1
2 /*
3 * Adaptec AIC7xxx device driver for Linux.
4 *
5 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $
6 *
7 * Copyright (c) 1994 John Aycock
8 * The University of Calgary Department of Computer Science.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; see the file COPYING. If not, write to
22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23 *
24 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
25 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
26 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
27 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
28 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
29 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
30 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
31 * ANSI SCSI-2 specification (draft 10c), ...
32 *
33 * --------------------------------------------------------------------------
34 *
35 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
36 *
37 * Substantially modified to include support for wide and twin bus
38 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
39 * SCB paging, and other rework of the code.
40 *
41 * --------------------------------------------------------------------------
42 * Copyright (c) 1994-2000 Justin T. Gibbs.
43 * Copyright (c) 2000-2001 Adaptec Inc.
44 * All rights reserved.
45 *
46 * Redistribution and use in source and binary forms, with or without
47 * modification, are permitted provided that the following conditions
48 * are met:
49 * 1. Redistributions of source code must retain the above copyright
50 * notice, this list of conditions, and the following disclaimer,
51 * without modification.
52 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
53 * substantially similar to the "NO WARRANTY" disclaimer below
54 * ("Disclaimer") and any redistribution must be conditioned upon
55 * including a substantially similar Disclaimer requirement for further
56 * binary redistribution.
57 * 3. Neither the names of the above-listed copyright holders nor the names
58 * of any contributors may be used to endorse or promote products derived
59 * from this software without specific prior written permission.
60 *
61 * Alternatively, this software may be distributed under the terms of the
62 * GNU General Public License ("GPL") version 2 as published by the Free
63 * Software Foundation.
64 *
65 * NO WARRANTY
66 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
67 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
68 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
69 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
70 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
71 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
72 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
73 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
74 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
75 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
76 * POSSIBILITY OF SUCH DAMAGES.
77 *
78 *---------------------------------------------------------------------------
79 *
80 * Thanks also go to (in alphabetical order) the following:
81 *
82 * Rory Bolt - Sequencer bug fixes
83 * Jay Estabrook - Initial DEC Alpha support
84 * Doug Ledford - Much needed abort/reset bug fixes
85 * Kai Makisara - DMAing of SCBs
86 *
87 * A Boot time option was also added for not resetting the scsi bus.
88 *
89 * Form: aic7xxx=extended
90 * aic7xxx=no_reset
91 * aic7xxx=verbose
92 *
93 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
94 *
95 * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp
96 */
97
98 /*
99 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
100 *
101 * Copyright (c) 1997-1999 Doug Ledford
102 *
103 * These changes are released under the same licensing terms as the FreeBSD
104 * driver written by Justin Gibbs. Please see his Copyright notice above
105 * for the exact terms and conditions covering my changes as well as the
106 * warranty statement.
107 *
108 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
109 * but are not limited to:
110 *
111 * 1: Import of the latest FreeBSD sequencer code for this driver
112 * 2: Modification of kernel code to accommodate different sequencer semantics
113 * 3: Extensive changes throughout kernel portion of driver to improve
114 * abort/reset processing and error hanndling
115 * 4: Other work contributed by various people on the Internet
116 * 5: Changes to printk information and verbosity selection code
117 * 6: General reliability related changes, especially in IRQ management
118 * 7: Modifications to the default probe/attach order for supported cards
119 * 8: SMP friendliness has been improved
120 *
121 */
122
123 #include "aic7xxx_osm.h"
124 #include "aic7xxx_inline.h"
125 #include <scsi/scsicam.h>
126
127 static struct scsi_transport_template *ahc_linux_transport_template = NULL;
128
129 #include <linux/init.h> /* __setup */
130 #include <linux/mm.h> /* For fetching system memory size */
131 #include <linux/blkdev.h> /* For block_size() */
132 #include <linux/delay.h> /* For ssleep/msleep */
133 #include <linux/slab.h>
134
135
136 /*
137 * Set this to the delay in seconds after SCSI bus reset.
138 * Note, we honor this only for the initial bus reset.
139 * The scsi error recovery code performs its own bus settle
140 * delay handling for error recovery actions.
141 */
142 #ifdef CONFIG_AIC7XXX_RESET_DELAY_MS
143 #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS
144 #else
145 #define AIC7XXX_RESET_DELAY 5000
146 #endif
147
148 /*
149 * To change the default number of tagged transactions allowed per-device,
150 * add a line to the lilo.conf file like:
151 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
152 * which will result in the first four devices on the first two
153 * controllers being set to a tagged queue depth of 32.
154 *
155 * The tag_commands is an array of 16 to allow for wide and twin adapters.
156 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
157 * for channel 1.
158 */
159 typedef struct {
160 uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */
161 } adapter_tag_info_t;
162
163 /*
164 * Modify this as you see fit for your system.
165 *
166 * 0 tagged queuing disabled
167 * 1 <= n <= 253 n == max tags ever dispatched.
168 *
169 * The driver will throttle the number of commands dispatched to a
170 * device if it returns queue full. For devices with a fixed maximum
171 * queue depth, the driver will eventually determine this depth and
172 * lock it in (a console message is printed to indicate that a lock
173 * has occurred). On some devices, queue full is returned for a temporary
174 * resource shortage. These devices will return queue full at varying
175 * depths. The driver will throttle back when the queue fulls occur and
176 * attempt to slowly increase the depth over time as the device recovers
177 * from the resource shortage.
178 *
179 * In this example, the first line will disable tagged queueing for all
180 * the devices on the first probed aic7xxx adapter.
181 *
182 * The second line enables tagged queueing with 4 commands/LUN for IDs
183 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
184 * driver to attempt to use up to 64 tags for ID 1.
185 *
186 * The third line is the same as the first line.
187 *
188 * The fourth line disables tagged queueing for devices 0 and 3. It
189 * enables tagged queueing for the other IDs, with 16 commands/LUN
190 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
191 * IDs 2, 5-7, and 9-15.
192 */
193
194 /*
195 * NOTE: The below structure is for reference only, the actual structure
196 * to modify in order to change things is just below this comment block.
197 adapter_tag_info_t aic7xxx_tag_info[] =
198 {
199 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
200 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
201 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
202 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
203 };
204 */
205
206 #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE
207 #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE
208 #else
209 #define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE
210 #endif
211
212 #define AIC7XXX_CONFIGED_TAG_COMMANDS { \
213 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
214 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
215 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
216 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
217 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
218 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
219 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
220 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \
221 }
222
223 /*
224 * By default, use the number of commands specified by
225 * the users kernel configuration.
226 */
227 static adapter_tag_info_t aic7xxx_tag_info[] =
228 {
229 {AIC7XXX_CONFIGED_TAG_COMMANDS},
230 {AIC7XXX_CONFIGED_TAG_COMMANDS},
231 {AIC7XXX_CONFIGED_TAG_COMMANDS},
232 {AIC7XXX_CONFIGED_TAG_COMMANDS},
233 {AIC7XXX_CONFIGED_TAG_COMMANDS},
234 {AIC7XXX_CONFIGED_TAG_COMMANDS},
235 {AIC7XXX_CONFIGED_TAG_COMMANDS},
236 {AIC7XXX_CONFIGED_TAG_COMMANDS},
237 {AIC7XXX_CONFIGED_TAG_COMMANDS},
238 {AIC7XXX_CONFIGED_TAG_COMMANDS},
239 {AIC7XXX_CONFIGED_TAG_COMMANDS},
240 {AIC7XXX_CONFIGED_TAG_COMMANDS},
241 {AIC7XXX_CONFIGED_TAG_COMMANDS},
242 {AIC7XXX_CONFIGED_TAG_COMMANDS},
243 {AIC7XXX_CONFIGED_TAG_COMMANDS},
244 {AIC7XXX_CONFIGED_TAG_COMMANDS}
245 };
246
247 /*
248 * There should be a specific return value for this in scsi.h, but
249 * it seems that most drivers ignore it.
250 */
251 #define DID_UNDERFLOW DID_ERROR
252
253 void
ahc_print_path(struct ahc_softc * ahc,struct scb * scb)254 ahc_print_path(struct ahc_softc *ahc, struct scb *scb)
255 {
256 printk("(scsi%d:%c:%d:%d): ",
257 ahc->platform_data->host->host_no,
258 scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X',
259 scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1,
260 scb != NULL ? SCB_GET_LUN(scb) : -1);
261 }
262
263 /*
264 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
265 * cards in the system. This should be fixed. Exceptions to this
266 * rule are noted in the comments.
267 */
268
269 /*
270 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
271 * has no effect on any later resets that might occur due to things like
272 * SCSI bus timeouts.
273 */
274 static uint32_t aic7xxx_no_reset;
275
276 /*
277 * Should we force EXTENDED translation on a controller.
278 * 0 == Use whatever is in the SEEPROM or default to off
279 * 1 == Use whatever is in the SEEPROM or default to on
280 */
281 static uint32_t aic7xxx_extended;
282
283 /*
284 * PCI bus parity checking of the Adaptec controllers. This is somewhat
285 * dubious at best. To my knowledge, this option has never actually
286 * solved a PCI parity problem, but on certain machines with broken PCI
287 * chipset configurations where stray PCI transactions with bad parity are
288 * the norm rather than the exception, the error messages can be overwhelming.
289 * It's included in the driver for completeness.
290 * 0 = Shut off PCI parity check
291 * non-0 = reverse polarity pci parity checking
292 */
293 static uint32_t aic7xxx_pci_parity = ~0;
294
295 /*
296 * There are lots of broken chipsets in the world. Some of them will
297 * violate the PCI spec when we issue byte sized memory writes to our
298 * controller. I/O mapped register access, if allowed by the given
299 * platform, will work in almost all cases.
300 */
301 uint32_t aic7xxx_allow_memio = ~0;
302
303 /*
304 * So that we can set how long each device is given as a selection timeout.
305 * The table of values goes like this:
306 * 0 - 256ms
307 * 1 - 128ms
308 * 2 - 64ms
309 * 3 - 32ms
310 * We default to 256ms because some older devices need a longer time
311 * to respond to initial selection.
312 */
313 static uint32_t aic7xxx_seltime;
314
315 /*
316 * Certain devices do not perform any aging on commands. Should the
317 * device be saturated by commands in one portion of the disk, it is
318 * possible for transactions on far away sectors to never be serviced.
319 * To handle these devices, we can periodically send an ordered tag to
320 * force all outstanding transactions to be serviced prior to a new
321 * transaction.
322 */
323 static uint32_t aic7xxx_periodic_otag;
324
325 /*
326 * Module information and settable options.
