xref: /openbmc/linux/drivers/scsi/aic7xxx/aic79xx_core.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 /*
2  * Core routines and tables shareable across OS platforms.
3  *
4  * Copyright (c) 1994-2002 Justin T. Gibbs.
5  * Copyright (c) 2000-2003 Adaptec Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions, and the following disclaimer,
13  *    without modification.
14  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15  *    substantially similar to the "NO WARRANTY" disclaimer below
16  *    ("Disclaimer") and any redistribution must be conditioned upon
17  *    including a substantially similar Disclaimer requirement for further
18  *    binary redistribution.
19  * 3. Neither the names of the above-listed copyright holders nor the names
20  *    of any contributors may be used to endorse or promote products derived
21  *    from this software without specific prior written permission.
22  *
23  * Alternatively, this software may be distributed under the terms of the
24  * GNU General Public License ("GPL") version 2 as published by the Free
25  * Software Foundation.
26  *
27  * NO WARRANTY
28  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38  * POSSIBILITY OF SUCH DAMAGES.
39  *
40  * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $
41  */
42 
43 #include "aic79xx_osm.h"
44 #include "aic79xx_inline.h"
45 #include "aicasm/aicasm_insformat.h"
46 
47 /***************************** Lookup Tables **********************************/
48 static const char *const ahd_chip_names[] =
49 {
50 	"NONE",
51 	"aic7901",
52 	"aic7902",
53 	"aic7901A"
54 };
55 
56 /*
57  * Hardware error codes.
58  */
59 struct ahd_hard_error_entry {
60         uint8_t errno;
61 	const char *errmesg;
62 };
63 
64 static const struct ahd_hard_error_entry ahd_hard_errors[] = {
65 	{ DSCTMOUT,	"Discard Timer has timed out" },
66 	{ ILLOPCODE,	"Illegal Opcode in sequencer program" },
67 	{ SQPARERR,	"Sequencer Parity Error" },
68 	{ DPARERR,	"Data-path Parity Error" },
69 	{ MPARERR,	"Scratch or SCB Memory Parity Error" },
70 	{ CIOPARERR,	"CIOBUS Parity Error" },
71 };
72 static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors);
73 
74 static const struct ahd_phase_table_entry ahd_phase_table[] =
75 {
76 	{ P_DATAOUT,	MSG_NOOP,		"in Data-out phase"	},
77 	{ P_DATAIN,	MSG_INITIATOR_DET_ERR,	"in Data-in phase"	},
78 	{ P_DATAOUT_DT,	MSG_NOOP,		"in DT Data-out phase"	},
79 	{ P_DATAIN_DT,	MSG_INITIATOR_DET_ERR,	"in DT Data-in phase"	},
80 	{ P_COMMAND,	MSG_NOOP,		"in Command phase"	},
81 	{ P_MESGOUT,	MSG_NOOP,		"in Message-out phase"	},
82 	{ P_STATUS,	MSG_INITIATOR_DET_ERR,	"in Status phase"	},
83 	{ P_MESGIN,	MSG_PARITY_ERROR,	"in Message-in phase"	},
84 	{ P_BUSFREE,	MSG_NOOP,		"while idle"		},
85 	{ 0,		MSG_NOOP,		"in unknown phase"	}
86 };
87 
88 /*
89  * In most cases we only wish to itterate over real phases, so
90  * exclude the last element from the count.
91  */
92 static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1;
93 
94 /* Our Sequencer Program */
95 #include "aic79xx_seq.h"
96 
97 /**************************** Function Declarations ***************************/
98 static void		ahd_handle_transmission_error(struct ahd_softc *ahd);
99 static void		ahd_handle_lqiphase_error(struct ahd_softc *ahd,
100 						  u_int lqistat1);
101 static int		ahd_handle_pkt_busfree(struct ahd_softc *ahd,
102 					       u_int busfreetime);
103 static int		ahd_handle_nonpkt_busfree(struct ahd_softc *ahd);
104 static void		ahd_handle_proto_violation(struct ahd_softc *ahd);
105 static void		ahd_force_renegotiation(struct ahd_softc *ahd,
106 						struct ahd_devinfo *devinfo);
107 
108 static struct ahd_tmode_tstate*
109 			ahd_alloc_tstate(struct ahd_softc *ahd,
110 					 u_int scsi_id, char channel);
111 #ifdef AHD_TARGET_MODE
112 static void		ahd_free_tstate(struct ahd_softc *ahd,
113 					u_int scsi_id, char channel, int force);
114 #endif
115 static void		ahd_devlimited_syncrate(struct ahd_softc *ahd,
116 					        struct ahd_initiator_tinfo *,
117 						u_int *period,
118 						u_int *ppr_options,
119 						role_t role);
120 static void		ahd_update_neg_table(struct ahd_softc *ahd,
121 					     struct ahd_devinfo *devinfo,
122 					     struct ahd_transinfo *tinfo);
123 static void		ahd_update_pending_scbs(struct ahd_softc *ahd);
124 static void		ahd_fetch_devinfo(struct ahd_softc *ahd,
125 					  struct ahd_devinfo *devinfo);
126 static void		ahd_scb_devinfo(struct ahd_softc *ahd,
127 					struct ahd_devinfo *devinfo,
128 					struct scb *scb);
129 static void		ahd_setup_initiator_msgout(struct ahd_softc *ahd,
130 						   struct ahd_devinfo *devinfo,
131 						   struct scb *scb);
132 static void		ahd_build_transfer_msg(struct ahd_softc *ahd,
133 					       struct ahd_devinfo *devinfo);
134 static void		ahd_construct_sdtr(struct ahd_softc *ahd,
135 					   struct ahd_devinfo *devinfo,
136 					   u_int period, u_int offset);
137 static void		ahd_construct_wdtr(struct ahd_softc *ahd,
138 					   struct ahd_devinfo *devinfo,
139 					   u_int bus_width);
140 static void		ahd_construct_ppr(struct ahd_softc *ahd,
141 					  struct ahd_devinfo *devinfo,
142 					  u_int period, u_int offset,
143 					  u_int bus_width, u_int ppr_options);
144 static void		ahd_clear_msg_state(struct ahd_softc *ahd);
145 static void		ahd_handle_message_phase(struct ahd_softc *ahd);
146 typedef enum {
147 	AHDMSG_1B,
148 	AHDMSG_2B,
149 	AHDMSG_EXT
150 } ahd_msgtype;
151 static int		ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type,
152 				     u_int msgval, int full);
153 static int		ahd_parse_msg(struct ahd_softc *ahd,
154 				      struct ahd_devinfo *devinfo);
155 static int		ahd_handle_msg_reject(struct ahd_softc *ahd,
156 					      struct ahd_devinfo *devinfo);
157 static void		ahd_handle_ign_wide_residue(struct ahd_softc *ahd,
158 						struct ahd_devinfo *devinfo);
159 static void		ahd_reinitialize_dataptrs(struct ahd_softc *ahd);
160 static void		ahd_handle_devreset(struct ahd_softc *ahd,
161 					    struct ahd_devinfo *devinfo,
162 					    u_int lun, cam_status status,
163 					    char *message, int verbose_level);
164 #ifdef AHD_TARGET_MODE
165 static void		ahd_setup_target_msgin(struct ahd_softc *ahd,
166 					       struct ahd_devinfo *devinfo,
167 					       struct scb *scb);
168 #endif
169 
170 static u_int		ahd_sglist_size(struct ahd_softc *ahd);
171 static u_int		ahd_sglist_allocsize(struct ahd_softc *ahd);
172 static bus_dmamap_callback_t
173 			ahd_dmamap_cb;
174 static void		ahd_initialize_hscbs(struct ahd_softc *ahd);
175 static int		ahd_init_scbdata(struct ahd_softc *ahd);
176 static void		ahd_fini_scbdata(struct ahd_softc *ahd);
177 static void		ahd_setup_iocell_workaround(struct ahd_softc *ahd);
178 static void		ahd_iocell_first_selection(struct ahd_softc *ahd);
179 static void		ahd_add_col_list(struct ahd_softc *ahd,
180 					 struct scb *scb, u_int col_idx);
181 static void		ahd_rem_col_list(struct ahd_softc *ahd,
182 					 struct scb *scb);
183 static void		ahd_chip_init(struct ahd_softc *ahd);
184 static void		ahd_qinfifo_requeue(struct ahd_softc *ahd,
185 					    struct scb *prev_scb,
186 					    struct scb *scb);
187 static int		ahd_qinfifo_count(struct ahd_softc *ahd);
188 static int		ahd_search_scb_list(struct ahd_softc *ahd, int target,
189 					    char channel, int lun, u_int tag,
190 					    role_t role, uint32_t status,
191 					    ahd_search_action action,
192 					    u_int *list_head, u_int *list_tail,
193 					    u_int tid);
194 static void		ahd_stitch_tid_list(struct ahd_softc *ahd,
195 					    u_int tid_prev, u_int tid_cur,
196 					    u_int tid_next);
197 static void		ahd_add_scb_to_free_list(struct ahd_softc *ahd,
198 						 u_int scbid);
199 static u_int		ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
200 				     u_int prev, u_int next, u_int tid);
201 static void		ahd_reset_current_bus(struct ahd_softc *ahd);
202 static void		ahd_stat_timer(struct timer_list *t);
203 #ifdef AHD_DUMP_SEQ
204 static void		ahd_dumpseq(struct ahd_softc *ahd);
205 #endif
206 static void		ahd_loadseq(struct ahd_softc *ahd);
207 static int		ahd_check_patch(struct ahd_softc *ahd,
208 					const struct patch **start_patch,
209 					u_int start_instr, u_int *skip_addr);
210 static u_int		ahd_resolve_seqaddr(struct ahd_softc *ahd,
211 					    u_int address);
212 static void		ahd_download_instr(struct ahd_softc *ahd,
213 					   u_int instrptr, uint8_t *dconsts);
214 static int		ahd_probe_stack_size(struct ahd_softc *ahd);
215 static int		ahd_scb_active_in_fifo(struct ahd_softc *ahd,
216 					       struct scb *scb);
217 static void		ahd_run_data_fifo(struct ahd_softc *ahd,
218 					  struct scb *scb);
219 
220 #ifdef AHD_TARGET_MODE
221 static void		ahd_queue_lstate_event(struct ahd_softc *ahd,
222 					       struct ahd_tmode_lstate *lstate,
223 					       u_int initiator_id,
224 					       u_int event_type,
225 					       u_int event_arg);
226 static void		ahd_update_scsiid(struct ahd_softc *ahd,
227 					  u_int targid_mask);
228 static int		ahd_handle_target_cmd(struct ahd_softc *ahd,
229 					      struct target_cmd *cmd);
230 #endif
231 
232 static int		ahd_abort_scbs(struct ahd_softc *ahd, int target,
233 				       char channel, int lun, u_int tag,
234 				       role_t role, uint32_t status);
235 static void		ahd_alloc_scbs(struct ahd_softc *ahd);
236 static void		ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl,
237 				     u_int scbid);
238 static void		ahd_calc_residual(struct ahd_softc *ahd,
239 					  struct scb *scb);
240 static void		ahd_clear_critical_section(struct ahd_softc *ahd);
241 static void		ahd_clear_intstat(struct ahd_softc *ahd);
242 static void		ahd_enable_coalescing(struct ahd_softc *ahd,
243 					      int enable);
244 static u_int		ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl);
245 static void		ahd_freeze_devq(struct ahd_softc *ahd,
246 					struct scb *scb);
247 static void		ahd_handle_scb_status(struct ahd_softc *ahd,
248 					      struct scb *scb);
249 static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase);
250 static void		ahd_shutdown(void *arg);
251 static void		ahd_update_coalescing_values(struct ahd_softc *ahd,
252 						     u_int timer,
253 						     u_int maxcmds,
254 						     u_int mincmds);
255 static int		ahd_verify_vpd_cksum(struct vpd_config *vpd);
256 static int		ahd_wait_seeprom(struct ahd_softc *ahd);
257 static int		ahd_match_scb(struct ahd_softc *ahd, struct scb *scb,
258 				      int target, char channel, int lun,
259 				      u_int tag, role_t role);
260 
261 static void		ahd_reset_cmds_pending(struct ahd_softc *ahd);
262 
263 /*************************** Interrupt Services *******************************/
264 static void		ahd_run_qoutfifo(struct ahd_softc *ahd);
265 #ifdef AHD_TARGET_MODE
266 static void		ahd_run_tqinfifo(struct ahd_softc *ahd, int paused);
267 #endif
268 static void		ahd_handle_hwerrint(struct ahd_softc *ahd);
269 static void		ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat);
270 static void		ahd_handle_scsiint(struct ahd_softc *ahd,
271 				           u_int intstat);
272 
273 /************************ Sequencer Execution Control *************************/
274 void
275 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
276 {
277 	if (ahd->src_mode == src && ahd->dst_mode == dst)
278 		return;
279 #ifdef AHD_DEBUG
280 	if (ahd->src_mode == AHD_MODE_UNKNOWN
281 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
282 		panic("Setting mode prior to saving it.\n");
283 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
284 		printk("%s: Setting mode 0x%x\n", ahd_name(ahd),
285 		       ahd_build_mode_state(ahd, src, dst));
286 #endif
287 	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
288 	ahd->src_mode = src;
289 	ahd->dst_mode = dst;
290 }
291 
292 static void
293 ahd_update_modes(struct ahd_softc *ahd)
294 {
295 	ahd_mode_state mode_ptr;
296 	ahd_mode src;
297 	ahd_mode dst;
298 
299 	mode_ptr = ahd_inb(ahd, MODE_PTR);
300 #ifdef AHD_DEBUG
301 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
302 		printk("Reading mode 0x%x\n", mode_ptr);
303 #endif
304 	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
305 	ahd_known_modes(ahd, src, dst);
306 }
307 
308 static void
309 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
310 		 ahd_mode dstmode, const char *file, int line)
311 {
312 #ifdef AHD_DEBUG
313 	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
314 	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
315 		panic("%s:%s:%d: Mode assertion failed.\n",
316 		       ahd_name(ahd), file, line);
317 	}
318 #endif
319 }
320 
321 #define AHD_ASSERT_MODES(ahd, source, dest) \
322 	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
323 
324 ahd_mode_state
325 ahd_save_modes(struct ahd_softc *ahd)
326 {
327 	if (ahd->src_mode == AHD_MODE_UNKNOWN
328 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
329 		ahd_update_modes(ahd);
330 
331 	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
332 }
333 
334 void
335 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
336 {
337 	ahd_mode src;
338 	ahd_mode dst;
339 
340 	ahd_extract_mode_state(ahd, state, &src, &dst);
341 	ahd_set_modes(ahd, src, dst);
342 }
343 
344 /*
345  * Determine whether the sequencer has halted code execution.
346  * Returns non-zero status if the sequencer is stopped.
347  */
348 int
349 ahd_is_paused(struct ahd_softc *ahd)
350 {
351 	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
352 }
353 
354 /*
355  * Request that the sequencer stop and wait, indefinitely, for it
356  * to stop.  The sequencer will only acknowledge that it is paused
357  * once it has reached an instruction boundary and PAUSEDIS is
358  * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
359  * for critical sections.
360  */
361 void
362 ahd_pause(struct ahd_softc *ahd)
363 {
364 	ahd_outb(ahd, HCNTRL, ahd->pause);
365 
366 	/*
367 	 * Since the sequencer can disable pausing in a critical section, we
368 	 * must loop until it actually stops.
369 	 */
370 	while (ahd_is_paused(ahd) == 0)
371 		;
372 }
373 
374 /*
375  * Allow the sequencer to continue program execution.
376  * We check here to ensure that no additional interrupt
377  * sources that would cause the sequencer to halt have been
378  * asserted.  If, for example, a SCSI bus reset is detected
379  * while we are fielding a different, pausing, interrupt type,
380  * we don't want to release the sequencer before going back
381  * into our interrupt handler and dealing with this new
382  * condition.
383  */
384 void
385 ahd_unpause(struct ahd_softc *ahd)
386 {
387 	/*
388 	 * Automatically restore our modes to those saved
389 	 * prior to the first change of the mode.
390 	 */
391 	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
392 	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
393 		if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
394 			ahd_reset_cmds_pending(ahd);
395 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
396 	}
397 
398 	if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
399 		ahd_outb(ahd, HCNTRL, ahd->unpause);
400 
401 	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
402 }
403 
404 /*********************** Scatter Gather List Handling *************************/
405 void *
406 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
407 	     void *sgptr, dma_addr_t addr, bus_size_t len, int last)
408 {
409 	scb->sg_count++;
410 	if (sizeof(dma_addr_t) > 4
411 	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
412 		struct ahd_dma64_seg *sg;
413 
414 		sg = (struct ahd_dma64_seg *)sgptr;
415 		sg->addr = ahd_htole64(addr);
416 		sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
417 		return (sg + 1);
418 	} else {
419 		struct ahd_dma_seg *sg;
420 
421 		sg = (struct ahd_dma_seg *)sgptr;
422 		sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
423 		sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
424 				    | (last ? AHD_DMA_LAST_SEG : 0));
425 		return (sg + 1);
426 	}
427 }
428 
429 static void
430 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
431 {
432 	/* XXX Handle target mode SCBs. */
433 	scb->crc_retry_count = 0;
434 	if ((scb->flags & SCB_PACKETIZED) != 0) {
435 		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
436 		scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
437 	} else {
438 		if (ahd_get_transfer_length(scb) & 0x01)
439 			scb->hscb->task_attribute = SCB_XFERLEN_ODD;
440 		else
441 			scb->hscb->task_attribute = 0;
442 	}
443 
444 	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
445 	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
446 		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
447 		    ahd_htole32(scb->sense_busaddr);
448 }
449 
450 static void
451 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
452 {
453 	/*
454 	 * Copy the first SG into the "current" data ponter area.
455 	 */
456 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
457 		struct ahd_dma64_seg *sg;
458 
459 		sg = (struct ahd_dma64_seg *)scb->sg_list;
460 		scb->hscb->dataptr = sg->addr;
461 		scb->hscb->datacnt = sg->len;
462 	} else {
463 		struct ahd_dma_seg *sg;
464 		uint32_t *dataptr_words;
465 
466 		sg = (struct ahd_dma_seg *)scb->sg_list;
467 		dataptr_words = (uint32_t*)&scb->hscb->dataptr;
468 		dataptr_words[0] = sg->addr;
469 		dataptr_words[1] = 0;
470 		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
471 			uint64_t high_addr;
472 
473 			high_addr = ahd_le32toh(sg->len) & 0x7F000000;
474 			scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
475 		}
476 		scb->hscb->datacnt = sg->len;
477 	}
478 	/*
479 	 * Note where to find the SG entries in bus space.
480 	 * We also set the full residual flag which the
481 	 * sequencer will clear as soon as a data transfer
482 	 * occurs.
483 	 */
484 	scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
485 }
486 
487 static void
488 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
489 {
490 	scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
491 	scb->hscb->dataptr = 0;
492 	scb->hscb->datacnt = 0;
493 }
494 
495 /************************** Memory mapping routines ***************************/
496 static void *
497 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
498 {
499 	dma_addr_t sg_offset;
500 
501 	/* sg_list_phys points to entry 1, not 0 */
502 	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
503 	return ((uint8_t *)scb->sg_list + sg_offset);
504 }
505 
506 static uint32_t
507 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
508 {
509 	dma_addr_t sg_offset;
510 
511 	/* sg_list_phys points to entry 1, not 0 */
512 	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
513 		  - ahd_sg_size(ahd);
514 
515 	return (scb->sg_list_busaddr + sg_offset);
516 }
517 
518 static void
519 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
520 {
521 	ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
522 			scb->hscb_map->dmamap,
523 			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
524 			/*len*/sizeof(*scb->hscb), op);
525 }
526 
527 void
528 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
529 {
530 	if (scb->sg_count == 0)
531 		return;
532 
533 	ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
534 			scb->sg_map->dmamap,
535 			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
536 			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
537 }
538 
539 static void
540 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
541 {
542 	ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
543 			scb->sense_map->dmamap,
544 			/*offset*/scb->sense_busaddr,
545 			/*len*/AHD_SENSE_BUFSIZE, op);
546 }
547 
548 #ifdef AHD_TARGET_MODE
549 static uint32_t
550 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
551 {
552 	return (((uint8_t *)&ahd->targetcmds[index])
553 	       - (uint8_t *)ahd->qoutfifo);
554 }
555 #endif
556 
557 /*********************** Miscellaneous Support Functions ***********************/
558 /*
559  * Return pointers to the transfer negotiation information
560  * for the specified our_id/remote_id pair.
561  */
562 struct ahd_initiator_tinfo *
563 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
564 		    u_int remote_id, struct ahd_tmode_tstate **tstate)
565 {
566 	/*
567 	 * Transfer data structures are stored from the perspective
568 	 * of the target role.  Since the parameters for a connection
569 	 * in the initiator role to a given target are the same as
570 	 * when the roles are reversed, we pretend we are the target.
571 	 */
572 	if (channel == 'B')
573 		our_id += 8;
574 	*tstate = ahd->enabled_targets[our_id];
575 	return (&(*tstate)->transinfo[remote_id]);
576 }
577 
578 uint16_t
579 ahd_inw(struct ahd_softc *ahd, u_int port)
580 {
581 	/*
582 	 * Read high byte first as some registers increment
583 	 * or have other side effects when the low byte is
584 	 * read.
585 	 */
586 	uint16_t r = ahd_inb(ahd, port+1) << 8;
587 	return r | ahd_inb(ahd, port);
588 }
589 
590 void
591 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
592 {
593 	/*
594 	 * Write low byte first to accommodate registers
595 	 * such as PRGMCNT where the order maters.
596 	 */
597 	ahd_outb(ahd, port, value & 0xFF);
598 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
599 }
600 
601 uint32_t
602 ahd_inl(struct ahd_softc *ahd, u_int port)
603 {
604 	return ((ahd_inb(ahd, port))
605 	      | (ahd_inb(ahd, port+1) << 8)
606 	      | (ahd_inb(ahd, port+2) << 16)
607 	      | (ahd_inb(ahd, port+3) << 24));
608 }
609 
610 void
611 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
612 {
613 	ahd_outb(ahd, port, (value) & 0xFF);
614 	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
615 	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
616 	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
617 }
618 
619 uint64_t
620 ahd_inq(struct ahd_softc *ahd, u_int port)
621 {
622 	return ((ahd_inb(ahd, port))
623 	      | (ahd_inb(ahd, port+1) << 8)
624 	      | (ahd_inb(ahd, port+2) << 16)
625 	      | (ahd_inb(ahd, port+3) << 24)
626 	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
627 	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
628 	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
629 	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
630 }
631 
632 void
633 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
634 {
635 	ahd_outb(ahd, port, value & 0xFF);
636 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
637 	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
638 	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
639 	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
640 	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
641 	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
642 	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
643 }
644 
645 u_int
646 ahd_get_scbptr(struct ahd_softc *ahd)
647 {
648 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
649 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
650 	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
651 }
652 
653 void
654 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
655 {
656 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
657 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
658 	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
659 	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
660 }
661 
662 #if 0 /* unused */
663 static u_int
664 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
665 {
666 	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
667 }
668 #endif
669 
670 static void
671 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
672 {
673 	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
674 }
675 
676 #if 0 /* unused */
677 static u_int
678 ahd_get_hescb_qoff(struct ahd_softc *ahd)
679 {
680 	return (ahd_inb(ahd, HESCB_QOFF));
681 }
682 #endif
683 
684 static void
685 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
686 {
687 	ahd_outb(ahd, HESCB_QOFF, value);
688 }
689 
690 static u_int
691 ahd_get_snscb_qoff(struct ahd_softc *ahd)
692 {
693 	u_int oldvalue;
694 
695 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
696 	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
697 	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
698 	return (oldvalue);
699 }
700 
701 static void
702 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
703 {
704 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
705 	ahd_outw(ahd, SNSCB_QOFF, value);
706 }
707 
708 #if 0 /* unused */
709 static u_int
710 ahd_get_sescb_qoff(struct ahd_softc *ahd)
711 {
712 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
713 	return (ahd_inb(ahd, SESCB_QOFF));
714 }
715 #endif
716 
717 static void
718 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
719 {
720 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
721 	ahd_outb(ahd, SESCB_QOFF, value);
722 }
723 
724 #if 0 /* unused */
725 static u_int
726 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
727 {
728 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
729 	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
730 }
731 #endif
732 
733 static void
734 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
735 {
736 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
737 	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
738 	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
739 }
740 
741 u_int
742 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
743 {
744 	u_int value;
745 
746 	/*
747 	 * Workaround PCI-X Rev A. hardware bug.
748 	 * After a host read of SCB memory, the chip
749 	 * may become confused into thinking prefetch
750 	 * was required.  This starts the discard timer
751 	 * running and can cause an unexpected discard
752 	 * timer interrupt.  The work around is to read
753 	 * a normal register prior to the exhaustion of
754 	 * the discard timer.  The mode pointer register
755 	 * has no side effects and so serves well for
756 	 * this purpose.
757 	 *
758 	 * Razor #528
759 	 */
760 	value = ahd_inb(ahd, offset);
761 	if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
762 		ahd_inb(ahd, MODE_PTR);
763 	return (value);
764 }
765 
766 u_int
767 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
768 {
769 	return (ahd_inb_scbram(ahd, offset)
770 	      | (ahd_inb_scbram(ahd, offset+1) << 8));
771 }
772 
773 static uint32_t
774 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
775 {
776 	return (ahd_inw_scbram(ahd, offset)
777 	      | (ahd_inw_scbram(ahd, offset+2) << 16));
778 }
779 
780 static uint64_t
781 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
782 {
783 	return (ahd_inl_scbram(ahd, offset)
784 	      | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
785 }
786 
787 struct scb *
788 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
789 {
790 	struct scb* scb;
791 
792 	if (tag >= AHD_SCB_MAX)
793 		return (NULL);
794 	scb = ahd->scb_data.scbindex[tag];
795 	if (scb != NULL)
796 		ahd_sync_scb(ahd, scb,
797 			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
798 	return (scb);
799 }
800 
801 static void
802 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
803 {
804 	struct	 hardware_scb *q_hscb;
805 	struct	 map_node *q_hscb_map;
806 	uint32_t saved_hscb_busaddr;
807 
808 	/*
809 	 * Our queuing method is a bit tricky.  The card
810 	 * knows in advance which HSCB (by address) to download,
811 	 * and we can't disappoint it.  To achieve this, the next
812 	 * HSCB to download is saved off in ahd->next_queued_hscb.
813 	 * When we are called to queue "an arbitrary scb",
814 	 * we copy the contents of the incoming HSCB to the one
815 	 * the sequencer knows about, swap HSCB pointers and
816 	 * finally assign the SCB to the tag indexed location
817 	 * in the scb_array.  This makes sure that we can still
818 	 * locate the correct SCB by SCB_TAG.
819 	 */
820 	q_hscb = ahd->next_queued_hscb;
821 	q_hscb_map = ahd->next_queued_hscb_map;
822 	saved_hscb_busaddr = q_hscb->hscb_busaddr;
823 	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
824 	q_hscb->hscb_busaddr = saved_hscb_busaddr;
825 	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
826 
827 	/* Now swap HSCB pointers. */
828 	ahd->next_queued_hscb = scb->hscb;
829 	ahd->next_queued_hscb_map = scb->hscb_map;
830 	scb->hscb = q_hscb;
831 	scb->hscb_map = q_hscb_map;
832 
833 	/* Now define the mapping from tag to SCB in the scbindex */
834 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
835 }
836 
837 /*
838  * Tell the sequencer about a new transaction to execute.
839  */
840 void
841 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
842 {
843 	ahd_swap_with_next_hscb(ahd, scb);
844 
845 	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
846 		panic("Attempt to queue invalid SCB tag %x\n",
847 		      SCB_GET_TAG(scb));
848 
849 	/*
850 	 * Keep a history of SCBs we've downloaded in the qinfifo.
851 	 */
852 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
853 	ahd->qinfifonext++;
854 
855 	if (scb->sg_count != 0)
856 		ahd_setup_data_scb(ahd, scb);
857 	else
858 		ahd_setup_noxfer_scb(ahd, scb);
859 	ahd_setup_scb_common(ahd, scb);
860 
861 	/*
862 	 * Make sure our data is consistent from the
863 	 * perspective of the adapter.
864 	 */
865 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
866 
867 #ifdef AHD_DEBUG
868 	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
869 		uint64_t host_dataptr;
870 
871 		host_dataptr = ahd_le64toh(scb->hscb->dataptr);
872 		printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
873 		       ahd_name(ahd),
874 		       SCB_GET_TAG(scb), scb->hscb->scsiid,
875 		       ahd_le32toh(scb->hscb->hscb_busaddr),
876 		       (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
877 		       (u_int)(host_dataptr & 0xFFFFFFFF),
878 		       ahd_le32toh(scb->hscb->datacnt));
879 	}
880 #endif
881 	/* Tell the adapter about the newly queued SCB */
882 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
883 }
884 
885 /************************** Interrupt Processing ******************************/
886 static void
887 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
888 {
889 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
890 			/*offset*/0,
891 			/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
892 }
893 
894 static void
895 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
896 {
897 #ifdef AHD_TARGET_MODE
898 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
899 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
900 				ahd->shared_data_map.dmamap,
901 				ahd_targetcmd_offset(ahd, 0),
902 				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
903 				op);
904 	}
905 #endif
906 }
907 
908 /*
909  * See if the firmware has posted any completed commands
910  * into our in-core command complete fifos.
911  */
912 #define AHD_RUN_QOUTFIFO 0x1
913 #define AHD_RUN_TQINFIFO 0x2
914 static u_int
915 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
916 {
917 	u_int retval;
918 
919 	retval = 0;
920 	ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
921 			/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
922 			/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
923 	if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
924 	  == ahd->qoutfifonext_valid_tag)
925 		retval |= AHD_RUN_QOUTFIFO;
926 #ifdef AHD_TARGET_MODE
927 	if ((ahd->flags & AHD_TARGETROLE) != 0
928 	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
929 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
930 				ahd->shared_data_map.dmamap,
931 				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
932 				/*len*/sizeof(struct target_cmd),
933 				BUS_DMASYNC_POSTREAD);
934 		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
935 			retval |= AHD_RUN_TQINFIFO;
936 	}
937 #endif
938 	return (retval);
939 }
940 
941 /*
942  * Catch an interrupt from the adapter
943  */
944 int
945 ahd_intr(struct ahd_softc *ahd)
946 {
947 	u_int	intstat;
948 
949 	if ((ahd->pause & INTEN) == 0) {
950 		/*
951 		 * Our interrupt is not enabled on the chip
952 		 * and may be disabled for re-entrancy reasons,
953 		 * so just return.  This is likely just a shared
954 		 * interrupt.
955 		 */
956 		return (0);
957 	}
958 
959 	/*
960 	 * Instead of directly reading the interrupt status register,
961 	 * infer the cause of the interrupt by checking our in-core
962 	 * completion queues.  This avoids a costly PCI bus read in
963 	 * most cases.
964 	 */
965 	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
966 	 && (ahd_check_cmdcmpltqueues(ahd) != 0))
967 		intstat = CMDCMPLT;
968 	else
969 		intstat = ahd_inb(ahd, INTSTAT);
970 
971 	if ((intstat & INT_PEND) == 0)
972 		return (0);
973 
974 	if (intstat & CMDCMPLT) {
975 		ahd_outb(ahd, CLRINT, CLRCMDINT);
976 
977 		/*
978 		 * Ensure that the chip sees that we've cleared
979 		 * this interrupt before we walk the output fifo.
980 		 * Otherwise, we may, due to posted bus writes,
981 		 * clear the interrupt after we finish the scan,
982 		 * and after the sequencer has added new entries
983 		 * and asserted the interrupt again.
984 		 */
985 		if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
986 			if (ahd_is_paused(ahd)) {
987 				/*
988 				 * Potentially lost SEQINT.
989 				 * If SEQINTCODE is non-zero,
990 				 * simulate the SEQINT.
991 				 */
992 				if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
993 					intstat |= SEQINT;
994 			}
995 		} else {
996 			ahd_flush_device_writes(ahd);
997 		}
998 		ahd_run_qoutfifo(ahd);
999 		ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
1000 		ahd->cmdcmplt_total++;
1001 #ifdef AHD_TARGET_MODE
1002 		if ((ahd->flags & AHD_TARGETROLE) != 0)
1003 			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
1004 #endif
1005 	}
1006 
1007 	/*
1008 	 * Handle statuses that may invalidate our cached
1009 	 * copy of INTSTAT separately.
1010 	 */
1011 	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
1012 		/* Hot eject.  Do nothing */
1013 	} else if (intstat & HWERRINT) {
1014 		ahd_handle_hwerrint(ahd);
1015 	} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
1016 		ahd->bus_intr(ahd);
1017 	} else {
1018 
1019 		if ((intstat & SEQINT) != 0)
1020 			ahd_handle_seqint(ahd, intstat);
1021 
1022 		if ((intstat & SCSIINT) != 0)
1023 			ahd_handle_scsiint(ahd, intstat);
1024 	}
1025 	return (1);
1026 }
1027 
1028 /******************************** Private Inlines *****************************/
1029 static inline void
1030 ahd_assert_atn(struct ahd_softc *ahd)
1031 {
1032 	ahd_outb(ahd, SCSISIGO, ATNO);
1033 }
1034 
1035 /*
1036  * Determine if the current connection has a packetized
1037  * agreement.  This does not necessarily mean that we
1038  * are currently in a packetized transfer.  We could
1039  * just as easily be sending or receiving a message.
1040  */
1041 static int
1042 ahd_currently_packetized(struct ahd_softc *ahd)
1043 {
1044 	ahd_mode_state	 saved_modes;
1045 	int		 packetized;
1046 
1047 	saved_modes = ahd_save_modes(ahd);
1048 	if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) {
1049 		/*
1050 		 * The packetized bit refers to the last
1051 		 * connection, not the current one.  Check
1052 		 * for non-zero LQISTATE instead.
1053 		 */
1054 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
1055 		packetized = ahd_inb(ahd, LQISTATE) != 0;
1056 	} else {
1057 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1058 		packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED;
1059 	}
1060 	ahd_restore_modes(ahd, saved_modes);
1061 	return (packetized);
1062 }
1063 
1064 static inline int
1065 ahd_set_active_fifo(struct ahd_softc *ahd)
1066 {
1067 	u_int active_fifo;
1068 
1069 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
1070 	active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
1071 	switch (active_fifo) {
1072 	case 0:
1073 	case 1:
1074 		ahd_set_modes(ahd, active_fifo, active_fifo);
1075 		return (1);
1076 	default:
1077 		return (0);
1078 	}
1079 }
1080 
1081 static inline void
1082 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl)
1083 {
1084 	ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL);
1085 }
1086 
1087 /*
1088  * Determine whether the sequencer reported a residual
1089  * for this SCB/transaction.
1090  */
1091 static inline void
1092 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
1093 {
1094 	uint32_t sgptr;
1095 
1096 	sgptr = ahd_le32toh(scb->hscb->sgptr);
1097 	if ((sgptr & SG_STATUS_VALID) != 0)
1098 		ahd_calc_residual(ahd, scb);
1099 }
1100 
1101 static inline void
1102 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
1103 {
1104 	uint32_t sgptr;
1105 
1106 	sgptr = ahd_le32toh(scb->hscb->sgptr);
1107 	if ((sgptr & SG_STATUS_VALID) != 0)
1108 		ahd_handle_scb_status(ahd, scb);
1109 	else
1110 		ahd_done(ahd, scb);
1111 }
1112 
1113 
1114 /************************* Sequencer Execution Control ************************/
1115 /*
1116  * Restart the sequencer program from address zero
1117  */
1118 static void
1119 ahd_restart(struct ahd_softc *ahd)
1120 {
1121 
1122 	ahd_pause(ahd);
1123 
1124 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1125 
1126 	/* No more pending messages */
1127 	ahd_clear_msg_state(ahd);
1128 	ahd_outb(ahd, SCSISIGO, 0);		/* De-assert BSY */
1129 	ahd_outb(ahd, MSG_OUT, MSG_NOOP);	/* No message to send */
1130 	ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET);
1131 	ahd_outb(ahd, SEQINTCTL, 0);
1132 	ahd_outb(ahd, LASTPHASE, P_BUSFREE);
1133 	ahd_outb(ahd, SEQ_FLAGS, 0);
1134 	ahd_outb(ahd, SAVED_SCSIID, 0xFF);
1135 	ahd_outb(ahd, SAVED_LUN, 0xFF);
1136 
1137 	/*
1138 	 * Ensure that the sequencer's idea of TQINPOS
1139 	 * matches our own.  The sequencer increments TQINPOS
1140 	 * only after it sees a DMA complete and a reset could
1141 	 * occur before the increment leaving the kernel to believe
1142 	 * the command arrived but the sequencer to not.
1143 	 */
1144 	ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
1145 
1146 	/* Always allow reselection */
1147 	ahd_outb(ahd, SCSISEQ1,
1148 		 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP));
1149 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1150 
1151 	/*
1152 	 * Clear any pending sequencer interrupt.  It is no
1153 	 * longer relevant since we're resetting the Program
1154 	 * Counter.
1155 	 */
1156 	ahd_outb(ahd, CLRINT, CLRSEQINT);
1157 
1158 	ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
1159 	ahd_unpause(ahd);
1160 }
1161 
1162 static void
1163 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo)
1164 {
1165 	ahd_mode_state	 saved_modes;
1166 
1167 #ifdef AHD_DEBUG
1168 	if ((ahd_debug & AHD_SHOW_FIFOS) != 0)
1169 		printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo);
1170 #endif
1171 	saved_modes = ahd_save_modes(ahd);
1172 	ahd_set_modes(ahd, fifo, fifo);
1173 	ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
1174 	if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1175 		ahd_outb(ahd, CCSGCTL, CCSGRESET);
1176 	ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1177 	ahd_outb(ahd, SG_STATE, 0);
1178 	ahd_restore_modes(ahd, saved_modes);
1179 }
1180 
1181 /************************* Input/Output Queues ********************************/
1182 /*
1183  * Flush and completed commands that are sitting in the command
1184  * complete queues down on the chip but have yet to be dma'ed back up.
1185  */
1186 static void
1187 ahd_flush_qoutfifo(struct ahd_softc *ahd)
1188 {
1189 	struct		scb *scb;
1190 	ahd_mode_state	saved_modes;
1191 	u_int		saved_scbptr;
1192 	u_int		ccscbctl;
1193 	u_int		scbid;
1194 	u_int		next_scbid;
1195 
1196 	saved_modes = ahd_save_modes(ahd);
1197 
1198 	/*
1199 	 * Flush the good status FIFO for completed packetized commands.
1200 	 */
1201 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1202 	saved_scbptr = ahd_get_scbptr(ahd);
1203 	while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) {
1204 		u_int fifo_mode;
1205 		u_int i;
1206 
1207 		scbid = ahd_inw(ahd, GSFIFO);
1208 		scb = ahd_lookup_scb(ahd, scbid);
1209 		if (scb == NULL) {
1210 			printk("%s: Warning - GSFIFO SCB %d invalid\n",
1211 			       ahd_name(ahd), scbid);
1212 			continue;
1213 		}
1214 		/*
1215 		 * Determine if this transaction is still active in
1216 		 * any FIFO.  If it is, we must flush that FIFO to
1217 		 * the host before completing the  command.
1218 		 */
1219 		fifo_mode = 0;
1220 rescan_fifos:
1221 		for (i = 0; i < 2; i++) {
1222 			/* Toggle to the other mode. */
1223 			fifo_mode ^= 1;
1224 			ahd_set_modes(ahd, fifo_mode, fifo_mode);
1225 
1226 			if (ahd_scb_active_in_fifo(ahd, scb) == 0)
1227 				continue;
1228 
1229 			ahd_run_data_fifo(ahd, scb);
1230 
1231 			/*
1232 			 * Running this FIFO may cause a CFG4DATA for
1233 			 * this same transaction to assert in the other
1234 			 * FIFO or a new snapshot SAVEPTRS interrupt
1235 			 * in this FIFO.  Even running a FIFO may not
1236 			 * clear the transaction if we are still waiting
1237 			 * for data to drain to the host. We must loop
1238 			 * until the transaction is not active in either
1239 			 * FIFO just to be sure.  Reset our loop counter
1240 			 * so we will visit both FIFOs again before
1241 			 * declaring this transaction finished.  We
1242 			 * also delay a bit so that status has a chance
1243 			 * to change before we look at this FIFO again.
1244 			 */
1245 			ahd_delay(200);
1246 			goto rescan_fifos;
1247 		}
1248 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1249 		ahd_set_scbptr(ahd, scbid);
1250 		if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0
1251 		 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0
1252 		  || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR)
1253 		      & SG_LIST_NULL) != 0)) {
1254 			u_int comp_head;
1255 
1256 			/*
1257 			 * The transfer completed with a residual.
1258 			 * Place this SCB on the complete DMA list
1259 			 * so that we update our in-core copy of the
1260 			 * SCB before completing the command.
1261 			 */
1262 			ahd_outb(ahd, SCB_SCSI_STATUS, 0);
1263 			ahd_outb(ahd, SCB_SGPTR,
1264 				 ahd_inb_scbram(ahd, SCB_SGPTR)
1265 				 | SG_STATUS_VALID);
1266 			ahd_outw(ahd, SCB_TAG, scbid);
1267 			ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL);
1268 			comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1269 			if (SCBID_IS_NULL(comp_head)) {
1270 				ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid);
1271 				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1272 			} else {
1273 				u_int tail;
1274 
1275 				tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL);
1276 				ahd_set_scbptr(ahd, tail);
1277 				ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid);
1278 				ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid);
1279 				ahd_set_scbptr(ahd, scbid);
1280 			}
1281 		} else
1282 			ahd_complete_scb(ahd, scb);
1283 	}
1284 	ahd_set_scbptr(ahd, saved_scbptr);
1285 
1286 	/*
1287 	 * Setup for command channel portion of flush.
1288 	 */
1289 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
1290 
1291 	/*
1292 	 * Wait for any inprogress DMA to complete and clear DMA state
1293 	 * if this is for an SCB in the qinfifo.
1294 	 */
1295 	while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) {
1296 
1297 		if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) {
1298 			if ((ccscbctl & ARRDONE) != 0)
1299 				break;
1300 		} else if ((ccscbctl & CCSCBDONE) != 0)
1301 			break;
1302 		ahd_delay(200);
1303 	}
1304 	/*
1305 	 * We leave the sequencer to cleanup in the case of DMA's to
1306 	 * update the qoutfifo.  In all other cases (DMA's to the
1307 	 * chip or a push of an SCB from the COMPLETE_DMA_SCB list),
1308 	 * we disable the DMA engine so that the sequencer will not
1309 	 * attempt to handle the DMA completion.
1310 	 */
1311 	if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0)
1312 		ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN));
1313 
1314 	/*
1315 	 * Complete any SCBs that just finished
1316 	 * being DMA'ed into the qoutfifo.
1317 	 */
1318 	ahd_run_qoutfifo(ahd);
1319 
1320 	saved_scbptr = ahd_get_scbptr(ahd);
1321 	/*
1322 	 * Manually update/complete any completed SCBs that are waiting to be
1323 	 * DMA'ed back up to the host.
1324 	 */
1325 	scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
1326 	while (!SCBID_IS_NULL(scbid)) {
1327 		uint8_t *hscb_ptr;
1328 		u_int	 i;
1329 
1330 		ahd_set_scbptr(ahd, scbid);
1331 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1332 		scb = ahd_lookup_scb(ahd, scbid);
1333 		if (scb == NULL) {
1334 			printk("%s: Warning - DMA-up and complete "
1335 			       "SCB %d invalid\n", ahd_name(ahd), scbid);
1336 			continue;
1337 		}
1338 		hscb_ptr = (uint8_t *)scb->hscb;
1339 		for (i = 0; i < sizeof(struct hardware_scb); i++)
1340 			*hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i);
1341 
1342 		ahd_complete_scb(ahd, scb);
1343 		scbid = next_scbid;
1344 	}
1345 	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
1346 	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
1347 
1348 	scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
1349 	while (!SCBID_IS_NULL(scbid)) {
1350 
1351 		ahd_set_scbptr(ahd, scbid);
1352 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1353 		scb = ahd_lookup_scb(ahd, scbid);
1354 		if (scb == NULL) {
1355 			printk("%s: Warning - Complete Qfrz SCB %d invalid\n",
1356 			       ahd_name(ahd), scbid);
1357 			continue;
1358 		}
1359 
1360 		ahd_complete_scb(ahd, scb);
1361 		scbid = next_scbid;
1362 	}
1363 	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
1364 
1365 	scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD);
1366 	while (!SCBID_IS_NULL(scbid)) {
1367 
1368 		ahd_set_scbptr(ahd, scbid);
1369 		next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
1370 		scb = ahd_lookup_scb(ahd, scbid);
1371 		if (scb == NULL) {
1372 			printk("%s: Warning - Complete SCB %d invalid\n",
1373 			       ahd_name(ahd), scbid);
1374 			continue;
1375 		}
1376 
1377 		ahd_complete_scb(ahd, scb);
1378 		scbid = next_scbid;
1379 	}
1380 	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
1381 
1382 	/*
1383 	 * Restore state.
1384 	 */
1385 	ahd_set_scbptr(ahd, saved_scbptr);
1386 	ahd_restore_modes(ahd, saved_modes);
1387 	ahd->flags |= AHD_UPDATE_PEND_CMDS;
1388 }
1389 
1390 /*
1391  * Determine if an SCB for a packetized transaction
1392  * is active in a FIFO.
1393  */
1394 static int
1395 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb)
1396 {
1397 
1398 	/*
1399 	 * The FIFO is only active for our transaction if
1400 	 * the SCBPTR matches the SCB's ID and the firmware
1401 	 * has installed a handler for the FIFO or we have
1402 	 * a pending SAVEPTRS or CFG4DATA interrupt.
1403 	 */
1404 	if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb)
1405 	 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0
1406 	  && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0))
1407 		return (0);
1408 
1409 	return (1);
1410 }
1411 
1412 /*
1413  * Run a data fifo to completion for a transaction we know
1414  * has completed across the SCSI bus (good status has been
1415  * received).  We are already set to the correct FIFO mode
1416  * on entry to this routine.
1417  *
1418  * This function attempts to operate exactly as the firmware
1419  * would when running this FIFO.  Care must be taken to update
1420  * this routine any time the firmware's FIFO algorithm is
1421  * changed.
1422  */
1423 static void
1424 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb)
1425 {
1426 	u_int seqintsrc;
1427 
1428 	seqintsrc = ahd_inb(ahd, SEQINTSRC);
1429 	if ((seqintsrc & CFG4DATA) != 0) {
1430 		uint32_t datacnt;
1431 		uint32_t sgptr;
1432 
1433 		/*
1434 		 * Clear full residual flag.
1435 		 */
1436 		sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID;
1437 		ahd_outb(ahd, SCB_SGPTR, sgptr);
1438 
1439 		/*
1440 		 * Load datacnt and address.
1441 		 */
1442 		datacnt = ahd_inl_scbram(ahd, SCB_DATACNT);
1443 		if ((datacnt & AHD_DMA_LAST_SEG) != 0) {
1444 			sgptr |= LAST_SEG;
1445 			ahd_outb(ahd, SG_STATE, 0);
1446 		} else
1447 			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1448 		ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR));
1449 		ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK);
1450 		ahd_outb(ahd, SG_CACHE_PRE, sgptr);
1451 		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1452 
1453 		/*
1454 		 * Initialize Residual Fields.
