 static void 3372 ahc_linux_dv_complete(struct scsi_cmnd *cmd) 3373 { 3374 struct ahc_softc *ahc; 3375 3376 ahc = *((struct ahc_softc **)cmd->device->host->hostdata); 3377 3378 /* Delete the DV timer before it goes off! */ 3379 scsi_delete_timer(cmd); 3380 3381 #ifdef AHC_DEBUG 3382 if (ahc_debug & AHC_SHOW_DV) 3383 printf("%s:%d:%d: Command completed, status= 0x%x\n", 3384 ahc_name(ahc), cmd->device->channel, 3385 cmd->device->id, cmd->result); 3386 #endif 3387 3388 /* Wake up the state machine */ 3389 up(&ahc->platform_data->dv_cmd_sem); 3390 } 3391 3392 static void 3393 ahc_linux_generate_dv_pattern(struct ahc_linux_target *targ) 3394 { 3395 uint16_t b; 3396 u_int i; 3397 u_int j; 3398 3399 if (targ->dv_buffer != NULL) 3400 free(targ->dv_buffer, M_DEVBUF); 3401 targ->dv_buffer = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK); 3402 if (targ->dv_buffer1 != NULL) 3403 free(targ->dv_buffer1, M_DEVBUF); 3404 targ->dv_buffer1 = malloc(targ->dv_echo_size, M_DEVBUF, M_WAITOK); 3405 3406 i = 0; 3407 b = 0x0001; 3408 for (j = 0 ; i < targ->dv_echo_size; j++) { 3409 if (j < 32) { 3410 /* 3411 * 32bytes of sequential numbers. 3412 */ 3413 targ->dv_buffer[i++] = j & 0xff; 3414 } else if (j < 48) { 3415 /* 3416 * 32bytes of repeating 0x0000, 0xffff. 3417 */ 3418 targ->dv_buffer[i++] = (j & 0x02) ? 0xff : 0x00; 3419 } else if (j < 64) { 3420 /* 3421 * 32bytes of repeating 0x5555, 0xaaaa. 3422 */ 3423 targ->dv_buffer[i++] = (j & 0x02) ? 0xaa : 0x55; 3424 } else { 3425 /* 3426 * Remaining buffer is filled with a repeating 3427 * patter of: 3428 * 3429 * 0xffff 3430 * ~0x0001 << shifted once in each loop. 3431 */ 3432 if (j & 0x02) { 3433 if (j & 0x01) { 3434 targ->dv_buffer[i++] = ~(b >> 8) & 0xff; 3435 b <<= 1; 3436 if (b == 0x0000) 3437 b = 0x0001; 3438 } else { 3439 targ->dv_buffer[i++] = (~b & 0xff); 3440 } 3441 } else { 3442 targ->dv_buffer[i++] = 0xff; 3443 } 3444 } 3445 } 3446 } 3447 3448 static u_int 3449 ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) 3450 { 3451 static int warned_user; 3452 u_int tags; 3453 3454 tags = 0; 3455 if ((ahc->user_discenable & devinfo->target_mask) != 0) { 3456 if (ahc->unit >= NUM_ELEMENTS(aic7xxx_tag_info)) { 3457 if (warned_user == 0) { 3458 3459 printf(KERN_WARNING 3460 "aic7xxx: WARNING: Insufficient tag_info instances\n" 3461 "aic7xxx: for installed controllers. Using defaults\n" 3462 "aic7xxx: Please update the aic7xxx_tag_info array in\n" 3463 "aic7xxx: the aic7xxx_osm..c source file.\n"); 3464 warned_user++; 3465 } 3466 tags = AHC_MAX_QUEUE; 3467 } else { 3468 adapter_tag_info_t *tag_info; 3469 3470 tag_info = &aic7xxx_tag_info[ahc->unit]; 3471 tags = tag_info->tag_commands[devinfo->target_offset]; 3472 if (tags > AHC_MAX_QUEUE) 3473 tags = AHC_MAX_QUEUE; 3474 } 3475 } 3476 return (tags); 3477 } 3478 3479 static u_int 3480 ahc_linux_user_dv_setting(struct ahc_softc *ahc) 3481 { 3482 static int warned_user; 3483 int dv; 3484 3485 if (ahc->unit >= NUM_ELEMENTS(aic7xxx_dv_settings)) { 3486 if (warned_user == 0) { 3487 3488 printf(KERN_WARNING 3489 "aic7xxx: WARNING: Insufficient dv settings instances\n" 3490 "aic7xxx: for installed controllers. Using defaults\n" 3491 "aic7xxx: Please update the aic7xxx_dv_settings array\n" 3492 "aic7xxx: in the aic7xxx_osm.c source file.\n"); 3493 warned_user++; 3494 } 3495 dv = -1; 3496 } else { 3497 3498 dv = aic7xxx_dv_settings[ahc->unit]; 3499 } 3500 3501 if (dv < 0) { 3502 u_long s; 3503 3504 /* 3505 * Apply the default. 3506 */ 3507 /* 3508 * XXX - Enable DV on non-U160 controllers once it 3509 * has been tested there. 3510 */ 3511 ahc_lock(ahc, &s); 3512 dv = (ahc->features & AHC_DT); 3513 if (ahc->seep_config != 0 3514 && ahc->seep_config->signature >= CFSIGNATURE2) 3515 dv = (ahc->seep_config->adapter_control & CFENABLEDV); 3516 ahc_unlock(ahc, &s); 3517 } 3518 return (dv); 3519 } 3520 3521 /* 3522 * Determines the queue depth for a given device. 3523 */ 3524 static void 3525 ahc_linux_device_queue_depth(struct ahc_softc *ahc, 3526 struct ahc_linux_device *dev) 3527 { 3528 struct ahc_devinfo devinfo; 3529 u_int tags; 3530 3531 ahc_compile_devinfo(&devinfo, 3532 dev->target->channel == 0 3533 ? ahc->our_id : ahc->our_id_b, 3534 dev->target->target, dev->lun, 3535 dev->target->channel == 0 ? 'A' : 'B', 3536 ROLE_INITIATOR); 3537 tags = ahc_linux_user_tagdepth(ahc, &devinfo); 3538 if (tags != 0 3539 && dev->scsi_device != NULL 3540 && dev->scsi_device->tagged_supported != 0) { 3541 3542 ahc_set_tags(ahc, &devinfo, AHC_QUEUE_TAGGED); 3543 ahc_print_devinfo(ahc, &devinfo); 3544 printf("Tagged Queuing enabled. Depth %d\n", tags); 3545 } else { 3546 ahc_set_tags(ahc, &devinfo, AHC_QUEUE_NONE); 3547 } 3548 } 3549 3550 static void 3551 ahc_linux_run_device_queue(struct ahc_softc *ahc, struct ahc_linux_device *dev) 3552 { 3553 struct ahc_cmd *acmd; 3554 struct scsi_cmnd *cmd; 3555 struct scb *scb; 3556 struct hardware_scb *hscb; 3557 struct ahc_initiator_tinfo *tinfo; 3558 struct ahc_tmode_tstate *tstate; 3559 uint16_t mask; 3560 3561 if ((dev->flags & AHC_DEV_ON_RUN_LIST) != 0) 3562 panic("running device on run list"); 3563 3564 while ((acmd = TAILQ_FIRST(&dev->busyq)) != NULL 3565 && dev->openings > 0 && dev->qfrozen == 0) { 3566 3567 /* 3568 * Schedule us to run later. The only reason we are not 3569 * running is because the whole controller Q is frozen. 