1 /* 2 * Adaptec AIC7xxx device driver for Linux. 3 * 4 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $ 5 * 6 * Copyright (c) 1994 John Aycock 7 * The University of Calgary Department of Computer Science. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2, or (at your option) 12 * any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; see the file COPYING. If not, write to 21 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 22 * 23 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F 24 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA 25 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide, 26 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux, 27 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file 28 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual, 29 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the 30 * ANSI SCSI-2 specification (draft 10c), ... 31 * 32 * -------------------------------------------------------------------------- 33 * 34 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org): 35 * 36 * Substantially modified to include support for wide and twin bus 37 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes, 38 * SCB paging, and other rework of the code. 39 * 40 * -------------------------------------------------------------------------- 41 * Copyright (c) 1994-2000 Justin T. Gibbs. 42 * Copyright (c) 2000-2001 Adaptec Inc. 43 * All rights reserved. 44 * 45 * Redistribution and use in source and binary forms, with or without 46 * modification, are permitted provided that the following conditions 47 * are met: 48 * 1. Redistributions of source code must retain the above copyright 49 * notice, this list of conditions, and the following disclaimer, 50 * without modification. 51 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 52 * substantially similar to the "NO WARRANTY" disclaimer below 53 * ("Disclaimer") and any redistribution must be conditioned upon 54 * including a substantially similar Disclaimer requirement for further 55 * binary redistribution. 56 * 3. Neither the names of the above-listed copyright holders nor the names 57 * of any contributors may be used to endorse or promote products derived 58 * from this software without specific prior written permission. 59 * 60 * Alternatively, this software may be distributed under the terms of the 61 * GNU General Public License ("GPL") version 2 as published by the Free 62 * Software Foundation. 63 * 64 * NO WARRANTY 65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 66 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 67 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 68 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 69 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 73 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 74 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 75 * POSSIBILITY OF SUCH DAMAGES. 76 * 77 *--------------------------------------------------------------------------- 78 * 79 * Thanks also go to (in alphabetical order) the following: 80 * 81 * Rory Bolt - Sequencer bug fixes 82 * Jay Estabrook - Initial DEC Alpha support 83 * Doug Ledford - Much needed abort/reset bug fixes 84 * Kai Makisara - DMAing of SCBs 85 * 86 * A Boot time option was also added for not resetting the scsi bus. 87 * 88 * Form: aic7xxx=extended 89 * aic7xxx=no_reset 90 * aic7xxx=verbose 91 * 92 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97 93 * 94 * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp 95 */ 96 97 /* 98 * Further driver modifications made by Doug Ledford <dledford@redhat.com> 99 * 100 * Copyright (c) 1997-1999 Doug Ledford 101 * 102 * These changes are released under the same licensing terms as the FreeBSD 103 * driver written by Justin Gibbs. Please see his Copyright notice above 104 * for the exact terms and conditions covering my changes as well as the 105 * warranty statement. 106 * 107 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include 108 * but are not limited to: 109 * 110 * 1: Import of the latest FreeBSD sequencer code for this driver 111 * 2: Modification of kernel code to accommodate different sequencer semantics 112 * 3: Extensive changes throughout kernel portion of driver to improve 113 * abort/reset processing and error hanndling 114 * 4: Other work contributed by various people on the Internet 115 * 5: Changes to printk information and verbosity selection code 116 * 6: General reliability related changes, especially in IRQ management 117 * 7: Modifications to the default probe/attach order for supported cards 118 * 8: SMP friendliness has been improved 119 * 120 */ 121 122 #include "aic7xxx_osm.h" 123 #include "aic7xxx_inline.h" 124 #include <scsi/scsicam.h> 125 126 static struct scsi_transport_template *ahc_linux_transport_template = NULL; 127 128 #include <linux/init.h> /* __setup */ 129 #include <linux/mm.h> /* For fetching system memory size */ 130 #include <linux/blkdev.h> /* For block_size() */ 131 #include <linux/delay.h> /* For ssleep/msleep */ 132 #include <linux/slab.h> 133 134 135 /* 136 * Set this to the delay in seconds after SCSI bus reset. 137 * Note, we honor this only for the initial bus reset. 138 * The scsi error recovery code performs its own bus settle 139 * delay handling for error recovery actions. 140 */ 141 #ifdef CONFIG_AIC7XXX_RESET_DELAY_MS 142 #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS 143 #else 144 #define AIC7XXX_RESET_DELAY 5000 145 #endif 146 147 /* 148 * To change the default number of tagged transactions allowed per-device, 149 * add a line to the lilo.conf file like: 150 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}" 151 * which will result in the first four devices on the first two 152 * controllers being set to a tagged queue depth of 32. 153 * 154 * The tag_commands is an array of 16 to allow for wide and twin adapters. 155 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15 156 * for channel 1. 157 */ 158 typedef struct { 159 uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */ 160 } adapter_tag_info_t; 161 162 /* 163 * Modify this as you see fit for your system. 164 * 165 * 0 tagged queuing disabled 166 * 1 <= n <= 253 n == max tags ever dispatched. 167 * 168 * The driver will throttle the number of commands dispatched to a 169 * device if it returns queue full. For devices with a fixed maximum 170 * queue depth, the driver will eventually determine this depth and 171 * lock it in (a console message is printed to indicate that a lock 172 * has occurred). On some devices, queue full is returned for a temporary 173 * resource shortage. These devices will return queue full at varying 174 * depths. The driver will throttle back when the queue fulls occur and 175 * attempt to slowly increase the depth over time as the device recovers 176 * from the resource shortage. 177 * 178 * In this example, the first line will disable tagged queueing for all 179 * the devices on the first probed aic7xxx adapter. 180 * 181 * The second line enables tagged queueing with 4 commands/LUN for IDs 182 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the 183 * driver to attempt to use up to 64 tags for ID 1. 184 * 185 * The third line is the same as the first line. 186 * 187 * The fourth line disables tagged queueing for devices 0 and 3. It 188 * enables tagged queueing for the other IDs, with 16 commands/LUN 189 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for 190 * IDs 2, 5-7, and 9-15. 191 */ 192 193 /* 194 * NOTE: The below structure is for reference only, the actual structure 195 * to modify in order to change things is just below this comment block. 196 adapter_tag_info_t aic7xxx_tag_info[] = 197 { 198 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 199 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}}, 200 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}, 201 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}} 202 }; 203 */ 204 205 #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE 206 #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE 207 #else 208 #define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE 209 #endif 210 211 #define AIC7XXX_CONFIGED_TAG_COMMANDS { \ 212 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 213 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 214 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 215 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 216 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 217 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 218 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \ 219 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \ 220 } 221 222 /* 223 * By default, use the number of commands specified by 224 * the users kernel configuration. 225 */ 226 static adapter_tag_info_t aic7xxx_tag_info[] = 227 { 228 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 229 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 230 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 231 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 232 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 233 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 234 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 235 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 236 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 237 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 238 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 239 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 240 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 241 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 242 {AIC7XXX_CONFIGED_TAG_COMMANDS}, 243 {AIC7XXX_CONFIGED_TAG_COMMANDS} 244 }; 245 246 /* 247 * There should be a specific return value for this in scsi.h, but 248 * it seems that most drivers ignore it. 249 */ 250 #define DID_UNDERFLOW DID_ERROR 251 252 void 253 ahc_print_path(struct ahc_softc *ahc, struct scb *scb) 254 { 255 printk("(scsi%d:%c:%d:%d): ", 256 ahc->platform_data->host->host_no, 257 scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X', 258 scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1, 259 scb != NULL ? SCB_GET_LUN(scb) : -1); 260 } 261 262 /* 263 * XXX - these options apply unilaterally to _all_ 274x/284x/294x 264 * cards in the system. This should be fixed. Exceptions to this 265 * rule are noted in the comments. 