1455 		 */
1456 		ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24);
1457 		ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK);
1458 
1459 		/*
1460 		 * Mark the SCB as having a FIFO in use.
1461 		 */
1462 		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1463 			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1);
1464 
1465 		/*
1466 		 * Install a "fake" handler for this FIFO.
1467 		 */
1468 		ahd_outw(ahd, LONGJMP_ADDR, 0);
1469 
1470 		/*
1471 		 * Notify the hardware that we have satisfied
1472 		 * this sequencer interrupt.
1473 		 */
1474 		ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA);
1475 	} else if ((seqintsrc & SAVEPTRS) != 0) {
1476 		uint32_t sgptr;
1477 		uint32_t resid;
1478 
1479 		if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) {
1480 			/*
1481 			 * Snapshot Save Pointers.  All that
1482 			 * is necessary to clear the snapshot
1483 			 * is a CLRCHN.
1484 			 */
1485 			goto clrchn;
1486 		}
1487 
1488 		/*
1489 		 * Disable S/G fetch so the DMA engine
1490 		 * is available to future users.
1491 		 */
1492 		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0)
1493 			ahd_outb(ahd, CCSGCTL, 0);
1494 		ahd_outb(ahd, SG_STATE, 0);
1495 
1496 		/*
1497 		 * Flush the data FIFO.  Strickly only
1498 		 * necessary for Rev A parts.
1499 		 */
1500 		ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH);
1501 
1502 		/*
1503 		 * Calculate residual.
1504 		 */
1505 		sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1506 		resid = ahd_inl(ahd, SHCNT);
1507 		resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24;
1508 		ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid);
1509 		if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) {
1510 			/*
1511 			 * Must back up to the correct S/G element.
1512 			 * Typically this just means resetting our
1513 			 * low byte to the offset in the SG_CACHE,
1514 			 * but if we wrapped, we have to correct
1515 			 * the other bytes of the sgptr too.
1516 			 */
1517 			if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0
1518 			 && (sgptr & 0x80) == 0)
1519 				sgptr -= 0x100;
1520 			sgptr &= ~0xFF;
1521 			sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW)
1522 			       & SG_ADDR_MASK;
1523 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1524 			ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0);
1525 		} else if ((resid & AHD_SG_LEN_MASK) == 0) {
1526 			ahd_outb(ahd, SCB_RESIDUAL_SGPTR,
1527 				 sgptr | SG_LIST_NULL);
1528 		}
1529 		/*
1530 		 * Save Pointers.
1531 		 */
1532 		ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR));
1533 		ahd_outl(ahd, SCB_DATACNT, resid);
1534 		ahd_outl(ahd, SCB_SGPTR, sgptr);
1535 		ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS);
1536 		ahd_outb(ahd, SEQIMODE,
1537 			 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS);
1538 		/*
1539 		 * If the data is to the SCSI bus, we are
1540 		 * done, otherwise wait for FIFOEMP.
1541 		 */
1542 		if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0)
1543 			goto clrchn;
1544 	} else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) {
1545 		uint32_t sgptr;
1546 		uint64_t data_addr;
1547 		uint32_t data_len;
1548 		u_int	 dfcntrl;
1549 
1550 		/*
1551 		 * Disable S/G fetch so the DMA engine
1552 		 * is available to future users.  We won't
1553 		 * be using the DMA engine to load segments.
1554 		 */
1555 		if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) {
1556 			ahd_outb(ahd, CCSGCTL, 0);
1557 			ahd_outb(ahd, SG_STATE, LOADING_NEEDED);
1558 		}
1559 
1560 		/*
1561 		 * Wait for the DMA engine to notice that the
1562 		 * host transfer is enabled and that there is
1563 		 * space in the S/G FIFO for new segments before
1564 		 * loading more segments.
1565 		 */
1566 		if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0
1567 		 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) {
1568 
1569 			/*
1570 			 * Determine the offset of the next S/G
1571 			 * element to load.
1572 			 */
1573 			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
1574 			sgptr &= SG_PTR_MASK;
1575 			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
1576 				struct ahd_dma64_seg *sg;
1577 
1578 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1579 				data_addr = sg->addr;
1580 				data_len = sg->len;
1581 				sgptr += sizeof(*sg);
1582 			} else {
1583 				struct	ahd_dma_seg *sg;
1584 
1585 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
1586 				data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK;
1587 				data_addr <<= 8;
1588 				data_addr |= sg->addr;
1589 				data_len = sg->len;
1590 				sgptr += sizeof(*sg);
1591 			}
1592 
1593 			/*
1594 			 * Update residual information.
1595 			 */
1596 			ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24);
1597 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
1598 
1599 			/*
1600 			 * Load the S/G.
1601 			 */
1602 			if (data_len & AHD_DMA_LAST_SEG) {
1603 				sgptr |= LAST_SEG;
1604 				ahd_outb(ahd, SG_STATE, 0);
1605 			}
1606 			ahd_outq(ahd, HADDR, data_addr);
1607 			ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK);
1608 			ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF);
1609 
1610 			/*
1611 			 * Advertise the segment to the hardware.
1612 			 */
1613 			dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN;
1614 			if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) {
1615 				/*
1616 				 * Use SCSIENWRDIS so that SCSIEN
1617 				 * is never modified by this
1618 				 * operation.
1619 				 */
1620 				dfcntrl |= SCSIENWRDIS;
1621 			}
1622 			ahd_outb(ahd, DFCNTRL, dfcntrl);
1623 		}
1624 	} else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) {
1625 
1626 		/*
1627 		 * Transfer completed to the end of SG list
1628 		 * and has flushed to the host.
1629 		 */
1630 		ahd_outb(ahd, SCB_SGPTR,
1631 			 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL);
1632 		goto clrchn;
1633 	} else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) {
1634 clrchn:
1635 		/*
1636 		 * Clear any handler for this FIFO, decrement
1637 		 * the FIFO use count for the SCB, and release
1638 		 * the FIFO.
1639 		 */
1640 		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
1641 		ahd_outb(ahd, SCB_FIFO_USE_COUNT,
1642 			 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1);
1643 		ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
1644 	}
1645 }
1646 
1647 /*
1648  * Look for entries in the QoutFIFO that have completed.
1649  * The valid_tag completion field indicates the validity
1650  * of the entry - the valid value toggles each time through
1651  * the queue. We use the sg_status field in the completion
1652  * entry to avoid referencing the hscb if the completion
1653  * occurred with no errors and no residual.  sg_status is
1654  * a copy of the first byte (little endian) of the sgptr
1655  * hscb field.
1656  */
1657 static void
1658 ahd_run_qoutfifo(struct ahd_softc *ahd)
1659 {
1660 	struct ahd_completion *completion;
1661 	struct scb *scb;
1662 	u_int  scb_index;
1663 
1664 	if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0)
1665 		panic("ahd_run_qoutfifo recursion");
1666 	ahd->flags |= AHD_RUNNING_QOUTFIFO;
1667 	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD);
1668 	for (;;) {
1669 		completion = &ahd->qoutfifo[ahd->qoutfifonext];
1670 
1671 		if (completion->valid_tag != ahd->qoutfifonext_valid_tag)
1672 			break;
1673 
1674 		scb_index = ahd_le16toh(completion->tag);
1675 		scb = ahd_lookup_scb(ahd, scb_index);
1676 		if (scb == NULL) {
1677 			printk("%s: WARNING no command for scb %d "
1678 			       "(cmdcmplt)\nQOUTPOS = %d\n",
1679 			       ahd_name(ahd), scb_index,
1680 			       ahd->qoutfifonext);
1681 			ahd_dump_card_state(ahd);
1682 		} else if ((completion->sg_status & SG_STATUS_VALID) != 0) {
1683 			ahd_handle_scb_status(ahd, scb);
1684 		} else {
1685 			ahd_done(ahd, scb);
1686 		}
1687 
1688 		ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1);
1689 		if (ahd->qoutfifonext == 0)
1690 			ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID;
1691 	}
1692 	ahd->flags &= ~AHD_RUNNING_QOUTFIFO;
1693 }
1694 
1695 /************************* Interrupt Handling *********************************/
1696 static void
1697 ahd_handle_hwerrint(struct ahd_softc *ahd)
1698 {
1699 	/*
1700 	 * Some catastrophic hardware error has occurred.
1701 	 * Print it for the user and disable the controller.
1702 	 */
1703 	int i;
1704 	int error;
1705 
1706 	error = ahd_inb(ahd, ERROR);
1707 	for (i = 0; i < num_errors; i++) {
1708 		if ((error & ahd_hard_errors[i].errno) != 0)
1709 			printk("%s: hwerrint, %s\n",
1710 			       ahd_name(ahd), ahd_hard_errors[i].errmesg);
1711 	}
1712 
1713 	ahd_dump_card_state(ahd);
1714 	panic("BRKADRINT");
1715 
1716 	/* Tell everyone that this HBA is no longer available */
1717 	ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
1718 		       CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN,
1719 		       CAM_NO_HBA);
1720 
1721 	/* Tell the system that this controller has gone away. */
1722 	ahd_free(ahd);
1723 }
1724 
1725 #ifdef AHD_DEBUG
1726 static void
1727 ahd_dump_sglist(struct scb *scb)
1728 {
1729 	int i;
1730 
1731 	if (scb->sg_count > 0) {
1732 		if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) {
1733 			struct ahd_dma64_seg *sg_list;
1734 
1735 			sg_list = (struct ahd_dma64_seg*)scb->sg_list;
1736 			for (i = 0; i < scb->sg_count; i++) {
1737 				uint64_t addr;
1738 				uint32_t len;
1739 
1740 				addr = ahd_le64toh(sg_list[i].addr);
1741 				len = ahd_le32toh(sg_list[i].len);
1742 				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1743 				       i,
1744 				       (uint32_t)((addr >> 32) & 0xFFFFFFFF),
1745 				       (uint32_t)(addr & 0xFFFFFFFF),
1746 				       sg_list[i].len & AHD_SG_LEN_MASK,
1747 				       (sg_list[i].len & AHD_DMA_LAST_SEG)
1748 				     ? " Last" : "");
1749 			}
1750 		} else {
1751 			struct ahd_dma_seg *sg_list;
1752 
1753 			sg_list = (struct ahd_dma_seg*)scb->sg_list;
1754 			for (i = 0; i < scb->sg_count; i++) {
1755 				uint32_t len;
1756 
1757 				len = ahd_le32toh(sg_list[i].len);
1758 				printk("sg[%d] - Addr 0x%x%x : Length %d%s\n",
1759 				       i,
1760 				       (len & AHD_SG_HIGH_ADDR_MASK) >> 24,
1761 				       ahd_le32toh(sg_list[i].addr),
1762 				       len & AHD_SG_LEN_MASK,
1763 				       len & AHD_DMA_LAST_SEG ? " Last" : "");
1764 			}
1765 		}
1766 	}
1767 }
1768 #endif  /*  AHD_DEBUG  */
1769 
1770 static void
1771 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat)
1772 {
1773 	u_int seqintcode;
1774 
1775 	/*
1776 	 * Save the sequencer interrupt code and clear the SEQINT
1777 	 * bit. We will unpause the sequencer, if appropriate,
1778 	 * after servicing the request.
1779 	 */
1780 	seqintcode = ahd_inb(ahd, SEQINTCODE);
1781 	ahd_outb(ahd, CLRINT, CLRSEQINT);
1782 	if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
1783 		/*
1784 		 * Unpause the sequencer and let it clear
1785 		 * SEQINT by writing NO_SEQINT to it.  This
1786 		 * will cause the sequencer to be paused again,
1787 		 * which is the expected state of this routine.
1788 		 */
1789 		ahd_unpause(ahd);
1790 		while (!ahd_is_paused(ahd))
1791 			;
1792 		ahd_outb(ahd, CLRINT, CLRSEQINT);
1793 	}
1794 	ahd_update_modes(ahd);
1795 #ifdef AHD_DEBUG
1796 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
1797 		printk("%s: Handle Seqint Called for code %d\n",
1798 		       ahd_name(ahd), seqintcode);
1799 #endif
1800 	switch (seqintcode) {
1801 	case ENTERING_NONPACK:
1802 	{
1803 		struct	scb *scb;
1804 		u_int	scbid;
1805 
1806 		AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
1807 				 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
1808 		scbid = ahd_get_scbptr(ahd);
1809 		scb = ahd_lookup_scb(ahd, scbid);
1810 		if (scb == NULL) {
1811 			/*
1812 			 * Somehow need to know if this
1813 			 * is from a selection or reselection.
1814 			 * From that, we can determine target
1815 			 * ID so we at least have an I_T nexus.
1816 			 */
1817 		} else {
1818 			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1819 			ahd_outb(ahd, SAVED_LUN, scb->hscb->lun);
1820 			ahd_outb(ahd, SEQ_FLAGS, 0x0);
1821 		}
1822 		if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0
1823 		 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
1824 			/*
1825 			 * Phase change after read stream with
1826 			 * CRC error with P0 asserted on last
1827 			 * packet.
1828 			 */
1829 #ifdef AHD_DEBUG
1830 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1831 				printk("%s: Assuming LQIPHASE_NLQ with "
1832 				       "P0 assertion\n", ahd_name(ahd));
1833 #endif
1834 		}
1835 #ifdef AHD_DEBUG
1836 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1837 			printk("%s: Entering NONPACK\n", ahd_name(ahd));
1838 #endif
1839 		break;
1840 	}
1841 	case INVALID_SEQINT:
1842 		printk("%s: Invalid Sequencer interrupt occurred, "
1843 		       "resetting channel.\n",
1844 		       ahd_name(ahd));
1845 #ifdef AHD_DEBUG
1846 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0)
1847 			ahd_dump_card_state(ahd);
1848 #endif
1849 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1850 		break;
1851 	case STATUS_OVERRUN:
1852 	{
1853 		struct	scb *scb;
1854 		u_int	scbid;
1855 
1856 		scbid = ahd_get_scbptr(ahd);
1857 		scb = ahd_lookup_scb(ahd, scbid);
1858 		if (scb != NULL)
1859 			ahd_print_path(ahd, scb);
1860 		else
1861 			printk("%s: ", ahd_name(ahd));
1862 		printk("SCB %d Packetized Status Overrun", scbid);
1863 		ahd_dump_card_state(ahd);
1864 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1865 		break;
1866 	}
1867 	case CFG4ISTAT_INTR:
1868 	{
1869 		struct	scb *scb;
1870 		u_int	scbid;
1871 
1872 		scbid = ahd_get_scbptr(ahd);
1873 		scb = ahd_lookup_scb(ahd, scbid);
1874 		if (scb == NULL) {
1875 			ahd_dump_card_state(ahd);
1876 			printk("CFG4ISTAT: Free SCB %d referenced", scbid);
1877 			panic("For safety");
1878 		}
1879 		ahd_outq(ahd, HADDR, scb->sense_busaddr);
1880 		ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE);
1881 		ahd_outb(ahd, HCNT + 2, 0);
1882 		ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG);
1883 		ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN);
1884 		break;
1885 	}
1886 	case ILLEGAL_PHASE:
1887 	{
1888 		u_int bus_phase;
1889 
1890 		bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
1891 		printk("%s: ILLEGAL_PHASE 0x%x\n",
1892 		       ahd_name(ahd), bus_phase);
1893 
1894 		switch (bus_phase) {
1895 		case P_DATAOUT:
1896 		case P_DATAIN:
1897 		case P_DATAOUT_DT:
1898 		case P_DATAIN_DT:
1899 		case P_MESGOUT:
1900 		case P_STATUS:
1901 		case P_MESGIN:
1902 			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
1903 			printk("%s: Issued Bus Reset.\n", ahd_name(ahd));
1904 			break;
1905 		case P_COMMAND:
1906 		{
1907 			struct	ahd_devinfo devinfo;
1908 			struct	scb *scb;
1909 			struct	ahd_initiator_tinfo *targ_info;
1910 			struct	ahd_tmode_tstate *tstate;
1911 			struct	ahd_transinfo *tinfo;
1912 			u_int	scbid;
1913 
1914 			/*
1915 			 * If a target takes us into the command phase
1916 			 * assume that it has been externally reset and
1917 			 * has thus lost our previous packetized negotiation
1918 			 * agreement.  Since we have not sent an identify
1919 			 * message and may not have fully qualified the
1920 			 * connection, we change our command to TUR, assert
1921 			 * ATN and ABORT the task when we go to message in
1922 			 * phase.  The OSM will see the REQUEUE_REQUEST
1923 			 * status and retry the command.
1924 			 */
1925 			scbid = ahd_get_scbptr(ahd);
1926 			scb = ahd_lookup_scb(ahd, scbid);
1927 			if (scb == NULL) {
1928 				printk("Invalid phase with no valid SCB.  "
1929 				       "Resetting bus.\n");
1930 				ahd_reset_channel(ahd, 'A',
1931 						  /*Initiate Reset*/TRUE);
1932 				break;
1933 			}
1934 			ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
1935 					    SCB_GET_TARGET(ahd, scb),
1936 					    SCB_GET_LUN(scb),
1937 					    SCB_GET_CHANNEL(ahd, scb),
1938 					    ROLE_INITIATOR);
1939 			targ_info = ahd_fetch_transinfo(ahd,
1940 							devinfo.channel,
1941 							devinfo.our_scsiid,
1942 							devinfo.target,
1943 							&tstate);
1944 			tinfo = &targ_info->curr;
1945 			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
1946 				      AHD_TRANS_ACTIVE, /*paused*/TRUE);
1947 			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
1948 					 /*offset*/0, /*ppr_options*/0,
1949 					 AHD_TRANS_ACTIVE, /*paused*/TRUE);
1950 			/* Hand-craft TUR command */
1951 			ahd_outb(ahd, SCB_CDB_STORE, 0);
1952 			ahd_outb(ahd, SCB_CDB_STORE+1, 0);
1953 			ahd_outb(ahd, SCB_CDB_STORE+2, 0);
1954 			ahd_outb(ahd, SCB_CDB_STORE+3, 0);
1955 			ahd_outb(ahd, SCB_CDB_STORE+4, 0);
1956 			ahd_outb(ahd, SCB_CDB_STORE+5, 0);
1957 			ahd_outb(ahd, SCB_CDB_LEN, 6);
1958 			scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE);
1959 			scb->hscb->control |= MK_MESSAGE;
1960 			ahd_outb(ahd, SCB_CONTROL, scb->hscb->control);
1961 			ahd_outb(ahd, MSG_OUT, HOST_MSG);
1962 			ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid);
1963 			/*
1964 			 * The lun is 0, regardless of the SCB's lun
1965 			 * as we have not sent an identify message.
1966 			 */
1967 			ahd_outb(ahd, SAVED_LUN, 0);
1968 			ahd_outb(ahd, SEQ_FLAGS, 0);
1969 			ahd_assert_atn(ahd);
1970 			scb->flags &= ~SCB_PACKETIZED;
1971 			scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET;
1972 			ahd_freeze_devq(ahd, scb);
1973 			ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
1974 			ahd_freeze_scb(scb);
1975 
1976 			/* Notify XPT */
1977 			ahd_send_async(ahd, devinfo.channel, devinfo.target,
1978 				       CAM_LUN_WILDCARD, AC_SENT_BDR);
1979 
1980 			/*
1981 			 * Allow the sequencer to continue with
1982 			 * non-pack processing.
1983 			 */
1984 			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
1985 			ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT);
1986 			if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
1987 				ahd_outb(ahd, CLRLQOINT1, 0);
1988 			}
1989 #ifdef AHD_DEBUG
1990 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
1991 				ahd_print_path(ahd, scb);
1992 				printk("Unexpected command phase from "
1993 				       "packetized target\n");
1994 			}
1995 #endif
1996 			break;
1997 		}
1998 		}
1999 		break;
2000 	}
2001 	case CFG4OVERRUN:
2002 	{
2003 		struct	scb *scb;
2004 		u_int	scb_index;
2005 
2006 #ifdef AHD_DEBUG
2007 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2008 			printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd),
2009 			       ahd_inb(ahd, MODE_PTR));
2010 		}
2011 #endif
2012 		scb_index = ahd_get_scbptr(ahd);
2013 		scb = ahd_lookup_scb(ahd, scb_index);
2014 		if (scb == NULL) {
2015 			/*
2016 			 * Attempt to transfer to an SCB that is
2017 			 * not outstanding.
2018 			 */
2019 			ahd_assert_atn(ahd);
2020 			ahd_outb(ahd, MSG_OUT, HOST_MSG);
2021 			ahd->msgout_buf[0] = MSG_ABORT_TASK;
2022 			ahd->msgout_len = 1;
2023 			ahd->msgout_index = 0;
2024 			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2025 			/*
2026 			 * Clear status received flag to prevent any
2027 			 * attempt to complete this bogus SCB.
2028 			 */
2029 			ahd_outb(ahd, SCB_CONTROL,
2030 				 ahd_inb_scbram(ahd, SCB_CONTROL)
2031 				 & ~STATUS_RCVD);
2032 		}
2033 		break;
2034 	}
2035 	case DUMP_CARD_STATE:
2036 	{
2037 		ahd_dump_card_state(ahd);
2038 		break;
2039 	}
2040 	case PDATA_REINIT:
2041 	{
2042 #ifdef AHD_DEBUG
2043 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2044 			printk("%s: PDATA_REINIT - DFCNTRL = 0x%x "
2045 			       "SG_CACHE_SHADOW = 0x%x\n",
2046 			       ahd_name(ahd), ahd_inb(ahd, DFCNTRL),
2047 			       ahd_inb(ahd, SG_CACHE_SHADOW));
2048 		}
2049 #endif
2050 		ahd_reinitialize_dataptrs(ahd);
2051 		break;
2052 	}
2053 	case HOST_MSG_LOOP:
2054 	{
2055 		struct ahd_devinfo devinfo;
2056 
2057 		/*
2058 		 * The sequencer has encountered a message phase
2059 		 * that requires host assistance for completion.
2060 		 * While handling the message phase(s), we will be
2061 		 * notified by the sequencer after each byte is
2062 		 * transferred so we can track bus phase changes.
2063 		 *
2064 		 * If this is the first time we've seen a HOST_MSG_LOOP
2065 		 * interrupt, initialize the state of the host message
2066 		 * loop.
2067 		 */
2068 		ahd_fetch_devinfo(ahd, &devinfo);
2069 		if (ahd->msg_type == MSG_TYPE_NONE) {
2070 			struct scb *scb;
2071 			u_int scb_index;
2072 			u_int bus_phase;
2073 
2074 			bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2075 			if (bus_phase != P_MESGIN
2076 			 && bus_phase != P_MESGOUT) {
2077 				printk("ahd_intr: HOST_MSG_LOOP bad "
2078 				       "phase 0x%x\n", bus_phase);
2079 				/*
2080 				 * Probably transitioned to bus free before
2081 				 * we got here.  Just punt the message.
2082 				 */
2083 				ahd_dump_card_state(ahd);
2084 				ahd_clear_intstat(ahd);
2085 				ahd_restart(ahd);
2086 				return;
2087 			}
2088 
2089 			scb_index = ahd_get_scbptr(ahd);
2090 			scb = ahd_lookup_scb(ahd, scb_index);
2091 			if (devinfo.role == ROLE_INITIATOR) {
2092 				if (bus_phase == P_MESGOUT)
2093 					ahd_setup_initiator_msgout(ahd,
2094 								   &devinfo,
2095 								   scb);
2096 				else {
2097 					ahd->msg_type =
2098 					    MSG_TYPE_INITIATOR_MSGIN;
2099 					ahd->msgin_index = 0;
2100 				}
2101 			}
2102 #ifdef AHD_TARGET_MODE
2103 			else {
2104 				if (bus_phase == P_MESGOUT) {
2105 					ahd->msg_type =
2106 					    MSG_TYPE_TARGET_MSGOUT;
2107 					ahd->msgin_index = 0;
2108 				}
2109 				else
2110 					ahd_setup_target_msgin(ahd,
2111 							       &devinfo,
2112 							       scb);
2113 			}
2114 #endif
2115 		}
2116 
2117 		ahd_handle_message_phase(ahd);
2118 		break;
2119 	}
2120 	case NO_MATCH:
2121 	{
2122 		/* Ensure we don't leave the selection hardware on */
2123 		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
2124 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2125 
2126 		printk("%s:%c:%d: no active SCB for reconnecting "
2127 		       "target - issuing BUS DEVICE RESET\n",
2128 		       ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4);
2129 		printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, "
2130 		       "REG0 == 0x%x ACCUM = 0x%x\n",
2131 		       ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN),
2132 		       ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM));
2133 		printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, "
2134 		       "SINDEX == 0x%x\n",
2135 		       ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd),
2136 		       ahd_find_busy_tcl(ahd,
2137 					 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID),
2138 						   ahd_inb(ahd, SAVED_LUN))),
2139 		       ahd_inw(ahd, SINDEX));
2140 		printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, "
2141 		       "SCB_CONTROL == 0x%x\n",
2142 		       ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID),
2143 		       ahd_inb_scbram(ahd, SCB_LUN),
2144 		       ahd_inb_scbram(ahd, SCB_CONTROL));
2145 		printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n",
2146 		       ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI));
2147 		printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0));
2148 		printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0));
2149 		ahd_dump_card_state(ahd);
2150 		ahd->msgout_buf[0] = MSG_BUS_DEV_RESET;
2151 		ahd->msgout_len = 1;
2152 		ahd->msgout_index = 0;
2153 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
2154 		ahd_outb(ahd, MSG_OUT, HOST_MSG);
2155 		ahd_assert_atn(ahd);
2156 		break;
2157 	}
2158 	case PROTO_VIOLATION:
2159 	{
2160 		ahd_handle_proto_violation(ahd);
2161 		break;
2162 	}
2163 	case IGN_WIDE_RES:
2164 	{
2165 		struct ahd_devinfo devinfo;
2166 
2167 		ahd_fetch_devinfo(ahd, &devinfo);
2168 		ahd_handle_ign_wide_residue(ahd, &devinfo);
2169 		break;
2170 	}
2171 	case BAD_PHASE:
2172 	{
2173 		u_int lastphase;
2174 
2175 		lastphase = ahd_inb(ahd, LASTPHASE);
2176 		printk("%s:%c:%d: unknown scsi bus phase %x, "
2177 		       "lastphase = 0x%x.  Attempting to continue\n",
2178 		       ahd_name(ahd), 'A',
2179 		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2180 		       lastphase, ahd_inb(ahd, SCSISIGI));
2181 		break;
2182 	}
2183 	case MISSED_BUSFREE:
2184 	{
2185 		u_int lastphase;
2186 
2187 		lastphase = ahd_inb(ahd, LASTPHASE);
2188 		printk("%s:%c:%d: Missed busfree. "
2189 		       "Lastphase = 0x%x, Curphase = 0x%x\n",
2190 		       ahd_name(ahd), 'A',
2191 		       SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)),
2192 		       lastphase, ahd_inb(ahd, SCSISIGI));
2193 		ahd_restart(ahd);
2194 		return;
2195 	}
2196 	case DATA_OVERRUN:
2197 	{
2198 		/*
2199 		 * When the sequencer detects an overrun, it
2200 		 * places the controller in "BITBUCKET" mode
2201 		 * and allows the target to complete its transfer.
2202 		 * Unfortunately, none of the counters get updated
2203 		 * when the controller is in this mode, so we have
2204 		 * no way of knowing how large the overrun was.
2205 		 */
2206 		struct	scb *scb;
2207 		u_int	scbindex;
2208 #ifdef AHD_DEBUG
2209 		u_int	lastphase;
2210 #endif
2211 
2212 		scbindex = ahd_get_scbptr(ahd);
2213 		scb = ahd_lookup_scb(ahd, scbindex);
2214 #ifdef AHD_DEBUG
2215 		lastphase = ahd_inb(ahd, LASTPHASE);
2216 		if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2217 			ahd_print_path(ahd, scb);
2218 			printk("data overrun detected %s.  Tag == 0x%x.\n",
2219 			       ahd_lookup_phase_entry(lastphase)->phasemsg,
2220 			       SCB_GET_TAG(scb));
2221 			ahd_print_path(ahd, scb);
2222 			printk("%s seen Data Phase.  Length = %ld.  "
2223 			       "NumSGs = %d.\n",
2224 			       ahd_inb(ahd, SEQ_FLAGS) & DPHASE
2225 			       ? "Have" : "Haven't",
2226 			       ahd_get_transfer_length(scb), scb->sg_count);
2227 			ahd_dump_sglist(scb);
2228 		}
2229 #endif
2230 
2231 		/*
2232 		 * Set this and it will take effect when the
2233 		 * target does a command complete.
2234 		 */
2235 		ahd_freeze_devq(ahd, scb);
2236 		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
2237 		ahd_freeze_scb(scb);
2238 		break;
2239 	}
2240 	case MKMSG_FAILED:
2241 	{
2242 		struct ahd_devinfo devinfo;
2243 		struct scb *scb;
2244 		u_int scbid;
2245 
2246 		ahd_fetch_devinfo(ahd, &devinfo);
2247 		printk("%s:%c:%d:%d: Attempt to issue message failed\n",
2248 		       ahd_name(ahd), devinfo.channel, devinfo.target,
2249 		       devinfo.lun);
2250 		scbid = ahd_get_scbptr(ahd);
2251 		scb = ahd_lookup_scb(ahd, scbid);
2252 		if (scb != NULL
2253 		 && (scb->flags & SCB_RECOVERY_SCB) != 0)
2254 			/*
2255 			 * Ensure that we didn't put a second instance of this
2256 			 * SCB into the QINFIFO.
2257 			 */
2258 			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2259 					   SCB_GET_CHANNEL(ahd, scb),
2260 					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2261 					   ROLE_INITIATOR, /*status*/0,
2262 					   SEARCH_REMOVE);
2263 		ahd_outb(ahd, SCB_CONTROL,
2264 			 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
2265 		break;
2266 	}
2267 	case TASKMGMT_FUNC_COMPLETE:
2268 	{
2269 		u_int	scbid;
2270 		struct	scb *scb;
2271 
2272 		scbid = ahd_get_scbptr(ahd);
2273 		scb = ahd_lookup_scb(ahd, scbid);
2274 		if (scb != NULL) {
2275 			u_int	   lun;
2276 			u_int	   tag;
2277 			cam_status error;
2278 
2279 			ahd_print_path(ahd, scb);
2280 			printk("Task Management Func 0x%x Complete\n",
2281 			       scb->hscb->task_management);
2282 			lun = CAM_LUN_WILDCARD;
2283 			tag = SCB_LIST_NULL;
2284 
2285 			switch (scb->hscb->task_management) {
2286 			case SIU_TASKMGMT_ABORT_TASK:
2287 				tag = SCB_GET_TAG(scb);
2288 				/* fall through */
2289 			case SIU_TASKMGMT_ABORT_TASK_SET:
2290 			case SIU_TASKMGMT_CLEAR_TASK_SET:
2291 				lun = scb->hscb->lun;
2292 				error = CAM_REQ_ABORTED;
2293 				ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
2294 					       'A', lun, tag, ROLE_INITIATOR,
2295 					       error);
2296 				break;
2297 			case SIU_TASKMGMT_LUN_RESET:
2298 				lun = scb->hscb->lun;
2299 				/* fall through */
2300 			case SIU_TASKMGMT_TARGET_RESET:
2301 			{
2302 				struct ahd_devinfo devinfo;
2303 
2304 				ahd_scb_devinfo(ahd, &devinfo, scb);
2305 				error = CAM_BDR_SENT;
2306 				ahd_handle_devreset(ahd, &devinfo, lun,
2307 						    CAM_BDR_SENT,
2308 						    lun != CAM_LUN_WILDCARD
2309 						    ? "Lun Reset"
2310 						    : "Target Reset",
2311 						    /*verbose_level*/0);
2312 				break;
2313 			}
2314 			default:
2315 				panic("Unexpected TaskMgmt Func\n");
2316 				break;
2317 			}
2318 		}
2319 		break;
2320 	}
2321 	case TASKMGMT_CMD_CMPLT_OKAY:
2322 	{
2323 		u_int	scbid;
2324 		struct	scb *scb;
2325 
2326 		/*
2327 		 * An ABORT TASK TMF failed to be delivered before
2328 		 * the targeted command completed normally.
2329 		 */
2330 		scbid = ahd_get_scbptr(ahd);
2331 		scb = ahd_lookup_scb(ahd, scbid);
2332 		if (scb != NULL) {
2333 			/*
2334 			 * Remove the second instance of this SCB from
2335 			 * the QINFIFO if it is still there.
2336                          */
2337 			ahd_print_path(ahd, scb);
2338 			printk("SCB completes before TMF\n");
2339 			/*
2340 			 * Handle losing the race.  Wait until any
2341 			 * current selection completes.  We will then
2342 			 * set the TMF back to zero in this SCB so that
2343 			 * the sequencer doesn't bother to issue another
2344 			 * sequencer interrupt for its completion.
2345 			 */
2346 			while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
2347 			    && (ahd_inb(ahd, SSTAT0) & SELDO) == 0
2348 			    && (ahd_inb(ahd, SSTAT1) & SELTO) == 0)
2349 				;
2350 			ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0);
2351 			ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
2352 					   SCB_GET_CHANNEL(ahd, scb),
2353 					   SCB_GET_LUN(scb), SCB_GET_TAG(scb),
2354 					   ROLE_INITIATOR, /*status*/0,
2355 					   SEARCH_REMOVE);
2356 		}
2357 		break;
2358 	}
2359 	case TRACEPOINT0:
2360 	case TRACEPOINT1:
2361 	case TRACEPOINT2:
2362 	case TRACEPOINT3:
2363 		printk("%s: Tracepoint %d\n", ahd_name(ahd),
2364 		       seqintcode - TRACEPOINT0);
2365 		break;
2366 	case NO_SEQINT:
2367 		break;
2368 	case SAW_HWERR:
2369 		ahd_handle_hwerrint(ahd);
2370 		break;
2371 	default:
2372 		printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd),
2373 		       seqintcode);
2374 		break;
2375 	}
2376 	/*
2377 	 *  The sequencer is paused immediately on
2378 	 *  a SEQINT, so we should restart it when
2379 	 *  we're done.
2380 	 */
2381 	ahd_unpause(ahd);
2382 }
2383 
2384 static void
2385 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat)
2386 {
2387 	struct scb	*scb;
2388 	u_int		 status0;
2389 	u_int		 status3;
2390 	u_int		 status;
2391 	u_int		 lqistat1;
2392 	u_int		 lqostat0;
2393 	u_int		 scbid;
2394 	u_int		 busfreetime;
2395 
2396 	ahd_update_modes(ahd);
2397 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2398 
2399 	status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR);
2400 	status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO);
2401 	status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR);
2402 	lqistat1 = ahd_inb(ahd, LQISTAT1);
2403 	lqostat0 = ahd_inb(ahd, LQOSTAT0);
2404 	busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2405 
2406 	/*
2407 	 * Ignore external resets after a bus reset.
2408 	 */
2409 	if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) {
2410 		ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
2411 		return;
2412 	}
2413 
2414 	/*
2415 	 * Clear bus reset flag
2416 	 */
2417 	ahd->flags &= ~AHD_BUS_RESET_ACTIVE;
2418 
2419 	if ((status0 & (SELDI|SELDO)) != 0) {
2420 		u_int simode0;
2421 
2422 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2423 		simode0 = ahd_inb(ahd, SIMODE0);
2424 		status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO);
2425 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2426 	}
2427 	scbid = ahd_get_scbptr(ahd);
2428 	scb = ahd_lookup_scb(ahd, scbid);
2429 	if (scb != NULL
2430 	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
2431 		scb = NULL;
2432 
2433 	if ((status0 & IOERR) != 0) {
2434 		u_int now_lvd;
2435 
2436 		now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40;
2437 		printk("%s: Transceiver State Has Changed to %s mode\n",
2438 		       ahd_name(ahd), now_lvd ? "LVD" : "SE");
2439 		ahd_outb(ahd, CLRSINT0, CLRIOERR);
2440 		/*
2441 		 * A change in I/O mode is equivalent to a bus reset.
2442 		 */
2443 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2444 		ahd_pause(ahd);
2445 		ahd_setup_iocell_workaround(ahd);
2446 		ahd_unpause(ahd);
2447 	} else if ((status0 & OVERRUN) != 0) {
2448 
2449 		printk("%s: SCSI offset overrun detected.  Resetting bus.\n",
2450 		       ahd_name(ahd));
2451 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2452 	} else if ((status & SCSIRSTI) != 0) {
2453 
2454 		printk("%s: Someone reset channel A\n", ahd_name(ahd));
2455 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE);
2456 	} else if ((status & SCSIPERR) != 0) {
2457 
2458 		/* Make sure the sequencer is in a safe location. */
2459 		ahd_clear_critical_section(ahd);
2460 
2461 		ahd_handle_transmission_error(ahd);
2462 	} else if (lqostat0 != 0) {
2463 
2464 		printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0);
2465 		ahd_outb(ahd, CLRLQOINT0, lqostat0);
2466 		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2467 			ahd_outb(ahd, CLRLQOINT1, 0);
2468 	} else if ((status & SELTO) != 0) {
2469 		/* Stop the selection */
2470 		ahd_outb(ahd, SCSISEQ0, 0);
2471 
2472 		/* Make sure the sequencer is in a safe location. */
2473 		ahd_clear_critical_section(ahd);
2474 
2475 		/* No more pending messages */
2476 		ahd_clear_msg_state(ahd);
2477 
2478 		/* Clear interrupt state */
2479 		ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR);
2480 
2481 		/*
2482 		 * Although the driver does not care about the
2483 		 * 'Selection in Progress' status bit, the busy
2484 		 * LED does.  SELINGO is only cleared by a successful
2485 		 * selection, so we must manually clear it to insure
2486 		 * the LED turns off just incase no future successful
2487 		 * selections occur (e.g. no devices on the bus).
2488 		 */
2489 		ahd_outb(ahd, CLRSINT0, CLRSELINGO);
2490 
2491 		scbid = ahd_inw(ahd, WAITING_TID_HEAD);
2492 		scb = ahd_lookup_scb(ahd, scbid);
2493 		if (scb == NULL) {
2494 			printk("%s: ahd_intr - referenced scb not "
2495 			       "valid during SELTO scb(0x%x)\n",
2496 			       ahd_name(ahd), scbid);
2497 			ahd_dump_card_state(ahd);
2498 		} else {
2499 			struct ahd_devinfo devinfo;
2500 #ifdef AHD_DEBUG
2501 			if ((ahd_debug & AHD_SHOW_SELTO) != 0) {
2502 				ahd_print_path(ahd, scb);
2503 				printk("Saw Selection Timeout for SCB 0x%x\n",
2504 				       scbid);
2505 			}
2506 #endif
2507 			ahd_scb_devinfo(ahd, &devinfo, scb);
2508 			ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT);
2509 			ahd_freeze_devq(ahd, scb);
2510 
2511 			/*
2512 			 * Cancel any pending transactions on the device
2513 			 * now that it seems to be missing.  This will
2514 			 * also revert us to async/narrow transfers until
2515 			 * we can renegotiate with the device.
2516 			 */
2517 			ahd_handle_devreset(ahd, &devinfo,
2518 					    CAM_LUN_WILDCARD,
2519 					    CAM_SEL_TIMEOUT,
2520 					    "Selection Timeout",
2521 					    /*verbose_level*/1);
2522 		}
2523 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2524 		ahd_iocell_first_selection(ahd);
2525 		ahd_unpause(ahd);
2526 	} else if ((status0 & (SELDI|SELDO)) != 0) {
2527 
2528 		ahd_iocell_first_selection(ahd);
2529 		ahd_unpause(ahd);
2530 	} else if (status3 != 0) {
2531 		printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n",
2532 		       ahd_name(ahd), status3);
2533 		ahd_outb(ahd, CLRSINT3, status3);
2534 	} else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) {
2535 
2536 		/* Make sure the sequencer is in a safe location. */
2537 		ahd_clear_critical_section(ahd);
2538 
2539 		ahd_handle_lqiphase_error(ahd, lqistat1);
2540 	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2541 		/*
2542 		 * This status can be delayed during some
2543 		 * streaming operations.  The SCSIPHASE
2544 		 * handler has already dealt with this case
2545 		 * so just clear the error.
2546 		 */
2547 		ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ);
2548 	} else if ((status & BUSFREE) != 0
2549 		|| (lqistat1 & LQOBUSFREE) != 0) {
2550 		u_int lqostat1;
2551 		int   restart;
2552 		int   clear_fifo;
2553 		int   packetized;
2554 		u_int mode;
2555 
2556 		/*
2557 		 * Clear our selection hardware as soon as possible.
2558 		 * We may have an entry in the waiting Q for this target,
2559 		 * that is affected by this busfree and we don't want to
2560 		 * go about selecting the target while we handle the event.
2561 		 */
2562 		ahd_outb(ahd, SCSISEQ0, 0);
2563 
2564 		/* Make sure the sequencer is in a safe location. */
2565 		ahd_clear_critical_section(ahd);
2566 
2567 		/*
2568 		 * Determine what we were up to at the time of
2569 		 * the busfree.
2570 		 */
2571 		mode = AHD_MODE_SCSI;
2572 		busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME;
2573 		lqostat1 = ahd_inb(ahd, LQOSTAT1);
2574 		switch (busfreetime) {
2575 		case BUSFREE_DFF0:
2576 		case BUSFREE_DFF1:
2577 		{
2578 			mode = busfreetime == BUSFREE_DFF0
2579 			     ? AHD_MODE_DFF0 : AHD_MODE_DFF1;
2580 			ahd_set_modes(ahd, mode, mode);
2581 			scbid = ahd_get_scbptr(ahd);
2582 			scb = ahd_lookup_scb(ahd, scbid);
2583 			if (scb == NULL) {
2584 				printk("%s: Invalid SCB %d in DFF%d "
2585 				       "during unexpected busfree\n",
2586 				       ahd_name(ahd), scbid, mode);
2587 				packetized = 0;
2588 			} else
2589 				packetized = (scb->flags & SCB_PACKETIZED) != 0;
2590 			clear_fifo = 1;
2591 			break;
2592 		}
2593 		case BUSFREE_LQO:
2594 			clear_fifo = 0;
2595 			packetized = 1;
2596 			break;
2597 		default:
2598 			clear_fifo = 0;
2599 			packetized =  (lqostat1 & LQOBUSFREE) != 0;
2600 			if (!packetized
2601 			 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE
2602 			 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0
2603 			 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0
2604 			  || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0))
2605 				/*
2606 				 * Assume packetized if we are not
2607 				 * on the bus in a non-packetized
2608 				 * capacity and any pending selection
2609 				 * was a packetized selection.
2610 				 */
2611 				packetized = 1;
2612 			break;
2613 		}
2614 
2615 #ifdef AHD_DEBUG
2616 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
2617 			printk("Saw Busfree.  Busfreetime = 0x%x.\n",
2618 			       busfreetime);
2619 #endif
2620 		/*
2621 		 * Busfrees that occur in non-packetized phases are
2622 		 * handled by the nonpkt_busfree handler.
2623 		 */
2624 		if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) {
2625 			restart = ahd_handle_pkt_busfree(ahd, busfreetime);
2626 		} else {
2627 			packetized = 0;
2628 			restart = ahd_handle_nonpkt_busfree(ahd);
2629 		}
2630 		/*
2631 		 * Clear the busfree interrupt status.  The setting of
2632 		 * the interrupt is a pulse, so in a perfect world, we
2633 		 * would not need to muck with the ENBUSFREE logic.  This
2634 		 * would ensure that if the bus moves on to another
2635 		 * connection, busfree protection is still in force.  If
2636 		 * BUSFREEREV is broken, however, we must manually clear
2637 		 * the ENBUSFREE if the busfree occurred during a non-pack
2638 		 * connection so that we don't get false positives during
2639 		 * future, packetized, connections.
2640 		 */
2641 		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
2642 		if (packetized == 0
2643 		 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0)
2644 			ahd_outb(ahd, SIMODE1,
2645 				 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE);
2646 
2647 		if (clear_fifo)
2648 			ahd_clear_fifo(ahd, mode);
2649 
2650 		ahd_clear_msg_state(ahd);
2651 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2652 		if (restart) {
2653 			ahd_restart(ahd);
2654 		} else {
2655 			ahd_unpause(ahd);
2656 		}
2657 	} else {
2658 		printk("%s: Missing case in ahd_handle_scsiint. status = %x\n",
2659 		       ahd_name(ahd), status);
2660 		ahd_dump_card_state(ahd);
2661 		ahd_clear_intstat(ahd);
2662 		ahd_unpause(ahd);
2663 	}
2664 }
2665 
2666 static void
2667 ahd_handle_transmission_error(struct ahd_softc *ahd)
2668 {
2669 	struct	scb *scb;
2670 	u_int	scbid;
2671 	u_int	lqistat1;
2672 	u_int	lqistat2;
2673 	u_int	msg_out;
2674 	u_int	curphase;
2675 	u_int	lastphase;
2676 	u_int	perrdiag;
2677 	u_int	cur_col;
2678 	int	silent;
2679 
2680 	scb = NULL;
2681 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2682 	lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ);
2683 	lqistat2 = ahd_inb(ahd, LQISTAT2);
2684 	if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0
2685 	 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) {
2686 		u_int lqistate;
2687 
2688 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
2689 		lqistate = ahd_inb(ahd, LQISTATE);
2690 		if ((lqistate >= 0x1E && lqistate <= 0x24)
2691 		 || (lqistate == 0x29)) {
2692 #ifdef AHD_DEBUG
2693 			if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) {
2694 				printk("%s: NLQCRC found via LQISTATE\n",
2695 				       ahd_name(ahd));
2696 			}
2697 #endif
2698 			lqistat1 |= LQICRCI_NLQ;
2699 		}
2700 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2701 	}
2702 
2703 	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2704 	lastphase = ahd_inb(ahd, LASTPHASE);
2705 	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
2706 	perrdiag = ahd_inb(ahd, PERRDIAG);
2707 	msg_out = MSG_INITIATOR_DET_ERR;
2708 	ahd_outb(ahd, CLRSINT1, CLRSCSIPERR);
2709 
2710 	/*
2711 	 * Try to find the SCB associated with this error.
2712 	 */
2713 	silent = FALSE;
2714 	if (lqistat1 == 0
2715 	 || (lqistat1 & LQICRCI_NLQ) != 0) {
2716 	 	if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0)
2717 			ahd_set_active_fifo(ahd);
2718 		scbid = ahd_get_scbptr(ahd);
2719 		scb = ahd_lookup_scb(ahd, scbid);
2720 		if (scb != NULL && SCB_IS_SILENT(scb))
2721 			silent = TRUE;
2722 	}
2723 
2724 	cur_col = 0;
2725 	if (silent == FALSE) {
2726 		printk("%s: Transmission error detected\n", ahd_name(ahd));
2727 		ahd_lqistat1_print(lqistat1, &cur_col, 50);
2728 		ahd_lastphase_print(lastphase, &cur_col, 50);
2729 		ahd_scsisigi_print(curphase, &cur_col, 50);
2730 		ahd_perrdiag_print(perrdiag, &cur_col, 50);
2731 		printk("\n");
2732 		ahd_dump_card_state(ahd);
2733 	}
2734 
2735 	if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) {
2736 		if (silent == FALSE) {
2737 			printk("%s: Gross protocol error during incoming "
2738 			       "packet.  lqistat1 == 0x%x.  Resetting bus.\n",
2739 			       ahd_name(ahd), lqistat1);
2740 		}
2741 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2742 		return;
2743 	} else if ((lqistat1 & LQICRCI_LQ) != 0) {
2744 		/*
2745 		 * A CRC error has been detected on an incoming LQ.
2746 		 * The bus is currently hung on the last ACK.
