1 /* 2 * Core routines and tables shareable across OS platforms. 3 * 4 * Copyright (c) 1994-2002 Justin T. Gibbs. 5 * Copyright (c) 2000-2003 Adaptec Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions, and the following disclaimer, 13 * without modification. 14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer 15 * substantially similar to the "NO WARRANTY" disclaimer below 16 * ("Disclaimer") and any redistribution must be conditioned upon 17 * including a substantially similar Disclaimer requirement for further 18 * binary redistribution. 19 * 3. Neither the names of the above-listed copyright holders nor the names 20 * of any contributors may be used to endorse or promote products derived 21 * from this software without specific prior written permission. 22 * 23 * Alternatively, this software may be distributed under the terms of the 24 * GNU General Public License ("GPL") version 2 as published by the Free 25 * Software Foundation. 26 * 27 * NO WARRANTY 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 38 * POSSIBILITY OF SUCH DAMAGES. 39 * 40 * $Id: //depot/aic7xxx/aic7xxx/aic79xx.c#250 $ 41 */ 42 43 #ifdef __linux__ 44 #include "aic79xx_osm.h" 45 #include "aic79xx_inline.h" 46 #include "aicasm/aicasm_insformat.h" 47 #else 48 #include <dev/aic7xxx/aic79xx_osm.h> 49 #include <dev/aic7xxx/aic79xx_inline.h> 50 #include <dev/aic7xxx/aicasm/aicasm_insformat.h> 51 #endif 52 53 54 /***************************** Lookup Tables **********************************/ 55 static const char *const ahd_chip_names[] = 56 { 57 "NONE", 58 "aic7901", 59 "aic7902", 60 "aic7901A" 61 }; 62 static const u_int num_chip_names = ARRAY_SIZE(ahd_chip_names); 63 64 /* 65 * Hardware error codes. 66 */ 67 struct ahd_hard_error_entry { 68 uint8_t errno; 69 const char *errmesg; 70 }; 71 72 static const struct ahd_hard_error_entry ahd_hard_errors[] = { 73 { DSCTMOUT, "Discard Timer has timed out" }, 74 { ILLOPCODE, "Illegal Opcode in sequencer program" }, 75 { SQPARERR, "Sequencer Parity Error" }, 76 { DPARERR, "Data-path Parity Error" }, 77 { MPARERR, "Scratch or SCB Memory Parity Error" }, 78 { CIOPARERR, "CIOBUS Parity Error" }, 79 }; 80 static const u_int num_errors = ARRAY_SIZE(ahd_hard_errors); 81 82 static const struct ahd_phase_table_entry ahd_phase_table[] = 83 { 84 { P_DATAOUT, MSG_NOOP, "in Data-out phase" }, 85 { P_DATAIN, MSG_INITIATOR_DET_ERR, "in Data-in phase" }, 86 { P_DATAOUT_DT, MSG_NOOP, "in DT Data-out phase" }, 87 { P_DATAIN_DT, MSG_INITIATOR_DET_ERR, "in DT Data-in phase" }, 88 { P_COMMAND, MSG_NOOP, "in Command phase" }, 89 { P_MESGOUT, MSG_NOOP, "in Message-out phase" }, 90 { P_STATUS, MSG_INITIATOR_DET_ERR, "in Status phase" }, 91 { P_MESGIN, MSG_PARITY_ERROR, "in Message-in phase" }, 92 { P_BUSFREE, MSG_NOOP, "while idle" }, 93 { 0, MSG_NOOP, "in unknown phase" } 94 }; 95 96 /* 97 * In most cases we only wish to itterate over real phases, so 98 * exclude the last element from the count. 99 */ 100 static const u_int num_phases = ARRAY_SIZE(ahd_phase_table) - 1; 101 102 /* Our Sequencer Program */ 103 #include "aic79xx_seq.h" 104 105 /**************************** Function Declarations ***************************/ 106 static void ahd_handle_transmission_error(struct ahd_softc *ahd); 107 static void ahd_handle_lqiphase_error(struct ahd_softc *ahd, 108 u_int lqistat1); 109 static int ahd_handle_pkt_busfree(struct ahd_softc *ahd, 110 u_int busfreetime); 111 static int ahd_handle_nonpkt_busfree(struct ahd_softc *ahd); 112 static void ahd_handle_proto_violation(struct ahd_softc *ahd); 113 static void ahd_force_renegotiation(struct ahd_softc *ahd, 114 struct ahd_devinfo *devinfo); 115 116 static struct ahd_tmode_tstate* 117 ahd_alloc_tstate(struct ahd_softc *ahd, 118 u_int scsi_id, char channel); 119 #ifdef AHD_TARGET_MODE 120 static void ahd_free_tstate(struct ahd_softc *ahd, 121 u_int scsi_id, char channel, int force); 122 #endif 123 static void ahd_devlimited_syncrate(struct ahd_softc *ahd, 124 struct ahd_initiator_tinfo *, 125 u_int *period, 126 u_int *ppr_options, 127 role_t role); 128 static void ahd_update_neg_table(struct ahd_softc *ahd, 129 struct ahd_devinfo *devinfo, 130 struct ahd_transinfo *tinfo); 131 static void ahd_update_pending_scbs(struct ahd_softc *ahd); 132 static void ahd_fetch_devinfo(struct ahd_softc *ahd, 133 struct ahd_devinfo *devinfo); 134 static void ahd_scb_devinfo(struct ahd_softc *ahd, 135 struct ahd_devinfo *devinfo, 136 struct scb *scb); 137 static void ahd_setup_initiator_msgout(struct ahd_softc *ahd, 138 struct ahd_devinfo *devinfo, 139 struct scb *scb); 140 static void ahd_build_transfer_msg(struct ahd_softc *ahd, 141 struct ahd_devinfo *devinfo); 142 static void ahd_construct_sdtr(struct ahd_softc *ahd, 143 struct ahd_devinfo *devinfo, 144 u_int period, u_int offset); 145 static void ahd_construct_wdtr(struct ahd_softc *ahd, 146 struct ahd_devinfo *devinfo, 147 u_int bus_width); 148 static void ahd_construct_ppr(struct ahd_softc *ahd, 149 struct ahd_devinfo *devinfo, 150 u_int period, u_int offset, 151 u_int bus_width, u_int ppr_options); 152 static void ahd_clear_msg_state(struct ahd_softc *ahd); 153 static void ahd_handle_message_phase(struct ahd_softc *ahd); 154 typedef enum { 155 AHDMSG_1B, 156 AHDMSG_2B, 157 AHDMSG_EXT 158 } ahd_msgtype; 159 static int ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, 160 u_int msgval, int full); 161 static int ahd_parse_msg(struct ahd_softc *ahd, 162 struct ahd_devinfo *devinfo); 163 static int ahd_handle_msg_reject(struct ahd_softc *ahd, 164 struct ahd_devinfo *devinfo); 165 static void ahd_handle_ign_wide_residue(struct ahd_softc *ahd, 166 struct ahd_devinfo *devinfo); 167 static void ahd_reinitialize_dataptrs(struct ahd_softc *ahd); 168 static void ahd_handle_devreset(struct ahd_softc *ahd, 169 struct ahd_devinfo *devinfo, 170 u_int lun, cam_status status, 171 char *message, int verbose_level); 172 #ifdef AHD_TARGET_MODE 173 static void ahd_setup_target_msgin(struct ahd_softc *ahd, 174 struct ahd_devinfo *devinfo, 175 struct scb *scb); 176 #endif 177 178 static u_int ahd_sglist_size(struct ahd_softc *ahd); 179 static u_int ahd_sglist_allocsize(struct ahd_softc *ahd); 180 static bus_dmamap_callback_t 181 ahd_dmamap_cb; 182 static void ahd_initialize_hscbs(struct ahd_softc *ahd); 183 static int ahd_init_scbdata(struct ahd_softc *ahd); 184 static void ahd_fini_scbdata(struct ahd_softc *ahd); 185 static void ahd_setup_iocell_workaround(struct ahd_softc *ahd); 186 static void ahd_iocell_first_selection(struct ahd_softc *ahd); 187 static void ahd_add_col_list(struct ahd_softc *ahd, 188 struct scb *scb, u_int col_idx); 189 static void ahd_rem_col_list(struct ahd_softc *ahd, 190 struct scb *scb); 191 static void ahd_chip_init(struct ahd_softc *ahd); 192 static void ahd_qinfifo_requeue(struct ahd_softc *ahd, 193 struct scb *prev_scb, 194 struct scb *scb); 195 static int ahd_qinfifo_count(struct ahd_softc *ahd); 196 static int ahd_search_scb_list(struct ahd_softc *ahd, int target, 197 char channel, int lun, u_int tag, 198 role_t role, uint32_t status, 199 ahd_search_action action, 200 u_int *list_head, u_int *list_tail, 201 u_int tid); 202 static void ahd_stitch_tid_list(struct ahd_softc *ahd, 203 u_int tid_prev, u_int tid_cur, 204 u_int tid_next); 205 static void ahd_add_scb_to_free_list(struct ahd_softc *ahd, 206 u_int scbid); 207 static u_int ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid, 208 u_int prev, u_int next, u_int tid); 209 static void ahd_reset_current_bus(struct ahd_softc *ahd); 210 static ahd_callback_t ahd_stat_timer; 211 #ifdef AHD_DUMP_SEQ 212 static void ahd_dumpseq(struct ahd_softc *ahd); 213 #endif 214 static void ahd_loadseq(struct ahd_softc *ahd); 215 static int ahd_check_patch(struct ahd_softc *ahd, 216 const struct patch **start_patch, 217 u_int start_instr, u_int *skip_addr); 218 static u_int ahd_resolve_seqaddr(struct ahd_softc *ahd, 219 u_int address); 220 static void ahd_download_instr(struct ahd_softc *ahd, 221 u_int instrptr, uint8_t *dconsts); 222 static int ahd_probe_stack_size(struct ahd_softc *ahd); 223 static int ahd_scb_active_in_fifo(struct ahd_softc *ahd, 224 struct scb *scb); 225 static void ahd_run_data_fifo(struct ahd_softc *ahd, 226 struct scb *scb); 227 228 #ifdef AHD_TARGET_MODE 229 static void ahd_queue_lstate_event(struct ahd_softc *ahd, 230 struct ahd_tmode_lstate *lstate, 231 u_int initiator_id, 232 u_int event_type, 233 u_int event_arg); 234 static void ahd_update_scsiid(struct ahd_softc *ahd, 235 u_int targid_mask); 236 static int ahd_handle_target_cmd(struct ahd_softc *ahd, 237 struct target_cmd *cmd); 238 #endif 239 240 static int ahd_abort_scbs(struct ahd_softc *ahd, int target, 241 char channel, int lun, u_int tag, 242 role_t role, uint32_t status); 243 static void ahd_alloc_scbs(struct ahd_softc *ahd); 244 static void ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, 245 u_int scbid); 246 static void ahd_calc_residual(struct ahd_softc *ahd, 247 struct scb *scb); 248 static void ahd_clear_critical_section(struct ahd_softc *ahd); 249 static void ahd_clear_intstat(struct ahd_softc *ahd); 250 static void ahd_enable_coalescing(struct ahd_softc *ahd, 251 int enable); 252 static u_int ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl); 253 static void ahd_freeze_devq(struct ahd_softc *ahd, 254 struct scb *scb); 255 static void ahd_handle_scb_status(struct ahd_softc *ahd, 256 struct scb *scb); 257 static const struct ahd_phase_table_entry* ahd_lookup_phase_entry(int phase); 258 static void ahd_shutdown(void *arg); 259 static void ahd_update_coalescing_values(struct ahd_softc *ahd, 260 u_int timer, 261 u_int maxcmds, 262 u_int mincmds); 263 static int ahd_verify_vpd_cksum(struct vpd_config *vpd); 264 static int ahd_wait_seeprom(struct ahd_softc *ahd); 265 static int ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, 266 int target, char channel, int lun, 267 u_int tag, role_t role); 268 269 static void ahd_reset_cmds_pending(struct ahd_softc *ahd); 270 271 /*************************** Interrupt Services *******************************/ 272 static void ahd_run_qoutfifo(struct ahd_softc *ahd); 273 #ifdef AHD_TARGET_MODE 274 static void ahd_run_tqinfifo(struct ahd_softc *ahd, int paused); 275 #endif 276 static void ahd_handle_hwerrint(struct ahd_softc *ahd); 277 static void ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat); 278 static void ahd_handle_scsiint(struct ahd_softc *ahd, 279 u_int intstat); 280 281 /************************ Sequencer Execution Control *************************/ 282 void 283 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst) 284 { 285 if (ahd->src_mode == src && ahd->dst_mode == dst) 286 return; 287 #ifdef AHD_DEBUG 288 if (ahd->src_mode == AHD_MODE_UNKNOWN 289 || ahd->dst_mode == AHD_MODE_UNKNOWN) 290 panic("Setting mode prior to saving it.