266 */ 267 268 /* 269 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This 270 * has no effect on any later resets that might occur due to things like 271 * SCSI bus timeouts. 272 */ 273 static uint32_t aic7xxx_no_reset; 274 275 /* 276 * Should we force EXTENDED translation on a controller. 277 * 0 == Use whatever is in the SEEPROM or default to off 278 * 1 == Use whatever is in the SEEPROM or default to on 279 */ 280 static uint32_t aic7xxx_extended; 281 282 /* 283 * PCI bus parity checking of the Adaptec controllers. This is somewhat 284 * dubious at best. To my knowledge, this option has never actually 285 * solved a PCI parity problem, but on certain machines with broken PCI 286 * chipset configurations where stray PCI transactions with bad parity are 287 * the norm rather than the exception, the error messages can be overwhelming. 288 * It's included in the driver for completeness. 289 * 0 = Shut off PCI parity check 290 * non-0 = reverse polarity pci parity checking 291 */ 292 static uint32_t aic7xxx_pci_parity = ~0; 293 294 /* 295 * There are lots of broken chipsets in the world. Some of them will 296 * violate the PCI spec when we issue byte sized memory writes to our 297 * controller. I/O mapped register access, if allowed by the given 298 * platform, will work in almost all cases. 299 */ 300 uint32_t aic7xxx_allow_memio = ~0; 301 302 /* 303 * So that we can set how long each device is given as a selection timeout. 304 * The table of values goes like this: 305 * 0 - 256ms 306 * 1 - 128ms 307 * 2 - 64ms 308 * 3 - 32ms 309 * We default to 256ms because some older devices need a longer time 310 * to respond to initial selection. 311 */ 312 static uint32_t aic7xxx_seltime; 313 314 /* 315 * Certain devices do not perform any aging on commands. Should the 316 * device be saturated by commands in one portion of the disk, it is 317 * possible for transactions on far away sectors to never be serviced. 318 * To handle these devices, we can periodically send an ordered tag to 319 * force all outstanding transactions to be serviced prior to a new 320 * transaction. 321 */ 322 static uint32_t aic7xxx_periodic_otag; 323 324 /* 325 * Module information and settable options. 326 */ 327 static char *aic7xxx = NULL; 328 329 MODULE_AUTHOR("Maintainer: Hannes Reinecke <hare@suse.de>"); 330 MODULE_DESCRIPTION("Adaptec AIC77XX/78XX SCSI Host Bus Adapter driver"); 331 MODULE_LICENSE("Dual BSD/GPL"); 332 MODULE_VERSION(AIC7XXX_DRIVER_VERSION); 333 module_param(aic7xxx, charp, 0444); 334 MODULE_PARM_DESC(aic7xxx, 335 "period-delimited options string:\n" 336 " verbose Enable verbose/diagnostic logging\n" 337 " allow_memio Allow device registers to be memory mapped\n" 338 " debug Bitmask of debug values to enable\n" 339 " no_probe Toggle EISA/VLB controller probing\n" 340 " probe_eisa_vl Toggle EISA/VLB controller probing\n" 341 " no_reset Suppress initial bus resets\n" 342 " extended Enable extended geometry on all controllers\n" 343 " periodic_otag Send an ordered tagged transaction\n" 344 " periodically to prevent tag starvation.\n" 345 " This may be required by some older disk\n" 346 " drives or RAID arrays.\n" 347 " tag_info:<tag_str> Set per-target tag depth\n" 348 " global_tag_depth:<int> Global tag depth for every target\n" 349 " on every bus\n" 350 " seltime:<int> Selection Timeout\n" 351 " (0/256ms,1/128ms,2/64ms,3/32ms)\n" 352 "\n" 353 " Sample modprobe configuration file:\n" 354 " # Toggle EISA/VLB probing\n" 355 " # Set tag depth on Controller 1/Target 1 to 10 tags\n" 356 " # Shorten the selection timeout to 128ms\n" 357 "\n" 358 " options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n" 359 ); 360 361 static void ahc_linux_handle_scsi_status(struct ahc_softc *, 362 struct scsi_device *, 363 struct scb *); 364 static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, 365 struct scsi_cmnd *cmd); 366 static void ahc_linux_freeze_simq(struct ahc_softc *ahc); 367 static void ahc_linux_release_simq(struct ahc_softc *ahc); 368 static int ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag); 369 static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc); 370 static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc, 371 struct ahc_devinfo *devinfo); 372 static void ahc_linux_device_queue_depth(struct scsi_device *); 373 static int ahc_linux_run_command(struct ahc_softc*, 374 struct ahc_linux_device *, 375 struct scsi_cmnd *); 376 static void ahc_linux_setup_tag_info_global(char *p); 377 static int aic7xxx_setup(char *s); 378 379 static int ahc_linux_unit; 380 381 382 /************************** OS Utility Wrappers *******************************/ 383 void 384 ahc_delay(long usec) 385 { 386 /* 387 * udelay on Linux can have problems for 388 * multi-millisecond waits. Wait at most 389 * 1024us per call. 390 */ 391 while (usec > 0) { 392 udelay(usec % 1024); 393 usec -= 1024; 394 } 395 } 396 397 /***************************** Low Level I/O **********************************/ 398 uint8_t 399 ahc_inb(struct ahc_softc * ahc, long port) 400 { 401 uint8_t x; 402 403 if (ahc->tag == BUS_SPACE_MEMIO) { 404 x = readb(ahc->bsh.maddr + port); 405 } else { 406 x = inb(ahc->bsh.ioport + port); 407 } 408 mb(); 409 return (x); 410 } 411 412 void 413 ahc_outb(struct ahc_softc * ahc, long port, uint8_t val) 414 { 415 if (ahc->tag == BUS_SPACE_MEMIO) { 416 writeb(val, ahc->bsh.maddr + port); 417 } else { 418 outb(val, ahc->bsh.ioport + port); 419 } 420 mb(); 421 } 422 423 void 424 ahc_outsb(struct ahc_softc * ahc, long port, uint8_t *array, int count) 425 { 426 int i; 427 428 /* 429 * There is probably a more efficient way to do this on Linux 430 * but we don't use this for anything speed critical and this 431 * should work. 432 */ 433 for (i = 0; i < count; i++) 434 ahc_outb(ahc, port, *array++); 435 } 436 437 void 438 ahc_insb(struct ahc_softc * ahc, long port, uint8_t *array, int count) 439 { 440 int i; 441 442 /* 443 * There is probably a more efficient way to do this on Linux 444 * but we don't use this for anything speed critical and this 445 * should work. 446 */ 447 for (i = 0; i < count; i++) 448 *array++ = ahc_inb(ahc, port); 449 } 450 451 /********************************* Inlines ************************************/ 452 static void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*); 453 454 static int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, 455 struct ahc_dma_seg *sg, 456 dma_addr_t addr, bus_size_t len); 457 458 static void 459 ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb) 460 { 461 struct scsi_cmnd *cmd; 462 463 cmd = scb->io_ctx; 464 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE); 465 466 scsi_dma_unmap(cmd); 467 } 468 469 static int 470 ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb, 471 struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len) 472 { 473 int consumed; 474 475 if ((scb->sg_count + 1) > AHC_NSEG) 476 panic("Too few segs for dma mapping. " 477 "Increase AHC_NSEG\n"); 478 479 consumed = 1; 480 sg->addr = ahc_htole32(addr & 0xFFFFFFFF); 481 scb->platform_data->xfer_len += len; 482 483 if (sizeof(dma_addr_t) > 4 484 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0) 485 len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK; 486 487 sg->len = ahc_htole32(len); 488 return (consumed); 489 } 490 491 /* 492 * Return a string describing the driver. 493 */ 494 static const char * 495 ahc_linux_info(struct Scsi_Host *host) 496 { 497 static char buffer[512]; 498 char ahc_info[256]; 499 char *bp; 500 struct ahc_softc *ahc; 501 502 bp = &buffer[0]; 503 ahc = *(struct ahc_softc **)host->hostdata; 504 memset(bp, 0, sizeof(buffer)); 505 strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev " AIC7XXX_DRIVER_VERSION "\n" 506 " <"); 507 strcat(bp, ahc->description); 508 strcat(bp, ">\n" 509 " "); 510 ahc_controller_info(ahc, ahc_info); 511 strcat(bp, ahc_info); 512 strcat(bp, "\n"); 513 514 return (bp); 515 } 516 517 /* 518 * Queue an SCB to the controller. 