2747 		 * Hit LQIRETRY to release the last ack, and
2748 		 * wait for the sequencer to determine that ATNO
2749 		 * is asserted while in message out to take us
2750 		 * to our host message loop.  No NONPACKREQ or
2751 		 * LQIPHASE type errors will occur in this
2752 		 * scenario.  After this first LQIRETRY, the LQI
2753 		 * manager will be in ISELO where it will
2754 		 * happily sit until another packet phase begins.
2755 		 * Unexpected bus free detection is enabled
2756 		 * through any phases that occur after we release
2757 		 * this last ack until the LQI manager sees a
2758 		 * packet phase.  This implies we may have to
2759 		 * ignore a perfectly valid "unexected busfree"
2760 		 * after our "initiator detected error" message is
2761 		 * sent.  A busfree is the expected response after
2762 		 * we tell the target that it's L_Q was corrupted.
2763 		 * (SPI4R09 10.7.3.3.3)
2764 		 */
2765 		ahd_outb(ahd, LQCTL2, LQIRETRY);
2766 		printk("LQIRetry for LQICRCI_LQ to release ACK\n");
2767 	} else if ((lqistat1 & LQICRCI_NLQ) != 0) {
2768 		/*
2769 		 * We detected a CRC error in a NON-LQ packet.
2770 		 * The hardware has varying behavior in this situation
2771 		 * depending on whether this packet was part of a
2772 		 * stream or not.
2773 		 *
2774 		 * PKT by PKT mode:
2775 		 * The hardware has already acked the complete packet.
2776 		 * If the target honors our outstanding ATN condition,
2777 		 * we should be (or soon will be) in MSGOUT phase.
2778 		 * This will trigger the LQIPHASE_LQ status bit as the
2779 		 * hardware was expecting another LQ.  Unexpected
2780 		 * busfree detection is enabled.  Once LQIPHASE_LQ is
2781 		 * true (first entry into host message loop is much
2782 		 * the same), we must clear LQIPHASE_LQ and hit
2783 		 * LQIRETRY so the hardware is ready to handle
2784 		 * a future LQ.  NONPACKREQ will not be asserted again
2785 		 * once we hit LQIRETRY until another packet is
2786 		 * processed.  The target may either go busfree
2787 		 * or start another packet in response to our message.
2788 		 *
2789 		 * Read Streaming P0 asserted:
2790 		 * If we raise ATN and the target completes the entire
2791 		 * stream (P0 asserted during the last packet), the
2792 		 * hardware will ack all data and return to the ISTART
2793 		 * state.  When the target reponds to our ATN condition,
2794 		 * LQIPHASE_LQ will be asserted.  We should respond to
2795 		 * this with an LQIRETRY to prepare for any future
2796 		 * packets.  NONPACKREQ will not be asserted again
2797 		 * once we hit LQIRETRY until another packet is
2798 		 * processed.  The target may either go busfree or
2799 		 * start another packet in response to our message.
2800 		 * Busfree detection is enabled.
2801 		 *
2802 		 * Read Streaming P0 not asserted:
2803 		 * If we raise ATN and the target transitions to
2804 		 * MSGOUT in or after a packet where P0 is not
2805 		 * asserted, the hardware will assert LQIPHASE_NLQ.
2806 		 * We should respond to the LQIPHASE_NLQ with an
2807 		 * LQIRETRY.  Should the target stay in a non-pkt
2808 		 * phase after we send our message, the hardware
2809 		 * will assert LQIPHASE_LQ.  Recovery is then just as
2810 		 * listed above for the read streaming with P0 asserted.
2811 		 * Busfree detection is enabled.
2812 		 */
2813 		if (silent == FALSE)
2814 			printk("LQICRC_NLQ\n");
2815 		if (scb == NULL) {
2816 			printk("%s: No SCB valid for LQICRC_NLQ.  "
2817 			       "Resetting bus\n", ahd_name(ahd));
2818 			ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2819 			return;
2820 		}
2821 	} else if ((lqistat1 & LQIBADLQI) != 0) {
2822 		printk("Need to handle BADLQI!\n");
2823 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2824 		return;
2825 	} else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) {
2826 		if ((curphase & ~P_DATAIN_DT) != 0) {
2827 			/* Ack the byte.  So we can continue. */
2828 			if (silent == FALSE)
2829 				printk("Acking %s to clear perror\n",
2830 				    ahd_lookup_phase_entry(curphase)->phasemsg);
2831 			ahd_inb(ahd, SCSIDAT);
2832 		}
2833 
2834 		if (curphase == P_MESGIN)
2835 			msg_out = MSG_PARITY_ERROR;
2836 	}
2837 
2838 	/*
2839 	 * We've set the hardware to assert ATN if we
2840 	 * get a parity error on "in" phases, so all we
2841 	 * need to do is stuff the message buffer with
2842 	 * the appropriate message.  "In" phases have set
2843 	 * mesg_out to something other than MSG_NOP.
2844 	 */
2845 	ahd->send_msg_perror = msg_out;
2846 	if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR)
2847 		scb->flags |= SCB_TRANSMISSION_ERROR;
2848 	ahd_outb(ahd, MSG_OUT, HOST_MSG);
2849 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
2850 	ahd_unpause(ahd);
2851 }
2852 
2853 static void
2854 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1)
2855 {
2856 	/*
2857 	 * Clear the sources of the interrupts.
2858 	 */
2859 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2860 	ahd_outb(ahd, CLRLQIINT1, lqistat1);
2861 
2862 	/*
2863 	 * If the "illegal" phase changes were in response
2864 	 * to our ATN to flag a CRC error, AND we ended up
2865 	 * on packet boundaries, clear the error, restart the
2866 	 * LQI manager as appropriate, and go on our merry
2867 	 * way toward sending the message.  Otherwise, reset
2868 	 * the bus to clear the error.
2869 	 */
2870 	ahd_set_active_fifo(ahd);
2871 	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0
2872 	 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) {
2873 		if ((lqistat1 & LQIPHASE_LQ) != 0) {
2874 			printk("LQIRETRY for LQIPHASE_LQ\n");
2875 			ahd_outb(ahd, LQCTL2, LQIRETRY);
2876 		} else if ((lqistat1 & LQIPHASE_NLQ) != 0) {
2877 			printk("LQIRETRY for LQIPHASE_NLQ\n");
2878 			ahd_outb(ahd, LQCTL2, LQIRETRY);
2879 		} else
2880 			panic("ahd_handle_lqiphase_error: No phase errors\n");
2881 		ahd_dump_card_state(ahd);
2882 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
2883 		ahd_unpause(ahd);
2884 	} else {
2885 		printk("Resetting Channel for LQI Phase error\n");
2886 		ahd_dump_card_state(ahd);
2887 		ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE);
2888 	}
2889 }
2890 
2891 /*
2892  * Packetized unexpected or expected busfree.
2893  * Entered in mode based on busfreetime.
2894  */
2895 static int
2896 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime)
2897 {
2898 	u_int lqostat1;
2899 
2900 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
2901 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
2902 	lqostat1 = ahd_inb(ahd, LQOSTAT1);
2903 	if ((lqostat1 & LQOBUSFREE) != 0) {
2904 		struct scb *scb;
2905 		u_int scbid;
2906 		u_int saved_scbptr;
2907 		u_int waiting_h;
2908 		u_int waiting_t;
2909 		u_int next;
2910 
2911 		/*
2912 		 * The LQO manager detected an unexpected busfree
2913 		 * either:
2914 		 *
2915 		 * 1) During an outgoing LQ.
2916 		 * 2) After an outgoing LQ but before the first
2917 		 *    REQ of the command packet.
2918 		 * 3) During an outgoing command packet.
2919 		 *
2920 		 * In all cases, CURRSCB is pointing to the
2921 		 * SCB that encountered the failure.  Clean
2922 		 * up the queue, clear SELDO and LQOBUSFREE,
2923 		 * and allow the sequencer to restart the select
2924 		 * out at its lesure.
2925 		 */
2926 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
2927 		scbid = ahd_inw(ahd, CURRSCB);
2928 		scb = ahd_lookup_scb(ahd, scbid);
2929 		if (scb == NULL)
2930 		       panic("SCB not valid during LQOBUSFREE");
2931 		/*
2932 		 * Clear the status.
2933 		 */
2934 		ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE);
2935 		if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0)
2936 			ahd_outb(ahd, CLRLQOINT1, 0);
2937 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
2938 		ahd_flush_device_writes(ahd);
2939 		ahd_outb(ahd, CLRSINT0, CLRSELDO);
2940 
2941 		/*
2942 		 * Return the LQO manager to its idle loop.  It will
2943 		 * not do this automatically if the busfree occurs
2944 		 * after the first REQ of either the LQ or command
2945 		 * packet or between the LQ and command packet.
2946 		 */
2947 		ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE);
2948 
2949 		/*
2950 		 * Update the waiting for selection queue so
2951 		 * we restart on the correct SCB.
2952 		 */
2953 		waiting_h = ahd_inw(ahd, WAITING_TID_HEAD);
2954 		saved_scbptr = ahd_get_scbptr(ahd);
2955 		if (waiting_h != scbid) {
2956 
2957 			ahd_outw(ahd, WAITING_TID_HEAD, scbid);
2958 			waiting_t = ahd_inw(ahd, WAITING_TID_TAIL);
2959 			if (waiting_t == waiting_h) {
2960 				ahd_outw(ahd, WAITING_TID_TAIL, scbid);
2961 				next = SCB_LIST_NULL;
2962 			} else {
2963 				ahd_set_scbptr(ahd, waiting_h);
2964 				next = ahd_inw_scbram(ahd, SCB_NEXT2);
2965 			}
2966 			ahd_set_scbptr(ahd, scbid);
2967 			ahd_outw(ahd, SCB_NEXT2, next);
2968 		}
2969 		ahd_set_scbptr(ahd, saved_scbptr);
2970 		if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) {
2971 			if (SCB_IS_SILENT(scb) == FALSE) {
2972 				ahd_print_path(ahd, scb);
2973 				printk("Probable outgoing LQ CRC error.  "
2974 				       "Retrying command\n");
2975 			}
2976 			scb->crc_retry_count++;
2977 		} else {
2978 			ahd_set_transaction_status(scb, CAM_UNCOR_PARITY);
2979 			ahd_freeze_scb(scb);
2980 			ahd_freeze_devq(ahd, scb);
2981 		}
2982 		/* Return unpausing the sequencer. */
2983 		return (0);
2984 	} else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) {
2985 		/*
2986 		 * Ignore what are really parity errors that
2987 		 * occur on the last REQ of a free running
2988 		 * clock prior to going busfree.  Some drives
2989 		 * do not properly active negate just before
2990 		 * going busfree resulting in a parity glitch.
2991 		 */
2992 		ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE);
2993 #ifdef AHD_DEBUG
2994 		if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0)
2995 			printk("%s: Parity on last REQ detected "
2996 			       "during busfree phase.\n",
2997 			       ahd_name(ahd));
2998 #endif
2999 		/* Return unpausing the sequencer. */
3000 		return (0);
3001 	}
3002 	if (ahd->src_mode != AHD_MODE_SCSI) {
3003 		u_int	scbid;
3004 		struct	scb *scb;
3005 
3006 		scbid = ahd_get_scbptr(ahd);
3007 		scb = ahd_lookup_scb(ahd, scbid);
3008 		ahd_print_path(ahd, scb);
3009 		printk("Unexpected PKT busfree condition\n");
3010 		ahd_dump_card_state(ahd);
3011 		ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A',
3012 			       SCB_GET_LUN(scb), SCB_GET_TAG(scb),
3013 			       ROLE_INITIATOR, CAM_UNEXP_BUSFREE);
3014 
3015 		/* Return restarting the sequencer. */
3016 		return (1);
3017 	}
3018 	printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd));
3019 	ahd_dump_card_state(ahd);
3020 	/* Restart the sequencer. */
3021 	return (1);
3022 }
3023 
3024 /*
3025  * Non-packetized unexpected or expected busfree.
3026  */
3027 static int
3028 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd)
3029 {
3030 	struct	ahd_devinfo devinfo;
3031 	struct	scb *scb;
3032 	u_int	lastphase;
3033 	u_int	saved_scsiid;
3034 	u_int	saved_lun;
3035 	u_int	target;
3036 	u_int	initiator_role_id;
3037 	u_int	scbid;
3038 	u_int	ppr_busfree;
3039 	int	printerror;
3040 
3041 	/*
3042 	 * Look at what phase we were last in.  If its message out,
3043 	 * chances are pretty good that the busfree was in response
3044 	 * to one of our abort requests.
3045 	 */
3046 	lastphase = ahd_inb(ahd, LASTPHASE);
3047 	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
3048 	saved_lun = ahd_inb(ahd, SAVED_LUN);
3049 	target = SCSIID_TARGET(ahd, saved_scsiid);
3050 	initiator_role_id = SCSIID_OUR_ID(saved_scsiid);
3051 	ahd_compile_devinfo(&devinfo, initiator_role_id,
3052 			    target, saved_lun, 'A', ROLE_INITIATOR);
3053 	printerror = 1;
3054 
3055 	scbid = ahd_get_scbptr(ahd);
3056 	scb = ahd_lookup_scb(ahd, scbid);
3057 	if (scb != NULL
3058 	 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0)
3059 		scb = NULL;
3060 
3061 	ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0;
3062 	if (lastphase == P_MESGOUT) {
3063 		u_int tag;
3064 
3065 		tag = SCB_LIST_NULL;
3066 		if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE)
3067 		 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) {
3068 			int found;
3069 			int sent_msg;
3070 
3071 			if (scb == NULL) {
3072 				ahd_print_devinfo(ahd, &devinfo);
3073 				printk("Abort for unidentified "
3074 				       "connection completed.\n");
3075 				/* restart the sequencer. */
3076 				return (1);
3077 			}
3078 			sent_msg = ahd->msgout_buf[ahd->msgout_index - 1];
3079 			ahd_print_path(ahd, scb);
3080 			printk("SCB %d - Abort%s Completed.\n",
3081 			       SCB_GET_TAG(scb),
3082 			       sent_msg == MSG_ABORT_TAG ? "" : " Tag");
3083 
3084 			if (sent_msg == MSG_ABORT_TAG)
3085 				tag = SCB_GET_TAG(scb);
3086 
3087 			if ((scb->flags & SCB_EXTERNAL_RESET) != 0) {
3088 				/*
3089 				 * This abort is in response to an
3090 				 * unexpected switch to command phase
3091 				 * for a packetized connection.  Since
3092 				 * the identify message was never sent,
3093 				 * "saved lun" is 0.  We really want to
3094 				 * abort only the SCB that encountered
3095 				 * this error, which could have a different
3096 				 * lun.  The SCB will be retried so the OS
3097 				 * will see the UA after renegotiating to
3098 				 * packetized.
3099 				 */
3100 				tag = SCB_GET_TAG(scb);
3101 				saved_lun = scb->hscb->lun;
3102 			}
3103 			found = ahd_abort_scbs(ahd, target, 'A', saved_lun,
3104 					       tag, ROLE_INITIATOR,
3105 					       CAM_REQ_ABORTED);
3106 			printk("found == 0x%x\n", found);
3107 			printerror = 0;
3108 		} else if (ahd_sent_msg(ahd, AHDMSG_1B,
3109 					MSG_BUS_DEV_RESET, TRUE)) {
3110 			ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD,
3111 					    CAM_BDR_SENT, "Bus Device Reset",
3112 					    /*verbose_level*/0);
3113 			printerror = 0;
3114 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE)
3115 			&& ppr_busfree == 0) {
3116 			struct ahd_initiator_tinfo *tinfo;
3117 			struct ahd_tmode_tstate *tstate;
3118 
3119 			/*
3120 			 * PPR Rejected.
3121 			 *
3122 			 * If the previous negotiation was packetized,
3123 			 * this could be because the device has been
3124 			 * reset without our knowledge.  Force our
3125 			 * current negotiation to async and retry the
3126 			 * negotiation.  Otherwise retry the command
3127 			 * with non-ppr negotiation.
3128 			 */
3129 #ifdef AHD_DEBUG
3130 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3131 				printk("PPR negotiation rejected busfree.\n");
3132 #endif
3133 			tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
3134 						    devinfo.our_scsiid,
3135 						    devinfo.target, &tstate);
3136 			if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) {
3137 				ahd_set_width(ahd, &devinfo,
3138 					      MSG_EXT_WDTR_BUS_8_BIT,
3139 					      AHD_TRANS_CUR,
3140 					      /*paused*/TRUE);
3141 				ahd_set_syncrate(ahd, &devinfo,
3142 						/*period*/0, /*offset*/0,
3143 						/*ppr_options*/0,
3144 						AHD_TRANS_CUR,
3145 						/*paused*/TRUE);
3146 				/*
3147 				 * The expect PPR busfree handler below
3148 				 * will effect the retry and necessary
3149 				 * abort.
3150 				 */
3151 			} else {
3152 				tinfo->curr.transport_version = 2;
3153 				tinfo->goal.transport_version = 2;
3154 				tinfo->goal.ppr_options = 0;
3155 				if (scb != NULL) {
3156 					/*
3157 					 * Remove any SCBs in the waiting
3158 					 * for selection queue that may
3159 					 * also be for this target so that
3160 					 * command ordering is preserved.
3161 					 */
3162 					ahd_freeze_devq(ahd, scb);
3163 					ahd_qinfifo_requeue_tail(ahd, scb);
3164 				}
3165 				printerror = 0;
3166 			}
3167 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE)
3168 			&& ppr_busfree == 0) {
3169 			/*
3170 			 * Negotiation Rejected.  Go-narrow and
3171 			 * retry command.
3172 			 */
3173 #ifdef AHD_DEBUG
3174 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3175 				printk("WDTR negotiation rejected busfree.\n");
3176 #endif
3177 			ahd_set_width(ahd, &devinfo,
3178 				      MSG_EXT_WDTR_BUS_8_BIT,
3179 				      AHD_TRANS_CUR|AHD_TRANS_GOAL,
3180 				      /*paused*/TRUE);
3181 			if (scb != NULL) {
3182 				/*
3183 				 * Remove any SCBs in the waiting for
3184 				 * selection queue that may also be for
3185 				 * this target so that command ordering
3186 				 * is preserved.
3187 				 */
3188 				ahd_freeze_devq(ahd, scb);
3189 				ahd_qinfifo_requeue_tail(ahd, scb);
3190 			}
3191 			printerror = 0;
3192 		} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE)
3193 			&& ppr_busfree == 0) {
3194 			/*
3195 			 * Negotiation Rejected.  Go-async and
3196 			 * retry command.
3197 			 */
3198 #ifdef AHD_DEBUG
3199 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3200 				printk("SDTR negotiation rejected busfree.\n");
3201 #endif
3202 			ahd_set_syncrate(ahd, &devinfo,
3203 					/*period*/0, /*offset*/0,
3204 					/*ppr_options*/0,
3205 					AHD_TRANS_CUR|AHD_TRANS_GOAL,
3206 					/*paused*/TRUE);
3207 			if (scb != NULL) {
3208 				/*
3209 				 * Remove any SCBs in the waiting for
3210 				 * selection queue that may also be for
3211 				 * this target so that command ordering
3212 				 * is preserved.
3213 				 */
3214 				ahd_freeze_devq(ahd, scb);
3215 				ahd_qinfifo_requeue_tail(ahd, scb);
3216 			}
3217 			printerror = 0;
3218 		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0
3219 			&& ahd_sent_msg(ahd, AHDMSG_1B,
3220 					 MSG_INITIATOR_DET_ERR, TRUE)) {
3221 
3222 #ifdef AHD_DEBUG
3223 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3224 				printk("Expected IDE Busfree\n");
3225 #endif
3226 			printerror = 0;
3227 		} else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE)
3228 			&& ahd_sent_msg(ahd, AHDMSG_1B,
3229 					MSG_MESSAGE_REJECT, TRUE)) {
3230 
3231 #ifdef AHD_DEBUG
3232 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3233 				printk("Expected QAS Reject Busfree\n");
3234 #endif
3235 			printerror = 0;
3236 		}
3237 	}
3238 
3239 	/*
3240 	 * The busfree required flag is honored at the end of
3241 	 * the message phases.  We check it last in case we
3242 	 * had to send some other message that caused a busfree.
3243 	 */
3244 	if (scb != NULL && printerror != 0
3245 	 && (lastphase == P_MESGIN || lastphase == P_MESGOUT)
3246 	 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) {
3247 
3248 		ahd_freeze_devq(ahd, scb);
3249 		ahd_set_transaction_status(scb, CAM_REQUEUE_REQ);
3250 		ahd_freeze_scb(scb);
3251 		if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) {
3252 			ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb),
3253 				       SCB_GET_CHANNEL(ahd, scb),
3254 				       SCB_GET_LUN(scb), SCB_LIST_NULL,
3255 				       ROLE_INITIATOR, CAM_REQ_ABORTED);
3256 		} else {
3257 #ifdef AHD_DEBUG
3258 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3259 				printk("PPR Negotiation Busfree.\n");
3260 #endif
3261 			ahd_done(ahd, scb);
3262 		}
3263 		printerror = 0;
3264 	}
3265 	if (printerror != 0) {
3266 		int aborted;
3267 
3268 		aborted = 0;
3269 		if (scb != NULL) {
3270 			u_int tag;
3271 
3272 			if ((scb->hscb->control & TAG_ENB) != 0)
3273 				tag = SCB_GET_TAG(scb);
3274 			else
3275 				tag = SCB_LIST_NULL;
3276 			ahd_print_path(ahd, scb);
3277 			aborted = ahd_abort_scbs(ahd, target, 'A',
3278 				       SCB_GET_LUN(scb), tag,
3279 				       ROLE_INITIATOR,
3280 				       CAM_UNEXP_BUSFREE);
3281 		} else {
3282 			/*
3283 			 * We had not fully identified this connection,
3284 			 * so we cannot abort anything.
3285 			 */
3286 			printk("%s: ", ahd_name(ahd));
3287 		}
3288 		printk("Unexpected busfree %s, %d SCBs aborted, "
3289 		       "PRGMCNT == 0x%x\n",
3290 		       ahd_lookup_phase_entry(lastphase)->phasemsg,
3291 		       aborted,
3292 		       ahd_inw(ahd, PRGMCNT));
3293 		ahd_dump_card_state(ahd);
3294 		if (lastphase != P_BUSFREE)
3295 			ahd_force_renegotiation(ahd, &devinfo);
3296 	}
3297 	/* Always restart the sequencer. */
3298 	return (1);
3299 }
3300 
3301 static void
3302 ahd_handle_proto_violation(struct ahd_softc *ahd)
3303 {
3304 	struct	ahd_devinfo devinfo;
3305 	struct	scb *scb;
3306 	u_int	scbid;
3307 	u_int	seq_flags;
3308 	u_int	curphase;
3309 	u_int	lastphase;
3310 	int	found;
3311 
3312 	ahd_fetch_devinfo(ahd, &devinfo);
3313 	scbid = ahd_get_scbptr(ahd);
3314 	scb = ahd_lookup_scb(ahd, scbid);
3315 	seq_flags = ahd_inb(ahd, SEQ_FLAGS);
3316 	curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK;
3317 	lastphase = ahd_inb(ahd, LASTPHASE);
3318 	if ((seq_flags & NOT_IDENTIFIED) != 0) {
3319 
3320 		/*
3321 		 * The reconnecting target either did not send an
3322 		 * identify message, or did, but we didn't find an SCB
3323 		 * to match.
3324 		 */
3325 		ahd_print_devinfo(ahd, &devinfo);
3326 		printk("Target did not send an IDENTIFY message. "
3327 		       "LASTPHASE = 0x%x.\n", lastphase);
3328 		scb = NULL;
3329 	} else if (scb == NULL) {
3330 		/*
3331 		 * We don't seem to have an SCB active for this
3332 		 * transaction.  Print an error and reset the bus.
3333 		 */
3334 		ahd_print_devinfo(ahd, &devinfo);
3335 		printk("No SCB found during protocol violation\n");
3336 		goto proto_violation_reset;
3337 	} else {
3338 		ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL);
3339 		if ((seq_flags & NO_CDB_SENT) != 0) {
3340 			ahd_print_path(ahd, scb);
3341 			printk("No or incomplete CDB sent to device.\n");
3342 		} else if ((ahd_inb_scbram(ahd, SCB_CONTROL)
3343 			  & STATUS_RCVD) == 0) {
3344 			/*
3345 			 * The target never bothered to provide status to
3346 			 * us prior to completing the command.  Since we don't
3347 			 * know the disposition of this command, we must attempt
3348 			 * to abort it.  Assert ATN and prepare to send an abort
3349 			 * message.
3350 			 */
3351 			ahd_print_path(ahd, scb);
3352 			printk("Completed command without status.\n");
3353 		} else {
3354 			ahd_print_path(ahd, scb);
3355 			printk("Unknown protocol violation.\n");
3356 			ahd_dump_card_state(ahd);
3357 		}
3358 	}
3359 	if ((lastphase & ~P_DATAIN_DT) == 0
3360 	 || lastphase == P_COMMAND) {
3361 proto_violation_reset:
3362 		/*
3363 		 * Target either went directly to data
3364 		 * phase or didn't respond to our ATN.
3365 		 * The only safe thing to do is to blow
3366 		 * it away with a bus reset.
3367 		 */
3368 		found = ahd_reset_channel(ahd, 'A', TRUE);
3369 		printk("%s: Issued Channel %c Bus Reset. "
3370 		       "%d SCBs aborted\n", ahd_name(ahd), 'A', found);
3371 	} else {
3372 		/*
3373 		 * Leave the selection hardware off in case
3374 		 * this abort attempt will affect yet to
3375 		 * be sent commands.
3376 		 */
3377 		ahd_outb(ahd, SCSISEQ0,
3378 			 ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
3379 		ahd_assert_atn(ahd);
3380 		ahd_outb(ahd, MSG_OUT, HOST_MSG);
3381 		if (scb == NULL) {
3382 			ahd_print_devinfo(ahd, &devinfo);
3383 			ahd->msgout_buf[0] = MSG_ABORT_TASK;
3384 			ahd->msgout_len = 1;
3385 			ahd->msgout_index = 0;
3386 			ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
3387 		} else {
3388 			ahd_print_path(ahd, scb);
3389 			scb->flags |= SCB_ABORT;
3390 		}
3391 		printk("Protocol violation %s.  Attempting to abort.\n",
3392 		       ahd_lookup_phase_entry(curphase)->phasemsg);
3393 	}
3394 }
3395 
3396 /*
3397  * Force renegotiation to occur the next time we initiate
3398  * a command to the current device.
3399  */
3400 static void
3401 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
3402 {
3403 	struct	ahd_initiator_tinfo *targ_info;
3404 	struct	ahd_tmode_tstate *tstate;
3405 
3406 #ifdef AHD_DEBUG
3407 	if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3408 		ahd_print_devinfo(ahd, devinfo);
3409 		printk("Forcing renegotiation\n");
3410 	}
3411 #endif
3412 	targ_info = ahd_fetch_transinfo(ahd,
3413 					devinfo->channel,
3414 					devinfo->our_scsiid,
3415 					devinfo->target,
3416 					&tstate);
3417 	ahd_update_neg_request(ahd, devinfo, tstate,
3418 			       targ_info, AHD_NEG_IF_NON_ASYNC);
3419 }
3420 
3421 #define AHD_MAX_STEPS 2000
3422 static void
3423 ahd_clear_critical_section(struct ahd_softc *ahd)
3424 {
3425 	ahd_mode_state	saved_modes;
3426 	int		stepping;
3427 	int		steps;
3428 	int		first_instr;
3429 	u_int		simode0;
3430 	u_int		simode1;
3431 	u_int		simode3;
3432 	u_int		lqimode0;
3433 	u_int		lqimode1;
3434 	u_int		lqomode0;
3435 	u_int		lqomode1;
3436 
3437 	if (ahd->num_critical_sections == 0)
3438 		return;
3439 
3440 	stepping = FALSE;
3441 	steps = 0;
3442 	first_instr = 0;
3443 	simode0 = 0;
3444 	simode1 = 0;
3445 	simode3 = 0;
3446 	lqimode0 = 0;
3447 	lqimode1 = 0;
3448 	lqomode0 = 0;
3449 	lqomode1 = 0;
3450 	saved_modes = ahd_save_modes(ahd);
3451 	for (;;) {
3452 		struct	cs *cs;
3453 		u_int	seqaddr;
3454 		u_int	i;
3455 
3456 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3457 		seqaddr = ahd_inw(ahd, CURADDR);
3458 
3459 		cs = ahd->critical_sections;
3460 		for (i = 0; i < ahd->num_critical_sections; i++, cs++) {
3461 
3462 			if (cs->begin < seqaddr && cs->end >= seqaddr)
3463 				break;
3464 		}
3465 
3466 		if (i == ahd->num_critical_sections)
3467 			break;
3468 
3469 		if (steps > AHD_MAX_STEPS) {
3470 			printk("%s: Infinite loop in critical section\n"
3471 			       "%s: First Instruction 0x%x now 0x%x\n",
3472 			       ahd_name(ahd), ahd_name(ahd), first_instr,
3473 			       seqaddr);
3474 			ahd_dump_card_state(ahd);
3475 			panic("critical section loop");
3476 		}
3477 
3478 		steps++;
3479 #ifdef AHD_DEBUG
3480 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
3481 			printk("%s: Single stepping at 0x%x\n", ahd_name(ahd),
3482 			       seqaddr);
3483 #endif
3484 		if (stepping == FALSE) {
3485 
3486 			first_instr = seqaddr;
3487   			ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3488   			simode0 = ahd_inb(ahd, SIMODE0);
3489 			simode3 = ahd_inb(ahd, SIMODE3);
3490 			lqimode0 = ahd_inb(ahd, LQIMODE0);
3491 			lqimode1 = ahd_inb(ahd, LQIMODE1);
3492 			lqomode0 = ahd_inb(ahd, LQOMODE0);
3493 			lqomode1 = ahd_inb(ahd, LQOMODE1);
3494 			ahd_outb(ahd, SIMODE0, 0);
3495 			ahd_outb(ahd, SIMODE3, 0);
3496 			ahd_outb(ahd, LQIMODE0, 0);
3497 			ahd_outb(ahd, LQIMODE1, 0);
3498 			ahd_outb(ahd, LQOMODE0, 0);
3499 			ahd_outb(ahd, LQOMODE1, 0);
3500 			ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3501 			simode1 = ahd_inb(ahd, SIMODE1);
3502 			/*
3503 			 * We don't clear ENBUSFREE.  Unfortunately
3504 			 * we cannot re-enable busfree detection within
3505 			 * the current connection, so we must leave it
3506 			 * on while single stepping.
3507 			 */
3508 			ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE);
3509 			ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP);
3510 			stepping = TRUE;
3511 		}
3512 		ahd_outb(ahd, CLRSINT1, CLRBUSFREE);
3513 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3514 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
3515 		ahd_outb(ahd, HCNTRL, ahd->unpause);
3516 		while (!ahd_is_paused(ahd))
3517 			ahd_delay(200);
3518 		ahd_update_modes(ahd);
3519 	}
3520 	if (stepping) {
3521 		ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
3522 		ahd_outb(ahd, SIMODE0, simode0);
3523 		ahd_outb(ahd, SIMODE3, simode3);
3524 		ahd_outb(ahd, LQIMODE0, lqimode0);
3525 		ahd_outb(ahd, LQIMODE1, lqimode1);
3526 		ahd_outb(ahd, LQOMODE0, lqomode0);
3527 		ahd_outb(ahd, LQOMODE1, lqomode1);
3528 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
3529 		ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP);
3530   		ahd_outb(ahd, SIMODE1, simode1);
3531 		/*
3532 		 * SCSIINT seems to glitch occasionally when
3533 		 * the interrupt masks are restored.  Clear SCSIINT
3534 		 * one more time so that only persistent errors
3535 		 * are seen as a real interrupt.
3536 		 */
3537 		ahd_outb(ahd, CLRINT, CLRSCSIINT);
3538 	}
3539 	ahd_restore_modes(ahd, saved_modes);
3540 }
3541 
3542 /*
3543  * Clear any pending interrupt status.
3544  */
3545 static void
3546 ahd_clear_intstat(struct ahd_softc *ahd)
3547 {
3548 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
3549 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
3550 	/* Clear any interrupt conditions this may have caused */
3551 	ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2
3552 				 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD);
3553 	ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT
3554 				 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI
3555 				 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ);
3556 	ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ
3557 				 |CLRLQOATNPKT|CLRLQOTCRC);
3558 	ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS
3559 				 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT);
3560 	if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) {
3561 		ahd_outb(ahd, CLRLQOINT0, 0);
3562 		ahd_outb(ahd, CLRLQOINT1, 0);
3563 	}
3564 	ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR);
3565 	ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI
3566 				|CLRBUSFREE|CLRSCSIPERR|CLRREQINIT);
3567 	ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO
3568 			        |CLRIOERR|CLROVERRUN);
3569 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
3570 }
3571 
3572 /**************************** Debugging Routines ******************************/
3573 #ifdef AHD_DEBUG
3574 uint32_t ahd_debug = AHD_DEBUG_OPTS;
3575 #endif
3576 
3577 #if 0
3578 void
3579 ahd_print_scb(struct scb *scb)
3580 {
3581 	struct hardware_scb *hscb;
3582 	int i;
3583 
3584 	hscb = scb->hscb;
3585 	printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n",
3586 	       (void *)scb,
3587 	       hscb->control,
3588 	       hscb->scsiid,
3589 	       hscb->lun,
3590 	       hscb->cdb_len);
3591 	printk("Shared Data: ");
3592 	for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++)
3593 		printk("%#02x", hscb->shared_data.idata.cdb[i]);
3594 	printk("        dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n",
3595 	       (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF),
3596 	       (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF),
3597 	       ahd_le32toh(hscb->datacnt),
3598 	       ahd_le32toh(hscb->sgptr),
3599 	       SCB_GET_TAG(scb));
3600 	ahd_dump_sglist(scb);
3601 }
3602 #endif  /*  0  */
3603 
3604 /************************* Transfer Negotiation *******************************/
3605 /*
3606  * Allocate per target mode instance (ID we respond to as a target)
3607  * transfer negotiation data structures.
3608  */
3609 static struct ahd_tmode_tstate *
3610 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel)
3611 {
3612 	struct ahd_tmode_tstate *master_tstate;
3613 	struct ahd_tmode_tstate *tstate;
3614 	int i;
3615 
3616 	master_tstate = ahd->enabled_targets[ahd->our_id];
3617 	if (ahd->enabled_targets[scsi_id] != NULL
3618 	 && ahd->enabled_targets[scsi_id] != master_tstate)
3619 		panic("%s: ahd_alloc_tstate - Target already allocated",
3620 		      ahd_name(ahd));
3621 	tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC);
3622 	if (tstate == NULL)
3623 		return (NULL);
3624 
3625 	/*
3626 	 * If we have allocated a master tstate, copy user settings from
3627 	 * the master tstate (taken from SRAM or the EEPROM) for this
3628 	 * channel, but reset our current and goal settings to async/narrow
3629 	 * until an initiator talks to us.
3630 	 */
3631 	if (master_tstate != NULL) {
3632 		memcpy(tstate, master_tstate, sizeof(*tstate));
3633 		memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns));
3634 		for (i = 0; i < 16; i++) {
3635 			memset(&tstate->transinfo[i].curr, 0,
3636 			      sizeof(tstate->transinfo[i].curr));
3637 			memset(&tstate->transinfo[i].goal, 0,
3638 			      sizeof(tstate->transinfo[i].goal));
3639 		}
3640 	} else
3641 		memset(tstate, 0, sizeof(*tstate));
3642 	ahd->enabled_targets[scsi_id] = tstate;
3643 	return (tstate);
3644 }
3645 
3646 #ifdef AHD_TARGET_MODE
3647 /*
3648  * Free per target mode instance (ID we respond to as a target)
3649  * transfer negotiation data structures.
3650  */
3651 static void
3652 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force)
3653 {
3654 	struct ahd_tmode_tstate *tstate;
3655 
3656 	/*
3657 	 * Don't clean up our "master" tstate.
3658 	 * It has our default user settings.
3659 	 */
3660 	if (scsi_id == ahd->our_id
3661 	 && force == FALSE)
3662 		return;
3663 
3664 	tstate = ahd->enabled_targets[scsi_id];
3665 	kfree(tstate);
3666 	ahd->enabled_targets[scsi_id] = NULL;
3667 }
3668 #endif
3669 
3670 /*
3671  * Called when we have an active connection to a target on the bus,
3672  * this function finds the nearest period to the input period limited
3673  * by the capabilities of the bus connectivity of and sync settings for
3674  * the target.
3675  */
3676 static void
3677 ahd_devlimited_syncrate(struct ahd_softc *ahd,
3678 			struct ahd_initiator_tinfo *tinfo,
3679 			u_int *period, u_int *ppr_options, role_t role)
3680 {
3681 	struct	ahd_transinfo *transinfo;
3682 	u_int	maxsync;
3683 
3684 	if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0
3685 	 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) {
3686 		maxsync = AHD_SYNCRATE_PACED;
3687 	} else {
3688 		maxsync = AHD_SYNCRATE_ULTRA;
3689 		/* Can't do DT related options on an SE bus */
3690 		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3691 	}
3692 	/*
3693 	 * Never allow a value higher than our current goal
3694 	 * period otherwise we may allow a target initiated
3695 	 * negotiation to go above the limit as set by the
3696 	 * user.  In the case of an initiator initiated
3697 	 * sync negotiation, we limit based on the user
3698 	 * setting.  This allows the system to still accept
3699 	 * incoming negotiations even if target initiated
3700 	 * negotiation is not performed.
3701 	 */
3702 	if (role == ROLE_TARGET)
3703 		transinfo = &tinfo->user;
3704 	else
3705 		transinfo = &tinfo->goal;
3706 	*ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN);
3707 	if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) {
3708 		maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2);
3709 		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3710 	}
3711 	if (transinfo->period == 0) {
3712 		*period = 0;
3713 		*ppr_options = 0;
3714 	} else {
3715 		*period = max(*period, (u_int)transinfo->period);
3716 		ahd_find_syncrate(ahd, period, ppr_options, maxsync);
3717 	}
3718 }
3719 
3720 /*
3721  * Look up the valid period to SCSIRATE conversion in our table.
3722  * Return the period and offset that should be sent to the target
3723  * if this was the beginning of an SDTR.
3724  */
3725 void
3726 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period,
3727 		  u_int *ppr_options, u_int maxsync)
3728 {
3729 	if (*period < maxsync)
3730 		*period = maxsync;
3731 
3732 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0
3733 	 && *period > AHD_SYNCRATE_MIN_DT)
3734 		*ppr_options &= ~MSG_EXT_PPR_DT_REQ;
3735 
3736 	if (*period > AHD_SYNCRATE_MIN)
3737 		*period = 0;
3738 
3739 	/* Honor PPR option conformance rules. */
3740 	if (*period > AHD_SYNCRATE_PACED)
3741 		*ppr_options &= ~MSG_EXT_PPR_RTI;
3742 
3743 	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
3744 		*ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ);
3745 
3746 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0)
3747 		*ppr_options &= MSG_EXT_PPR_QAS_REQ;
3748 
3749 	/* Skip all PACED only entries if IU is not available */
3750 	if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0
3751 	 && *period < AHD_SYNCRATE_DT)
3752 		*period = AHD_SYNCRATE_DT;
3753 
3754 	/* Skip all DT only entries if DT is not available */
3755 	if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0
3756 	 && *period < AHD_SYNCRATE_ULTRA2)
3757 		*period = AHD_SYNCRATE_ULTRA2;
3758 }
3759 
3760 /*
3761  * Truncate the given synchronous offset to a value the
3762  * current adapter type and syncrate are capable of.
3763  */
3764 static void
3765 ahd_validate_offset(struct ahd_softc *ahd,
3766 		    struct ahd_initiator_tinfo *tinfo,
3767 		    u_int period, u_int *offset, int wide,
3768 		    role_t role)
3769 {
3770 	u_int maxoffset;
3771 
3772 	/* Limit offset to what we can do */
3773 	if (period == 0)
3774 		maxoffset = 0;
3775 	else if (period <= AHD_SYNCRATE_PACED) {
3776 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0)
3777 			maxoffset = MAX_OFFSET_PACED_BUG;
3778 		else
3779 			maxoffset = MAX_OFFSET_PACED;
3780 	} else
3781 		maxoffset = MAX_OFFSET_NON_PACED;
3782 	*offset = min(*offset, maxoffset);
3783 	if (tinfo != NULL) {
3784 		if (role == ROLE_TARGET)
3785 			*offset = min(*offset, (u_int)tinfo->user.offset);
3786 		else
3787 			*offset = min(*offset, (u_int)tinfo->goal.offset);
3788 	}
3789 }
3790 
3791 /*
3792  * Truncate the given transfer width parameter to a value the
3793  * current adapter type is capable of.
3794  */
3795 static void
3796 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo,
3797 		   u_int *bus_width, role_t role)
3798 {
3799 	switch (*bus_width) {
3800 	default:
3801 		if (ahd->features & AHD_WIDE) {
3802 			/* Respond Wide */
3803 			*bus_width = MSG_EXT_WDTR_BUS_16_BIT;
3804 			break;
3805 		}
3806 		/* FALLTHROUGH */
3807 	case MSG_EXT_WDTR_BUS_8_BIT:
3808 		*bus_width = MSG_EXT_WDTR_BUS_8_BIT;
3809 		break;
3810 	}
3811 	if (tinfo != NULL) {
3812 		if (role == ROLE_TARGET)
3813 			*bus_width = min((u_int)tinfo->user.width, *bus_width);
3814 		else
3815 			*bus_width = min((u_int)tinfo->goal.width, *bus_width);
3816 	}
3817 }
3818 
3819 /*
3820  * Update the bitmask of targets for which the controller should
3821  * negotiate with at the next convenient opportunity.  This currently
3822  * means the next time we send the initial identify messages for
3823  * a new transaction.
3824  */
3825 int
3826 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3827 		       struct ahd_tmode_tstate *tstate,
3828 		       struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type)
3829 {
3830 	u_int auto_negotiate_orig;
3831 
3832 	auto_negotiate_orig = tstate->auto_negotiate;
3833 	if (neg_type == AHD_NEG_ALWAYS) {
3834 		/*
3835 		 * Force our "current" settings to be
3836 		 * unknown so that unless a bus reset
3837 		 * occurs the need to renegotiate is
3838 		 * recorded persistently.
3839 		 */
3840 		if ((ahd->features & AHD_WIDE) != 0)
3841 			tinfo->curr.width = AHD_WIDTH_UNKNOWN;
3842 		tinfo->curr.period = AHD_PERIOD_UNKNOWN;
3843 		tinfo->curr.offset = AHD_OFFSET_UNKNOWN;
3844 	}
3845 	if (tinfo->curr.period != tinfo->goal.period
3846 	 || tinfo->curr.width != tinfo->goal.width
3847 	 || tinfo->curr.offset != tinfo->goal.offset
3848 	 || tinfo->curr.ppr_options != tinfo->goal.ppr_options
3849 	 || (neg_type == AHD_NEG_IF_NON_ASYNC
3850 	  && (tinfo->goal.offset != 0
3851 	   || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT
3852 	   || tinfo->goal.ppr_options != 0)))
3853 		tstate->auto_negotiate |= devinfo->target_mask;
3854 	else
3855 		tstate->auto_negotiate &= ~devinfo->target_mask;
3856 
3857 	return (auto_negotiate_orig != tstate->auto_negotiate);
3858 }
3859 
3860 /*
3861  * Update the user/goal/curr tables of synchronous negotiation
3862  * parameters as well as, in the case of a current or active update,
3863  * any data structures on the host controller.  In the case of an
3864  * active update, the specified target is currently talking to us on
3865  * the bus, so the transfer parameter update must take effect
3866  * immediately.
3867  */
3868 void
3869 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
3870 		 u_int period, u_int offset, u_int ppr_options,
3871 		 u_int type, int paused)
3872 {
3873 	struct	ahd_initiator_tinfo *tinfo;
3874 	struct	ahd_tmode_tstate *tstate;
3875 	u_int	old_period;
3876 	u_int	old_offset;
3877 	u_int	old_ppr;
3878 	int	active;
3879 	int	update_needed;
3880 
3881 	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
3882 	update_needed = 0;
3883 
3884 	if (period == 0 || offset == 0) {
3885 		period = 0;
3886 		offset = 0;
3887 	}
3888 
3889 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
3890 				    devinfo->target, &tstate);
3891 
3892 	if ((type & AHD_TRANS_USER) != 0) {
3893 		tinfo->user.period = period;
3894 		tinfo->user.offset = offset;
3895 		tinfo->user.ppr_options = ppr_options;
3896 	}
3897 
3898 	if ((type & AHD_TRANS_GOAL) != 0) {
3899 		tinfo->goal.period = period;
3900 		tinfo->goal.offset = offset;
3901 		tinfo->goal.ppr_options = ppr_options;
3902 	}
3903 
3904 	old_period = tinfo->curr.period;
3905 	old_offset = tinfo->curr.offset;
3906 	old_ppr	   = tinfo->curr.ppr_options;
3907 
3908 	if ((type & AHD_TRANS_CUR) != 0
3909 	 && (old_period != period
3910 	  || old_offset != offset
3911 	  || old_ppr != ppr_options)) {
3912 
3913 		update_needed++;
3914 
3915 		tinfo->curr.period = period;
3916 		tinfo->curr.offset = offset;
3917 		tinfo->curr.ppr_options = ppr_options;
3918 
3919 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
3920 			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
3921 		if (bootverbose) {
3922 			if (offset != 0) {
3923 				int options;
3924 
3925 				printk("%s: target %d synchronous with "
3926 				       "period = 0x%x, offset = 0x%x",
3927 				       ahd_name(ahd), devinfo->target,
3928 				       period, offset);
3929 				options = 0;
3930 				if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) {
3931 					printk("(RDSTRM");
3932 					options++;
3933 				}
3934 				if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) {
3935 					printk("%s", options ? "|DT" : "(DT");
3936 					options++;
3937 				}
3938 				if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) {
3939 					printk("%s", options ? "|IU" : "(IU");
3940 					options++;
3941 				}
3942 				if ((ppr_options & MSG_EXT_PPR_RTI) != 0) {
3943 					printk("%s", options ? "|RTI" : "(RTI");
3944 					options++;
3945 				}
3946 				if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) {
3947 					printk("%s", options ? "|QAS" : "(QAS");
3948 					options++;
3949 				}
3950 				if (options != 0)
3951 					printk(")\n");
3952 				else
3953 					printk("\n");
3954 			} else {
3955 				printk("%s: target %d using "
3956 				       "asynchronous transfers%s\n",
3957 				       ahd_name(ahd), devinfo->target,
3958 				       (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0
3959 				     ?  "(QAS)" : "");
3960 			}
3961 		}
3962 	}
3963 	/*
3964 	 * Always refresh the neg-table to handle the case of the
3965 	 * sequencer setting the ENATNO bit for a MK_MESSAGE request.
3966 	 * We will always renegotiate in that case if this is a
3967 	 * packetized request.  Also manage the busfree expected flag
3968 	 * from this common routine so that we catch changes due to
3969 	 * WDTR or SDTR messages.