3570 */ 3571 if (ahc->platform_data->qfrozen != 0 3572 && AHC_DV_SIMQ_FROZEN(ahc) == 0) { 3573 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, 3574 dev, links); 3575 dev->flags |= AHC_DEV_ON_RUN_LIST; 3576 return; 3577 } 3578 /* 3579 * Get an scb to use. 3580 */ 3581 if ((scb = ahc_get_scb(ahc)) == NULL) { 3582 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, 3583 dev, links); 3584 dev->flags |= AHC_DEV_ON_RUN_LIST; 3585 ahc->flags |= AHC_RESOURCE_SHORTAGE; 3586 return; 3587 } 3588 TAILQ_REMOVE(&dev->busyq, acmd, acmd_links.tqe); 3589 cmd = &acmd_scsi_cmd(acmd); 3590 scb->io_ctx = cmd; 3591 scb->platform_data->dev = dev; 3592 hscb = scb->hscb; 3593 cmd->host_scribble = (char *)scb; 3594 3595 /* 3596 * Fill out basics of the HSCB. 3597 */ 3598 hscb->control = 0; 3599 hscb->scsiid = BUILD_SCSIID(ahc, cmd); 3600 hscb->lun = cmd->device->lun; 3601 mask = SCB_GET_TARGET_MASK(ahc, scb); 3602 tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb), 3603 SCB_GET_OUR_ID(scb), 3604 SCB_GET_TARGET(ahc, scb), &tstate); 3605 hscb->scsirate = tinfo->scsirate; 3606 hscb->scsioffset = tinfo->curr.offset; 3607 if ((tstate->ultraenb & mask) != 0) 3608 hscb->control |= ULTRAENB; 3609 3610 if ((ahc->user_discenable & mask) != 0) 3611 hscb->control |= DISCENB; 3612 3613 if (AHC_DV_CMD(cmd) != 0) 3614 scb->flags |= SCB_SILENT; 3615 3616 if ((tstate->auto_negotiate & mask) != 0) { 3617 scb->flags |= SCB_AUTO_NEGOTIATE; 3618 scb->hscb->control |= MK_MESSAGE; 3619 } 3620 3621 if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) { 3622 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 3623 int msg_bytes; 3624 uint8_t tag_msgs[2]; 3625 3626 msg_bytes = scsi_populate_tag_msg(cmd, tag_msgs); 3627 if (msg_bytes && tag_msgs[0] != MSG_SIMPLE_TASK) { 3628 hscb->control |= tag_msgs[0]; 3629 if (tag_msgs[0] == MSG_ORDERED_TASK) 3630 dev->commands_since_idle_or_otag = 0; 3631 } else 3632 #endif 3633 if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH 3634 && (dev->flags & AHC_DEV_Q_TAGGED) != 0) { 3635 hscb->control |= MSG_ORDERED_TASK; 3636 dev->commands_since_idle_or_otag = 0; 3637 } else { 3638 hscb->control |= MSG_SIMPLE_TASK; 3639 } 3640 } 3641 3642 hscb->cdb_len = cmd->cmd_len; 3643 if (hscb->cdb_len <= 12) { 3644 memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len); 3645 } else { 3646 memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len); 3647 scb->flags |= SCB_CDB32_PTR; 3648 } 3649 3650 scb->platform_data->xfer_len = 0; 3651 ahc_set_residual(scb, 0); 3652 ahc_set_sense_residual(scb, 0); 3653 scb->sg_count = 0; 3654 if (cmd->use_sg != 0) { 3655 struct ahc_dma_seg *sg; 3656 struct scatterlist *cur_seg; 3657 struct scatterlist *end_seg; 3658 int nseg; 3659 3660 cur_seg = (struct scatterlist *)cmd->request_buffer; 3661 nseg = pci_map_sg(ahc->dev_softc, cur_seg, cmd->use_sg, 3662 scsi_to_pci_dma_dir(cmd->sc_data_direction)); 3663 end_seg = cur_seg + nseg; 3664 /* Copy the segments into the SG list. */ 3665 sg = scb->sg_list; 3666 /* 3667 * The sg_count may be larger than nseg if 3668 * a transfer crosses a 32bit page. 3669 */ 3670 while (cur_seg < end_seg) { 3671 dma_addr_t addr; 3672 bus_size_t len; 3673 int consumed; 3674 3675 addr = sg_dma_address(cur_seg); 3676 len = sg_dma_len(cur_seg); 3677 consumed = ahc_linux_map_seg(ahc, scb, 3678 sg, addr, len); 3679 sg += consumed; 3680 scb->sg_count += consumed; 3681 cur_seg++; 3682 } 3683 sg--; 3684 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG); 3685 3686 /* 3687 * Reset the sg list pointer. 3688 */ 3689 scb->hscb->sgptr = 3690 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID); 3691 3692 /* 3693 * Copy the first SG into the "current" 3694 * data pointer area. 3695 */ 3696 scb->hscb->dataptr = scb->sg_list->addr; 3697 scb->hscb->datacnt = scb->sg_list->len; 3698 } else if (cmd->request_bufflen != 0) { 3699 struct ahc_dma_seg *sg; 3700 dma_addr_t addr; 3701 3702 sg = scb->sg_list; 3703 addr = pci_map_single(ahc->dev_softc, 3704 cmd->request_buffer, 3705 cmd->request_bufflen, 3706 scsi_to_pci_dma_dir(cmd->sc_data_direction)); 3707 scb->platform_data->buf_busaddr = addr; 3708 scb->sg_count = ahc_linux_map_seg(ahc, scb, 3709 sg, addr, 3710 cmd->request_bufflen); 3711 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG); 3712 3713 /* 3714 * Reset the sg list pointer. 3715 */ 3716 scb->hscb->sgptr = 3717 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID); 3718 3719 /* 3720 * Copy the first SG into the "current" 3721 * data pointer area. 3722 */ 3723 scb->hscb->dataptr = sg->addr; 3724 scb->hscb->datacnt = sg->len; 3725 } else { 3726 scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL); 3727 scb->hscb->dataptr = 0; 3728 scb->hscb->datacnt = 0; 3729 scb->sg_count = 0; 3730 } 3731 3732 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_PREWRITE); 3733 LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links); 3734 dev->openings--; 3735 dev->active++; 3736 dev->commands_issued++; 3737 if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0) 3738 dev->commands_since_idle_or_otag++; 3739 3740 /* 3741 * We only allow one untagged transaction 3742 * per target in the initiator role unless 3743 * we are storing a full busy target *lun* 3744 * table in SCB space. 3745 */ 3746 if ((scb->hscb->control & (TARGET_SCB|TAG_ENB)) == 0 3747 && (ahc->features & AHC_SCB_BTT) == 0) { 3748 struct scb_tailq *untagged_q; 3749 int target_offset; 3750 3751 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); 3752 untagged_q = &(ahc->untagged_queues[target_offset]); 3753 TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe); 3754 scb->flags |= SCB_UNTAGGEDQ; 3755 if (TAILQ_FIRST(untagged_q) != scb) 3756 continue; 3757 } 3758 scb->flags |= SCB_ACTIVE; 3759 ahc_queue_scb(ahc, scb); 3760 } 3761 } 3762 3763 /* 3764 * SCSI controller interrupt handler. 3765 */ 3766 irqreturn_t 3767 ahc_linux_isr(int irq, void *dev_id, struct pt_regs * regs) 3768 { 3769 struct ahc_softc *ahc; 3770 u_long flags; 3771 int ours; 3772 3773 ahc = (struct ahc_softc *) dev_id; 3774 ahc_lock(ahc, &flags); 3775 ours = ahc_intr(ahc); 3776 if (ahc_linux_next_device_to_run(ahc) != NULL) 3777 ahc_schedule_runq(ahc); 3778 ahc_linux_run_complete_queue(ahc); 3779 ahc_unlock(ahc, &flags); 3780 return IRQ_RETVAL(ours); 3781 } 3782 3783 void 3784 ahc_platform_flushwork(struct ahc_softc *ahc) 3785 { 3786 3787 while (ahc_linux_run_complete_queue(ahc) != NULL) 3788 ; 3789 } 3790 3791 static struct ahc_linux_target* 3792 ahc_linux_alloc_target(struct ahc_softc *ahc, u_int channel, u_int target) 3793 { 3794 struct ahc_linux_target *targ; 3795 u_int target_offset; 3796 3797 target_offset = target; 3798 if (channel != 0) 3799 target_offset += 8; 3800 3801 targ = malloc(sizeof(*targ), M_DEVBUG, M_NOWAIT); 3802 if (targ == NULL) 3803 return (NULL); 3804 memset(targ, 0, sizeof(*targ)); 3805 targ->channel = channel; 3806 targ->target = target; 3807 targ->ahc = ahc; 3808 targ->flags = AHC_DV_REQUIRED; 3809 ahc->platform_data->targets[target_offset] = targ; 3810 return (targ); 3811 } 3812 3813 static void 3814 ahc_linux_free_target(struct ahc_softc *ahc, struct ahc_linux_target *targ) 3815 { 3816 struct ahc_devinfo devinfo; 3817 struct ahc_initiator_tinfo *tinfo; 3818 struct ahc_tmode_tstate *tstate; 3819 u_int our_id; 3820 u_int target_offset; 3821 char channel; 3822 3823 /* 3824 * Force a negotiation to async/narrow on any 3825 * future command to this device unless a bus 3826 * reset occurs between now and that command. 