519 */ 520 static int 521 ahc_linux_queue_lck(struct scsi_cmnd * cmd, void (*scsi_done) (struct scsi_cmnd *)) 522 { 523 struct ahc_softc *ahc; 524 struct ahc_linux_device *dev = scsi_transport_device_data(cmd->device); 525 int rtn = SCSI_MLQUEUE_HOST_BUSY; 526 unsigned long flags; 527 528 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 529 530 ahc_lock(ahc, &flags); 531 if (ahc->platform_data->qfrozen == 0) { 532 cmd->scsi_done = scsi_done; 533 cmd->result = CAM_REQ_INPROG << 16; 534 rtn = ahc_linux_run_command(ahc, dev, cmd); 535 } 536 ahc_unlock(ahc, &flags); 537 538 return rtn; 539 } 540 541 static DEF_SCSI_QCMD(ahc_linux_queue) 542 543 static inline struct scsi_target ** 544 ahc_linux_target_in_softc(struct scsi_target *starget) 545 { 546 struct ahc_softc *ahc = 547 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata); 548 unsigned int target_offset; 549 550 target_offset = starget->id; 551 if (starget->channel != 0) 552 target_offset += 8; 553 554 return &ahc->platform_data->starget[target_offset]; 555 } 556 557 static int 558 ahc_linux_target_alloc(struct scsi_target *starget) 559 { 560 struct ahc_softc *ahc = 561 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata); 562 struct seeprom_config *sc = ahc->seep_config; 563 unsigned long flags; 564 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget); 565 unsigned short scsirate; 566 struct ahc_devinfo devinfo; 567 struct ahc_initiator_tinfo *tinfo; 568 struct ahc_tmode_tstate *tstate; 569 char channel = starget->channel + 'A'; 570 unsigned int our_id = ahc->our_id; 571 unsigned int target_offset; 572 573 target_offset = starget->id; 574 if (starget->channel != 0) 575 target_offset += 8; 576 577 if (starget->channel) 578 our_id = ahc->our_id_b; 579 580 ahc_lock(ahc, &flags); 581 582 BUG_ON(*ahc_targp != NULL); 583 584 *ahc_targp = starget; 585 586 if (sc) { 587 int maxsync = AHC_SYNCRATE_DT; 588 int ultra = 0; 589 int flags = sc->device_flags[target_offset]; 590 591 if (ahc->flags & AHC_NEWEEPROM_FMT) { 592 if (flags & CFSYNCHISULTRA) 593 ultra = 1; 594 } else if (flags & CFULTRAEN) 595 ultra = 1; 596 /* AIC nutcase; 10MHz appears as ultra = 1, CFXFER = 0x04 597 * change it to ultra=0, CFXFER = 0 */ 598 if(ultra && (flags & CFXFER) == 0x04) { 599 ultra = 0; 600 flags &= ~CFXFER; 601 } 602 603 if ((ahc->features & AHC_ULTRA2) != 0) { 604 scsirate = (flags & CFXFER) | (ultra ? 0x8 : 0); 605 } else { 606 scsirate = (flags & CFXFER) << 4; 607 maxsync = ultra ? AHC_SYNCRATE_ULTRA : 608 AHC_SYNCRATE_FAST; 609 } 610 spi_max_width(starget) = (flags & CFWIDEB) ? 1 : 0; 611 if (!(flags & CFSYNCH)) 612 spi_max_offset(starget) = 0; 613 spi_min_period(starget) = 614 ahc_find_period(ahc, scsirate, maxsync); 615 616 tinfo = ahc_fetch_transinfo(ahc, channel, ahc->our_id, 617 starget->id, &tstate); 618 } 619 ahc_compile_devinfo(&devinfo, our_id, starget->id, 620 CAM_LUN_WILDCARD, channel, 621 ROLE_INITIATOR); 622 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0, 623 AHC_TRANS_GOAL, /*paused*/FALSE); 624 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, 625 AHC_TRANS_GOAL, /*paused*/FALSE); 626 ahc_unlock(ahc, &flags); 627 628 return 0; 629 } 630 631 static void 632 ahc_linux_target_destroy(struct scsi_target *starget) 633 { 634 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget); 635 636 *ahc_targp = NULL; 637 } 638 639 static int 640 ahc_linux_slave_alloc(struct scsi_device *sdev) 641 { 642 struct ahc_softc *ahc = 643 *((struct ahc_softc **)sdev->host->hostdata); 644 struct scsi_target *starget = sdev->sdev_target; 645 struct ahc_linux_device *dev; 646 647 if (bootverbose) 648 printk("%s: Slave Alloc %d\n", ahc_name(ahc), sdev->id); 649 650 dev = scsi_transport_device_data(sdev); 651 memset(dev, 0, sizeof(*dev)); 652 653 /* 654 * We start out life using untagged 655 * transactions of which we allow one. 656 */ 657 dev->openings = 1; 658 659 /* 660 * Set maxtags to 0. This will be changed if we 661 * later determine that we are dealing with 662 * a tagged queuing capable device. 663 */ 664 dev->maxtags = 0; 665 666 spi_period(starget) = 0; 667 668 return 0; 669 } 670 671 static int 672 ahc_linux_slave_configure(struct scsi_device *sdev) 673 { 674 struct ahc_softc *ahc; 675 676 ahc = *((struct ahc_softc **)sdev->host->hostdata); 677 678 if (bootverbose) 679 sdev_printk(KERN_INFO, sdev, "Slave Configure\n"); 680 681 ahc_linux_device_queue_depth(sdev); 682 683 /* Initial Domain Validation */ 684 if (!spi_initial_dv(sdev->sdev_target)) 685 spi_dv_device(sdev); 686 687 return 0; 688 } 689 690 #if defined(__i386__) 691 /* 692 * Return the disk geometry for the given SCSI device. 693 */ 694 static int 695 ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev, 696 sector_t capacity, int geom[]) 697 { 698 int heads; 699 int sectors; 700 int cylinders; 701 int extended; 702 struct ahc_softc *ahc; 703 u_int channel; 704 705 ahc = *((struct ahc_softc **)sdev->host->hostdata); 706 channel = sdev_channel(sdev); 707 708 if (scsi_partsize(bdev, capacity, geom)) 709 return 0; 710 711 heads = 64; 712 sectors = 32; 713 cylinders = aic_sector_div(capacity, heads, sectors); 714 715 if (aic7xxx_extended != 0) 716 extended = 1; 717 else if (channel == 0) 718 extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0; 719 else 720 extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0; 721 if (extended && cylinders >= 1024) { 722 heads = 255; 723 sectors = 63; 724 cylinders = aic_sector_div(capacity, heads, sectors); 725 } 726 geom[0] = heads; 727 geom[1] = sectors; 728 geom[2] = cylinders; 729 return (0); 730 } 731 #endif 732 733 /* 734 * Abort the current SCSI command(s). 735 */ 736 static int 737 ahc_linux_abort(struct scsi_cmnd *cmd) 738 { 739 int error; 740 741 error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT); 742 if (error != 0) 743 printk("aic7xxx_abort returns 0x%x\n", error); 744 return (error); 745 } 746 747 /* 748 * Attempt to send a target reset message to the device that timed out. 749 */ 750 static int 751 ahc_linux_dev_reset(struct scsi_cmnd *cmd) 752 { 753 int error; 754 755 error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET); 756 if (error != 0) 757 printk("aic7xxx_dev_reset returns 0x%x\n", error); 758 return (error); 759 } 760 761 /* 762 * Reset the SCSI bus. 763 */ 764 static int 765 ahc_linux_bus_reset(struct scsi_cmnd *cmd) 766 { 767 struct ahc_softc *ahc; 768 int found; 769 unsigned long flags; 770 771 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 772 773 ahc_lock(ahc, &flags); 774 found = ahc_reset_channel(ahc, scmd_channel(cmd) + 'A', 775 /*initiate reset*/TRUE); 776 ahc_unlock(ahc, &flags); 777 778 if (bootverbose) 779 printk("%s: SCSI bus reset delivered. " 780 "%d SCBs aborted.\n", ahc_name(ahc), found); 781 782 return SUCCESS; 783 } 784 785 struct scsi_host_template aic7xxx_driver_template = { 786 .module = THIS_MODULE, 787 .name = "aic7xxx", 788 .proc_name = "aic7xxx", 789 .show_info = ahc_linux_show_info, 790 .write_info = ahc_proc_write_seeprom, 791 .info = ahc_linux_info, 792 .queuecommand = ahc_linux_queue, 793 .eh_abort_handler = ahc_linux_abort, 794 .eh_device_reset_handler = ahc_linux_dev_reset, 795 .eh_bus_reset_handler = ahc_linux_bus_reset, 796 #if defined(__i386__) 797 .bios_param = ahc_linux_biosparam, 798 #endif 799 .can_queue = AHC_MAX_QUEUE, 800 .this_id = -1, 801 .max_sectors = 8192, 802 .cmd_per_lun = 2, 803 .slave_alloc = ahc_linux_slave_alloc, 804 .slave_configure = ahc_linux_slave_configure, 805 .target_alloc = ahc_linux_target_alloc, 806 .target_destroy = ahc_linux_target_destroy, 807 }; 808 809 /**************************** Tasklet Handler *********************************/ 810 811 /******************************** Macros **************************************/ 812 #define BUILD_SCSIID(ahc, cmd) \ 813 ((((cmd)->device->id << TID_SHIFT) & TID) \ 814 | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \ 815 | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB)) 816 817 /******************************** Bus DMA *************************************/ 818 int 819 ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent, 820 bus_size_t alignment, bus_size_t boundary, 821 dma_addr_t lowaddr, dma_addr_t highaddr, 822 bus_dma_filter_t *filter, void *filterarg, 823 bus_size_t maxsize, int nsegments, 824 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag) 825 { 826 bus_dma_tag_t dmat; 827 828 dmat = kmalloc(sizeof(*dmat), GFP_ATOMIC); 829 if (dmat == NULL) 830 return (ENOMEM); 831 832 /* 833 * Linux is very simplistic about DMA memory. For now don't 834 * maintain all specification information. Once Linux supplies 835 * better facilities for doing these operations, or the 836 * needs of this particular driver change, we might need to do 837 * more here. 838 */ 839 dmat->alignment = alignment; 840 dmat->boundary = boundary; 841 dmat->maxsize = maxsize; 842 *ret_tag = dmat; 843 return (0); 844 } 845 846 void 847 ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat) 848 { 849 kfree(dmat); 850 } 851 852 int 853 ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr, 854 int flags, bus_dmamap_t *mapp) 855 { 856 /* XXX: check if we really need the GFP_ATOMIC and unwind this mess! */ 857 *vaddr = dma_alloc_coherent(ahc->dev, dmat->maxsize, mapp, GFP_ATOMIC); 858 if (*vaddr == NULL) 859 return ENOMEM; 860 return 0; 861 } 862 863 void 864 ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat, 865 void* vaddr, bus_dmamap_t map) 866 { 867 dma_free_coherent(ahc->dev, dmat->maxsize, vaddr, map); 868 } 869 870 int 871 ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map, 872 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb, 873 void *cb_arg, int flags) 874 { 875 /* 876 * Assume for now that this will only be used during 877 * initialization and not for per-transaction buffer mapping. 878 */ 879 bus_dma_segment_t stack_sg; 880 881 stack_sg.ds_addr = map; 882 stack_sg.ds_len = dmat->maxsize; 883 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0); 884 return (0); 885 } 886 887 void 888 ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) 889 { 890 } 891 892 int 893 ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map) 894 { 895 /* Nothing to do */ 896 return (0); 897 } 898 899 static void 900 ahc_linux_setup_tag_info_global(char *p) 901 { 902 int tags, i, j; 903 904 tags = simple_strtoul(p + 1, NULL, 0) & 0xff; 905 printk("Setting Global Tags= %d\n", tags); 906 907 for (i = 0; i < ARRAY_SIZE(aic7xxx_tag_info); i++) { 908 for (j = 0; j < AHC_NUM_TARGETS; j++) { 909 aic7xxx_tag_info[i].tag_commands[j] = tags; 910 } 911 } 912 } 913 914 static void 915 ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value) 916 { 917 918 if ((instance >= 0) && (targ >= 0) 919 && (instance < ARRAY_SIZE(aic7xxx_tag_info)) 920 && (targ < AHC_NUM_TARGETS)) { 921 aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff; 922 if (bootverbose) 923 printk("tag_info[%d:%d] = %d\n", instance, targ, value); 924 } 925 } 926 927 static char * 928 ahc_parse_brace_option(char *opt_name, char *opt_arg, char *end, int depth, 929 void (*callback)(u_long, int, int, int32_t), 930 u_long callback_arg) 931 { 932 char *tok_end; 933 char *tok_end2; 934 int i; 935 int instance; 936 int targ; 937 int done; 938 char tok_list[] = {'.', ',', '{', '}', '\0'}; 939 940 /* All options use a ':' name/arg separator */ 941 if (*opt_arg != ':') 942 return (opt_arg); 943 opt_arg++; 944 instance = -1; 945 targ = -1; 946 done = FALSE; 947 /* 948 * Restore separator that may be in 949 * the middle of our option argument. 