3970 	 */
3971 	if ((type & AHD_TRANS_CUR) != 0) {
3972 		if (!paused)
3973 			ahd_pause(ahd);
3974 		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
3975 		if (!paused)
3976 			ahd_unpause(ahd);
3977 		if (ahd->msg_type != MSG_TYPE_NONE) {
3978 			if ((old_ppr & MSG_EXT_PPR_IU_REQ)
3979 			 != (ppr_options & MSG_EXT_PPR_IU_REQ)) {
3980 #ifdef AHD_DEBUG
3981 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
3982 					ahd_print_devinfo(ahd, devinfo);
3983 					printk("Expecting IU Change busfree\n");
3984 				}
3985 #endif
3986 				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
3987 					       |  MSG_FLAG_IU_REQ_CHANGED;
3988 			}
3989 			if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) {
3990 #ifdef AHD_DEBUG
3991 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
3992 					printk("PPR with IU_REQ outstanding\n");
3993 #endif
3994 				ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE;
3995 			}
3996 		}
3997 	}
3998 
3999 	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4000 						tinfo, AHD_NEG_TO_GOAL);
4001 
4002 	if (update_needed && active)
4003 		ahd_update_pending_scbs(ahd);
4004 }
4005 
4006 /*
4007  * Update the user/goal/curr tables of wide negotiation
4008  * parameters as well as, in the case of a current or active update,
4009  * any data structures on the host controller.  In the case of an
4010  * active update, the specified target is currently talking to us on
4011  * the bus, so the transfer parameter update must take effect
4012  * immediately.
4013  */
4014 void
4015 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4016 	      u_int width, u_int type, int paused)
4017 {
4018 	struct	ahd_initiator_tinfo *tinfo;
4019 	struct	ahd_tmode_tstate *tstate;
4020 	u_int	oldwidth;
4021 	int	active;
4022 	int	update_needed;
4023 
4024 	active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE;
4025 	update_needed = 0;
4026 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4027 				    devinfo->target, &tstate);
4028 
4029 	if ((type & AHD_TRANS_USER) != 0)
4030 		tinfo->user.width = width;
4031 
4032 	if ((type & AHD_TRANS_GOAL) != 0)
4033 		tinfo->goal.width = width;
4034 
4035 	oldwidth = tinfo->curr.width;
4036 	if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) {
4037 
4038 		update_needed++;
4039 
4040 		tinfo->curr.width = width;
4041 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
4042 			       CAM_LUN_WILDCARD, AC_TRANSFER_NEG);
4043 		if (bootverbose) {
4044 			printk("%s: target %d using %dbit transfers\n",
4045 			       ahd_name(ahd), devinfo->target,
4046 			       8 * (0x01 << width));
4047 		}
4048 	}
4049 
4050 	if ((type & AHD_TRANS_CUR) != 0) {
4051 		if (!paused)
4052 			ahd_pause(ahd);
4053 		ahd_update_neg_table(ahd, devinfo, &tinfo->curr);
4054 		if (!paused)
4055 			ahd_unpause(ahd);
4056 	}
4057 
4058 	update_needed += ahd_update_neg_request(ahd, devinfo, tstate,
4059 						tinfo, AHD_NEG_TO_GOAL);
4060 	if (update_needed && active)
4061 		ahd_update_pending_scbs(ahd);
4062 
4063 }
4064 
4065 /*
4066  * Update the current state of tagged queuing for a given target.
4067  */
4068 static void
4069 ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd,
4070 	     struct ahd_devinfo *devinfo, ahd_queue_alg alg)
4071 {
4072 	struct scsi_device *sdev = cmd->device;
4073 
4074 	ahd_platform_set_tags(ahd, sdev, devinfo, alg);
4075 	ahd_send_async(ahd, devinfo->channel, devinfo->target,
4076 		       devinfo->lun, AC_TRANSFER_NEG);
4077 }
4078 
4079 static void
4080 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4081 		     struct ahd_transinfo *tinfo)
4082 {
4083 	ahd_mode_state	saved_modes;
4084 	u_int		period;
4085 	u_int		ppr_opts;
4086 	u_int		con_opts;
4087 	u_int		offset;
4088 	u_int		saved_negoaddr;
4089 	uint8_t		iocell_opts[sizeof(ahd->iocell_opts)];
4090 
4091 	saved_modes = ahd_save_modes(ahd);
4092 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4093 
4094 	saved_negoaddr = ahd_inb(ahd, NEGOADDR);
4095 	ahd_outb(ahd, NEGOADDR, devinfo->target);
4096 	period = tinfo->period;
4097 	offset = tinfo->offset;
4098 	memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts));
4099 	ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ
4100 					|MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI);
4101 	con_opts = 0;
4102 	if (period == 0)
4103 		period = AHD_SYNCRATE_ASYNC;
4104 	if (period == AHD_SYNCRATE_160) {
4105 
4106 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4107 			/*
4108 			 * When the SPI4 spec was finalized, PACE transfers
4109 			 * was not made a configurable option in the PPR
4110 			 * message.  Instead it is assumed to be enabled for
4111 			 * any syncrate faster than 80MHz.  Nevertheless,
4112 			 * Harpoon2A4 allows this to be configurable.
4113 			 *
4114 			 * Harpoon2A4 also assumes at most 2 data bytes per
4115 			 * negotiated REQ/ACK offset.  Paced transfers take
4116 			 * 4, so we must adjust our offset.
4117 			 */
4118 			ppr_opts |= PPROPT_PACE;
4119 			offset *= 2;
4120 
4121 			/*
4122 			 * Harpoon2A assumed that there would be a
4123 			 * fallback rate between 160MHz and 80MHz,
4124 			 * so 7 is used as the period factor rather
4125 			 * than 8 for 160MHz.
4126 			 */
4127 			period = AHD_SYNCRATE_REVA_160;
4128 		}
4129 		if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0)
4130 			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4131 			    ~AHD_PRECOMP_MASK;
4132 	} else {
4133 		/*
4134 		 * Precomp should be disabled for non-paced transfers.
4135 		 */
4136 		iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK;
4137 
4138 		if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0
4139 		 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0
4140 		 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) {
4141 			/*
4142 			 * Slow down our CRC interval to be
4143 			 * compatible with non-packetized
4144 			 * U160 devices that can't handle a
4145 			 * CRC at full speed.
4146 			 */
4147 			con_opts |= ENSLOWCRC;
4148 		}
4149 
4150 		if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) {
4151 			/*
4152 			 * On H2A4, revert to a slower slewrate
4153 			 * on non-paced transfers.
4154 			 */
4155 			iocell_opts[AHD_PRECOMP_SLEW_INDEX] &=
4156 			    ~AHD_SLEWRATE_MASK;
4157 		}
4158 	}
4159 
4160 	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW);
4161 	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]);
4162 	ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE);
4163 	ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]);
4164 
4165 	ahd_outb(ahd, NEGPERIOD, period);
4166 	ahd_outb(ahd, NEGPPROPTS, ppr_opts);
4167 	ahd_outb(ahd, NEGOFFSET, offset);
4168 
4169 	if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT)
4170 		con_opts |= WIDEXFER;
4171 
4172 	/*
4173 	 * Slow down our CRC interval to be
4174 	 * compatible with packetized U320 devices
4175 	 * that can't handle a CRC at full speed
4176 	 */
4177 	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
4178 		con_opts |= ENSLOWCRC;
4179 	}
4180 
4181 	/*
4182 	 * During packetized transfers, the target will
4183 	 * give us the opportunity to send command packets
4184 	 * without us asserting attention.
4185 	 */
4186 	if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0)
4187 		con_opts |= ENAUTOATNO;
4188 	ahd_outb(ahd, NEGCONOPTS, con_opts);
4189 	ahd_outb(ahd, NEGOADDR, saved_negoaddr);
4190 	ahd_restore_modes(ahd, saved_modes);
4191 }
4192 
4193 /*
4194  * When the transfer settings for a connection change, setup for
4195  * negotiation in pending SCBs to effect the change as quickly as
4196  * possible.  We also cancel any negotiations that are scheduled
4197  * for inflight SCBs that have not been started yet.
4198  */
4199 static void
4200 ahd_update_pending_scbs(struct ahd_softc *ahd)
4201 {
4202 	struct		scb *pending_scb;
4203 	int		pending_scb_count;
4204 	int		paused;
4205 	u_int		saved_scbptr;
4206 	ahd_mode_state	saved_modes;
4207 
4208 	/*
4209 	 * Traverse the pending SCB list and ensure that all of the
4210 	 * SCBs there have the proper settings.  We can only safely
4211 	 * clear the negotiation required flag (setting requires the
4212 	 * execution queue to be modified) and this is only possible
4213 	 * if we are not already attempting to select out for this
4214 	 * SCB.  For this reason, all callers only call this routine
4215 	 * if we are changing the negotiation settings for the currently
4216 	 * active transaction on the bus.
4217 	 */
4218 	pending_scb_count = 0;
4219 	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4220 		struct ahd_devinfo devinfo;
4221 		struct ahd_initiator_tinfo *tinfo;
4222 		struct ahd_tmode_tstate *tstate;
4223 
4224 		ahd_scb_devinfo(ahd, &devinfo, pending_scb);
4225 		tinfo = ahd_fetch_transinfo(ahd, devinfo.channel,
4226 					    devinfo.our_scsiid,
4227 					    devinfo.target, &tstate);
4228 		if ((tstate->auto_negotiate & devinfo.target_mask) == 0
4229 		 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) {
4230 			pending_scb->flags &= ~SCB_AUTO_NEGOTIATE;
4231 			pending_scb->hscb->control &= ~MK_MESSAGE;
4232 		}
4233 		ahd_sync_scb(ahd, pending_scb,
4234 			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
4235 		pending_scb_count++;
4236 	}
4237 
4238 	if (pending_scb_count == 0)
4239 		return;
4240 
4241 	if (ahd_is_paused(ahd)) {
4242 		paused = 1;
4243 	} else {
4244 		paused = 0;
4245 		ahd_pause(ahd);
4246 	}
4247 
4248 	/*
4249 	 * Force the sequencer to reinitialize the selection for
4250 	 * the command at the head of the execution queue if it
4251 	 * has already been setup.  The negotiation changes may
4252 	 * effect whether we select-out with ATN.  It is only
4253 	 * safe to clear ENSELO when the bus is not free and no
4254 	 * selection is in progres or completed.
4255 	 */
4256 	saved_modes = ahd_save_modes(ahd);
4257 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4258 	if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0
4259 	 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0)
4260 		ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO);
4261 	saved_scbptr = ahd_get_scbptr(ahd);
4262 	/* Ensure that the hscbs down on the card match the new information */
4263 	LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) {
4264 		u_int	scb_tag;
4265 		u_int	control;
4266 
4267 		scb_tag = SCB_GET_TAG(pending_scb);
4268 		ahd_set_scbptr(ahd, scb_tag);
4269 		control = ahd_inb_scbram(ahd, SCB_CONTROL);
4270 		control &= ~MK_MESSAGE;
4271 		control |= pending_scb->hscb->control & MK_MESSAGE;
4272 		ahd_outb(ahd, SCB_CONTROL, control);
4273 	}
4274 	ahd_set_scbptr(ahd, saved_scbptr);
4275 	ahd_restore_modes(ahd, saved_modes);
4276 
4277 	if (paused == 0)
4278 		ahd_unpause(ahd);
4279 }
4280 
4281 /**************************** Pathing Information *****************************/
4282 static void
4283 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4284 {
4285 	ahd_mode_state	saved_modes;
4286 	u_int		saved_scsiid;
4287 	role_t		role;
4288 	int		our_id;
4289 
4290 	saved_modes = ahd_save_modes(ahd);
4291 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4292 
4293 	if (ahd_inb(ahd, SSTAT0) & TARGET)
4294 		role = ROLE_TARGET;
4295 	else
4296 		role = ROLE_INITIATOR;
4297 
4298 	if (role == ROLE_TARGET
4299 	 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) {
4300 		/* We were selected, so pull our id from TARGIDIN */
4301 		our_id = ahd_inb(ahd, TARGIDIN) & OID;
4302 	} else if (role == ROLE_TARGET)
4303 		our_id = ahd_inb(ahd, TOWNID);
4304 	else
4305 		our_id = ahd_inb(ahd, IOWNID);
4306 
4307 	saved_scsiid = ahd_inb(ahd, SAVED_SCSIID);
4308 	ahd_compile_devinfo(devinfo,
4309 			    our_id,
4310 			    SCSIID_TARGET(ahd, saved_scsiid),
4311 			    ahd_inb(ahd, SAVED_LUN),
4312 			    SCSIID_CHANNEL(ahd, saved_scsiid),
4313 			    role);
4314 	ahd_restore_modes(ahd, saved_modes);
4315 }
4316 
4317 void
4318 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4319 {
4320 	printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A',
4321 	       devinfo->target, devinfo->lun);
4322 }
4323 
4324 static const struct ahd_phase_table_entry*
4325 ahd_lookup_phase_entry(int phase)
4326 {
4327 	const struct ahd_phase_table_entry *entry;
4328 	const struct ahd_phase_table_entry *last_entry;
4329 
4330 	/*
4331 	 * num_phases doesn't include the default entry which
4332 	 * will be returned if the phase doesn't match.
4333 	 */
4334 	last_entry = &ahd_phase_table[num_phases];
4335 	for (entry = ahd_phase_table; entry < last_entry; entry++) {
4336 		if (phase == entry->phase)
4337 			break;
4338 	}
4339 	return (entry);
4340 }
4341 
4342 void
4343 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target,
4344 		    u_int lun, char channel, role_t role)
4345 {
4346 	devinfo->our_scsiid = our_id;
4347 	devinfo->target = target;
4348 	devinfo->lun = lun;
4349 	devinfo->target_offset = target;
4350 	devinfo->channel = channel;
4351 	devinfo->role = role;
4352 	if (channel == 'B')
4353 		devinfo->target_offset += 8;
4354 	devinfo->target_mask = (0x01 << devinfo->target_offset);
4355 }
4356 
4357 static void
4358 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4359 		struct scb *scb)
4360 {
4361 	role_t	role;
4362 	int	our_id;
4363 
4364 	our_id = SCSIID_OUR_ID(scb->hscb->scsiid);
4365 	role = ROLE_INITIATOR;
4366 	if ((scb->hscb->control & TARGET_SCB) != 0)
4367 		role = ROLE_TARGET;
4368 	ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb),
4369 			    SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role);
4370 }
4371 
4372 
4373 /************************ Message Phase Processing ****************************/
4374 /*
4375  * When an initiator transaction with the MK_MESSAGE flag either reconnects
4376  * or enters the initial message out phase, we are interrupted.  Fill our
4377  * outgoing message buffer with the appropriate message and beging handing
4378  * the message phase(s) manually.
4379  */
4380 static void
4381 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4382 			   struct scb *scb)
4383 {
4384 	/*
4385 	 * To facilitate adding multiple messages together,
4386 	 * each routine should increment the index and len
4387 	 * variables instead of setting them explicitly.
4388 	 */
4389 	ahd->msgout_index = 0;
4390 	ahd->msgout_len = 0;
4391 
4392 	if (ahd_currently_packetized(ahd))
4393 		ahd->msg_flags |= MSG_FLAG_PACKETIZED;
4394 
4395 	if (ahd->send_msg_perror
4396 	 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) {
4397 		ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror;
4398 		ahd->msgout_len++;
4399 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4400 #ifdef AHD_DEBUG
4401 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4402 			printk("Setting up for Parity Error delivery\n");
4403 #endif
4404 		return;
4405 	} else if (scb == NULL) {
4406 		printk("%s: WARNING. No pending message for "
4407 		       "I_T msgin.  Issuing NO-OP\n", ahd_name(ahd));
4408 		ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP;
4409 		ahd->msgout_len++;
4410 		ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4411 		return;
4412 	}
4413 
4414 	if ((scb->flags & SCB_DEVICE_RESET) == 0
4415 	 && (scb->flags & SCB_PACKETIZED) == 0
4416 	 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) {
4417 		u_int identify_msg;
4418 
4419 		identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb);
4420 		if ((scb->hscb->control & DISCENB) != 0)
4421 			identify_msg |= MSG_IDENTIFY_DISCFLAG;
4422 		ahd->msgout_buf[ahd->msgout_index++] = identify_msg;
4423 		ahd->msgout_len++;
4424 
4425 		if ((scb->hscb->control & TAG_ENB) != 0) {
4426 			ahd->msgout_buf[ahd->msgout_index++] =
4427 			    scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE);
4428 			ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb);
4429 			ahd->msgout_len += 2;
4430 		}
4431 	}
4432 
4433 	if (scb->flags & SCB_DEVICE_RESET) {
4434 		ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET;
4435 		ahd->msgout_len++;
4436 		ahd_print_path(ahd, scb);
4437 		printk("Bus Device Reset Message Sent\n");
4438 		/*
4439 		 * Clear our selection hardware in advance of
4440 		 * the busfree.  We may have an entry in the waiting
4441 		 * Q for this target, and we don't want to go about
4442 		 * selecting while we handle the busfree and blow it
4443 		 * away.
4444 		 */
4445 		ahd_outb(ahd, SCSISEQ0, 0);
4446 	} else if ((scb->flags & SCB_ABORT) != 0) {
4447 
4448 		if ((scb->hscb->control & TAG_ENB) != 0) {
4449 			ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG;
4450 		} else {
4451 			ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT;
4452 		}
4453 		ahd->msgout_len++;
4454 		ahd_print_path(ahd, scb);
4455 		printk("Abort%s Message Sent\n",
4456 		       (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : "");
4457 		/*
4458 		 * Clear our selection hardware in advance of
4459 		 * the busfree.  We may have an entry in the waiting
4460 		 * Q for this target, and we don't want to go about
4461 		 * selecting while we handle the busfree and blow it
4462 		 * away.
4463 		 */
4464 		ahd_outb(ahd, SCSISEQ0, 0);
4465 	} else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) {
4466 		ahd_build_transfer_msg(ahd, devinfo);
4467 		/*
4468 		 * Clear our selection hardware in advance of potential
4469 		 * PPR IU status change busfree.  We may have an entry in
4470 		 * the waiting Q for this target, and we don't want to go
4471 		 * about selecting while we handle the busfree and blow
4472 		 * it away.
4473 		 */
4474 		ahd_outb(ahd, SCSISEQ0, 0);
4475 	} else {
4476 		printk("ahd_intr: AWAITING_MSG for an SCB that "
4477 		       "does not have a waiting message\n");
4478 		printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid,
4479 		       devinfo->target_mask);
4480 		panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x "
4481 		      "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control,
4482 		      ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT),
4483 		      scb->flags);
4484 	}
4485 
4486 	/*
4487 	 * Clear the MK_MESSAGE flag from the SCB so we aren't
4488 	 * asked to send this message again.
4489 	 */
4490 	ahd_outb(ahd, SCB_CONTROL,
4491 		 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE);
4492 	scb->hscb->control &= ~MK_MESSAGE;
4493 	ahd->msgout_index = 0;
4494 	ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4495 }
4496 
4497 /*
4498  * Build an appropriate transfer negotiation message for the
4499  * currently active target.
4500  */
4501 static void
4502 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
4503 {
4504 	/*
4505 	 * We need to initiate transfer negotiations.
4506 	 * If our current and goal settings are identical,
4507 	 * we want to renegotiate due to a check condition.
4508 	 */
4509 	struct	ahd_initiator_tinfo *tinfo;
4510 	struct	ahd_tmode_tstate *tstate;
4511 	int	dowide;
4512 	int	dosync;
4513 	int	doppr;
4514 	u_int	period;
4515 	u_int	ppr_options;
4516 	u_int	offset;
4517 
4518 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
4519 				    devinfo->target, &tstate);
4520 	/*
4521 	 * Filter our period based on the current connection.
4522 	 * If we can't perform DT transfers on this segment (not in LVD
4523 	 * mode for instance), then our decision to issue a PPR message
4524 	 * may change.
4525 	 */
4526 	period = tinfo->goal.period;
4527 	offset = tinfo->goal.offset;
4528 	ppr_options = tinfo->goal.ppr_options;
4529 	/* Target initiated PPR is not allowed in the SCSI spec */
4530 	if (devinfo->role == ROLE_TARGET)
4531 		ppr_options = 0;
4532 	ahd_devlimited_syncrate(ahd, tinfo, &period,
4533 				&ppr_options, devinfo->role);
4534 	dowide = tinfo->curr.width != tinfo->goal.width;
4535 	dosync = tinfo->curr.offset != offset || tinfo->curr.period != period;
4536 	/*
4537 	 * Only use PPR if we have options that need it, even if the device
4538 	 * claims to support it.  There might be an expander in the way
4539 	 * that doesn't.
4540 	 */
4541 	doppr = ppr_options != 0;
4542 
4543 	if (!dowide && !dosync && !doppr) {
4544 		dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT;
4545 		dosync = tinfo->goal.offset != 0;
4546 	}
4547 
4548 	if (!dowide && !dosync && !doppr) {
4549 		/*
4550 		 * Force async with a WDTR message if we have a wide bus,
4551 		 * or just issue an SDTR with a 0 offset.
4552 		 */
4553 		if ((ahd->features & AHD_WIDE) != 0)
4554 			dowide = 1;
4555 		else
4556 			dosync = 1;
4557 
4558 		if (bootverbose) {
4559 			ahd_print_devinfo(ahd, devinfo);
4560 			printk("Ensuring async\n");
4561 		}
4562 	}
4563 	/* Target initiated PPR is not allowed in the SCSI spec */
4564 	if (devinfo->role == ROLE_TARGET)
4565 		doppr = 0;
4566 
4567 	/*
4568 	 * Both the PPR message and SDTR message require the
4569 	 * goal syncrate to be limited to what the target device
4570 	 * is capable of handling (based on whether an LVD->SE
4571 	 * expander is on the bus), so combine these two cases.
4572 	 * Regardless, guarantee that if we are using WDTR and SDTR
4573 	 * messages that WDTR comes first.
4574 	 */
4575 	if (doppr || (dosync && !dowide)) {
4576 
4577 		offset = tinfo->goal.offset;
4578 		ahd_validate_offset(ahd, tinfo, period, &offset,
4579 				    doppr ? tinfo->goal.width
4580 					  : tinfo->curr.width,
4581 				    devinfo->role);
4582 		if (doppr) {
4583 			ahd_construct_ppr(ahd, devinfo, period, offset,
4584 					  tinfo->goal.width, ppr_options);
4585 		} else {
4586 			ahd_construct_sdtr(ahd, devinfo, period, offset);
4587 		}
4588 	} else {
4589 		ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width);
4590 	}
4591 }
4592 
4593 /*
4594  * Build a synchronous negotiation message in our message
4595  * buffer based on the input parameters.
4596  */
4597 static void
4598 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4599 		   u_int period, u_int offset)
4600 {
4601 	if (offset == 0)
4602 		period = AHD_ASYNC_XFER_PERIOD;
4603 	ahd->msgout_index += spi_populate_sync_msg(
4604 			ahd->msgout_buf + ahd->msgout_index, period, offset);
4605 	ahd->msgout_len += 5;
4606 	if (bootverbose) {
4607 		printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n",
4608 		       ahd_name(ahd), devinfo->channel, devinfo->target,
4609 		       devinfo->lun, period, offset);
4610 	}
4611 }
4612 
4613 /*
4614  * Build a wide negotiateion message in our message
4615  * buffer based on the input parameters.
4616  */
4617 static void
4618 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4619 		   u_int bus_width)
4620 {
4621 	ahd->msgout_index += spi_populate_width_msg(
4622 			ahd->msgout_buf + ahd->msgout_index, bus_width);
4623 	ahd->msgout_len += 4;
4624 	if (bootverbose) {
4625 		printk("(%s:%c:%d:%d): Sending WDTR %x\n",
4626 		       ahd_name(ahd), devinfo->channel, devinfo->target,
4627 		       devinfo->lun, bus_width);
4628 	}
4629 }
4630 
4631 /*
4632  * Build a parallel protocol request message in our message
4633  * buffer based on the input parameters.
4634  */
4635 static void
4636 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
4637 		  u_int period, u_int offset, u_int bus_width,
4638 		  u_int ppr_options)
4639 {
4640 	/*
4641 	 * Always request precompensation from
4642 	 * the other target if we are running
4643 	 * at paced syncrates.
4644 	 */
4645 	if (period <= AHD_SYNCRATE_PACED)
4646 		ppr_options |= MSG_EXT_PPR_PCOMP_EN;
4647 	if (offset == 0)
4648 		period = AHD_ASYNC_XFER_PERIOD;
4649 	ahd->msgout_index += spi_populate_ppr_msg(
4650 			ahd->msgout_buf + ahd->msgout_index, period, offset,
4651 			bus_width, ppr_options);
4652 	ahd->msgout_len += 8;
4653 	if (bootverbose) {
4654 		printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, "
4655 		       "offset %x, ppr_options %x\n", ahd_name(ahd),
4656 		       devinfo->channel, devinfo->target, devinfo->lun,
4657 		       bus_width, period, offset, ppr_options);
4658 	}
4659 }
4660 
4661 /*
4662  * Clear any active message state.
4663  */
4664 static void
4665 ahd_clear_msg_state(struct ahd_softc *ahd)
4666 {
4667 	ahd_mode_state saved_modes;
4668 
4669 	saved_modes = ahd_save_modes(ahd);
4670 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
4671 	ahd->send_msg_perror = 0;
4672 	ahd->msg_flags = MSG_FLAG_NONE;
4673 	ahd->msgout_len = 0;
4674 	ahd->msgin_index = 0;
4675 	ahd->msg_type = MSG_TYPE_NONE;
4676 	if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) {
4677 		/*
4678 		 * The target didn't care to respond to our
4679 		 * message request, so clear ATN.
4680 		 */
4681 		ahd_outb(ahd, CLRSINT1, CLRATNO);
4682 	}
4683 	ahd_outb(ahd, MSG_OUT, MSG_NOOP);
4684 	ahd_outb(ahd, SEQ_FLAGS2,
4685 		 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING);
4686 	ahd_restore_modes(ahd, saved_modes);
4687 }
4688 
4689 /*
4690  * Manual message loop handler.
4691  */
4692 static void
4693 ahd_handle_message_phase(struct ahd_softc *ahd)
4694 {
4695 	struct	ahd_devinfo devinfo;
4696 	u_int	bus_phase;
4697 	int	end_session;
4698 
4699 	ahd_fetch_devinfo(ahd, &devinfo);
4700 	end_session = FALSE;
4701 	bus_phase = ahd_inb(ahd, LASTPHASE);
4702 
4703 	if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) {
4704 		printk("LQIRETRY for LQIPHASE_OUTPKT\n");
4705 		ahd_outb(ahd, LQCTL2, LQIRETRY);
4706 	}
4707 reswitch:
4708 	switch (ahd->msg_type) {
4709 	case MSG_TYPE_INITIATOR_MSGOUT:
4710 	{
4711 		int lastbyte;
4712 		int phasemis;
4713 		int msgdone;
4714 
4715 		if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0)
4716 			panic("HOST_MSG_LOOP interrupt with no active message");
4717 
4718 #ifdef AHD_DEBUG
4719 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4720 			ahd_print_devinfo(ahd, &devinfo);
4721 			printk("INITIATOR_MSG_OUT");
4722 		}
4723 #endif
4724 		phasemis = bus_phase != P_MESGOUT;
4725 		if (phasemis) {
4726 #ifdef AHD_DEBUG
4727 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4728 				printk(" PHASEMIS %s\n",
4729 				       ahd_lookup_phase_entry(bus_phase)
4730 							     ->phasemsg);
4731 			}
4732 #endif
4733 			if (bus_phase == P_MESGIN) {
4734 				/*
4735 				 * Change gears and see if
4736 				 * this messages is of interest to
4737 				 * us or should be passed back to
4738 				 * the sequencer.
4739 				 */
4740 				ahd_outb(ahd, CLRSINT1, CLRATNO);
4741 				ahd->send_msg_perror = 0;
4742 				ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN;
4743 				ahd->msgin_index = 0;
4744 				goto reswitch;
4745 			}
4746 			end_session = TRUE;
4747 			break;
4748 		}
4749 
4750 		if (ahd->send_msg_perror) {
4751 			ahd_outb(ahd, CLRSINT1, CLRATNO);
4752 			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4753 #ifdef AHD_DEBUG
4754 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4755 				printk(" byte 0x%x\n", ahd->send_msg_perror);
4756 #endif
4757 			/*
4758 			 * If we are notifying the target of a CRC error
4759 			 * during packetized operations, the target is
4760 			 * within its rights to acknowledge our message
4761 			 * with a busfree.
4762 			 */
4763 			if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0
4764 			 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR)
4765 				ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE;
4766 
4767 			ahd_outb(ahd, RETURN_2, ahd->send_msg_perror);
4768 			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4769 			break;
4770 		}
4771 
4772 		msgdone	= ahd->msgout_index == ahd->msgout_len;
4773 		if (msgdone) {
4774 			/*
4775 			 * The target has requested a retry.
4776 			 * Re-assert ATN, reset our message index to
4777 			 * 0, and try again.
4778 			 */
4779 			ahd->msgout_index = 0;
4780 			ahd_assert_atn(ahd);
4781 		}
4782 
4783 		lastbyte = ahd->msgout_index == (ahd->msgout_len - 1);
4784 		if (lastbyte) {
4785 			/* Last byte is signified by dropping ATN */
4786 			ahd_outb(ahd, CLRSINT1, CLRATNO);
4787 		}
4788 
4789 		/*
4790 		 * Clear our interrupt status and present
4791 		 * the next byte on the bus.
4792 		 */
4793 		ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4794 #ifdef AHD_DEBUG
4795 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4796 			printk(" byte 0x%x\n",
4797 			       ahd->msgout_buf[ahd->msgout_index]);
4798 #endif
4799 		ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]);
4800 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE);
4801 		break;
4802 	}
4803 	case MSG_TYPE_INITIATOR_MSGIN:
4804 	{
4805 		int phasemis;
4806 		int message_done;
4807 
4808 #ifdef AHD_DEBUG
4809 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4810 			ahd_print_devinfo(ahd, &devinfo);
4811 			printk("INITIATOR_MSG_IN");
4812 		}
4813 #endif
4814 		phasemis = bus_phase != P_MESGIN;
4815 		if (phasemis) {
4816 #ifdef AHD_DEBUG
4817 			if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4818 				printk(" PHASEMIS %s\n",
4819 				       ahd_lookup_phase_entry(bus_phase)
4820 							     ->phasemsg);
4821 			}
4822 #endif
4823 			ahd->msgin_index = 0;
4824 			if (bus_phase == P_MESGOUT
4825 			 && (ahd->send_msg_perror != 0
4826 			  || (ahd->msgout_len != 0
4827 			   && ahd->msgout_index == 0))) {
4828 				ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT;
4829 				goto reswitch;
4830 			}
4831 			end_session = TRUE;
4832 			break;
4833 		}
4834 
4835 		/* Pull the byte in without acking it */
4836 		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS);
4837 #ifdef AHD_DEBUG
4838 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
4839 			printk(" byte 0x%x\n",
4840 			       ahd->msgin_buf[ahd->msgin_index]);
4841 #endif
4842 
4843 		message_done = ahd_parse_msg(ahd, &devinfo);
4844 
4845 		if (message_done) {
4846 			/*
4847 			 * Clear our incoming message buffer in case there
4848 			 * is another message following this one.
4849 			 */
4850 			ahd->msgin_index = 0;
4851 
4852 			/*
4853 			 * If this message illicited a response,
4854 			 * assert ATN so the target takes us to the
4855 			 * message out phase.
4856 			 */
4857 			if (ahd->msgout_len != 0) {
4858 #ifdef AHD_DEBUG
4859 				if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) {
4860 					ahd_print_devinfo(ahd, &devinfo);
4861 					printk("Asserting ATN for response\n");
4862 				}
4863 #endif
4864 				ahd_assert_atn(ahd);
4865 			}
4866 		} else
4867 			ahd->msgin_index++;
4868 
4869 		if (message_done == MSGLOOP_TERMINATED) {
4870 			end_session = TRUE;
4871 		} else {
4872 			/* Ack the byte */
4873 			ahd_outb(ahd, CLRSINT1, CLRREQINIT);
4874 			ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ);
4875 		}
4876 		break;
4877 	}
4878 	case MSG_TYPE_TARGET_MSGIN:
4879 	{
4880 		int msgdone;
4881 		int msgout_request;
4882 
4883 		/*
4884 		 * By default, the message loop will continue.
4885 		 */
4886 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4887 
4888 		if (ahd->msgout_len == 0)
4889 			panic("Target MSGIN with no active message");
4890 
4891 		/*
4892 		 * If we interrupted a mesgout session, the initiator
4893 		 * will not know this until our first REQ.  So, we
4894 		 * only honor mesgout requests after we've sent our
4895 		 * first byte.
4896 		 */
4897 		if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0
4898 		 && ahd->msgout_index > 0)
4899 			msgout_request = TRUE;
4900 		else
4901 			msgout_request = FALSE;
4902 
4903 		if (msgout_request) {
4904 
4905 			/*
4906 			 * Change gears and see if
4907 			 * this messages is of interest to
4908 			 * us or should be passed back to
4909 			 * the sequencer.
4910 			 */
4911 			ahd->msg_type = MSG_TYPE_TARGET_MSGOUT;
4912 			ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO);
4913 			ahd->msgin_index = 0;
4914 			/* Dummy read to REQ for first byte */
4915 			ahd_inb(ahd, SCSIDAT);
4916 			ahd_outb(ahd, SXFRCTL0,
4917 				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4918 			break;
4919 		}
4920 
4921 		msgdone = ahd->msgout_index == ahd->msgout_len;
4922 		if (msgdone) {
4923 			ahd_outb(ahd, SXFRCTL0,
4924 				 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4925 			end_session = TRUE;
4926 			break;
4927 		}
4928 
4929 		/*
4930 		 * Present the next byte on the bus.
4931 		 */
4932 		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4933 		ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]);
4934 		break;
4935 	}
4936 	case MSG_TYPE_TARGET_MSGOUT:
4937 	{
4938 		int lastbyte;
4939 		int msgdone;
4940 
4941 		/*
4942 		 * By default, the message loop will continue.
4943 		 */
4944 		ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG);
4945 
4946 		/*
4947 		 * The initiator signals that this is
4948 		 * the last byte by dropping ATN.
4949 		 */
4950 		lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0;
4951 
4952 		/*
4953 		 * Read the latched byte, but turn off SPIOEN first
4954 		 * so that we don't inadvertently cause a REQ for the
4955 		 * next byte.
4956 		 */
4957 		ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN);
4958 		ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT);
4959 		msgdone = ahd_parse_msg(ahd, &devinfo);
4960 		if (msgdone == MSGLOOP_TERMINATED) {
4961 			/*
4962 			 * The message is *really* done in that it caused
4963 			 * us to go to bus free.  The sequencer has already
4964 			 * been reset at this point, so pull the ejection
4965 			 * handle.
4966 			 */
4967 			return;
4968 		}
4969 
4970 		ahd->msgin_index++;
4971 
4972 		/*
4973 		 * XXX Read spec about initiator dropping ATN too soon
4974 		 *     and use msgdone to detect it.
4975 		 */
4976 		if (msgdone == MSGLOOP_MSGCOMPLETE) {
4977 			ahd->msgin_index = 0;
4978 
4979 			/*
4980 			 * If this message illicited a response, transition
4981 			 * to the Message in phase and send it.
4982 			 */
4983 			if (ahd->msgout_len != 0) {
4984 				ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO);
4985 				ahd_outb(ahd, SXFRCTL0,
4986 					 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4987 				ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
4988 				ahd->msgin_index = 0;
4989 				break;
4990 			}
4991 		}
4992 
4993 		if (lastbyte)
4994 			end_session = TRUE;
4995 		else {
4996 			/* Ask for the next byte. */
4997 			ahd_outb(ahd, SXFRCTL0,
4998 				 ahd_inb(ahd, SXFRCTL0) | SPIOEN);
4999 		}
5000 
5001 		break;
5002 	}
5003 	default:
5004 		panic("Unknown REQINIT message type");
5005 	}
5006 
5007 	if (end_session) {
5008 		if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) {
5009 			printk("%s: Returning to Idle Loop\n",
5010 			       ahd_name(ahd));
5011 			ahd_clear_msg_state(ahd);
5012 
5013 			/*
5014 			 * Perform the equivalent of a clear_target_state.
5015 			 */
5016 			ahd_outb(ahd, LASTPHASE, P_BUSFREE);
5017 			ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT);
5018 			ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET);
5019 		} else {
5020 			ahd_clear_msg_state(ahd);
5021 			ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP);
5022 		}
5023 	}
5024 }
5025 
5026 /*
5027  * See if we sent a particular extended message to the target.
5028  * If "full" is true, return true only if the target saw the full
5029  * message.  If "full" is false, return true if the target saw at
5030  * least the first byte of the message.
5031  */
5032 static int
5033 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full)
5034 {
5035 	int found;
5036 	u_int index;
5037 
5038 	found = FALSE;
5039 	index = 0;
5040 
5041 	while (index < ahd->msgout_len) {
5042 		if (ahd->msgout_buf[index] == MSG_EXTENDED) {
5043 			u_int end_index;
5044 
5045 			end_index = index + 1 + ahd->msgout_buf[index + 1];
5046 			if (ahd->msgout_buf[index+2] == msgval
5047 			 && type == AHDMSG_EXT) {
5048 
5049 				if (full) {
5050 					if (ahd->msgout_index > end_index)
5051 						found = TRUE;
5052 				} else if (ahd->msgout_index > index)
5053 					found = TRUE;
5054 			}
5055 			index = end_index;
5056 		} else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK
5057 			&& ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) {
5058 
5059 			/* Skip tag type and tag id or residue param*/
5060 			index += 2;
5061 		} else {
5062 			/* Single byte message */
5063 			if (type == AHDMSG_1B
5064 			 && ahd->msgout_index > index
5065 			 && (ahd->msgout_buf[index] == msgval
5066 			  || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0
5067 			   && msgval == MSG_IDENTIFYFLAG)))
5068 				found = TRUE;
5069 			index++;
5070 		}
5071 
5072 		if (found)
5073 			break;
5074 	}
5075 	return (found);
5076 }
5077 
5078 /*
5079  * Wait for a complete incoming message, parse it, and respond accordingly.
5080  */
5081 static int
5082 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5083 {
5084 	struct	ahd_initiator_tinfo *tinfo;
5085 	struct	ahd_tmode_tstate *tstate;
5086 	int	reject;
5087 	int	done;
5088 	int	response;
5089 
5090 	done = MSGLOOP_IN_PROG;
5091 	response = FALSE;
5092 	reject = FALSE;
5093 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid,
5094 				    devinfo->target, &tstate);
5095 
5096 	/*
5097 	 * Parse as much of the message as is available,
5098 	 * rejecting it if we don't support it.  When
5099 	 * the entire message is available and has been
5100 	 * handled, return MSGLOOP_MSGCOMPLETE, indicating
5101 	 * that we have parsed an entire message.
5102 	 *
5103 	 * In the case of extended messages, we accept the length
5104 	 * byte outright and perform more checking once we know the
5105 	 * extended message type.
5106 	 */
5107 	switch (ahd->msgin_buf[0]) {
5108 	case MSG_DISCONNECT:
5109 	case MSG_SAVEDATAPOINTER:
5110 	case MSG_CMDCOMPLETE:
5111 	case MSG_RESTOREPOINTERS:
5112 	case MSG_IGN_WIDE_RESIDUE:
5113 		/*
5114 		 * End our message loop as these are messages
5115 		 * the sequencer handles on its own.
5116 		 */
5117 		done = MSGLOOP_TERMINATED;
5118 		break;
5119 	case MSG_MESSAGE_REJECT:
5120 		response = ahd_handle_msg_reject(ahd, devinfo);
5121 		/* FALLTHROUGH */
5122 	case MSG_NOOP:
5123 		done = MSGLOOP_MSGCOMPLETE;
5124 		break;
5125 	case MSG_EXTENDED:
5126 	{
5127 		/* Wait for enough of the message to begin validation */
5128 		if (ahd->msgin_index < 2)
5129 			break;
5130 		switch (ahd->msgin_buf[2]) {
5131 		case MSG_EXT_SDTR:
5132 		{
5133 			u_int	 period;
5134 			u_int	 ppr_options;
5135 			u_int	 offset;
5136 			u_int	 saved_offset;
5137 
5138 			if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) {
5139 				reject = TRUE;
5140 				break;
5141 			}
5142 
5143 			/*
5144 			 * Wait until we have both args before validating
5145 			 * and acting on this message.
5146 			 *
5147 			 * Add one to MSG_EXT_SDTR_LEN to account for
5148 			 * the extended message preamble.
5149 			 */
5150 			if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1))
5151 				break;
5152 
5153 			period = ahd->msgin_buf[3];
5154 			ppr_options = 0;
5155 			saved_offset = offset = ahd->msgin_buf[4];
5156 			ahd_devlimited_syncrate(ahd, tinfo, &period,
5157 						&ppr_options, devinfo->role);
5158 			ahd_validate_offset(ahd, tinfo, period, &offset,
5159 					    tinfo->curr.width, devinfo->role);
5160 			if (bootverbose) {
5161 				printk("(%s:%c:%d:%d): Received "
5162 				       "SDTR period %x, offset %x\n\t"
5163 				       "Filtered to period %x, offset %x\n",
5164 				       ahd_name(ahd), devinfo->channel,
5165 				       devinfo->target, devinfo->lun,
5166 				       ahd->msgin_buf[3], saved_offset,
5167 				       period, offset);
5168 			}
5169 			ahd_set_syncrate(ahd, devinfo, period,
5170 					 offset, ppr_options,
5171 					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5172 					 /*paused*/TRUE);
5173 
5174 			/*
5175 			 * See if we initiated Sync Negotiation
5176 			 * and didn't have to fall down to async
5177 			 * transfers.
5178 			 */
5179 			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) {
5180 				/* We started it */
5181 				if (saved_offset != offset) {
5182 					/* Went too low - force async */
5183 					reject = TRUE;
5184 				}
5185 			} else {
5186 				/*
5187 				 * Send our own SDTR in reply
5188 				 */
5189 				if (bootverbose
5190 				 && devinfo->role == ROLE_INITIATOR) {
5191 					printk("(%s:%c:%d:%d): Target "
5192 					       "Initiated SDTR\n",
5193 					       ahd_name(ahd), devinfo->channel,
5194 					       devinfo->target, devinfo->lun);
5195 				}
5196 				ahd->msgout_index = 0;
5197 				ahd->msgout_len = 0;
5198 				ahd_construct_sdtr(ahd, devinfo,
5199 						   period, offset);
5200 				ahd->msgout_index = 0;
5201 				response = TRUE;
5202 			}
5203 			done = MSGLOOP_MSGCOMPLETE;
5204 			break;
5205 		}
5206 		case MSG_EXT_WDTR:
5207 		{
5208 			u_int bus_width;
5209 			u_int saved_width;
5210 			u_int sending_reply;
5211 
5212 			sending_reply = FALSE;
5213 			if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) {
5214 				reject = TRUE;
5215 				break;
5216 			}
5217 
5218 			/*
5219 			 * Wait until we have our arg before validating
5220 			 * and acting on this message.
5221 			 *
5222 			 * Add one to MSG_EXT_WDTR_LEN to account for
5223 			 * the extended message preamble.
5224 			 */
5225 			if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1))
5226 				break;
5227 
5228 			bus_width = ahd->msgin_buf[3];
5229 			saved_width = bus_width;
5230 			ahd_validate_width(ahd, tinfo, &bus_width,
5231 					   devinfo->role);
5232 			if (bootverbose) {
5233 				printk("(%s:%c:%d:%d): Received WDTR "
5234 				       "%x filtered to %x\n",
5235 				       ahd_name(ahd), devinfo->channel,
5236 				       devinfo->target, devinfo->lun,
5237 				       saved_width, bus_width);
5238 			}
5239 
5240 			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) {
5241 				/*
5242 				 * Don't send a WDTR back to the
5243 				 * target, since we asked first.
5244 				 * If the width went higher than our
5245 				 * request, reject it.
5246 				 */
5247 				if (saved_width > bus_width) {
5248 					reject = TRUE;
5249 					printk("(%s:%c:%d:%d): requested %dBit "
5250 					       "transfers.  Rejecting...\n",
5251 					       ahd_name(ahd), devinfo->channel,
5252 					       devinfo->target, devinfo->lun,
5253 					       8 * (0x01 << bus_width));
5254 					bus_width = 0;
5255 				}
5256 			} else {
5257 				/*
5258 				 * Send our own WDTR in reply
5259 				 */
5260 				if (bootverbose
5261 				 && devinfo->role == ROLE_INITIATOR) {
5262 					printk("(%s:%c:%d:%d): Target "
5263 					       "Initiated WDTR\n",
5264 					       ahd_name(ahd), devinfo->channel,
5265 					       devinfo->target, devinfo->lun);
5266 				}
5267 				ahd->msgout_index = 0;
5268 				ahd->msgout_len = 0;
5269 				ahd_construct_wdtr(ahd, devinfo, bus_width);
5270 				ahd->msgout_index = 0;
5271 				response = TRUE;
5272 				sending_reply = TRUE;
5273 			}
5274 			/*
5275 			 * After a wide message, we are async, but
5276 			 * some devices don't seem to honor this portion
5277 			 * of the spec.  Force a renegotiation of the
5278 			 * sync component of our transfer agreement even
5279 			 * if our goal is async.  By updating our width
5280 			 * after forcing the negotiation, we avoid
5281 			 * renegotiating for width.
5282 			 */
5283 			ahd_update_neg_request(ahd, devinfo, tstate,
5284 					       tinfo, AHD_NEG_ALWAYS);
5285 			ahd_set_width(ahd, devinfo, bus_width,
5286 				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5287 				      /*paused*/TRUE);
5288 			if (sending_reply == FALSE && reject == FALSE) {
5289 
5290 				/*
5291 				 * We will always have an SDTR to send.
5292 				 */
5293 				ahd->msgout_index = 0;
5294 				ahd->msgout_len = 0;
5295 				ahd_build_transfer_msg(ahd, devinfo);
5296 				ahd->msgout_index = 0;
5297 				response = TRUE;
5298 			}
5299 			done = MSGLOOP_MSGCOMPLETE;
5300 			break;
5301 		}
5302 		case MSG_EXT_PPR:
5303 		{
5304 			u_int	period;
5305 			u_int	offset;
5306 			u_int	bus_width;
5307 			u_int	ppr_options;
5308 			u_int	saved_width;
5309 			u_int	saved_offset;
5310 			u_int	saved_ppr_options;
5311 
5312 			if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) {
5313 				reject = TRUE;
5314 				break;
5315 			}
5316 
5317 			/*
5318 			 * Wait until we have all args before validating
5319 			 * and acting on this message.
5320 			 *
5321 			 * Add one to MSG_EXT_PPR_LEN to account for
5322 			 * the extended message preamble.
5323 			 */
5324 			if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1))
5325 				break;
5326 
5327 			period = ahd->msgin_buf[3];
5328 			offset = ahd->msgin_buf[5];
5329 			bus_width = ahd->msgin_buf[6];
5330 			saved_width = bus_width;
5331 			ppr_options = ahd->msgin_buf[7];
5332 			/*
5333 			 * According to the spec, a DT only
5334 			 * period factor with no DT option
5335 			 * set implies async.
5336 			 */
5337 			if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0
5338 			 && period <= 9)
5339 				offset = 0;
5340 			saved_ppr_options = ppr_options;
5341 			saved_offset = offset;
5342 
5343 			/*
5344 			 * Transfer options are only available if we
5345 			 * are negotiating wide.
5346 			 */
5347 			if (bus_width == 0)
5348 				ppr_options &= MSG_EXT_PPR_QAS_REQ;
5349 
5350 			ahd_validate_width(ahd, tinfo, &bus_width,
5351 					   devinfo->role);
5352 			ahd_devlimited_syncrate(ahd, tinfo, &period,
5353 						&ppr_options, devinfo->role);
5354 			ahd_validate_offset(ahd, tinfo, period, &offset,
5355 					    bus_width, devinfo->role);
5356 
5357 			if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) {
5358 				/*
5359 				 * If we are unable to do any of the
5360 				 * requested options (we went too low),
5361 				 * then we'll have to reject the message.