\n"); 291 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0) 292 printk("%s: Setting mode 0x%x\n", ahd_name(ahd), 293 ahd_build_mode_state(ahd, src, dst)); 294 #endif 295 ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst)); 296 ahd->src_mode = src; 297 ahd->dst_mode = dst; 298 } 299 300 static void 301 ahd_update_modes(struct ahd_softc *ahd) 302 { 303 ahd_mode_state mode_ptr; 304 ahd_mode src; 305 ahd_mode dst; 306 307 mode_ptr = ahd_inb(ahd, MODE_PTR); 308 #ifdef AHD_DEBUG 309 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0) 310 printk("Reading mode 0x%x\n", mode_ptr); 311 #endif 312 ahd_extract_mode_state(ahd, mode_ptr, &src, &dst); 313 ahd_known_modes(ahd, src, dst); 314 } 315 316 static void 317 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode, 318 ahd_mode dstmode, const char *file, int line) 319 { 320 #ifdef AHD_DEBUG 321 if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0 322 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) { 323 panic("%s:%s:%d: Mode assertion failed.\n", 324 ahd_name(ahd), file, line); 325 } 326 #endif 327 } 328 329 #define AHD_ASSERT_MODES(ahd, source, dest) \ 330 ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__); 331 332 ahd_mode_state 333 ahd_save_modes(struct ahd_softc *ahd) 334 { 335 if (ahd->src_mode == AHD_MODE_UNKNOWN 336 || ahd->dst_mode == AHD_MODE_UNKNOWN) 337 ahd_update_modes(ahd); 338 339 return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode)); 340 } 341 342 void 343 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state) 344 { 345 ahd_mode src; 346 ahd_mode dst; 347 348 ahd_extract_mode_state(ahd, state, &src, &dst); 349 ahd_set_modes(ahd, src, dst); 350 } 351 352 /* 353 * Determine whether the sequencer has halted code execution. 354 * Returns non-zero status if the sequencer is stopped. 355 */ 356 int 357 ahd_is_paused(struct ahd_softc *ahd) 358 { 359 return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0); 360 } 361 362 /* 363 * Request that the sequencer stop and wait, indefinitely, for it 364 * to stop. The sequencer will only acknowledge that it is paused 365 * once it has reached an instruction boundary and PAUSEDIS is 366 * cleared in the SEQCTL register. The sequencer may use PAUSEDIS 367 * for critical sections. 368 */ 369 void 370 ahd_pause(struct ahd_softc *ahd) 371 { 372 ahd_outb(ahd, HCNTRL, ahd->pause); 373 374 /* 375 * Since the sequencer can disable pausing in a critical section, we 376 * must loop until it actually stops. 377 */ 378 while (ahd_is_paused(ahd) == 0) 379 ; 380 } 381 382 /* 383 * Allow the sequencer to continue program execution. 384 * We check here to ensure that no additional interrupt 385 * sources that would cause the sequencer to halt have been 386 * asserted. If, for example, a SCSI bus reset is detected 387 * while we are fielding a different, pausing, interrupt type, 388 * we don't want to release the sequencer before going back 389 * into our interrupt handler and dealing with this new 390 * condition. 391 */ 392 void 393 ahd_unpause(struct ahd_softc *ahd) 394 { 395 /* 396 * Automatically restore our modes to those saved 397 * prior to the first change of the mode. 398 */ 399 if (ahd->saved_src_mode != AHD_MODE_UNKNOWN 400 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) { 401 if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0) 402 ahd_reset_cmds_pending(ahd); 403 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode); 404 } 405 406 if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0) 407 ahd_outb(ahd, HCNTRL, ahd->unpause); 408 409 ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN); 410 } 411 412 /*********************** Scatter Gather List Handling *************************/ 413 void * 414 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb, 415 void *sgptr, dma_addr_t addr, bus_size_t len, int last) 416 { 417 scb->sg_count++; 418 if (sizeof(dma_addr_t) > 4 419 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 420 struct ahd_dma64_seg *sg; 421 422 sg = (struct ahd_dma64_seg *)sgptr; 423 sg->addr = ahd_htole64(addr); 424 sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0)); 425 return (sg + 1); 426 } else { 427 struct ahd_dma_seg *sg; 428 429 sg = (struct ahd_dma_seg *)sgptr; 430 sg->addr = ahd_htole32(addr & 0xFFFFFFFF); 431 sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000) 432 | (last ? AHD_DMA_LAST_SEG : 0)); 433 return (sg + 1); 434 } 435 } 436 437 static void 438 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb) 439 { 440 /* XXX Handle target mode SCBs. */ 441 scb->crc_retry_count = 0; 442 if ((scb->flags & SCB_PACKETIZED) != 0) { 443 /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */ 444 scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE; 445 } else { 446 if (ahd_get_transfer_length(scb) & 0x01) 447 scb->hscb->task_attribute = SCB_XFERLEN_ODD; 448 else 449 scb->hscb->task_attribute = 0; 450 } 451 452 if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR 453 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0) 454 scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr = 455 ahd_htole32(scb->sense_busaddr); 456 } 457 458 static void 459 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb) 460 { 461 /* 462 * Copy the first SG into the "current" data ponter area. 463 */ 464 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 465 struct ahd_dma64_seg *sg; 466 467 sg = (struct ahd_dma64_seg *)scb->sg_list; 468 scb->hscb->dataptr = sg->addr; 469 scb->hscb->datacnt = sg->len; 470 } else { 471 struct ahd_dma_seg *sg; 472 uint32_t *dataptr_words; 473 474 sg = (struct ahd_dma_seg *)scb->sg_list; 475 dataptr_words = (uint32_t*)&scb->hscb->dataptr; 476 dataptr_words[0] = sg->addr; 477 dataptr_words[1] = 0; 478 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) { 479 uint64_t high_addr; 480 481 high_addr = ahd_le32toh(sg->len) & 0x7F000000; 482 scb->hscb->dataptr |= ahd_htole64(high_addr << 8); 483 } 484 scb->hscb->datacnt = sg->len; 485 } 486 /* 487 * Note where to find the SG entries in bus space. 488 * We also set the full residual flag which the 489 * sequencer will clear as soon as a data transfer 490 * occurs. 491 */ 492 scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID); 493 } 494 495 static void 496 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb) 497 { 498 scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL); 499 scb->hscb->dataptr = 0; 500 scb->hscb->datacnt = 0; 501 } 502 503 /************************** Memory mapping routines ***************************/ 504 static void * 505 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr) 506 { 507 dma_addr_t sg_offset; 508 509 /* sg_list_phys points to entry 1, not 0 */ 510 sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd)); 511 return ((uint8_t *)scb->sg_list + sg_offset); 512 } 513 514 static uint32_t 515 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg) 516 { 517 dma_addr_t sg_offset; 518 519 /* sg_list_phys points to entry 1, not 0 */ 520 sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list) 521 - ahd_sg_size(ahd); 522 523 return (scb->sg_list_busaddr + sg_offset); 524 } 525 526 static void 527 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op) 528 { 529 ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat, 530 scb->hscb_map->dmamap, 531 /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr, 532 /*len*/sizeof(*scb->hscb), op); 533 } 534 535 void 536 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op) 537 { 538 if (scb->sg_count == 0) 539 return; 540 541 ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat, 542 scb->sg_map->dmamap, 543 /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd), 544 /*len*/ahd_sg_size(ahd) * scb->sg_count, op); 545 } 546 547 static void 548 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op) 549 { 550 ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat, 551 scb->sense_map->dmamap, 552 /*offset*/scb->sense_busaddr, 553 /*len*/AHD_SENSE_BUFSIZE, op); 554 } 555 556 #ifdef AHD_TARGET_MODE 557 static uint32_t 558 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index) 559 { 560 return (((uint8_t *)&ahd->targetcmds[index]) 561 - (uint8_t *)ahd->qoutfifo); 562 } 563 #endif 564 565 /*********************** Miscellaneous Support Functions ***********************/ 566 /* 567 * Return pointers to the transfer negotiation information 568 * for the specified our_id/remote_id pair. 569 */ 570 struct ahd_initiator_tinfo * 571 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id, 572 u_int remote_id, struct ahd_tmode_tstate **tstate) 573 { 574 /* 575 * Transfer data structures are stored from the perspective 576 * of the target role. Since the parameters for a connection 577 * in the initiator role to a given target are the same as 578 * when the roles are reversed, we pretend we are the target. 579 */ 580 if (channel == 'B') 581 our_id += 8; 582 *tstate = ahd->enabled_targets[our_id]; 583 return (&(*tstate)->transinfo[remote_id]); 584 } 585 586 uint16_t 587 ahd_inw(struct ahd_softc *ahd, u_int port) 588 { 589 /* 590 * Read high byte first as some registers increment 591 * or have other side effects when the low byte is 592 * read. 593 */ 594 uint16_t r = ahd_inb(ahd, port+1) << 8; 595 return r | ahd_inb(ahd, port); 596 } 597 598 void 599 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value) 600 { 601 /* 602 * Write low byte first to accommodate registers 603 * such as PRGMCNT where the order maters. 