327 */
328 static char *aic7xxx = NULL;
329
330 MODULE_AUTHOR("Maintainer: Hannes Reinecke <hare@suse.de>");
331 MODULE_DESCRIPTION("Adaptec AIC77XX/78XX SCSI Host Bus Adapter driver");
332 MODULE_LICENSE("Dual BSD/GPL");
333 MODULE_VERSION(AIC7XXX_DRIVER_VERSION);
334 module_param(aic7xxx, charp, 0444);
335 MODULE_PARM_DESC(aic7xxx,
336 "period-delimited options string:\n"
337 " verbose Enable verbose/diagnostic logging\n"
338 " allow_memio Allow device registers to be memory mapped\n"
339 " debug Bitmask of debug values to enable\n"
340 " no_probe Toggle EISA/VLB controller probing\n"
341 " probe_eisa_vl Toggle EISA/VLB controller probing\n"
342 " no_reset Suppress initial bus resets\n"
343 " extended Enable extended geometry on all controllers\n"
344 " periodic_otag Send an ordered tagged transaction\n"
345 " periodically to prevent tag starvation.\n"
346 " This may be required by some older disk\n"
347 " drives or RAID arrays.\n"
348 " tag_info:<tag_str> Set per-target tag depth\n"
349 " global_tag_depth:<int> Global tag depth for every target\n"
350 " on every bus\n"
351 " seltime:<int> Selection Timeout\n"
352 " (0/256ms,1/128ms,2/64ms,3/32ms)\n"
353 "\n"
354 " Sample modprobe configuration file:\n"
355 " # Toggle EISA/VLB probing\n"
356 " # Set tag depth on Controller 1/Target 1 to 10 tags\n"
357 " # Shorten the selection timeout to 128ms\n"
358 "\n"
359 " options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n"
360 );
361
362 static void ahc_linux_handle_scsi_status(struct ahc_softc *,
363 struct scsi_device *,
364 struct scb *);
365 static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc,
366 struct scsi_cmnd *cmd);
367 static void ahc_linux_freeze_simq(struct ahc_softc *ahc);
368 static void ahc_linux_release_simq(struct ahc_softc *ahc);
369 static int ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag);
370 static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc);
371 static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc,
372 struct ahc_devinfo *devinfo);
373 static void ahc_linux_device_queue_depth(struct scsi_device *);
374 static int ahc_linux_run_command(struct ahc_softc*,
375 struct ahc_linux_device *,
376 struct scsi_cmnd *);
377 static void ahc_linux_setup_tag_info_global(char *p);
378 static int aic7xxx_setup(char *s);
379
380 static int ahc_linux_unit;
381
382
383 /************************** OS Utility Wrappers *******************************/
384 void
ahc_delay(long usec)385 ahc_delay(long usec)
386 {
387 /*
388 * udelay on Linux can have problems for
389 * multi-millisecond waits. Wait at most
390 * 1024us per call.
391 */
392 while (usec > 0) {
393 udelay(usec % 1024);
394 usec -= 1024;
395 }
396 }
397
398 /***************************** Low Level I/O **********************************/
399 uint8_t
ahc_inb(struct ahc_softc * ahc,long port)400 ahc_inb(struct ahc_softc * ahc, long port)
401 {
402 uint8_t x;
403
404 if (ahc->tag == BUS_SPACE_MEMIO) {
405 x = readb(ahc->bsh.maddr + port);
406 } else {
407 x = inb(ahc->bsh.ioport + port);
408 }
409 mb();
410 return (x);
411 }
412
413 void
ahc_outb(struct ahc_softc * ahc,long port,uint8_t val)414 ahc_outb(struct ahc_softc * ahc, long port, uint8_t val)
415 {
416 if (ahc->tag == BUS_SPACE_MEMIO) {
417 writeb(val, ahc->bsh.maddr + port);
418 } else {
419 outb(val, ahc->bsh.ioport + port);
420 }
421 mb();
422 }
423
424 void
ahc_outsb(struct ahc_softc * ahc,long port,uint8_t * array,int count)425 ahc_outsb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
426 {
427 int i;
428
429 /*
430 * There is probably a more efficient way to do this on Linux
431 * but we don't use this for anything speed critical and this
432 * should work.
433 */
434 for (i = 0; i < count; i++)
435 ahc_outb(ahc, port, *array++);
436 }
437
438 void
ahc_insb(struct ahc_softc * ahc,long port,uint8_t * array,int count)439 ahc_insb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
440 {
441 int i;
442
443 /*
444 * There is probably a more efficient way to do this on Linux
445 * but we don't use this for anything speed critical and this
446 * should work.
447 */
448 for (i = 0; i < count; i++)
449 *array++ = ahc_inb(ahc, port);
450 }
451
452 /********************************* Inlines ************************************/
453 static void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*);
454
455 static int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
456 struct ahc_dma_seg *sg,
457 dma_addr_t addr, bus_size_t len);
458
459 static void
ahc_linux_unmap_scb(struct ahc_softc * ahc,struct scb * scb)460 ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb)
461 {
462 struct scsi_cmnd *cmd;
463
464 cmd = scb->io_ctx;
465 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE);
466
467 scsi_dma_unmap(cmd);
468 }
469
470 static int
ahc_linux_map_seg(struct ahc_softc * ahc,struct scb * scb,struct ahc_dma_seg * sg,dma_addr_t addr,bus_size_t len)471 ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
472 struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len)
473 {
474 int consumed;
475
476 if ((scb->sg_count + 1) > AHC_NSEG)
477 panic("Too few segs for dma mapping. "
478 "Increase AHC_NSEG\n");
479
480 consumed = 1;
481 sg->addr = ahc_htole32(addr & 0xFFFFFFFF);
482 scb->platform_data->xfer_len += len;
483
484 if (sizeof(dma_addr_t) > 4
485 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0)
486 len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK;
487
488 sg->len = ahc_htole32(len);
489 return (consumed);
490 }
491
492 /*
493 * Return a string describing the driver.
494 */
495 static const char *
ahc_linux_info(struct Scsi_Host * host)496 ahc_linux_info(struct Scsi_Host *host)
497 {
498 static char buffer[512];
499 char ahc_info[256];
500 char *bp;
501 struct ahc_softc *ahc;
502
503 bp = &buffer[0];
504 ahc = *(struct ahc_softc **)host->hostdata;
505 memset(bp, 0, sizeof(buffer));
506 strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev " AIC7XXX_DRIVER_VERSION "\n"
507 " <");
508 strcat(bp, ahc->description);
509 strcat(bp, ">\n"
510 " ");
511 ahc_controller_info(ahc, ahc_info);
512 strcat(bp, ahc_info);
513 strcat(bp, "\n");
514
515 return (bp);
516 }
517
518 /*
519 * Queue an SCB to the controller.
520 */
ahc_linux_queue_lck(struct scsi_cmnd * cmd)521 static int ahc_linux_queue_lck(struct scsi_cmnd *cmd)
522 {
523 struct ahc_softc *ahc;
524 struct ahc_linux_device *dev = scsi_transport_device_data(cmd->device);
525 int rtn = SCSI_MLQUEUE_HOST_BUSY;
526 unsigned long flags;
527
528 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
529
530 ahc_lock(ahc, &flags);
531 if (ahc->platform_data->qfrozen == 0) {
532 cmd->result = CAM_REQ_INPROG << 16;
533 rtn = ahc_linux_run_command(ahc, dev, cmd);
534 }
535 ahc_unlock(ahc, &flags);
536
537 return rtn;
538 }
539
DEF_SCSI_QCMD(ahc_linux_queue)540 static DEF_SCSI_QCMD(ahc_linux_queue)
541
542 static inline struct scsi_target **
543 ahc_linux_target_in_softc(struct scsi_target *starget)
544 {
545 struct ahc_softc *ahc =
546 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata);
547 unsigned int target_offset;
548
549 target_offset = starget->id;
550 if (starget->channel != 0)
551 target_offset += 8;
552
553 return &ahc->platform_data->starget[target_offset];
554 }
555
556 static int
ahc_linux_target_alloc(struct scsi_target * starget)557 ahc_linux_target_alloc(struct scsi_target *starget)
558 {
559 struct ahc_softc *ahc =
560 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata);
561 struct seeprom_config *sc = ahc->seep_config;
562 unsigned long flags;
563 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget);
564 unsigned short scsirate;
565 struct ahc_devinfo devinfo;
566 char channel = starget->channel + 'A';
567 unsigned int our_id = ahc->our_id;
568 unsigned int target_offset;
569
570 target_offset = starget->id;
571 if (starget->channel != 0)
572 target_offset += 8;
573
574 if (starget->channel)
575 our_id = ahc->our_id_b;
576
577 ahc_lock(ahc, &flags);
578
579 BUG_ON(*ahc_targp != NULL);
580
581 *ahc_targp = starget;
582
583 if (sc) {
584 int maxsync = AHC_SYNCRATE_DT;
585 int ultra = 0;
586 int flags = sc->device_flags[target_offset];
587
588 if (ahc->flags & AHC_NEWEEPROM_FMT) {
589 if (flags & CFSYNCHISULTRA)
590 ultra = 1;
591 } else if (flags & CFULTRAEN)
592 ultra = 1;
593 /* AIC nutcase; 10MHz appears as ultra = 1, CFXFER = 0x04
594 * change it to ultra=0, CFXFER = 0 */
595 if(ultra && (flags & CFXFER) == 0x04) {
596 ultra = 0;
597 flags &= ~CFXFER;
598 }
599
600 if ((ahc->features & AHC_ULTRA2) != 0) {
601 scsirate = (flags & CFXFER) | (ultra ? 0x8 : 0);
602 } else {
603 scsirate = (flags & CFXFER) << 4;
604 maxsync = ultra ? AHC_SYNCRATE_ULTRA :
605 AHC_SYNCRATE_FAST;
606 }
607 spi_max_width(starget) = (flags & CFWIDEB) ? 1 : 0;
608 if (!(flags & CFSYNCH))
609 spi_max_offset(starget) = 0;
610 spi_min_period(starget) =
611 ahc_find_period(ahc, scsirate, maxsync);
612 }
613 ahc_compile_devinfo(&devinfo, our_id, starget->id,
614 CAM_LUN_WILDCARD, channel,
615 ROLE_INITIATOR);
616 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
617 AHC_TRANS_GOAL, /*paused*/FALSE);
618 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
619 AHC_TRANS_GOAL, /*paused*/FALSE);
620 ahc_unlock(ahc, &flags);
621
622 return 0;
623 }
624
625 static void
ahc_linux_target_destroy(struct scsi_target * starget)626 ahc_linux_target_destroy(struct scsi_target *starget)
627 {
628 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget);
629
630 *ahc_targp = NULL;
631 }
632
633 static int
ahc_linux_slave_alloc(struct scsi_device * sdev)634 ahc_linux_slave_alloc(struct scsi_device *sdev)
635 {
636 struct ahc_softc *ahc =
637 *((struct ahc_softc **)sdev->host->hostdata);
638 struct scsi_target *starget = sdev->sdev_target;
639 struct ahc_linux_device *dev;
640
641 if (bootverbose)
642 printk("%s: Slave Alloc %d\n", ahc_name(ahc), sdev->id);
643
644 dev = scsi_transport_device_data(sdev);
645 memset(dev, 0, sizeof(*dev));
646
647 /*
648 * We start out life using untagged
649 * transactions of which we allow one.
650 */
651 dev->openings = 1;
652
653 /*
654 * Set maxtags to 0. This will be changed if we
655 * later determine that we are dealing with
656 * a tagged queuing capable device.
657 */
658 dev->maxtags = 0;
659
660 spi_period(starget) = 0;
661
662 return 0;
663 }
664
665 static int
ahc_linux_slave_configure(struct scsi_device * sdev)666 ahc_linux_slave_configure(struct scsi_device *sdev)
667 {
668 if (bootverbose)
669 sdev_printk(KERN_INFO, sdev, "Slave Configure\n");
670
671 ahc_linux_device_queue_depth(sdev);
672
673 /* Initial Domain Validation */
674 if (!spi_initial_dv(sdev->sdev_target))
675 spi_dv_device(sdev);
676
677 return 0;
678 }
679
680 #if defined(__i386__)
681 /*
682 * Return the disk geometry for the given SCSI device.