5362 				 */
5363 				if (saved_width > bus_width
5364 				 || saved_offset != offset
5365 				 || saved_ppr_options != ppr_options) {
5366 					reject = TRUE;
5367 					period = 0;
5368 					offset = 0;
5369 					bus_width = 0;
5370 					ppr_options = 0;
5371 				}
5372 			} else {
5373 				if (devinfo->role != ROLE_TARGET)
5374 					printk("(%s:%c:%d:%d): Target "
5375 					       "Initiated PPR\n",
5376 					       ahd_name(ahd), devinfo->channel,
5377 					       devinfo->target, devinfo->lun);
5378 				else
5379 					printk("(%s:%c:%d:%d): Initiator "
5380 					       "Initiated PPR\n",
5381 					       ahd_name(ahd), devinfo->channel,
5382 					       devinfo->target, devinfo->lun);
5383 				ahd->msgout_index = 0;
5384 				ahd->msgout_len = 0;
5385 				ahd_construct_ppr(ahd, devinfo, period, offset,
5386 						  bus_width, ppr_options);
5387 				ahd->msgout_index = 0;
5388 				response = TRUE;
5389 			}
5390 			if (bootverbose) {
5391 				printk("(%s:%c:%d:%d): Received PPR width %x, "
5392 				       "period %x, offset %x,options %x\n"
5393 				       "\tFiltered to width %x, period %x, "
5394 				       "offset %x, options %x\n",
5395 				       ahd_name(ahd), devinfo->channel,
5396 				       devinfo->target, devinfo->lun,
5397 				       saved_width, ahd->msgin_buf[3],
5398 				       saved_offset, saved_ppr_options,
5399 				       bus_width, period, offset, ppr_options);
5400 			}
5401 			ahd_set_width(ahd, devinfo, bus_width,
5402 				      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5403 				      /*paused*/TRUE);
5404 			ahd_set_syncrate(ahd, devinfo, period,
5405 					 offset, ppr_options,
5406 					 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5407 					 /*paused*/TRUE);
5408 
5409 			done = MSGLOOP_MSGCOMPLETE;
5410 			break;
5411 		}
5412 		default:
5413 			/* Unknown extended message.  Reject it. */
5414 			reject = TRUE;
5415 			break;
5416 		}
5417 		break;
5418 	}
5419 #ifdef AHD_TARGET_MODE
5420 	case MSG_BUS_DEV_RESET:
5421 		ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD,
5422 				    CAM_BDR_SENT,
5423 				    "Bus Device Reset Received",
5424 				    /*verbose_level*/0);
5425 		ahd_restart(ahd);
5426 		done = MSGLOOP_TERMINATED;
5427 		break;
5428 	case MSG_ABORT_TAG:
5429 	case MSG_ABORT:
5430 	case MSG_CLEAR_QUEUE:
5431 	{
5432 		int tag;
5433 
5434 		/* Target mode messages */
5435 		if (devinfo->role != ROLE_TARGET) {
5436 			reject = TRUE;
5437 			break;
5438 		}
5439 		tag = SCB_LIST_NULL;
5440 		if (ahd->msgin_buf[0] == MSG_ABORT_TAG)
5441 			tag = ahd_inb(ahd, INITIATOR_TAG);
5442 		ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5443 			       devinfo->lun, tag, ROLE_TARGET,
5444 			       CAM_REQ_ABORTED);
5445 
5446 		tstate = ahd->enabled_targets[devinfo->our_scsiid];
5447 		if (tstate != NULL) {
5448 			struct ahd_tmode_lstate* lstate;
5449 
5450 			lstate = tstate->enabled_luns[devinfo->lun];
5451 			if (lstate != NULL) {
5452 				ahd_queue_lstate_event(ahd, lstate,
5453 						       devinfo->our_scsiid,
5454 						       ahd->msgin_buf[0],
5455 						       /*arg*/tag);
5456 				ahd_send_lstate_events(ahd, lstate);
5457 			}
5458 		}
5459 		ahd_restart(ahd);
5460 		done = MSGLOOP_TERMINATED;
5461 		break;
5462 	}
5463 #endif
5464 	case MSG_QAS_REQUEST:
5465 #ifdef AHD_DEBUG
5466 		if ((ahd_debug & AHD_SHOW_MESSAGES) != 0)
5467 			printk("%s: QAS request.  SCSISIGI == 0x%x\n",
5468 			       ahd_name(ahd), ahd_inb(ahd, SCSISIGI));
5469 #endif
5470 		ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE;
5471 		/* FALLTHROUGH */
5472 	case MSG_TERM_IO_PROC:
5473 	default:
5474 		reject = TRUE;
5475 		break;
5476 	}
5477 
5478 	if (reject) {
5479 		/*
5480 		 * Setup to reject the message.
5481 		 */
5482 		ahd->msgout_index = 0;
5483 		ahd->msgout_len = 1;
5484 		ahd->msgout_buf[0] = MSG_MESSAGE_REJECT;
5485 		done = MSGLOOP_MSGCOMPLETE;
5486 		response = TRUE;
5487 	}
5488 
5489 	if (done != MSGLOOP_IN_PROG && !response)
5490 		/* Clear the outgoing message buffer */
5491 		ahd->msgout_len = 0;
5492 
5493 	return (done);
5494 }
5495 
5496 /*
5497  * Process a message reject message.
5498  */
5499 static int
5500 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5501 {
5502 	/*
5503 	 * What we care about here is if we had an
5504 	 * outstanding SDTR or WDTR message for this
5505 	 * target.  If we did, this is a signal that
5506 	 * the target is refusing negotiation.
5507 	 */
5508 	struct scb *scb;
5509 	struct ahd_initiator_tinfo *tinfo;
5510 	struct ahd_tmode_tstate *tstate;
5511 	u_int scb_index;
5512 	u_int last_msg;
5513 	int   response = 0;
5514 
5515 	scb_index = ahd_get_scbptr(ahd);
5516 	scb = ahd_lookup_scb(ahd, scb_index);
5517 	tinfo = ahd_fetch_transinfo(ahd, devinfo->channel,
5518 				    devinfo->our_scsiid,
5519 				    devinfo->target, &tstate);
5520 	/* Might be necessary */
5521 	last_msg = ahd_inb(ahd, LAST_MSG);
5522 
5523 	if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) {
5524 		if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE)
5525 		 && tinfo->goal.period <= AHD_SYNCRATE_PACED) {
5526 			/*
5527 			 * Target may not like our SPI-4 PPR Options.
5528 			 * Attempt to negotiate 80MHz which will turn
5529 			 * off these options.
5530 			 */
5531 			if (bootverbose) {
5532 				printk("(%s:%c:%d:%d): PPR Rejected. "
5533 				       "Trying simple U160 PPR\n",
5534 				       ahd_name(ahd), devinfo->channel,
5535 				       devinfo->target, devinfo->lun);
5536 			}
5537 			tinfo->goal.period = AHD_SYNCRATE_DT;
5538 			tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ
5539 						|  MSG_EXT_PPR_QAS_REQ
5540 						|  MSG_EXT_PPR_DT_REQ;
5541 		} else {
5542 			/*
5543 			 * Target does not support the PPR message.
5544 			 * Attempt to negotiate SPI-2 style.
5545 			 */
5546 			if (bootverbose) {
5547 				printk("(%s:%c:%d:%d): PPR Rejected. "
5548 				       "Trying WDTR/SDTR\n",
5549 				       ahd_name(ahd), devinfo->channel,
5550 				       devinfo->target, devinfo->lun);
5551 			}
5552 			tinfo->goal.ppr_options = 0;
5553 			tinfo->curr.transport_version = 2;
5554 			tinfo->goal.transport_version = 2;
5555 		}
5556 		ahd->msgout_index = 0;
5557 		ahd->msgout_len = 0;
5558 		ahd_build_transfer_msg(ahd, devinfo);
5559 		ahd->msgout_index = 0;
5560 		response = 1;
5561 	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) {
5562 
5563 		/* note 8bit xfers */
5564 		printk("(%s:%c:%d:%d): refuses WIDE negotiation.  Using "
5565 		       "8bit transfers\n", ahd_name(ahd),
5566 		       devinfo->channel, devinfo->target, devinfo->lun);
5567 		ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5568 			      AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5569 			      /*paused*/TRUE);
5570 		/*
5571 		 * No need to clear the sync rate.  If the target
5572 		 * did not accept the command, our syncrate is
5573 		 * unaffected.  If the target started the negotiation,
5574 		 * but rejected our response, we already cleared the
5575 		 * sync rate before sending our WDTR.
5576 		 */
5577 		if (tinfo->goal.offset != tinfo->curr.offset) {
5578 
5579 			/* Start the sync negotiation */
5580 			ahd->msgout_index = 0;
5581 			ahd->msgout_len = 0;
5582 			ahd_build_transfer_msg(ahd, devinfo);
5583 			ahd->msgout_index = 0;
5584 			response = 1;
5585 		}
5586 	} else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) {
5587 		/* note asynch xfers and clear flag */
5588 		ahd_set_syncrate(ahd, devinfo, /*period*/0,
5589 				 /*offset*/0, /*ppr_options*/0,
5590 				 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL,
5591 				 /*paused*/TRUE);
5592 		printk("(%s:%c:%d:%d): refuses synchronous negotiation. "
5593 		       "Using asynchronous transfers\n",
5594 		       ahd_name(ahd), devinfo->channel,
5595 		       devinfo->target, devinfo->lun);
5596 	} else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) {
5597 		int tag_type;
5598 		int mask;
5599 
5600 		tag_type = (scb->hscb->control & MSG_SIMPLE_TASK);
5601 
5602 		if (tag_type == MSG_SIMPLE_TASK) {
5603 			printk("(%s:%c:%d:%d): refuses tagged commands.  "
5604 			       "Performing non-tagged I/O\n", ahd_name(ahd),
5605 			       devinfo->channel, devinfo->target, devinfo->lun);
5606 			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE);
5607 			mask = ~0x23;
5608 		} else {
5609 			printk("(%s:%c:%d:%d): refuses %s tagged commands.  "
5610 			       "Performing simple queue tagged I/O only\n",
5611 			       ahd_name(ahd), devinfo->channel, devinfo->target,
5612 			       devinfo->lun, tag_type == MSG_ORDERED_TASK
5613 			       ? "ordered" : "head of queue");
5614 			ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC);
5615 			mask = ~0x03;
5616 		}
5617 
5618 		/*
5619 		 * Resend the identify for this CCB as the target
5620 		 * may believe that the selection is invalid otherwise.
5621 		 */
5622 		ahd_outb(ahd, SCB_CONTROL,
5623 			 ahd_inb_scbram(ahd, SCB_CONTROL) & mask);
5624 	 	scb->hscb->control &= mask;
5625 		ahd_set_transaction_tag(scb, /*enabled*/FALSE,
5626 					/*type*/MSG_SIMPLE_TASK);
5627 		ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG);
5628 		ahd_assert_atn(ahd);
5629 		ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun),
5630 			     SCB_GET_TAG(scb));
5631 
5632 		/*
5633 		 * Requeue all tagged commands for this target
5634 		 * currently in our possession so they can be
5635 		 * converted to untagged commands.
5636 		 */
5637 		ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb),
5638 				   SCB_GET_CHANNEL(ahd, scb),
5639 				   SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL,
5640 				   ROLE_INITIATOR, CAM_REQUEUE_REQ,
5641 				   SEARCH_COMPLETE);
5642 	} else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) {
5643 		/*
5644 		 * Most likely the device believes that we had
5645 		 * previously negotiated packetized.
5646 		 */
5647 		ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE
5648 			       |  MSG_FLAG_IU_REQ_CHANGED;
5649 
5650 		ahd_force_renegotiation(ahd, devinfo);
5651 		ahd->msgout_index = 0;
5652 		ahd->msgout_len = 0;
5653 		ahd_build_transfer_msg(ahd, devinfo);
5654 		ahd->msgout_index = 0;
5655 		response = 1;
5656 	} else {
5657 		/*
5658 		 * Otherwise, we ignore it.
5659 		 */
5660 		printk("%s:%c:%d: Message reject for %x -- ignored\n",
5661 		       ahd_name(ahd), devinfo->channel, devinfo->target,
5662 		       last_msg);
5663 	}
5664 	return (response);
5665 }
5666 
5667 /*
5668  * Process an ingnore wide residue message.
5669  */
5670 static void
5671 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo)
5672 {
5673 	u_int scb_index;
5674 	struct scb *scb;
5675 
5676 	scb_index = ahd_get_scbptr(ahd);
5677 	scb = ahd_lookup_scb(ahd, scb_index);
5678 	/*
5679 	 * XXX Actually check data direction in the sequencer?
5680 	 * Perhaps add datadir to some spare bits in the hscb?
5681 	 */
5682 	if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0
5683 	 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) {
5684 		/*
5685 		 * Ignore the message if we haven't
5686 		 * seen an appropriate data phase yet.
5687 		 */
5688 	} else {
5689 		/*
5690 		 * If the residual occurred on the last
5691 		 * transfer and the transfer request was
5692 		 * expected to end on an odd count, do
5693 		 * nothing.  Otherwise, subtract a byte
5694 		 * and update the residual count accordingly.
5695 		 */
5696 		uint32_t sgptr;
5697 
5698 		sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR);
5699 		if ((sgptr & SG_LIST_NULL) != 0
5700 		 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5701 		     & SCB_XFERLEN_ODD) != 0) {
5702 			/*
5703 			 * If the residual occurred on the last
5704 			 * transfer and the transfer request was
5705 			 * expected to end on an odd count, do
5706 			 * nothing.
5707 			 */
5708 		} else {
5709 			uint32_t data_cnt;
5710 			uint64_t data_addr;
5711 			uint32_t sglen;
5712 
5713 			/* Pull in the rest of the sgptr */
5714 			sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5715 			data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT);
5716 			if ((sgptr & SG_LIST_NULL) != 0) {
5717 				/*
5718 				 * The residual data count is not updated
5719 				 * for the command run to completion case.
5720 				 * Explicitly zero the count.
5721 				 */
5722 				data_cnt &= ~AHD_SG_LEN_MASK;
5723 			}
5724 			data_addr = ahd_inq(ahd, SHADDR);
5725 			data_cnt += 1;
5726 			data_addr -= 1;
5727 			sgptr &= SG_PTR_MASK;
5728 			if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5729 				struct ahd_dma64_seg *sg;
5730 
5731 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5732 
5733 				/*
5734 				 * The residual sg ptr points to the next S/G
5735 				 * to load so we must go back one.
5736 				 */
5737 				sg--;
5738 				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5739 				if (sg != scb->sg_list
5740 				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5741 
5742 					sg--;
5743 					sglen = ahd_le32toh(sg->len);
5744 					/*
5745 					 * Preserve High Address and SG_LIST
5746 					 * bits while setting the count to 1.
5747 					 */
5748 					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5749 					data_addr = ahd_le64toh(sg->addr)
5750 						  + (sglen & AHD_SG_LEN_MASK)
5751 						  - 1;
5752 
5753 					/*
5754 					 * Increment sg so it points to the
5755 					 * "next" sg.
5756 					 */
5757 					sg++;
5758 					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5759 								   sg);
5760 				}
5761 			} else {
5762 				struct ahd_dma_seg *sg;
5763 
5764 				sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5765 
5766 				/*
5767 				 * The residual sg ptr points to the next S/G
5768 				 * to load so we must go back one.
5769 				 */
5770 				sg--;
5771 				sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
5772 				if (sg != scb->sg_list
5773 				 && sglen < (data_cnt & AHD_SG_LEN_MASK)) {
5774 
5775 					sg--;
5776 					sglen = ahd_le32toh(sg->len);
5777 					/*
5778 					 * Preserve High Address and SG_LIST
5779 					 * bits while setting the count to 1.
5780 					 */
5781 					data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK));
5782 					data_addr = ahd_le32toh(sg->addr)
5783 						  + (sglen & AHD_SG_LEN_MASK)
5784 						  - 1;
5785 
5786 					/*
5787 					 * Increment sg so it points to the
5788 					 * "next" sg.
5789 					 */
5790 					sg++;
5791 					sgptr = ahd_sg_virt_to_bus(ahd, scb,
5792 								  sg);
5793 				}
5794 			}
5795 			/*
5796 			 * Toggle the "oddness" of the transfer length
5797 			 * to handle this mid-transfer ignore wide
5798 			 * residue.  This ensures that the oddness is
5799 			 * correct for subsequent data transfers.
5800 			 */
5801 			ahd_outb(ahd, SCB_TASK_ATTRIBUTE,
5802 			    ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE)
5803 			    ^ SCB_XFERLEN_ODD);
5804 
5805 			ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr);
5806 			ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt);
5807 			/*
5808 			 * The FIFO's pointers will be updated if/when the
5809 			 * sequencer re-enters a data phase.
5810 			 */
5811 		}
5812 	}
5813 }
5814 
5815 
5816 /*
5817  * Reinitialize the data pointers for the active transfer
5818  * based on its current residual.
5819  */
5820 static void
5821 ahd_reinitialize_dataptrs(struct ahd_softc *ahd)
5822 {
5823 	struct		 scb *scb;
5824 	ahd_mode_state	 saved_modes;
5825 	u_int		 scb_index;
5826 	u_int		 wait;
5827 	uint32_t	 sgptr;
5828 	uint32_t	 resid;
5829 	uint64_t	 dataptr;
5830 
5831 	AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK,
5832 			 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK);
5833 
5834 	scb_index = ahd_get_scbptr(ahd);
5835 	scb = ahd_lookup_scb(ahd, scb_index);
5836 
5837 	/*
5838 	 * Release and reacquire the FIFO so we
5839 	 * have a clean slate.
5840 	 */
5841 	ahd_outb(ahd, DFFSXFRCTL, CLRCHN);
5842 	wait = 1000;
5843 	while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE))
5844 		ahd_delay(100);
5845 	if (wait == 0) {
5846 		ahd_print_path(ahd, scb);
5847 		printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n");
5848 		ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT);
5849 	}
5850 	saved_modes = ahd_save_modes(ahd);
5851 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
5852 	ahd_outb(ahd, DFFSTAT,
5853 		 ahd_inb(ahd, DFFSTAT)
5854 		| (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0));
5855 
5856 	/*
5857 	 * Determine initial values for data_addr and data_cnt
5858 	 * for resuming the data phase.
5859 	 */
5860 	sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR);
5861 	sgptr &= SG_PTR_MASK;
5862 
5863 	resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16)
5864 	      | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8)
5865 	      | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT);
5866 
5867 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
5868 		struct ahd_dma64_seg *sg;
5869 
5870 		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5871 
5872 		/* The residual sg_ptr always points to the next sg */
5873 		sg--;
5874 
5875 		dataptr = ahd_le64toh(sg->addr)
5876 			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5877 			- resid;
5878 		ahd_outl(ahd, HADDR + 4, dataptr >> 32);
5879 	} else {
5880 		struct	 ahd_dma_seg *sg;
5881 
5882 		sg = ahd_sg_bus_to_virt(ahd, scb, sgptr);
5883 
5884 		/* The residual sg_ptr always points to the next sg */
5885 		sg--;
5886 
5887 		dataptr = ahd_le32toh(sg->addr)
5888 			+ (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK)
5889 			- resid;
5890 		ahd_outb(ahd, HADDR + 4,
5891 			 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24);
5892 	}
5893 	ahd_outl(ahd, HADDR, dataptr);
5894 	ahd_outb(ahd, HCNT + 2, resid >> 16);
5895 	ahd_outb(ahd, HCNT + 1, resid >> 8);
5896 	ahd_outb(ahd, HCNT, resid);
5897 }
5898 
5899 /*
5900  * Handle the effects of issuing a bus device reset message.
5901  */
5902 static void
5903 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5904 		    u_int lun, cam_status status, char *message,
5905 		    int verbose_level)
5906 {
5907 #ifdef AHD_TARGET_MODE
5908 	struct ahd_tmode_tstate* tstate;
5909 #endif
5910 	int found;
5911 
5912 	found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel,
5913 			       lun, SCB_LIST_NULL, devinfo->role,
5914 			       status);
5915 
5916 #ifdef AHD_TARGET_MODE
5917 	/*
5918 	 * Send an immediate notify ccb to all target mord peripheral
5919 	 * drivers affected by this action.
5920 	 */
5921 	tstate = ahd->enabled_targets[devinfo->our_scsiid];
5922 	if (tstate != NULL) {
5923 		u_int cur_lun;
5924 		u_int max_lun;
5925 
5926 		if (lun != CAM_LUN_WILDCARD) {
5927 			cur_lun = 0;
5928 			max_lun = AHD_NUM_LUNS - 1;
5929 		} else {
5930 			cur_lun = lun;
5931 			max_lun = lun;
5932 		}
5933 		for (;cur_lun <= max_lun; cur_lun++) {
5934 			struct ahd_tmode_lstate* lstate;
5935 
5936 			lstate = tstate->enabled_luns[cur_lun];
5937 			if (lstate == NULL)
5938 				continue;
5939 
5940 			ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid,
5941 					       MSG_BUS_DEV_RESET, /*arg*/0);
5942 			ahd_send_lstate_events(ahd, lstate);
5943 		}
5944 	}
5945 #endif
5946 
5947 	/*
5948 	 * Go back to async/narrow transfers and renegotiate.
5949 	 */
5950 	ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT,
5951 		      AHD_TRANS_CUR, /*paused*/TRUE);
5952 	ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0,
5953 			 /*ppr_options*/0, AHD_TRANS_CUR,
5954 			 /*paused*/TRUE);
5955 
5956 	if (status != CAM_SEL_TIMEOUT)
5957 		ahd_send_async(ahd, devinfo->channel, devinfo->target,
5958 			       CAM_LUN_WILDCARD, AC_SENT_BDR);
5959 
5960 	if (message != NULL && bootverbose)
5961 		printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd),
5962 		       message, devinfo->channel, devinfo->target, found);
5963 }
5964 
5965 #ifdef AHD_TARGET_MODE
5966 static void
5967 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo,
5968 		       struct scb *scb)
5969 {
5970 
5971 	/*
5972 	 * To facilitate adding multiple messages together,
5973 	 * each routine should increment the index and len
5974 	 * variables instead of setting them explicitly.
5975 	 */
5976 	ahd->msgout_index = 0;
5977 	ahd->msgout_len = 0;
5978 
5979 	if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0)
5980 		ahd_build_transfer_msg(ahd, devinfo);
5981 	else
5982 		panic("ahd_intr: AWAITING target message with no message");
5983 
5984 	ahd->msgout_index = 0;
5985 	ahd->msg_type = MSG_TYPE_TARGET_MSGIN;
5986 }
5987 #endif
5988 /**************************** Initialization **********************************/
5989 static u_int
5990 ahd_sglist_size(struct ahd_softc *ahd)
5991 {
5992 	bus_size_t list_size;
5993 
5994 	list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG;
5995 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
5996 		list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG;
5997 	return (list_size);
5998 }
5999 
6000 /*
6001  * Calculate the optimum S/G List allocation size.  S/G elements used
6002  * for a given transaction must be physically contiguous.  Assume the
6003  * OS will allocate full pages to us, so it doesn't make sense to request
6004  * less than a page.
6005  */
6006 static u_int
6007 ahd_sglist_allocsize(struct ahd_softc *ahd)
6008 {
6009 	bus_size_t sg_list_increment;
6010 	bus_size_t sg_list_size;
6011 	bus_size_t max_list_size;
6012 	bus_size_t best_list_size;
6013 
6014 	/* Start out with the minimum required for AHD_NSEG. */
6015 	sg_list_increment = ahd_sglist_size(ahd);
6016 	sg_list_size = sg_list_increment;
6017 
6018 	/* Get us as close as possible to a page in size. */
6019 	while ((sg_list_size + sg_list_increment) <= PAGE_SIZE)
6020 		sg_list_size += sg_list_increment;
6021 
6022 	/*
6023 	 * Try to reduce the amount of wastage by allocating
6024 	 * multiple pages.
6025 	 */
6026 	best_list_size = sg_list_size;
6027 	max_list_size = roundup(sg_list_increment, PAGE_SIZE);
6028 	if (max_list_size < 4 * PAGE_SIZE)
6029 		max_list_size = 4 * PAGE_SIZE;
6030 	if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment))
6031 		max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment);
6032 	while ((sg_list_size + sg_list_increment) <= max_list_size
6033 	   &&  (sg_list_size % PAGE_SIZE) != 0) {
6034 		bus_size_t new_mod;
6035 		bus_size_t best_mod;
6036 
6037 		sg_list_size += sg_list_increment;
6038 		new_mod = sg_list_size % PAGE_SIZE;
6039 		best_mod = best_list_size % PAGE_SIZE;
6040 		if (new_mod > best_mod || new_mod == 0) {
6041 			best_list_size = sg_list_size;
6042 		}
6043 	}
6044 	return (best_list_size);
6045 }
6046 
6047 /*
6048  * Allocate a controller structure for a new device
6049  * and perform initial initializion.
6050  */
6051 struct ahd_softc *
6052 ahd_alloc(void *platform_arg, char *name)
6053 {
6054 	struct  ahd_softc *ahd;
6055 
6056 	ahd = kzalloc(sizeof(*ahd), GFP_ATOMIC);
6057 	if (!ahd) {
6058 		printk("aic7xxx: cannot malloc softc!\n");
6059 		kfree(name);
6060 		return NULL;
6061 	}
6062 
6063 	ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC);
6064 	if (ahd->seep_config == NULL) {
6065 		kfree(ahd);
6066 		kfree(name);
6067 		return (NULL);
6068 	}
6069 	LIST_INIT(&ahd->pending_scbs);
6070 	/* We don't know our unit number until the OSM sets it */
6071 	ahd->name = name;
6072 	ahd->unit = -1;
6073 	ahd->description = NULL;
6074 	ahd->bus_description = NULL;
6075 	ahd->channel = 'A';
6076 	ahd->chip = AHD_NONE;
6077 	ahd->features = AHD_FENONE;
6078 	ahd->bugs = AHD_BUGNONE;
6079 	ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A
6080 		   | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A;
6081 	timer_setup(&ahd->stat_timer, ahd_stat_timer, 0);
6082 	ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT;
6083 	ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT;
6084 	ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT;
6085 	ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT;
6086 	ahd->int_coalescing_stop_threshold =
6087 	    AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT;
6088 
6089 #ifdef AHD_DEBUG
6090 	if ((ahd_debug & AHD_SHOW_MEMORY) != 0) {
6091 		printk("%s: scb size = 0x%x, hscb size = 0x%x\n",
6092 		       ahd_name(ahd), (u_int)sizeof(struct scb),
6093 		       (u_int)sizeof(struct hardware_scb));
6094 	}
6095 #endif
6096 	if (ahd_platform_alloc(ahd, platform_arg) != 0) {
6097 		ahd_free(ahd);
6098 		ahd = NULL;
6099 	}
6100 	return (ahd);
6101 }
6102 
6103 int
6104 ahd_softc_init(struct ahd_softc *ahd)
6105 {
6106 
6107 	ahd->unpause = 0;
6108 	ahd->pause = PAUSE;
6109 	return (0);
6110 }
6111 
6112 void
6113 ahd_set_unit(struct ahd_softc *ahd, int unit)
6114 {
6115 	ahd->unit = unit;
6116 }
6117 
6118 void
6119 ahd_set_name(struct ahd_softc *ahd, char *name)
6120 {
6121 	kfree(ahd->name);
6122 	ahd->name = name;
6123 }
6124 
6125 void
6126 ahd_free(struct ahd_softc *ahd)
6127 {
6128 	int i;
6129 
6130 	switch (ahd->init_level) {
6131 	default:
6132 	case 5:
6133 		ahd_shutdown(ahd);
6134 		/* FALLTHROUGH */
6135 	case 4:
6136 		ahd_dmamap_unload(ahd, ahd->shared_data_dmat,
6137 				  ahd->shared_data_map.dmamap);
6138 		/* FALLTHROUGH */
6139 	case 3:
6140 		ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo,
6141 				ahd->shared_data_map.dmamap);
6142 		ahd_dmamap_destroy(ahd, ahd->shared_data_dmat,
6143 				   ahd->shared_data_map.dmamap);
6144 		/* FALLTHROUGH */
6145 	case 2:
6146 		ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat);
6147 	case 1:
6148 		break;
6149 	case 0:
6150 		break;
6151 	}
6152 
6153 	ahd_platform_free(ahd);
6154 	ahd_fini_scbdata(ahd);
6155 	for (i = 0; i < AHD_NUM_TARGETS; i++) {
6156 		struct ahd_tmode_tstate *tstate;
6157 
6158 		tstate = ahd->enabled_targets[i];
6159 		if (tstate != NULL) {
6160 #ifdef AHD_TARGET_MODE
6161 			int j;
6162 
6163 			for (j = 0; j < AHD_NUM_LUNS; j++) {
6164 				struct ahd_tmode_lstate *lstate;
6165 
6166 				lstate = tstate->enabled_luns[j];
6167 				if (lstate != NULL) {
6168 					xpt_free_path(lstate->path);
6169 					kfree(lstate);
6170 				}
6171 			}
6172 #endif
6173 			kfree(tstate);
6174 		}
6175 	}
6176 #ifdef AHD_TARGET_MODE
6177 	if (ahd->black_hole != NULL) {
6178 		xpt_free_path(ahd->black_hole->path);
6179 		kfree(ahd->black_hole);
6180 	}
6181 #endif
6182 	kfree(ahd->name);
6183 	kfree(ahd->seep_config);
6184 	kfree(ahd->saved_stack);
6185 	kfree(ahd);
6186 	return;
6187 }
6188 
6189 static void
6190 ahd_shutdown(void *arg)
6191 {
6192 	struct	ahd_softc *ahd;
6193 
6194 	ahd = (struct ahd_softc *)arg;
6195 
6196 	/*
6197 	 * Stop periodic timer callbacks.
6198 	 */
6199 	del_timer_sync(&ahd->stat_timer);
6200 
6201 	/* This will reset most registers to 0, but not all */
6202 	ahd_reset(ahd, /*reinit*/FALSE);
6203 }
6204 
6205 /*
6206  * Reset the controller and record some information about it
6207  * that is only available just after a reset.  If "reinit" is
6208  * non-zero, this reset occurred after initial configuration
6209  * and the caller requests that the chip be fully reinitialized
6210  * to a runable state.  Chip interrupts are *not* enabled after
6211  * a reinitialization.  The caller must enable interrupts via
6212  * ahd_intr_enable().
6213  */
6214 int
6215 ahd_reset(struct ahd_softc *ahd, int reinit)
6216 {
6217 	u_int	 sxfrctl1;
6218 	int	 wait;
6219 	uint32_t cmd;
6220 
6221 	/*
6222 	 * Preserve the value of the SXFRCTL1 register for all channels.
6223 	 * It contains settings that affect termination and we don't want
6224 	 * to disturb the integrity of the bus.
6225 	 */
6226 	ahd_pause(ahd);
6227 	ahd_update_modes(ahd);
6228 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6229 	sxfrctl1 = ahd_inb(ahd, SXFRCTL1);
6230 
6231 	cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2);
6232 	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6233 		uint32_t mod_cmd;
6234 
6235 		/*
6236 		 * A4 Razor #632
6237 		 * During the assertion of CHIPRST, the chip
6238 		 * does not disable its parity logic prior to
6239 		 * the start of the reset.  This may cause a
6240 		 * parity error to be detected and thus a
6241 		 * spurious SERR or PERR assertion.  Disable
6242 		 * PERR and SERR responses during the CHIPRST.
6243 		 */
6244 		mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN);
6245 		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6246 				     mod_cmd, /*bytes*/2);
6247 	}
6248 	ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause);
6249 
6250 	/*
6251 	 * Ensure that the reset has finished.  We delay 1000us
6252 	 * prior to reading the register to make sure the chip
6253 	 * has sufficiently completed its reset to handle register
6254 	 * accesses.
6255 	 */
6256 	wait = 1000;
6257 	do {
6258 		ahd_delay(1000);
6259 	} while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK));
6260 
6261 	if (wait == 0) {
6262 		printk("%s: WARNING - Failed chip reset!  "
6263 		       "Trying to initialize anyway.\n", ahd_name(ahd));
6264 	}
6265 	ahd_outb(ahd, HCNTRL, ahd->pause);
6266 
6267 	if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) {
6268 		/*
6269 		 * Clear any latched PCI error status and restore
6270 		 * previous SERR and PERR response enables.
6271 		 */
6272 		ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1,
6273 				     0xFF, /*bytes*/1);
6274 		ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND,
6275 				     cmd, /*bytes*/2);
6276 	}
6277 
6278 	/*
6279 	 * Mode should be SCSI after a chip reset, but lets
6280 	 * set it just to be safe.  We touch the MODE_PTR
6281 	 * register directly so as to bypass the lazy update
6282 	 * code in ahd_set_modes().
6283 	 */
6284 	ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6285 	ahd_outb(ahd, MODE_PTR,
6286 		 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI));
6287 
6288 	/*
6289 	 * Restore SXFRCTL1.
6290 	 *
6291 	 * We must always initialize STPWEN to 1 before we
6292 	 * restore the saved values.  STPWEN is initialized
6293 	 * to a tri-state condition which can only be cleared
6294 	 * by turning it on.
6295 	 */
6296 	ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN);
6297 	ahd_outb(ahd, SXFRCTL1, sxfrctl1);
6298 
6299 	/* Determine chip configuration */
6300 	ahd->features &= ~AHD_WIDE;
6301 	if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0)
6302 		ahd->features |= AHD_WIDE;
6303 
6304 	/*
6305 	 * If a recovery action has forced a chip reset,
6306 	 * re-initialize the chip to our liking.
6307 	 */
6308 	if (reinit != 0)
6309 		ahd_chip_init(ahd);
6310 
6311 	return (0);
6312 }
6313 
6314 /*
6315  * Determine the number of SCBs available on the controller
6316  */
6317 static int
6318 ahd_probe_scbs(struct ahd_softc *ahd) {
6319 	int i;
6320 
6321 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
6322 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
6323 	for (i = 0; i < AHD_SCB_MAX; i++) {
6324 		int j;
6325 
6326 		ahd_set_scbptr(ahd, i);
6327 		ahd_outw(ahd, SCB_BASE, i);
6328 		for (j = 2; j < 64; j++)
6329 			ahd_outb(ahd, SCB_BASE+j, 0);
6330 		/* Start out life as unallocated (needing an abort) */
6331 		ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE);
6332 		if (ahd_inw_scbram(ahd, SCB_BASE) != i)
6333 			break;
6334 		ahd_set_scbptr(ahd, 0);
6335 		if (ahd_inw_scbram(ahd, SCB_BASE) != 0)
6336 			break;
6337 	}
6338 	return (i);
6339 }
6340 
6341 static void
6342 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
6343 {
6344 	dma_addr_t *baddr;
6345 
6346 	baddr = (dma_addr_t *)arg;
6347 	*baddr = segs->ds_addr;
6348 }
6349 
6350 static void
6351 ahd_initialize_hscbs(struct ahd_softc *ahd)
6352 {
6353 	int i;
6354 
6355 	for (i = 0; i < ahd->scb_data.maxhscbs; i++) {
6356 		ahd_set_scbptr(ahd, i);
6357 
6358 		/* Clear the control byte. */
6359 		ahd_outb(ahd, SCB_CONTROL, 0);
6360 
6361 		/* Set the next pointer */
6362 		ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL);
6363 	}
6364 }
6365 
6366 static int
6367 ahd_init_scbdata(struct ahd_softc *ahd)
6368 {
6369 	struct	scb_data *scb_data;
6370 	int	i;
6371 
6372 	scb_data = &ahd->scb_data;
6373 	TAILQ_INIT(&scb_data->free_scbs);
6374 	for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++)
6375 		LIST_INIT(&scb_data->free_scb_lists[i]);
6376 	LIST_INIT(&scb_data->any_dev_free_scb_list);
6377 	SLIST_INIT(&scb_data->hscb_maps);
6378 	SLIST_INIT(&scb_data->sg_maps);
6379 	SLIST_INIT(&scb_data->sense_maps);
6380 
6381 	/* Determine the number of hardware SCBs and initialize them */
6382 	scb_data->maxhscbs = ahd_probe_scbs(ahd);
6383 	if (scb_data->maxhscbs == 0) {
6384 		printk("%s: No SCB space found\n", ahd_name(ahd));
6385 		return (ENXIO);
6386 	}
6387 
6388 	ahd_initialize_hscbs(ahd);
6389 
6390 	/*
6391 	 * Create our DMA tags.  These tags define the kinds of device
6392 	 * accessible memory allocations and memory mappings we will
6393 	 * need to perform during normal operation.
6394 	 *
6395 	 * Unless we need to further restrict the allocation, we rely
6396 	 * on the restrictions of the parent dmat, hence the common
6397 	 * use of MAXADDR and MAXSIZE.
6398 	 */
6399 
6400 	/* DMA tag for our hardware scb structures */
6401 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6402 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6403 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6404 			       /*highaddr*/BUS_SPACE_MAXADDR,
6405 			       /*filter*/NULL, /*filterarg*/NULL,
6406 			       PAGE_SIZE, /*nsegments*/1,
6407 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6408 			       /*flags*/0, &scb_data->hscb_dmat) != 0) {
6409 		goto error_exit;
6410 	}
6411 
6412 	scb_data->init_level++;
6413 
6414 	/* DMA tag for our S/G structures. */
6415 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8,
6416 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6417 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6418 			       /*highaddr*/BUS_SPACE_MAXADDR,
6419 			       /*filter*/NULL, /*filterarg*/NULL,
6420 			       ahd_sglist_allocsize(ahd), /*nsegments*/1,
6421 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6422 			       /*flags*/0, &scb_data->sg_dmat) != 0) {
6423 		goto error_exit;
6424 	}
6425 #ifdef AHD_DEBUG
6426 	if ((ahd_debug & AHD_SHOW_MEMORY) != 0)
6427 		printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd),
6428 		       ahd_sglist_allocsize(ahd));
6429 #endif
6430 
6431 	scb_data->init_level++;
6432 
6433 	/* DMA tag for our sense buffers.  We allocate in page sized chunks */
6434 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
6435 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
6436 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
6437 			       /*highaddr*/BUS_SPACE_MAXADDR,
6438 			       /*filter*/NULL, /*filterarg*/NULL,
6439 			       PAGE_SIZE, /*nsegments*/1,
6440 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
6441 			       /*flags*/0, &scb_data->sense_dmat) != 0) {
6442 		goto error_exit;
6443 	}
6444 
6445 	scb_data->init_level++;
6446 
6447 	/* Perform initial CCB allocation */
6448 	ahd_alloc_scbs(ahd);
6449 
6450 	if (scb_data->numscbs == 0) {
6451 		printk("%s: ahd_init_scbdata - "
6452 		       "Unable to allocate initial scbs\n",
6453 		       ahd_name(ahd));
6454 		goto error_exit;
6455 	}
6456 
6457 	/*
6458 	 * Note that we were successful
6459 	 */
6460 	return (0);
6461 
6462 error_exit:
6463 
6464 	return (ENOMEM);
6465 }
6466 
6467 static struct scb *
6468 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag)
6469 {
6470 	struct scb *scb;
6471 
6472 	/*
6473 	 * Look on the pending list.
6474 	 */
6475 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
6476 		if (SCB_GET_TAG(scb) == tag)
6477 			return (scb);
6478 	}
6479 
6480 	/*
6481 	 * Then on all of the collision free lists.
6482 	 */
6483 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6484 		struct scb *list_scb;
6485 
6486 		list_scb = scb;
6487 		do {
6488 			if (SCB_GET_TAG(list_scb) == tag)
6489 				return (list_scb);
6490 			list_scb = LIST_NEXT(list_scb, collision_links);
6491 		} while (list_scb);
6492 	}
6493 
6494 	/*
6495 	 * And finally on the generic free list.
6496 	 */
6497 	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
6498 		if (SCB_GET_TAG(scb) == tag)
6499 			return (scb);
6500 	}
6501 
6502 	return (NULL);
6503 }
6504 
6505 static void
6506 ahd_fini_scbdata(struct ahd_softc *ahd)
6507 {
6508 	struct scb_data *scb_data;
6509 
6510 	scb_data = &ahd->scb_data;
6511 	if (scb_data == NULL)
6512 		return;
6513 
6514 	switch (scb_data->init_level) {
6515 	default:
6516 	case 7:
6517 	{
6518 		struct map_node *sns_map;
6519 
6520 		while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) {
6521 			SLIST_REMOVE_HEAD(&scb_data->sense_maps, links);
6522 			ahd_dmamap_unload(ahd, scb_data->sense_dmat,
6523 					  sns_map->dmamap);
6524 			ahd_dmamem_free(ahd, scb_data->sense_dmat,
6525 					sns_map->vaddr, sns_map->dmamap);
6526 			kfree(sns_map);
6527 		}
6528 		ahd_dma_tag_destroy(ahd, scb_data->sense_dmat);
6529 	}
6530 		/* fall through */
6531 	case 6:
6532 	{
6533 		struct map_node *sg_map;
6534 
6535 		while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) {
6536 			SLIST_REMOVE_HEAD(&scb_data->sg_maps, links);
6537 			ahd_dmamap_unload(ahd, scb_data->sg_dmat,
6538 					  sg_map->dmamap);
6539 			ahd_dmamem_free(ahd, scb_data->sg_dmat,
6540 					sg_map->vaddr, sg_map->dmamap);
6541 			kfree(sg_map);
6542 		}
6543 		ahd_dma_tag_destroy(ahd, scb_data->sg_dmat);
6544 	}
6545 		/* fall through */
6546 	case 5:
6547 	{
6548 		struct map_node *hscb_map;
6549 
6550 		while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) {
6551 			SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links);
6552 			ahd_dmamap_unload(ahd, scb_data->hscb_dmat,
6553 					  hscb_map->dmamap);
6554 			ahd_dmamem_free(ahd, scb_data->hscb_dmat,
6555 					hscb_map->vaddr, hscb_map->dmamap);
6556 			kfree(hscb_map);
6557 		}
6558 		ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat);
6559 		/* FALLTHROUGH */
6560 	}
6561 	case 4:
6562 	case 3:
6563 	case 2:
6564 	case 1:
6565 	case 0:
6566 		break;
6567 	}
6568 }
6569 
6570 /*
6571  * DSP filter Bypass must be enabled until the first selection
6572  * after a change in bus mode (Razor #491 and #493).
6573  */
6574 static void
6575 ahd_setup_iocell_workaround(struct ahd_softc *ahd)
6576 {
6577 	ahd_mode_state saved_modes;
6578 
6579 	saved_modes = ahd_save_modes(ahd);
6580 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6581 	ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL)
6582 	       | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS);
6583 	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI));
6584 #ifdef AHD_DEBUG
6585 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6586 		printk("%s: Setting up iocell workaround\n", ahd_name(ahd));
6587 #endif
6588 	ahd_restore_modes(ahd, saved_modes);
6589 	ahd->flags &= ~AHD_HAD_FIRST_SEL;
6590 }
6591 
6592 static void
6593 ahd_iocell_first_selection(struct ahd_softc *ahd)
6594 {
6595 	ahd_mode_state	saved_modes;
6596 	u_int		sblkctl;
6597 
6598 	if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0)
6599 		return;
6600 	saved_modes = ahd_save_modes(ahd);
6601 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
6602 	sblkctl = ahd_inb(ahd, SBLKCTL);
6603 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
6604 #ifdef AHD_DEBUG
6605 	if ((ahd_debug & AHD_SHOW_MISC) != 0)
6606 		printk("%s: iocell first selection\n", ahd_name(ahd));
6607 #endif
6608 	if ((sblkctl & ENAB40) != 0) {
6609 		ahd_outb(ahd, DSPDATACTL,
6610 			 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB);
6611 #ifdef AHD_DEBUG
6612 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
6613 			printk("%s: BYPASS now disabled\n", ahd_name(ahd));
6614 #endif
6615 	}
6616 	ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI));
6617 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
6618 	ahd_restore_modes(ahd, saved_modes);
6619 	ahd->flags |= AHD_HAD_FIRST_SEL;
6620 }
6621 
6622 /*************************** SCB Management ***********************************/
6623 static void
6624 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx)
6625 {
6626 	struct	scb_list *free_list;
6627 	struct	scb_tailq *free_tailq;
6628 	struct	scb *first_scb;
6629 
6630 	scb->flags |= SCB_ON_COL_LIST;
6631 	AHD_SET_SCB_COL_IDX(scb, col_idx);
6632 	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6633 	free_tailq = &ahd->scb_data.free_scbs;
6634 	first_scb = LIST_FIRST(free_list);
6635 	if (first_scb != NULL) {
6636 		LIST_INSERT_AFTER(first_scb, scb, collision_links);
6637 	} else {
6638 		LIST_INSERT_HEAD(free_list, scb, collision_links);
6639 		TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe);
6640 	}
6641 }
6642 
6643 static void
6644 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb)
6645 {
6646 	struct	scb_list *free_list;
6647 	struct	scb_tailq *free_tailq;
6648 	struct	scb *first_scb;
6649 	u_int	col_idx;
6650 
6651 	scb->flags &= ~SCB_ON_COL_LIST;
6652 	col_idx = AHD_GET_SCB_COL_IDX(ahd, scb);
6653 	free_list = &ahd->scb_data.free_scb_lists[col_idx];
6654 	free_tailq = &ahd->scb_data.free_scbs;
6655 	first_scb = LIST_FIRST(free_list);
6656 	if (first_scb == scb) {
6657 		struct scb *next_scb;
6658 
6659 		/*
6660 		 * Maintain order in the collision free
6661 		 * lists for fairness if this device has
6662 		 * other colliding tags active.
6663 		 */
6664 		next_scb = LIST_NEXT(scb, collision_links);
6665 		if (next_scb != NULL) {
6666 			TAILQ_INSERT_AFTER(free_tailq, scb,
6667 					   next_scb, links.tqe);
6668 		}
6669 		TAILQ_REMOVE(free_tailq, scb, links.tqe);
6670 	}
6671 	LIST_REMOVE(scb, collision_links);
6672 }
6673 
6674 /*
6675  * Get a free scb. If there are none, see if we can allocate a new SCB.
6676  */
6677 struct scb *
6678 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx)
6679 {
6680 	struct scb *scb;
6681 	int tries;
6682 
6683 	tries = 0;
6684 look_again:
6685 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
6686 		if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) {
6687 			ahd_rem_col_list(ahd, scb);
6688 			goto found;
6689 		}
6690 	}
6691 	if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) {
6692 
6693 		if (tries++ != 0)
6694 			return (NULL);
6695 		ahd_alloc_scbs(ahd);
6696 		goto look_again;
6697 	}
6698 	LIST_REMOVE(scb, links.le);
6699 	if (col_idx != AHD_NEVER_COL_IDX
6700 	 && (scb->col_scb != NULL)
6701 	 && (scb->col_scb->flags & SCB_ACTIVE) == 0) {
6702 		LIST_REMOVE(scb->col_scb, links.le);
6703 		ahd_add_col_list(ahd, scb->col_scb, col_idx);
6704 	}
6705 found:
6706 	scb->flags |= SCB_ACTIVE;
6707 	return (scb);
6708 }
6709 
6710 /*
6711  * Return an SCB resource to the free list.