3827 */ 3828 channel = 'A' + targ->channel; 3829 our_id = ahc->our_id; 3830 target_offset = targ->target; 3831 if (targ->channel != 0) { 3832 target_offset += 8; 3833 our_id = ahc->our_id_b; 3834 } 3835 tinfo = ahc_fetch_transinfo(ahc, channel, our_id, 3836 targ->target, &tstate); 3837 ahc_compile_devinfo(&devinfo, our_id, targ->target, CAM_LUN_WILDCARD, 3838 channel, ROLE_INITIATOR); 3839 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0, 3840 AHC_TRANS_GOAL, /*paused*/FALSE); 3841 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, 3842 AHC_TRANS_GOAL, /*paused*/FALSE); 3843 ahc_update_neg_request(ahc, &devinfo, tstate, tinfo, AHC_NEG_ALWAYS); 3844 ahc->platform_data->targets[target_offset] = NULL; 3845 if (targ->inq_data != NULL) 3846 free(targ->inq_data, M_DEVBUF); 3847 if (targ->dv_buffer != NULL) 3848 free(targ->dv_buffer, M_DEVBUF); 3849 if (targ->dv_buffer1 != NULL) 3850 free(targ->dv_buffer1, M_DEVBUF); 3851 free(targ, M_DEVBUF); 3852 } 3853 3854 static struct ahc_linux_device* 3855 ahc_linux_alloc_device(struct ahc_softc *ahc, 3856 struct ahc_linux_target *targ, u_int lun) 3857 { 3858 struct ahc_linux_device *dev; 3859 3860 dev = malloc(sizeof(*dev), M_DEVBUG, M_NOWAIT); 3861 if (dev == NULL) 3862 return (NULL); 3863 memset(dev, 0, sizeof(*dev)); 3864 init_timer(&dev->timer); 3865 TAILQ_INIT(&dev->busyq); 3866 dev->flags = AHC_DEV_UNCONFIGURED; 3867 dev->lun = lun; 3868 dev->target = targ; 3869 3870 /* 3871 * We start out life using untagged 3872 * transactions of which we allow one. 3873 */ 3874 dev->openings = 1; 3875 3876 /* 3877 * Set maxtags to 0. This will be changed if we 3878 * later determine that we are dealing with 3879 * a tagged queuing capable device. 3880 */ 3881 dev->maxtags = 0; 3882 3883 targ->refcount++; 3884 targ->devices[lun] = dev; 3885 return (dev); 3886 } 3887 3888 static void 3889 __ahc_linux_free_device(struct ahc_softc *ahc, struct ahc_linux_device *dev) 3890 { 3891 struct ahc_linux_target *targ; 3892 3893 targ = dev->target; 3894 targ->devices[dev->lun] = NULL; 3895 free(dev, M_DEVBUF); 3896 targ->refcount--; 3897 if (targ->refcount == 0 3898 && (targ->flags & AHC_DV_REQUIRED) == 0) 3899 ahc_linux_free_target(ahc, targ); 3900 } 3901 3902 static void 3903 ahc_linux_free_device(struct ahc_softc *ahc, struct ahc_linux_device *dev) 3904 { 3905 del_timer_sync(&dev->timer); 3906 __ahc_linux_free_device(ahc, dev); 3907 } 3908 3909 void 3910 ahc_send_async(struct ahc_softc *ahc, char channel, 3911 u_int target, u_int lun, ac_code code, void *arg) 3912 { 3913 switch (code) { 3914 case AC_TRANSFER_NEG: 3915 { 3916 char buf[80]; 3917 struct ahc_linux_target *targ; 3918 struct info_str info; 3919 struct ahc_initiator_tinfo *tinfo; 3920 struct ahc_tmode_tstate *tstate; 3921 int target_offset; 3922 3923 info.buffer = buf; 3924 info.length = sizeof(buf); 3925 info.offset = 0; 3926 info.pos = 0; 3927 tinfo = ahc_fetch_transinfo(ahc, channel, 3928 channel == 'A' ? ahc->our_id 3929 : ahc->our_id_b, 3930 target, &tstate); 3931 3932 /* 3933 * Don't bother reporting results while 3934 * negotiations are still pending. 3935 */ 3936 if (tinfo->curr.period != tinfo->goal.period 3937 || tinfo->curr.width != tinfo->goal.width 3938 || tinfo->curr.offset != tinfo->goal.offset 3939 || tinfo->curr.ppr_options != tinfo->goal.ppr_options) 3940 if (bootverbose == 0) 3941 break; 3942 3943 /* 3944 * Don't bother reporting results that 3945 * are identical to those last reported. 3946 */ 3947 target_offset = target; 3948 if (channel == 'B') 3949 target_offset += 8; 3950 targ = ahc->platform_data->targets[target_offset]; 3951 if (targ == NULL) 3952 break; 3953 if (tinfo->curr.period == targ->last_tinfo.period 3954 && tinfo->curr.width == targ->last_tinfo.width 3955 && tinfo->curr.offset == targ->last_tinfo.offset 3956 && tinfo->curr.ppr_options == targ->last_tinfo.ppr_options) 3957 if (bootverbose == 0) 3958 break; 3959 3960 targ->last_tinfo.period = tinfo->curr.period; 3961 targ->last_tinfo.width = tinfo->curr.width; 3962 targ->last_tinfo.offset = tinfo->curr.offset; 3963 targ->last_tinfo.ppr_options = tinfo->curr.ppr_options; 3964 3965 printf("(%s:%c:", ahc_name(ahc), channel); 3966 if (target == CAM_TARGET_WILDCARD) 3967 printf("*): "); 3968 else 3969 printf("%d): ", target); 3970 ahc_format_transinfo(&info, &tinfo->curr); 3971 if (info.pos < info.length) 3972 *info.buffer = '\0'; 3973 else 3974 buf[info.length - 1] = '\0'; 3975 printf("%s", buf); 3976 break; 3977 } 3978 case AC_SENT_BDR: 3979 { 3980 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 3981 WARN_ON(lun != CAM_LUN_WILDCARD); 3982 scsi_report_device_reset(ahc->platform_data->host, 3983 channel - 'A', target); 3984 #else 3985 Scsi_Device *scsi_dev; 3986 3987 /* 3988 * Find the SCSI device associated with this 3989 * request and indicate that a UA is expected. 3990 */ 3991 for (scsi_dev = ahc->platform_data->host->host_queue; 3992 scsi_dev != NULL; scsi_dev = scsi_dev->next) { 3993 if (channel - 'A' == scsi_dev->channel 3994 && target == scsi_dev->id 3995 && (lun == CAM_LUN_WILDCARD 3996 || lun == scsi_dev->lun)) { 3997 scsi_dev->was_reset = 1; 3998 scsi_dev->expecting_cc_ua = 1; 3999 } 4000 } 4001 #endif 4002 break; 4003 } 4004 case AC_BUS_RESET: 4005 if (ahc->platform_data->host != NULL) { 4006 scsi_report_bus_reset(ahc->platform_data->host, 4007 channel - 'A'); 4008 } 4009 break; 4010 default: 4011 panic("ahc_send_async: Unexpected async event"); 4012 } 4013 } 4014 4015 /* 4016 * Calls the higher level scsi done function and frees the scb. 4017 */ 4018 void 4019 ahc_done(struct ahc_softc *ahc, struct scb *scb) 4020 { 4021 Scsi_Cmnd *cmd; 4022 struct ahc_linux_device *dev; 4023 4024 LIST_REMOVE(scb, pending_links); 4025 if ((scb->flags & SCB_UNTAGGEDQ) != 0) { 4026 struct scb_tailq *untagged_q; 4027 int target_offset; 4028 4029 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); 4030 untagged_q = &(ahc->untagged_queues[target_offset]); 4031 TAILQ_REMOVE(untagged_q, scb, links.tqe); 4032 ahc_run_untagged_queue(ahc, untagged_q); 4033 } 4034 4035 if ((scb->flags & SCB_ACTIVE) == 0) { 4036 printf("SCB %d done'd twice\n", scb->hscb->tag); 4037 ahc_dump_card_state(ahc); 4038 panic("Stopping for safety"); 4039 } 4040 cmd = scb->io_ctx; 4041 dev = scb->platform_data->dev; 4042 dev->active--; 4043 dev->openings++; 4044 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) { 4045 cmd->result &= ~(CAM_DEV_QFRZN << 16); 4046 dev->qfrozen--; 4047 } 4048 ahc_linux_unmap_scb(ahc, scb); 4049 4050 /* 4051 * Guard against stale sense data. 4052 * The Linux mid-layer assumes that sense 4053 * was retrieved anytime the first byte of 4054 * the sense buffer looks "sane". 