683 */
684 static int
ahc_linux_biosparam(struct scsi_device * sdev,struct block_device * bdev,sector_t capacity,int geom[])685 ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
686 sector_t capacity, int geom[])
687 {
688 int heads;
689 int sectors;
690 int cylinders;
691 int extended;
692 struct ahc_softc *ahc;
693 u_int channel;
694
695 ahc = *((struct ahc_softc **)sdev->host->hostdata);
696 channel = sdev_channel(sdev);
697
698 if (scsi_partsize(bdev, capacity, geom))
699 return 0;
700
701 heads = 64;
702 sectors = 32;
703 cylinders = aic_sector_div(capacity, heads, sectors);
704
705 if (aic7xxx_extended != 0)
706 extended = 1;
707 else if (channel == 0)
708 extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0;
709 else
710 extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0;
711 if (extended && cylinders >= 1024) {
712 heads = 255;
713 sectors = 63;
714 cylinders = aic_sector_div(capacity, heads, sectors);
715 }
716 geom[0] = heads;
717 geom[1] = sectors;
718 geom[2] = cylinders;
719 return (0);
720 }
721 #endif
722
723 /*
724 * Abort the current SCSI command(s).
725 */
726 static int
ahc_linux_abort(struct scsi_cmnd * cmd)727 ahc_linux_abort(struct scsi_cmnd *cmd)
728 {
729 int error;
730
731 error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT);
732 if (error != SUCCESS)
733 printk("aic7xxx_abort returns 0x%x\n", error);
734 return (error);
735 }
736
737 /*
738 * Attempt to send a target reset message to the device that timed out.
739 */
740 static int
ahc_linux_dev_reset(struct scsi_cmnd * cmd)741 ahc_linux_dev_reset(struct scsi_cmnd *cmd)
742 {
743 int error;
744
745 error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET);
746 if (error != SUCCESS)
747 printk("aic7xxx_dev_reset returns 0x%x\n", error);
748 return (error);
749 }
750
751 /*
752 * Reset the SCSI bus.
753 */
754 static int
ahc_linux_bus_reset(struct scsi_cmnd * cmd)755 ahc_linux_bus_reset(struct scsi_cmnd *cmd)
756 {
757 struct ahc_softc *ahc;
758 int found;
759 unsigned long flags;
760
761 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
762
763 ahc_lock(ahc, &flags);
764 found = ahc_reset_channel(ahc, scmd_channel(cmd) + 'A',
765 /*initiate reset*/TRUE);
766 ahc_unlock(ahc, &flags);
767
768 if (bootverbose)
769 printk("%s: SCSI bus reset delivered. "
770 "%d SCBs aborted.\n", ahc_name(ahc), found);
771
772 return SUCCESS;
773 }
774
775 struct scsi_host_template aic7xxx_driver_template = {
776 .module = THIS_MODULE,
777 .name = "aic7xxx",
778 .proc_name = "aic7xxx",
779 .show_info = ahc_linux_show_info,
780 .write_info = ahc_proc_write_seeprom,
781 .info = ahc_linux_info,
782 .queuecommand = ahc_linux_queue,
783 .eh_abort_handler = ahc_linux_abort,
784 .eh_device_reset_handler = ahc_linux_dev_reset,
785 .eh_bus_reset_handler = ahc_linux_bus_reset,
786 #if defined(__i386__)
787 .bios_param = ahc_linux_biosparam,
788 #endif
789 .can_queue = AHC_MAX_QUEUE,
790 .this_id = -1,
791 .max_sectors = 8192,
792 .cmd_per_lun = 2,
793 .slave_alloc = ahc_linux_slave_alloc,
794 .slave_configure = ahc_linux_slave_configure,
795 .target_alloc = ahc_linux_target_alloc,
796 .target_destroy = ahc_linux_target_destroy,
797 };
798
799 /**************************** Tasklet Handler *********************************/
800
801 /******************************** Macros **************************************/
802 #define BUILD_SCSIID(ahc, cmd) \
803 ((((cmd)->device->id << TID_SHIFT) & TID) \
804 | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \
805 | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB))
806
807 /******************************** Bus DMA *************************************/
808 int
ahc_dma_tag_create(struct ahc_softc * ahc,bus_dma_tag_t parent,bus_size_t alignment,bus_size_t boundary,dma_addr_t lowaddr,dma_addr_t highaddr,bus_dma_filter_t * filter,void * filterarg,bus_size_t maxsize,int nsegments,bus_size_t maxsegsz,int flags,bus_dma_tag_t * ret_tag)809 ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent,
810 bus_size_t alignment, bus_size_t boundary,
811 dma_addr_t lowaddr, dma_addr_t highaddr,
812 bus_dma_filter_t *filter, void *filterarg,
813 bus_size_t maxsize, int nsegments,
814 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
815 {
816 bus_dma_tag_t dmat;
817
818 dmat = kmalloc(sizeof(*dmat), GFP_ATOMIC);
819 if (dmat == NULL)
820 return (ENOMEM);
821
822 /*
823 * Linux is very simplistic about DMA memory. For now don't
824 * maintain all specification information. Once Linux supplies
825 * better facilities for doing these operations, or the
826 * needs of this particular driver change, we might need to do
827 * more here.
828 */
829 dmat->alignment = alignment;
830 dmat->boundary = boundary;
831 dmat->maxsize = maxsize;
832 *ret_tag = dmat;
833 return (0);
834 }
835
836 void
ahc_dma_tag_destroy(struct ahc_softc * ahc,bus_dma_tag_t dmat)837 ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat)
838 {
839 kfree(dmat);
840 }
841
842 int
ahc_dmamem_alloc(struct ahc_softc * ahc,bus_dma_tag_t dmat,void ** vaddr,int flags,bus_dmamap_t * mapp)843 ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr,
844 int flags, bus_dmamap_t *mapp)
845 {
846 /* XXX: check if we really need the GFP_ATOMIC and unwind this mess! */
847 *vaddr = dma_alloc_coherent(ahc->dev, dmat->maxsize, mapp, GFP_ATOMIC);
848 if (*vaddr == NULL)
849 return ENOMEM;
850 return 0;
851 }
852
853 void
ahc_dmamem_free(struct ahc_softc * ahc,bus_dma_tag_t dmat,void * vaddr,bus_dmamap_t map)854 ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat,
855 void* vaddr, bus_dmamap_t map)
856 {
857 dma_free_coherent(ahc->dev, dmat->maxsize, vaddr, map);
858 }
859
860 int
ahc_dmamap_load(struct ahc_softc * ahc,bus_dma_tag_t dmat,bus_dmamap_t map,void * buf,bus_size_t buflen,bus_dmamap_callback_t * cb,void * cb_arg,int flags)861 ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map,
862 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
863 void *cb_arg, int flags)
864 {
865 /*
866 * Assume for now that this will only be used during
867 * initialization and not for per-transaction buffer mapping.
868 */
869 bus_dma_segment_t stack_sg;
870
871 stack_sg.ds_addr = map;
872 stack_sg.ds_len = dmat->maxsize;
873 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
874 return (0);
875 }
876
877 void
ahc_dmamap_destroy(struct ahc_softc * ahc,bus_dma_tag_t dmat,bus_dmamap_t map)878 ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
879 {
880 }
881
882 int
ahc_dmamap_unload(struct ahc_softc * ahc,bus_dma_tag_t dmat,bus_dmamap_t map)883 ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
884 {
885 /* Nothing to do */
886 return (0);
887 }
888
889 static void
ahc_linux_setup_tag_info_global(char * p)890 ahc_linux_setup_tag_info_global(char *p)
891 {
892 int tags, i, j;
893
894 tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
895 printk("Setting Global Tags= %d\n", tags);
896
897 for (i = 0; i < ARRAY_SIZE(aic7xxx_tag_info); i++) {
898 for (j = 0; j < AHC_NUM_TARGETS; j++) {
899 aic7xxx_tag_info[i].tag_commands[j] = tags;
900 }
901 }
902 }
903
904 static void
ahc_linux_setup_tag_info(u_long arg,int instance,int targ,int32_t value)905 ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
906 {
907
908 if ((instance >= 0) && (targ >= 0)
909 && (instance < ARRAY_SIZE(aic7xxx_tag_info))
910 && (targ < AHC_NUM_TARGETS)) {
911 aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff;
912 if (bootverbose)
913 printk("tag_info[%d:%d] = %d\n", instance, targ, value);
914 }
915 }
916
917 static char *
ahc_parse_brace_option(char * opt_name,char * opt_arg,char * end,int depth,void (* callback)(u_long,int,int,int32_t),u_long callback_arg)918 ahc_parse_brace_option(char *opt_name, char *opt_arg, char *end, int depth,
919 void (*callback)(u_long, int, int, int32_t),
920 u_long callback_arg)
921 {
922 char *tok_end;
923 char *tok_end2;
924 int i;
925 int instance;
926 int targ;
927 int done;
928 char tok_list[] = {'.', ',', '{', '}', '\0'};
929
930 /* All options use a ':' name/arg separator */
931 if (*opt_arg != ':')
932 return (opt_arg);
933 opt_arg++;
934 instance = -1;
935 targ = -1;
936 done = FALSE;
937 /*
938 * Restore separator that may be in
939 * the middle of our option argument.
940 */
941 tok_end = strchr(opt_arg, '\0');
942 if (tok_end < end)
943 *tok_end = ',';
944 while (!done) {
945 switch (*opt_arg) {
946 case '{':
947 if (instance == -1) {
948 instance = 0;
949 } else {
950 if (depth > 1) {
951 if (targ == -1)
952 targ = 0;
953 } else {
954 printk("Malformed Option %s\n",
955 opt_name);
956 done = TRUE;
957 }
958 }
959 opt_arg++;
960 break;
961 case '}':
962 if (targ != -1)
963 targ = -1;
964 else if (instance != -1)
965 instance = -1;
966 opt_arg++;
967 break;
968 case ',':
969 case '.':
970 if (instance == -1)
971 done = TRUE;
972 else if (targ >= 0)
973 targ++;
974 else if (instance >= 0)
975 instance++;
976 opt_arg++;
977 break;
978 case '\0':
979 done = TRUE;
980 break;
981 default:
982 tok_end = end;
983 for (i = 0; tok_list[i]; i++) {
984 tok_end2 = strchr(opt_arg, tok_list[i]);
985 if ((tok_end2) && (tok_end2 < tok_end))
986 tok_end = tok_end2;
987 }
988 callback(callback_arg, instance, targ,
989 simple_strtol(opt_arg, NULL, 0));
990 opt_arg = tok_end;
991 break;
992 }
993 }
994 return (opt_arg);
995 }
996
997 /*
998 * Handle Linux boot parameters. This routine allows for assigning a value
999 * to a parameter with a ':' between the parameter and the value.
1000 * ie. aic7xxx=stpwlev:1,extended
1001 */
1002 static int
aic7xxx_setup(char * s)1003 aic7xxx_setup(char *s)
1004 {
1005 int i, n;
1006 char *p;
1007 char *end;
1008
1009 static const struct {
1010 const char *name;
1011 uint32_t *flag;
1012 } options[] = {
1013 { "extended", &aic7xxx_extended },
1014 { "no_reset", &aic7xxx_no_reset },
1015 { "verbose", &aic7xxx_verbose },
1016 { "allow_memio", &aic7xxx_allow_memio},
1017 #ifdef AHC_DEBUG
1018 { "debug", &ahc_debug },
1019 #endif
1020 { "periodic_otag", &aic7xxx_periodic_otag },
1021 { "pci_parity", &aic7xxx_pci_parity },
1022 { "seltime", &aic7xxx_seltime },
1023 { "tag_info", NULL },
1024 { "global_tag_depth", NULL },
1025 { "dv", NULL }
1026 };
1027
1028 end = strchr(s, '\0');
1029
1030 /*
1031 * XXX ia64 gcc isn't smart enough to know that ARRAY_SIZE
1032 * will never be 0 in this case.