950 */ 951 tok_end = strchr(opt_arg, '\0'); 952 if (tok_end < end) 953 *tok_end = ','; 954 while (!done) { 955 switch (*opt_arg) { 956 case '{': 957 if (instance == -1) { 958 instance = 0; 959 } else { 960 if (depth > 1) { 961 if (targ == -1) 962 targ = 0; 963 } else { 964 printk("Malformed Option %s\n", 965 opt_name); 966 done = TRUE; 967 } 968 } 969 opt_arg++; 970 break; 971 case '}': 972 if (targ != -1) 973 targ = -1; 974 else if (instance != -1) 975 instance = -1; 976 opt_arg++; 977 break; 978 case ',': 979 case '.': 980 if (instance == -1) 981 done = TRUE; 982 else if (targ >= 0) 983 targ++; 984 else if (instance >= 0) 985 instance++; 986 opt_arg++; 987 break; 988 case '\0': 989 done = TRUE; 990 break; 991 default: 992 tok_end = end; 993 for (i = 0; tok_list[i]; i++) { 994 tok_end2 = strchr(opt_arg, tok_list[i]); 995 if ((tok_end2) && (tok_end2 < tok_end)) 996 tok_end = tok_end2; 997 } 998 callback(callback_arg, instance, targ, 999 simple_strtol(opt_arg, NULL, 0)); 1000 opt_arg = tok_end; 1001 break; 1002 } 1003 } 1004 return (opt_arg); 1005 } 1006 1007 /* 1008 * Handle Linux boot parameters. This routine allows for assigning a value 1009 * to a parameter with a ':' between the parameter and the value. 1010 * ie. aic7xxx=stpwlev:1,extended 1011 */ 1012 static int 1013 aic7xxx_setup(char *s) 1014 { 1015 int i, n; 1016 char *p; 1017 char *end; 1018 1019 static const struct { 1020 const char *name; 1021 uint32_t *flag; 1022 } options[] = { 1023 { "extended", &aic7xxx_extended }, 1024 { "no_reset", &aic7xxx_no_reset }, 1025 { "verbose", &aic7xxx_verbose }, 1026 { "allow_memio", &aic7xxx_allow_memio}, 1027 #ifdef AHC_DEBUG 1028 { "debug", &ahc_debug }, 1029 #endif 1030 { "periodic_otag", &aic7xxx_periodic_otag }, 1031 { "pci_parity", &aic7xxx_pci_parity }, 1032 { "seltime", &aic7xxx_seltime }, 1033 { "tag_info", NULL }, 1034 { "global_tag_depth", NULL }, 1035 { "dv", NULL } 1036 }; 1037 1038 end = strchr(s, '\0'); 1039 1040 /* 1041 * XXX ia64 gcc isn't smart enough to know that ARRAY_SIZE 1042 * will never be 0 in this case. 1043 */ 1044 n = 0; 1045 1046 while ((p = strsep(&s, ",.")) != NULL) { 1047 if (*p == '\0') 1048 continue; 1049 for (i = 0; i < ARRAY_SIZE(options); i++) { 1050 1051 n = strlen(options[i].name); 1052 if (strncmp(options[i].name, p, n) == 0) 1053 break; 1054 } 1055 if (i == ARRAY_SIZE(options)) 1056 continue; 1057 1058 if (strncmp(p, "global_tag_depth", n) == 0) { 1059 ahc_linux_setup_tag_info_global(p + n); 1060 } else if (strncmp(p, "tag_info", n) == 0) { 1061 s = ahc_parse_brace_option("tag_info", p + n, end, 1062 2, ahc_linux_setup_tag_info, 0); 1063 } else if (p[n] == ':') { 1064 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0); 1065 } else if (strncmp(p, "verbose", n) == 0) { 1066 *(options[i].flag) = 1; 1067 } else { 1068 *(options[i].flag) ^= 0xFFFFFFFF; 1069 } 1070 } 1071 return 1; 1072 } 1073 1074 __setup("aic7xxx=", aic7xxx_setup); 1075 1076 uint32_t aic7xxx_verbose; 1077 1078 int 1079 ahc_linux_register_host(struct ahc_softc *ahc, struct scsi_host_template *template) 1080 { 1081 char buf[80]; 1082 struct Scsi_Host *host; 1083 char *new_name; 1084 u_long s; 1085 int retval; 1086 1087 template->name = ahc->description; 1088 host = scsi_host_alloc(template, sizeof(struct ahc_softc *)); 1089 if (host == NULL) 1090 return (ENOMEM); 1091 1092 *((struct ahc_softc **)host->hostdata) = ahc; 1093 ahc->platform_data->host = host; 1094 host->can_queue = AHC_MAX_QUEUE; 1095 host->cmd_per_lun = 2; 1096 /* XXX No way to communicate the ID for multiple channels */ 1097 host->this_id = ahc->our_id; 1098 host->irq = ahc->platform_data->irq; 1099 host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8; 1100 host->max_lun = AHC_NUM_LUNS; 1101 host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0; 1102 host->sg_tablesize = AHC_NSEG; 1103 ahc_lock(ahc, &s); 1104 ahc_set_unit(ahc, ahc_linux_unit++); 1105 ahc_unlock(ahc, &s); 1106 sprintf(buf, "scsi%d", host->host_no); 1107 new_name = kmalloc(strlen(buf) + 1, GFP_ATOMIC); 1108 if (new_name != NULL) { 1109 strcpy(new_name, buf); 1110 ahc_set_name(ahc, new_name); 1111 } 1112 host->unique_id = ahc->unit; 1113 ahc_linux_initialize_scsi_bus(ahc); 1114 ahc_intr_enable(ahc, TRUE); 1115 1116 host->transportt = ahc_linux_transport_template; 1117 1118 retval = scsi_add_host(host, ahc->dev); 1119 if (retval) { 1120 printk(KERN_WARNING "aic7xxx: scsi_add_host failed\n"); 1121 scsi_host_put(host); 1122 return retval; 1123 } 1124 1125 scsi_scan_host(host); 1126 return 0; 1127 } 1128 1129 /* 1130 * Place the SCSI bus into a known state by either resetting it, 1131 * or forcing transfer negotiations on the next command to any 1132 * target. 1133 */ 1134 static void 1135 ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc) 1136 { 1137 int i; 1138 int numtarg; 1139 unsigned long s; 1140 1141 i = 0; 1142 numtarg = 0; 1143 1144 ahc_lock(ahc, &s); 1145 1146 if (aic7xxx_no_reset != 0) 1147 ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B); 1148 1149 if ((ahc->flags & AHC_RESET_BUS_A) != 0) 1150 ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE); 1151 else 1152 numtarg = (ahc->features & AHC_WIDE) ? 16 : 8; 1153 1154 if ((ahc->features & AHC_TWIN) != 0) { 1155 1156 if ((ahc->flags & AHC_RESET_BUS_B) != 0) { 1157 ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE); 1158 } else { 1159 if (numtarg == 0) 1160 i = 8; 1161 numtarg += 8; 1162 } 1163 } 1164 1165 /* 1166 * Force negotiation to async for all targets that 1167 * will not see an initial bus reset. 1168 */ 1169 for (; i < numtarg; i++) { 1170 struct ahc_devinfo devinfo; 1171 struct ahc_initiator_tinfo *tinfo; 1172 struct ahc_tmode_tstate *tstate; 1173 u_int our_id; 1174 u_int target_id; 1175 char channel; 1176 1177 channel = 'A'; 1178 our_id = ahc->our_id; 1179 target_id = i; 1180 if (i > 7 && (ahc->features & AHC_TWIN) != 0) { 1181 channel = 'B'; 1182 our_id = ahc->our_id_b; 1183 target_id = i % 8; 1184 } 1185 tinfo = ahc_fetch_transinfo(ahc, channel, our_id, 1186 target_id, &tstate); 1187 ahc_compile_devinfo(&devinfo, our_id, target_id, 1188 CAM_LUN_WILDCARD, channel, ROLE_INITIATOR); 1189 ahc_update_neg_request(ahc, &devinfo, tstate, 1190 tinfo, AHC_NEG_ALWAYS); 1191 } 1192 ahc_unlock(ahc, &s); 1193 /* Give the bus some time to recover */ 1194 if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) { 1195 ahc_linux_freeze_simq(ahc); 1196 msleep(AIC7XXX_RESET_DELAY); 1197 ahc_linux_release_simq(ahc); 1198 } 1199 } 1200 1201 int 1202 ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg) 1203 { 1204 1205 ahc->platform_data = 1206 kzalloc(sizeof(struct ahc_platform_data), GFP_ATOMIC); 1207 if (ahc->platform_data == NULL) 1208 return (ENOMEM); 1209 ahc->platform_data->irq = AHC_LINUX_NOIRQ; 1210 ahc_lockinit(ahc); 1211 ahc->seltime = (aic7xxx_seltime & 0x3) << 4; 1212 ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4; 1213 if (aic7xxx_pci_parity == 0) 1214 ahc->flags |= AHC_DISABLE_PCI_PERR; 1215 1216 return (0); 1217 } 1218 1219 void 1220 ahc_platform_free(struct ahc_softc *ahc) 1221 { 1222 struct scsi_target *starget; 1223 int i; 1224 1225 if (ahc->platform_data != NULL) { 1226 /* destroy all of the device and target objects */ 1227 for (i = 0; i < AHC_NUM_TARGETS; i++) { 1228 starget = ahc->platform_data->starget[i]; 1229 if (starget != NULL) { 1230 ahc->platform_data->starget[i] = NULL; 1231 } 1232 } 1233 1234 if (ahc->platform_data->irq != AHC_LINUX_NOIRQ) 1235 free_irq(ahc->platform_data->irq, ahc); 1236 if (ahc->tag == BUS_SPACE_PIO 1237 && ahc->bsh.ioport != 0) 1238 release_region(ahc->bsh.ioport, 256); 1239 if (ahc->tag == BUS_SPACE_MEMIO 1240 && ahc->bsh.maddr != NULL) { 1241 iounmap(ahc->bsh.maddr); 1242 release_mem_region(ahc->platform_data->mem_busaddr, 1243 0x1000); 1244 } 1245 1246 if (ahc->platform_data->host) 1247 scsi_host_put(ahc->platform_data->host); 1248 1249 kfree(ahc->platform_data); 1250 } 1251 } 1252 1253 void 1254 ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb) 1255 { 1256 ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb), 1257 SCB_GET_CHANNEL(ahc, scb), 1258 SCB_GET_LUN(scb), SCB_LIST_NULL, 1259 ROLE_UNKNOWN, CAM_REQUEUE_REQ); 1260 } 1261 1262 void 1263 ahc_platform_set_tags(struct ahc_softc *ahc, struct scsi_device *sdev, 1264 struct ahc_devinfo *devinfo, ahc_queue_alg alg) 1265 { 1266 struct ahc_linux_device *dev; 1267 int was_queuing; 1268 int now_queuing; 1269 1270 if (sdev == NULL) 1271 return; 1272 dev = scsi_transport_device_data(sdev); 1273 1274 was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED); 1275 switch (alg) { 1276 default: 1277 case AHC_QUEUE_NONE: 1278 now_queuing = 0; 1279 break; 1280 case AHC_QUEUE_BASIC: 1281 now_queuing = AHC_DEV_Q_BASIC; 1282 break; 1283 case AHC_QUEUE_TAGGED: 1284 now_queuing = AHC_DEV_Q_TAGGED; 1285 break; 1286 } 1287 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0 1288 && (was_queuing != now_queuing) 1289 && (dev->active != 0)) { 1290 dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY; 1291 dev->qfrozen++; 1292 } 1293 1294 dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG); 1295 if (now_queuing) { 1296 u_int usertags; 1297 1298 usertags = ahc_linux_user_tagdepth(ahc, devinfo); 1299 if (!was_queuing) { 1300 /* 1301 * Start out aggressively and allow our 1302 * dynamic queue depth algorithm to take 1303 * care of the rest. 1304 */ 1305 dev->maxtags = usertags; 1306 dev->openings = dev->maxtags - dev->active; 1307 } 1308 if (dev->maxtags == 0) { 1309 /* 1310 * Queueing is disabled by the user. 1311 */ 1312 dev->openings = 1; 1313 } else if (alg == AHC_QUEUE_TAGGED) { 1314 dev->flags |= AHC_DEV_Q_TAGGED; 1315 if (aic7xxx_periodic_otag != 0) 1316 dev->flags |= AHC_DEV_PERIODIC_OTAG; 1317 } else 1318 dev->flags |= AHC_DEV_Q_BASIC; 1319 } else { 1320 /* We can only have one opening. */ 1321 dev->maxtags = 0; 1322 dev->openings = 1 - dev->active; 1323 } 1324 switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) { 1325 case AHC_DEV_Q_BASIC: 1326 case AHC_DEV_Q_TAGGED: 1327 scsi_change_queue_depth(sdev, 1328 dev->openings + dev->active); 1329 break; 1330 default: 1331 /* 1332 * We allow the OS to queue 2 untagged transactions to 1333 * us at any time even though we can only execute them 1334 * serially on the controller/device. This should 1335 * remove some latency. 