6712  */
6713 void
6714 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb)
6715 {
6716 	/* Clean up for the next user */
6717 	scb->flags = SCB_FLAG_NONE;
6718 	scb->hscb->control = 0;
6719 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL;
6720 
6721 	if (scb->col_scb == NULL) {
6722 
6723 		/*
6724 		 * No collision possible.  Just free normally.
6725 		 */
6726 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6727 				 scb, links.le);
6728 	} else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) {
6729 
6730 		/*
6731 		 * The SCB we might have collided with is on
6732 		 * a free collision list.  Put both SCBs on
6733 		 * the generic list.
6734 		 */
6735 		ahd_rem_col_list(ahd, scb->col_scb);
6736 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6737 				 scb, links.le);
6738 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6739 				 scb->col_scb, links.le);
6740 	} else if ((scb->col_scb->flags
6741 		  & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE
6742 		&& (scb->col_scb->hscb->control & TAG_ENB) != 0) {
6743 
6744 		/*
6745 		 * The SCB we might collide with on the next allocation
6746 		 * is still active in a non-packetized, tagged, context.
6747 		 * Put us on the SCB collision list.
6748 		 */
6749 		ahd_add_col_list(ahd, scb,
6750 				 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb));
6751 	} else {
6752 		/*
6753 		 * The SCB we might collide with on the next allocation
6754 		 * is either active in a packetized context, or free.
6755 		 * Since we can't collide, put this SCB on the generic
6756 		 * free list.
6757 		 */
6758 		LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list,
6759 				 scb, links.le);
6760 	}
6761 
6762 	ahd_platform_scb_free(ahd, scb);
6763 }
6764 
6765 static void
6766 ahd_alloc_scbs(struct ahd_softc *ahd)
6767 {
6768 	struct scb_data *scb_data;
6769 	struct scb	*next_scb;
6770 	struct hardware_scb *hscb;
6771 	struct map_node *hscb_map;
6772 	struct map_node *sg_map;
6773 	struct map_node *sense_map;
6774 	uint8_t		*segs;
6775 	uint8_t		*sense_data;
6776 	dma_addr_t	 hscb_busaddr;
6777 	dma_addr_t	 sg_busaddr;
6778 	dma_addr_t	 sense_busaddr;
6779 	int		 newcount;
6780 	int		 i;
6781 
6782 	scb_data = &ahd->scb_data;
6783 	if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC)
6784 		/* Can't allocate any more */
6785 		return;
6786 
6787 	if (scb_data->scbs_left != 0) {
6788 		int offset;
6789 
6790 		offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left;
6791 		hscb_map = SLIST_FIRST(&scb_data->hscb_maps);
6792 		hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset];
6793 		hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb));
6794 	} else {
6795 		hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC);
6796 
6797 		if (hscb_map == NULL)
6798 			return;
6799 
6800 		/* Allocate the next batch of hardware SCBs */
6801 		if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat,
6802 				     (void **)&hscb_map->vaddr,
6803 				     BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) {
6804 			kfree(hscb_map);
6805 			return;
6806 		}
6807 
6808 		SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links);
6809 
6810 		ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap,
6811 				hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6812 				&hscb_map->physaddr, /*flags*/0);
6813 
6814 		hscb = (struct hardware_scb *)hscb_map->vaddr;
6815 		hscb_busaddr = hscb_map->physaddr;
6816 		scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb);
6817 	}
6818 
6819 	if (scb_data->sgs_left != 0) {
6820 		int offset;
6821 
6822 		offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd))
6823 		       - scb_data->sgs_left) * ahd_sglist_size(ahd);
6824 		sg_map = SLIST_FIRST(&scb_data->sg_maps);
6825 		segs = sg_map->vaddr + offset;
6826 		sg_busaddr = sg_map->physaddr + offset;
6827 	} else {
6828 		sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC);
6829 
6830 		if (sg_map == NULL)
6831 			return;
6832 
6833 		/* Allocate the next batch of S/G lists */
6834 		if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat,
6835 				     (void **)&sg_map->vaddr,
6836 				     BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) {
6837 			kfree(sg_map);
6838 			return;
6839 		}
6840 
6841 		SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links);
6842 
6843 		ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap,
6844 				sg_map->vaddr, ahd_sglist_allocsize(ahd),
6845 				ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0);
6846 
6847 		segs = sg_map->vaddr;
6848 		sg_busaddr = sg_map->physaddr;
6849 		scb_data->sgs_left =
6850 		    ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd);
6851 #ifdef AHD_DEBUG
6852 		if (ahd_debug & AHD_SHOW_MEMORY)
6853 			printk("Mapped SG data\n");
6854 #endif
6855 	}
6856 
6857 	if (scb_data->sense_left != 0) {
6858 		int offset;
6859 
6860 		offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left);
6861 		sense_map = SLIST_FIRST(&scb_data->sense_maps);
6862 		sense_data = sense_map->vaddr + offset;
6863 		sense_busaddr = sense_map->physaddr + offset;
6864 	} else {
6865 		sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC);
6866 
6867 		if (sense_map == NULL)
6868 			return;
6869 
6870 		/* Allocate the next batch of sense buffers */
6871 		if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat,
6872 				     (void **)&sense_map->vaddr,
6873 				     BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) {
6874 			kfree(sense_map);
6875 			return;
6876 		}
6877 
6878 		SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links);
6879 
6880 		ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap,
6881 				sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb,
6882 				&sense_map->physaddr, /*flags*/0);
6883 
6884 		sense_data = sense_map->vaddr;
6885 		sense_busaddr = sense_map->physaddr;
6886 		scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE;
6887 #ifdef AHD_DEBUG
6888 		if (ahd_debug & AHD_SHOW_MEMORY)
6889 			printk("Mapped sense data\n");
6890 #endif
6891 	}
6892 
6893 	newcount = min(scb_data->sense_left, scb_data->scbs_left);
6894 	newcount = min(newcount, scb_data->sgs_left);
6895 	newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs));
6896 	for (i = 0; i < newcount; i++) {
6897 		struct scb_platform_data *pdata;
6898 		u_int col_tag;
6899 
6900 		next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC);
6901 		if (next_scb == NULL)
6902 			break;
6903 
6904 		pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC);
6905 		if (pdata == NULL) {
6906 			kfree(next_scb);
6907 			break;
6908 		}
6909 		next_scb->platform_data = pdata;
6910 		next_scb->hscb_map = hscb_map;
6911 		next_scb->sg_map = sg_map;
6912 		next_scb->sense_map = sense_map;
6913 		next_scb->sg_list = segs;
6914 		next_scb->sense_data = sense_data;
6915 		next_scb->sense_busaddr = sense_busaddr;
6916 		memset(hscb, 0, sizeof(*hscb));
6917 		next_scb->hscb = hscb;
6918 		hscb->hscb_busaddr = ahd_htole32(hscb_busaddr);
6919 
6920 		/*
6921 		 * The sequencer always starts with the second entry.
6922 		 * The first entry is embedded in the scb.
6923 		 */
6924 		next_scb->sg_list_busaddr = sg_busaddr;
6925 		if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
6926 			next_scb->sg_list_busaddr
6927 			    += sizeof(struct ahd_dma64_seg);
6928 		else
6929 			next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg);
6930 		next_scb->ahd_softc = ahd;
6931 		next_scb->flags = SCB_FLAG_NONE;
6932 		next_scb->hscb->tag = ahd_htole16(scb_data->numscbs);
6933 		col_tag = scb_data->numscbs ^ 0x100;
6934 		next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag);
6935 		if (next_scb->col_scb != NULL)
6936 			next_scb->col_scb->col_scb = next_scb;
6937 		ahd_free_scb(ahd, next_scb);
6938 		hscb++;
6939 		hscb_busaddr += sizeof(*hscb);
6940 		segs += ahd_sglist_size(ahd);
6941 		sg_busaddr += ahd_sglist_size(ahd);
6942 		sense_data += AHD_SENSE_BUFSIZE;
6943 		sense_busaddr += AHD_SENSE_BUFSIZE;
6944 		scb_data->numscbs++;
6945 		scb_data->sense_left--;
6946 		scb_data->scbs_left--;
6947 		scb_data->sgs_left--;
6948 	}
6949 }
6950 
6951 void
6952 ahd_controller_info(struct ahd_softc *ahd, char *buf)
6953 {
6954 	const char *speed;
6955 	const char *type;
6956 	int len;
6957 
6958 	len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]);
6959 	buf += len;
6960 
6961 	speed = "Ultra320 ";
6962 	if ((ahd->features & AHD_WIDE) != 0) {
6963 		type = "Wide ";
6964 	} else {
6965 		type = "Single ";
6966 	}
6967 	len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ",
6968 		      speed, type, ahd->channel, ahd->our_id);
6969 	buf += len;
6970 
6971 	sprintf(buf, "%s, %d SCBs", ahd->bus_description,
6972 		ahd->scb_data.maxhscbs);
6973 }
6974 
6975 static const char *channel_strings[] = {
6976 	"Primary Low",
6977 	"Primary High",
6978 	"Secondary Low",
6979 	"Secondary High"
6980 };
6981 
6982 static const char *termstat_strings[] = {
6983 	"Terminated Correctly",
6984 	"Over Terminated",
6985 	"Under Terminated",
6986 	"Not Configured"
6987 };
6988 
6989 /***************************** Timer Facilities *******************************/
6990 static void
6991 ahd_timer_reset(struct timer_list *timer, int usec)
6992 {
6993 	del_timer(timer);
6994 	timer->expires = jiffies + (usec * HZ)/1000000;
6995 	add_timer(timer);
6996 }
6997 
6998 /*
6999  * Start the board, ready for normal operation
7000  */
7001 int
7002 ahd_init(struct ahd_softc *ahd)
7003 {
7004 	uint8_t		*next_vaddr;
7005 	dma_addr_t	 next_baddr;
7006 	size_t		 driver_data_size;
7007 	int		 i;
7008 	int		 error;
7009 	u_int		 warn_user;
7010 	uint8_t		 current_sensing;
7011 	uint8_t		 fstat;
7012 
7013 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7014 
7015 	ahd->stack_size = ahd_probe_stack_size(ahd);
7016 	ahd->saved_stack = kmalloc_array(ahd->stack_size, sizeof(uint16_t),
7017 					 GFP_ATOMIC);
7018 	if (ahd->saved_stack == NULL)
7019 		return (ENOMEM);
7020 
7021 	/*
7022 	 * Verify that the compiler hasn't over-aggressively
7023 	 * padded important structures.
7024 	 */
7025 	if (sizeof(struct hardware_scb) != 64)
7026 		panic("Hardware SCB size is incorrect");
7027 
7028 #ifdef AHD_DEBUG
7029 	if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0)
7030 		ahd->flags |= AHD_SEQUENCER_DEBUG;
7031 #endif
7032 
7033 	/*
7034 	 * Default to allowing initiator operations.
7035 	 */
7036 	ahd->flags |= AHD_INITIATORROLE;
7037 
7038 	/*
7039 	 * Only allow target mode features if this unit has them enabled.
7040 	 */
7041 	if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0)
7042 		ahd->features &= ~AHD_TARGETMODE;
7043 
7044 	ahd->init_level++;
7045 
7046 	/*
7047 	 * DMA tag for our command fifos and other data in system memory
7048 	 * the card's sequencer must be able to access.  For initiator
7049 	 * roles, we need to allocate space for the qoutfifo.  When providing
7050 	 * for the target mode role, we must additionally provide space for
7051 	 * the incoming target command fifo.
7052 	 */
7053 	driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo)
7054 			 + sizeof(struct hardware_scb);
7055 	if ((ahd->features & AHD_TARGETMODE) != 0)
7056 		driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7057 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0)
7058 		driver_data_size += PKT_OVERRUN_BUFSIZE;
7059 	if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1,
7060 			       /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1,
7061 			       /*lowaddr*/BUS_SPACE_MAXADDR_32BIT,
7062 			       /*highaddr*/BUS_SPACE_MAXADDR,
7063 			       /*filter*/NULL, /*filterarg*/NULL,
7064 			       driver_data_size,
7065 			       /*nsegments*/1,
7066 			       /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT,
7067 			       /*flags*/0, &ahd->shared_data_dmat) != 0) {
7068 		return (ENOMEM);
7069 	}
7070 
7071 	ahd->init_level++;
7072 
7073 	/* Allocation of driver data */
7074 	if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat,
7075 			     (void **)&ahd->shared_data_map.vaddr,
7076 			     BUS_DMA_NOWAIT,
7077 			     &ahd->shared_data_map.dmamap) != 0) {
7078 		return (ENOMEM);
7079 	}
7080 
7081 	ahd->init_level++;
7082 
7083 	/* And permanently map it in */
7084 	ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
7085 			ahd->shared_data_map.vaddr, driver_data_size,
7086 			ahd_dmamap_cb, &ahd->shared_data_map.physaddr,
7087 			/*flags*/0);
7088 	ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr;
7089 	next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE];
7090 	next_baddr = ahd->shared_data_map.physaddr
7091 		   + AHD_QOUT_SIZE*sizeof(struct ahd_completion);
7092 	if ((ahd->features & AHD_TARGETMODE) != 0) {
7093 		ahd->targetcmds = (struct target_cmd *)next_vaddr;
7094 		next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7095 		next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd);
7096 	}
7097 
7098 	if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) {
7099 		ahd->overrun_buf = next_vaddr;
7100 		next_vaddr += PKT_OVERRUN_BUFSIZE;
7101 		next_baddr += PKT_OVERRUN_BUFSIZE;
7102 	}
7103 
7104 	/*
7105 	 * We need one SCB to serve as the "next SCB".  Since the
7106 	 * tag identifier in this SCB will never be used, there is
7107 	 * no point in using a valid HSCB tag from an SCB pulled from
7108 	 * the standard free pool.  So, we allocate this "sentinel"
7109 	 * specially from the DMA safe memory chunk used for the QOUTFIFO.
7110 	 */
7111 	ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr;
7112 	ahd->next_queued_hscb_map = &ahd->shared_data_map;
7113 	ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr);
7114 
7115 	ahd->init_level++;
7116 
7117 	/* Allocate SCB data now that buffer_dmat is initialized */
7118 	if (ahd_init_scbdata(ahd) != 0)
7119 		return (ENOMEM);
7120 
7121 	if ((ahd->flags & AHD_INITIATORROLE) == 0)
7122 		ahd->flags &= ~AHD_RESET_BUS_A;
7123 
7124 	/*
7125 	 * Before committing these settings to the chip, give
7126 	 * the OSM one last chance to modify our configuration.
7127 	 */
7128 	ahd_platform_init(ahd);
7129 
7130 	/* Bring up the chip. */
7131 	ahd_chip_init(ahd);
7132 
7133 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7134 
7135 	if ((ahd->flags & AHD_CURRENT_SENSING) == 0)
7136 		goto init_done;
7137 
7138 	/*
7139 	 * Verify termination based on current draw and
7140 	 * warn user if the bus is over/under terminated.
7141 	 */
7142 	error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL,
7143 				   CURSENSE_ENB);
7144 	if (error != 0) {
7145 		printk("%s: current sensing timeout 1\n", ahd_name(ahd));
7146 		goto init_done;
7147 	}
7148 	for (i = 20, fstat = FLX_FSTAT_BUSY;
7149 	     (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) {
7150 		error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat);
7151 		if (error != 0) {
7152 			printk("%s: current sensing timeout 2\n",
7153 			       ahd_name(ahd));
7154 			goto init_done;
7155 		}
7156 	}
7157 	if (i == 0) {
7158 		printk("%s: Timedout during current-sensing test\n",
7159 		       ahd_name(ahd));
7160 		goto init_done;
7161 	}
7162 
7163 	/* Latch Current Sensing status. */
7164 	error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, &current_sensing);
7165 	if (error != 0) {
7166 		printk("%s: current sensing timeout 3\n", ahd_name(ahd));
7167 		goto init_done;
7168 	}
7169 
7170 	/* Diable current sensing. */
7171 	ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0);
7172 
7173 #ifdef AHD_DEBUG
7174 	if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) {
7175 		printk("%s: current_sensing == 0x%x\n",
7176 		       ahd_name(ahd), current_sensing);
7177 	}
7178 #endif
7179 	warn_user = 0;
7180 	for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) {
7181 		u_int term_stat;
7182 
7183 		term_stat = (current_sensing & FLX_CSTAT_MASK);
7184 		switch (term_stat) {
7185 		case FLX_CSTAT_OVER:
7186 		case FLX_CSTAT_UNDER:
7187 			warn_user++;
7188 			/* fall through */
7189 		case FLX_CSTAT_INVALID:
7190 		case FLX_CSTAT_OKAY:
7191 			if (warn_user == 0 && bootverbose == 0)
7192 				break;
7193 			printk("%s: %s Channel %s\n", ahd_name(ahd),
7194 			       channel_strings[i], termstat_strings[term_stat]);
7195 			break;
7196 		}
7197 	}
7198 	if (warn_user) {
7199 		printk("%s: WARNING. Termination is not configured correctly.\n"
7200 		       "%s: WARNING. SCSI bus operations may FAIL.\n",
7201 		       ahd_name(ahd), ahd_name(ahd));
7202 	}
7203 init_done:
7204 	ahd_restart(ahd);
7205 	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
7206 	return (0);
7207 }
7208 
7209 /*
7210  * (Re)initialize chip state after a chip reset.
7211  */
7212 static void
7213 ahd_chip_init(struct ahd_softc *ahd)
7214 {
7215 	uint32_t busaddr;
7216 	u_int	 sxfrctl1;
7217 	u_int	 scsiseq_template;
7218 	u_int	 wait;
7219 	u_int	 i;
7220 	u_int	 target;
7221 
7222 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7223 	/*
7224 	 * Take the LED out of diagnostic mode
7225 	 */
7226 	ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON));
7227 
7228 	/*
7229 	 * Return HS_MAILBOX to its default value.
7230 	 */
7231 	ahd->hs_mailbox = 0;
7232 	ahd_outb(ahd, HS_MAILBOX, 0);
7233 
7234 	/* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */
7235 	ahd_outb(ahd, IOWNID, ahd->our_id);
7236 	ahd_outb(ahd, TOWNID, ahd->our_id);
7237 	sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0;
7238 	sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0;
7239 	if ((ahd->bugs & AHD_LONG_SETIMO_BUG)
7240 	 && (ahd->seltime != STIMESEL_MIN)) {
7241 		/*
7242 		 * The selection timer duration is twice as long
7243 		 * as it should be.  Halve it by adding "1" to
7244 		 * the user specified setting.
7245 		 */
7246 		sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ;
7247 	} else {
7248 		sxfrctl1 |= ahd->seltime;
7249 	}
7250 
7251 	ahd_outb(ahd, SXFRCTL0, DFON);
7252 	ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN);
7253 	ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR);
7254 
7255 	/*
7256 	 * Now that termination is set, wait for up
7257 	 * to 500ms for our transceivers to settle.  If
7258 	 * the adapter does not have a cable attached,
7259 	 * the transceivers may never settle, so don't
7260 	 * complain if we fail here.
7261 	 */
7262 	for (wait = 10000;
7263 	     (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait;
7264 	     wait--)
7265 		ahd_delay(100);
7266 
7267 	/* Clear any false bus resets due to the transceivers settling */
7268 	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
7269 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7270 
7271 	/* Initialize mode specific S/G state. */
7272 	for (i = 0; i < 2; i++) {
7273 		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
7274 		ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR);
7275 		ahd_outb(ahd, SG_STATE, 0);
7276 		ahd_outb(ahd, CLRSEQINTSRC, 0xFF);
7277 		ahd_outb(ahd, SEQIMODE,
7278 			 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT
7279 			|ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD);
7280 	}
7281 
7282 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
7283 	ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN);
7284 	ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75);
7285 	ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN);
7286 	ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR);
7287 	if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) {
7288 		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE);
7289 	} else {
7290 		ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE);
7291 	}
7292 	ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS);
7293 	if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX)
7294 		/*
7295 		 * Do not issue a target abort when a split completion
7296 		 * error occurs.  Let our PCIX interrupt handler deal
7297 		 * with it instead. H2A4 Razor #625
7298 		 */
7299 		ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS);
7300 
7301 	if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0)
7302 		ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER);
7303 
7304 	/*
7305 	 * Tweak IOCELL settings.
7306 	 */
7307 	if ((ahd->flags & AHD_HP_BOARD) != 0) {
7308 		for (i = 0; i < NUMDSPS; i++) {
7309 			ahd_outb(ahd, DSPSELECT, i);
7310 			ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT);
7311 		}
7312 #ifdef AHD_DEBUG
7313 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7314 			printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd),
7315 			       WRTBIASCTL_HP_DEFAULT);
7316 #endif
7317 	}
7318 	ahd_setup_iocell_workaround(ahd);
7319 
7320 	/*
7321 	 * Enable LQI Manager interrupts.
7322 	 */
7323 	ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT
7324 			      | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI
7325 			      | ENLQIOVERI_LQ|ENLQIOVERI_NLQ);
7326 	ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC);
7327 	/*
7328 	 * We choose to have the sequencer catch LQOPHCHGINPKT errors
7329 	 * manually for the command phase at the start of a packetized
7330 	 * selection case.  ENLQOBUSFREE should be made redundant by
7331 	 * the BUSFREE interrupt, but it seems that some LQOBUSFREE
7332 	 * events fail to assert the BUSFREE interrupt so we must
7333 	 * also enable LQOBUSFREE interrupts.
7334 	 */
7335 	ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE);
7336 
7337 	/*
7338 	 * Setup sequencer interrupt handlers.
7339 	 */
7340 	ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr));
7341 	ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr));
7342 
7343 	/*
7344 	 * Setup SCB Offset registers.
7345 	 */
7346 	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7347 		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb,
7348 			 pkt_long_lun));
7349 	} else {
7350 		ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun));
7351 	}
7352 	ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len));
7353 	ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute));
7354 	ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management));
7355 	ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb,
7356 				       shared_data.idata.cdb));
7357 	ahd_outb(ahd, QNEXTPTR,
7358 		 offsetof(struct hardware_scb, next_hscb_busaddr));
7359 	ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET);
7360 	ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control));
7361 	if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) {
7362 		ahd_outb(ahd, LUNLEN,
7363 			 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1);
7364 	} else {
7365 		ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN);
7366 	}
7367 	ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1);
7368 	ahd_outb(ahd, MAXCMD, 0xFF);
7369 	ahd_outb(ahd, SCBAUTOPTR,
7370 		 AUSCBPTR_EN | offsetof(struct hardware_scb, tag));
7371 
7372 	/* We haven't been enabled for target mode yet. */
7373 	ahd_outb(ahd, MULTARGID, 0);
7374 	ahd_outb(ahd, MULTARGID + 1, 0);
7375 
7376 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7377 	/* Initialize the negotiation table. */
7378 	if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) {
7379 		/*
7380 		 * Clear the spare bytes in the neg table to avoid
7381 		 * spurious parity errors.
7382 		 */
7383 		for (target = 0; target < AHD_NUM_TARGETS; target++) {
7384 			ahd_outb(ahd, NEGOADDR, target);
7385 			ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0);
7386 			for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++)
7387 				ahd_outb(ahd, ANNEXDAT, 0);
7388 		}
7389 	}
7390 	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7391 		struct	 ahd_devinfo devinfo;
7392 		struct	 ahd_initiator_tinfo *tinfo;
7393 		struct	 ahd_tmode_tstate *tstate;
7394 
7395 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7396 					    target, &tstate);
7397 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7398 				    target, CAM_LUN_WILDCARD,
7399 				    'A', ROLE_INITIATOR);
7400 		ahd_update_neg_table(ahd, &devinfo, &tinfo->curr);
7401 	}
7402 
7403 	ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR);
7404 	ahd_outb(ahd, CLRINT, CLRSCSIINT);
7405 
7406 #ifdef NEEDS_MORE_TESTING
7407 	/*
7408 	 * Always enable abort on incoming L_Qs if this feature is
7409 	 * supported.  We use this to catch invalid SCB references.
7410 	 */
7411 	if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0)
7412 		ahd_outb(ahd, LQCTL1, ABORTPENDING);
7413 	else
7414 #endif
7415 		ahd_outb(ahd, LQCTL1, 0);
7416 
7417 	/* All of our queues are empty */
7418 	ahd->qoutfifonext = 0;
7419 	ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID;
7420 	ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID);
7421 	for (i = 0; i < AHD_QOUT_SIZE; i++)
7422 		ahd->qoutfifo[i].valid_tag = 0;
7423 	ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD);
7424 
7425 	ahd->qinfifonext = 0;
7426 	for (i = 0; i < AHD_QIN_SIZE; i++)
7427 		ahd->qinfifo[i] = SCB_LIST_NULL;
7428 
7429 	if ((ahd->features & AHD_TARGETMODE) != 0) {
7430 		/* All target command blocks start out invalid. */
7431 		for (i = 0; i < AHD_TMODE_CMDS; i++)
7432 			ahd->targetcmds[i].cmd_valid = 0;
7433 		ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD);
7434 		ahd->tqinfifonext = 1;
7435 		ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1);
7436 		ahd_outb(ahd, TQINPOS, ahd->tqinfifonext);
7437 	}
7438 
7439 	/* Initialize Scratch Ram. */
7440 	ahd_outb(ahd, SEQ_FLAGS, 0);
7441 	ahd_outb(ahd, SEQ_FLAGS2, 0);
7442 
7443 	/* We don't have any waiting selections */
7444 	ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL);
7445 	ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL);
7446 	ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL);
7447 	ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF);
7448 	for (i = 0; i < AHD_NUM_TARGETS; i++)
7449 		ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL);
7450 
7451 	/*
7452 	 * Nobody is waiting to be DMAed into the QOUTFIFO.
7453 	 */
7454 	ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL);
7455 	ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL);
7456 	ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL);
7457 	ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL);
7458 	ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL);
7459 
7460 	/*
7461 	 * The Freeze Count is 0.
7462 	 */
7463 	ahd->qfreeze_cnt = 0;
7464 	ahd_outw(ahd, QFREEZE_COUNT, 0);
7465 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0);
7466 
7467 	/*
7468 	 * Tell the sequencer where it can find our arrays in memory.
7469 	 */
7470 	busaddr = ahd->shared_data_map.physaddr;
7471 	ahd_outl(ahd, SHARED_DATA_ADDR, busaddr);
7472 	ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr);
7473 
7474 	/*
7475 	 * Setup the allowed SCSI Sequences based on operational mode.
7476 	 * If we are a target, we'll enable select in operations once
7477 	 * we've had a lun enabled.
7478 	 */
7479 	scsiseq_template = ENAUTOATNP;
7480 	if ((ahd->flags & AHD_INITIATORROLE) != 0)
7481 		scsiseq_template |= ENRSELI;
7482 	ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template);
7483 
7484 	/* There are no busy SCBs yet. */
7485 	for (target = 0; target < AHD_NUM_TARGETS; target++) {
7486 		int lun;
7487 
7488 		for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++)
7489 			ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun));
7490 	}
7491 
7492 	/*
7493 	 * Initialize the group code to command length table.
7494 	 * Vendor Unique codes are set to 0 so we only capture
7495 	 * the first byte of the cdb.  These can be overridden
7496 	 * when target mode is enabled.
7497 	 */
7498 	ahd_outb(ahd, CMDSIZE_TABLE, 5);
7499 	ahd_outb(ahd, CMDSIZE_TABLE + 1, 9);
7500 	ahd_outb(ahd, CMDSIZE_TABLE + 2, 9);
7501 	ahd_outb(ahd, CMDSIZE_TABLE + 3, 0);
7502 	ahd_outb(ahd, CMDSIZE_TABLE + 4, 15);
7503 	ahd_outb(ahd, CMDSIZE_TABLE + 5, 11);
7504 	ahd_outb(ahd, CMDSIZE_TABLE + 6, 0);
7505 	ahd_outb(ahd, CMDSIZE_TABLE + 7, 0);
7506 
7507 	/* Tell the sequencer of our initial queue positions */
7508 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
7509 	ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512);
7510 	ahd->qinfifonext = 0;
7511 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
7512 	ahd_set_hescb_qoff(ahd, 0);
7513 	ahd_set_snscb_qoff(ahd, 0);
7514 	ahd_set_sescb_qoff(ahd, 0);
7515 	ahd_set_sdscb_qoff(ahd, 0);
7516 
7517 	/*
7518 	 * Tell the sequencer which SCB will be the next one it receives.
7519 	 */
7520 	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
7521 	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
7522 
7523 	/*
7524 	 * Default to coalescing disabled.
7525 	 */
7526 	ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0);
7527 	ahd_outw(ahd, CMDS_PENDING, 0);
7528 	ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer,
7529 				     ahd->int_coalescing_maxcmds,
7530 				     ahd->int_coalescing_mincmds);
7531 	ahd_enable_coalescing(ahd, FALSE);
7532 
7533 	ahd_loadseq(ahd);
7534 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
7535 
7536 	if (ahd->features & AHD_AIC79XXB_SLOWCRC) {
7537 		u_int negodat3 = ahd_inb(ahd, NEGCONOPTS);
7538 
7539 		negodat3 |= ENSLOWCRC;
7540 		ahd_outb(ahd, NEGCONOPTS, negodat3);
7541 		negodat3 = ahd_inb(ahd, NEGCONOPTS);
7542 		if (!(negodat3 & ENSLOWCRC))
7543 			printk("aic79xx: failed to set the SLOWCRC bit\n");
7544 		else
7545 			printk("aic79xx: SLOWCRC bit set\n");
7546 	}
7547 }
7548 
7549 /*
7550  * Setup default device and controller settings.
7551  * This should only be called if our probe has
7552  * determined that no configuration data is available.
7553  */
7554 int
7555 ahd_default_config(struct ahd_softc *ahd)
7556 {
7557 	int	targ;
7558 
7559 	ahd->our_id = 7;
7560 
7561 	/*
7562 	 * Allocate a tstate to house information for our
7563 	 * initiator presence on the bus as well as the user
7564 	 * data for any target mode initiator.
7565 	 */
7566 	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7567 		printk("%s: unable to allocate ahd_tmode_tstate.  "
7568 		       "Failing attach\n", ahd_name(ahd));
7569 		return (ENOMEM);
7570 	}
7571 
7572 	for (targ = 0; targ < AHD_NUM_TARGETS; targ++) {
7573 		struct	 ahd_devinfo devinfo;
7574 		struct	 ahd_initiator_tinfo *tinfo;
7575 		struct	 ahd_tmode_tstate *tstate;
7576 		uint16_t target_mask;
7577 
7578 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7579 					    targ, &tstate);
7580 		/*
7581 		 * We support SPC2 and SPI4.
7582 		 */
7583 		tinfo->user.protocol_version = 4;
7584 		tinfo->user.transport_version = 4;
7585 
7586 		target_mask = 0x01 << targ;
7587 		ahd->user_discenable |= target_mask;
7588 		tstate->discenable |= target_mask;
7589 		ahd->user_tagenable |= target_mask;
7590 #ifdef AHD_FORCE_160
7591 		tinfo->user.period = AHD_SYNCRATE_DT;
7592 #else
7593 		tinfo->user.period = AHD_SYNCRATE_160;
7594 #endif
7595 		tinfo->user.offset = MAX_OFFSET;
7596 		tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM
7597 					| MSG_EXT_PPR_WR_FLOW
7598 					| MSG_EXT_PPR_HOLD_MCS
7599 					| MSG_EXT_PPR_IU_REQ
7600 					| MSG_EXT_PPR_QAS_REQ
7601 					| MSG_EXT_PPR_DT_REQ;
7602 		if ((ahd->features & AHD_RTI) != 0)
7603 			tinfo->user.ppr_options |= MSG_EXT_PPR_RTI;
7604 
7605 		tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT;
7606 
7607 		/*
7608 		 * Start out Async/Narrow/Untagged and with
7609 		 * conservative protocol support.
7610 		 */
7611 		tinfo->goal.protocol_version = 2;
7612 		tinfo->goal.transport_version = 2;
7613 		tinfo->curr.protocol_version = 2;
7614 		tinfo->curr.transport_version = 2;
7615 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7616 				    targ, CAM_LUN_WILDCARD,
7617 				    'A', ROLE_INITIATOR);
7618 		tstate->tagenable &= ~target_mask;
7619 		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7620 			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7621 		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7622 				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7623 				 /*paused*/TRUE);
7624 	}
7625 	return (0);
7626 }
7627 
7628 /*
7629  * Parse device configuration information.
7630  */
7631 int
7632 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc)
7633 {
7634 	int targ;
7635 	int max_targ;
7636 
7637 	max_targ = sc->max_targets & CFMAXTARG;
7638 	ahd->our_id = sc->brtime_id & CFSCSIID;
7639 
7640 	/*
7641 	 * Allocate a tstate to house information for our
7642 	 * initiator presence on the bus as well as the user
7643 	 * data for any target mode initiator.
7644 	 */
7645 	if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) {
7646 		printk("%s: unable to allocate ahd_tmode_tstate.  "
7647 		       "Failing attach\n", ahd_name(ahd));
7648 		return (ENOMEM);
7649 	}
7650 
7651 	for (targ = 0; targ < max_targ; targ++) {
7652 		struct	 ahd_devinfo devinfo;
7653 		struct	 ahd_initiator_tinfo *tinfo;
7654 		struct	 ahd_transinfo *user_tinfo;
7655 		struct	 ahd_tmode_tstate *tstate;
7656 		uint16_t target_mask;
7657 
7658 		tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id,
7659 					    targ, &tstate);
7660 		user_tinfo = &tinfo->user;
7661 
7662 		/*
7663 		 * We support SPC2 and SPI4.
7664 		 */
7665 		tinfo->user.protocol_version = 4;
7666 		tinfo->user.transport_version = 4;
7667 
7668 		target_mask = 0x01 << targ;
7669 		ahd->user_discenable &= ~target_mask;
7670 		tstate->discenable &= ~target_mask;
7671 		ahd->user_tagenable &= ~target_mask;
7672 		if (sc->device_flags[targ] & CFDISC) {
7673 			tstate->discenable |= target_mask;
7674 			ahd->user_discenable |= target_mask;
7675 			ahd->user_tagenable |= target_mask;
7676 		} else {
7677 			/*
7678 			 * Cannot be packetized without disconnection.
7679 			 */
7680 			sc->device_flags[targ] &= ~CFPACKETIZED;
7681 		}
7682 
7683 		user_tinfo->ppr_options = 0;
7684 		user_tinfo->period = (sc->device_flags[targ] & CFXFER);
7685 		if (user_tinfo->period < CFXFER_ASYNC) {
7686 			if (user_tinfo->period <= AHD_PERIOD_10MHz)
7687 				user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ;
7688 			user_tinfo->offset = MAX_OFFSET;
7689 		} else  {
7690 			user_tinfo->offset = 0;
7691 			user_tinfo->period = AHD_ASYNC_XFER_PERIOD;
7692 		}
7693 #ifdef AHD_FORCE_160
7694 		if (user_tinfo->period <= AHD_SYNCRATE_160)
7695 			user_tinfo->period = AHD_SYNCRATE_DT;
7696 #endif
7697 
7698 		if ((sc->device_flags[targ] & CFPACKETIZED) != 0) {
7699 			user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM
7700 						|  MSG_EXT_PPR_WR_FLOW
7701 						|  MSG_EXT_PPR_HOLD_MCS
7702 						|  MSG_EXT_PPR_IU_REQ;
7703 			if ((ahd->features & AHD_RTI) != 0)
7704 				user_tinfo->ppr_options |= MSG_EXT_PPR_RTI;
7705 		}
7706 
7707 		if ((sc->device_flags[targ] & CFQAS) != 0)
7708 			user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ;
7709 
7710 		if ((sc->device_flags[targ] & CFWIDEB) != 0)
7711 			user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT;
7712 		else
7713 			user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT;
7714 #ifdef AHD_DEBUG
7715 		if ((ahd_debug & AHD_SHOW_MISC) != 0)
7716 			printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width,
7717 			       user_tinfo->period, user_tinfo->offset,
7718 			       user_tinfo->ppr_options);
7719 #endif
7720 		/*
7721 		 * Start out Async/Narrow/Untagged and with
7722 		 * conservative protocol support.
7723 		 */
7724 		tstate->tagenable &= ~target_mask;
7725 		tinfo->goal.protocol_version = 2;
7726 		tinfo->goal.transport_version = 2;
7727 		tinfo->curr.protocol_version = 2;
7728 		tinfo->curr.transport_version = 2;
7729 		ahd_compile_devinfo(&devinfo, ahd->our_id,
7730 				    targ, CAM_LUN_WILDCARD,
7731 				    'A', ROLE_INITIATOR);
7732 		ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
7733 			      AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE);
7734 		ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0,
7735 				 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL,
7736 				 /*paused*/TRUE);
7737 	}
7738 
7739 	ahd->flags &= ~AHD_SPCHK_ENB_A;
7740 	if (sc->bios_control & CFSPARITY)
7741 		ahd->flags |= AHD_SPCHK_ENB_A;
7742 
7743 	ahd->flags &= ~AHD_RESET_BUS_A;
7744 	if (sc->bios_control & CFRESETB)
7745 		ahd->flags |= AHD_RESET_BUS_A;
7746 
7747 	ahd->flags &= ~AHD_EXTENDED_TRANS_A;
7748 	if (sc->bios_control & CFEXTEND)
7749 		ahd->flags |= AHD_EXTENDED_TRANS_A;
7750 
7751 	ahd->flags &= ~AHD_BIOS_ENABLED;
7752 	if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED)
7753 		ahd->flags |= AHD_BIOS_ENABLED;
7754 
7755 	ahd->flags &= ~AHD_STPWLEVEL_A;
7756 	if ((sc->adapter_control & CFSTPWLEVEL) != 0)
7757 		ahd->flags |= AHD_STPWLEVEL_A;
7758 
7759 	return (0);
7760 }
7761 
7762 /*
7763  * Parse device configuration information.
7764  */
7765 int
7766 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd)
7767 {
7768 	int error;
7769 
7770 	error = ahd_verify_vpd_cksum(vpd);
7771 	if (error == 0)
7772 		return (EINVAL);
7773 	if ((vpd->bios_flags & VPDBOOTHOST) != 0)
7774 		ahd->flags |= AHD_BOOT_CHANNEL;
7775 	return (0);
7776 }
7777 
7778 void
7779 ahd_intr_enable(struct ahd_softc *ahd, int enable)
7780 {
7781 	u_int hcntrl;
7782 
7783 	hcntrl = ahd_inb(ahd, HCNTRL);
7784 	hcntrl &= ~INTEN;
7785 	ahd->pause &= ~INTEN;
7786 	ahd->unpause &= ~INTEN;
7787 	if (enable) {
7788 		hcntrl |= INTEN;
7789 		ahd->pause |= INTEN;
7790 		ahd->unpause |= INTEN;
7791 	}
7792 	ahd_outb(ahd, HCNTRL, hcntrl);
7793 }
7794 
7795 static void
7796 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds,
7797 			     u_int mincmds)
7798 {
7799 	if (timer > AHD_TIMER_MAX_US)
7800 		timer = AHD_TIMER_MAX_US;
7801 	ahd->int_coalescing_timer = timer;
7802 
7803 	if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX)
7804 		maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX;
7805 	if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX)
7806 		mincmds = AHD_INT_COALESCING_MINCMDS_MAX;
7807 	ahd->int_coalescing_maxcmds = maxcmds;
7808 	ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK);
7809 	ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds);
7810 	ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds);
7811 }
7812 
7813 static void
7814 ahd_enable_coalescing(struct ahd_softc *ahd, int enable)
7815 {
7816 
7817 	ahd->hs_mailbox &= ~ENINT_COALESCE;
7818 	if (enable)
7819 		ahd->hs_mailbox |= ENINT_COALESCE;
7820 	ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox);
7821 	ahd_flush_device_writes(ahd);
7822 	ahd_run_qoutfifo(ahd);
7823 }
7824 
7825 /*
7826  * Ensure that the card is paused in a location
7827  * outside of all critical sections and that all
7828  * pending work is completed prior to returning.
7829  * This routine should only be called from outside
7830  * an interrupt context.
7831  */
7832 void
7833 ahd_pause_and_flushwork(struct ahd_softc *ahd)
7834 {
7835 	u_int intstat;
7836 	u_int maxloops;
7837 
7838 	maxloops = 1000;
7839 	ahd->flags |= AHD_ALL_INTERRUPTS;
7840 	ahd_pause(ahd);
7841 	/*
7842 	 * Freeze the outgoing selections.  We do this only
7843 	 * until we are safely paused without further selections
7844 	 * pending.
7845 	 */
7846 	ahd->qfreeze_cnt--;
7847 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7848 	ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN);
7849 	do {
7850 
7851 		ahd_unpause(ahd);
7852 		/*
7853 		 * Give the sequencer some time to service
7854 		 * any active selections.
7855 		 */
7856 		ahd_delay(500);
7857 
7858 		ahd_intr(ahd);
7859 		ahd_pause(ahd);
7860 		intstat = ahd_inb(ahd, INTSTAT);
7861 		if ((intstat & INT_PEND) == 0) {
7862 			ahd_clear_critical_section(ahd);
7863 			intstat = ahd_inb(ahd, INTSTAT);
7864 		}
7865 	} while (--maxloops
7866 	      && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0)
7867 	      && ((intstat & INT_PEND) != 0
7868 	       || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0
7869 	       || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0));
7870 
7871 	if (maxloops == 0) {
7872 		printk("Infinite interrupt loop, INTSTAT = %x",
7873 		      ahd_inb(ahd, INTSTAT));
7874 	}
7875 	ahd->qfreeze_cnt++;
7876 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
7877 
7878 	ahd_flush_qoutfifo(ahd);
7879 
7880 	ahd->flags &= ~AHD_ALL_INTERRUPTS;
7881 }
7882 
7883 #ifdef CONFIG_PM
7884 int
7885 ahd_suspend(struct ahd_softc *ahd)
7886 {
7887 
7888 	ahd_pause_and_flushwork(ahd);
7889 
7890 	if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
7891 		ahd_unpause(ahd);
7892 		return (EBUSY);
7893 	}
7894 	ahd_shutdown(ahd);
7895 	return (0);
7896 }
7897 
7898 void
7899 ahd_resume(struct ahd_softc *ahd)
7900 {
7901 
7902 	ahd_reset(ahd, /*reinit*/TRUE);
7903 	ahd_intr_enable(ahd, TRUE);
7904 	ahd_restart(ahd);
7905 }
7906 #endif
7907 
7908 /************************** Busy Target Table *********************************/
7909 /*
7910  * Set SCBPTR to the SCB that contains the busy
7911  * table entry for TCL.  Return the offset into
7912  * the SCB that contains the entry for TCL.
7913  * saved_scbid is dereferenced and set to the
7914  * scbid that should be restored once manipualtion
7915  * of the TCL entry is complete.
7916  */
7917 static inline u_int
7918 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl)
7919 {
7920 	/*
7921 	 * Index to the SCB that contains the busy entry.
7922 	 */
7923 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
7924 	*saved_scbid = ahd_get_scbptr(ahd);
7925 	ahd_set_scbptr(ahd, TCL_LUN(tcl)
7926 		     | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4));
7927 
7928 	/*
7929 	 * And now calculate the SCB offset to the entry.
7930 	 * Each entry is 2 bytes wide, hence the
7931 	 * multiplication by 2.
7932 	 */
7933 	return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS);
7934 }
7935 
7936 /*
7937  * Return the untagged transaction id for a given target/channel lun.
7938  */
7939 static u_int
7940 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl)
7941 {
7942 	u_int scbid;
7943 	u_int scb_offset;
7944 	u_int saved_scbptr;
7945 
7946 	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7947 	scbid = ahd_inw_scbram(ahd, scb_offset);
7948 	ahd_set_scbptr(ahd, saved_scbptr);
7949 	return (scbid);
7950 }
7951 
7952 static void
7953 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid)
7954 {
7955 	u_int scb_offset;
7956 	u_int saved_scbptr;
7957 
7958 	scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl);
7959 	ahd_outw(ahd, scb_offset, scbid);
7960 	ahd_set_scbptr(ahd, saved_scbptr);
7961 }
7962 
7963 /************************** SCB and SCB queue management **********************/
7964 static int
7965 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target,
7966 	      char channel, int lun, u_int tag, role_t role)
7967 {
7968 	int targ = SCB_GET_TARGET(ahd, scb);
7969 	char chan = SCB_GET_CHANNEL(ahd, scb);
7970 	int slun = SCB_GET_LUN(scb);
7971 	int match;
7972 
7973 	match = ((chan == channel) || (channel == ALL_CHANNELS));
7974 	if (match != 0)
7975 		match = ((targ == target) || (target == CAM_TARGET_WILDCARD));
7976 	if (match != 0)
7977 		match = ((lun == slun) || (lun == CAM_LUN_WILDCARD));
7978 	if (match != 0) {
7979 #ifdef AHD_TARGET_MODE
7980 		int group;
7981 
7982 		group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code);
7983 		if (role == ROLE_INITIATOR) {
7984 			match = (group != XPT_FC_GROUP_TMODE)
7985 			      && ((tag == SCB_GET_TAG(scb))
7986 			       || (tag == SCB_LIST_NULL));
7987 		} else if (role == ROLE_TARGET) {
7988 			match = (group == XPT_FC_GROUP_TMODE)
7989 			      && ((tag == scb->io_ctx->csio.tag_id)
7990 			       || (tag == SCB_LIST_NULL));
7991 		}
7992 #else /* !AHD_TARGET_MODE */
7993 		match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL));
7994 #endif /* AHD_TARGET_MODE */
7995 	}
7996 
7997 	return match;
7998 }
7999 
8000 static void
8001 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb)
8002 {
8003 	int	target;
8004 	char	channel;
8005 	int	lun;
8006 
8007 	target = SCB_GET_TARGET(ahd, scb);
8008 	lun = SCB_GET_LUN(scb);
8009 	channel = SCB_GET_CHANNEL(ahd, scb);
8010 
8011 	ahd_search_qinfifo(ahd, target, channel, lun,
8012 			   /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN,
8013 			   CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8014 
8015 	ahd_platform_freeze_devq(ahd, scb);
8016 }
8017 
8018 void
8019 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb)
8020 {
8021 	struct scb	*prev_scb;
8022 	ahd_mode_state	 saved_modes;
8023 
8024 	saved_modes = ahd_save_modes(ahd);
8025 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8026 	prev_scb = NULL;
8027 	if (ahd_qinfifo_count(ahd) != 0) {
8028 		u_int prev_tag;
8029 		u_int prev_pos;
8030 
8031 		prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1);
8032 		prev_tag = ahd->qinfifo[prev_pos];
8033 		prev_scb = ahd_lookup_scb(ahd, prev_tag);
8034 	}
8035 	ahd_qinfifo_requeue(ahd, prev_scb, scb);
8036 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8037 	ahd_restore_modes(ahd, saved_modes);
8038 }
8039 
8040 static void
8041 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb,
8042 		    struct scb *scb)
8043 {
8044 	if (prev_scb == NULL) {
8045 		uint32_t busaddr;
8046 
8047 		busaddr = ahd_le32toh(scb->hscb->hscb_busaddr);
8048 		ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8049 	} else {
8050 		prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
8051 		ahd_sync_scb(ahd, prev_scb,
8052 			     BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8053 	}
8054 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
8055 	ahd->qinfifonext++;
8056 	scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr;
8057 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
8058 }
8059 
8060 static int
8061 ahd_qinfifo_count(struct ahd_softc *ahd)
8062 {
8063 	u_int qinpos;
8064 	u_int wrap_qinpos;
8065 	u_int wrap_qinfifonext;
8066 
8067 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
8068 	qinpos = ahd_get_snscb_qoff(ahd);
8069 	wrap_qinpos = AHD_QIN_WRAP(qinpos);
8070 	wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext);
8071 	if (wrap_qinfifonext >= wrap_qinpos)
8072 		return (wrap_qinfifonext - wrap_qinpos);
8073 	else
8074 		return (wrap_qinfifonext
8075 		      + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos);
8076 }
8077 
8078 static void
8079 ahd_reset_cmds_pending(struct ahd_softc *ahd)
8080 {
8081 	struct		scb *scb;
8082 	ahd_mode_state	saved_modes;
8083 	u_int		pending_cmds;
8084 
8085 	saved_modes = ahd_save_modes(ahd);
8086 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8087 
8088 	/*
8089 	 * Don't count any commands as outstanding that the
8090 	 * sequencer has already marked for completion.