604 */ 605 ahd_outb(ahd, port, value & 0xFF); 606 ahd_outb(ahd, port+1, (value >> 8) & 0xFF); 607 } 608 609 uint32_t 610 ahd_inl(struct ahd_softc *ahd, u_int port) 611 { 612 return ((ahd_inb(ahd, port)) 613 | (ahd_inb(ahd, port+1) << 8) 614 | (ahd_inb(ahd, port+2) << 16) 615 | (ahd_inb(ahd, port+3) << 24)); 616 } 617 618 void 619 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value) 620 { 621 ahd_outb(ahd, port, (value) & 0xFF); 622 ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF); 623 ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF); 624 ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF); 625 } 626 627 uint64_t 628 ahd_inq(struct ahd_softc *ahd, u_int port) 629 { 630 return ((ahd_inb(ahd, port)) 631 | (ahd_inb(ahd, port+1) << 8) 632 | (ahd_inb(ahd, port+2) << 16) 633 | (ahd_inb(ahd, port+3) << 24) 634 | (((uint64_t)ahd_inb(ahd, port+4)) << 32) 635 | (((uint64_t)ahd_inb(ahd, port+5)) << 40) 636 | (((uint64_t)ahd_inb(ahd, port+6)) << 48) 637 | (((uint64_t)ahd_inb(ahd, port+7)) << 56)); 638 } 639 640 void 641 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value) 642 { 643 ahd_outb(ahd, port, value & 0xFF); 644 ahd_outb(ahd, port+1, (value >> 8) & 0xFF); 645 ahd_outb(ahd, port+2, (value >> 16) & 0xFF); 646 ahd_outb(ahd, port+3, (value >> 24) & 0xFF); 647 ahd_outb(ahd, port+4, (value >> 32) & 0xFF); 648 ahd_outb(ahd, port+5, (value >> 40) & 0xFF); 649 ahd_outb(ahd, port+6, (value >> 48) & 0xFF); 650 ahd_outb(ahd, port+7, (value >> 56) & 0xFF); 651 } 652 653 u_int 654 ahd_get_scbptr(struct ahd_softc *ahd) 655 { 656 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), 657 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); 658 return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8)); 659 } 660 661 void 662 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr) 663 { 664 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), 665 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); 666 ahd_outb(ahd, SCBPTR, scbptr & 0xFF); 667 ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF); 668 } 669 670 #if 0 /* unused */ 671 static u_int 672 ahd_get_hnscb_qoff(struct ahd_softc *ahd) 673 { 674 return (ahd_inw_atomic(ahd, HNSCB_QOFF)); 675 } 676 #endif 677 678 static void 679 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value) 680 { 681 ahd_outw_atomic(ahd, HNSCB_QOFF, value); 682 } 683 684 #if 0 /* unused */ 685 static u_int 686 ahd_get_hescb_qoff(struct ahd_softc *ahd) 687 { 688 return (ahd_inb(ahd, HESCB_QOFF)); 689 } 690 #endif 691 692 static void 693 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value) 694 { 695 ahd_outb(ahd, HESCB_QOFF, value); 696 } 697 698 static u_int 699 ahd_get_snscb_qoff(struct ahd_softc *ahd) 700 { 701 u_int oldvalue; 702 703 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); 704 oldvalue = ahd_inw(ahd, SNSCB_QOFF); 705 ahd_outw(ahd, SNSCB_QOFF, oldvalue); 706 return (oldvalue); 707 } 708 709 static void 710 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value) 711 { 712 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); 713 ahd_outw(ahd, SNSCB_QOFF, value); 714 } 715 716 #if 0 /* unused */ 717 static u_int 718 ahd_get_sescb_qoff(struct ahd_softc *ahd) 719 { 720 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); 721 return (ahd_inb(ahd, SESCB_QOFF)); 722 } 723 #endif 724 725 static void 726 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value) 727 { 728 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); 729 ahd_outb(ahd, SESCB_QOFF, value); 730 } 731 732 #if 0 /* unused */ 733 static u_int 734 ahd_get_sdscb_qoff(struct ahd_softc *ahd) 735 { 736 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); 737 return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8)); 738 } 739 #endif 740 741 static void 742 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value) 743 { 744 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); 745 ahd_outb(ahd, SDSCB_QOFF, value & 0xFF); 746 ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF); 747 } 748 749 u_int 750 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset) 751 { 752 u_int value; 753 754 /* 755 * Workaround PCI-X Rev A. hardware bug. 756 * After a host read of SCB memory, the chip 757 * may become confused into thinking prefetch 758 * was required. This starts the discard timer 759 * running and can cause an unexpected discard 760 * timer interrupt. The work around is to read 761 * a normal register prior to the exhaustion of 762 * the discard timer. The mode pointer register 763 * has no side effects and so serves well for 764 * this purpose. 765 * 766 * Razor #528 767 */ 768 value = ahd_inb(ahd, offset); 769 if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0) 770 ahd_inb(ahd, MODE_PTR); 771 return (value); 772 } 773 774 u_int 775 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset) 776 { 777 return (ahd_inb_scbram(ahd, offset) 778 | (ahd_inb_scbram(ahd, offset+1) << 8)); 779 } 780 781 static uint32_t 782 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset) 783 { 784 return (ahd_inw_scbram(ahd, offset) 785 | (ahd_inw_scbram(ahd, offset+2) << 16)); 786 } 787 788 static uint64_t 789 ahd_inq_scbram(struct ahd_softc *ahd, u_int offset) 790 { 791 return (ahd_inl_scbram(ahd, offset) 792 | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32); 793 } 794 795 struct scb * 796 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag) 797 { 798 struct scb* scb; 799 800 if (tag >= AHD_SCB_MAX) 801 return (NULL); 802 scb = ahd->scb_data.scbindex[tag]; 803 if (scb != NULL) 804 ahd_sync_scb(ahd, scb, 805 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE); 806 return (scb); 807 } 808 809 static void 810 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb) 811 { 812 struct hardware_scb *q_hscb; 813 struct map_node *q_hscb_map; 814 uint32_t saved_hscb_busaddr; 815 816 /* 817 * Our queuing method is a bit tricky. The card 818 * knows in advance which HSCB (by address) to download, 819 * and we can't disappoint it. To achieve this, the next 820 * HSCB to download is saved off in ahd->next_queued_hscb. 821 * When we are called to queue "an arbitrary scb", 822 * we copy the contents of the incoming HSCB to the one 823 * the sequencer knows about, swap HSCB pointers and 824 * finally assign the SCB to the tag indexed location 825 * in the scb_array. This makes sure that we can still 826 * locate the correct SCB by SCB_TAG. 827 */ 828 q_hscb = ahd->next_queued_hscb; 829 q_hscb_map = ahd->next_queued_hscb_map; 830 saved_hscb_busaddr = q_hscb->hscb_busaddr; 831 memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb)); 832 q_hscb->hscb_busaddr = saved_hscb_busaddr; 833 q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr; 834 835 /* Now swap HSCB pointers. */ 836 ahd->next_queued_hscb = scb->hscb; 837 ahd->next_queued_hscb_map = scb->hscb_map; 838 scb->hscb = q_hscb; 839 scb->hscb_map = q_hscb_map; 840 841 /* Now define the mapping from tag to SCB in the scbindex */ 842 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb; 843 } 844 845 /* 846 * Tell the sequencer about a new transaction to execute. 847 */ 848 void 849 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb) 850 { 851 ahd_swap_with_next_hscb(ahd, scb); 852 853 if (SCBID_IS_NULL(SCB_GET_TAG(scb))) 854 panic("Attempt to queue invalid SCB tag %x\n", 855 SCB_GET_TAG(scb)); 856 857 /* 858 * Keep a history of SCBs we've downloaded in the qinfifo. 859 */ 860 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb); 861 ahd->qinfifonext++; 862 863 if (scb->sg_count != 0) 864 ahd_setup_data_scb(ahd, scb); 865 else 866 ahd_setup_noxfer_scb(ahd, scb); 867 ahd_setup_scb_common(ahd, scb); 868 869 /* 870 * Make sure our data is consistent from the 871 * perspective of the adapter. 872 */ 873 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 874 875 #ifdef AHD_DEBUG 876 if ((ahd_debug & AHD_SHOW_QUEUE) != 0) { 877 uint64_t host_dataptr; 878 879 host_dataptr = ahd_le64toh(scb->hscb->dataptr); 880 printk("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n", 881 ahd_name(ahd), 882 SCB_GET_TAG(scb), scb->hscb->scsiid, 883 ahd_le32toh(scb->hscb->hscb_busaddr), 884 (u_int)((host_dataptr >> 32) & 0xFFFFFFFF), 885 (u_int)(host_dataptr & 0xFFFFFFFF), 886 ahd_le32toh(scb->hscb->datacnt)); 887 } 888 #endif 889 /* Tell the adapter about the newly queued SCB */ 890 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); 891 } 892 893 /************************** Interrupt Processing ******************************/ 894 static void 895 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op) 896 { 897 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, 898 /*offset*/0, 899 /*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op); 900 } 901 902 static void 903 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op) 904 { 905 #ifdef AHD_TARGET_MODE 906 if ((ahd->flags & AHD_TARGETROLE) != 0) { 907 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, 908 ahd->shared_data_map.dmamap, 909 ahd_targetcmd_offset(ahd, 0), 910 sizeof(struct target_cmd) * AHD_TMODE_CMDS, 911 op); 912 } 913 #endif 914 } 915 916 /* 917 * See if the firmware has posted any completed commands 918 * into our in-core command complete fifos. 919 */ 920 #define AHD_RUN_QOUTFIFO 0x1 921 #define AHD_RUN_TQINFIFO 0x2 922 static u_int 923 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd) 924 { 925 u_int retval; 926 927 retval = 0; 928 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, 929 /*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo), 930 /*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD); 931 if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag 932 == ahd->qoutfifonext_valid_tag) 933 retval |= AHD_RUN_QOUTFIFO; 934 #ifdef AHD_TARGET_MODE 935 if ((ahd->flags & AHD_TARGETROLE) != 0 936 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) { 937 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, 938 ahd->shared_data_map.dmamap, 939 ahd_targetcmd_offset(ahd, ahd->tqinfifofnext), 940 /*len*/sizeof(struct target_cmd), 941 BUS_DMASYNC_POSTREAD); 942 if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0) 943 retval |= AHD_RUN_TQINFIFO; 944 } 945 #endif 946 return (retval); 947 } 948 949 /* 950 * Catch an interrupt from the adapter 951 */ 952 int 953 ahd_intr(struct ahd_softc *ahd) 954 { 955 u_int intstat; 956 957 if ((ahd->pause & INTEN) == 0) { 958 /* 959 * Our interrupt is not enabled on the chip 960 * and may be disabled for re-entrancy reasons, 961 * so just return. This is likely just a shared 962 * interrupt. 963 */ 964 return (0); 965 } 966 967 /* 968 * Instead of directly reading the interrupt status register, 969 * infer the cause of the interrupt by checking our in-core 970 * completion queues. This avoids a costly PCI bus read in 971 * most cases. 972 */ 973 if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0 974 && (ahd_check_cmdcmpltqueues(ahd) != 0)) 975 intstat = CMDCMPLT; 976 else 977 intstat = ahd_inb(ahd, INTSTAT); 978 979 if ((intstat & INT_PEND) == 0) 980 return (0); 981 982 if (intstat & CMDCMPLT) { 983 ahd_outb(ahd, CLRINT, CLRCMDINT); 984 985 /* 986 * Ensure that the chip sees that we've cleared 987 * this interrupt before we walk the output fifo. 988 * Otherwise, we may, due to posted bus writes, 989 * clear the interrupt after we finish the scan, 990 * and after the sequencer has added new entries 991 * and asserted the interrupt again. 992 */ 993 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 994 if (ahd_is_paused(ahd)) { 995 /* 996 * Potentially lost SEQINT. 997 * If SEQINTCODE is non-zero, 998 * simulate the SEQINT. 999 */ 1000 if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT) 1001 intstat |= SEQINT; 1002 } 1003 } else { 1004 ahd_flush_device_writes(ahd); 1005 } 1006 ahd_run_qoutfifo(ahd); 1007 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++; 1008 ahd->cmdcmplt_total++; 1009 #ifdef AHD_TARGET_MODE 1010 if ((ahd->flags & AHD_TARGETROLE) != 0) 1011 ahd_run_tqinfifo(ahd, /*paused*/FALSE); 1012 #endif 1013 } 1014 1015 /* 1016 * Handle statuses that may invalidate our cached 1017 * copy of INTSTAT separately. 