1336 */ 1337 scsi_change_queue_depth(sdev, 2); 1338 break; 1339 } 1340 } 1341 1342 int 1343 ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel, 1344 int lun, u_int tag, role_t role, uint32_t status) 1345 { 1346 return 0; 1347 } 1348 1349 static u_int 1350 ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo) 1351 { 1352 static int warned_user; 1353 u_int tags; 1354 1355 tags = 0; 1356 if ((ahc->user_discenable & devinfo->target_mask) != 0) { 1357 if (ahc->unit >= ARRAY_SIZE(aic7xxx_tag_info)) { 1358 if (warned_user == 0) { 1359 1360 printk(KERN_WARNING 1361 "aic7xxx: WARNING: Insufficient tag_info instances\n" 1362 "aic7xxx: for installed controllers. Using defaults\n" 1363 "aic7xxx: Please update the aic7xxx_tag_info array in\n" 1364 "aic7xxx: the aic7xxx_osm..c source file.\n"); 1365 warned_user++; 1366 } 1367 tags = AHC_MAX_QUEUE; 1368 } else { 1369 adapter_tag_info_t *tag_info; 1370 1371 tag_info = &aic7xxx_tag_info[ahc->unit]; 1372 tags = tag_info->tag_commands[devinfo->target_offset]; 1373 if (tags > AHC_MAX_QUEUE) 1374 tags = AHC_MAX_QUEUE; 1375 } 1376 } 1377 return (tags); 1378 } 1379 1380 /* 1381 * Determines the queue depth for a given device. 1382 */ 1383 static void 1384 ahc_linux_device_queue_depth(struct scsi_device *sdev) 1385 { 1386 struct ahc_devinfo devinfo; 1387 u_int tags; 1388 struct ahc_softc *ahc = *((struct ahc_softc **)sdev->host->hostdata); 1389 1390 ahc_compile_devinfo(&devinfo, 1391 sdev->sdev_target->channel == 0 1392 ? ahc->our_id : ahc->our_id_b, 1393 sdev->sdev_target->id, sdev->lun, 1394 sdev->sdev_target->channel == 0 ? 'A' : 'B', 1395 ROLE_INITIATOR); 1396 tags = ahc_linux_user_tagdepth(ahc, &devinfo); 1397 if (tags != 0 && sdev->tagged_supported != 0) { 1398 1399 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_TAGGED); 1400 ahc_send_async(ahc, devinfo.channel, devinfo.target, 1401 devinfo.lun, AC_TRANSFER_NEG); 1402 ahc_print_devinfo(ahc, &devinfo); 1403 printk("Tagged Queuing enabled. Depth %d\n", tags); 1404 } else { 1405 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_NONE); 1406 ahc_send_async(ahc, devinfo.channel, devinfo.target, 1407 devinfo.lun, AC_TRANSFER_NEG); 1408 } 1409 } 1410 1411 static int 1412 ahc_linux_run_command(struct ahc_softc *ahc, struct ahc_linux_device *dev, 1413 struct scsi_cmnd *cmd) 1414 { 1415 struct scb *scb; 1416 struct hardware_scb *hscb; 1417 struct ahc_initiator_tinfo *tinfo; 1418 struct ahc_tmode_tstate *tstate; 1419 uint16_t mask; 1420 struct scb_tailq *untagged_q = NULL; 1421 int nseg; 1422 1423 /* 1424 * Schedule us to run later. The only reason we are not 1425 * running is because the whole controller Q is frozen. 1426 */ 1427 if (ahc->platform_data->qfrozen != 0) 1428 return SCSI_MLQUEUE_HOST_BUSY; 1429 1430 /* 1431 * We only allow one untagged transaction 1432 * per target in the initiator role unless 1433 * we are storing a full busy target *lun* 1434 * table in SCB space. 1435 */ 1436 if (!(cmd->flags & SCMD_TAGGED) 1437 && (ahc->features & AHC_SCB_BTT) == 0) { 1438 int target_offset; 1439 1440 target_offset = cmd->device->id + cmd->device->channel * 8; 1441 untagged_q = &(ahc->untagged_queues[target_offset]); 1442 if (!TAILQ_EMPTY(untagged_q)) 1443 /* if we're already executing an untagged command 1444 * we're busy to another */ 1445 return SCSI_MLQUEUE_DEVICE_BUSY; 1446 } 1447 1448 nseg = scsi_dma_map(cmd); 1449 if (nseg < 0) 1450 return SCSI_MLQUEUE_HOST_BUSY; 1451 1452 /* 1453 * Get an scb to use. 1454 */ 1455 scb = ahc_get_scb(ahc); 1456 if (!scb) { 1457 scsi_dma_unmap(cmd); 1458 return SCSI_MLQUEUE_HOST_BUSY; 1459 } 1460 1461 scb->io_ctx = cmd; 1462 scb->platform_data->dev = dev; 1463 hscb = scb->hscb; 1464 cmd->host_scribble = (char *)scb; 1465 1466 /* 1467 * Fill out basics of the HSCB. 1468 */ 1469 hscb->control = 0; 1470 hscb->scsiid = BUILD_SCSIID(ahc, cmd); 1471 hscb->lun = cmd->device->lun; 1472 mask = SCB_GET_TARGET_MASK(ahc, scb); 1473 tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb), 1474 SCB_GET_OUR_ID(scb), 1475 SCB_GET_TARGET(ahc, scb), &tstate); 1476 hscb->scsirate = tinfo->scsirate; 1477 hscb->scsioffset = tinfo->curr.offset; 1478 if ((tstate->ultraenb & mask) != 0) 1479 hscb->control |= ULTRAENB; 1480 1481 if ((ahc->user_discenable & mask) != 0) 1482 hscb->control |= DISCENB; 1483 1484 if ((tstate->auto_negotiate & mask) != 0) { 1485 scb->flags |= SCB_AUTO_NEGOTIATE; 1486 scb->hscb->control |= MK_MESSAGE; 1487 } 1488 1489 if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) { 1490 if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH 1491 && (dev->flags & AHC_DEV_Q_TAGGED) != 0) { 1492 hscb->control |= MSG_ORDERED_TASK; 1493 dev->commands_since_idle_or_otag = 0; 1494 } else { 1495 hscb->control |= MSG_SIMPLE_TASK; 1496 } 1497 } 1498 1499 hscb->cdb_len = cmd->cmd_len; 1500 if (hscb->cdb_len <= 12) { 1501 memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len); 1502 } else { 1503 memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len); 1504 scb->flags |= SCB_CDB32_PTR; 1505 } 1506 1507 scb->platform_data->xfer_len = 0; 1508 ahc_set_residual(scb, 0); 1509 ahc_set_sense_residual(scb, 0); 1510 scb->sg_count = 0; 1511 1512 if (nseg > 0) { 1513 struct ahc_dma_seg *sg; 1514 struct scatterlist *cur_seg; 1515 int i; 1516 1517 /* Copy the segments into the SG list. */ 1518 sg = scb->sg_list; 1519 /* 1520 * The sg_count may be larger than nseg if 1521 * a transfer crosses a 32bit page. 1522 */ 1523 scsi_for_each_sg(cmd, cur_seg, nseg, i) { 1524 dma_addr_t addr; 1525 bus_size_t len; 1526 int consumed; 1527 1528 addr = sg_dma_address(cur_seg); 1529 len = sg_dma_len(cur_seg); 1530 consumed = ahc_linux_map_seg(ahc, scb, 1531 sg, addr, len); 1532 sg += consumed; 1533 scb->sg_count += consumed; 1534 } 1535 sg--; 1536 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG); 1537 1538 /* 1539 * Reset the sg list pointer. 1540 */ 1541 scb->hscb->sgptr = 1542 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID); 1543 1544 /* 1545 * Copy the first SG into the "current" 1546 * data pointer area. 1547 */ 1548 scb->hscb->dataptr = scb->sg_list->addr; 1549 scb->hscb->datacnt = scb->sg_list->len; 1550 } else { 1551 scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL); 1552 scb->hscb->dataptr = 0; 1553 scb->hscb->datacnt = 0; 1554 scb->sg_count = 0; 1555 } 1556 1557 LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links); 1558 dev->openings--; 1559 dev->active++; 1560 dev->commands_issued++; 1561 if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0) 1562 dev->commands_since_idle_or_otag++; 1563 1564 scb->flags |= SCB_ACTIVE; 1565 if (untagged_q) { 1566 TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe); 1567 scb->flags |= SCB_UNTAGGEDQ; 1568 } 1569 ahc_queue_scb(ahc, scb); 1570 return 0; 1571 } 1572 1573 /* 1574 * SCSI controller interrupt handler. 1575 */ 1576 irqreturn_t 1577 ahc_linux_isr(int irq, void *dev_id) 1578 { 1579 struct ahc_softc *ahc; 1580 u_long flags; 1581 int ours; 1582 1583 ahc = (struct ahc_softc *) dev_id; 1584 ahc_lock(ahc, &flags); 1585 ours = ahc_intr(ahc); 1586 ahc_unlock(ahc, &flags); 1587 return IRQ_RETVAL(ours); 1588 } 1589 1590 void 1591 ahc_platform_flushwork(struct ahc_softc *ahc) 1592 { 1593 1594 } 1595 1596 void 1597 ahc_send_async(struct ahc_softc *ahc, char channel, 1598 u_int target, u_int lun, ac_code code) 1599 { 1600 switch (code) { 1601 case AC_TRANSFER_NEG: 1602 { 1603 struct scsi_target *starget; 1604 struct ahc_linux_target *targ; 1605 struct ahc_initiator_tinfo *tinfo; 1606 struct ahc_tmode_tstate *tstate; 1607 int target_offset; 1608 unsigned int target_ppr_options; 1609 1610 BUG_ON(target == CAM_TARGET_WILDCARD); 1611 1612 tinfo = ahc_fetch_transinfo(ahc, channel, 1613 channel == 'A' ? ahc->our_id 1614 : ahc->our_id_b, 1615 target, &tstate); 1616 1617 /* 1618 * Don't bother reporting results while 1619 * negotiations are still pending. 1620 */ 1621 if (tinfo->curr.period != tinfo->goal.period 1622 || tinfo->curr.width != tinfo->goal.width 1623 || tinfo->curr.offset != tinfo->goal.offset 1624 || tinfo->curr.ppr_options != tinfo->goal.ppr_options) 1625 if (bootverbose == 0) 1626 break; 1627 1628 /* 1629 * Don't bother reporting results that 1630 * are identical to those last reported. 