1033 */
1034 n = 0;
1035
1036 while ((p = strsep(&s, ",.")) != NULL) {
1037 if (*p == '\0')
1038 continue;
1039 for (i = 0; i < ARRAY_SIZE(options); i++) {
1040
1041 n = strlen(options[i].name);
1042 if (strncmp(options[i].name, p, n) == 0)
1043 break;
1044 }
1045 if (i == ARRAY_SIZE(options))
1046 continue;
1047
1048 if (strncmp(p, "global_tag_depth", n) == 0) {
1049 ahc_linux_setup_tag_info_global(p + n);
1050 } else if (strncmp(p, "tag_info", n) == 0) {
1051 s = ahc_parse_brace_option("tag_info", p + n, end,
1052 2, ahc_linux_setup_tag_info, 0);
1053 } else if (p[n] == ':') {
1054 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1055 } else if (strncmp(p, "verbose", n) == 0) {
1056 *(options[i].flag) = 1;
1057 } else {
1058 *(options[i].flag) ^= 0xFFFFFFFF;
1059 }
1060 }
1061 return 1;
1062 }
1063
1064 __setup("aic7xxx=", aic7xxx_setup);
1065
1066 uint32_t aic7xxx_verbose;
1067
1068 int
ahc_linux_register_host(struct ahc_softc * ahc,struct scsi_host_template * template)1069 ahc_linux_register_host(struct ahc_softc *ahc, struct scsi_host_template *template)
1070 {
1071 char buf[80];
1072 struct Scsi_Host *host;
1073 char *new_name;
1074 u_long s;
1075 int retval;
1076
1077 template->name = ahc->description;
1078 host = scsi_host_alloc(template, sizeof(struct ahc_softc *));
1079 if (host == NULL)
1080 return (ENOMEM);
1081
1082 *((struct ahc_softc **)host->hostdata) = ahc;
1083 ahc->platform_data->host = host;
1084 host->can_queue = AHC_MAX_QUEUE;
1085 host->cmd_per_lun = 2;
1086 /* XXX No way to communicate the ID for multiple channels */
1087 host->this_id = ahc->our_id;
1088 host->irq = ahc->platform_data->irq;
1089 host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
1090 host->max_lun = AHC_NUM_LUNS;
1091 host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0;
1092 host->sg_tablesize = AHC_NSEG;
1093 ahc_lock(ahc, &s);
1094 ahc_set_unit(ahc, ahc_linux_unit++);
1095 ahc_unlock(ahc, &s);
1096 sprintf(buf, "scsi%d", host->host_no);
1097 new_name = kmalloc(strlen(buf) + 1, GFP_ATOMIC);
1098 if (new_name != NULL) {
1099 strcpy(new_name, buf);
1100 ahc_set_name(ahc, new_name);
1101 }
1102 host->unique_id = ahc->unit;
1103 ahc_linux_initialize_scsi_bus(ahc);
1104 ahc_intr_enable(ahc, TRUE);
1105
1106 host->transportt = ahc_linux_transport_template;
1107
1108 retval = scsi_add_host(host, ahc->dev);
1109 if (retval) {
1110 printk(KERN_WARNING "aic7xxx: scsi_add_host failed\n");
1111 scsi_host_put(host);
1112 return retval;
1113 }
1114
1115 scsi_scan_host(host);
1116 return 0;
1117 }
1118
1119 /*
1120 * Place the SCSI bus into a known state by either resetting it,
1121 * or forcing transfer negotiations on the next command to any
1122 * target.
1123 */
1124 static void
ahc_linux_initialize_scsi_bus(struct ahc_softc * ahc)1125 ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc)
1126 {
1127 int i;
1128 int numtarg;
1129 unsigned long s;
1130
1131 i = 0;
1132 numtarg = 0;
1133
1134 ahc_lock(ahc, &s);
1135
1136 if (aic7xxx_no_reset != 0)
1137 ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B);
1138
1139 if ((ahc->flags & AHC_RESET_BUS_A) != 0)
1140 ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE);
1141 else
1142 numtarg = (ahc->features & AHC_WIDE) ? 16 : 8;
1143
1144 if ((ahc->features & AHC_TWIN) != 0) {
1145
1146 if ((ahc->flags & AHC_RESET_BUS_B) != 0) {
1147 ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE);
1148 } else {
1149 if (numtarg == 0)
1150 i = 8;
1151 numtarg += 8;
1152 }
1153 }
1154
1155 /*
1156 * Force negotiation to async for all targets that
1157 * will not see an initial bus reset.
1158 */
1159 for (; i < numtarg; i++) {
1160 struct ahc_devinfo devinfo;
1161 struct ahc_initiator_tinfo *tinfo;
1162 struct ahc_tmode_tstate *tstate;
1163 u_int our_id;
1164 u_int target_id;
1165 char channel;
1166
1167 channel = 'A';
1168 our_id = ahc->our_id;
1169 target_id = i;
1170 if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
1171 channel = 'B';
1172 our_id = ahc->our_id_b;
1173 target_id = i % 8;
1174 }
1175 tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
1176 target_id, &tstate);
1177 ahc_compile_devinfo(&devinfo, our_id, target_id,
1178 CAM_LUN_WILDCARD, channel, ROLE_INITIATOR);
1179 ahc_update_neg_request(ahc, &devinfo, tstate,
1180 tinfo, AHC_NEG_ALWAYS);
1181 }
1182 ahc_unlock(ahc, &s);
1183 /* Give the bus some time to recover */
1184 if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) {
1185 ahc_linux_freeze_simq(ahc);
1186 msleep(AIC7XXX_RESET_DELAY);
1187 ahc_linux_release_simq(ahc);
1188 }
1189 }
1190
1191 int
ahc_platform_alloc(struct ahc_softc * ahc,void * platform_arg)1192 ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg)
1193 {
1194
1195 ahc->platform_data =
1196 kzalloc(sizeof(struct ahc_platform_data), GFP_ATOMIC);
1197 if (ahc->platform_data == NULL)
1198 return (ENOMEM);
1199 ahc->platform_data->irq = AHC_LINUX_NOIRQ;
1200 ahc_lockinit(ahc);
1201 ahc->seltime = (aic7xxx_seltime & 0x3) << 4;
1202 ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4;
1203 if (aic7xxx_pci_parity == 0)
1204 ahc->flags |= AHC_DISABLE_PCI_PERR;
1205
1206 return (0);
1207 }
1208
1209 void
ahc_platform_free(struct ahc_softc * ahc)1210 ahc_platform_free(struct ahc_softc *ahc)
1211 {
1212 struct scsi_target *starget;
1213 int i;
1214
1215 if (ahc->platform_data != NULL) {
1216 /* destroy all of the device and target objects */
1217 for (i = 0; i < AHC_NUM_TARGETS; i++) {
1218 starget = ahc->platform_data->starget[i];
1219 if (starget != NULL) {
1220 ahc->platform_data->starget[i] = NULL;
1221 }
1222 }
1223
1224 if (ahc->platform_data->irq != AHC_LINUX_NOIRQ)
1225 free_irq(ahc->platform_data->irq, ahc);
1226 if (ahc->tag == BUS_SPACE_PIO
1227 && ahc->bsh.ioport != 0)
1228 release_region(ahc->bsh.ioport, 256);
1229 if (ahc->tag == BUS_SPACE_MEMIO
1230 && ahc->bsh.maddr != NULL) {
1231 iounmap(ahc->bsh.maddr);
1232 release_mem_region(ahc->platform_data->mem_busaddr,
1233 0x1000);
1234 }
1235
1236 if (ahc->platform_data->host)
1237 scsi_host_put(ahc->platform_data->host);
1238
1239 kfree(ahc->platform_data);
1240 }
1241 }
1242
1243 void
ahc_platform_freeze_devq(struct ahc_softc * ahc,struct scb * scb)1244 ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
1245 {
1246 ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb),
1247 SCB_GET_CHANNEL(ahc, scb),
1248 SCB_GET_LUN(scb), SCB_LIST_NULL,
1249 ROLE_UNKNOWN, CAM_REQUEUE_REQ);
1250 }
1251
1252 void
ahc_platform_set_tags(struct ahc_softc * ahc,struct scsi_device * sdev,struct ahc_devinfo * devinfo,ahc_queue_alg alg)1253 ahc_platform_set_tags(struct ahc_softc *ahc, struct scsi_device *sdev,
1254 struct ahc_devinfo *devinfo, ahc_queue_alg alg)
1255 {
1256 struct ahc_linux_device *dev;
1257 int was_queuing;
1258 int now_queuing;
1259
1260 if (sdev == NULL)
1261 return;
1262 dev = scsi_transport_device_data(sdev);
1263
1264 was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED);
1265 switch (alg) {
1266 default:
1267 case AHC_QUEUE_NONE:
1268 now_queuing = 0;
1269 break;
1270 case AHC_QUEUE_BASIC:
1271 now_queuing = AHC_DEV_Q_BASIC;
1272 break;
1273 case AHC_QUEUE_TAGGED:
1274 now_queuing = AHC_DEV_Q_TAGGED;
1275 break;
1276 }
1277 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0
1278 && (was_queuing != now_queuing)
1279 && (dev->active != 0)) {
1280 dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY;
1281 dev->qfrozen++;
1282 }
1283
1284 dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG);
1285 if (now_queuing) {
1286 u_int usertags;
1287
1288 usertags = ahc_linux_user_tagdepth(ahc, devinfo);
1289 if (!was_queuing) {
1290 /*
1291 * Start out aggressively and allow our
1292 * dynamic queue depth algorithm to take
1293 * care of the rest.
1294 */
1295 dev->maxtags = usertags;
1296 dev->openings = dev->maxtags - dev->active;
1297 }
1298 if (dev->maxtags == 0) {
1299 /*
1300 * Queueing is disabled by the user.
1301 */
1302 dev->openings = 1;
1303 } else if (alg == AHC_QUEUE_TAGGED) {
1304 dev->flags |= AHC_DEV_Q_TAGGED;
1305 if (aic7xxx_periodic_otag != 0)
1306 dev->flags |= AHC_DEV_PERIODIC_OTAG;
1307 } else
1308 dev->flags |= AHC_DEV_Q_BASIC;
1309 } else {
1310 /* We can only have one opening. */
1311 dev->maxtags = 0;
1312 dev->openings = 1 - dev->active;
1313 }
1314 switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) {
1315 case AHC_DEV_Q_BASIC:
1316 case AHC_DEV_Q_TAGGED:
1317 scsi_change_queue_depth(sdev,
1318 dev->openings + dev->active);
1319 break;
1320 default:
1321 /*
1322 * We allow the OS to queue 2 untagged transactions to
1323 * us at any time even though we can only execute them
1324 * serially on the controller/device. This should
1325 * remove some latency.