8091 	 */
8092 	ahd_flush_qoutfifo(ahd);
8093 
8094 	pending_cmds = 0;
8095 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
8096 		pending_cmds++;
8097 	}
8098 	ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd));
8099 	ahd_restore_modes(ahd, saved_modes);
8100 	ahd->flags &= ~AHD_UPDATE_PEND_CMDS;
8101 }
8102 
8103 static void
8104 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status)
8105 {
8106 	cam_status ostat;
8107 	cam_status cstat;
8108 
8109 	ostat = ahd_get_transaction_status(scb);
8110 	if (ostat == CAM_REQ_INPROG)
8111 		ahd_set_transaction_status(scb, status);
8112 	cstat = ahd_get_transaction_status(scb);
8113 	if (cstat != CAM_REQ_CMP)
8114 		ahd_freeze_scb(scb);
8115 	ahd_done(ahd, scb);
8116 }
8117 
8118 int
8119 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel,
8120 		   int lun, u_int tag, role_t role, uint32_t status,
8121 		   ahd_search_action action)
8122 {
8123 	struct scb	*scb;
8124 	struct scb	*mk_msg_scb;
8125 	struct scb	*prev_scb;
8126 	ahd_mode_state	 saved_modes;
8127 	u_int		 qinstart;
8128 	u_int		 qinpos;
8129 	u_int		 qintail;
8130 	u_int		 tid_next;
8131 	u_int		 tid_prev;
8132 	u_int		 scbid;
8133 	u_int		 seq_flags2;
8134 	u_int		 savedscbptr;
8135 	uint32_t	 busaddr;
8136 	int		 found;
8137 	int		 targets;
8138 
8139 	/* Must be in CCHAN mode */
8140 	saved_modes = ahd_save_modes(ahd);
8141 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
8142 
8143 	/*
8144 	 * Halt any pending SCB DMA.  The sequencer will reinitiate
8145 	 * this dma if the qinfifo is not empty once we unpause.
8146 	 */
8147 	if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR))
8148 	 == (CCARREN|CCSCBEN|CCSCBDIR)) {
8149 		ahd_outb(ahd, CCSCBCTL,
8150 			 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN));
8151 		while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0)
8152 			;
8153 	}
8154 	/* Determine sequencer's position in the qinfifo. */
8155 	qintail = AHD_QIN_WRAP(ahd->qinfifonext);
8156 	qinstart = ahd_get_snscb_qoff(ahd);
8157 	qinpos = AHD_QIN_WRAP(qinstart);
8158 	found = 0;
8159 	prev_scb = NULL;
8160 
8161 	if (action == SEARCH_PRINT) {
8162 		printk("qinstart = %d qinfifonext = %d\nQINFIFO:",
8163 		       qinstart, ahd->qinfifonext);
8164 	}
8165 
8166 	/*
8167 	 * Start with an empty queue.  Entries that are not chosen
8168 	 * for removal will be re-added to the queue as we go.
8169 	 */
8170 	ahd->qinfifonext = qinstart;
8171 	busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr);
8172 	ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr);
8173 
8174 	while (qinpos != qintail) {
8175 		scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]);
8176 		if (scb == NULL) {
8177 			printk("qinpos = %d, SCB index = %d\n",
8178 				qinpos, ahd->qinfifo[qinpos]);
8179 			panic("Loop 1\n");
8180 		}
8181 
8182 		if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) {
8183 			/*
8184 			 * We found an scb that needs to be acted on.
8185 			 */
8186 			found++;
8187 			switch (action) {
8188 			case SEARCH_COMPLETE:
8189 				if ((scb->flags & SCB_ACTIVE) == 0)
8190 					printk("Inactive SCB in qinfifo\n");
8191 				ahd_done_with_status(ahd, scb, status);
8192 				/* FALLTHROUGH */
8193 			case SEARCH_REMOVE:
8194 				break;
8195 			case SEARCH_PRINT:
8196 				printk(" 0x%x", ahd->qinfifo[qinpos]);
8197 				/* FALLTHROUGH */
8198 			case SEARCH_COUNT:
8199 				ahd_qinfifo_requeue(ahd, prev_scb, scb);
8200 				prev_scb = scb;
8201 				break;
8202 			}
8203 		} else {
8204 			ahd_qinfifo_requeue(ahd, prev_scb, scb);
8205 			prev_scb = scb;
8206 		}
8207 		qinpos = AHD_QIN_WRAP(qinpos+1);
8208 	}
8209 
8210 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
8211 
8212 	if (action == SEARCH_PRINT)
8213 		printk("\nWAITING_TID_QUEUES:\n");
8214 
8215 	/*
8216 	 * Search waiting for selection lists.  We traverse the
8217 	 * list of "their ids" waiting for selection and, if
8218 	 * appropriate, traverse the SCBs of each "their id"
8219 	 * looking for matches.
8220 	 */
8221 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8222 	seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2);
8223 	if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) {
8224 		scbid = ahd_inw(ahd, MK_MESSAGE_SCB);
8225 		mk_msg_scb = ahd_lookup_scb(ahd, scbid);
8226 	} else
8227 		mk_msg_scb = NULL;
8228 	savedscbptr = ahd_get_scbptr(ahd);
8229 	tid_next = ahd_inw(ahd, WAITING_TID_HEAD);
8230 	tid_prev = SCB_LIST_NULL;
8231 	targets = 0;
8232 	for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) {
8233 		u_int tid_head;
8234 		u_int tid_tail;
8235 
8236 		targets++;
8237 		if (targets > AHD_NUM_TARGETS)
8238 			panic("TID LIST LOOP");
8239 
8240 		if (scbid >= ahd->scb_data.numscbs) {
8241 			printk("%s: Waiting TID List inconsistency. "
8242 			       "SCB index == 0x%x, yet numscbs == 0x%x.",
8243 			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8244 			ahd_dump_card_state(ahd);
8245 			panic("for safety");
8246 		}
8247 		scb = ahd_lookup_scb(ahd, scbid);
8248 		if (scb == NULL) {
8249 			printk("%s: SCB = 0x%x Not Active!\n",
8250 			       ahd_name(ahd), scbid);
8251 			panic("Waiting TID List traversal\n");
8252 		}
8253 		ahd_set_scbptr(ahd, scbid);
8254 		tid_next = ahd_inw_scbram(ahd, SCB_NEXT2);
8255 		if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8256 				  SCB_LIST_NULL, ROLE_UNKNOWN) == 0) {
8257 			tid_prev = scbid;
8258 			continue;
8259 		}
8260 
8261 		/*
8262 		 * We found a list of scbs that needs to be searched.
8263 		 */
8264 		if (action == SEARCH_PRINT)
8265 			printk("       %d ( ", SCB_GET_TARGET(ahd, scb));
8266 		tid_head = scbid;
8267 		found += ahd_search_scb_list(ahd, target, channel,
8268 					     lun, tag, role, status,
8269 					     action, &tid_head, &tid_tail,
8270 					     SCB_GET_TARGET(ahd, scb));
8271 		/*
8272 		 * Check any MK_MESSAGE SCB that is still waiting to
8273 		 * enter this target's waiting for selection queue.
8274 		 */
8275 		if (mk_msg_scb != NULL
8276 		 && ahd_match_scb(ahd, mk_msg_scb, target, channel,
8277 				  lun, tag, role)) {
8278 
8279 			/*
8280 			 * We found an scb that needs to be acted on.
8281 			 */
8282 			found++;
8283 			switch (action) {
8284 			case SEARCH_COMPLETE:
8285 				if ((mk_msg_scb->flags & SCB_ACTIVE) == 0)
8286 					printk("Inactive SCB pending MK_MSG\n");
8287 				ahd_done_with_status(ahd, mk_msg_scb, status);
8288 				/* FALLTHROUGH */
8289 			case SEARCH_REMOVE:
8290 			{
8291 				u_int tail_offset;
8292 
8293 				printk("Removing MK_MSG scb\n");
8294 
8295 				/*
8296 				 * Reset our tail to the tail of the
8297 				 * main per-target list.
8298 				 */
8299 				tail_offset = WAITING_SCB_TAILS
8300 				    + (2 * SCB_GET_TARGET(ahd, mk_msg_scb));
8301 				ahd_outw(ahd, tail_offset, tid_tail);
8302 
8303 				seq_flags2 &= ~PENDING_MK_MESSAGE;
8304 				ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8305 				ahd_outw(ahd, CMDS_PENDING,
8306 					 ahd_inw(ahd, CMDS_PENDING)-1);
8307 				mk_msg_scb = NULL;
8308 				break;
8309 			}
8310 			case SEARCH_PRINT:
8311 				printk(" 0x%x", SCB_GET_TAG(scb));
8312 				/* FALLTHROUGH */
8313 			case SEARCH_COUNT:
8314 				break;
8315 			}
8316 		}
8317 
8318 		if (mk_msg_scb != NULL
8319 		 && SCBID_IS_NULL(tid_head)
8320 		 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD,
8321 				  SCB_LIST_NULL, ROLE_UNKNOWN)) {
8322 
8323 			/*
8324 			 * When removing the last SCB for a target
8325 			 * queue with a pending MK_MESSAGE scb, we
8326 			 * must queue the MK_MESSAGE scb.
8327 			 */
8328 			printk("Queueing mk_msg_scb\n");
8329 			tid_head = ahd_inw(ahd, MK_MESSAGE_SCB);
8330 			seq_flags2 &= ~PENDING_MK_MESSAGE;
8331 			ahd_outb(ahd, SEQ_FLAGS2, seq_flags2);
8332 			mk_msg_scb = NULL;
8333 		}
8334 		if (tid_head != scbid)
8335 			ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next);
8336 		if (!SCBID_IS_NULL(tid_head))
8337 			tid_prev = tid_head;
8338 		if (action == SEARCH_PRINT)
8339 			printk(")\n");
8340 	}
8341 
8342 	/* Restore saved state. */
8343 	ahd_set_scbptr(ahd, savedscbptr);
8344 	ahd_restore_modes(ahd, saved_modes);
8345 	return (found);
8346 }
8347 
8348 static int
8349 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel,
8350 		    int lun, u_int tag, role_t role, uint32_t status,
8351 		    ahd_search_action action, u_int *list_head,
8352 		    u_int *list_tail, u_int tid)
8353 {
8354 	struct	scb *scb;
8355 	u_int	scbid;
8356 	u_int	next;
8357 	u_int	prev;
8358 	int	found;
8359 
8360 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8361 	found = 0;
8362 	prev = SCB_LIST_NULL;
8363 	next = *list_head;
8364 	*list_tail = SCB_LIST_NULL;
8365 	for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) {
8366 		if (scbid >= ahd->scb_data.numscbs) {
8367 			printk("%s:SCB List inconsistency. "
8368 			       "SCB == 0x%x, yet numscbs == 0x%x.",
8369 			       ahd_name(ahd), scbid, ahd->scb_data.numscbs);
8370 			ahd_dump_card_state(ahd);
8371 			panic("for safety");
8372 		}
8373 		scb = ahd_lookup_scb(ahd, scbid);
8374 		if (scb == NULL) {
8375 			printk("%s: SCB = %d Not Active!\n",
8376 			       ahd_name(ahd), scbid);
8377 			panic("Waiting List traversal\n");
8378 		}
8379 		ahd_set_scbptr(ahd, scbid);
8380 		*list_tail = scbid;
8381 		next = ahd_inw_scbram(ahd, SCB_NEXT);
8382 		if (ahd_match_scb(ahd, scb, target, channel,
8383 				  lun, SCB_LIST_NULL, role) == 0) {
8384 			prev = scbid;
8385 			continue;
8386 		}
8387 		found++;
8388 		switch (action) {
8389 		case SEARCH_COMPLETE:
8390 			if ((scb->flags & SCB_ACTIVE) == 0)
8391 				printk("Inactive SCB in Waiting List\n");
8392 			ahd_done_with_status(ahd, scb, status);
8393 			/* fall through */
8394 		case SEARCH_REMOVE:
8395 			ahd_rem_wscb(ahd, scbid, prev, next, tid);
8396 			*list_tail = prev;
8397 			if (SCBID_IS_NULL(prev))
8398 				*list_head = next;
8399 			break;
8400 		case SEARCH_PRINT:
8401 			printk("0x%x ", scbid);
8402 			/* fall through */
8403 		case SEARCH_COUNT:
8404 			prev = scbid;
8405 			break;
8406 		}
8407 		if (found > AHD_SCB_MAX)
8408 			panic("SCB LIST LOOP");
8409 	}
8410 	if (action == SEARCH_COMPLETE
8411 	 || action == SEARCH_REMOVE)
8412 		ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found);
8413 	return (found);
8414 }
8415 
8416 static void
8417 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev,
8418 		    u_int tid_cur, u_int tid_next)
8419 {
8420 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8421 
8422 	if (SCBID_IS_NULL(tid_cur)) {
8423 
8424 		/* Bypass current TID list */
8425 		if (SCBID_IS_NULL(tid_prev)) {
8426 			ahd_outw(ahd, WAITING_TID_HEAD, tid_next);
8427 		} else {
8428 			ahd_set_scbptr(ahd, tid_prev);
8429 			ahd_outw(ahd, SCB_NEXT2, tid_next);
8430 		}
8431 		if (SCBID_IS_NULL(tid_next))
8432 			ahd_outw(ahd, WAITING_TID_TAIL, tid_prev);
8433 	} else {
8434 
8435 		/* Stitch through tid_cur */
8436 		if (SCBID_IS_NULL(tid_prev)) {
8437 			ahd_outw(ahd, WAITING_TID_HEAD, tid_cur);
8438 		} else {
8439 			ahd_set_scbptr(ahd, tid_prev);
8440 			ahd_outw(ahd, SCB_NEXT2, tid_cur);
8441 		}
8442 		ahd_set_scbptr(ahd, tid_cur);
8443 		ahd_outw(ahd, SCB_NEXT2, tid_next);
8444 
8445 		if (SCBID_IS_NULL(tid_next))
8446 			ahd_outw(ahd, WAITING_TID_TAIL, tid_cur);
8447 	}
8448 }
8449 
8450 /*
8451  * Manipulate the waiting for selection list and return the
8452  * scb that follows the one that we remove.
8453  */
8454 static u_int
8455 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid,
8456 	     u_int prev, u_int next, u_int tid)
8457 {
8458 	u_int tail_offset;
8459 
8460 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8461 	if (!SCBID_IS_NULL(prev)) {
8462 		ahd_set_scbptr(ahd, prev);
8463 		ahd_outw(ahd, SCB_NEXT, next);
8464 	}
8465 
8466 	/*
8467 	 * SCBs that have MK_MESSAGE set in them may
8468 	 * cause the tail pointer to be updated without
8469 	 * setting the next pointer of the previous tail.
8470 	 * Only clear the tail if the removed SCB was
8471 	 * the tail.
8472 	 */
8473 	tail_offset = WAITING_SCB_TAILS + (2 * tid);
8474 	if (SCBID_IS_NULL(next)
8475 	 && ahd_inw(ahd, tail_offset) == scbid)
8476 		ahd_outw(ahd, tail_offset, prev);
8477 
8478 	ahd_add_scb_to_free_list(ahd, scbid);
8479 	return (next);
8480 }
8481 
8482 /*
8483  * Add the SCB as selected by SCBPTR onto the on chip list of
8484  * free hardware SCBs.  This list is empty/unused if we are not
8485  * performing SCB paging.
8486  */
8487 static void
8488 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid)
8489 {
8490 /* XXX Need some other mechanism to designate "free". */
8491 	/*
8492 	 * Invalidate the tag so that our abort
8493 	 * routines don't think it's active.
8494 	ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL);
8495 	 */
8496 }
8497 
8498 /******************************** Error Handling ******************************/
8499 /*
8500  * Abort all SCBs that match the given description (target/channel/lun/tag),
8501  * setting their status to the passed in status if the status has not already
8502  * been modified from CAM_REQ_INPROG.  This routine assumes that the sequencer
8503  * is paused before it is called.
8504  */
8505 static int
8506 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel,
8507 	       int lun, u_int tag, role_t role, uint32_t status)
8508 {
8509 	struct		scb *scbp;
8510 	struct		scb *scbp_next;
8511 	u_int		i, j;
8512 	u_int		maxtarget;
8513 	u_int		minlun;
8514 	u_int		maxlun;
8515 	int		found;
8516 	ahd_mode_state	saved_modes;
8517 
8518 	/* restore this when we're done */
8519 	saved_modes = ahd_save_modes(ahd);
8520 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8521 
8522 	found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL,
8523 				   role, CAM_REQUEUE_REQ, SEARCH_COMPLETE);
8524 
8525 	/*
8526 	 * Clean out the busy target table for any untagged commands.
8527 	 */
8528 	i = 0;
8529 	maxtarget = 16;
8530 	if (target != CAM_TARGET_WILDCARD) {
8531 		i = target;
8532 		if (channel == 'B')
8533 			i += 8;
8534 		maxtarget = i + 1;
8535 	}
8536 
8537 	if (lun == CAM_LUN_WILDCARD) {
8538 		minlun = 0;
8539 		maxlun = AHD_NUM_LUNS_NONPKT;
8540 	} else if (lun >= AHD_NUM_LUNS_NONPKT) {
8541 		minlun = maxlun = 0;
8542 	} else {
8543 		minlun = lun;
8544 		maxlun = lun + 1;
8545 	}
8546 
8547 	if (role != ROLE_TARGET) {
8548 		for (;i < maxtarget; i++) {
8549 			for (j = minlun;j < maxlun; j++) {
8550 				u_int scbid;
8551 				u_int tcl;
8552 
8553 				tcl = BUILD_TCL_RAW(i, 'A', j);
8554 				scbid = ahd_find_busy_tcl(ahd, tcl);
8555 				scbp = ahd_lookup_scb(ahd, scbid);
8556 				if (scbp == NULL
8557 				 || ahd_match_scb(ahd, scbp, target, channel,
8558 						  lun, tag, role) == 0)
8559 					continue;
8560 				ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j));
8561 			}
8562 		}
8563 	}
8564 
8565 	/*
8566 	 * Don't abort commands that have already completed,
8567 	 * but haven't quite made it up to the host yet.
8568 	 */
8569 	ahd_flush_qoutfifo(ahd);
8570 
8571 	/*
8572 	 * Go through the pending CCB list and look for
8573 	 * commands for this target that are still active.
8574 	 * These are other tagged commands that were
8575 	 * disconnected when the reset occurred.
8576 	 */
8577 	scbp_next = LIST_FIRST(&ahd->pending_scbs);
8578 	while (scbp_next != NULL) {
8579 		scbp = scbp_next;
8580 		scbp_next = LIST_NEXT(scbp, pending_links);
8581 		if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) {
8582 			cam_status ostat;
8583 
8584 			ostat = ahd_get_transaction_status(scbp);
8585 			if (ostat == CAM_REQ_INPROG)
8586 				ahd_set_transaction_status(scbp, status);
8587 			if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP)
8588 				ahd_freeze_scb(scbp);
8589 			if ((scbp->flags & SCB_ACTIVE) == 0)
8590 				printk("Inactive SCB on pending list\n");
8591 			ahd_done(ahd, scbp);
8592 			found++;
8593 		}
8594 	}
8595 	ahd_restore_modes(ahd, saved_modes);
8596 	ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status);
8597 	ahd->flags |= AHD_UPDATE_PEND_CMDS;
8598 	return found;
8599 }
8600 
8601 static void
8602 ahd_reset_current_bus(struct ahd_softc *ahd)
8603 {
8604 	uint8_t scsiseq;
8605 
8606 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8607 	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST);
8608 	scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO);
8609 	ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO);
8610 	ahd_flush_device_writes(ahd);
8611 	ahd_delay(AHD_BUSRESET_DELAY);
8612 	/* Turn off the bus reset */
8613 	ahd_outb(ahd, SCSISEQ0, scsiseq);
8614 	ahd_flush_device_writes(ahd);
8615 	ahd_delay(AHD_BUSRESET_DELAY);
8616 	if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) {
8617 		/*
8618 		 * 2A Razor #474
8619 		 * Certain chip state is not cleared for
8620 		 * SCSI bus resets that we initiate, so
8621 		 * we must reset the chip.
8622 		 */
8623 		ahd_reset(ahd, /*reinit*/TRUE);
8624 		ahd_intr_enable(ahd, /*enable*/TRUE);
8625 		AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
8626 	}
8627 
8628 	ahd_clear_intstat(ahd);
8629 }
8630 
8631 int
8632 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset)
8633 {
8634 	struct	ahd_devinfo caminfo;
8635 	u_int	initiator;
8636 	u_int	target;
8637 	u_int	max_scsiid;
8638 	int	found;
8639 	u_int	fifo;
8640 	u_int	next_fifo;
8641 	uint8_t scsiseq;
8642 
8643 	/*
8644 	 * Check if the last bus reset is cleared
8645 	 */
8646 	if (ahd->flags & AHD_BUS_RESET_ACTIVE) {
8647 		printk("%s: bus reset still active\n",
8648 		       ahd_name(ahd));
8649 		return 0;
8650 	}
8651 	ahd->flags |= AHD_BUS_RESET_ACTIVE;
8652 
8653 	ahd->pending_device = NULL;
8654 
8655 	ahd_compile_devinfo(&caminfo,
8656 			    CAM_TARGET_WILDCARD,
8657 			    CAM_TARGET_WILDCARD,
8658 			    CAM_LUN_WILDCARD,
8659 			    channel, ROLE_UNKNOWN);
8660 	ahd_pause(ahd);
8661 
8662 	/* Make sure the sequencer is in a safe location. */
8663 	ahd_clear_critical_section(ahd);
8664 
8665 	/*
8666 	 * Run our command complete fifos to ensure that we perform
8667 	 * completion processing on any commands that 'completed'
8668 	 * before the reset occurred.
8669 	 */
8670 	ahd_run_qoutfifo(ahd);
8671 #ifdef AHD_TARGET_MODE
8672 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
8673 		ahd_run_tqinfifo(ahd, /*paused*/TRUE);
8674 	}
8675 #endif
8676 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8677 
8678 	/*
8679 	 * Disable selections so no automatic hardware
8680 	 * functions will modify chip state.
8681 	 */
8682 	ahd_outb(ahd, SCSISEQ0, 0);
8683 	ahd_outb(ahd, SCSISEQ1, 0);
8684 
8685 	/*
8686 	 * Safely shut down our DMA engines.  Always start with
8687 	 * the FIFO that is not currently active (if any are
8688 	 * actively connected).
8689 	 */
8690 	next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO;
8691 	if (next_fifo > CURRFIFO_1)
8692 		/* If disconneced, arbitrarily start with FIFO1. */
8693 		next_fifo = fifo = 0;
8694 	do {
8695 		next_fifo ^= CURRFIFO_1;
8696 		ahd_set_modes(ahd, next_fifo, next_fifo);
8697 		ahd_outb(ahd, DFCNTRL,
8698 			 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN));
8699 		while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0)
8700 			ahd_delay(10);
8701 		/*
8702 		 * Set CURRFIFO to the now inactive channel.
8703 		 */
8704 		ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
8705 		ahd_outb(ahd, DFFSTAT, next_fifo);
8706 	} while (next_fifo != fifo);
8707 
8708 	/*
8709 	 * Reset the bus if we are initiating this reset
8710 	 */
8711 	ahd_clear_msg_state(ahd);
8712 	ahd_outb(ahd, SIMODE1,
8713 		 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST));
8714 
8715 	if (initiate_reset)
8716 		ahd_reset_current_bus(ahd);
8717 
8718 	ahd_clear_intstat(ahd);
8719 
8720 	/*
8721 	 * Clean up all the state information for the
8722 	 * pending transactions on this bus.
8723 	 */
8724 	found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel,
8725 			       CAM_LUN_WILDCARD, SCB_LIST_NULL,
8726 			       ROLE_UNKNOWN, CAM_SCSI_BUS_RESET);
8727 
8728 	/*
8729 	 * Cleanup anything left in the FIFOs.
8730 	 */
8731 	ahd_clear_fifo(ahd, 0);
8732 	ahd_clear_fifo(ahd, 1);
8733 
8734 	/*
8735 	 * Clear SCSI interrupt status
8736 	 */
8737 	ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI);
8738 
8739 	/*
8740 	 * Reenable selections
8741 	 */
8742 	ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST);
8743 	scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE);
8744 	ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP));
8745 
8746 	max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7;
8747 #ifdef AHD_TARGET_MODE
8748 	/*
8749 	 * Send an immediate notify ccb to all target more peripheral
8750 	 * drivers affected by this action.
8751 	 */
8752 	for (target = 0; target <= max_scsiid; target++) {
8753 		struct ahd_tmode_tstate* tstate;
8754 		u_int lun;
8755 
8756 		tstate = ahd->enabled_targets[target];
8757 		if (tstate == NULL)
8758 			continue;
8759 		for (lun = 0; lun < AHD_NUM_LUNS; lun++) {
8760 			struct ahd_tmode_lstate* lstate;
8761 
8762 			lstate = tstate->enabled_luns[lun];
8763 			if (lstate == NULL)
8764 				continue;
8765 
8766 			ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD,
8767 					       EVENT_TYPE_BUS_RESET, /*arg*/0);
8768 			ahd_send_lstate_events(ahd, lstate);
8769 		}
8770 	}
8771 #endif
8772 	/*
8773 	 * Revert to async/narrow transfers until we renegotiate.
8774 	 */
8775 	for (target = 0; target <= max_scsiid; target++) {
8776 
8777 		if (ahd->enabled_targets[target] == NULL)
8778 			continue;
8779 		for (initiator = 0; initiator <= max_scsiid; initiator++) {
8780 			struct ahd_devinfo devinfo;
8781 
8782 			ahd_compile_devinfo(&devinfo, target, initiator,
8783 					    CAM_LUN_WILDCARD,
8784 					    'A', ROLE_UNKNOWN);
8785 			ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
8786 				      AHD_TRANS_CUR, /*paused*/TRUE);
8787 			ahd_set_syncrate(ahd, &devinfo, /*period*/0,
8788 					 /*offset*/0, /*ppr_options*/0,
8789 					 AHD_TRANS_CUR, /*paused*/TRUE);
8790 		}
8791 	}
8792 
8793 	/* Notify the XPT that a bus reset occurred */
8794 	ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD,
8795 		       CAM_LUN_WILDCARD, AC_BUS_RESET);
8796 
8797 	ahd_restart(ahd);
8798 
8799 	return (found);
8800 }
8801 
8802 /**************************** Statistics Processing ***************************/
8803 static void
8804 ahd_stat_timer(struct timer_list *t)
8805 {
8806 	struct	ahd_softc *ahd = from_timer(ahd, t, stat_timer);
8807 	u_long	s;
8808 	int	enint_coal;
8809 
8810 	ahd_lock(ahd, &s);
8811 
8812 	enint_coal = ahd->hs_mailbox & ENINT_COALESCE;
8813 	if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold)
8814 		enint_coal |= ENINT_COALESCE;
8815 	else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold)
8816 		enint_coal &= ~ENINT_COALESCE;
8817 
8818 	if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) {
8819 		ahd_enable_coalescing(ahd, enint_coal);
8820 #ifdef AHD_DEBUG
8821 		if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0)
8822 			printk("%s: Interrupt coalescing "
8823 			       "now %sabled. Cmds %d\n",
8824 			       ahd_name(ahd),
8825 			       (enint_coal & ENINT_COALESCE) ? "en" : "dis",
8826 			       ahd->cmdcmplt_total);
8827 #endif
8828 	}
8829 
8830 	ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1);
8831 	ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket];
8832 	ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0;
8833 	ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US);
8834 	ahd_unlock(ahd, &s);
8835 }
8836 
8837 /****************************** Status Processing *****************************/
8838 
8839 static void
8840 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb)
8841 {
8842 	struct	hardware_scb *hscb;
8843 	int	paused;
8844 
8845 	/*
8846 	 * The sequencer freezes its select-out queue
8847 	 * anytime a SCSI status error occurs.  We must
8848 	 * handle the error and increment our qfreeze count
8849 	 * to allow the sequencer to continue.  We don't
8850 	 * bother clearing critical sections here since all
8851 	 * operations are on data structures that the sequencer
8852 	 * is not touching once the queue is frozen.
8853 	 */
8854 	hscb = scb->hscb;
8855 
8856 	if (ahd_is_paused(ahd)) {
8857 		paused = 1;
8858 	} else {
8859 		paused = 0;
8860 		ahd_pause(ahd);
8861 	}
8862 
8863 	/* Freeze the queue until the client sees the error. */
8864 	ahd_freeze_devq(ahd, scb);
8865 	ahd_freeze_scb(scb);
8866 	ahd->qfreeze_cnt++;
8867 	ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt);
8868 
8869 	if (paused == 0)
8870 		ahd_unpause(ahd);
8871 
8872 	/* Don't want to clobber the original sense code */
8873 	if ((scb->flags & SCB_SENSE) != 0) {
8874 		/*
8875 		 * Clear the SCB_SENSE Flag and perform
8876 		 * a normal command completion.
8877 		 */
8878 		scb->flags &= ~SCB_SENSE;
8879 		ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL);
8880 		ahd_done(ahd, scb);
8881 		return;
8882 	}
8883 	ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR);
8884 	ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status);
8885 	switch (hscb->shared_data.istatus.scsi_status) {
8886 	case STATUS_PKT_SENSE:
8887 	{
8888 		struct scsi_status_iu_header *siu;
8889 
8890 		ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD);
8891 		siu = (struct scsi_status_iu_header *)scb->sense_data;
8892 		ahd_set_scsi_status(scb, siu->status);
8893 #ifdef AHD_DEBUG
8894 		if ((ahd_debug & AHD_SHOW_SENSE) != 0) {
8895 			ahd_print_path(ahd, scb);
8896 			printk("SCB 0x%x Received PKT Status of 0x%x\n",
8897 			       SCB_GET_TAG(scb), siu->status);
8898 			printk("\tflags = 0x%x, sense len = 0x%x, "
8899 			       "pktfail = 0x%x\n",
8900 			       siu->flags, scsi_4btoul(siu->sense_length),
8901 			       scsi_4btoul(siu->pkt_failures_length));
8902 		}
8903 #endif
8904 		if ((siu->flags & SIU_RSPVALID) != 0) {
8905 			ahd_print_path(ahd, scb);
8906 			if (scsi_4btoul(siu->pkt_failures_length) < 4) {
8907 				printk("Unable to parse pkt_failures\n");
8908 			} else {
8909 
8910 				switch (SIU_PKTFAIL_CODE(siu)) {
8911 				case SIU_PFC_NONE:
8912 					printk("No packet failure found\n");
8913 					break;
8914 				case SIU_PFC_CIU_FIELDS_INVALID:
8915 					printk("Invalid Command IU Field\n");
8916 					break;
8917 				case SIU_PFC_TMF_NOT_SUPPORTED:
8918 					printk("TMF not supported\n");
8919 					break;
8920 				case SIU_PFC_TMF_FAILED:
8921 					printk("TMF failed\n");
8922 					break;
8923 				case SIU_PFC_INVALID_TYPE_CODE:
8924 					printk("Invalid L_Q Type code\n");
8925 					break;
8926 				case SIU_PFC_ILLEGAL_REQUEST:
8927 					printk("Illegal request\n");
8928 				default:
8929 					break;
8930 				}
8931 			}
8932 			if (siu->status == SCSI_STATUS_OK)
8933 				ahd_set_transaction_status(scb,
8934 							   CAM_REQ_CMP_ERR);
8935 		}
8936 		if ((siu->flags & SIU_SNSVALID) != 0) {
8937 			scb->flags |= SCB_PKT_SENSE;
8938 #ifdef AHD_DEBUG
8939 			if ((ahd_debug & AHD_SHOW_SENSE) != 0)
8940 				printk("Sense data available\n");
8941 #endif
8942 		}
8943 		ahd_done(ahd, scb);
8944 		break;
8945 	}
8946 	case SCSI_STATUS_CMD_TERMINATED:
8947 	case SCSI_STATUS_CHECK_COND:
8948 	{
8949 		struct ahd_devinfo devinfo;
8950 		struct ahd_dma_seg *sg;
8951 		struct scsi_sense *sc;
8952 		struct ahd_initiator_tinfo *targ_info;
8953 		struct ahd_tmode_tstate *tstate;
8954 		struct ahd_transinfo *tinfo;
8955 #ifdef AHD_DEBUG
8956 		if (ahd_debug & AHD_SHOW_SENSE) {
8957 			ahd_print_path(ahd, scb);
8958 			printk("SCB %d: requests Check Status\n",
8959 			       SCB_GET_TAG(scb));
8960 		}
8961 #endif
8962 
8963 		if (ahd_perform_autosense(scb) == 0)
8964 			break;
8965 
8966 		ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb),
8967 				    SCB_GET_TARGET(ahd, scb),
8968 				    SCB_GET_LUN(scb),
8969 				    SCB_GET_CHANNEL(ahd, scb),
8970 				    ROLE_INITIATOR);
8971 		targ_info = ahd_fetch_transinfo(ahd,
8972 						devinfo.channel,
8973 						devinfo.our_scsiid,
8974 						devinfo.target,
8975 						&tstate);
8976 		tinfo = &targ_info->curr;
8977 		sg = scb->sg_list;
8978 		sc = (struct scsi_sense *)hscb->shared_data.idata.cdb;
8979 		/*
8980 		 * Save off the residual if there is one.
8981 		 */
8982 		ahd_update_residual(ahd, scb);
8983 #ifdef AHD_DEBUG
8984 		if (ahd_debug & AHD_SHOW_SENSE) {
8985 			ahd_print_path(ahd, scb);
8986 			printk("Sending Sense\n");
8987 		}
8988 #endif
8989 		scb->sg_count = 0;
8990 		sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb),
8991 				  ahd_get_sense_bufsize(ahd, scb),
8992 				  /*last*/TRUE);
8993 		sc->opcode = REQUEST_SENSE;
8994 		sc->byte2 = 0;
8995 		if (tinfo->protocol_version <= SCSI_REV_2
8996 		 && SCB_GET_LUN(scb) < 8)
8997 			sc->byte2 = SCB_GET_LUN(scb) << 5;
8998 		sc->unused[0] = 0;
8999 		sc->unused[1] = 0;
9000 		sc->length = ahd_get_sense_bufsize(ahd, scb);
9001 		sc->control = 0;
9002 
9003 		/*
9004 		 * We can't allow the target to disconnect.
9005 		 * This will be an untagged transaction and
9006 		 * having the target disconnect will make this
9007 		 * transaction indestinguishable from outstanding
9008 		 * tagged transactions.
9009 		 */
9010 		hscb->control = 0;
9011 
9012 		/*
9013 		 * This request sense could be because the
9014 		 * the device lost power or in some other
9015 		 * way has lost our transfer negotiations.
9016 		 * Renegotiate if appropriate.  Unit attention
9017 		 * errors will be reported before any data
9018 		 * phases occur.
9019 		 */
9020 		if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) {
9021 			ahd_update_neg_request(ahd, &devinfo,
9022 					       tstate, targ_info,
9023 					       AHD_NEG_IF_NON_ASYNC);
9024 		}
9025 		if (tstate->auto_negotiate & devinfo.target_mask) {
9026 			hscb->control |= MK_MESSAGE;
9027 			scb->flags &=
9028 			    ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET);
9029 			scb->flags |= SCB_AUTO_NEGOTIATE;
9030 		}
9031 		hscb->cdb_len = sizeof(*sc);
9032 		ahd_setup_data_scb(ahd, scb);
9033 		scb->flags |= SCB_SENSE;
9034 		ahd_queue_scb(ahd, scb);
9035 		break;
9036 	}
9037 	case SCSI_STATUS_OK:
9038 		printk("%s: Interrupted for status of 0???\n",
9039 		       ahd_name(ahd));
9040 		/* FALLTHROUGH */
9041 	default:
9042 		ahd_done(ahd, scb);
9043 		break;
9044 	}
9045 }
9046 
9047 static void
9048 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb)
9049 {
9050 	if (scb->hscb->shared_data.istatus.scsi_status != 0) {
9051 		ahd_handle_scsi_status(ahd, scb);
9052 	} else {
9053 		ahd_calc_residual(ahd, scb);
9054 		ahd_done(ahd, scb);
9055 	}
9056 }
9057 
9058 /*
9059  * Calculate the residual for a just completed SCB.
9060  */
9061 static void
9062 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb)
9063 {
9064 	struct hardware_scb *hscb;
9065 	struct initiator_status *spkt;
9066 	uint32_t sgptr;
9067 	uint32_t resid_sgptr;
9068 	uint32_t resid;
9069 
9070 	/*
9071 	 * 5 cases.
9072 	 * 1) No residual.
9073 	 *    SG_STATUS_VALID clear in sgptr.
9074 	 * 2) Transferless command
9075 	 * 3) Never performed any transfers.
9076 	 *    sgptr has SG_FULL_RESID set.
9077 	 * 4) No residual but target did not
9078 	 *    save data pointers after the
9079 	 *    last transfer, so sgptr was
9080 	 *    never updated.
9081 	 * 5) We have a partial residual.
9082 	 *    Use residual_sgptr to determine
9083 	 *    where we are.
9084 	 */
9085 
9086 	hscb = scb->hscb;
9087 	sgptr = ahd_le32toh(hscb->sgptr);
9088 	if ((sgptr & SG_STATUS_VALID) == 0)
9089 		/* Case 1 */
9090 		return;
9091 	sgptr &= ~SG_STATUS_VALID;
9092 
9093 	if ((sgptr & SG_LIST_NULL) != 0)
9094 		/* Case 2 */
9095 		return;
9096 
9097 	/*
9098 	 * Residual fields are the same in both
9099 	 * target and initiator status packets,
9100 	 * so we can always use the initiator fields
9101 	 * regardless of the role for this SCB.
9102 	 */
9103 	spkt = &hscb->shared_data.istatus;
9104 	resid_sgptr = ahd_le32toh(spkt->residual_sgptr);
9105 	if ((sgptr & SG_FULL_RESID) != 0) {
9106 		/* Case 3 */
9107 		resid = ahd_get_transfer_length(scb);
9108 	} else if ((resid_sgptr & SG_LIST_NULL) != 0) {
9109 		/* Case 4 */
9110 		return;
9111 	} else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) {
9112 		ahd_print_path(ahd, scb);
9113 		printk("data overrun detected Tag == 0x%x.\n",
9114 		       SCB_GET_TAG(scb));
9115 		ahd_freeze_devq(ahd, scb);
9116 		ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR);
9117 		ahd_freeze_scb(scb);
9118 		return;
9119 	} else if ((resid_sgptr & ~SG_PTR_MASK) != 0) {
9120 		panic("Bogus resid sgptr value 0x%x\n", resid_sgptr);
9121 		/* NOTREACHED */
9122 	} else {
9123 		struct ahd_dma_seg *sg;
9124 
9125 		/*
9126 		 * Remainder of the SG where the transfer
9127 		 * stopped.
9128 		 */
9129 		resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK;
9130 		sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK);
9131 
9132 		/* The residual sg_ptr always points to the next sg */
9133 		sg--;
9134 
9135 		/*
9136 		 * Add up the contents of all residual
9137 		 * SG segments that are after the SG where
9138 		 * the transfer stopped.
9139 		 */
9140 		while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) {
9141 			sg++;
9142 			resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK;
9143 		}
9144 	}
9145 	if ((scb->flags & SCB_SENSE) == 0)
9146 		ahd_set_residual(scb, resid);
9147 	else
9148 		ahd_set_sense_residual(scb, resid);
9149 
9150 #ifdef AHD_DEBUG
9151 	if ((ahd_debug & AHD_SHOW_MISC) != 0) {
9152 		ahd_print_path(ahd, scb);
9153 		printk("Handled %sResidual of %d bytes\n",
9154 		       (scb->flags & SCB_SENSE) ? "Sense " : "", resid);
9155 	}
9156 #endif
9157 }
9158 
9159 /******************************* Target Mode **********************************/
9160 #ifdef AHD_TARGET_MODE
9161 /*
9162  * Add a target mode event to this lun's queue
9163  */
9164 static void
9165 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate,
9166 		       u_int initiator_id, u_int event_type, u_int event_arg)
9167 {
9168 	struct ahd_tmode_event *event;
9169 	int pending;
9170 
9171 	xpt_freeze_devq(lstate->path, /*count*/1);
9172 	if (lstate->event_w_idx >= lstate->event_r_idx)
9173 		pending = lstate->event_w_idx - lstate->event_r_idx;
9174 	else
9175 		pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1
9176 			- (lstate->event_r_idx - lstate->event_w_idx);
9177 
9178 	if (event_type == EVENT_TYPE_BUS_RESET
9179 	 || event_type == MSG_BUS_DEV_RESET) {
9180 		/*
9181 		 * Any earlier events are irrelevant, so reset our buffer.
9182 		 * This has the effect of allowing us to deal with reset
9183 		 * floods (an external device holding down the reset line)
9184 		 * without losing the event that is really interesting.
9185 		 */
9186 		lstate->event_r_idx = 0;
9187 		lstate->event_w_idx = 0;
9188 		xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE);
9189 	}
9190 
9191 	if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) {
9192 		xpt_print_path(lstate->path);
9193 		printk("immediate event %x:%x lost\n",
9194 		       lstate->event_buffer[lstate->event_r_idx].event_type,
9195 		       lstate->event_buffer[lstate->event_r_idx].event_arg);
9196 		lstate->event_r_idx++;
9197 		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9198 			lstate->event_r_idx = 0;
9199 		xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE);
9200 	}
9201 
9202 	event = &lstate->event_buffer[lstate->event_w_idx];
9203 	event->initiator_id = initiator_id;
9204 	event->event_type = event_type;
9205 	event->event_arg = event_arg;
9206 	lstate->event_w_idx++;
9207 	if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9208 		lstate->event_w_idx = 0;
9209 }
9210 
9211 /*
9212  * Send any target mode events queued up waiting
9213  * for immediate notify resources.
9214  */
9215 void
9216 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate)
9217 {
9218 	struct ccb_hdr *ccbh;
9219 	struct ccb_immed_notify *inot;
9220 
9221 	while (lstate->event_r_idx != lstate->event_w_idx
9222 	    && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) {
9223 		struct ahd_tmode_event *event;
9224 
9225 		event = &lstate->event_buffer[lstate->event_r_idx];
9226 		SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle);
9227 		inot = (struct ccb_immed_notify *)ccbh;
9228 		switch (event->event_type) {
9229 		case EVENT_TYPE_BUS_RESET:
9230 			ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN;
9231 			break;
9232 		default:
9233 			ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN;
9234 			inot->message_args[0] = event->event_type;
9235 			inot->message_args[1] = event->event_arg;
9236 			break;
9237 		}
9238 		inot->initiator_id = event->initiator_id;
9239 		inot->sense_len = 0;
9240 		xpt_done((union ccb *)inot);
9241 		lstate->event_r_idx++;
9242 		if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE)
9243 			lstate->event_r_idx = 0;
9244 	}
9245 }
9246 #endif
9247 
9248 /******************** Sequencer Program Patching/Download *********************/
9249 
9250 #ifdef AHD_DUMP_SEQ
9251 void
9252 ahd_dumpseq(struct ahd_softc* ahd)
9253 {
9254 	int i;
9255 	int max_prog;
9256 
9257 	max_prog = 2048;
9258 
9259 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9260 	ahd_outw(ahd, PRGMCNT, 0);
9261 	for (i = 0; i < max_prog; i++) {
9262 		uint8_t ins_bytes[4];
9263 
9264 		ahd_insb(ahd, SEQRAM, ins_bytes, 4);
9265 		printk("0x%08x\n", ins_bytes[0] << 24
9266 				 | ins_bytes[1] << 16
9267 				 | ins_bytes[2] << 8
9268 				 | ins_bytes[3]);
9269 	}
9270 }
9271 #endif
9272 
9273 static void
9274 ahd_loadseq(struct ahd_softc *ahd)
9275 {
9276 	struct	cs cs_table[NUM_CRITICAL_SECTIONS];
9277 	u_int	begin_set[NUM_CRITICAL_SECTIONS];
9278 	u_int	end_set[NUM_CRITICAL_SECTIONS];
9279 	const struct patch *cur_patch;
9280 	u_int	cs_count;
9281 	u_int	cur_cs;
9282 	u_int	i;
9283 	int	downloaded;
9284 	u_int	skip_addr;
9285 	u_int	sg_prefetch_cnt;
9286 	u_int	sg_prefetch_cnt_limit;
9287 	u_int	sg_prefetch_align;
9288 	u_int	sg_size;
9289 	u_int	cacheline_mask;
9290 	uint8_t	download_consts[DOWNLOAD_CONST_COUNT];
9291 
9292 	if (bootverbose)
9293 		printk("%s: Downloading Sequencer Program...",
9294 		       ahd_name(ahd));
9295 
9296 #if DOWNLOAD_CONST_COUNT != 8
9297 #error "Download Const Mismatch"
9298 #endif
9299 	/*
9300 	 * Start out with 0 critical sections
9301 	 * that apply to this firmware load.
9302 	 */
9303 	cs_count = 0;
9304 	cur_cs = 0;
9305 	memset(begin_set, 0, sizeof(begin_set));
9306 	memset(end_set, 0, sizeof(end_set));
9307 
9308 	/*
9309 	 * Setup downloadable constant table.
9310 	 *
9311 	 * The computation for the S/G prefetch variables is
9312 	 * a bit complicated.  We would like to always fetch
9313 	 * in terms of cachelined sized increments.  However,
9314 	 * if the cacheline is not an even multiple of the
9315 	 * SG element size or is larger than our SG RAM, using
9316 	 * just the cache size might leave us with only a portion
9317 	 * of an SG element at the tail of a prefetch.  If the
9318 	 * cacheline is larger than our S/G prefetch buffer less
9319 	 * the size of an SG element, we may round down to a cacheline
9320 	 * that doesn't contain any or all of the S/G of interest
9321 	 * within the bounds of our S/G ram.  Provide variables to
9322 	 * the sequencer that will allow it to handle these edge
9323 	 * cases.
9324 	 */
9325 	/* Start by aligning to the nearest cacheline. */
9326 	sg_prefetch_align = ahd->pci_cachesize;
9327 	if (sg_prefetch_align == 0)
9328 		sg_prefetch_align = 8;
9329 	/* Round down to the nearest power of 2. */
9330 	while (powerof2(sg_prefetch_align) == 0)
9331 		sg_prefetch_align--;
9332 
9333 	cacheline_mask = sg_prefetch_align - 1;
9334 
9335 	/*
9336 	 * If the cacheline boundary is greater than half our prefetch RAM
9337 	 * we risk not being able to fetch even a single complete S/G
9338 	 * segment if we align to that boundary.
9339 	 */
9340 	if (sg_prefetch_align > CCSGADDR_MAX/2)
9341 		sg_prefetch_align = CCSGADDR_MAX/2;
9342 	/* Start by fetching a single cacheline. */
9343 	sg_prefetch_cnt = sg_prefetch_align;
9344 	/*
9345 	 * Increment the prefetch count by cachelines until
9346 	 * at least one S/G element will fit.