1018 */ 1019 if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) { 1020 /* Hot eject. Do nothing */ 1021 } else if (intstat & HWERRINT) { 1022 ahd_handle_hwerrint(ahd); 1023 } else if ((intstat & (PCIINT|SPLTINT)) != 0) { 1024 ahd->bus_intr(ahd); 1025 } else { 1026 1027 if ((intstat & SEQINT) != 0) 1028 ahd_handle_seqint(ahd, intstat); 1029 1030 if ((intstat & SCSIINT) != 0) 1031 ahd_handle_scsiint(ahd, intstat); 1032 } 1033 return (1); 1034 } 1035 1036 /******************************** Private Inlines *****************************/ 1037 static inline void 1038 ahd_assert_atn(struct ahd_softc *ahd) 1039 { 1040 ahd_outb(ahd, SCSISIGO, ATNO); 1041 } 1042 1043 /* 1044 * Determine if the current connection has a packetized 1045 * agreement. This does not necessarily mean that we 1046 * are currently in a packetized transfer. We could 1047 * just as easily be sending or receiving a message. 1048 */ 1049 static int 1050 ahd_currently_packetized(struct ahd_softc *ahd) 1051 { 1052 ahd_mode_state saved_modes; 1053 int packetized; 1054 1055 saved_modes = ahd_save_modes(ahd); 1056 if ((ahd->bugs & AHD_PKTIZED_STATUS_BUG) != 0) { 1057 /* 1058 * The packetized bit refers to the last 1059 * connection, not the current one. Check 1060 * for non-zero LQISTATE instead. 1061 */ 1062 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); 1063 packetized = ahd_inb(ahd, LQISTATE) != 0; 1064 } else { 1065 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 1066 packetized = ahd_inb(ahd, LQISTAT2) & PACKETIZED; 1067 } 1068 ahd_restore_modes(ahd, saved_modes); 1069 return (packetized); 1070 } 1071 1072 static inline int 1073 ahd_set_active_fifo(struct ahd_softc *ahd) 1074 { 1075 u_int active_fifo; 1076 1077 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 1078 active_fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO; 1079 switch (active_fifo) { 1080 case 0: 1081 case 1: 1082 ahd_set_modes(ahd, active_fifo, active_fifo); 1083 return (1); 1084 default: 1085 return (0); 1086 } 1087 } 1088 1089 static inline void 1090 ahd_unbusy_tcl(struct ahd_softc *ahd, u_int tcl) 1091 { 1092 ahd_busy_tcl(ahd, tcl, SCB_LIST_NULL); 1093 } 1094 1095 /* 1096 * Determine whether the sequencer reported a residual 1097 * for this SCB/transaction. 1098 */ 1099 static inline void 1100 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb) 1101 { 1102 uint32_t sgptr; 1103 1104 sgptr = ahd_le32toh(scb->hscb->sgptr); 1105 if ((sgptr & SG_STATUS_VALID) != 0) 1106 ahd_calc_residual(ahd, scb); 1107 } 1108 1109 static inline void 1110 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb) 1111 { 1112 uint32_t sgptr; 1113 1114 sgptr = ahd_le32toh(scb->hscb->sgptr); 1115 if ((sgptr & SG_STATUS_VALID) != 0) 1116 ahd_handle_scb_status(ahd, scb); 1117 else 1118 ahd_done(ahd, scb); 1119 } 1120 1121 1122 /************************* Sequencer Execution Control ************************/ 1123 /* 1124 * Restart the sequencer program from address zero 1125 */ 1126 static void 1127 ahd_restart(struct ahd_softc *ahd) 1128 { 1129 1130 ahd_pause(ahd); 1131 1132 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 1133 1134 /* No more pending messages */ 1135 ahd_clear_msg_state(ahd); 1136 ahd_outb(ahd, SCSISIGO, 0); /* De-assert BSY */ 1137 ahd_outb(ahd, MSG_OUT, MSG_NOOP); /* No message to send */ 1138 ahd_outb(ahd, SXFRCTL1, ahd_inb(ahd, SXFRCTL1) & ~BITBUCKET); 1139 ahd_outb(ahd, SEQINTCTL, 0); 1140 ahd_outb(ahd, LASTPHASE, P_BUSFREE); 1141 ahd_outb(ahd, SEQ_FLAGS, 0); 1142 ahd_outb(ahd, SAVED_SCSIID, 0xFF); 1143 ahd_outb(ahd, SAVED_LUN, 0xFF); 1144 1145 /* 1146 * Ensure that the sequencer's idea of TQINPOS 1147 * matches our own. The sequencer increments TQINPOS 1148 * only after it sees a DMA complete and a reset could 1149 * occur before the increment leaving the kernel to believe 1150 * the command arrived but the sequencer to not. 1151 */ 1152 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext); 1153 1154 /* Always allow reselection */ 1155 ahd_outb(ahd, SCSISEQ1, 1156 ahd_inb(ahd, SCSISEQ_TEMPLATE) & (ENSELI|ENRSELI|ENAUTOATNP)); 1157 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); 1158 1159 /* 1160 * Clear any pending sequencer interrupt. It is no 1161 * longer relevant since we're resetting the Program 1162 * Counter. 1163 */ 1164 ahd_outb(ahd, CLRINT, CLRSEQINT); 1165 1166 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET); 1167 ahd_unpause(ahd); 1168 } 1169 1170 static void 1171 ahd_clear_fifo(struct ahd_softc *ahd, u_int fifo) 1172 { 1173 ahd_mode_state saved_modes; 1174 1175 #ifdef AHD_DEBUG 1176 if ((ahd_debug & AHD_SHOW_FIFOS) != 0) 1177 printk("%s: Clearing FIFO %d\n", ahd_name(ahd), fifo); 1178 #endif 1179 saved_modes = ahd_save_modes(ahd); 1180 ahd_set_modes(ahd, fifo, fifo); 1181 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT); 1182 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) 1183 ahd_outb(ahd, CCSGCTL, CCSGRESET); 1184 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR); 1185 ahd_outb(ahd, SG_STATE, 0); 1186 ahd_restore_modes(ahd, saved_modes); 1187 } 1188 1189 /************************* Input/Output Queues ********************************/ 1190 /* 1191 * Flush and completed commands that are sitting in the command 1192 * complete queues down on the chip but have yet to be dma'ed back up. 1193 */ 1194 static void 1195 ahd_flush_qoutfifo(struct ahd_softc *ahd) 1196 { 1197 struct scb *scb; 1198 ahd_mode_state saved_modes; 1199 u_int saved_scbptr; 1200 u_int ccscbctl; 1201 u_int scbid; 1202 u_int next_scbid; 1203 1204 saved_modes = ahd_save_modes(ahd); 1205 1206 /* 1207 * Flush the good status FIFO for completed packetized commands. 1208 */ 1209 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 1210 saved_scbptr = ahd_get_scbptr(ahd); 1211 while ((ahd_inb(ahd, LQISTAT2) & LQIGSAVAIL) != 0) { 1212 u_int fifo_mode; 1213 u_int i; 1214 1215 scbid = ahd_inw(ahd, GSFIFO); 1216 scb = ahd_lookup_scb(ahd, scbid); 1217 if (scb == NULL) { 1218 printk("%s: Warning - GSFIFO SCB %d invalid\n", 1219 ahd_name(ahd), scbid); 1220 continue; 1221 } 1222 /* 1223 * Determine if this transaction is still active in 1224 * any FIFO. If it is, we must flush that FIFO to 1225 * the host before completing the command. 1226 */ 1227 fifo_mode = 0; 1228 rescan_fifos: 1229 for (i = 0; i < 2; i++) { 1230 /* Toggle to the other mode. */ 1231 fifo_mode ^= 1; 1232 ahd_set_modes(ahd, fifo_mode, fifo_mode); 1233 1234 if (ahd_scb_active_in_fifo(ahd, scb) == 0) 1235 continue; 1236 1237 ahd_run_data_fifo(ahd, scb); 1238 1239 /* 1240 * Running this FIFO may cause a CFG4DATA for 1241 * this same transaction to assert in the other 1242 * FIFO or a new snapshot SAVEPTRS interrupt 1243 * in this FIFO. Even running a FIFO may not 1244 * clear the transaction if we are still waiting 1245 * for data to drain to the host. We must loop 1246 * until the transaction is not active in either 1247 * FIFO just to be sure. Reset our loop counter 1248 * so we will visit both FIFOs again before 1249 * declaring this transaction finished. We 1250 * also delay a bit so that status has a chance 1251 * to change before we look at this FIFO again. 1252 */ 1253 ahd_delay(200); 1254 goto rescan_fifos; 1255 } 1256 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 1257 ahd_set_scbptr(ahd, scbid); 1258 if ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_LIST_NULL) == 0 1259 && ((ahd_inb_scbram(ahd, SCB_SGPTR) & SG_FULL_RESID) != 0 1260 || (ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR) 1261 & SG_LIST_NULL) != 0)) { 1262 u_int comp_head; 1263 1264 /* 1265 * The transfer completed with a residual. 1266 * Place this SCB on the complete DMA list 1267 * so that we update our in-core copy of the 1268 * SCB before completing the command. 1269 */ 1270 ahd_outb(ahd, SCB_SCSI_STATUS, 0); 1271 ahd_outb(ahd, SCB_SGPTR, 1272 ahd_inb_scbram(ahd, SCB_SGPTR) 1273 | SG_STATUS_VALID); 1274 ahd_outw(ahd, SCB_TAG, scbid); 1275 ahd_outw(ahd, SCB_NEXT_COMPLETE, SCB_LIST_NULL); 1276 comp_head = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD); 1277 if (SCBID_IS_NULL(comp_head)) { 1278 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, scbid); 1279 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid); 1280 } else { 1281 u_int tail; 1282 1283 tail = ahd_inw(ahd, COMPLETE_DMA_SCB_TAIL); 1284 ahd_set_scbptr(ahd, tail); 1285 ahd_outw(ahd, SCB_NEXT_COMPLETE, scbid); 1286 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, scbid); 1287 ahd_set_scbptr(ahd, scbid); 1288 } 1289 } else 1290 ahd_complete_scb(ahd, scb); 1291 } 1292 ahd_set_scbptr(ahd, saved_scbptr); 1293 1294 /* 1295 * Setup for command channel portion of flush. 1296 */ 1297 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); 1298 1299 /* 1300 * Wait for any inprogress DMA to complete and clear DMA state 1301 * if this if for an SCB in the qinfifo. 1302 */ 1303 while (((ccscbctl = ahd_inb(ahd, CCSCBCTL)) & (CCARREN|CCSCBEN)) != 0) { 1304 1305 if ((ccscbctl & (CCSCBDIR|CCARREN)) == (CCSCBDIR|CCARREN)) { 1306 if ((ccscbctl & ARRDONE) != 0) 1307 break; 1308 } else if ((ccscbctl & CCSCBDONE) != 0) 1309 break; 1310 ahd_delay(200); 1311 } 1312 /* 1313 * We leave the sequencer to cleanup in the case of DMA's to 1314 * update the qoutfifo. In all other cases (DMA's to the 1315 * chip or a push of an SCB from the COMPLETE_DMA_SCB list), 1316 * we disable the DMA engine so that the sequencer will not 1317 * attempt to handle the DMA completion. 1318 */ 1319 if ((ccscbctl & CCSCBDIR) != 0 || (ccscbctl & ARRDONE) != 0) 1320 ahd_outb(ahd, CCSCBCTL, ccscbctl & ~(CCARREN|CCSCBEN)); 1321 1322 /* 1323 * Complete any SCBs that just finished 1324 * being DMA'ed into the qoutfifo. 