1326 */
1327 scsi_change_queue_depth(sdev, 2);
1328 break;
1329 }
1330 }
1331
1332 int
ahc_platform_abort_scbs(struct ahc_softc * ahc,int target,char channel,int lun,u_int tag,role_t role,uint32_t status)1333 ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel,
1334 int lun, u_int tag, role_t role, uint32_t status)
1335 {
1336 return 0;
1337 }
1338
1339 static u_int
ahc_linux_user_tagdepth(struct ahc_softc * ahc,struct ahc_devinfo * devinfo)1340 ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
1341 {
1342 static int warned_user;
1343 u_int tags;
1344
1345 tags = 0;
1346 if ((ahc->user_discenable & devinfo->target_mask) != 0) {
1347 if (ahc->unit >= ARRAY_SIZE(aic7xxx_tag_info)) {
1348 if (warned_user == 0) {
1349
1350 printk(KERN_WARNING
1351 "aic7xxx: WARNING: Insufficient tag_info instances\n"
1352 "aic7xxx: for installed controllers. Using defaults\n"
1353 "aic7xxx: Please update the aic7xxx_tag_info array in\n"
1354 "aic7xxx: the aic7xxx_osm..c source file.\n");
1355 warned_user++;
1356 }
1357 tags = AHC_MAX_QUEUE;
1358 } else {
1359 adapter_tag_info_t *tag_info;
1360
1361 tag_info = &aic7xxx_tag_info[ahc->unit];
1362 tags = tag_info->tag_commands[devinfo->target_offset];
1363 if (tags > AHC_MAX_QUEUE)
1364 tags = AHC_MAX_QUEUE;
1365 }
1366 }
1367 return (tags);
1368 }
1369
1370 /*
1371 * Determines the queue depth for a given device.
1372 */
1373 static void
ahc_linux_device_queue_depth(struct scsi_device * sdev)1374 ahc_linux_device_queue_depth(struct scsi_device *sdev)
1375 {
1376 struct ahc_devinfo devinfo;
1377 u_int tags;
1378 struct ahc_softc *ahc = *((struct ahc_softc **)sdev->host->hostdata);
1379
1380 ahc_compile_devinfo(&devinfo,
1381 sdev->sdev_target->channel == 0
1382 ? ahc->our_id : ahc->our_id_b,
1383 sdev->sdev_target->id, sdev->lun,
1384 sdev->sdev_target->channel == 0 ? 'A' : 'B',
1385 ROLE_INITIATOR);
1386 tags = ahc_linux_user_tagdepth(ahc, &devinfo);
1387 if (tags != 0 && sdev->tagged_supported != 0) {
1388
1389 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_TAGGED);
1390 ahc_send_async(ahc, devinfo.channel, devinfo.target,
1391 devinfo.lun, AC_TRANSFER_NEG);
1392 ahc_print_devinfo(ahc, &devinfo);
1393 printk("Tagged Queuing enabled. Depth %d\n", tags);
1394 } else {
1395 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_NONE);
1396 ahc_send_async(ahc, devinfo.channel, devinfo.target,
1397 devinfo.lun, AC_TRANSFER_NEG);
1398 }
1399 }
1400
1401 static int
ahc_linux_run_command(struct ahc_softc * ahc,struct ahc_linux_device * dev,struct scsi_cmnd * cmd)1402 ahc_linux_run_command(struct ahc_softc *ahc, struct ahc_linux_device *dev,
1403 struct scsi_cmnd *cmd)
1404 {
1405 struct scb *scb;
1406 struct hardware_scb *hscb;
1407 struct ahc_initiator_tinfo *tinfo;
1408 struct ahc_tmode_tstate *tstate;
1409 uint16_t mask;
1410 struct scb_tailq *untagged_q = NULL;
1411 int nseg;
1412
1413 /*
1414 * Schedule us to run later. The only reason we are not
1415 * running is because the whole controller Q is frozen.
1416 */
1417 if (ahc->platform_data->qfrozen != 0)
1418 return SCSI_MLQUEUE_HOST_BUSY;
1419
1420 /*
1421 * We only allow one untagged transaction
1422 * per target in the initiator role unless
1423 * we are storing a full busy target *lun*
1424 * table in SCB space.
1425 */
1426 if (!(cmd->flags & SCMD_TAGGED)
1427 && (ahc->features & AHC_SCB_BTT) == 0) {
1428 int target_offset;
1429
1430 target_offset = cmd->device->id + cmd->device->channel * 8;
1431 untagged_q = &(ahc->untagged_queues[target_offset]);
1432 if (!TAILQ_EMPTY(untagged_q))
1433 /* if we're already executing an untagged command
1434 * we're busy to another */
1435 return SCSI_MLQUEUE_DEVICE_BUSY;
1436 }
1437
1438 nseg = scsi_dma_map(cmd);
1439 if (nseg < 0)
1440 return SCSI_MLQUEUE_HOST_BUSY;
1441
1442 /*
1443 * Get an scb to use.
1444 */
1445 scb = ahc_get_scb(ahc);
1446 if (!scb) {
1447 scsi_dma_unmap(cmd);
1448 return SCSI_MLQUEUE_HOST_BUSY;
1449 }
1450
1451 scb->io_ctx = cmd;
1452 scb->platform_data->dev = dev;
1453 hscb = scb->hscb;
1454 cmd->host_scribble = (char *)scb;
1455
1456 /*
1457 * Fill out basics of the HSCB.
1458 */
1459 hscb->control = 0;
1460 hscb->scsiid = BUILD_SCSIID(ahc, cmd);
1461 hscb->lun = cmd->device->lun;
1462 mask = SCB_GET_TARGET_MASK(ahc, scb);
1463 tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb),
1464 SCB_GET_OUR_ID(scb),
1465 SCB_GET_TARGET(ahc, scb), &tstate);
1466 hscb->scsirate = tinfo->scsirate;
1467 hscb->scsioffset = tinfo->curr.offset;
1468 if ((tstate->ultraenb & mask) != 0)
1469 hscb->control |= ULTRAENB;
1470
1471 if ((ahc->user_discenable & mask) != 0)
1472 hscb->control |= DISCENB;
1473
1474 if ((tstate->auto_negotiate & mask) != 0) {
1475 scb->flags |= SCB_AUTO_NEGOTIATE;
1476 scb->hscb->control |= MK_MESSAGE;
1477 }
1478
1479 if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) {
1480 if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH
1481 && (dev->flags & AHC_DEV_Q_TAGGED) != 0) {
1482 hscb->control |= ORDERED_QUEUE_TAG;
1483 dev->commands_since_idle_or_otag = 0;
1484 } else {
1485 hscb->control |= SIMPLE_QUEUE_TAG;
1486 }
1487 }
1488
1489 hscb->cdb_len = cmd->cmd_len;
1490 if (hscb->cdb_len <= 12) {
1491 memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len);
1492 } else {
1493 memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len);
1494 scb->flags |= SCB_CDB32_PTR;
1495 }
1496
1497 scb->platform_data->xfer_len = 0;
1498 ahc_set_residual(scb, 0);
1499 ahc_set_sense_residual(scb, 0);
1500 scb->sg_count = 0;
1501
1502 if (nseg > 0) {
1503 struct ahc_dma_seg *sg;
1504 struct scatterlist *cur_seg;
1505 int i;
1506
1507 /* Copy the segments into the SG list. */
1508 sg = scb->sg_list;
1509 /*
1510 * The sg_count may be larger than nseg if
1511 * a transfer crosses a 32bit page.
1512 */
1513 scsi_for_each_sg(cmd, cur_seg, nseg, i) {
1514 dma_addr_t addr;
1515 bus_size_t len;
1516 int consumed;
1517
1518 addr = sg_dma_address(cur_seg);
1519 len = sg_dma_len(cur_seg);
1520 consumed = ahc_linux_map_seg(ahc, scb,
1521 sg, addr, len);
1522 sg += consumed;
1523 scb->sg_count += consumed;
1524 }
1525 sg--;
1526 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
1527
1528 /*
1529 * Reset the sg list pointer.
1530 */
1531 scb->hscb->sgptr =
1532 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
1533
1534 /*
1535 * Copy the first SG into the "current"
1536 * data pointer area.
1537 */
1538 scb->hscb->dataptr = scb->sg_list->addr;
1539 scb->hscb->datacnt = scb->sg_list->len;
1540 } else {
1541 scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL);
1542 scb->hscb->dataptr = 0;
1543 scb->hscb->datacnt = 0;
1544 scb->sg_count = 0;
1545 }
1546
1547 LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links);
1548 dev->openings--;
1549 dev->active++;
1550 dev->commands_issued++;
1551 if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0)
1552 dev->commands_since_idle_or_otag++;
1553
1554 scb->flags |= SCB_ACTIVE;
1555 if (untagged_q) {
1556 TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe);
1557 scb->flags |= SCB_UNTAGGEDQ;
1558 }
1559 ahc_queue_scb(ahc, scb);
1560 return 0;
1561 }
1562
1563 /*
1564 * SCSI controller interrupt handler.
1565 */
1566 irqreturn_t
ahc_linux_isr(int irq,void * dev_id)1567 ahc_linux_isr(int irq, void *dev_id)
1568 {
1569 struct ahc_softc *ahc;
1570 u_long flags;
1571 int ours;
1572
1573 ahc = (struct ahc_softc *) dev_id;
1574 ahc_lock(ahc, &flags);
1575 ours = ahc_intr(ahc);
1576 ahc_unlock(ahc, &flags);
1577 return IRQ_RETVAL(ours);
1578 }
1579
1580 void
ahc_platform_flushwork(struct ahc_softc * ahc)1581 ahc_platform_flushwork(struct ahc_softc *ahc)
1582 {
1583
1584 }
1585
1586 void
ahc_send_async(struct ahc_softc * ahc,char channel,u_int target,u_int lun,ac_code code)1587 ahc_send_async(struct ahc_softc *ahc, char channel,
1588 u_int target, u_int lun, ac_code code)
1589 {
1590 switch (code) {
1591 case AC_TRANSFER_NEG:
1592 {
1593 struct scsi_target *starget;
1594 struct ahc_initiator_tinfo *tinfo;
1595 struct ahc_tmode_tstate *tstate;
1596 int target_offset;
1597 unsigned int target_ppr_options;
1598
1599 BUG_ON(target == CAM_TARGET_WILDCARD);
1600
1601 tinfo = ahc_fetch_transinfo(ahc, channel,
1602 channel == 'A' ? ahc->our_id
1603 : ahc->our_id_b,
1604 target, &tstate);
1605
1606 /*
1607 * Don't bother reporting results while
1608 * negotiations are still pending.
1609 */
1610 if (tinfo->curr.period != tinfo->goal.period
1611 || tinfo->curr.width != tinfo->goal.width
1612 || tinfo->curr.offset != tinfo->goal.offset
1613 || tinfo->curr.ppr_options != tinfo->goal.ppr_options)
1614 if (bootverbose == 0)
1615 break;
1616
1617 /*
1618 * Don't bother reporting results that
1619 * are identical to those last reported.
1620 */
1621 target_offset = target;
1622 if (channel == 'B')
1623 target_offset += 8;
1624 starget = ahc->platform_data->starget[target_offset];
1625 if (starget == NULL)
1626 break;
1627
1628 target_ppr_options =
1629 (spi_dt(starget) ? MSG_EXT_PPR_DT_REQ : 0)
1630 + (spi_qas(starget) ? MSG_EXT_PPR_QAS_REQ : 0)
1631 + (spi_iu(starget) ? MSG_EXT_PPR_IU_REQ : 0);
1632
1633 if (tinfo->curr.period == spi_period(starget)
1634 && tinfo->curr.width == spi_width(starget)
1635 && tinfo->curr.offset == spi_offset(starget)
1636 && tinfo->curr.ppr_options == target_ppr_options)
1637 if (bootverbose == 0)
1638 break;
1639
1640 spi_period(starget) = tinfo->curr.period;
1641 spi_width(starget) = tinfo->curr.width;
1642 spi_offset(starget) = tinfo->curr.offset;
1643 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_DT_REQ ? 1 : 0;
1644 spi_qas(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_QAS_REQ ? 1 : 0;
1645 spi_iu(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ ? 1 : 0;
1646 spi_display_xfer_agreement(starget);
1647 break;
1648 }
1649 case AC_SENT_BDR:
1650 {
1651 WARN_ON(lun != CAM_LUN_WILDCARD);
1652 scsi_report_device_reset(ahc->platform_data->host,
1653 channel - 'A', target);
1654 break;
1655 }
1656 case AC_BUS_RESET:
1657 if (ahc->platform_data->host != NULL) {
1658 scsi_report_bus_reset(ahc->platform_data->host,
1659 channel - 'A');
1660 }
1661 break;
1662 default:
1663 panic("ahc_send_async: Unexpected async event");
1664 }
1665 }
1666
1667 /*
1668 * Calls the higher level scsi done function and frees the scb.