4055 */ 4056 cmd->sense_buffer[0] = 0; 4057 if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) { 4058 uint32_t amount_xferred; 4059 4060 amount_xferred = 4061 ahc_get_transfer_length(scb) - ahc_get_residual(scb); 4062 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) { 4063 #ifdef AHC_DEBUG 4064 if ((ahc_debug & AHC_SHOW_MISC) != 0) { 4065 ahc_print_path(ahc, scb); 4066 printf("Set CAM_UNCOR_PARITY\n"); 4067 } 4068 #endif 4069 ahc_set_transaction_status(scb, CAM_UNCOR_PARITY); 4070 #ifdef AHC_REPORT_UNDERFLOWS 4071 /* 4072 * This code is disabled by default as some 4073 * clients of the SCSI system do not properly 4074 * initialize the underflow parameter. This 4075 * results in spurious termination of commands 4076 * that complete as expected (e.g. underflow is 4077 * allowed as command can return variable amounts 4078 * of data. 4079 */ 4080 } else if (amount_xferred < scb->io_ctx->underflow) { 4081 u_int i; 4082 4083 ahc_print_path(ahc, scb); 4084 printf("CDB:"); 4085 for (i = 0; i < scb->io_ctx->cmd_len; i++) 4086 printf(" 0x%x", scb->io_ctx->cmnd[i]); 4087 printf("\n"); 4088 ahc_print_path(ahc, scb); 4089 printf("Saw underflow (%ld of %ld bytes). " 4090 "Treated as error\n", 4091 ahc_get_residual(scb), 4092 ahc_get_transfer_length(scb)); 4093 ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR); 4094 #endif 4095 } else { 4096 ahc_set_transaction_status(scb, CAM_REQ_CMP); 4097 } 4098 } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) { 4099 ahc_linux_handle_scsi_status(ahc, dev, scb); 4100 } else if (ahc_get_transaction_status(scb) == CAM_SEL_TIMEOUT) { 4101 dev->flags |= AHC_DEV_UNCONFIGURED; 4102 if (AHC_DV_CMD(cmd) == FALSE) 4103 dev->target->flags &= ~AHC_DV_REQUIRED; 4104 } 4105 /* 4106 * Start DV for devices that require it assuming the first command 4107 * sent does not result in a selection timeout. 4108 */ 4109 if (ahc_get_transaction_status(scb) != CAM_SEL_TIMEOUT 4110 && (dev->target->flags & AHC_DV_REQUIRED) != 0) 4111 ahc_linux_start_dv(ahc); 4112 4113 if (dev->openings == 1 4114 && ahc_get_transaction_status(scb) == CAM_REQ_CMP 4115 && ahc_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL) 4116 dev->tag_success_count++; 4117 /* 4118 * Some devices deal with temporary internal resource 4119 * shortages by returning queue full. When the queue 4120 * full occurrs, we throttle back. Slowly try to get 4121 * back to our previous queue depth. 4122 */ 4123 if ((dev->openings + dev->active) < dev->maxtags 4124 && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) { 4125 dev->tag_success_count = 0; 4126 dev->openings++; 4127 } 4128 4129 if (dev->active == 0) 4130 dev->commands_since_idle_or_otag = 0; 4131 4132 if (TAILQ_EMPTY(&dev->busyq)) { 4133 if ((dev->flags & AHC_DEV_UNCONFIGURED) != 0 4134 && dev->active == 0 4135 && (dev->flags & AHC_DEV_TIMER_ACTIVE) == 0) 4136 ahc_linux_free_device(ahc, dev); 4137 } else if ((dev->flags & AHC_DEV_ON_RUN_LIST) == 0) { 4138 TAILQ_INSERT_TAIL(&ahc->platform_data->device_runq, dev, links); 4139 dev->flags |= AHC_DEV_ON_RUN_LIST; 4140 } 4141 4142 if ((scb->flags & SCB_RECOVERY_SCB) != 0) { 4143 printf("Recovery SCB completes\n"); 4144 if (ahc_get_transaction_status(scb) == CAM_BDR_SENT 4145 || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED) 4146 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT); 4147 if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) { 4148 ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE; 4149 up(&ahc->platform_data->eh_sem); 4150 } 4151 } 4152 4153 ahc_free_scb(ahc, scb); 4154 ahc_linux_queue_cmd_complete(ahc, cmd); 4155 4156 if ((ahc->platform_data->flags & AHC_DV_WAIT_SIMQ_EMPTY) != 0 4157 && LIST_FIRST(&ahc->pending_scbs) == NULL) { 4158 ahc->platform_data->flags &= ~AHC_DV_WAIT_SIMQ_EMPTY; 4159 up(&ahc->platform_data->dv_sem); 4160 } 4161 4162 } 4163 4164 static void 4165 ahc_linux_handle_scsi_status(struct ahc_softc *ahc, 4166 struct ahc_linux_device *dev, struct scb *scb) 4167 { 4168 struct ahc_devinfo devinfo; 4169 4170 ahc_compile_devinfo(&devinfo, 4171 ahc->our_id, 4172 dev->target->target, dev->lun, 4173 dev->target->channel == 0 ? 'A' : 'B', 4174 ROLE_INITIATOR); 4175 4176 /* 4177 * We don't currently trust the mid-layer to 4178 * properly deal with queue full or busy. So, 4179 * when one occurs, we tell the mid-layer to 4180 * unconditionally requeue the command to us 4181 * so that we can retry it ourselves. We also 4182 * implement our own throttling mechanism so 4183 * we don't clobber the device with too many 4184 * commands. 4185 */ 4186 switch (ahc_get_scsi_status(scb)) { 4187 default: 4188 break; 4189 case SCSI_STATUS_CHECK_COND: 4190 case SCSI_STATUS_CMD_TERMINATED: 4191 { 4192 Scsi_Cmnd *cmd; 4193 4194 /* 4195 * Copy sense information to the OS's cmd 4196 * structure if it is available. 4197 */ 4198 cmd = scb->io_ctx; 4199 if (scb->flags & SCB_SENSE) { 4200 u_int sense_size; 4201 4202 sense_size = MIN(sizeof(struct scsi_sense_data) 4203 - ahc_get_sense_residual(scb), 4204 sizeof(cmd->sense_buffer)); 4205 memcpy(cmd->sense_buffer, 4206 ahc_get_sense_buf(ahc, scb), sense_size); 4207 if (sense_size < sizeof(cmd->sense_buffer)) 4208 memset(&cmd->sense_buffer[sense_size], 0, 4209 sizeof(cmd->sense_buffer) - sense_size); 4210 cmd->result |= (DRIVER_SENSE << 24); 4211 #ifdef AHC_DEBUG 4212 if (ahc_debug & AHC_SHOW_SENSE) { 4213 int i; 4214 4215 printf("Copied %d bytes of sense data:", 4216 sense_size); 4217 for (i = 0; i < sense_size; i++) { 4218 if ((i & 0xF) == 0) 4219 printf("\n"); 4220 printf("0x%x ", cmd->sense_buffer[i]); 4221 } 4222 printf("\n"); 4223 } 4224 #endif 4225 } 4226 break; 4227 } 4228 case SCSI_STATUS_QUEUE_FULL: 4229 { 4230 /* 4231 * By the time the core driver has returned this 4232 * command, all other commands that were queued 4233 * to us but not the device have been returned. 