1325 */ 1326 ahd_run_qoutfifo(ahd); 1327 1328 saved_scbptr = ahd_get_scbptr(ahd); 1329 /* 1330 * Manually update/complete any completed SCBs that are waiting to be 1331 * DMA'ed back up to the host. 1332 */ 1333 scbid = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD); 1334 while (!SCBID_IS_NULL(scbid)) { 1335 uint8_t *hscb_ptr; 1336 u_int i; 1337 1338 ahd_set_scbptr(ahd, scbid); 1339 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); 1340 scb = ahd_lookup_scb(ahd, scbid); 1341 if (scb == NULL) { 1342 printk("%s: Warning - DMA-up and complete " 1343 "SCB %d invalid\n", ahd_name(ahd), scbid); 1344 continue; 1345 } 1346 hscb_ptr = (uint8_t *)scb->hscb; 1347 for (i = 0; i < sizeof(struct hardware_scb); i++) 1348 *hscb_ptr++ = ahd_inb_scbram(ahd, SCB_BASE + i); 1349 1350 ahd_complete_scb(ahd, scb); 1351 scbid = next_scbid; 1352 } 1353 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL); 1354 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL); 1355 1356 scbid = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD); 1357 while (!SCBID_IS_NULL(scbid)) { 1358 1359 ahd_set_scbptr(ahd, scbid); 1360 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); 1361 scb = ahd_lookup_scb(ahd, scbid); 1362 if (scb == NULL) { 1363 printk("%s: Warning - Complete Qfrz SCB %d invalid\n", 1364 ahd_name(ahd), scbid); 1365 continue; 1366 } 1367 1368 ahd_complete_scb(ahd, scb); 1369 scbid = next_scbid; 1370 } 1371 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL); 1372 1373 scbid = ahd_inw(ahd, COMPLETE_SCB_HEAD); 1374 while (!SCBID_IS_NULL(scbid)) { 1375 1376 ahd_set_scbptr(ahd, scbid); 1377 next_scbid = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); 1378 scb = ahd_lookup_scb(ahd, scbid); 1379 if (scb == NULL) { 1380 printk("%s: Warning - Complete SCB %d invalid\n", 1381 ahd_name(ahd), scbid); 1382 continue; 1383 } 1384 1385 ahd_complete_scb(ahd, scb); 1386 scbid = next_scbid; 1387 } 1388 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL); 1389 1390 /* 1391 * Restore state. 1392 */ 1393 ahd_set_scbptr(ahd, saved_scbptr); 1394 ahd_restore_modes(ahd, saved_modes); 1395 ahd->flags |= AHD_UPDATE_PEND_CMDS; 1396 } 1397 1398 /* 1399 * Determine if an SCB for a packetized transaction 1400 * is active in a FIFO. 1401 */ 1402 static int 1403 ahd_scb_active_in_fifo(struct ahd_softc *ahd, struct scb *scb) 1404 { 1405 1406 /* 1407 * The FIFO is only active for our transaction if 1408 * the SCBPTR matches the SCB's ID and the firmware 1409 * has installed a handler for the FIFO or we have 1410 * a pending SAVEPTRS or CFG4DATA interrupt. 1411 */ 1412 if (ahd_get_scbptr(ahd) != SCB_GET_TAG(scb) 1413 || ((ahd_inb(ahd, LONGJMP_ADDR+1) & INVALID_ADDR) != 0 1414 && (ahd_inb(ahd, SEQINTSRC) & (CFG4DATA|SAVEPTRS)) == 0)) 1415 return (0); 1416 1417 return (1); 1418 } 1419 1420 /* 1421 * Run a data fifo to completion for a transaction we know 1422 * has completed across the SCSI bus (good status has been 1423 * received). We are already set to the correct FIFO mode 1424 * on entry to this routine. 1425 * 1426 * This function attempts to operate exactly as the firmware 1427 * would when running this FIFO. Care must be taken to update 1428 * this routine any time the firmware's FIFO algorithm is 1429 * changed. 1430 */ 1431 static void 1432 ahd_run_data_fifo(struct ahd_softc *ahd, struct scb *scb) 1433 { 1434 u_int seqintsrc; 1435 1436 seqintsrc = ahd_inb(ahd, SEQINTSRC); 1437 if ((seqintsrc & CFG4DATA) != 0) { 1438 uint32_t datacnt; 1439 uint32_t sgptr; 1440 1441 /* 1442 * Clear full residual flag. 1443 */ 1444 sgptr = ahd_inl_scbram(ahd, SCB_SGPTR) & ~SG_FULL_RESID; 1445 ahd_outb(ahd, SCB_SGPTR, sgptr); 1446 1447 /* 1448 * Load datacnt and address. 1449 */ 1450 datacnt = ahd_inl_scbram(ahd, SCB_DATACNT); 1451 if ((datacnt & AHD_DMA_LAST_SEG) != 0) { 1452 sgptr |= LAST_SEG; 1453 ahd_outb(ahd, SG_STATE, 0); 1454 } else 1455 ahd_outb(ahd, SG_STATE, LOADING_NEEDED); 1456 ahd_outq(ahd, HADDR, ahd_inq_scbram(ahd, SCB_DATAPTR)); 1457 ahd_outl(ahd, HCNT, datacnt & AHD_SG_LEN_MASK); 1458 ahd_outb(ahd, SG_CACHE_PRE, sgptr); 1459 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN); 1460 1461 /* 1462 * Initialize Residual Fields. 1463 */ 1464 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, datacnt >> 24); 1465 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr & SG_PTR_MASK); 1466 1467 /* 1468 * Mark the SCB as having a FIFO in use. 1469 */ 1470 ahd_outb(ahd, SCB_FIFO_USE_COUNT, 1471 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) + 1); 1472 1473 /* 1474 * Install a "fake" handler for this FIFO. 1475 */ 1476 ahd_outw(ahd, LONGJMP_ADDR, 0); 1477 1478 /* 1479 * Notify the hardware that we have satisfied 1480 * this sequencer interrupt. 1481 */ 1482 ahd_outb(ahd, CLRSEQINTSRC, CLRCFG4DATA); 1483 } else if ((seqintsrc & SAVEPTRS) != 0) { 1484 uint32_t sgptr; 1485 uint32_t resid; 1486 1487 if ((ahd_inb(ahd, LONGJMP_ADDR+1)&INVALID_ADDR) != 0) { 1488 /* 1489 * Snapshot Save Pointers. All that 1490 * is necessary to clear the snapshot 1491 * is a CLRCHN. 1492 */ 1493 goto clrchn; 1494 } 1495 1496 /* 1497 * Disable S/G fetch so the DMA engine 1498 * is available to future users. 1499 */ 1500 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) 1501 ahd_outb(ahd, CCSGCTL, 0); 1502 ahd_outb(ahd, SG_STATE, 0); 1503 1504 /* 1505 * Flush the data FIFO. Strickly only 1506 * necessary for Rev A parts. 1507 */ 1508 ahd_outb(ahd, DFCNTRL, ahd_inb(ahd, DFCNTRL) | FIFOFLUSH); 1509 1510 /* 1511 * Calculate residual. 1512 */ 1513 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); 1514 resid = ahd_inl(ahd, SHCNT); 1515 resid |= ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT+3) << 24; 1516 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, resid); 1517 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG) == 0) { 1518 /* 1519 * Must back up to the correct S/G element. 1520 * Typically this just means resetting our 1521 * low byte to the offset in the SG_CACHE, 1522 * but if we wrapped, we have to correct 1523 * the other bytes of the sgptr too. 1524 */ 1525 if ((ahd_inb(ahd, SG_CACHE_SHADOW) & 0x80) != 0 1526 && (sgptr & 0x80) == 0) 1527 sgptr -= 0x100; 1528 sgptr &= ~0xFF; 1529 sgptr |= ahd_inb(ahd, SG_CACHE_SHADOW) 1530 & SG_ADDR_MASK; 1531 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr); 1532 ahd_outb(ahd, SCB_RESIDUAL_DATACNT + 3, 0); 1533 } else if ((resid & AHD_SG_LEN_MASK) == 0) { 1534 ahd_outb(ahd, SCB_RESIDUAL_SGPTR, 1535 sgptr | SG_LIST_NULL); 1536 } 1537 /* 1538 * Save Pointers. 1539 */ 1540 ahd_outq(ahd, SCB_DATAPTR, ahd_inq(ahd, SHADDR)); 1541 ahd_outl(ahd, SCB_DATACNT, resid); 1542 ahd_outl(ahd, SCB_SGPTR, sgptr); 1543 ahd_outb(ahd, CLRSEQINTSRC, CLRSAVEPTRS); 1544 ahd_outb(ahd, SEQIMODE, 1545 ahd_inb(ahd, SEQIMODE) | ENSAVEPTRS); 1546 /* 1547 * If the data is to the SCSI bus, we are 1548 * done, otherwise wait for FIFOEMP. 1549 */ 1550 if ((ahd_inb(ahd, DFCNTRL) & DIRECTION) != 0) 1551 goto clrchn; 1552 } else if ((ahd_inb(ahd, SG_STATE) & LOADING_NEEDED) != 0) { 1553 uint32_t sgptr; 1554 uint64_t data_addr; 1555 uint32_t data_len; 1556 u_int dfcntrl; 1557 1558 /* 1559 * Disable S/G fetch so the DMA engine 1560 * is available to future users. We won't 1561 * be using the DMA engine to load segments. 1562 */ 1563 if ((ahd_inb(ahd, SG_STATE) & FETCH_INPROG) != 0) { 1564 ahd_outb(ahd, CCSGCTL, 0); 1565 ahd_outb(ahd, SG_STATE, LOADING_NEEDED); 1566 } 1567 1568 /* 1569 * Wait for the DMA engine to notice that the 1570 * host transfer is enabled and that there is 1571 * space in the S/G FIFO for new segments before 1572 * loading more segments. 1573 */ 1574 if ((ahd_inb(ahd, DFSTATUS) & PRELOAD_AVAIL) != 0 1575 && (ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) { 1576 1577 /* 1578 * Determine the offset of the next S/G 1579 * element to load. 1580 */ 1581 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); 1582 sgptr &= SG_PTR_MASK; 1583 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 1584 struct ahd_dma64_seg *sg; 1585 1586 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); 1587 data_addr = sg->addr; 1588 data_len = sg->len; 1589 sgptr += sizeof(*sg); 1590 } else { 1591 struct ahd_dma_seg *sg; 1592 1593 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); 1594 data_addr = sg->len & AHD_SG_HIGH_ADDR_MASK; 1595 data_addr <<= 8; 1596 data_addr |= sg->addr; 1597 data_len = sg->len; 1598 sgptr += sizeof(*sg); 1599 } 1600 1601 /* 1602 * Update residual information. 1603 */ 1604 ahd_outb(ahd, SCB_RESIDUAL_DATACNT+3, data_len >> 24); 1605 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr); 1606 1607 /* 1608 * Load the S/G. 1609 */ 1610 if (data_len & AHD_DMA_LAST_SEG) { 1611 sgptr |= LAST_SEG; 1612 ahd_outb(ahd, SG_STATE, 0); 1613 } 1614 ahd_outq(ahd, HADDR, data_addr); 1615 ahd_outl(ahd, HCNT, data_len & AHD_SG_LEN_MASK); 1616 ahd_outb(ahd, SG_CACHE_PRE, sgptr & 0xFF); 1617 1618 /* 1619 * Advertise the segment to the hardware. 1620 */ 1621 dfcntrl = ahd_inb(ahd, DFCNTRL)|PRELOADEN|HDMAEN; 1622 if ((ahd->features & AHD_NEW_DFCNTRL_OPTS) != 0) { 1623 /* 1624 * Use SCSIENWRDIS so that SCSIEN 1625 * is never modified by this 1626 * operation. 1627 */ 1628 dfcntrl |= SCSIENWRDIS; 1629 } 1630 ahd_outb(ahd, DFCNTRL, dfcntrl); 1631 } 1632 } else if ((ahd_inb(ahd, SG_CACHE_SHADOW) & LAST_SEG_DONE) != 0) { 1633 1634 /* 1635 * Transfer completed to the end of SG list 1636 * and has flushed to the host. 1637 */ 1638 ahd_outb(ahd, SCB_SGPTR, 1639 ahd_inb_scbram(ahd, SCB_SGPTR) | SG_LIST_NULL); 1640 goto clrchn; 1641 } else if ((ahd_inb(ahd, DFSTATUS) & FIFOEMP) != 0) { 1642 clrchn: 1643 /* 1644 * Clear any handler for this FIFO, decrement 1645 * the FIFO use count for the SCB, and release 1646 * the FIFO. 1647 */ 1648 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR); 1649 ahd_outb(ahd, SCB_FIFO_USE_COUNT, 1650 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT) - 1); 1651 ahd_outb(ahd, DFFSXFRCTL, CLRCHN); 1652 } 1653 } 1654 1655 /* 1656 * Look for entries in the QoutFIFO that have completed. 1657 * The valid_tag completion field indicates the validity 1658 * of the entry - the valid value toggles each time through 1659 * the queue. We use the sg_status field in the completion 1660 * entry to avoid referencing the hscb if the completion 1661 * occurred with no errors and no residual. sg_status is 1662 * a copy of the first byte (little endian) of the sgptr 1663 * hscb field. 1664 */ 1665 static void 1666 ahd_run_qoutfifo(struct ahd_softc *ahd) 1667 { 1668 struct ahd_completion *completion; 1669 struct scb *scb; 1670 u_int scb_index; 1671 1672 if ((ahd->flags & AHD_RUNNING_QOUTFIFO) != 0) 1673 panic("ahd_run_qoutfifo recursion"); 1674 ahd->flags |= AHD_RUNNING_QOUTFIFO; 1675 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_POSTREAD); 1676 for (;;) { 1677 completion = &ahd->qoutfifo[ahd->qoutfifonext]; 1678 1679 if (completion->valid_tag != ahd->qoutfifonext_valid_tag) 1680 break; 1681 1682 scb_index = ahd_le16toh(completion->tag); 1683 scb = ahd_lookup_scb(ahd, scb_index); 1684 if (scb == NULL) { 1685 printk("%s: WARNING no command for scb %d " 1686 "(cmdcmplt)\nQOUTPOS = %d\n", 1687 ahd_name(ahd), scb_index, 1688 ahd->qoutfifonext); 1689 ahd_dump_card_state(ahd); 1690 } else if ((completion->sg_status & SG_STATUS_VALID) != 0) { 1691 ahd_handle_scb_status(ahd, scb); 1692 } else { 1693 ahd_done(ahd, scb); 1694 } 1695 1696 ahd->qoutfifonext = (ahd->qoutfifonext+1) & (AHD_QOUT_SIZE-1); 1697 if (ahd->qoutfifonext == 0) 1698 ahd->qoutfifonext_valid_tag ^= QOUTFIFO_ENTRY_VALID; 1699 } 1700 ahd->flags &= ~AHD_RUNNING_QOUTFIFO; 1701 } 1702 1703 /************************* Interrupt Handling *********************************/ 1704 static void 1705 ahd_handle_hwerrint(struct ahd_softc *ahd) 1706 { 1707 /* 1708 * Some catastrophic hardware error has occurred. 