1669 */
1670 void
ahc_done(struct ahc_softc * ahc,struct scb * scb)1671 ahc_done(struct ahc_softc *ahc, struct scb *scb)
1672 {
1673 struct scsi_cmnd *cmd;
1674 struct ahc_linux_device *dev;
1675
1676 LIST_REMOVE(scb, pending_links);
1677 if ((scb->flags & SCB_UNTAGGEDQ) != 0) {
1678 struct scb_tailq *untagged_q;
1679 int target_offset;
1680
1681 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
1682 untagged_q = &(ahc->untagged_queues[target_offset]);
1683 TAILQ_REMOVE(untagged_q, scb, links.tqe);
1684 BUG_ON(!TAILQ_EMPTY(untagged_q));
1685 } else if ((scb->flags & SCB_ACTIVE) == 0) {
1686 /*
1687 * Transactions aborted from the untagged queue may
1688 * not have been dispatched to the controller, so
1689 * only check the SCB_ACTIVE flag for tagged transactions.
1690 */
1691 printk("SCB %d done'd twice\n", scb->hscb->tag);
1692 ahc_dump_card_state(ahc);
1693 panic("Stopping for safety");
1694 }
1695 cmd = scb->io_ctx;
1696 dev = scb->platform_data->dev;
1697 dev->active--;
1698 dev->openings++;
1699 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
1700 cmd->result &= ~(CAM_DEV_QFRZN << 16);
1701 dev->qfrozen--;
1702 }
1703 ahc_linux_unmap_scb(ahc, scb);
1704
1705 /*
1706 * Guard against stale sense data.
1707 * The Linux mid-layer assumes that sense
1708 * was retrieved anytime the first byte of
1709 * the sense buffer looks "sane".
1710 */
1711 cmd->sense_buffer[0] = 0;
1712 if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) {
1713 #ifdef AHC_REPORT_UNDERFLOWS
1714 uint32_t amount_xferred;
1715
1716 amount_xferred =
1717 ahc_get_transfer_length(scb) - ahc_get_residual(scb);
1718 #endif
1719 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
1720 #ifdef AHC_DEBUG
1721 if ((ahc_debug & AHC_SHOW_MISC) != 0) {
1722 ahc_print_path(ahc, scb);
1723 printk("Set CAM_UNCOR_PARITY\n");
1724 }
1725 #endif
1726 ahc_set_transaction_status(scb, CAM_UNCOR_PARITY);
1727 #ifdef AHC_REPORT_UNDERFLOWS
1728 /*
1729 * This code is disabled by default as some
1730 * clients of the SCSI system do not properly
1731 * initialize the underflow parameter. This
1732 * results in spurious termination of commands
1733 * that complete as expected (e.g. underflow is
1734 * allowed as command can return variable amounts
1735 * of data.
1736 */
1737 } else if (amount_xferred < scb->io_ctx->underflow) {
1738 u_int i;
1739
1740 ahc_print_path(ahc, scb);
1741 printk("CDB:");
1742 for (i = 0; i < scb->io_ctx->cmd_len; i++)
1743 printk(" 0x%x", scb->io_ctx->cmnd[i]);
1744 printk("\n");
1745 ahc_print_path(ahc, scb);
1746 printk("Saw underflow (%ld of %ld bytes). "
1747 "Treated as error\n",
1748 ahc_get_residual(scb),
1749 ahc_get_transfer_length(scb));
1750 ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
1751 #endif
1752 } else {
1753 ahc_set_transaction_status(scb, CAM_REQ_CMP);
1754 }
1755 } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
1756 ahc_linux_handle_scsi_status(ahc, cmd->device, scb);
1757 }
1758
1759 if (dev->openings == 1
1760 && ahc_get_transaction_status(scb) == CAM_REQ_CMP
1761 && ahc_get_scsi_status(scb) != SAM_STAT_TASK_SET_FULL)
1762 dev->tag_success_count++;
1763 /*
1764 * Some devices deal with temporary internal resource
1765 * shortages by returning queue full. When the queue
1766 * full occurrs, we throttle back. Slowly try to get
1767 * back to our previous queue depth.
1768 */
1769 if ((dev->openings + dev->active) < dev->maxtags
1770 && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) {
1771 dev->tag_success_count = 0;
1772 dev->openings++;
1773 }
1774
1775 if (dev->active == 0)
1776 dev->commands_since_idle_or_otag = 0;
1777
1778 if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
1779 printk("Recovery SCB completes\n");
1780 if (ahc_get_transaction_status(scb) == CAM_BDR_SENT
1781 || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED)
1782 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT);
1783
1784 if (ahc->platform_data->eh_done)
1785 complete(ahc->platform_data->eh_done);
1786 }
1787
1788 ahc_free_scb(ahc, scb);
1789 ahc_linux_queue_cmd_complete(ahc, cmd);
1790 }
1791
1792 static void
ahc_linux_handle_scsi_status(struct ahc_softc * ahc,struct scsi_device * sdev,struct scb * scb)1793 ahc_linux_handle_scsi_status(struct ahc_softc *ahc,
1794 struct scsi_device *sdev, struct scb *scb)
1795 {
1796 struct ahc_devinfo devinfo;
1797 struct ahc_linux_device *dev = scsi_transport_device_data(sdev);
1798
1799 ahc_compile_devinfo(&devinfo,
1800 ahc->our_id,
1801 sdev->sdev_target->id, sdev->lun,
1802 sdev->sdev_target->channel == 0 ? 'A' : 'B',
1803 ROLE_INITIATOR);
1804
1805 /*
1806 * We don't currently trust the mid-layer to
1807 * properly deal with queue full or busy. So,
1808 * when one occurs, we tell the mid-layer to
1809 * unconditionally requeue the command to us
1810 * so that we can retry it ourselves. We also
1811 * implement our own throttling mechanism so
1812 * we don't clobber the device with too many
1813 * commands.
1814 */
1815 switch (ahc_get_scsi_status(scb)) {
1816 default:
1817 break;
1818 case SAM_STAT_CHECK_CONDITION:
1819 case SAM_STAT_COMMAND_TERMINATED:
1820 {
1821 struct scsi_cmnd *cmd;
1822
1823 /*
1824 * Copy sense information to the OS's cmd
1825 * structure if it is available.
1826 */
1827 cmd = scb->io_ctx;
1828 if (scb->flags & SCB_SENSE) {
1829 u_int sense_size;
1830
1831 sense_size = min(sizeof(struct scsi_sense_data)
1832 - ahc_get_sense_residual(scb),
1833 (u_long)SCSI_SENSE_BUFFERSIZE);
1834 memcpy(cmd->sense_buffer,
1835 ahc_get_sense_buf(ahc, scb), sense_size);
1836 if (sense_size < SCSI_SENSE_BUFFERSIZE)
1837 memset(&cmd->sense_buffer[sense_size], 0,
1838 SCSI_SENSE_BUFFERSIZE - sense_size);
1839 #ifdef AHC_DEBUG
1840 if (ahc_debug & AHC_SHOW_SENSE) {
1841 int i;
1842
1843 printk("Copied %d bytes of sense data:",
1844 sense_size);
1845 for (i = 0; i < sense_size; i++) {
1846 if ((i & 0xF) == 0)
1847 printk("\n");
1848 printk("0x%x ", cmd->sense_buffer[i]);
1849 }
1850 printk("\n");
1851 }
1852 #endif
1853 }
1854 break;
1855 }
1856 case SAM_STAT_TASK_SET_FULL:
1857 {
1858 /*
1859 * By the time the core driver has returned this
1860 * command, all other commands that were queued
1861 * to us but not the device have been returned.
1862 * This ensures that dev->active is equal to
1863 * the number of commands actually queued to
1864 * the device.
1865 */
1866 dev->tag_success_count = 0;
1867 if (dev->active != 0) {
1868 /*
1869 * Drop our opening count to the number
1870 * of commands currently outstanding.
1871 */
1872 dev->openings = 0;
1873 /*
1874 ahc_print_path(ahc, scb);
1875 printk("Dropping tag count to %d\n", dev->active);
1876 */
1877 if (dev->active == dev->tags_on_last_queuefull) {
1878
1879 dev->last_queuefull_same_count++;
1880 /*
1881 * If we repeatedly see a queue full
1882 * at the same queue depth, this
1883 * device has a fixed number of tag
1884 * slots. Lock in this tag depth
1885 * so we stop seeing queue fulls from
1886 * this device.
1887 */
1888 if (dev->last_queuefull_same_count
1889 == AHC_LOCK_TAGS_COUNT) {
1890 dev->maxtags = dev->active;
1891 ahc_print_path(ahc, scb);
1892 printk("Locking max tag count at %d\n",
1893 dev->active);
1894 }
1895 } else {
1896 dev->tags_on_last_queuefull = dev->active;
1897 dev->last_queuefull_same_count = 0;
1898 }
1899 ahc_set_transaction_status(scb, CAM_REQUEUE_REQ);
1900 ahc_set_scsi_status(scb, SAM_STAT_GOOD);
1901 ahc_platform_set_tags(ahc, sdev, &devinfo,
1902 (dev->flags & AHC_DEV_Q_BASIC)
1903 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
1904 break;
1905 }
1906 /*
1907 * Drop down to a single opening, and treat this
1908 * as if the target returned BUSY SCSI status.
1909 */
1910 dev->openings = 1;
1911 ahc_set_scsi_status(scb, SAM_STAT_BUSY);
1912 ahc_platform_set_tags(ahc, sdev, &devinfo,
1913 (dev->flags & AHC_DEV_Q_BASIC)
1914 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
1915 break;
1916 }
1917 }
1918 }
1919
1920 static void
ahc_linux_queue_cmd_complete(struct ahc_softc * ahc,struct scsi_cmnd * cmd)1921 ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, struct scsi_cmnd *cmd)
1922 {
1923 /*
1924 * Map CAM error codes into Linux Error codes. We
1925 * avoid the conversion so that the DV code has the
1926 * full error information available when making
1927 * state change decisions.