4234 * This ensures that dev->active is equal to 4235 * the number of commands actually queued to 4236 * the device. 4237 */ 4238 dev->tag_success_count = 0; 4239 if (dev->active != 0) { 4240 /* 4241 * Drop our opening count to the number 4242 * of commands currently outstanding. 4243 */ 4244 dev->openings = 0; 4245 /* 4246 ahc_print_path(ahc, scb); 4247 printf("Dropping tag count to %d\n", dev->active); 4248 */ 4249 if (dev->active == dev->tags_on_last_queuefull) { 4250 4251 dev->last_queuefull_same_count++; 4252 /* 4253 * If we repeatedly see a queue full 4254 * at the same queue depth, this 4255 * device has a fixed number of tag 4256 * slots. Lock in this tag depth 4257 * so we stop seeing queue fulls from 4258 * this device. 4259 */ 4260 if (dev->last_queuefull_same_count 4261 == AHC_LOCK_TAGS_COUNT) { 4262 dev->maxtags = dev->active; 4263 ahc_print_path(ahc, scb); 4264 printf("Locking max tag count at %d\n", 4265 dev->active); 4266 } 4267 } else { 4268 dev->tags_on_last_queuefull = dev->active; 4269 dev->last_queuefull_same_count = 0; 4270 } 4271 ahc_set_transaction_status(scb, CAM_REQUEUE_REQ); 4272 ahc_set_scsi_status(scb, SCSI_STATUS_OK); 4273 ahc_platform_set_tags(ahc, &devinfo, 4274 (dev->flags & AHC_DEV_Q_BASIC) 4275 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED); 4276 break; 4277 } 4278 /* 4279 * Drop down to a single opening, and treat this 4280 * as if the target returned BUSY SCSI status. 4281 */ 4282 dev->openings = 1; 4283 ahc_set_scsi_status(scb, SCSI_STATUS_BUSY); 4284 ahc_platform_set_tags(ahc, &devinfo, 4285 (dev->flags & AHC_DEV_Q_BASIC) 4286 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED); 4287 /* FALLTHROUGH */ 4288 } 4289 case SCSI_STATUS_BUSY: 4290 { 4291 /* 4292 * Set a short timer to defer sending commands for 4293 * a bit since Linux will not delay in this case. 4294 */ 4295 if ((dev->flags & AHC_DEV_TIMER_ACTIVE) != 0) { 4296 printf("%s:%c:%d: Device Timer still active during " 4297 "busy processing\n", ahc_name(ahc), 4298 dev->target->channel, dev->target->target); 4299 break; 4300 } 4301 dev->flags |= AHC_DEV_TIMER_ACTIVE; 4302 dev->qfrozen++; 4303 init_timer(&dev->timer); 4304 dev->timer.data = (u_long)dev; 4305 dev->timer.expires = jiffies + (HZ/2); 4306 dev->timer.function = ahc_linux_dev_timed_unfreeze; 4307 add_timer(&dev->timer); 4308 break; 4309 } 4310 } 4311 } 4312 4313 static void 4314 ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, Scsi_Cmnd *cmd) 4315 { 4316 /* 4317 * Typically, the complete queue has very few entries 4318 * queued to it before the queue is emptied by 4319 * ahc_linux_run_complete_queue, so sorting the entries 4320 * by generation number should be inexpensive. 4321 * We perform the sort so that commands that complete 4322 * with an error are retuned in the order origionally 4323 * queued to the controller so that any subsequent retries 4324 * are performed in order. The underlying ahc routines do 4325 * not guarantee the order that aborted commands will be 4326 * returned to us. 4327 */ 4328 struct ahc_completeq *completeq; 4329 struct ahc_cmd *list_cmd; 4330 struct ahc_cmd *acmd; 4331 4332 /* 4333 * Map CAM error codes into Linux Error codes. We 4334 * avoid the conversion so that the DV code has the 4335 * full error information available when making 4336 * state change decisions. 4337 */ 4338 if (AHC_DV_CMD(cmd) == FALSE) { 4339 u_int new_status; 4340 4341 switch (ahc_cmd_get_transaction_status(cmd)) { 4342 case CAM_REQ_INPROG: 4343 case CAM_REQ_CMP: 4344 case CAM_SCSI_STATUS_ERROR: 4345 new_status = DID_OK; 4346 break; 4347 case CAM_REQ_ABORTED: 4348 new_status = DID_ABORT; 4349 break; 4350 case CAM_BUSY: 4351 new_status = DID_BUS_BUSY; 4352 break; 4353 case CAM_REQ_INVALID: 4354 case CAM_PATH_INVALID: 4355 new_status = DID_BAD_TARGET; 4356 break; 4357 case CAM_SEL_TIMEOUT: 4358 new_status = DID_NO_CONNECT; 4359 break; 4360 case CAM_SCSI_BUS_RESET: 4361 case CAM_BDR_SENT: 4362 new_status = DID_RESET; 4363 break; 4364 case CAM_UNCOR_PARITY: 4365 new_status = DID_PARITY; 4366 break; 4367 case CAM_CMD_TIMEOUT: 4368 new_status = DID_TIME_OUT; 4369 break; 4370 case CAM_UA_ABORT: 4371 case CAM_REQ_CMP_ERR: 4372 case CAM_AUTOSENSE_FAIL: 4373 case CAM_NO_HBA: 4374 case CAM_DATA_RUN_ERR: 4375 case CAM_UNEXP_BUSFREE: 4376 case CAM_SEQUENCE_FAIL: 4377 case CAM_CCB_LEN_ERR: 4378 case CAM_PROVIDE_FAIL: 4379 case CAM_REQ_TERMIO: 4380 case CAM_UNREC_HBA_ERROR: 4381 case CAM_REQ_TOO_BIG: 4382 new_status = DID_ERROR; 4383 break; 4384 case CAM_REQUEUE_REQ: 4385 /* 4386 * If we want the request requeued, make sure there 4387 * are sufficent retries. In the old scsi error code, 4388 * we used to be able to specify a result code that 4389 * bypassed the retry count. Now we must use this 4390 * hack. We also "fake" a check condition with 4391 * a sense code of ABORTED COMMAND. This seems to 4392 * evoke a retry even if this command is being sent 4393 * via the eh thread. Ick! Ick! Ick! 4394 */ 4395 if (cmd->retries > 0) 4396 cmd->retries--; 4397 new_status = DID_OK; 4398 ahc_cmd_set_scsi_status(cmd, SCSI_STATUS_CHECK_COND); 4399 cmd->result |= (DRIVER_SENSE << 24); 4400 memset(cmd->sense_buffer, 0, 4401 sizeof(cmd->sense_buffer)); 4402 cmd->sense_buffer[0] = SSD_ERRCODE_VALID 4403 | SSD_CURRENT_ERROR; 4404 cmd->sense_buffer[2] = SSD_KEY_ABORTED_COMMAND; 4405 break; 4406 default: 4407 /* We should never get here */ 4408 new_status = DID_ERROR; 4409 break; 4410 } 4411 4412 ahc_cmd_set_transaction_status(cmd, new_status); 4413 } 4414 4415 completeq = &ahc->platform_data->completeq; 4416 list_cmd = TAILQ_FIRST(completeq); 4417 acmd = (struct ahc_cmd *)cmd; 4418 while (list_cmd != NULL 4419 && acmd_scsi_cmd(list_cmd).serial_number 4420 < acmd_scsi_cmd(acmd).serial_number) 4421 list_cmd = TAILQ_NEXT(list_cmd, acmd_links.tqe); 4422 if (list_cmd != NULL) 4423 TAILQ_INSERT_BEFORE(list_cmd, acmd, acmd_links.tqe); 4424 else 4425 TAILQ_INSERT_TAIL(completeq, acmd, acmd_links.tqe); 4426 } 4427 4428 static void 4429 ahc_linux_filter_inquiry(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) 4430 { 4431 struct scsi_inquiry_data *sid; 4432 struct ahc_initiator_tinfo *tinfo; 4433 struct ahc_transinfo *user; 4434 struct ahc_transinfo *goal; 4435 struct ahc_transinfo *curr; 4436 struct ahc_tmode_tstate *tstate; 4437 struct ahc_syncrate *syncrate; 4438 struct ahc_linux_device *dev; 4439 u_int maxsync; 4440 u_int width; 4441 u_int period; 4442 u_int offset; 4443 u_int ppr_options; 4444 u_int trans_version; 4445 u_int prot_version; 4446 4447 /* 4448 * Determine if this lun actually exists. If so, 4449 * hold on to its corresponding device structure. 