1631 */ 1632 target_offset = target; 1633 if (channel == 'B') 1634 target_offset += 8; 1635 starget = ahc->platform_data->starget[target_offset]; 1636 if (starget == NULL) 1637 break; 1638 targ = scsi_transport_target_data(starget); 1639 1640 target_ppr_options = 1641 (spi_dt(starget) ? MSG_EXT_PPR_DT_REQ : 0) 1642 + (spi_qas(starget) ? MSG_EXT_PPR_QAS_REQ : 0) 1643 + (spi_iu(starget) ? MSG_EXT_PPR_IU_REQ : 0); 1644 1645 if (tinfo->curr.period == spi_period(starget) 1646 && tinfo->curr.width == spi_width(starget) 1647 && tinfo->curr.offset == spi_offset(starget) 1648 && tinfo->curr.ppr_options == target_ppr_options) 1649 if (bootverbose == 0) 1650 break; 1651 1652 spi_period(starget) = tinfo->curr.period; 1653 spi_width(starget) = tinfo->curr.width; 1654 spi_offset(starget) = tinfo->curr.offset; 1655 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_DT_REQ ? 1 : 0; 1656 spi_qas(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_QAS_REQ ? 1 : 0; 1657 spi_iu(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ ? 1 : 0; 1658 spi_display_xfer_agreement(starget); 1659 break; 1660 } 1661 case AC_SENT_BDR: 1662 { 1663 WARN_ON(lun != CAM_LUN_WILDCARD); 1664 scsi_report_device_reset(ahc->platform_data->host, 1665 channel - 'A', target); 1666 break; 1667 } 1668 case AC_BUS_RESET: 1669 if (ahc->platform_data->host != NULL) { 1670 scsi_report_bus_reset(ahc->platform_data->host, 1671 channel - 'A'); 1672 } 1673 break; 1674 default: 1675 panic("ahc_send_async: Unexpected async event"); 1676 } 1677 } 1678 1679 /* 1680 * Calls the higher level scsi done function and frees the scb. 1681 */ 1682 void 1683 ahc_done(struct ahc_softc *ahc, struct scb *scb) 1684 { 1685 struct scsi_cmnd *cmd; 1686 struct ahc_linux_device *dev; 1687 1688 LIST_REMOVE(scb, pending_links); 1689 if ((scb->flags & SCB_UNTAGGEDQ) != 0) { 1690 struct scb_tailq *untagged_q; 1691 int target_offset; 1692 1693 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb); 1694 untagged_q = &(ahc->untagged_queues[target_offset]); 1695 TAILQ_REMOVE(untagged_q, scb, links.tqe); 1696 BUG_ON(!TAILQ_EMPTY(untagged_q)); 1697 } else if ((scb->flags & SCB_ACTIVE) == 0) { 1698 /* 1699 * Transactions aborted from the untagged queue may 1700 * not have been dispatched to the controller, so 1701 * only check the SCB_ACTIVE flag for tagged transactions. 1702 */ 1703 printk("SCB %d done'd twice\n", scb->hscb->tag); 1704 ahc_dump_card_state(ahc); 1705 panic("Stopping for safety"); 1706 } 1707 cmd = scb->io_ctx; 1708 dev = scb->platform_data->dev; 1709 dev->active--; 1710 dev->openings++; 1711 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) { 1712 cmd->result &= ~(CAM_DEV_QFRZN << 16); 1713 dev->qfrozen--; 1714 } 1715 ahc_linux_unmap_scb(ahc, scb); 1716 1717 /* 1718 * Guard against stale sense data. 1719 * The Linux mid-layer assumes that sense 1720 * was retrieved anytime the first byte of 1721 * the sense buffer looks "sane". 1722 */ 1723 cmd->sense_buffer[0] = 0; 1724 if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) { 1725 uint32_t amount_xferred; 1726 1727 amount_xferred = 1728 ahc_get_transfer_length(scb) - ahc_get_residual(scb); 1729 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) { 1730 #ifdef AHC_DEBUG 1731 if ((ahc_debug & AHC_SHOW_MISC) != 0) { 1732 ahc_print_path(ahc, scb); 1733 printk("Set CAM_UNCOR_PARITY\n"); 1734 } 1735 #endif 1736 ahc_set_transaction_status(scb, CAM_UNCOR_PARITY); 1737 #ifdef AHC_REPORT_UNDERFLOWS 1738 /* 1739 * This code is disabled by default as some 1740 * clients of the SCSI system do not properly 1741 * initialize the underflow parameter. This 1742 * results in spurious termination of commands 1743 * that complete as expected (e.g. underflow is 1744 * allowed as command can return variable amounts 1745 * of data. 1746 */ 1747 } else if (amount_xferred < scb->io_ctx->underflow) { 1748 u_int i; 1749 1750 ahc_print_path(ahc, scb); 1751 printk("CDB:"); 1752 for (i = 0; i < scb->io_ctx->cmd_len; i++) 1753 printk(" 0x%x", scb->io_ctx->cmnd[i]); 1754 printk("\n"); 1755 ahc_print_path(ahc, scb); 1756 printk("Saw underflow (%ld of %ld bytes). " 1757 "Treated as error\n", 1758 ahc_get_residual(scb), 1759 ahc_get_transfer_length(scb)); 1760 ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR); 1761 #endif 1762 } else { 1763 ahc_set_transaction_status(scb, CAM_REQ_CMP); 1764 } 1765 } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) { 1766 ahc_linux_handle_scsi_status(ahc, cmd->device, scb); 1767 } 1768 1769 if (dev->openings == 1 1770 && ahc_get_transaction_status(scb) == CAM_REQ_CMP 1771 && ahc_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL) 1772 dev->tag_success_count++; 1773 /* 1774 * Some devices deal with temporary internal resource 1775 * shortages by returning queue full. When the queue 1776 * full occurrs, we throttle back. Slowly try to get 1777 * back to our previous queue depth. 1778 */ 1779 if ((dev->openings + dev->active) < dev->maxtags 1780 && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) { 1781 dev->tag_success_count = 0; 1782 dev->openings++; 1783 } 1784 1785 if (dev->active == 0) 1786 dev->commands_since_idle_or_otag = 0; 1787 1788 if ((scb->flags & SCB_RECOVERY_SCB) != 0) { 1789 printk("Recovery SCB completes\n"); 1790 if (ahc_get_transaction_status(scb) == CAM_BDR_SENT 1791 || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED) 1792 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT); 1793 1794 if (ahc->platform_data->eh_done) 1795 complete(ahc->platform_data->eh_done); 1796 } 1797 1798 ahc_free_scb(ahc, scb); 1799 ahc_linux_queue_cmd_complete(ahc, cmd); 1800 } 1801 1802 static void 1803 ahc_linux_handle_scsi_status(struct ahc_softc *ahc, 1804 struct scsi_device *sdev, struct scb *scb) 1805 { 1806 struct ahc_devinfo devinfo; 1807 struct ahc_linux_device *dev = scsi_transport_device_data(sdev); 1808 1809 ahc_compile_devinfo(&devinfo, 1810 ahc->our_id, 1811 sdev->sdev_target->id, sdev->lun, 1812 sdev->sdev_target->channel == 0 ? 'A' : 'B', 1813 ROLE_INITIATOR); 1814 1815 /* 1816 * We don't currently trust the mid-layer to 1817 * properly deal with queue full or busy. So, 1818 * when one occurs, we tell the mid-layer to 1819 * unconditionally requeue the command to us 1820 * so that we can retry it ourselves. We also 1821 * implement our own throttling mechanism so 1822 * we don't clobber the device with too many 1823 * commands. 1824 */ 1825 switch (ahc_get_scsi_status(scb)) { 1826 default: 1827 break; 1828 case SCSI_STATUS_CHECK_COND: 1829 case SCSI_STATUS_CMD_TERMINATED: 1830 { 1831 struct scsi_cmnd *cmd; 1832 1833 /* 1834 * Copy sense information to the OS's cmd 1835 * structure if it is available. 1836 */ 1837 cmd = scb->io_ctx; 1838 if (scb->flags & SCB_SENSE) { 1839 u_int sense_size; 1840 1841 sense_size = min(sizeof(struct scsi_sense_data) 1842 - ahc_get_sense_residual(scb), 1843 (u_long)SCSI_SENSE_BUFFERSIZE); 1844 memcpy(cmd->sense_buffer, 1845 ahc_get_sense_buf(ahc, scb), sense_size); 1846 if (sense_size < SCSI_SENSE_BUFFERSIZE) 1847 memset(&cmd->sense_buffer[sense_size], 0, 1848 SCSI_SENSE_BUFFERSIZE - sense_size); 1849 cmd->result |= (DRIVER_SENSE << 24); 1850 #ifdef AHC_DEBUG 1851 if (ahc_debug & AHC_SHOW_SENSE) { 1852 int i; 1853 1854 printk("Copied %d bytes of sense data:", 1855 sense_size); 1856 for (i = 0; i < sense_size; i++) { 1857 if ((i & 0xF) == 0) 1858 printk("\n"); 1859 printk("0x%x ", cmd->sense_buffer[i]); 1860 } 1861 printk("\n"); 1862 } 1863 #endif 1864 } 1865 break; 1866 } 1867 case SCSI_STATUS_QUEUE_FULL: 1868 { 1869 /* 1870 * By the time the core driver has returned this 1871 * command, all other commands that were queued 1872 * to us but not the device have been returned. 1873 * This ensures that dev->active is equal to 1874 * the number of commands actually queued to 1875 * the device. 1876 */ 1877 dev->tag_success_count = 0; 1878 if (dev->active != 0) { 1879 /* 1880 * Drop our opening count to the number 1881 * of commands currently outstanding. 1882 */ 1883 dev->openings = 0; 1884 /* 1885 ahc_print_path(ahc, scb); 1886 printk("Dropping tag count to %d\n", dev->active); 1887 */ 1888 if (dev->active == dev->tags_on_last_queuefull) { 1889 1890 dev->last_queuefull_same_count++; 1891 /* 1892 * If we repeatedly see a queue full 1893 * at the same queue depth, this 1894 * device has a fixed number of tag 1895 * slots. Lock in this tag depth 1896 * so we stop seeing queue fulls from 1897 * this device. 1898 */ 1899 if (dev->last_queuefull_same_count 1900 == AHC_LOCK_TAGS_COUNT) { 1901 dev->maxtags = dev->active; 1902 ahc_print_path(ahc, scb); 1903 printk("Locking max tag count at %d\n", 1904 dev->active); 1905 } 1906 } else { 1907 dev->tags_on_last_queuefull = dev->active; 1908 dev->last_queuefull_same_count = 0; 1909 } 1910 ahc_set_transaction_status(scb, CAM_REQUEUE_REQ); 1911 ahc_set_scsi_status(scb, SCSI_STATUS_OK); 1912 ahc_platform_set_tags(ahc, sdev, &devinfo, 1913 (dev->flags & AHC_DEV_Q_BASIC) 1914 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED); 1915 break; 1916 } 1917 /* 1918 * Drop down to a single opening, and treat this 1919 * as if the target returned BUSY SCSI status. 1920 */ 1921 dev->openings = 1; 1922 ahc_set_scsi_status(scb, SCSI_STATUS_BUSY); 1923 ahc_platform_set_tags(ahc, sdev, &devinfo, 1924 (dev->flags & AHC_DEV_Q_BASIC) 1925 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED); 1926 break; 1927 } 1928 } 1929 } 1930 1931 static void 1932 ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, struct scsi_cmnd *cmd) 1933 { 1934 /* 1935 * Map CAM error codes into Linux Error codes. We 1936 * avoid the conversion so that the DV code has the 1937 * full error information available when making 1938 * state change decisions. 