9347 	 */
9348 	sg_size = sizeof(struct ahd_dma_seg);
9349 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
9350 		sg_size = sizeof(struct ahd_dma64_seg);
9351 	while (sg_prefetch_cnt < sg_size)
9352 		sg_prefetch_cnt += sg_prefetch_align;
9353 	/*
9354 	 * If the cacheline is not an even multiple of
9355 	 * the S/G size, we may only get a partial S/G when
9356 	 * we align. Add a cacheline if this is the case.
9357 	 */
9358 	if ((sg_prefetch_align % sg_size) != 0
9359 	 && (sg_prefetch_cnt < CCSGADDR_MAX))
9360 		sg_prefetch_cnt += sg_prefetch_align;
9361 	/*
9362 	 * Lastly, compute a value that the sequencer can use
9363 	 * to determine if the remainder of the CCSGRAM buffer
9364 	 * has a full S/G element in it.
9365 	 */
9366 	sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1);
9367 	download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt;
9368 	download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit;
9369 	download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1);
9370 	download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1);
9371 	download_consts[SG_SIZEOF] = sg_size;
9372 	download_consts[PKT_OVERRUN_BUFOFFSET] =
9373 		(ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256;
9374 	download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN;
9375 	download_consts[CACHELINE_MASK] = cacheline_mask;
9376 	cur_patch = patches;
9377 	downloaded = 0;
9378 	skip_addr = 0;
9379 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM);
9380 	ahd_outw(ahd, PRGMCNT, 0);
9381 
9382 	for (i = 0; i < sizeof(seqprog)/4; i++) {
9383 		if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) {
9384 			/*
9385 			 * Don't download this instruction as it
9386 			 * is in a patch that was removed.
9387 			 */
9388 			continue;
9389 		}
9390 		/*
9391 		 * Move through the CS table until we find a CS
9392 		 * that might apply to this instruction.
9393 		 */
9394 		for (; cur_cs < NUM_CRITICAL_SECTIONS; cur_cs++) {
9395 			if (critical_sections[cur_cs].end <= i) {
9396 				if (begin_set[cs_count] == TRUE
9397 				 && end_set[cs_count] == FALSE) {
9398 					cs_table[cs_count].end = downloaded;
9399 				 	end_set[cs_count] = TRUE;
9400 					cs_count++;
9401 				}
9402 				continue;
9403 			}
9404 			if (critical_sections[cur_cs].begin <= i
9405 			 && begin_set[cs_count] == FALSE) {
9406 				cs_table[cs_count].begin = downloaded;
9407 				begin_set[cs_count] = TRUE;
9408 			}
9409 			break;
9410 		}
9411 		ahd_download_instr(ahd, i, download_consts);
9412 		downloaded++;
9413 	}
9414 
9415 	ahd->num_critical_sections = cs_count;
9416 	if (cs_count != 0) {
9417 
9418 		cs_count *= sizeof(struct cs);
9419 		ahd->critical_sections = kmalloc(cs_count, GFP_ATOMIC);
9420 		if (ahd->critical_sections == NULL)
9421 			panic("ahd_loadseq: Could not malloc");
9422 		memcpy(ahd->critical_sections, cs_table, cs_count);
9423 	}
9424 	ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE);
9425 
9426 	if (bootverbose) {
9427 		printk(" %d instructions downloaded\n", downloaded);
9428 		printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n",
9429 		       ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags);
9430 	}
9431 }
9432 
9433 static int
9434 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch,
9435 		u_int start_instr, u_int *skip_addr)
9436 {
9437 	const struct patch *cur_patch;
9438 	const struct patch *last_patch;
9439 	u_int	num_patches;
9440 
9441 	num_patches = ARRAY_SIZE(patches);
9442 	last_patch = &patches[num_patches];
9443 	cur_patch = *start_patch;
9444 
9445 	while (cur_patch < last_patch && start_instr == cur_patch->begin) {
9446 
9447 		if (cur_patch->patch_func(ahd) == 0) {
9448 
9449 			/* Start rejecting code */
9450 			*skip_addr = start_instr + cur_patch->skip_instr;
9451 			cur_patch += cur_patch->skip_patch;
9452 		} else {
9453 			/* Accepted this patch.  Advance to the next
9454 			 * one and wait for our intruction pointer to
9455 			 * hit this point.
9456 			 */
9457 			cur_patch++;
9458 		}
9459 	}
9460 
9461 	*start_patch = cur_patch;
9462 	if (start_instr < *skip_addr)
9463 		/* Still skipping */
9464 		return (0);
9465 
9466 	return (1);
9467 }
9468 
9469 static u_int
9470 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address)
9471 {
9472 	const struct patch *cur_patch;
9473 	int address_offset;
9474 	u_int skip_addr;
9475 	u_int i;
9476 
9477 	address_offset = 0;
9478 	cur_patch = patches;
9479 	skip_addr = 0;
9480 
9481 	for (i = 0; i < address;) {
9482 
9483 		ahd_check_patch(ahd, &cur_patch, i, &skip_addr);
9484 
9485 		if (skip_addr > i) {
9486 			int end_addr;
9487 
9488 			end_addr = min(address, skip_addr);
9489 			address_offset += end_addr - i;
9490 			i = skip_addr;
9491 		} else {
9492 			i++;
9493 		}
9494 	}
9495 	return (address - address_offset);
9496 }
9497 
9498 static void
9499 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts)
9500 {
9501 	union	ins_formats instr;
9502 	struct	ins_format1 *fmt1_ins;
9503 	struct	ins_format3 *fmt3_ins;
9504 	u_int	opcode;
9505 
9506 	/*
9507 	 * The firmware is always compiled into a little endian format.
9508 	 */
9509 	instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]);
9510 
9511 	fmt1_ins = &instr.format1;
9512 	fmt3_ins = NULL;
9513 
9514 	/* Pull the opcode */
9515 	opcode = instr.format1.opcode;
9516 	switch (opcode) {
9517 	case AIC_OP_JMP:
9518 	case AIC_OP_JC:
9519 	case AIC_OP_JNC:
9520 	case AIC_OP_CALL:
9521 	case AIC_OP_JNE:
9522 	case AIC_OP_JNZ:
9523 	case AIC_OP_JE:
9524 	case AIC_OP_JZ:
9525 	{
9526 		fmt3_ins = &instr.format3;
9527 		fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address);
9528 	}
9529 		/* fall through */
9530 	case AIC_OP_OR:
9531 	case AIC_OP_AND:
9532 	case AIC_OP_XOR:
9533 	case AIC_OP_ADD:
9534 	case AIC_OP_ADC:
9535 	case AIC_OP_BMOV:
9536 		if (fmt1_ins->parity != 0) {
9537 			fmt1_ins->immediate = dconsts[fmt1_ins->immediate];
9538 		}
9539 		fmt1_ins->parity = 0;
9540 		/* fall through */
9541 	case AIC_OP_ROL:
9542 	{
9543 		int i, count;
9544 
9545 		/* Calculate odd parity for the instruction */
9546 		for (i = 0, count = 0; i < 31; i++) {
9547 			uint32_t mask;
9548 
9549 			mask = 0x01 << i;
9550 			if ((instr.integer & mask) != 0)
9551 				count++;
9552 		}
9553 		if ((count & 0x01) == 0)
9554 			instr.format1.parity = 1;
9555 
9556 		/* The sequencer is a little endian cpu */
9557 		instr.integer = ahd_htole32(instr.integer);
9558 		ahd_outsb(ahd, SEQRAM, instr.bytes, 4);
9559 		break;
9560 	}
9561 	default:
9562 		panic("Unknown opcode encountered in seq program");
9563 		break;
9564 	}
9565 }
9566 
9567 static int
9568 ahd_probe_stack_size(struct ahd_softc *ahd)
9569 {
9570 	int last_probe;
9571 
9572 	last_probe = 0;
9573 	while (1) {
9574 		int i;
9575 
9576 		/*
9577 		 * We avoid using 0 as a pattern to avoid
9578 		 * confusion if the stack implementation
9579 		 * "back-fills" with zeros when "poping'
9580 		 * entries.
9581 		 */
9582 		for (i = 1; i <= last_probe+1; i++) {
9583 		       ahd_outb(ahd, STACK, i & 0xFF);
9584 		       ahd_outb(ahd, STACK, (i >> 8) & 0xFF);
9585 		}
9586 
9587 		/* Verify */
9588 		for (i = last_probe+1; i > 0; i--) {
9589 			u_int stack_entry;
9590 
9591 			stack_entry = ahd_inb(ahd, STACK)
9592 				    |(ahd_inb(ahd, STACK) << 8);
9593 			if (stack_entry != i)
9594 				goto sized;
9595 		}
9596 		last_probe++;
9597 	}
9598 sized:
9599 	return (last_probe);
9600 }
9601 
9602 int
9603 ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries,
9604 		   const char *name, u_int address, u_int value,
9605 		   u_int *cur_column, u_int wrap_point)
9606 {
9607 	int	printed;
9608 	u_int	printed_mask;
9609 
9610 	if (cur_column != NULL && *cur_column >= wrap_point) {
9611 		printk("\n");
9612 		*cur_column = 0;
9613 	}
9614 	printed = printk("%s[0x%x]", name, value);
9615 	if (table == NULL) {
9616 		printed += printk(" ");
9617 		*cur_column += printed;
9618 		return (printed);
9619 	}
9620 	printed_mask = 0;
9621 	while (printed_mask != 0xFF) {
9622 		int entry;
9623 
9624 		for (entry = 0; entry < num_entries; entry++) {
9625 			if (((value & table[entry].mask)
9626 			  != table[entry].value)
9627 			 || ((printed_mask & table[entry].mask)
9628 			  == table[entry].mask))
9629 				continue;
9630 
9631 			printed += printk("%s%s",
9632 					  printed_mask == 0 ? ":(" : "|",
9633 					  table[entry].name);
9634 			printed_mask |= table[entry].mask;
9635 
9636 			break;
9637 		}
9638 		if (entry >= num_entries)
9639 			break;
9640 	}
9641 	if (printed_mask != 0)
9642 		printed += printk(") ");
9643 	else
9644 		printed += printk(" ");
9645 	if (cur_column != NULL)
9646 		*cur_column += printed;
9647 	return (printed);
9648 }
9649 
9650 void
9651 ahd_dump_card_state(struct ahd_softc *ahd)
9652 {
9653 	struct scb	*scb;
9654 	ahd_mode_state	 saved_modes;
9655 	u_int		 dffstat;
9656 	int		 paused;
9657 	u_int		 scb_index;
9658 	u_int		 saved_scb_index;
9659 	u_int		 cur_col;
9660 	int		 i;
9661 
9662 	if (ahd_is_paused(ahd)) {
9663 		paused = 1;
9664 	} else {
9665 		paused = 0;
9666 		ahd_pause(ahd);
9667 	}
9668 	saved_modes = ahd_save_modes(ahd);
9669 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9670 	printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n"
9671 	       "%s: Dumping Card State at program address 0x%x Mode 0x%x\n",
9672 	       ahd_name(ahd),
9673 	       ahd_inw(ahd, CURADDR),
9674 	       ahd_build_mode_state(ahd, ahd->saved_src_mode,
9675 				    ahd->saved_dst_mode));
9676 	if (paused)
9677 		printk("Card was paused\n");
9678 
9679 	if (ahd_check_cmdcmpltqueues(ahd))
9680 		printk("Completions are pending\n");
9681 
9682 	/*
9683 	 * Mode independent registers.
9684 	 */
9685 	cur_col = 0;
9686 	ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50);
9687 	ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50);
9688 	ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50);
9689 	ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50);
9690 	ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50);
9691 	ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50);
9692 	ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50);
9693 	ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50);
9694 	ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50);
9695 	ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50);
9696 	ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50);
9697 	ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50);
9698 	ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50);
9699 	ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50);
9700 	ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50);
9701 	ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50);
9702 	ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50);
9703 	ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50);
9704 	ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50);
9705 	ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT),
9706 				       &cur_col, 50);
9707 	ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50);
9708 	ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID),
9709 				    &cur_col, 50);
9710 	ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50);
9711 	ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50);
9712 	ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50);
9713 	ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50);
9714 	ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50);
9715 	ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50);
9716 	ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50);
9717 	ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50);
9718 	ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50);
9719 	ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50);
9720 	ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50);
9721 	ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50);
9722 	printk("\n");
9723 	printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x "
9724 	       "CURRSCB 0x%x NEXTSCB 0x%x\n",
9725 	       ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING),
9726 	       ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB),
9727 	       ahd_inw(ahd, NEXTSCB));
9728 	cur_col = 0;
9729 	/* QINFIFO */
9730 	ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS,
9731 			   CAM_LUN_WILDCARD, SCB_LIST_NULL,
9732 			   ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT);
9733 	saved_scb_index = ahd_get_scbptr(ahd);
9734 	printk("Pending list:");
9735 	i = 0;
9736 	LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
9737 		if (i++ > AHD_SCB_MAX)
9738 			break;
9739 		cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb),
9740 				 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT));
9741 		ahd_set_scbptr(ahd, SCB_GET_TAG(scb));
9742 		ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL),
9743 				      &cur_col, 60);
9744 		ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID),
9745 				     &cur_col, 60);
9746 	}
9747 	printk("\nTotal %d\n", i);
9748 
9749 	printk("Kernel Free SCB list: ");
9750 	i = 0;
9751 	TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) {
9752 		struct scb *list_scb;
9753 
9754 		list_scb = scb;
9755 		do {
9756 			printk("%d ", SCB_GET_TAG(list_scb));
9757 			list_scb = LIST_NEXT(list_scb, collision_links);
9758 		} while (list_scb && i++ < AHD_SCB_MAX);
9759 	}
9760 
9761 	LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) {
9762 		if (i++ > AHD_SCB_MAX)
9763 			break;
9764 		printk("%d ", SCB_GET_TAG(scb));
9765 	}
9766 	printk("\n");
9767 
9768 	printk("Sequencer Complete DMA-inprog list: ");
9769 	scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD);
9770 	i = 0;
9771 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9772 		ahd_set_scbptr(ahd, scb_index);
9773 		printk("%d ", scb_index);
9774 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9775 	}
9776 	printk("\n");
9777 
9778 	printk("Sequencer Complete list: ");
9779 	scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD);
9780 	i = 0;
9781 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9782 		ahd_set_scbptr(ahd, scb_index);
9783 		printk("%d ", scb_index);
9784 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9785 	}
9786 	printk("\n");
9787 
9788 
9789 	printk("Sequencer DMA-Up and Complete list: ");
9790 	scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD);
9791 	i = 0;
9792 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9793 		ahd_set_scbptr(ahd, scb_index);
9794 		printk("%d ", scb_index);
9795 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9796 	}
9797 	printk("\n");
9798 	printk("Sequencer On QFreeze and Complete list: ");
9799 	scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD);
9800 	i = 0;
9801 	while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) {
9802 		ahd_set_scbptr(ahd, scb_index);
9803 		printk("%d ", scb_index);
9804 		scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE);
9805 	}
9806 	printk("\n");
9807 	ahd_set_scbptr(ahd, saved_scb_index);
9808 	dffstat = ahd_inb(ahd, DFFSTAT);
9809 	for (i = 0; i < 2; i++) {
9810 #ifdef AHD_DEBUG
9811 		struct scb *fifo_scb;
9812 #endif
9813 		u_int	    fifo_scbptr;
9814 
9815 		ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i);
9816 		fifo_scbptr = ahd_get_scbptr(ahd);
9817 		printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n",
9818 		       ahd_name(ahd), i,
9819 		       (dffstat & (FIFO0FREE << i)) ? "Free" : "Active",
9820 		       ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr);
9821 		cur_col = 0;
9822 		ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50);
9823 		ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50);
9824 		ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50);
9825 		ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50);
9826 		ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW),
9827 					  &cur_col, 50);
9828 		ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50);
9829 		ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50);
9830 		ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50);
9831 		ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50);
9832 		if (cur_col > 50) {
9833 			printk("\n");
9834 			cur_col = 0;
9835 		}
9836 		cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ",
9837 				  ahd_inl(ahd, SHADDR+4),
9838 				  ahd_inl(ahd, SHADDR),
9839 				  (ahd_inb(ahd, SHCNT)
9840 				| (ahd_inb(ahd, SHCNT + 1) << 8)
9841 				| (ahd_inb(ahd, SHCNT + 2) << 16)));
9842 		if (cur_col > 50) {
9843 			printk("\n");
9844 			cur_col = 0;
9845 		}
9846 		cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ",
9847 				  ahd_inl(ahd, HADDR+4),
9848 				  ahd_inl(ahd, HADDR),
9849 				  (ahd_inb(ahd, HCNT)
9850 				| (ahd_inb(ahd, HCNT + 1) << 8)
9851 				| (ahd_inb(ahd, HCNT + 2) << 16)));
9852 		ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50);
9853 #ifdef AHD_DEBUG
9854 		if ((ahd_debug & AHD_SHOW_SG) != 0) {
9855 			fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr);
9856 			if (fifo_scb != NULL)
9857 				ahd_dump_sglist(fifo_scb);
9858 		}
9859 #endif
9860 	}
9861 	printk("\nLQIN: ");
9862 	for (i = 0; i < 20; i++)
9863 		printk("0x%x ", ahd_inb(ahd, LQIN + i));
9864 	printk("\n");
9865 	ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG);
9866 	printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n",
9867 	       ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE),
9868 	       ahd_inb(ahd, OPTIONMODE));
9869 	printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n",
9870 	       ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT),
9871 	       ahd_inb(ahd, MAXCMDCNT));
9872 	printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n",
9873 	       ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID),
9874 	       ahd_inb(ahd, SAVED_LUN));
9875 	ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50);
9876 	printk("\n");
9877 	ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN);
9878 	cur_col = 0;
9879 	ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50);
9880 	printk("\n");
9881 	ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
9882 	printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n",
9883 	       ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX),
9884 	       ahd_inw(ahd, DINDEX));
9885 	printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n",
9886 	       ahd_name(ahd), ahd_get_scbptr(ahd),
9887 	       ahd_inw_scbram(ahd, SCB_NEXT),
9888 	       ahd_inw_scbram(ahd, SCB_NEXT2));
9889 	printk("CDB %x %x %x %x %x %x\n",
9890 	       ahd_inb_scbram(ahd, SCB_CDB_STORE),
9891 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+1),
9892 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+2),
9893 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+3),
9894 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+4),
9895 	       ahd_inb_scbram(ahd, SCB_CDB_STORE+5));
9896 	printk("STACK:");
9897 	for (i = 0; i < ahd->stack_size; i++) {
9898 		ahd->saved_stack[i] =
9899 		    ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8);
9900 		printk(" 0x%x", ahd->saved_stack[i]);
9901 	}
9902 	for (i = ahd->stack_size-1; i >= 0; i--) {
9903 		ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF);
9904 		ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF);
9905 	}
9906 	printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n");
9907 	ahd_restore_modes(ahd, saved_modes);
9908 	if (paused == 0)
9909 		ahd_unpause(ahd);
9910 }
9911 
9912 #if 0
9913 void
9914 ahd_dump_scbs(struct ahd_softc *ahd)
9915 {
9916 	ahd_mode_state saved_modes;
9917 	u_int	       saved_scb_index;
9918 	int	       i;
9919 
9920 	saved_modes = ahd_save_modes(ahd);
9921 	ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI);
9922 	saved_scb_index = ahd_get_scbptr(ahd);
9923 	for (i = 0; i < AHD_SCB_MAX; i++) {
9924 		ahd_set_scbptr(ahd, i);
9925 		printk("%3d", i);
9926 		printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n",
9927 		       ahd_inb_scbram(ahd, SCB_CONTROL),
9928 		       ahd_inb_scbram(ahd, SCB_SCSIID),
9929 		       ahd_inw_scbram(ahd, SCB_NEXT),
9930 		       ahd_inw_scbram(ahd, SCB_NEXT2),
9931 		       ahd_inl_scbram(ahd, SCB_SGPTR),
9932 		       ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR));
9933 	}
9934 	printk("\n");
9935 	ahd_set_scbptr(ahd, saved_scb_index);
9936 	ahd_restore_modes(ahd, saved_modes);
9937 }
9938 #endif  /*  0  */
9939 
9940 /**************************** Flexport Logic **********************************/
9941 /*
9942  * Read count 16bit words from 16bit word address start_addr from the
9943  * SEEPROM attached to the controller, into buf, using the controller's
9944  * SEEPROM reading state machine.  Optionally treat the data as a byte
9945  * stream in terms of byte order.
9946  */
9947 int
9948 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9949 		 u_int start_addr, u_int count, int bytestream)
9950 {
9951 	u_int cur_addr;
9952 	u_int end_addr;
9953 	int   error;
9954 
9955 	/*
9956 	 * If we never make it through the loop even once,
9957 	 * we were passed invalid arguments.
9958 	 */
9959 	error = EINVAL;
9960 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
9961 	end_addr = start_addr + count;
9962 	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
9963 
9964 		ahd_outb(ahd, SEEADR, cur_addr);
9965 		ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART);
9966 
9967 		error = ahd_wait_seeprom(ahd);
9968 		if (error)
9969 			break;
9970 		if (bytestream != 0) {
9971 			uint8_t *bytestream_ptr;
9972 
9973 			bytestream_ptr = (uint8_t *)buf;
9974 			*bytestream_ptr++ = ahd_inb(ahd, SEEDAT);
9975 			*bytestream_ptr = ahd_inb(ahd, SEEDAT+1);
9976 		} else {
9977 			/*
9978 			 * ahd_inw() already handles machine byte order.
9979 			 */
9980 			*buf = ahd_inw(ahd, SEEDAT);
9981 		}
9982 		buf++;
9983 	}
9984 	return (error);
9985 }
9986 
9987 /*
9988  * Write count 16bit words from buf, into SEEPROM attache to the
9989  * controller starting at 16bit word address start_addr, using the
9990  * controller's SEEPROM writing state machine.
9991  */
9992 int
9993 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf,
9994 		  u_int start_addr, u_int count)
9995 {
9996 	u_int cur_addr;
9997 	u_int end_addr;
9998 	int   error;
9999 	int   retval;
10000 
10001 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10002 	error = ENOENT;
10003 
10004 	/* Place the chip into write-enable mode */
10005 	ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR);
10006 	ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART);
10007 	error = ahd_wait_seeprom(ahd);
10008 	if (error)
10009 		return (error);
10010 
10011 	/*
10012 	 * Write the data.  If we don't get through the loop at
10013 	 * least once, the arguments were invalid.
10014 	 */
10015 	retval = EINVAL;
10016 	end_addr = start_addr + count;
10017 	for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) {
10018 		ahd_outw(ahd, SEEDAT, *buf++);
10019 		ahd_outb(ahd, SEEADR, cur_addr);
10020 		ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART);
10021 
10022 		retval = ahd_wait_seeprom(ahd);
10023 		if (retval)
10024 			break;
10025 	}
10026 
10027 	/*
10028 	 * Disable writes.
10029 	 */
10030 	ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR);
10031 	ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART);
10032 	error = ahd_wait_seeprom(ahd);
10033 	if (error)
10034 		return (error);
10035 	return (retval);
10036 }
10037 
10038 /*
10039  * Wait ~100us for the serial eeprom to satisfy our request.
10040  */
10041 static int
10042 ahd_wait_seeprom(struct ahd_softc *ahd)
10043 {
10044 	int cnt;
10045 
10046 	cnt = 5000;
10047 	while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt)
10048 		ahd_delay(5);
10049 
10050 	if (cnt == 0)
10051 		return (ETIMEDOUT);
10052 	return (0);
10053 }
10054 
10055 /*
10056  * Validate the two checksums in the per_channel
10057  * vital product data struct.
10058  */
10059 static int
10060 ahd_verify_vpd_cksum(struct vpd_config *vpd)
10061 {
10062 	int i;
10063 	int maxaddr;
10064 	uint32_t checksum;
10065 	uint8_t *vpdarray;
10066 
10067 	vpdarray = (uint8_t *)vpd;
10068 	maxaddr = offsetof(struct vpd_config, vpd_checksum);
10069 	checksum = 0;
10070 	for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++)
10071 		checksum = checksum + vpdarray[i];
10072 	if (checksum == 0
10073 	 || (-checksum & 0xFF) != vpd->vpd_checksum)
10074 		return (0);
10075 
10076 	checksum = 0;
10077 	maxaddr = offsetof(struct vpd_config, checksum);
10078 	for (i = offsetof(struct vpd_config, default_target_flags);
10079 	     i < maxaddr; i++)
10080 		checksum = checksum + vpdarray[i];
10081 	if (checksum == 0
10082 	 || (-checksum & 0xFF) != vpd->checksum)
10083 		return (0);
10084 	return (1);
10085 }
10086 
10087 int
10088 ahd_verify_cksum(struct seeprom_config *sc)
10089 {
10090 	int i;
10091 	int maxaddr;
10092 	uint32_t checksum;
10093 	uint16_t *scarray;
10094 
10095 	maxaddr = (sizeof(*sc)/2) - 1;
10096 	checksum = 0;
10097 	scarray = (uint16_t *)sc;
10098 
10099 	for (i = 0; i < maxaddr; i++)
10100 		checksum = checksum + scarray[i];
10101 	if (checksum == 0
10102 	 || (checksum & 0xFFFF) != sc->checksum) {
10103 		return (0);
10104 	} else {
10105 		return (1);
10106 	}
10107 }
10108 
10109 int
10110 ahd_acquire_seeprom(struct ahd_softc *ahd)
10111 {
10112 	/*
10113 	 * We should be able to determine the SEEPROM type
10114 	 * from the flexport logic, but unfortunately not
10115 	 * all implementations have this logic and there is
10116 	 * no programatic method for determining if the logic
10117 	 * is present.
10118 	 */
10119 	return (1);
10120 #if 0
10121 	uint8_t	seetype;
10122 	int	error;
10123 
10124 	error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype);
10125 	if (error != 0
10126          || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE))
10127 		return (0);
10128 	return (1);
10129 #endif
10130 }
10131 
10132 void
10133 ahd_release_seeprom(struct ahd_softc *ahd)
10134 {
10135 	/* Currently a no-op */
10136 }
10137 
10138 /*
10139  * Wait at most 2 seconds for flexport arbitration to succeed.
10140  */
10141 static int
10142 ahd_wait_flexport(struct ahd_softc *ahd)
10143 {
10144 	int cnt;
10145 
10146 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10147 	cnt = 1000000 * 2 / 5;
10148 	while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt)
10149 		ahd_delay(5);
10150 
10151 	if (cnt == 0)
10152 		return (ETIMEDOUT);
10153 	return (0);
10154 }
10155 
10156 int
10157 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value)
10158 {
10159 	int error;
10160 
10161 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10162 	if (addr > 7)
10163 		panic("ahd_write_flexport: address out of range");
10164 	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10165 	error = ahd_wait_flexport(ahd);
10166 	if (error != 0)
10167 		return (error);
10168 	ahd_outb(ahd, BRDDAT, value);
10169 	ahd_flush_device_writes(ahd);
10170 	ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3));
10171 	ahd_flush_device_writes(ahd);
10172 	ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3));
10173 	ahd_flush_device_writes(ahd);
10174 	ahd_outb(ahd, BRDCTL, 0);
10175 	ahd_flush_device_writes(ahd);
10176 	return (0);
10177 }
10178 
10179 int
10180 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value)
10181 {
10182 	int	error;
10183 
10184 	AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK);
10185 	if (addr > 7)
10186 		panic("ahd_read_flexport: address out of range");
10187 	ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3));
10188 	error = ahd_wait_flexport(ahd);
10189 	if (error != 0)
10190 		return (error);
10191 	*value = ahd_inb(ahd, BRDDAT);
10192 	ahd_outb(ahd, BRDCTL, 0);
10193 	ahd_flush_device_writes(ahd);
10194 	return (0);
10195 }
10196 
10197 /************************* Target Mode ****************************************/
10198 #ifdef AHD_TARGET_MODE
10199 cam_status
10200 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb,
10201 		    struct ahd_tmode_tstate **tstate,
10202 		    struct ahd_tmode_lstate **lstate,
10203 		    int notfound_failure)
10204 {
10205 
10206 	if ((ahd->features & AHD_TARGETMODE) == 0)
10207 		return (CAM_REQ_INVALID);
10208 
10209 	/*
10210 	 * Handle the 'black hole' device that sucks up
10211 	 * requests to unattached luns on enabled targets.
10212 	 */
10213 	if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD
10214 	 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) {
10215 		*tstate = NULL;
10216 		*lstate = ahd->black_hole;
10217 	} else {
10218 		u_int max_id;
10219 
10220 		max_id = (ahd->features & AHD_WIDE) ? 16 : 8;
10221 		if (ccb->ccb_h.target_id >= max_id)
10222 			return (CAM_TID_INVALID);
10223 
10224 		if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS)
10225 			return (CAM_LUN_INVALID);
10226 
10227 		*tstate = ahd->enabled_targets[ccb->ccb_h.target_id];
10228 		*lstate = NULL;
10229 		if (*tstate != NULL)
10230 			*lstate =
10231 			    (*tstate)->enabled_luns[ccb->ccb_h.target_lun];
10232 	}
10233 
10234 	if (notfound_failure != 0 && *lstate == NULL)
10235 		return (CAM_PATH_INVALID);
10236 
10237 	return (CAM_REQ_CMP);
10238 }
10239 
10240 void
10241 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb)
10242 {
10243 #if NOT_YET
10244 	struct	   ahd_tmode_tstate *tstate;
10245 	struct	   ahd_tmode_lstate *lstate;
10246 	struct	   ccb_en_lun *cel;
10247 	cam_status status;
10248 	u_int	   target;
10249 	u_int	   lun;
10250 	u_int	   target_mask;
10251 	u_long	   s;
10252 	char	   channel;
10253 
10254 	status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate,
10255 				     /*notfound_failure*/FALSE);
10256 
10257 	if (status != CAM_REQ_CMP) {
10258 		ccb->ccb_h.status = status;
10259 		return;
10260 	}
10261 
10262 	if ((ahd->features & AHD_MULTIROLE) != 0) {
10263 		u_int	   our_id;
10264 
10265 		our_id = ahd->our_id;
10266 		if (ccb->ccb_h.target_id != our_id) {
10267 			if ((ahd->features & AHD_MULTI_TID) != 0
10268 		   	 && (ahd->flags & AHD_INITIATORROLE) != 0) {
10269 				/*
10270 				 * Only allow additional targets if
10271 				 * the initiator role is disabled.
10272 				 * The hardware cannot handle a re-select-in
10273 				 * on the initiator id during a re-select-out
10274 				 * on a different target id.
10275 				 */
10276 				status = CAM_TID_INVALID;
10277 			} else if ((ahd->flags & AHD_INITIATORROLE) != 0
10278 				|| ahd->enabled_luns > 0) {
10279 				/*
10280 				 * Only allow our target id to change
10281 				 * if the initiator role is not configured
10282 				 * and there are no enabled luns which
10283 				 * are attached to the currently registered
10284 				 * scsi id.
10285 				 */
10286 				status = CAM_TID_INVALID;
10287 			}
10288 		}
10289 	}
10290 
10291 	if (status != CAM_REQ_CMP) {
10292 		ccb->ccb_h.status = status;
10293 		return;
10294 	}
10295 
10296 	/*
10297 	 * We now have an id that is valid.
10298 	 * If we aren't in target mode, switch modes.
10299 	 */
10300 	if ((ahd->flags & AHD_TARGETROLE) == 0
10301 	 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) {
10302 		u_long	s;
10303 
10304 		printk("Configuring Target Mode\n");
10305 		ahd_lock(ahd, &s);
10306 		if (LIST_FIRST(&ahd->pending_scbs) != NULL) {
10307 			ccb->ccb_h.status = CAM_BUSY;
10308 			ahd_unlock(ahd, &s);
10309 			return;
10310 		}
10311 		ahd->flags |= AHD_TARGETROLE;
10312 		if ((ahd->features & AHD_MULTIROLE) == 0)
10313 			ahd->flags &= ~AHD_INITIATORROLE;
10314 		ahd_pause(ahd);
10315 		ahd_loadseq(ahd);
10316 		ahd_restart(ahd);
10317 		ahd_unlock(ahd, &s);
10318 	}
10319 	cel = &ccb->cel;
10320 	target = ccb->ccb_h.target_id;
10321 	lun = ccb->ccb_h.target_lun;
10322 	channel = SIM_CHANNEL(ahd, sim);
10323 	target_mask = 0x01 << target;
10324 	if (channel == 'B')
10325 		target_mask <<= 8;
10326 
10327 	if (cel->enable != 0) {
10328 		u_int scsiseq1;
10329 
10330 		/* Are we already enabled?? */
10331 		if (lstate != NULL) {
10332 			xpt_print_path(ccb->ccb_h.path);
10333 			printk("Lun already enabled\n");
10334 			ccb->ccb_h.status = CAM_LUN_ALRDY_ENA;
10335 			return;
10336 		}
10337 
10338 		if (cel->grp6_len != 0
10339 		 || cel->grp7_len != 0) {
10340 			/*
10341 			 * Don't (yet?) support vendor
10342 			 * specific commands.
10343 			 */
10344 			ccb->ccb_h.status = CAM_REQ_INVALID;
10345 			printk("Non-zero Group Codes\n");
10346 			return;
10347 		}
10348 
10349 		/*
10350 		 * Seems to be okay.
10351 		 * Setup our data structures.
10352 		 */
10353 		if (target != CAM_TARGET_WILDCARD && tstate == NULL) {
10354 			tstate = ahd_alloc_tstate(ahd, target, channel);
10355 			if (tstate == NULL) {
10356 				xpt_print_path(ccb->ccb_h.path);
10357 				printk("Couldn't allocate tstate\n");
10358 				ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10359 				return;
10360 			}
10361 		}
10362 		lstate = kzalloc(sizeof(*lstate), GFP_ATOMIC);
10363 		if (lstate == NULL) {
10364 			xpt_print_path(ccb->ccb_h.path);
10365 			printk("Couldn't allocate lstate\n");
10366 			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10367 			return;
10368 		}
10369 		status = xpt_create_path(&lstate->path, /*periph*/NULL,
10370 					 xpt_path_path_id(ccb->ccb_h.path),
10371 					 xpt_path_target_id(ccb->ccb_h.path),
10372 					 xpt_path_lun_id(ccb->ccb_h.path));
10373 		if (status != CAM_REQ_CMP) {
10374 			kfree(lstate);
10375 			xpt_print_path(ccb->ccb_h.path);
10376 			printk("Couldn't allocate path\n");
10377 			ccb->ccb_h.status = CAM_RESRC_UNAVAIL;
10378 			return;
10379 		}
10380 		SLIST_INIT(&lstate->accept_tios);
10381 		SLIST_INIT(&lstate->immed_notifies);
10382 		ahd_lock(ahd, &s);
10383 		ahd_pause(ahd);
10384 		if (target != CAM_TARGET_WILDCARD) {
10385 			tstate->enabled_luns[lun] = lstate;
10386 			ahd->enabled_luns++;
10387 
10388 			if ((ahd->features & AHD_MULTI_TID) != 0) {
10389 				u_int targid_mask;
10390 
10391 				targid_mask = ahd_inw(ahd, TARGID);
10392 				targid_mask |= target_mask;
10393 				ahd_outw(ahd, TARGID, targid_mask);
10394 				ahd_update_scsiid(ahd, targid_mask);
10395 			} else {
10396 				u_int our_id;
10397 				char  channel;
10398 
10399 				channel = SIM_CHANNEL(ahd, sim);
10400 				our_id = SIM_SCSI_ID(ahd, sim);
10401 
10402 				/*
10403 				 * This can only happen if selections
10404 				 * are not enabled
10405 				 */
10406 				if (target != our_id) {
10407 					u_int sblkctl;
10408 					char  cur_channel;
10409 					int   swap;
10410 
10411 					sblkctl = ahd_inb(ahd, SBLKCTL);
10412 					cur_channel = (sblkctl & SELBUSB)
10413 						    ? 'B' : 'A';
10414 					if ((ahd->features & AHD_TWIN) == 0)
10415 						cur_channel = 'A';
10416 					swap = cur_channel != channel;
10417 					ahd->our_id = target;
10418 
10419 					if (swap)
10420 						ahd_outb(ahd, SBLKCTL,
10421 							 sblkctl ^ SELBUSB);
10422 
10423 					ahd_outb(ahd, SCSIID, target);
10424 
10425 					if (swap)
10426 						ahd_outb(ahd, SBLKCTL, sblkctl);
10427 				}
10428 			}
10429 		} else
10430 			ahd->black_hole = lstate;
10431 		/* Allow select-in operations */
10432 		if (ahd->black_hole != NULL && ahd->enabled_luns > 0) {
10433 			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10434 			scsiseq1 |= ENSELI;
10435 			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10436 			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10437 			scsiseq1 |= ENSELI;
10438 			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10439 		}
10440 		ahd_unpause(ahd);
10441 		ahd_unlock(ahd, &s);
10442 		ccb->ccb_h.status = CAM_REQ_CMP;
10443 		xpt_print_path(ccb->ccb_h.path);
10444 		printk("Lun now enabled for target mode\n");
10445 	} else {
10446 		struct scb *scb;
10447 		int i, empty;
10448 
10449 		if (lstate == NULL) {
10450 			ccb->ccb_h.status = CAM_LUN_INVALID;
10451 			return;
10452 		}
10453 
10454 		ahd_lock(ahd, &s);
10455 
10456 		ccb->ccb_h.status = CAM_REQ_CMP;
10457 		LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) {
10458 			struct ccb_hdr *ccbh;
10459 
10460 			ccbh = &scb->io_ctx->ccb_h;
10461 			if (ccbh->func_code == XPT_CONT_TARGET_IO
10462 			 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){
10463 				printk("CTIO pending\n");
10464 				ccb->ccb_h.status = CAM_REQ_INVALID;
10465 				ahd_unlock(ahd, &s);
10466 				return;
10467 			}
10468 		}
10469 
10470 		if (SLIST_FIRST(&lstate->accept_tios) != NULL) {
10471 			printk("ATIOs pending\n");
10472 			ccb->ccb_h.status = CAM_REQ_INVALID;
10473 		}
10474 
10475 		if (SLIST_FIRST(&lstate->immed_notifies) != NULL) {
10476 			printk("INOTs pending\n");
10477 			ccb->ccb_h.status = CAM_REQ_INVALID;
10478 		}
10479 
10480 		if (ccb->ccb_h.status != CAM_REQ_CMP) {
10481 			ahd_unlock(ahd, &s);
10482 			return;
10483 		}
10484 
10485 		xpt_print_path(ccb->ccb_h.path);
10486 		printk("Target mode disabled\n");
10487 		xpt_free_path(lstate->path);
10488 		kfree(lstate);
10489 
10490 		ahd_pause(ahd);
10491 		/* Can we clean up the target too? */
10492 		if (target != CAM_TARGET_WILDCARD) {
10493 			tstate->enabled_luns[lun] = NULL;
10494 			ahd->enabled_luns--;
10495 			for (empty = 1, i = 0; i < 8; i++)
10496 				if (tstate->enabled_luns[i] != NULL) {
10497 					empty = 0;
10498 					break;
10499 				}
10500 
10501 			if (empty) {
10502 				ahd_free_tstate(ahd, target, channel,
10503 						/*force*/FALSE);
10504 				if (ahd->features & AHD_MULTI_TID) {
10505 					u_int targid_mask;
10506 
10507 					targid_mask = ahd_inw(ahd, TARGID);
10508 					targid_mask &= ~target_mask;
10509 					ahd_outw(ahd, TARGID, targid_mask);
10510 					ahd_update_scsiid(ahd, targid_mask);
10511 				}
10512 			}
10513 		} else {
10514 
10515 			ahd->black_hole = NULL;
10516 
10517 			/*
10518 			 * We can't allow selections without
10519 			 * our black hole device.
10520 			 */
10521 			empty = TRUE;
10522 		}
10523 		if (ahd->enabled_luns == 0) {
10524 			/* Disallow select-in */
10525 			u_int scsiseq1;
10526 
10527 			scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE);
10528 			scsiseq1 &= ~ENSELI;
10529 			ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1);
10530 			scsiseq1 = ahd_inb(ahd, SCSISEQ1);
10531 			scsiseq1 &= ~ENSELI;
10532 			ahd_outb(ahd, SCSISEQ1, scsiseq1);
10533 
10534 			if ((ahd->features & AHD_MULTIROLE) == 0) {
10535 				printk("Configuring Initiator Mode\n");
10536 				ahd->flags &= ~AHD_TARGETROLE;
10537 				ahd->flags |= AHD_INITIATORROLE;
10538 				ahd_pause(ahd);
10539 				ahd_loadseq(ahd);
10540 				ahd_restart(ahd);
10541 				/*
10542 				 * Unpaused.  The extra unpause
10543 				 * that follows is harmless.
10544 				 */
10545 			}
10546 		}
10547 		ahd_unpause(ahd);
10548 		ahd_unlock(ahd, &s);
10549 	}
10550 #endif
10551 }
10552 
10553 static void
10554 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask)
10555 {
10556 #if NOT_YET
10557 	u_int scsiid_mask;
10558 	u_int scsiid;
10559 
10560 	if ((ahd->features & AHD_MULTI_TID) == 0)
10561 		panic("ahd_update_scsiid called on non-multitid unit\n");
10562 
10563 	/*
10564 	 * Since we will rely on the TARGID mask
10565 	 * for selection enables, ensure that OID
10566 	 * in SCSIID is not set to some other ID
10567 	 * that we don't want to allow selections on.
10568 	 */
10569 	if ((ahd->features & AHD_ULTRA2) != 0)
10570 		scsiid = ahd_inb(ahd, SCSIID_ULTRA2);
10571 	else
10572 		scsiid = ahd_inb(ahd, SCSIID);
10573 	scsiid_mask = 0x1 << (scsiid & OID);
10574 	if ((targid_mask & scsiid_mask) == 0) {
10575 		u_int our_id;
10576 
10577 		/* ffs counts from 1 */
10578 		our_id = ffs(targid_mask);
10579 		if (our_id == 0)
10580 			our_id = ahd->our_id;
10581 		else
10582 			our_id--;
10583 		scsiid &= TID;
10584 		scsiid |= our_id;
10585 	}
10586 	if ((ahd->features & AHD_ULTRA2) != 0)
10587 		ahd_outb(ahd, SCSIID_ULTRA2, scsiid);
10588 	else
10589 		ahd_outb(ahd, SCSIID, scsiid);
10590 #endif
10591 }
10592 
10593 static void
10594 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused)
10595 {
10596 	struct target_cmd *cmd;
10597 
10598 	ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD);
10599 	while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) {
10600 
10601 		/*
10602 		 * Only advance through the queue if we
10603 		 * have the resources to process the command.
10604 		 */
10605 		if (ahd_handle_target_cmd(ahd, cmd) != 0)
10606 			break;
10607 
10608 		cmd->cmd_valid = 0;
10609 		ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
10610 				ahd->shared_data_map.dmamap,
10611 				ahd_targetcmd_offset(ahd, ahd->tqinfifonext),
10612 				sizeof(struct target_cmd),
10613 				BUS_DMASYNC_PREREAD);
10614 		ahd->tqinfifonext++;
10615 
10616 		/*
10617 		 * Lazily update our position in the target mode incoming
10618 		 * command queue as seen by the sequencer.
10619 		 */
10620 		if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) {
10621 			u_int hs_mailbox;
10622 
10623 			hs_mailbox = ahd_inb(ahd, HS_MAILBOX);
10624 			hs_mailbox &= ~HOST_TQINPOS;
10625 			hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS;
10626 			ahd_outb(ahd, HS_MAILBOX, hs_mailbox);
10627 		}
10628 	}
10629 }
10630 
10631 static int
10632 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd)
10633 {
10634 	struct	  ahd_tmode_tstate *tstate;
10635 	struct	  ahd_tmode_lstate *lstate;
10636 	struct	  ccb_accept_tio *atio;
10637 	uint8_t *byte;
10638 	int	  initiator;
10639 	int	  target;
10640 	int	  lun;
10641 
10642 	initiator = SCSIID_TARGET(ahd, cmd->scsiid);
10643 	target = SCSIID_OUR_ID(cmd->scsiid);
10644 	lun    = (cmd->identify & MSG_IDENTIFY_LUNMASK);
10645 
10646 	byte = cmd->bytes;
10647 	tstate = ahd->enabled_targets[target];
10648 	lstate = NULL;
10649 	if (tstate != NULL)
10650 		lstate = tstate->enabled_luns[lun];
10651 
10652 	/*
10653 	 * Commands for disabled luns go to the black hole driver.
10654 	 */
10655 	if (lstate == NULL)
10656 		lstate = ahd->black_hole;
10657 
10658 	atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios);
10659 	if (atio == NULL) {
10660 		ahd->flags |= AHD_TQINFIFO_BLOCKED;
10661 		/*
10662 		 * Wait for more ATIOs from the peripheral driver for this lun.
10663 		 */
10664 		return (1);
10665 	} else
10666 		ahd->flags &= ~AHD_TQINFIFO_BLOCKED;
10667 #ifdef AHD_DEBUG
10668 	if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10669 		printk("Incoming command from %d for %d:%d%s\n",
10670 		       initiator, target, lun,
10671 		       lstate == ahd->black_hole ? "(Black Holed)" : "");
10672 #endif
10673 	SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle);
10674 
10675 	if (lstate == ahd->black_hole) {
10676 		/* Fill in the wildcards */
10677 		atio->ccb_h.target_id = target;
10678 		atio->ccb_h.target_lun = lun;
10679 	}
10680 
10681 	/*
10682 	 * Package it up and send it off to
10683 	 * whomever has this lun enabled.
10684 	 */
10685 	atio->sense_len = 0;
10686 	atio->init_id = initiator;
10687 	if (byte[0] != 0xFF) {
10688 		/* Tag was included */
10689 		atio->tag_action = *byte++;
10690 		atio->tag_id = *byte++;
10691 		atio->ccb_h.flags = CAM_TAG_ACTION_VALID;
10692 	} else {
10693 		atio->ccb_h.flags = 0;
10694 	}
10695 	byte++;
10696 
10697 	/* Okay.  Now determine the cdb size based on the command code */
10698 	switch (*byte >> CMD_GROUP_CODE_SHIFT) {
10699 	case 0:
10700 		atio->cdb_len = 6;
10701 		break;
10702 	case 1:
10703 	case 2:
10704 		atio->cdb_len = 10;
10705 		break;
10706 	case 4:
10707 		atio->cdb_len = 16;
10708 		break;
10709 	case 5:
10710 		atio->cdb_len = 12;
10711 		break;
10712 	case 3:
10713 	default:
10714 		/* Only copy the opcode. */
10715 		atio->cdb_len = 1;
10716 		printk("Reserved or VU command code type encountered\n");
10717 		break;
10718 	}
10719 
10720 	memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len);
10721 
10722 	atio->ccb_h.status |= CAM_CDB_RECVD;
10723 
10724 	if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) {
10725 		/*
10726 		 * We weren't allowed to disconnect.
10727 		 * We're hanging on the bus until a
10728 		 * continue target I/O comes in response
10729 		 * to this accept tio.
10730 		 */
10731 #ifdef AHD_DEBUG
10732 		if ((ahd_debug & AHD_SHOW_TQIN) != 0)
10733 			printk("Received Immediate Command %d:%d:%d - %p\n",
10734 			       initiator, target, lun, ahd->pending_device);
10735 #endif
10736 		ahd->pending_device = lstate;
10737 		ahd_freeze_ccb((union ccb *)atio);
10738 		atio->ccb_h.flags |= CAM_DIS_DISCONNECT;
10739 	}
10740 	xpt_done((union ccb*)atio);
10741 	return (0);
10742 }
10743 
10744 #endif
10745