1709 * Print it for the user and disable the controller. 1710 */ 1711 int i; 1712 int error; 1713 1714 error = ahd_inb(ahd, ERROR); 1715 for (i = 0; i < num_errors; i++) { 1716 if ((error & ahd_hard_errors[i].errno) != 0) 1717 printk("%s: hwerrint, %s\n", 1718 ahd_name(ahd), ahd_hard_errors[i].errmesg); 1719 } 1720 1721 ahd_dump_card_state(ahd); 1722 panic("BRKADRINT"); 1723 1724 /* Tell everyone that this HBA is no longer available */ 1725 ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS, 1726 CAM_LUN_WILDCARD, SCB_LIST_NULL, ROLE_UNKNOWN, 1727 CAM_NO_HBA); 1728 1729 /* Tell the system that this controller has gone away. */ 1730 ahd_free(ahd); 1731 } 1732 1733 #ifdef AHD_DEBUG 1734 static void 1735 ahd_dump_sglist(struct scb *scb) 1736 { 1737 int i; 1738 1739 if (scb->sg_count > 0) { 1740 if ((scb->ahd_softc->flags & AHD_64BIT_ADDRESSING) != 0) { 1741 struct ahd_dma64_seg *sg_list; 1742 1743 sg_list = (struct ahd_dma64_seg*)scb->sg_list; 1744 for (i = 0; i < scb->sg_count; i++) { 1745 uint64_t addr; 1746 uint32_t len; 1747 1748 addr = ahd_le64toh(sg_list[i].addr); 1749 len = ahd_le32toh(sg_list[i].len); 1750 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n", 1751 i, 1752 (uint32_t)((addr >> 32) & 0xFFFFFFFF), 1753 (uint32_t)(addr & 0xFFFFFFFF), 1754 sg_list[i].len & AHD_SG_LEN_MASK, 1755 (sg_list[i].len & AHD_DMA_LAST_SEG) 1756 ? " Last" : ""); 1757 } 1758 } else { 1759 struct ahd_dma_seg *sg_list; 1760 1761 sg_list = (struct ahd_dma_seg*)scb->sg_list; 1762 for (i = 0; i < scb->sg_count; i++) { 1763 uint32_t len; 1764 1765 len = ahd_le32toh(sg_list[i].len); 1766 printk("sg[%d] - Addr 0x%x%x : Length %d%s\n", 1767 i, 1768 (len & AHD_SG_HIGH_ADDR_MASK) >> 24, 1769 ahd_le32toh(sg_list[i].addr), 1770 len & AHD_SG_LEN_MASK, 1771 len & AHD_DMA_LAST_SEG ? " Last" : ""); 1772 } 1773 } 1774 } 1775 } 1776 #endif /* AHD_DEBUG */ 1777 1778 static void 1779 ahd_handle_seqint(struct ahd_softc *ahd, u_int intstat) 1780 { 1781 u_int seqintcode; 1782 1783 /* 1784 * Save the sequencer interrupt code and clear the SEQINT 1785 * bit. We will unpause the sequencer, if appropriate, 1786 * after servicing the request. 1787 */ 1788 seqintcode = ahd_inb(ahd, SEQINTCODE); 1789 ahd_outb(ahd, CLRINT, CLRSEQINT); 1790 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) { 1791 /* 1792 * Unpause the sequencer and let it clear 1793 * SEQINT by writing NO_SEQINT to it. This 1794 * will cause the sequencer to be paused again, 1795 * which is the expected state of this routine. 1796 */ 1797 ahd_unpause(ahd); 1798 while (!ahd_is_paused(ahd)) 1799 ; 1800 ahd_outb(ahd, CLRINT, CLRSEQINT); 1801 } 1802 ahd_update_modes(ahd); 1803 #ifdef AHD_DEBUG 1804 if ((ahd_debug & AHD_SHOW_MISC) != 0) 1805 printk("%s: Handle Seqint Called for code %d\n", 1806 ahd_name(ahd), seqintcode); 1807 #endif 1808 switch (seqintcode) { 1809 case ENTERING_NONPACK: 1810 { 1811 struct scb *scb; 1812 u_int scbid; 1813 1814 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), 1815 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); 1816 scbid = ahd_get_scbptr(ahd); 1817 scb = ahd_lookup_scb(ahd, scbid); 1818 if (scb == NULL) { 1819 /* 1820 * Somehow need to know if this 1821 * is from a selection or reselection. 1822 * From that, we can determine target 1823 * ID so we at least have an I_T nexus. 1824 */ 1825 } else { 1826 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid); 1827 ahd_outb(ahd, SAVED_LUN, scb->hscb->lun); 1828 ahd_outb(ahd, SEQ_FLAGS, 0x0); 1829 } 1830 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0 1831 && (ahd_inb(ahd, SCSISIGO) & ATNO) != 0) { 1832 /* 1833 * Phase change after read stream with 1834 * CRC error with P0 asserted on last 1835 * packet. 1836 */ 1837 #ifdef AHD_DEBUG 1838 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) 1839 printk("%s: Assuming LQIPHASE_NLQ with " 1840 "P0 assertion\n", ahd_name(ahd)); 1841 #endif 1842 } 1843 #ifdef AHD_DEBUG 1844 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) 1845 printk("%s: Entering NONPACK\n", ahd_name(ahd)); 1846 #endif 1847 break; 1848 } 1849 case INVALID_SEQINT: 1850 printk("%s: Invalid Sequencer interrupt occurred, " 1851 "resetting channel.\n", 1852 ahd_name(ahd)); 1853 #ifdef AHD_DEBUG 1854 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) 1855 ahd_dump_card_state(ahd); 1856 #endif 1857 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); 1858 break; 1859 case STATUS_OVERRUN: 1860 { 1861 struct scb *scb; 1862 u_int scbid; 1863 1864 scbid = ahd_get_scbptr(ahd); 1865 scb = ahd_lookup_scb(ahd, scbid); 1866 if (scb != NULL) 1867 ahd_print_path(ahd, scb); 1868 else 1869 printk("%s: ", ahd_name(ahd)); 1870 printk("SCB %d Packetized Status Overrun", scbid); 1871 ahd_dump_card_state(ahd); 1872 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); 1873 break; 1874 } 1875 case CFG4ISTAT_INTR: 1876 { 1877 struct scb *scb; 1878 u_int scbid; 1879 1880 scbid = ahd_get_scbptr(ahd); 1881 scb = ahd_lookup_scb(ahd, scbid); 1882 if (scb == NULL) { 1883 ahd_dump_card_state(ahd); 1884 printk("CFG4ISTAT: Free SCB %d referenced", scbid); 1885 panic("For safety"); 1886 } 1887 ahd_outq(ahd, HADDR, scb->sense_busaddr); 1888 ahd_outw(ahd, HCNT, AHD_SENSE_BUFSIZE); 1889 ahd_outb(ahd, HCNT + 2, 0); 1890 ahd_outb(ahd, SG_CACHE_PRE, SG_LAST_SEG); 1891 ahd_outb(ahd, DFCNTRL, PRELOADEN|SCSIEN|HDMAEN); 1892 break; 1893 } 1894 case ILLEGAL_PHASE: 1895 { 1896 u_int bus_phase; 1897 1898 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; 1899 printk("%s: ILLEGAL_PHASE 0x%x\n", 1900 ahd_name(ahd), bus_phase); 1901 1902 switch (bus_phase) { 1903 case P_DATAOUT: 1904 case P_DATAIN: 1905 case P_DATAOUT_DT: 1906 case P_DATAIN_DT: 1907 case P_MESGOUT: 1908 case P_STATUS: 1909 case P_MESGIN: 1910 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); 1911 printk("%s: Issued Bus Reset.\n", ahd_name(ahd)); 1912 break; 1913 case P_COMMAND: 1914 { 1915 struct ahd_devinfo devinfo; 1916 struct scb *scb; 1917 struct ahd_initiator_tinfo *targ_info; 1918 struct ahd_tmode_tstate *tstate; 1919 struct ahd_transinfo *tinfo; 1920 u_int scbid; 1921 1922 /* 1923 * If a target takes us into the command phase 1924 * assume that it has been externally reset and 1925 * has thus lost our previous packetized negotiation 1926 * agreement. Since we have not sent an identify 1927 * message and may not have fully qualified the 1928 * connection, we change our command to TUR, assert 1929 * ATN and ABORT the task when we go to message in 1930 * phase. The OSM will see the REQUEUE_REQUEST 1931 * status and retry the command. 1932 */ 1933 scbid = ahd_get_scbptr(ahd); 1934 scb = ahd_lookup_scb(ahd, scbid); 1935 if (scb == NULL) { 1936 printk("Invalid phase with no valid SCB. " 1937 "Resetting bus.\n"); 1938 ahd_reset_channel(ahd, 'A', 1939 /*Initiate Reset*/TRUE); 1940 break; 1941 } 1942 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb), 1943 SCB_GET_TARGET(ahd, scb), 1944 SCB_GET_LUN(scb), 1945 SCB_GET_CHANNEL(ahd, scb), 1946 ROLE_INITIATOR); 1947 targ_info = ahd_fetch_transinfo(ahd, 1948 devinfo.channel, 1949 devinfo.our_scsiid, 1950 devinfo.target, 1951 &tstate); 1952 tinfo = &targ_info->curr; 1953 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, 1954 AHD_TRANS_ACTIVE, /*paused*/TRUE); 1955 ahd_set_syncrate(ahd, &devinfo, /*period*/0, 1956 /*offset*/0, /*ppr_options*/0, 1957 AHD_TRANS_ACTIVE, /*paused*/TRUE); 1958 /* Hand-craft TUR command */ 1959 ahd_outb(ahd, SCB_CDB_STORE, 0); 1960 ahd_outb(ahd, SCB_CDB_STORE+1, 0); 1961 ahd_outb(ahd, SCB_CDB_STORE+2, 0); 1962 ahd_outb(ahd, SCB_CDB_STORE+3, 0); 1963 ahd_outb(ahd, SCB_CDB_STORE+4, 0); 1964 ahd_outb(ahd, SCB_CDB_STORE+5, 0); 1965 ahd_outb(ahd, SCB_CDB_LEN, 6); 1966 scb->hscb->control &= ~(TAG_ENB|SCB_TAG_TYPE); 1967 scb->hscb->control |= MK_MESSAGE; 1968 ahd_outb(ahd, SCB_CONTROL, scb->hscb->control); 1969 ahd_outb(ahd, MSG_OUT, HOST_MSG); 1970 ahd_outb(ahd, SAVED_SCSIID, scb->hscb->scsiid); 1971 /* 1972 * The lun is 0, regardless of the SCB's lun 1973 * as we have not sent an identify message. 1974 */ 1975 ahd_outb(ahd, SAVED_LUN, 0); 1976 ahd_outb(ahd, SEQ_FLAGS, 0); 1977 ahd_assert_atn(ahd); 1978 scb->flags &= ~SCB_PACKETIZED; 1979 scb->flags |= SCB_ABORT|SCB_EXTERNAL_RESET; 1980 ahd_freeze_devq(ahd, scb); 1981 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ); 1982 ahd_freeze_scb(scb); 1983 1984 /* Notify XPT */ 1985 ahd_send_async(ahd, devinfo.channel, devinfo.target, 1986 CAM_LUN_WILDCARD, AC_SENT_BDR); 1987 1988 /* 1989 * Allow the sequencer to continue with 1990 * non-pack processing. 1991 */ 1992 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 1993 ahd_outb(ahd, CLRLQOINT1, CLRLQOPHACHGINPKT); 1994 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) { 1995 ahd_outb(ahd, CLRLQOINT1, 0); 1996 } 1997 #ifdef AHD_DEBUG 1998 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { 1999 ahd_print_path(ahd, scb); 2000 printk("Unexpected command phase from " 2001 "packetized target\n"); 2002 } 2003 #endif 2004 break; 2005 } 2006 } 2007 break; 2008 } 2009 case CFG4OVERRUN: 2010 { 2011 struct scb *scb; 2012 u_int scb_index; 2013 2014 #ifdef AHD_DEBUG 2015 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { 2016 printk("%s: CFG4OVERRUN mode = %x\n", ahd_name(ahd), 2017 ahd_inb(ahd, MODE_PTR)); 2018 } 2019 #endif 2020 scb_index = ahd_get_scbptr(ahd); 2021 scb = ahd_lookup_scb(ahd, scb_index); 2022 if (scb == NULL) { 2023 /* 2024 * Attempt to transfer to an SCB that is 2025 * not outstanding. 2026 */ 2027 ahd_assert_atn(ahd); 2028 ahd_outb(ahd, MSG_OUT, HOST_MSG); 2029 ahd->msgout_buf[0] = MSG_ABORT_TASK; 2030 ahd->msgout_len = 1; 2031 ahd->msgout_index = 0; 2032 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; 2033 /* 2034 * Clear status received flag to prevent any 2035 * attempt to complete this bogus SCB. 2036 */ 2037 ahd_outb(ahd, SCB_CONTROL, 2038 ahd_inb_scbram(ahd, SCB_CONTROL) 2039 & ~STATUS_RCVD); 2040 } 2041 break; 2042 } 2043 case DUMP_CARD_STATE: 2044 { 2045 ahd_dump_card_state(ahd); 2046 break; 2047 } 2048 case PDATA_REINIT: 2049 { 2050 #ifdef AHD_DEBUG 2051 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { 2052 printk("%s: PDATA_REINIT - DFCNTRL = 0x%x " 2053 "SG_CACHE_SHADOW = 0x%x\n", 2054 ahd_name(ahd), ahd_inb(ahd, DFCNTRL), 2055 ahd_inb(ahd, SG_CACHE_SHADOW)); 2056 } 2057 #endif 2058 ahd_reinitialize_dataptrs(ahd); 2059 break; 2060 } 2061 case HOST_MSG_LOOP: 2062 { 2063 struct ahd_devinfo devinfo; 2064 2065 /* 2066 * The sequencer has encountered a message phase 2067 * that requires host assistance for completion. 