4450 * If not, make sure we release the device and 4451 * don't bother processing the rest of this inquiry 4452 * command. 4453 */ 4454 dev = ahc_linux_get_device(ahc, devinfo->channel - 'A', 4455 devinfo->target, devinfo->lun, 4456 /*alloc*/TRUE); 4457 4458 sid = (struct scsi_inquiry_data *)dev->target->inq_data; 4459 if (SID_QUAL(sid) == SID_QUAL_LU_CONNECTED) { 4460 4461 dev->flags &= ~AHC_DEV_UNCONFIGURED; 4462 } else { 4463 dev->flags |= AHC_DEV_UNCONFIGURED; 4464 return; 4465 } 4466 4467 /* 4468 * Update our notion of this device's transfer 4469 * negotiation capabilities. 4470 */ 4471 tinfo = ahc_fetch_transinfo(ahc, devinfo->channel, 4472 devinfo->our_scsiid, 4473 devinfo->target, &tstate); 4474 user = &tinfo->user; 4475 goal = &tinfo->goal; 4476 curr = &tinfo->curr; 4477 width = user->width; 4478 period = user->period; 4479 offset = user->offset; 4480 ppr_options = user->ppr_options; 4481 trans_version = user->transport_version; 4482 prot_version = MIN(user->protocol_version, SID_ANSI_REV(sid)); 4483 4484 /* 4485 * Only attempt SPI3/4 once we've verified that 4486 * the device claims to support SPI3/4 features. 4487 */ 4488 if (prot_version < SCSI_REV_2) 4489 trans_version = SID_ANSI_REV(sid); 4490 else 4491 trans_version = SCSI_REV_2; 4492 4493 if ((sid->flags & SID_WBus16) == 0) 4494 width = MSG_EXT_WDTR_BUS_8_BIT; 4495 if ((sid->flags & SID_Sync) == 0) { 4496 period = 0; 4497 offset = 0; 4498 ppr_options = 0; 4499 } 4500 if ((sid->spi3data & SID_SPI_QAS) == 0) 4501 ppr_options &= ~MSG_EXT_PPR_QAS_REQ; 4502 if ((sid->spi3data & SID_SPI_CLOCK_DT) == 0) 4503 ppr_options &= MSG_EXT_PPR_QAS_REQ; 4504 if ((sid->spi3data & SID_SPI_IUS) == 0) 4505 ppr_options &= (MSG_EXT_PPR_DT_REQ 4506 | MSG_EXT_PPR_QAS_REQ); 4507 4508 if (prot_version > SCSI_REV_2 4509 && ppr_options != 0) 4510 trans_version = user->transport_version; 4511 4512 ahc_validate_width(ahc, /*tinfo limit*/NULL, &width, ROLE_UNKNOWN); 4513 if ((ahc->features & AHC_ULTRA2) != 0) 4514 maxsync = AHC_SYNCRATE_DT; 4515 else if ((ahc->features & AHC_ULTRA) != 0) 4516 maxsync = AHC_SYNCRATE_ULTRA; 4517 else 4518 maxsync = AHC_SYNCRATE_FAST; 4519 4520 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, maxsync); 4521 ahc_validate_offset(ahc, /*tinfo limit*/NULL, syncrate, 4522 &offset, width, ROLE_UNKNOWN); 4523 if (offset == 0 || period == 0) { 4524 period = 0; 4525 offset = 0; 4526 ppr_options = 0; 4527 } 4528 /* Apply our filtered user settings. */ 4529 curr->transport_version = trans_version; 4530 curr->protocol_version = prot_version; 4531 ahc_set_width(ahc, devinfo, width, AHC_TRANS_GOAL, /*paused*/FALSE); 4532 ahc_set_syncrate(ahc, devinfo, syncrate, period, 4533 offset, ppr_options, AHC_TRANS_GOAL, 4534 /*paused*/FALSE); 4535 } 4536 4537 static void 4538 ahc_linux_sem_timeout(u_long arg) 4539 { 4540 struct ahc_softc *ahc; 4541 u_long s; 4542 4543 ahc = (struct ahc_softc *)arg; 4544 4545 ahc_lock(ahc, &s); 4546 if ((ahc->platform_data->flags & AHC_UP_EH_SEMAPHORE) != 0) { 4547 ahc->platform_data->flags &= ~AHC_UP_EH_SEMAPHORE; 4548 up(&ahc->platform_data->eh_sem); 4549 } 4550 ahc_unlock(ahc, &s); 4551 } 4552 4553 static void 4554 ahc_linux_freeze_simq(struct ahc_softc *ahc) 4555 { 4556 ahc->platform_data->qfrozen++; 4557 if (ahc->platform_data->qfrozen == 1) { 4558 scsi_block_requests(ahc->platform_data->host); 4559 4560 /* XXX What about Twin channels? */ 4561 ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS, 4562 CAM_LUN_WILDCARD, SCB_LIST_NULL, 4563 ROLE_INITIATOR, CAM_REQUEUE_REQ); 4564 } 4565 } 4566 4567 static void 4568 ahc_linux_release_simq(u_long arg) 4569 { 4570 struct ahc_softc *ahc; 4571 u_long s; 4572 int unblock_reqs; 4573 4574 ahc = (struct ahc_softc *)arg; 4575 4576 unblock_reqs = 0; 4577 ahc_lock(ahc, &s); 4578 if (ahc->platform_data->qfrozen > 0) 4579 ahc->platform_data->qfrozen--; 4580 if (ahc->platform_data->qfrozen == 0) 4581 unblock_reqs = 1; 4582 if (AHC_DV_SIMQ_FROZEN(ahc) 4583 && ((ahc->platform_data->flags & AHC_DV_WAIT_SIMQ_RELEASE) != 0)) { 4584 ahc->platform_data->flags &= ~AHC_DV_WAIT_SIMQ_RELEASE; 4585 up(&ahc->platform_data->dv_sem); 4586 } 4587 ahc_schedule_runq(ahc); 4588 ahc_unlock(ahc, &s); 4589 /* 4590 * There is still a race here. The mid-layer 4591 * should keep its own freeze count and use 4592 * a bottom half handler to run the queues 4593 * so we can unblock with our own lock held. 4594 */ 4595 if (unblock_reqs) 4596 scsi_unblock_requests(ahc->platform_data->host); 4597 } 4598 4599 static void 4600 ahc_linux_dev_timed_unfreeze(u_long arg) 4601 { 4602 struct ahc_linux_device *dev; 4603 struct ahc_softc *ahc; 4604 u_long s; 4605 4606 dev = (struct ahc_linux_device *)arg; 4607 ahc = dev->target->ahc; 4608 ahc_lock(ahc, &s); 4609 dev->flags &= ~AHC_DEV_TIMER_ACTIVE; 4610 if (dev->qfrozen > 0) 4611 dev->qfrozen--; 4612 if (dev->qfrozen == 0 4613 && (dev->flags & AHC_DEV_ON_RUN_LIST) == 0) 4614 ahc_linux_run_device_queue(ahc, dev); 4615 if (TAILQ_EMPTY(&dev->busyq) 4616 && dev->active == 0) 4617 __ahc_linux_free_device(ahc, dev); 4618 ahc_unlock(ahc, &s); 4619 } 4620 4621 static int 4622 ahc_linux_queue_recovery_cmd(Scsi_Cmnd *cmd, scb_flag flag) 4623 { 4624 struct ahc_softc *ahc; 4625 struct ahc_cmd *acmd; 4626 struct ahc_cmd *list_acmd; 4627 struct ahc_linux_device *dev; 4628 struct scb *pending_scb; 4629 u_long s; 4630 u_int saved_scbptr; 4631 u_int active_scb_index; 4632 u_int last_phase; 4633 u_int saved_scsiid; 4634 u_int cdb_byte; 4635 int retval; 4636 int was_paused; 4637 int paused; 4638 int wait; 4639 int disconnected; 4640 4641 pending_scb = NULL; 4642 paused = FALSE; 4643 wait = FALSE; 4644 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 