1939 */ 1940 { 1941 u_int new_status; 1942 1943 switch (ahc_cmd_get_transaction_status(cmd)) { 1944 case CAM_REQ_INPROG: 1945 case CAM_REQ_CMP: 1946 case CAM_SCSI_STATUS_ERROR: 1947 new_status = DID_OK; 1948 break; 1949 case CAM_REQ_ABORTED: 1950 new_status = DID_ABORT; 1951 break; 1952 case CAM_BUSY: 1953 new_status = DID_BUS_BUSY; 1954 break; 1955 case CAM_REQ_INVALID: 1956 case CAM_PATH_INVALID: 1957 new_status = DID_BAD_TARGET; 1958 break; 1959 case CAM_SEL_TIMEOUT: 1960 new_status = DID_NO_CONNECT; 1961 break; 1962 case CAM_SCSI_BUS_RESET: 1963 case CAM_BDR_SENT: 1964 new_status = DID_RESET; 1965 break; 1966 case CAM_UNCOR_PARITY: 1967 new_status = DID_PARITY; 1968 break; 1969 case CAM_CMD_TIMEOUT: 1970 new_status = DID_TIME_OUT; 1971 break; 1972 case CAM_UA_ABORT: 1973 case CAM_REQ_CMP_ERR: 1974 case CAM_AUTOSENSE_FAIL: 1975 case CAM_NO_HBA: 1976 case CAM_DATA_RUN_ERR: 1977 case CAM_UNEXP_BUSFREE: 1978 case CAM_SEQUENCE_FAIL: 1979 case CAM_CCB_LEN_ERR: 1980 case CAM_PROVIDE_FAIL: 1981 case CAM_REQ_TERMIO: 1982 case CAM_UNREC_HBA_ERROR: 1983 case CAM_REQ_TOO_BIG: 1984 new_status = DID_ERROR; 1985 break; 1986 case CAM_REQUEUE_REQ: 1987 new_status = DID_REQUEUE; 1988 break; 1989 default: 1990 /* We should never get here */ 1991 new_status = DID_ERROR; 1992 break; 1993 } 1994 1995 ahc_cmd_set_transaction_status(cmd, new_status); 1996 } 1997 1998 cmd->scsi_done(cmd); 1999 } 2000 2001 static void 2002 ahc_linux_freeze_simq(struct ahc_softc *ahc) 2003 { 2004 unsigned long s; 2005 2006 ahc_lock(ahc, &s); 2007 ahc->platform_data->qfrozen++; 2008 if (ahc->platform_data->qfrozen == 1) { 2009 scsi_block_requests(ahc->platform_data->host); 2010 2011 /* XXX What about Twin channels? */ 2012 ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS, 2013 CAM_LUN_WILDCARD, SCB_LIST_NULL, 2014 ROLE_INITIATOR, CAM_REQUEUE_REQ); 2015 } 2016 ahc_unlock(ahc, &s); 2017 } 2018 2019 static void 2020 ahc_linux_release_simq(struct ahc_softc *ahc) 2021 { 2022 u_long s; 2023 int unblock_reqs; 2024 2025 unblock_reqs = 0; 2026 ahc_lock(ahc, &s); 2027 if (ahc->platform_data->qfrozen > 0) 2028 ahc->platform_data->qfrozen--; 2029 if (ahc->platform_data->qfrozen == 0) 2030 unblock_reqs = 1; 2031 ahc_unlock(ahc, &s); 2032 /* 2033 * There is still a race here. The mid-layer 2034 * should keep its own freeze count and use 2035 * a bottom half handler to run the queues 2036 * so we can unblock with our own lock held. 2037 */ 2038 if (unblock_reqs) 2039 scsi_unblock_requests(ahc->platform_data->host); 2040 } 2041 2042 static int 2043 ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag) 2044 { 2045 struct ahc_softc *ahc; 2046 struct ahc_linux_device *dev; 2047 struct scb *pending_scb; 2048 u_int saved_scbptr; 2049 u_int active_scb_index; 2050 u_int last_phase; 2051 u_int saved_scsiid; 2052 u_int cdb_byte; 2053 int retval; 2054 int was_paused; 2055 int paused; 2056 int wait; 2057 int disconnected; 2058 unsigned long flags; 2059 2060 pending_scb = NULL; 2061 paused = FALSE; 2062 wait = FALSE; 2063 ahc = *(struct ahc_softc **)cmd->device->host->hostdata; 2064 2065 scmd_printk(KERN_INFO, cmd, "Attempting to queue a%s message\n", 2066 flag == SCB_ABORT ? "n ABORT" : " TARGET RESET"); 2067 2068 printk("CDB:"); 2069 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++) 2070 printk(" 0x%x", cmd->cmnd[cdb_byte]); 2071 printk("\n"); 2072 2073 ahc_lock(ahc, &flags); 2074 2075 /* 2076 * First determine if we currently own this command. 2077 * Start by searching the device queue. If not found 2078 * there, check the pending_scb list. If not found 2079 * at all, and the system wanted us to just abort the 2080 * command, return success. 2081 */ 2082 dev = scsi_transport_device_data(cmd->device); 2083 2084 if (dev == NULL) { 2085 /* 2086 * No target device for this command exists, 2087 * so we must not still own the command. 2088 */ 2089 printk("%s:%d:%d:%d: Is not an active device\n", 2090 ahc_name(ahc), cmd->device->channel, cmd->device->id, 2091 (u8)cmd->device->lun); 2092 retval = SUCCESS; 2093 goto no_cmd; 2094 } 2095 2096 if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0 2097 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id, 2098 cmd->device->channel + 'A', 2099 (u8)cmd->device->lun, 2100 CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) { 2101 printk("%s:%d:%d:%d: Command found on untagged queue\n", 2102 ahc_name(ahc), cmd->device->channel, cmd->device->id, 2103 (u8)cmd->device->lun); 2104 retval = SUCCESS; 2105 goto done; 2106 } 2107 2108 /* 2109 * See if we can find a matching cmd in the pending list. 2110 */ 2111 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { 2112 if (pending_scb->io_ctx == cmd) 2113 break; 2114 } 2115 2116 if (pending_scb == NULL && flag == SCB_DEVICE_RESET) { 2117 2118 /* Any SCB for this device will do for a target reset */ 2119 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) { 2120 if (ahc_match_scb(ahc, pending_scb, scmd_id(cmd), 2121 scmd_channel(cmd) + 'A', 2122 CAM_LUN_WILDCARD, 2123 SCB_LIST_NULL, ROLE_INITIATOR)) 2124 break; 2125 } 2126 } 2127 2128 if (pending_scb == NULL) { 2129 scmd_printk(KERN_INFO, cmd, "Command not found\n"); 2130 goto no_cmd; 2131 } 2132 2133 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) { 2134 /* 2135 * We can't queue two recovery actions using the same SCB 2136 */ 2137 retval = FAILED; 2138 goto done; 2139 } 2140 2141 /* 2142 * Ensure that the card doesn't do anything 2143 * behind our back and that we didn't "just" miss 2144 * an interrupt that would affect this cmd. 2145 */ 2146 was_paused = ahc_is_paused(ahc); 2147 ahc_pause_and_flushwork(ahc); 2148 paused = TRUE; 2149 2150 if ((pending_scb->flags & SCB_ACTIVE) == 0) { 2151 scmd_printk(KERN_INFO, cmd, "Command already completed\n"); 2152 goto no_cmd; 2153 } 2154 2155 printk("%s: At time of recovery, card was %spaused\n", 2156 ahc_name(ahc), was_paused ? "" : "not "); 2157 ahc_dump_card_state(ahc); 2158 2159 disconnected = TRUE; 2160 if (flag == SCB_ABORT) { 2161 if (ahc_search_qinfifo(ahc, cmd->device->id, 2162 cmd->device->channel + 'A', 2163 cmd->device->lun, 2164 pending_scb->hscb->tag, 2165 ROLE_INITIATOR, CAM_REQ_ABORTED, 2166 SEARCH_COMPLETE) > 0) { 2167 printk("%s:%d:%d:%d: Cmd aborted from QINFIFO\n", 2168 ahc_name(ahc), cmd->device->channel, 2169 cmd->device->id, (u8)cmd->device->lun); 2170 retval = SUCCESS; 2171 goto done; 2172 } 2173 } else if (ahc_search_qinfifo(ahc, cmd->device->id, 2174 cmd->device->channel + 'A', 2175 cmd->device->lun, 2176 pending_scb->hscb->tag, 2177 ROLE_INITIATOR, /*status*/0, 2178 SEARCH_COUNT) > 0) { 2179 disconnected = FALSE; 2180 } 2181 2182 if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) { 2183 struct scb *bus_scb; 2184 2185 bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG)); 2186 if (bus_scb == pending_scb) 2187 disconnected = FALSE; 2188 else if (flag != SCB_ABORT 2189 && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid 2190 && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb)) 2191 disconnected = FALSE; 2192 } 2193 2194 /* 2195 * At this point, pending_scb is the scb associated with the 2196 * passed in command. That command is currently active on the 2197 * bus, is in the disconnected state, or we're hoping to find 2198 * a command for the same target active on the bus to abuse to 2199 * send a BDR. Queue the appropriate message based on which of 2200 * these states we are in. 2201 */ 2202 last_phase = ahc_inb(ahc, LASTPHASE); 2203 saved_scbptr = ahc_inb(ahc, SCBPTR); 2204 active_scb_index = ahc_inb(ahc, SCB_TAG); 2205 saved_scsiid = ahc_inb(ahc, SAVED_SCSIID); 2206 if (last_phase != P_BUSFREE 2207 && (pending_scb->hscb->tag == active_scb_index 2208 || (flag == SCB_DEVICE_RESET 2209 && SCSIID_TARGET(ahc, saved_scsiid) == scmd_id(cmd)))) { 2210 2211 /* 2212 * We're active on the bus, so assert ATN 2213 * and hope that the target responds. 2214 */ 2215 pending_scb = ahc_lookup_scb(ahc, active_scb_index); 2216 pending_scb->flags |= SCB_RECOVERY_SCB|flag; 2217 ahc_outb(ahc, MSG_OUT, HOST_MSG); 2218 ahc_outb(ahc, SCSISIGO, last_phase|ATNO); 2219 scmd_printk(KERN_INFO, cmd, "Device is active, asserting ATN\n"); 2220 wait = TRUE; 2221 } else if (disconnected) { 2222 2223 /* 2224 * Actually re-queue this SCB in an attempt 2225 * to select the device before it reconnects. 2226 * In either case (selection or reselection), 2227 * we will now issue the approprate message 2228 * to the timed-out device. 2229 * 2230 * Set the MK_MESSAGE control bit indicating 2231 * that we desire to send a message. We 2232 * also set the disconnected flag since 2233 * in the paging case there is no guarantee 2234 * that our SCB control byte matches the 2235 * version on the card. We don't want the 2236 * sequencer to abort the command thinking 2237 * an unsolicited reselection occurred. 