2068 * While handling the message phase(s), we will be 2069 * notified by the sequencer after each byte is 2070 * transferred so we can track bus phase changes. 2071 * 2072 * If this is the first time we've seen a HOST_MSG_LOOP 2073 * interrupt, initialize the state of the host message 2074 * loop. 2075 */ 2076 ahd_fetch_devinfo(ahd, &devinfo); 2077 if (ahd->msg_type == MSG_TYPE_NONE) { 2078 struct scb *scb; 2079 u_int scb_index; 2080 u_int bus_phase; 2081 2082 bus_phase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; 2083 if (bus_phase != P_MESGIN 2084 && bus_phase != P_MESGOUT) { 2085 printk("ahd_intr: HOST_MSG_LOOP bad " 2086 "phase 0x%x\n", bus_phase); 2087 /* 2088 * Probably transitioned to bus free before 2089 * we got here. Just punt the message. 2090 */ 2091 ahd_dump_card_state(ahd); 2092 ahd_clear_intstat(ahd); 2093 ahd_restart(ahd); 2094 return; 2095 } 2096 2097 scb_index = ahd_get_scbptr(ahd); 2098 scb = ahd_lookup_scb(ahd, scb_index); 2099 if (devinfo.role == ROLE_INITIATOR) { 2100 if (bus_phase == P_MESGOUT) 2101 ahd_setup_initiator_msgout(ahd, 2102 &devinfo, 2103 scb); 2104 else { 2105 ahd->msg_type = 2106 MSG_TYPE_INITIATOR_MSGIN; 2107 ahd->msgin_index = 0; 2108 } 2109 } 2110 #ifdef AHD_TARGET_MODE 2111 else { 2112 if (bus_phase == P_MESGOUT) { 2113 ahd->msg_type = 2114 MSG_TYPE_TARGET_MSGOUT; 2115 ahd->msgin_index = 0; 2116 } 2117 else 2118 ahd_setup_target_msgin(ahd, 2119 &devinfo, 2120 scb); 2121 } 2122 #endif 2123 } 2124 2125 ahd_handle_message_phase(ahd); 2126 break; 2127 } 2128 case NO_MATCH: 2129 { 2130 /* Ensure we don't leave the selection hardware on */ 2131 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 2132 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO); 2133 2134 printk("%s:%c:%d: no active SCB for reconnecting " 2135 "target - issuing BUS DEVICE RESET\n", 2136 ahd_name(ahd), 'A', ahd_inb(ahd, SELID) >> 4); 2137 printk("SAVED_SCSIID == 0x%x, SAVED_LUN == 0x%x, " 2138 "REG0 == 0x%x ACCUM = 0x%x\n", 2139 ahd_inb(ahd, SAVED_SCSIID), ahd_inb(ahd, SAVED_LUN), 2140 ahd_inw(ahd, REG0), ahd_inb(ahd, ACCUM)); 2141 printk("SEQ_FLAGS == 0x%x, SCBPTR == 0x%x, BTT == 0x%x, " 2142 "SINDEX == 0x%x\n", 2143 ahd_inb(ahd, SEQ_FLAGS), ahd_get_scbptr(ahd), 2144 ahd_find_busy_tcl(ahd, 2145 BUILD_TCL(ahd_inb(ahd, SAVED_SCSIID), 2146 ahd_inb(ahd, SAVED_LUN))), 2147 ahd_inw(ahd, SINDEX)); 2148 printk("SELID == 0x%x, SCB_SCSIID == 0x%x, SCB_LUN == 0x%x, " 2149 "SCB_CONTROL == 0x%x\n", 2150 ahd_inb(ahd, SELID), ahd_inb_scbram(ahd, SCB_SCSIID), 2151 ahd_inb_scbram(ahd, SCB_LUN), 2152 ahd_inb_scbram(ahd, SCB_CONTROL)); 2153 printk("SCSIBUS[0] == 0x%x, SCSISIGI == 0x%x\n", 2154 ahd_inb(ahd, SCSIBUS), ahd_inb(ahd, SCSISIGI)); 2155 printk("SXFRCTL0 == 0x%x\n", ahd_inb(ahd, SXFRCTL0)); 2156 printk("SEQCTL0 == 0x%x\n", ahd_inb(ahd, SEQCTL0)); 2157 ahd_dump_card_state(ahd); 2158 ahd->msgout_buf[0] = MSG_BUS_DEV_RESET; 2159 ahd->msgout_len = 1; 2160 ahd->msgout_index = 0; 2161 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; 2162 ahd_outb(ahd, MSG_OUT, HOST_MSG); 2163 ahd_assert_atn(ahd); 2164 break; 2165 } 2166 case PROTO_VIOLATION: 2167 { 2168 ahd_handle_proto_violation(ahd); 2169 break; 2170 } 2171 case IGN_WIDE_RES: 2172 { 2173 struct ahd_devinfo devinfo; 2174 2175 ahd_fetch_devinfo(ahd, &devinfo); 2176 ahd_handle_ign_wide_residue(ahd, &devinfo); 2177 break; 2178 } 2179 case BAD_PHASE: 2180 { 2181 u_int lastphase; 2182 2183 lastphase = ahd_inb(ahd, LASTPHASE); 2184 printk("%s:%c:%d: unknown scsi bus phase %x, " 2185 "lastphase = 0x%x. Attempting to continue\n", 2186 ahd_name(ahd), 'A', 2187 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)), 2188 lastphase, ahd_inb(ahd, SCSISIGI)); 2189 break; 2190 } 2191 case MISSED_BUSFREE: 2192 { 2193 u_int lastphase; 2194 2195 lastphase = ahd_inb(ahd, LASTPHASE); 2196 printk("%s:%c:%d: Missed busfree. " 2197 "Lastphase = 0x%x, Curphase = 0x%x\n", 2198 ahd_name(ahd), 'A', 2199 SCSIID_TARGET(ahd, ahd_inb(ahd, SAVED_SCSIID)), 2200 lastphase, ahd_inb(ahd, SCSISIGI)); 2201 ahd_restart(ahd); 2202 return; 2203 } 2204 case DATA_OVERRUN: 2205 { 2206 /* 2207 * When the sequencer detects an overrun, it 2208 * places the controller in "BITBUCKET" mode 2209 * and allows the target to complete its transfer. 2210 * Unfortunately, none of the counters get updated 2211 * when the controller is in this mode, so we have 2212 * no way of knowing how large the overrun was. 2213 */ 2214 struct scb *scb; 2215 u_int scbindex; 2216 #ifdef AHD_DEBUG 2217 u_int lastphase; 2218 #endif 2219 2220 scbindex = ahd_get_scbptr(ahd); 2221 scb = ahd_lookup_scb(ahd, scbindex); 2222 #ifdef AHD_DEBUG 2223 lastphase = ahd_inb(ahd, LASTPHASE); 2224 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { 2225 ahd_print_path(ahd, scb); 2226 printk("data overrun detected %s. Tag == 0x%x.\n", 2227 ahd_lookup_phase_entry(lastphase)->phasemsg, 2228 SCB_GET_TAG(scb)); 2229 ahd_print_path(ahd, scb); 2230 printk("%s seen Data Phase. Length = %ld. " 2231 "NumSGs = %d.\n", 2232 ahd_inb(ahd, SEQ_FLAGS) & DPHASE 2233 ? "Have" : "Haven't", 2234 ahd_get_transfer_length(scb), scb->sg_count); 2235 ahd_dump_sglist(scb); 2236 } 2237 #endif 2238 2239 /* 2240 * Set this and it will take effect when the 2241 * target does a command complete. 2242 */ 2243 ahd_freeze_devq(ahd, scb); 2244 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR); 2245 ahd_freeze_scb(scb); 2246 break; 2247 } 2248 case MKMSG_FAILED: 2249 { 2250 struct ahd_devinfo devinfo; 2251 struct scb *scb; 2252 u_int scbid; 2253 2254 ahd_fetch_devinfo(ahd, &devinfo); 2255 printk("%s:%c:%d:%d: Attempt to issue message failed\n", 2256 ahd_name(ahd), devinfo.channel, devinfo.target, 2257 devinfo.lun); 2258 scbid = ahd_get_scbptr(ahd); 2259 scb = ahd_lookup_scb(ahd, scbid); 2260 if (scb != NULL 2261 && (scb->flags & SCB_RECOVERY_SCB) != 0) 2262 /* 2263 * Ensure that we didn't put a second instance of this 2264 * SCB into the QINFIFO. 2265 */ 2266 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb), 2267 SCB_GET_CHANNEL(ahd, scb), 2268 SCB_GET_LUN(scb), SCB_GET_TAG(scb), 2269 ROLE_INITIATOR, /*status*/0, 2270 SEARCH_REMOVE); 2271 ahd_outb(ahd, SCB_CONTROL, 2272 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE); 2273 break; 2274 } 2275 case TASKMGMT_FUNC_COMPLETE: 2276 { 2277 u_int scbid; 2278 struct scb *scb; 2279 2280 scbid = ahd_get_scbptr(ahd); 2281 scb = ahd_lookup_scb(ahd, scbid); 2282 if (scb != NULL) { 2283 u_int lun; 2284 u_int tag; 2285 cam_status error; 2286 2287 ahd_print_path(ahd, scb); 2288 printk("Task Management Func 0x%x Complete\n", 2289 scb->hscb->task_management); 2290 lun = CAM_LUN_WILDCARD; 2291 tag = SCB_LIST_NULL; 2292 2293 switch (scb->hscb->task_management) { 2294 case SIU_TASKMGMT_ABORT_TASK: 2295 tag = SCB_GET_TAG(scb); 2296 case SIU_TASKMGMT_ABORT_TASK_SET: 2297 case SIU_TASKMGMT_CLEAR_TASK_SET: 2298 lun = scb->hscb->lun; 2299 error = CAM_REQ_ABORTED; 2300 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 2301 'A', lun, tag, ROLE_INITIATOR, 2302 error); 2303 break; 2304 case SIU_TASKMGMT_LUN_RESET: 2305 lun = scb->hscb->lun; 2306 case SIU_TASKMGMT_TARGET_RESET: 2307 { 2308 struct ahd_devinfo devinfo; 2309 2310 ahd_scb_devinfo(ahd, &devinfo, scb); 2311 error = CAM_BDR_SENT; 2312 ahd_handle_devreset(ahd, &devinfo, lun, 2313 CAM_BDR_SENT, 2314 lun != CAM_LUN_WILDCARD 2315 ? "Lun Reset" 2316 : "Target Reset", 2317 /*verbose_level*/0); 2318 break; 2319 } 2320 default: 2321 panic("Unexpected TaskMgmt Func\n"); 2322 break; 2323 } 2324 } 2325 break; 2326 } 2327 case TASKMGMT_CMD_CMPLT_OKAY: 2328 { 2329 u_int scbid; 2330 struct scb *scb; 2331 2332 /* 2333 * An ABORT TASK TMF failed to be delivered before 2334 * the targeted command completed normally. 2335 */ 2336 scbid = ahd_get_scbptr(ahd); 2337 scb = ahd_lookup_scb(ahd, scbid); 2338 if (scb != NULL) { 2339 /* 2340 * Remove the second instance of this SCB from 2341 * the QINFIFO if it is still there. 2342 */ 2343 ahd_print_path(ahd, scb); 2344 printk("SCB completes before TMF\n"); 2345 /* 2346 * Handle losing the race. Wait until any 2347 * current selection completes. We will then 2348 * set the TMF back to zero in this SCB so that 2349 * the sequencer doesn't bother to issue another 2350 * sequencer interrupt for its completion. 2351 */ 2352 while ((ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0 2353 && (ahd_inb(ahd, SSTAT0) & SELDO) == 0 2354 && (ahd_inb(ahd, SSTAT1) & SELTO) == 0) 2355 ; 2356 ahd_outb(ahd, SCB_TASK_MANAGEMENT, 0); 2357 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb), 2358 SCB_GET_CHANNEL(ahd, scb), 2359 SCB_GET_LUN(scb), SCB_GET_TAG(scb), 2360 ROLE_INITIATOR, /*status*/0, 2361 SEARCH_REMOVE); 2362 } 2363 break; 2364 } 2365 case TRACEPOINT0: 2366 case TRACEPOINT1: 2367 case TRACEPOINT2: 2368 case TRACEPOINT3: 2369 printk("%s: Tracepoint %d\n", ahd_name(ahd), 2370 seqintcode - TRACEPOINT0); 2371 break; 2372 case NO_SEQINT: 2373 break; 2374 case SAW_HWERR: 2375 ahd_handle_hwerrint(ahd); 2376 break; 2377 default: 2378 printk("%s: Unexpected SEQINTCODE %d\n", ahd_name(ahd), 2379 seqintcode); 2380 break; 2381 } 2382 /* 2383 * The sequencer is paused immediately on 2384 * a SEQINT, so we should restart it when 2385 * we're done. 2386 */ 2387 ahd_unpause(ahd); 2388 } 2389 2390 static void 2391 ahd_handle_scsiint(struct ahd_softc *ahd, u_int intstat) 2392 { 2393 struct scb *scb; 2394 u_int status0; 2395 u_int status3; 2396 u_int status; 2397 u_int lqistat1; 2398 u_int lqostat0; 2399 u_int scbid; 2400 u_int busfreetime; 2401 2402 ahd_update_modes(ahd); 2403 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 2404 2405 status3 = ahd_inb(ahd, SSTAT3) & (NTRAMPERR|OSRAMPERR); 2406 status0 = ahd_inb(ahd, SSTAT0) & (IOERR|OVERRUN|SELDI|SELDO); 2407 status = ahd_inb(ahd, SSTAT1) & (SELTO|SCSIRSTI|BUSFREE|SCSIPERR); 2408 lqistat1 = ahd_inb(ahd, LQISTAT1); 2409 lqostat0 = ahd_inb(ahd, LQOSTAT0); 2410 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME; 2411 2412 /* 2413 * Ignore external resets after a bus reset. 2414 */ 2415 if (((status & SCSIRSTI) != 0) && (ahd->flags & AHD_BUS_RESET_ACTIVE)) { 2416 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI); 2417 return; 2418 } 2419 2420 /* 2421 * Clear bus reset flag 2422 */ 2423 ahd->flags &= ~AHD_BUS_RESET_ACTIVE; 2424 2425 if ((status0 & (SELDI|SELDO)) != 0) { 2426 u_int simode0; 2427 2428 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); 2429 simode0 = ahd_inb(ahd, SIMODE0); 2430 status0 &= simode0 & (IOERR|OVERRUN|SELDI|SELDO); 2431 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 2432 } 2433 scbid = ahd_get_scbptr(ahd); 2434 scb = ahd_lookup_scb(ahd, scbid); 2435 if (scb != NULL 2436 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0) 2437 scb = NULL; 2438 2439 if ((status0 & IOERR) != 0) { 2440 u_int now_lvd; 2441 2442 now_lvd = ahd_inb(ahd, SBLKCTL) & ENAB40; 2443 printk("%s: Transceiver State Has Changed to %s mode\n", 2444 ahd_name(ahd), now_lvd ? "LVD" : "SE"); 2445 ahd_outb(ahd, CLRSINT0, CLRIOERR); 2446 /* 2447 * A change in I/O mode is equivalent to a bus reset. 