4645 acmd = (struct ahc_cmd *)cmd; 4646 4647 printf("%s:%d:%d:%d: Attempting to queue a%s message\n", 4648 ahc_name(ahc), cmd->device->channel, 4649 cmd->device->id, cmd->device->lun, 4650 flag == SCB_ABORT ? "n ABORT" : " TARGET RESET"); 4651 4652 printf("CDB:"); 4653 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++) 4654 printf(" 0x%x", cmd->cmnd[cdb_byte]); 4655 printf("\n"); 4656 4657 /* 4658 * In all versions of Linux, we have to work around 4659 * a major flaw in how the mid-layer is locked down 4660 * if we are to sleep successfully in our error handler 4661 * while allowing our interrupt handler to run. Since 4662 * the midlayer acquires either the io_request_lock or 4663 * our lock prior to calling us, we must use the 4664 * spin_unlock_irq() method for unlocking our lock. 4665 * This will force interrupts to be enabled on the 4666 * current CPU. Since the EH thread should not have 4667 * been running with CPU interrupts disabled other than 4668 * by acquiring either the io_request_lock or our own 4669 * lock, this *should* be safe. 4670 */ 4671 ahc_midlayer_entrypoint_lock(ahc, &s); 4672 4673 /* 4674 * First determine if we currently own this command. 4675 * Start by searching the device queue. If not found 4676 * there, check the pending_scb list. If not found 4677 * at all, and the system wanted us to just abort the 4678 * command, return success. 4679 */ 4680 dev = ahc_linux_get_device(ahc, cmd->device->channel, cmd->device->id, 4681 cmd->device->lun, /*alloc*/FALSE); 4682 4683 if (dev == NULL) { 4684 /* 4685 * No target device for this command exists, 4686 * so we must not still own the command. 4687 */ 4688 printf("%s:%d:%d:%d: Is not an active device\n", 4689 ahc_name(ahc), cmd->device->channel, cmd->device->id, 4690 cmd->device->lun); 4691 retval = SUCCESS; 4692 goto no_cmd; 4693 } 4694 4695 TAILQ_FOREACH(list_acmd, &dev->busyq, acmd_links.tqe) { 4696 if (list_acmd == acmd) 4697 break; 4698 } 4699 4700 if (list_acmd != NULL) { 4701 printf("%s:%d:%d:%d: Command found on device queue\n", 4702 ahc_name(ahc), cmd->device->channel, cmd->device->id, 4703 cmd->device->lun); 4704 if (flag == SCB_ABORT) { 4705 TAILQ_REMOVE(&dev->busyq, list_acmd, acmd_links.tqe); 4706 cmd->result = DID_ABORT << 16; 4707 ahc_linux_queue_cmd_complete(ahc, cmd); 4708 retval = SUCCESS; 4709 goto done; 4710 } 4711 } 4712 4713 if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0 4714 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id, 4715 cmd->device->channel + 'A', 4716 cmd->device->lun, 4717 CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) { 4718 printf("%s:%d:%d:%d: Command found on untagged queue\n", 4719 ahc_name(ahc), cmd->device->channel, cmd->device->id, 4720 cmd->device->lun); 4721 retval = SUCCESS; 4722 goto done; 4723 } 4724 4725 /* 4726 * See if we can find a matching cmd in the pending list. 4727 */ 4728 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { 4729 if (pending_scb->io_ctx == cmd) 4730 break; 4731 } 4732 4733 if (pending_scb == NULL && flag == SCB_DEVICE_RESET) { 4734 4735 /* Any SCB for this device will do for a target reset */ 4736 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { 4737 if (ahc_match_scb(ahc, pending_scb, cmd->device->id, 4738 cmd->device->channel + 'A', 4739 CAM_LUN_WILDCARD, 4740 SCB_LIST_NULL, ROLE_INITIATOR) == 0) 4741 break; 4742 } 4743 } 4744 4745 if (pending_scb == NULL) { 4746 printf("%s:%d:%d:%d: Command not found\n", 4747 ahc_name(ahc), cmd->device->channel, cmd->device->id, 4748 cmd->device->lun); 4749 goto no_cmd; 4750 } 4751 4752 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) { 4753 /* 4754 * We can't queue two recovery actions using the same SCB 4755 */ 4756 retval = FAILED; 4757 goto done; 4758 } 4759 4760 /* 4761 * Ensure that the card doesn't do anything 4762 * behind our back and that we didn't "just" miss 4763 * an interrupt that would affect this cmd. 4764 */ 4765 was_paused = ahc_is_paused(ahc); 4766 ahc_pause_and_flushwork(ahc); 4767 paused = TRUE; 4768 4769 if ((pending_scb->flags & SCB_ACTIVE) == 0) { 4770 printf("%s:%d:%d:%d: Command already completed\n", 4771 ahc_name(ahc), cmd->device->channel, cmd->device->id, 4772 cmd->device->lun); 4773 goto no_cmd; 4774 } 4775 4776 printf("%s: At time of recovery, card was %spaused\n", 4777 ahc_name(ahc), was_paused ? "" : "not "); 4778 ahc_dump_card_state(ahc); 4779 4780 disconnected = TRUE; 4781 if (flag == SCB_ABORT) { 4782 if (ahc_search_qinfifo(ahc, cmd->device->id, 4783 cmd->device->channel + 'A', 4784 cmd->device->lun, 4785 pending_scb->hscb->tag, 4786 ROLE_INITIATOR, CAM_REQ_ABORTED, 4787 SEARCH_COMPLETE) > 0) { 4788 printf("%s:%d:%d:%d: Cmd aborted from QINFIFO\n", 4789 ahc_name(ahc), cmd->device->channel, 4790 cmd->device->id, cmd->device->lun); 4791 retval = SUCCESS; 4792 goto done; 4793 } 4794 } else if (ahc_search_qinfifo(ahc, cmd->device->id, 4795 cmd->device->channel + 'A', 4796 cmd->device->lun, pending_scb->hscb->tag, 4797 ROLE_INITIATOR, /*status*/0, 4798 SEARCH_COUNT) > 0) { 4799 disconnected = FALSE; 4800 } 4801 4802 if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) { 4803 struct scb *bus_scb; 4804 4805 bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG)); 4806 if (bus_scb == pending_scb) 4807 disconnected = FALSE; 4808 else if (flag != SCB_ABORT 4809 && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid 4810 && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb)) 4811 disconnected = FALSE; 4812 } 4813 4814 /* 4815 * At this point, pending_scb is the scb associated with the 4816 * passed in command. That command is currently active on the 4817 * bus, is in the disconnected state, or we're hoping to find 4818 * a command for the same target active on the bus to abuse to 4819 * send a BDR. Queue the appropriate message based on which of 4820 * these states we are in. 4821 */ 4822 last_phase = ahc_inb(ahc, LASTPHASE); 4823 saved_scbptr = ahc_inb(ahc, SCBPTR); 4824 active_scb_index = ahc_inb(ahc, SCB_TAG); 4825 saved_scsiid = ahc_inb(ahc, SAVED_SCSIID); 4826 if (last_phase != P_BUSFREE 4827 && (pending_scb->hscb->tag == active_scb_index 4828 || (flag == SCB_DEVICE_RESET 4829 && SCSIID_TARGET(ahc, saved_scsiid) == cmd->device->id))) { 4830 4831 /* 4832 * We're active on the bus, so assert ATN 4833 * and hope that the target responds. 