2238 */ 2239 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED; 2240 pending_scb->flags |= SCB_RECOVERY_SCB|flag; 2241 2242 /* 2243 * Remove any cached copy of this SCB in the 2244 * disconnected list in preparation for the 2245 * queuing of our abort SCB. We use the 2246 * same element in the SCB, SCB_NEXT, for 2247 * both the qinfifo and the disconnected list. 2248 */ 2249 ahc_search_disc_list(ahc, cmd->device->id, 2250 cmd->device->channel + 'A', 2251 cmd->device->lun, pending_scb->hscb->tag, 2252 /*stop_on_first*/TRUE, 2253 /*remove*/TRUE, 2254 /*save_state*/FALSE); 2255 2256 /* 2257 * In the non-paging case, the sequencer will 2258 * never re-reference the in-core SCB. 2259 * To make sure we are notified during 2260 * reselection, set the MK_MESSAGE flag in 2261 * the card's copy of the SCB. 2262 */ 2263 if ((ahc->flags & AHC_PAGESCBS) == 0) { 2264 ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag); 2265 ahc_outb(ahc, SCB_CONTROL, 2266 ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE); 2267 } 2268 2269 /* 2270 * Clear out any entries in the QINFIFO first 2271 * so we are the next SCB for this target 2272 * to run. 2273 */ 2274 ahc_search_qinfifo(ahc, cmd->device->id, 2275 cmd->device->channel + 'A', 2276 cmd->device->lun, SCB_LIST_NULL, 2277 ROLE_INITIATOR, CAM_REQUEUE_REQ, 2278 SEARCH_COMPLETE); 2279 ahc_qinfifo_requeue_tail(ahc, pending_scb); 2280 ahc_outb(ahc, SCBPTR, saved_scbptr); 2281 ahc_print_path(ahc, pending_scb); 2282 printk("Device is disconnected, re-queuing SCB\n"); 2283 wait = TRUE; 2284 } else { 2285 scmd_printk(KERN_INFO, cmd, "Unable to deliver message\n"); 2286 retval = FAILED; 2287 goto done; 2288 } 2289 2290 no_cmd: 2291 /* 2292 * Our assumption is that if we don't have the command, no 2293 * recovery action was required, so we return success. Again, 2294 * the semantics of the mid-layer recovery engine are not 2295 * well defined, so this may change in time. 2296 */ 2297 retval = SUCCESS; 2298 done: 2299 if (paused) 2300 ahc_unpause(ahc); 2301 if (wait) { 2302 DECLARE_COMPLETION_ONSTACK(done); 2303 2304 ahc->platform_data->eh_done = &done; 2305 ahc_unlock(ahc, &flags); 2306 2307 printk("Recovery code sleeping\n"); 2308 if (!wait_for_completion_timeout(&done, 5 * HZ)) { 2309 ahc_lock(ahc, &flags); 2310 ahc->platform_data->eh_done = NULL; 2311 ahc_unlock(ahc, &flags); 2312 2313 printk("Timer Expired\n"); 2314 retval = FAILED; 2315 } 2316 printk("Recovery code awake\n"); 2317 } else 2318 ahc_unlock(ahc, &flags); 2319 return (retval); 2320 } 2321 2322 static void ahc_linux_set_width(struct scsi_target *starget, int width) 2323 { 2324 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2325 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2326 struct ahc_devinfo devinfo; 2327 unsigned long flags; 2328 2329 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2330 starget->channel + 'A', ROLE_INITIATOR); 2331 ahc_lock(ahc, &flags); 2332 ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, FALSE); 2333 ahc_unlock(ahc, &flags); 2334 } 2335 2336 static void ahc_linux_set_period(struct scsi_target *starget, int period) 2337 { 2338 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2339 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2340 struct ahc_tmode_tstate *tstate; 2341 struct ahc_initiator_tinfo *tinfo 2342 = ahc_fetch_transinfo(ahc, 2343 starget->channel + 'A', 2344 shost->this_id, starget->id, &tstate); 2345 struct ahc_devinfo devinfo; 2346 unsigned int ppr_options = tinfo->goal.ppr_options; 2347 unsigned long flags; 2348 unsigned long offset = tinfo->goal.offset; 2349 const struct ahc_syncrate *syncrate; 2350 2351 if (offset == 0) 2352 offset = MAX_OFFSET; 2353 2354 if (period < 9) 2355 period = 9; /* 12.5ns is our minimum */ 2356 if (period == 9) { 2357 if (spi_max_width(starget)) 2358 ppr_options |= MSG_EXT_PPR_DT_REQ; 2359 else 2360 /* need wide for DT and need DT for 12.5 ns */ 2361 period = 10; 2362 } 2363 2364 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2365 starget->channel + 'A', ROLE_INITIATOR); 2366 2367 /* all PPR requests apart from QAS require wide transfers */ 2368 if (ppr_options & ~MSG_EXT_PPR_QAS_REQ) { 2369 if (spi_width(starget) == 0) 2370 ppr_options &= MSG_EXT_PPR_QAS_REQ; 2371 } 2372 2373 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT); 2374 ahc_lock(ahc, &flags); 2375 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset, 2376 ppr_options, AHC_TRANS_GOAL, FALSE); 2377 ahc_unlock(ahc, &flags); 2378 } 2379 2380 static void ahc_linux_set_offset(struct scsi_target *starget, int offset) 2381 { 2382 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2383 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2384 struct ahc_tmode_tstate *tstate; 2385 struct ahc_initiator_tinfo *tinfo 2386 = ahc_fetch_transinfo(ahc, 2387 starget->channel + 'A', 2388 shost->this_id, starget->id, &tstate); 2389 struct ahc_devinfo devinfo; 2390 unsigned int ppr_options = 0; 2391 unsigned int period = 0; 2392 unsigned long flags; 2393 const struct ahc_syncrate *syncrate = NULL; 2394 2395 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2396 starget->channel + 'A', ROLE_INITIATOR); 2397 if (offset != 0) { 2398 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT); 2399 period = tinfo->goal.period; 2400 ppr_options = tinfo->goal.ppr_options; 2401 } 2402 ahc_lock(ahc, &flags); 2403 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset, 2404 ppr_options, AHC_TRANS_GOAL, FALSE); 2405 ahc_unlock(ahc, &flags); 2406 } 2407 2408 static void ahc_linux_set_dt(struct scsi_target *starget, int dt) 2409 { 2410 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2411 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2412 struct ahc_tmode_tstate *tstate; 2413 struct ahc_initiator_tinfo *tinfo 2414 = ahc_fetch_transinfo(ahc, 2415 starget->channel + 'A', 2416 shost->this_id, starget->id, &tstate); 2417 struct ahc_devinfo devinfo; 2418 unsigned int ppr_options = tinfo->goal.ppr_options 2419 & ~MSG_EXT_PPR_DT_REQ; 2420 unsigned int period = tinfo->goal.period; 2421 unsigned int width = tinfo->goal.width; 2422 unsigned long flags; 2423 const struct ahc_syncrate *syncrate; 2424 2425 if (dt && spi_max_width(starget)) { 2426 ppr_options |= MSG_EXT_PPR_DT_REQ; 2427 if (!width) 2428 ahc_linux_set_width(starget, 1); 2429 } else if (period == 9) 2430 period = 10; /* if resetting DT, period must be >= 25ns */ 2431 2432 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2433 starget->channel + 'A', ROLE_INITIATOR); 2434 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,AHC_SYNCRATE_DT); 2435 ahc_lock(ahc, &flags); 2436 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset, 2437 ppr_options, AHC_TRANS_GOAL, FALSE); 2438 ahc_unlock(ahc, &flags); 2439 } 2440 2441 #if 0 2442 /* FIXME: This code claims to support IU and QAS. However, the actual 2443 * sequencer code and aic7xxx_core have no support for these parameters and 2444 * will get into a bad state if they're negotiated. Do not enable this 2445 * unless you know what you're doing */ 2446 static void ahc_linux_set_qas(struct scsi_target *starget, int qas) 2447 { 2448 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2449 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2450 struct ahc_tmode_tstate *tstate; 2451 struct ahc_initiator_tinfo *tinfo 2452 = ahc_fetch_transinfo(ahc, 2453 starget->channel + 'A', 2454 shost->this_id, starget->id, &tstate); 2455 struct ahc_devinfo devinfo; 2456 unsigned int ppr_options = tinfo->goal.ppr_options 2457 & ~MSG_EXT_PPR_QAS_REQ; 2458 unsigned int period = tinfo->goal.period; 2459 unsigned long flags; 2460 struct ahc_syncrate *syncrate; 2461 2462 if (qas) 2463 ppr_options |= MSG_EXT_PPR_QAS_REQ; 2464 2465 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2466 starget->channel + 'A', ROLE_INITIATOR); 2467 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT); 2468 ahc_lock(ahc, &flags); 2469 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset, 2470 ppr_options, AHC_TRANS_GOAL, FALSE); 2471 ahc_unlock(ahc, &flags); 2472 } 2473 2474 static void ahc_linux_set_iu(struct scsi_target *starget, int iu) 2475 { 2476 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); 2477 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata); 2478 struct ahc_tmode_tstate *tstate; 2479 struct ahc_initiator_tinfo *tinfo 2480 = ahc_fetch_transinfo(ahc, 2481 starget->channel + 'A', 2482 shost->this_id, starget->id, &tstate); 2483 struct ahc_devinfo devinfo; 2484 unsigned int ppr_options = tinfo->goal.ppr_options 2485 & ~MSG_EXT_PPR_IU_REQ; 2486 unsigned int period = tinfo->goal.period; 2487 unsigned long flags; 2488 struct ahc_syncrate *syncrate; 2489 2490 if (iu) 2491 ppr_options |= MSG_EXT_PPR_IU_REQ; 2492 2493 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0, 2494 starget->channel + 'A', ROLE_INITIATOR); 2495 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT); 2496 ahc_lock(ahc, &flags); 2497 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset, 2498 ppr_options, AHC_TRANS_GOAL, FALSE); 2499 ahc_unlock(ahc, &flags); 2500 } 2501 #endif 2502 2503 static void ahc_linux_get_signalling(struct Scsi_Host *shost) 2504 { 2505 struct ahc_softc *ahc = *(struct ahc_softc **)shost->hostdata; 2506 unsigned long flags; 2507 u8 mode; 2508 2509 if (!(ahc->features & AHC_ULTRA2)) { 2510 /* non-LVD chipset, may not have SBLKCTL reg */ 2511 spi_signalling(shost) = 2512 ahc->features & AHC_HVD ? 2513 SPI_SIGNAL_HVD : 2514 SPI_SIGNAL_SE; 2515 return; 2516 } 2517 2518 ahc_lock(ahc, &flags); 2519 ahc_pause(ahc); 2520 mode = ahc_inb(ahc, SBLKCTL); 2521 ahc_unpause(ahc); 2522 ahc_unlock(ahc, &flags); 2523 2524 if (mode & ENAB40) 2525 spi_signalling(shost) = SPI_SIGNAL_LVD; 2526 else if (mode & ENAB20) 2527 spi_signalling(shost) = SPI_SIGNAL_SE; 2528 else 2529 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN; 2530 } 2531 2532 static struct spi_function_template ahc_linux_transport_functions = { 2533 .set_offset = ahc_linux_set_offset, 2534 .show_offset = 1, 2535 .set_period = ahc_linux_set_period, 2536 .show_period = 1, 2537 .set_width = ahc_linux_set_width, 2538 .show_width = 1, 2539 .set_dt = ahc_linux_set_dt, 2540 .show_dt = 1, 2541 #if 0 2542 .set_iu = ahc_linux_set_iu, 2543 .show_iu = 1, 2544 .set_qas = ahc_linux_set_qas, 2545 .show_qas = 1, 2546 #endif 2547 .get_signalling = ahc_linux_get_signalling, 2548 }; 2549 2550 2551 2552 static int __init 2553 ahc_linux_init(void) 2554 { 2555 /* 2556 * If we've been passed any parameters, process them now. 2557 */ 2558 if (aic7xxx) 2559 aic7xxx_setup(aic7xxx); 2560 2561 ahc_linux_transport_template = 2562 spi_attach_transport(&ahc_linux_transport_functions); 2563 if (!ahc_linux_transport_template) 2564 return -ENODEV; 2565 2566 scsi_transport_reserve_device(ahc_linux_transport_template, 2567 sizeof(struct ahc_linux_device)); 2568 2569 ahc_linux_pci_init(); 2570 ahc_linux_eisa_init(); 2571 return 0; 2572 } 2573 2574 static void 2575 ahc_linux_exit(void) 2576 { 2577 ahc_linux_pci_exit(); 2578 ahc_linux_eisa_exit(); 2579 spi_release_transport(ahc_linux_transport_template); 2580 } 2581 2582 module_init(ahc_linux_init); 2583 module_exit(ahc_linux_exit); 2584