1928 */
1929 {
1930 u_int new_status;
1931
1932 switch (ahc_cmd_get_transaction_status(cmd)) {
1933 case CAM_REQ_INPROG:
1934 case CAM_REQ_CMP:
1935 case CAM_SCSI_STATUS_ERROR:
1936 new_status = DID_OK;
1937 break;
1938 case CAM_REQ_ABORTED:
1939 new_status = DID_ABORT;
1940 break;
1941 case CAM_BUSY:
1942 new_status = DID_BUS_BUSY;
1943 break;
1944 case CAM_REQ_INVALID:
1945 case CAM_PATH_INVALID:
1946 new_status = DID_BAD_TARGET;
1947 break;
1948 case CAM_SEL_TIMEOUT:
1949 new_status = DID_NO_CONNECT;
1950 break;
1951 case CAM_SCSI_BUS_RESET:
1952 case CAM_BDR_SENT:
1953 new_status = DID_RESET;
1954 break;
1955 case CAM_UNCOR_PARITY:
1956 new_status = DID_PARITY;
1957 break;
1958 case CAM_CMD_TIMEOUT:
1959 new_status = DID_TIME_OUT;
1960 break;
1961 case CAM_UA_ABORT:
1962 case CAM_REQ_CMP_ERR:
1963 case CAM_AUTOSENSE_FAIL:
1964 case CAM_NO_HBA:
1965 case CAM_DATA_RUN_ERR:
1966 case CAM_UNEXP_BUSFREE:
1967 case CAM_SEQUENCE_FAIL:
1968 case CAM_CCB_LEN_ERR:
1969 case CAM_PROVIDE_FAIL:
1970 case CAM_REQ_TERMIO:
1971 case CAM_UNREC_HBA_ERROR:
1972 case CAM_REQ_TOO_BIG:
1973 new_status = DID_ERROR;
1974 break;
1975 case CAM_REQUEUE_REQ:
1976 new_status = DID_REQUEUE;
1977 break;
1978 default:
1979 /* We should never get here */
1980 new_status = DID_ERROR;
1981 break;
1982 }
1983
1984 ahc_cmd_set_transaction_status(cmd, new_status);
1985 }
1986
1987 scsi_done(cmd);
1988 }
1989
1990 static void
ahc_linux_freeze_simq(struct ahc_softc * ahc)1991 ahc_linux_freeze_simq(struct ahc_softc *ahc)
1992 {
1993 unsigned long s;
1994
1995 ahc_lock(ahc, &s);
1996 ahc->platform_data->qfrozen++;
1997 if (ahc->platform_data->qfrozen == 1) {
1998 scsi_block_requests(ahc->platform_data->host);
1999
2000 /* XXX What about Twin channels? */
2001 ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
2002 CAM_LUN_WILDCARD, SCB_LIST_NULL,
2003 ROLE_INITIATOR, CAM_REQUEUE_REQ);
2004 }
2005 ahc_unlock(ahc, &s);
2006 }
2007
2008 static void
ahc_linux_release_simq(struct ahc_softc * ahc)2009 ahc_linux_release_simq(struct ahc_softc *ahc)
2010 {
2011 u_long s;
2012 int unblock_reqs;
2013
2014 unblock_reqs = 0;
2015 ahc_lock(ahc, &s);
2016 if (ahc->platform_data->qfrozen > 0)
2017 ahc->platform_data->qfrozen--;
2018 if (ahc->platform_data->qfrozen == 0)
2019 unblock_reqs = 1;
2020 ahc_unlock(ahc, &s);
2021 /*
2022 * There is still a race here. The mid-layer
2023 * should keep its own freeze count and use
2024 * a bottom half handler to run the queues
2025 * so we can unblock with our own lock held.
2026 */
2027 if (unblock_reqs)
2028 scsi_unblock_requests(ahc->platform_data->host);
2029 }
2030
2031 static int
ahc_linux_queue_recovery_cmd(struct scsi_cmnd * cmd,scb_flag flag)2032 ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag)
2033 {
2034 struct ahc_softc *ahc;
2035 struct ahc_linux_device *dev;
2036 struct scb *pending_scb;
2037 u_int saved_scbptr;
2038 u_int active_scb_index;
2039 u_int last_phase;
2040 u_int saved_scsiid;
2041 u_int cdb_byte;
2042 int retval;
2043 int was_paused;
2044 int paused;
2045 int wait;
2046 int disconnected;
2047 unsigned long flags;
2048
2049 pending_scb = NULL;
2050 paused = FALSE;
2051 wait = FALSE;
2052 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
2053
2054 scmd_printk(KERN_INFO, cmd, "Attempting to queue a%s message\n",
2055 flag == SCB_ABORT ? "n ABORT" : " TARGET RESET");
2056
2057 printk("CDB:");
2058 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
2059 printk(" 0x%x", cmd->cmnd[cdb_byte]);
2060 printk("\n");
2061
2062 ahc_lock(ahc, &flags);
2063
2064 /*
2065 * First determine if we currently own this command.
2066 * Start by searching the device queue. If not found
2067 * there, check the pending_scb list. If not found
2068 * at all, and the system wanted us to just abort the
2069 * command, return success.
2070 */
2071 dev = scsi_transport_device_data(cmd->device);
2072
2073 if (dev == NULL) {
2074 /*
2075 * No target device for this command exists,
2076 * so we must not still own the command.
2077 */
2078 printk("%s:%d:%d:%d: Is not an active device\n",
2079 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2080 (u8)cmd->device->lun);
2081 retval = SUCCESS;
2082 goto no_cmd;
2083 }
2084
2085 if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0
2086 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id,
2087 cmd->device->channel + 'A',
2088 (u8)cmd->device->lun,
2089 CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) {
2090 printk("%s:%d:%d:%d: Command found on untagged queue\n",
2091 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2092 (u8)cmd->device->lun);
2093 retval = SUCCESS;
2094 goto done;
2095 }
2096
2097 /*
2098 * See if we can find a matching cmd in the pending list.
2099 */
2100 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
2101 if (pending_scb->io_ctx == cmd)
2102 break;
2103 }
2104
2105 if (pending_scb == NULL && flag == SCB_DEVICE_RESET) {
2106
2107 /* Any SCB for this device will do for a target reset */
2108 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
2109 if (ahc_match_scb(ahc, pending_scb, scmd_id(cmd),
2110 scmd_channel(cmd) + 'A',
2111 CAM_LUN_WILDCARD,
2112 SCB_LIST_NULL, ROLE_INITIATOR))
2113 break;
2114 }
2115 }
2116
2117 if (pending_scb == NULL) {
2118 scmd_printk(KERN_INFO, cmd, "Command not found\n");
2119 goto no_cmd;
2120 }
2121
2122 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
2123 /*
2124 * We can't queue two recovery actions using the same SCB
2125 */
2126 retval = FAILED;
2127 goto done;
2128 }
2129
2130 /*
2131 * Ensure that the card doesn't do anything
2132 * behind our back and that we didn't "just" miss
2133 * an interrupt that would affect this cmd.
2134 */
2135 was_paused = ahc_is_paused(ahc);
2136 ahc_pause_and_flushwork(ahc);
2137 paused = TRUE;
2138
2139 if ((pending_scb->flags & SCB_ACTIVE) == 0) {
2140 scmd_printk(KERN_INFO, cmd, "Command already completed\n");
2141 goto no_cmd;
2142 }
2143
2144 printk("%s: At time of recovery, card was %spaused\n",
2145 ahc_name(ahc), was_paused ? "" : "not ");
2146 ahc_dump_card_state(ahc);
2147
2148 disconnected = TRUE;
2149 if (flag == SCB_ABORT) {
2150 if (ahc_search_qinfifo(ahc, cmd->device->id,
2151 cmd->device->channel + 'A',
2152 cmd->device->lun,
2153 pending_scb->hscb->tag,
2154 ROLE_INITIATOR, CAM_REQ_ABORTED,
2155 SEARCH_COMPLETE) > 0) {
2156 printk("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
2157 ahc_name(ahc), cmd->device->channel,
2158 cmd->device->id, (u8)cmd->device->lun);
2159 retval = SUCCESS;
2160 goto done;
2161 }
2162 } else if (ahc_search_qinfifo(ahc, cmd->device->id,
2163 cmd->device->channel + 'A',
2164 cmd->device->lun,
2165 pending_scb->hscb->tag,
2166 ROLE_INITIATOR, /*status*/0,
2167 SEARCH_COUNT) > 0) {
2168 disconnected = FALSE;
2169 }
2170
2171 if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
2172 struct scb *bus_scb;
2173
2174 bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG));
2175 if (bus_scb == pending_scb)
2176 disconnected = FALSE;
2177 else if (flag != SCB_ABORT
2178 && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid
2179 && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb))
2180 disconnected = FALSE;
2181 }
2182
2183 /*
2184 * At this point, pending_scb is the scb associated with the
2185 * passed in command. That command is currently active on the
2186 * bus, is in the disconnected state, or we're hoping to find
2187 * a command for the same target active on the bus to abuse to
2188 * send a BDR. Queue the appropriate message based on which of
2189 * these states we are in.
2190 */
2191 last_phase = ahc_inb(ahc, LASTPHASE);
2192 saved_scbptr = ahc_inb(ahc, SCBPTR);
2193 active_scb_index = ahc_inb(ahc, SCB_TAG);
2194 saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
2195 if (last_phase != P_BUSFREE
2196 && (pending_scb->hscb->tag == active_scb_index
2197 || (flag == SCB_DEVICE_RESET
2198 && SCSIID_TARGET(ahc, saved_scsiid) == scmd_id(cmd)))) {
2199
2200 /*
2201 * We're active on the bus, so assert ATN
2202 * and hope that the target responds.
2203 */
2204 pending_scb = ahc_lookup_scb(ahc, active_scb_index);
2205 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
2206 ahc_outb(ahc, MSG_OUT, HOST_MSG);
2207 ahc_outb(ahc, SCSISIGO, last_phase|ATNO);
2208 scmd_printk(KERN_INFO, cmd, "Device is active, asserting ATN\n");
2209 wait = TRUE;
2210 } else if (disconnected) {
2211
2212 /*
2213 * Actually re-queue this SCB in an attempt
2214 * to select the device before it reconnects.
2215 * In either case (selection or reselection),
2216 * we will now issue the approprate message
2217 * to the timed-out device.
2218 *
2219 * Set the MK_MESSAGE control bit indicating
2220 * that we desire to send a message. We
2221 * also set the disconnected flag since
2222 * in the paging case there is no guarantee
2223 * that our SCB control byte matches the
2224 * version on the card. We don't want the
2225 * sequencer to abort the command thinking
2226 * an unsolicited reselection occurred.
2227 */
2228 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
2229 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
2230
2231 /*
2232 * Remove any cached copy of this SCB in the
2233 * disconnected list in preparation for the
2234 * queuing of our abort SCB. We use the
2235 * same element in the SCB, SCB_NEXT, for
2236 * both the qinfifo and the disconnected list.
2237 */
2238 ahc_search_disc_list(ahc, cmd->device->id,
2239 cmd->device->channel + 'A',
2240 cmd->device->lun, pending_scb->hscb->tag,
2241 /*stop_on_first*/TRUE,
2242 /*remove*/TRUE,
2243 /*save_state*/FALSE);
2244
2245 /*
2246 * In the non-paging case, the sequencer will
2247 * never re-reference the in-core SCB.
2248 * To make sure we are notified during
2249 * reselection, set the MK_MESSAGE flag in
2250 * the card's copy of the SCB.
2251 */
2252 if ((ahc->flags & AHC_PAGESCBS) == 0) {
2253 ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag);
2254 ahc_outb(ahc, SCB_CONTROL,
2255 ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE);
2256 }
2257
2258 /*
2259 * Clear out any entries in the QINFIFO first
2260 * so we are the next SCB for this target
2261 * to run.
2262 */
2263 ahc_search_qinfifo(ahc, cmd->device->id,
2264 cmd->device->channel + 'A',
2265 cmd->device->lun, SCB_LIST_NULL,
2266 ROLE_INITIATOR, CAM_REQUEUE_REQ,
2267 SEARCH_COMPLETE);
2268 ahc_qinfifo_requeue_tail(ahc, pending_scb);
2269 ahc_outb(ahc, SCBPTR, saved_scbptr);
2270 ahc_print_path(ahc, pending_scb);
2271 printk("Device is disconnected, re-queuing SCB\n");
2272 wait = TRUE;
2273 } else {
2274 scmd_printk(KERN_INFO, cmd, "Unable to deliver message\n");
2275 retval = FAILED;
2276 goto done;
2277 }
2278
2279 no_cmd:
2280 /*
2281 * Our assumption is that if we don't have the command, no
2282 * recovery action was required, so we return success. Again,
2283 * the semantics of the mid-layer recovery engine are not
2284 * well defined, so this may change in time.