4834 */ 4835 pending_scb = ahc_lookup_scb(ahc, active_scb_index); 4836 pending_scb->flags |= SCB_RECOVERY_SCB|flag; 4837 ahc_outb(ahc, MSG_OUT, HOST_MSG); 4838 ahc_outb(ahc, SCSISIGO, last_phase|ATNO); 4839 printf("%s:%d:%d:%d: Device is active, asserting ATN\n", 4840 ahc_name(ahc), cmd->device->channel, cmd->device->id, 4841 cmd->device->lun); 4842 wait = TRUE; 4843 } else if (disconnected) { 4844 4845 /* 4846 * Actually re-queue this SCB in an attempt 4847 * to select the device before it reconnects. 4848 * In either case (selection or reselection), 4849 * we will now issue the approprate message 4850 * to the timed-out device. 4851 * 4852 * Set the MK_MESSAGE control bit indicating 4853 * that we desire to send a message. We 4854 * also set the disconnected flag since 4855 * in the paging case there is no guarantee 4856 * that our SCB control byte matches the 4857 * version on the card. We don't want the 4858 * sequencer to abort the command thinking 4859 * an unsolicited reselection occurred. 4860 */ 4861 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED; 4862 pending_scb->flags |= SCB_RECOVERY_SCB|flag; 4863 4864 /* 4865 * Remove any cached copy of this SCB in the 4866 * disconnected list in preparation for the 4867 * queuing of our abort SCB. We use the 4868 * same element in the SCB, SCB_NEXT, for 4869 * both the qinfifo and the disconnected list. 4870 */ 4871 ahc_search_disc_list(ahc, cmd->device->id, 4872 cmd->device->channel + 'A', 4873 cmd->device->lun, pending_scb->hscb->tag, 4874 /*stop_on_first*/TRUE, 4875 /*remove*/TRUE, 4876 /*save_state*/FALSE); 4877 4878 /* 4879 * In the non-paging case, the sequencer will 4880 * never re-reference the in-core SCB. 4881 * To make sure we are notified during 4882 * reslection, set the MK_MESSAGE flag in 4883 * the card's copy of the SCB. 4884 */ 4885 if ((ahc->flags & AHC_PAGESCBS) == 0) { 4886 ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag); 4887 ahc_outb(ahc, SCB_CONTROL, 4888 ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE); 4889 } 4890 4891 /* 4892 * Clear out any entries in the QINFIFO first 4893 * so we are the next SCB for this target 4894 * to run. 4895 */ 4896 ahc_search_qinfifo(ahc, cmd->device->id, 4897 cmd->device->channel + 'A', 4898 cmd->device->lun, SCB_LIST_NULL, 4899 ROLE_INITIATOR, CAM_REQUEUE_REQ, 4900 SEARCH_COMPLETE); 4901 ahc_qinfifo_requeue_tail(ahc, pending_scb); 4902 ahc_outb(ahc, SCBPTR, saved_scbptr); 4903 ahc_print_path(ahc, pending_scb); 4904 printf("Device is disconnected, re-queuing SCB\n"); 4905 wait = TRUE; 4906 } else { 4907 printf("%s:%d:%d:%d: Unable to deliver message\n", 4908 ahc_name(ahc), cmd->device->channel, cmd->device->id, 4909 cmd->device->lun); 4910 retval = FAILED; 4911 goto done; 4912 } 4913 4914 no_cmd: 4915 /* 4916 * Our assumption is that if we don't have the command, no 4917 * recovery action was required, so we return success. Again, 4918 * the semantics of the mid-layer recovery engine are not 4919 * well defined, so this may change in time. 4920 */ 4921 retval = SUCCESS; 4922 done: 4923 if (paused) 4924 ahc_unpause(ahc); 4925 if (wait) { 4926 struct timer_list timer; 4927 int ret; 4928 4929 ahc->platform_data->flags |= AHC_UP_EH_SEMAPHORE; 4930 spin_unlock_irq(&ahc->platform_data->spin_lock); 4931 init_timer(&timer); 4932 timer.data = (u_long)ahc; 4933 timer.expires = jiffies + (5 * HZ); 4934 timer.function = ahc_linux_sem_timeout; 4935 add_timer(&timer); 4936 printf("Recovery code sleeping\n"); 4937 down(&ahc->platform_data->eh_sem); 4938 printf("Recovery code awake\n"); 4939 ret = del_timer_sync(&timer); 4940 if (ret == 0) { 4941 printf("Timer Expired\n"); 4942 retval = FAILED; 4943 } 4944 spin_lock_irq(&ahc->platform_data->spin_lock); 4945 } 4946 ahc_schedule_runq(ahc); 4947 ahc_linux_run_complete_queue(ahc); 4948 ahc_midlayer_entrypoint_unlock(ahc, &s); 4949 return (retval); 4950 } 4951 4952 void 4953 ahc_platform_dump_card_state(struct ahc_softc *ahc) 4954 { 4955 struct ahc_linux_device *dev; 4956 int channel; 4957 int maxchannel; 4958 int target; 4959 int maxtarget; 4960 int lun; 4961 int i; 4962 4963 maxchannel = (ahc->features & AHC_TWIN) ? 1 : 0; 4964 maxtarget = (ahc->features & AHC_WIDE) ? 15 : 7; 4965 for (channel = 0; channel <= maxchannel; channel++) { 4966 4967 for (target = 0; target <=maxtarget; target++) { 4968 4969 for (lun = 0; lun < AHC_NUM_LUNS; lun++) { 4970 struct ahc_cmd *acmd; 4971 4972 dev = ahc_linux_get_device(ahc, channel, target, 4973 lun, /*alloc*/FALSE); 4974 if (dev == NULL) 4975 continue; 4976 4977 printf("DevQ(%d:%d:%d): ", 4978 channel, target, lun); 4979 i = 0; 4980 TAILQ_FOREACH(acmd, &dev->busyq, 4981 acmd_links.tqe) { 4982 if (i++ > AHC_SCB_MAX) 4983 break; 4984 } 4985 printf("%d waiting\n", i); 4986 } 4987 } 4988 } 4989 } 4990 4991 static void ahc_linux_exit(void); 4992 4993 static int __init 4994 ahc_linux_init(void) 4995 { 4996 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,0) 4997 int rc = ahc_linux_detect(&aic7xxx_driver_template); 4998 if (rc) 4999 return rc; 5000 ahc_linux_exit(); 5001 return -ENODEV; 5002 #else 5003 scsi_register_module(MODULE_SCSI_HA, &aic7xxx_driver_template); 5004 if (aic7xxx_driver_template.present == 0) { 5005 scsi_unregister_module(MODULE_SCSI_HA, 5006 &aic7xxx_driver_template); 5007 return (-ENODEV); 5008 } 5009 5010 return (0); 5011 #endif 5012 } 5013 5014 static void 5015 ahc_linux_exit(void) 5016 { 5017 struct ahc_softc *ahc; 5018 5019 /* 5020 * Shutdown DV threads before going into the SCSI mid-layer. 5021 * This avoids situations where the mid-layer locks the entire 5022 * kernel so that waiting for our DV threads to exit leads 5023 * to deadlock. 5024 */ 5025 TAILQ_FOREACH(ahc, &ahc_tailq, links) { 5026 5027 ahc_linux_kill_dv_thread(ahc); 5028 } 5029 5030 #if LINUX_VERSION_CODE < KERNEL_VERSION(2,5,0) 5031 /* 5032 * In 2.4 we have to unregister from the PCI core _after_ 5033 * unregistering from the scsi midlayer to avoid dangling 5034 * references. 5035 */ 5036 scsi_unregister_module(MODULE_SCSI_HA, &aic7xxx_driver_template); 5037 #endif 5038 ahc_linux_pci_exit(); 5039 ahc_linux_eisa_exit(); 5040 } 5041 5042 module_init(ahc_linux_init); 5043 module_exit(ahc_linux_exit); 5044