2285 */
2286 retval = SUCCESS;
2287 done:
2288 if (paused)
2289 ahc_unpause(ahc);
2290 if (wait) {
2291 DECLARE_COMPLETION_ONSTACK(done);
2292
2293 ahc->platform_data->eh_done = &done;
2294 ahc_unlock(ahc, &flags);
2295
2296 printk("Recovery code sleeping\n");
2297 if (!wait_for_completion_timeout(&done, 5 * HZ)) {
2298 ahc_lock(ahc, &flags);
2299 ahc->platform_data->eh_done = NULL;
2300 ahc_unlock(ahc, &flags);
2301
2302 printk("Timer Expired\n");
2303 retval = FAILED;
2304 }
2305 printk("Recovery code awake\n");
2306 } else
2307 ahc_unlock(ahc, &flags);
2308 return (retval);
2309 }
2310
ahc_linux_set_width(struct scsi_target * starget,int width)2311 static void ahc_linux_set_width(struct scsi_target *starget, int width)
2312 {
2313 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2314 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2315 struct ahc_devinfo devinfo;
2316 unsigned long flags;
2317
2318 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2319 starget->channel + 'A', ROLE_INITIATOR);
2320 ahc_lock(ahc, &flags);
2321 ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, FALSE);
2322 ahc_unlock(ahc, &flags);
2323 }
2324
ahc_linux_set_period(struct scsi_target * starget,int period)2325 static void ahc_linux_set_period(struct scsi_target *starget, int period)
2326 {
2327 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2328 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2329 struct ahc_tmode_tstate *tstate;
2330 struct ahc_initiator_tinfo *tinfo
2331 = ahc_fetch_transinfo(ahc,
2332 starget->channel + 'A',
2333 shost->this_id, starget->id, &tstate);
2334 struct ahc_devinfo devinfo;
2335 unsigned int ppr_options = tinfo->goal.ppr_options;
2336 unsigned long flags;
2337 unsigned long offset = tinfo->goal.offset;
2338 const struct ahc_syncrate *syncrate;
2339
2340 if (offset == 0)
2341 offset = MAX_OFFSET;
2342
2343 if (period < 9)
2344 period = 9; /* 12.5ns is our minimum */
2345 if (period == 9) {
2346 if (spi_max_width(starget))
2347 ppr_options |= MSG_EXT_PPR_DT_REQ;
2348 else
2349 /* need wide for DT and need DT for 12.5 ns */
2350 period = 10;
2351 }
2352
2353 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2354 starget->channel + 'A', ROLE_INITIATOR);
2355
2356 /* all PPR requests apart from QAS require wide transfers */
2357 if (ppr_options & ~MSG_EXT_PPR_QAS_REQ) {
2358 if (spi_width(starget) == 0)
2359 ppr_options &= MSG_EXT_PPR_QAS_REQ;
2360 }
2361
2362 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2363 AHC_SYNCRATE_DT);
2364 ahc_lock(ahc, &flags);
2365 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
2366 ppr_options, AHC_TRANS_GOAL, FALSE);
2367 ahc_unlock(ahc, &flags);
2368 }
2369
ahc_linux_set_offset(struct scsi_target * starget,int offset)2370 static void ahc_linux_set_offset(struct scsi_target *starget, int offset)
2371 {
2372 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2373 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2374 struct ahc_tmode_tstate *tstate;
2375 struct ahc_initiator_tinfo *tinfo
2376 = ahc_fetch_transinfo(ahc,
2377 starget->channel + 'A',
2378 shost->this_id, starget->id, &tstate);
2379 struct ahc_devinfo devinfo;
2380 unsigned int ppr_options = 0;
2381 unsigned int period = 0;
2382 unsigned long flags;
2383 const struct ahc_syncrate *syncrate = NULL;
2384
2385 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2386 starget->channel + 'A', ROLE_INITIATOR);
2387 if (offset != 0) {
2388 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2389 AHC_SYNCRATE_DT);
2390 period = tinfo->goal.period;
2391 ppr_options = tinfo->goal.ppr_options;
2392 }
2393 ahc_lock(ahc, &flags);
2394 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
2395 ppr_options, AHC_TRANS_GOAL, FALSE);
2396 ahc_unlock(ahc, &flags);
2397 }
2398
ahc_linux_set_dt(struct scsi_target * starget,int dt)2399 static void ahc_linux_set_dt(struct scsi_target *starget, int dt)
2400 {
2401 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2402 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2403 struct ahc_tmode_tstate *tstate;
2404 struct ahc_initiator_tinfo *tinfo
2405 = ahc_fetch_transinfo(ahc,
2406 starget->channel + 'A',
2407 shost->this_id, starget->id, &tstate);
2408 struct ahc_devinfo devinfo;
2409 unsigned int ppr_options = tinfo->goal.ppr_options
2410 & ~MSG_EXT_PPR_DT_REQ;
2411 unsigned int period = tinfo->goal.period;
2412 unsigned int width = tinfo->goal.width;
2413 unsigned long flags;
2414 const struct ahc_syncrate *syncrate;
2415
2416 if (dt && spi_max_width(starget)) {
2417 ppr_options |= MSG_EXT_PPR_DT_REQ;
2418 if (!width)
2419 ahc_linux_set_width(starget, 1);
2420 } else if (period == 9)
2421 period = 10; /* if resetting DT, period must be >= 25ns */
2422
2423 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2424 starget->channel + 'A', ROLE_INITIATOR);
2425 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2426 AHC_SYNCRATE_DT);
2427 ahc_lock(ahc, &flags);
2428 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2429 ppr_options, AHC_TRANS_GOAL, FALSE);
2430 ahc_unlock(ahc, &flags);
2431 }
2432
2433 #if 0
2434 /* FIXME: This code claims to support IU and QAS. However, the actual
2435 * sequencer code and aic7xxx_core have no support for these parameters and
2436 * will get into a bad state if they're negotiated. Do not enable this
2437 * unless you know what you're doing */
2438 static void ahc_linux_set_qas(struct scsi_target *starget, int qas)
2439 {
2440 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2441 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2442 struct ahc_tmode_tstate *tstate;
2443 struct ahc_initiator_tinfo *tinfo
2444 = ahc_fetch_transinfo(ahc,
2445 starget->channel + 'A',
2446 shost->this_id, starget->id, &tstate);
2447 struct ahc_devinfo devinfo;
2448 unsigned int ppr_options = tinfo->goal.ppr_options
2449 & ~MSG_EXT_PPR_QAS_REQ;
2450 unsigned int period = tinfo->goal.period;
2451 unsigned long flags;
2452 struct ahc_syncrate *syncrate;
2453
2454 if (qas)
2455 ppr_options |= MSG_EXT_PPR_QAS_REQ;
2456
2457 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2458 starget->channel + 'A', ROLE_INITIATOR);
2459 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2460 AHC_SYNCRATE_DT);
2461 ahc_lock(ahc, &flags);
2462 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2463 ppr_options, AHC_TRANS_GOAL, FALSE);
2464 ahc_unlock(ahc, &flags);
2465 }
2466
2467 static void ahc_linux_set_iu(struct scsi_target *starget, int iu)
2468 {
2469 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2470 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2471 struct ahc_tmode_tstate *tstate;
2472 struct ahc_initiator_tinfo *tinfo
2473 = ahc_fetch_transinfo(ahc,
2474 starget->channel + 'A',
2475 shost->this_id, starget->id, &tstate);
2476 struct ahc_devinfo devinfo;
2477 unsigned int ppr_options = tinfo->goal.ppr_options
2478 & ~MSG_EXT_PPR_IU_REQ;
2479 unsigned int period = tinfo->goal.period;
2480 unsigned long flags;
2481 struct ahc_syncrate *syncrate;
2482
2483 if (iu)
2484 ppr_options |= MSG_EXT_PPR_IU_REQ;
2485
2486 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2487 starget->channel + 'A', ROLE_INITIATOR);
2488 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,
2489 AHC_SYNCRATE_DT);
2490 ahc_lock(ahc, &flags);
2491 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2492 ppr_options, AHC_TRANS_GOAL, FALSE);
2493 ahc_unlock(ahc, &flags);
2494 }
2495 #endif
2496
ahc_linux_get_signalling(struct Scsi_Host * shost)2497 static void ahc_linux_get_signalling(struct Scsi_Host *shost)
2498 {
2499 struct ahc_softc *ahc = *(struct ahc_softc **)shost->hostdata;
2500 unsigned long flags;
2501 u8 mode;
2502
2503 if (!(ahc->features & AHC_ULTRA2)) {
2504 /* non-LVD chipset, may not have SBLKCTL reg */
2505 spi_signalling(shost) =
2506 ahc->features & AHC_HVD ?
2507 SPI_SIGNAL_HVD :
2508 SPI_SIGNAL_SE;
2509 return;
2510 }
2511
2512 ahc_lock(ahc, &flags);
2513 ahc_pause(ahc);
2514 mode = ahc_inb(ahc, SBLKCTL);
2515 ahc_unpause(ahc);
2516 ahc_unlock(ahc, &flags);
2517
2518 if (mode & ENAB40)
2519 spi_signalling(shost) = SPI_SIGNAL_LVD;
2520 else if (mode & ENAB20)
2521 spi_signalling(shost) = SPI_SIGNAL_SE;
2522 else
2523 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
2524 }
2525
2526 static struct spi_function_template ahc_linux_transport_functions = {
2527 .set_offset = ahc_linux_set_offset,
2528 .show_offset = 1,
2529 .set_period = ahc_linux_set_period,
2530 .show_period = 1,
2531 .set_width = ahc_linux_set_width,
2532 .show_width = 1,
2533 .set_dt = ahc_linux_set_dt,
2534 .show_dt = 1,
2535 #if 0
2536 .set_iu = ahc_linux_set_iu,
2537 .show_iu = 1,
2538 .set_qas = ahc_linux_set_qas,
2539 .show_qas = 1,
2540 #endif
2541 .get_signalling = ahc_linux_get_signalling,
2542 };
2543
2544
2545
2546 static int __init
ahc_linux_init(void)2547 ahc_linux_init(void)
2548 {
2549 /*
2550 * If we've been passed any parameters, process them now.
2551 */
2552 if (aic7xxx)
2553 aic7xxx_setup(aic7xxx);
2554
2555 ahc_linux_transport_template =
2556 spi_attach_transport(&ahc_linux_transport_functions);
2557 if (!ahc_linux_transport_template)
2558 return -ENODEV;
2559
2560 scsi_transport_reserve_device(ahc_linux_transport_template,
2561 sizeof(struct ahc_linux_device));
2562
2563 ahc_linux_pci_init();
2564 ahc_linux_eisa_init();
2565 return 0;
2566 }
2567
2568 static void
ahc_linux_exit(void)2569 ahc_linux_exit(void)
2570 {
2571 ahc_linux_pci_exit();
2572 ahc_linux_eisa_exit();
2573 spi_release_transport(ahc_linux_transport_template);
2574 }
2575
2576 module_init(ahc_linux_init);
2577 module_exit(ahc_linux_exit);
2578