2448 */ 2449 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); 2450 ahd_pause(ahd); 2451 ahd_setup_iocell_workaround(ahd); 2452 ahd_unpause(ahd); 2453 } else if ((status0 & OVERRUN) != 0) { 2454 2455 printk("%s: SCSI offset overrun detected. Resetting bus.\n", 2456 ahd_name(ahd)); 2457 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); 2458 } else if ((status & SCSIRSTI) != 0) { 2459 2460 printk("%s: Someone reset channel A\n", ahd_name(ahd)); 2461 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/FALSE); 2462 } else if ((status & SCSIPERR) != 0) { 2463 2464 /* Make sure the sequencer is in a safe location. */ 2465 ahd_clear_critical_section(ahd); 2466 2467 ahd_handle_transmission_error(ahd); 2468 } else if (lqostat0 != 0) { 2469 2470 printk("%s: lqostat0 == 0x%x!\n", ahd_name(ahd), lqostat0); 2471 ahd_outb(ahd, CLRLQOINT0, lqostat0); 2472 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) 2473 ahd_outb(ahd, CLRLQOINT1, 0); 2474 } else if ((status & SELTO) != 0) { 2475 /* Stop the selection */ 2476 ahd_outb(ahd, SCSISEQ0, 0); 2477 2478 /* Make sure the sequencer is in a safe location. */ 2479 ahd_clear_critical_section(ahd); 2480 2481 /* No more pending messages */ 2482 ahd_clear_msg_state(ahd); 2483 2484 /* Clear interrupt state */ 2485 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRBUSFREE|CLRSCSIPERR); 2486 2487 /* 2488 * Although the driver does not care about the 2489 * 'Selection in Progress' status bit, the busy 2490 * LED does. SELINGO is only cleared by a successful 2491 * selection, so we must manually clear it to insure 2492 * the LED turns off just incase no future successful 2493 * selections occur (e.g. no devices on the bus). 2494 */ 2495 ahd_outb(ahd, CLRSINT0, CLRSELINGO); 2496 2497 scbid = ahd_inw(ahd, WAITING_TID_HEAD); 2498 scb = ahd_lookup_scb(ahd, scbid); 2499 if (scb == NULL) { 2500 printk("%s: ahd_intr - referenced scb not " 2501 "valid during SELTO scb(0x%x)\n", 2502 ahd_name(ahd), scbid); 2503 ahd_dump_card_state(ahd); 2504 } else { 2505 struct ahd_devinfo devinfo; 2506 #ifdef AHD_DEBUG 2507 if ((ahd_debug & AHD_SHOW_SELTO) != 0) { 2508 ahd_print_path(ahd, scb); 2509 printk("Saw Selection Timeout for SCB 0x%x\n", 2510 scbid); 2511 } 2512 #endif 2513 ahd_scb_devinfo(ahd, &devinfo, scb); 2514 ahd_set_transaction_status(scb, CAM_SEL_TIMEOUT); 2515 ahd_freeze_devq(ahd, scb); 2516 2517 /* 2518 * Cancel any pending transactions on the device 2519 * now that it seems to be missing. This will 2520 * also revert us to async/narrow transfers until 2521 * we can renegotiate with the device. 2522 */ 2523 ahd_handle_devreset(ahd, &devinfo, 2524 CAM_LUN_WILDCARD, 2525 CAM_SEL_TIMEOUT, 2526 "Selection Timeout", 2527 /*verbose_level*/1); 2528 } 2529 ahd_outb(ahd, CLRINT, CLRSCSIINT); 2530 ahd_iocell_first_selection(ahd); 2531 ahd_unpause(ahd); 2532 } else if ((status0 & (SELDI|SELDO)) != 0) { 2533 2534 ahd_iocell_first_selection(ahd); 2535 ahd_unpause(ahd); 2536 } else if (status3 != 0) { 2537 printk("%s: SCSI Cell parity error SSTAT3 == 0x%x\n", 2538 ahd_name(ahd), status3); 2539 ahd_outb(ahd, CLRSINT3, status3); 2540 } else if ((lqistat1 & (LQIPHASE_LQ|LQIPHASE_NLQ)) != 0) { 2541 2542 /* Make sure the sequencer is in a safe location. */ 2543 ahd_clear_critical_section(ahd); 2544 2545 ahd_handle_lqiphase_error(ahd, lqistat1); 2546 } else if ((lqistat1 & LQICRCI_NLQ) != 0) { 2547 /* 2548 * This status can be delayed during some 2549 * streaming operations. The SCSIPHASE 2550 * handler has already dealt with this case 2551 * so just clear the error. 2552 */ 2553 ahd_outb(ahd, CLRLQIINT1, CLRLQICRCI_NLQ); 2554 } else if ((status & BUSFREE) != 0 2555 || (lqistat1 & LQOBUSFREE) != 0) { 2556 u_int lqostat1; 2557 int restart; 2558 int clear_fifo; 2559 int packetized; 2560 u_int mode; 2561 2562 /* 2563 * Clear our selection hardware as soon as possible. 2564 * We may have an entry in the waiting Q for this target, 2565 * that is affected by this busfree and we don't want to 2566 * go about selecting the target while we handle the event. 2567 */ 2568 ahd_outb(ahd, SCSISEQ0, 0); 2569 2570 /* Make sure the sequencer is in a safe location. */ 2571 ahd_clear_critical_section(ahd); 2572 2573 /* 2574 * Determine what we were up to at the time of 2575 * the busfree. 2576 */ 2577 mode = AHD_MODE_SCSI; 2578 busfreetime = ahd_inb(ahd, SSTAT2) & BUSFREETIME; 2579 lqostat1 = ahd_inb(ahd, LQOSTAT1); 2580 switch (busfreetime) { 2581 case BUSFREE_DFF0: 2582 case BUSFREE_DFF1: 2583 { 2584 mode = busfreetime == BUSFREE_DFF0 2585 ? AHD_MODE_DFF0 : AHD_MODE_DFF1; 2586 ahd_set_modes(ahd, mode, mode); 2587 scbid = ahd_get_scbptr(ahd); 2588 scb = ahd_lookup_scb(ahd, scbid); 2589 if (scb == NULL) { 2590 printk("%s: Invalid SCB %d in DFF%d " 2591 "during unexpected busfree\n", 2592 ahd_name(ahd), scbid, mode); 2593 packetized = 0; 2594 } else 2595 packetized = (scb->flags & SCB_PACKETIZED) != 0; 2596 clear_fifo = 1; 2597 break; 2598 } 2599 case BUSFREE_LQO: 2600 clear_fifo = 0; 2601 packetized = 1; 2602 break; 2603 default: 2604 clear_fifo = 0; 2605 packetized = (lqostat1 & LQOBUSFREE) != 0; 2606 if (!packetized 2607 && ahd_inb(ahd, LASTPHASE) == P_BUSFREE 2608 && (ahd_inb(ahd, SSTAT0) & SELDI) == 0 2609 && ((ahd_inb(ahd, SSTAT0) & SELDO) == 0 2610 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) == 0)) 2611 /* 2612 * Assume packetized if we are not 2613 * on the bus in a non-packetized 2614 * capacity and any pending selection 2615 * was a packetized selection. 2616 */ 2617 packetized = 1; 2618 break; 2619 } 2620 2621 #ifdef AHD_DEBUG 2622 if ((ahd_debug & AHD_SHOW_MISC) != 0) 2623 printk("Saw Busfree. Busfreetime = 0x%x.\n", 2624 busfreetime); 2625 #endif 2626 /* 2627 * Busfrees that occur in non-packetized phases are 2628 * handled by the nonpkt_busfree handler. 2629 */ 2630 if (packetized && ahd_inb(ahd, LASTPHASE) == P_BUSFREE) { 2631 restart = ahd_handle_pkt_busfree(ahd, busfreetime); 2632 } else { 2633 packetized = 0; 2634 restart = ahd_handle_nonpkt_busfree(ahd); 2635 } 2636 /* 2637 * Clear the busfree interrupt status. The setting of 2638 * the interrupt is a pulse, so in a perfect world, we 2639 * would not need to muck with the ENBUSFREE logic. This 2640 * would ensure that if the bus moves on to another 2641 * connection, busfree protection is still in force. If 2642 * BUSFREEREV is broken, however, we must manually clear 2643 * the ENBUSFREE if the busfree occurred during a non-pack 2644 * connection so that we don't get false positives during 2645 * future, packetized, connections. 2646 */ 2647 ahd_outb(ahd, CLRSINT1, CLRBUSFREE); 2648 if (packetized == 0 2649 && (ahd->bugs & AHD_BUSFREEREV_BUG) != 0) 2650 ahd_outb(ahd, SIMODE1, 2651 ahd_inb(ahd, SIMODE1) & ~ENBUSFREE); 2652 2653 if (clear_fifo) 2654 ahd_clear_fifo(ahd, mode); 2655 2656 ahd_clear_msg_state(ahd); 2657 ahd_outb(ahd, CLRINT, CLRSCSIINT); 2658 if (restart) { 2659 ahd_restart(ahd); 2660 } else { 2661 ahd_unpause(ahd); 2662 } 2663 } else { 2664 printk("%s: Missing case in ahd_handle_scsiint. status = %x\n", 2665 ahd_name(ahd), status); 2666 ahd_dump_card_state(ahd); 2667 ahd_clear_intstat(ahd); 2668 ahd_unpause(ahd); 2669 } 2670 } 2671 2672 static void 2673 ahd_handle_transmission_error(struct ahd_softc *ahd) 2674 { 2675 struct scb *scb; 2676 u_int scbid; 2677 u_int lqistat1; 2678 u_int lqistat2; 2679 u_int msg_out; 2680 u_int curphase; 2681 u_int lastphase; 2682 u_int perrdiag; 2683 u_int cur_col; 2684 int silent; 2685 2686 scb = NULL; 2687 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 2688 lqistat1 = ahd_inb(ahd, LQISTAT1) & ~(LQIPHASE_LQ|LQIPHASE_NLQ); 2689 lqistat2 = ahd_inb(ahd, LQISTAT2); 2690 if ((lqistat1 & (LQICRCI_NLQ|LQICRCI_LQ)) == 0 2691 && (ahd->bugs & AHD_NLQICRC_DELAYED_BUG) != 0) { 2692 u_int lqistate; 2693 2694 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); 2695 lqistate = ahd_inb(ahd, LQISTATE); 2696 if ((lqistate >= 0x1E && lqistate <= 0x24) 2697 || (lqistate == 0x29)) { 2698 #ifdef AHD_DEBUG 2699 if ((ahd_debug & AHD_SHOW_RECOVERY) != 0) { 2700 printk("%s: NLQCRC found via LQISTATE\n", 2701 ahd_name(ahd)); 2702 } 2703 #endif 2704 lqistat1 |= LQICRCI_NLQ; 2705 } 2706 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 2707 } 2708 2709 ahd_outb(ahd, CLRLQIINT1, lqistat1); 2710 lastphase = ahd_inb(ahd, LASTPHASE); 2711 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; 2712 perrdiag = ahd_inb(ahd, PERRDIAG); 2713 msg_out = MSG_INITIATOR_DET_ERR; 2714 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR); 2715 2716 /* 2717 * Try to find the SCB associated with this error. 2718 */ 2719 silent = FALSE; 2720 if (lqistat1 == 0 2721 || (lqistat1 & LQICRCI_NLQ) != 0) { 2722 if ((lqistat1 & (LQICRCI_NLQ|LQIOVERI_NLQ)) != 0) 2723 ahd_set_active_fifo(ahd); 2724 scbid = ahd_get_scbptr(ahd); 2725 scb = ahd_lookup_scb(ahd, scbid); 2726 if (scb != NULL && SCB_IS_SILENT(scb)) 2727 silent = TRUE; 2728 } 2729 2730 cur_col = 0; 2731 if (silent == FALSE) { 2732 printk("%s: Transmission error detected\n", ahd_name(ahd)); 2733 ahd_lqistat1_print(lqistat1, &cur_col, 50); 2734 ahd_lastphase_print(lastphase, &cur_col, 50); 2735 ahd_scsisigi_print(curphase, &cur_col, 50); 2736 ahd_perrdiag_print(perrdiag, &cur_col, 50); 2737 printk("\n"); 2738 ahd_dump_card_state(ahd); 2739 } 2740 2741 if ((lqistat1 & (LQIOVERI_LQ|LQIOVERI_NLQ)) != 0) { 2742 if (silent == FALSE) { 2743 printk("%s: Gross protocol error during incoming " 2744 "packet. lqistat1 == 0x%x. Resetting bus.\n", 2745 ahd_name(ahd), lqistat1); 2746 } 2747 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); 2748 return; 2749 } else if ((lqistat1 & LQICRCI_LQ) != 0) { 2750 /* 2751 * A CRC error has been detected on an incoming LQ. 2752 * The bus is currently hung on the last ACK. 2753 * Hit LQIRETRY to release the last ack, and 2754 * wait for the sequencer to determine that ATNO 2755 * is asserted while in message out to take us 2756 * to our host message loop. No NONPACKREQ or 2757 * LQIPHASE type errors will occur in this 2758 * scenario. After this first LQIRETRY, the LQI 2759 * manager will be in ISELO where it will 2760 * happily sit until another packet phase begins. 2761 * Unexpected bus free detection is enabled 2762 * through any phases that occur after we release 2763 * this last ack until the LQI manager sees a 2764 * packet phase. This implies we may have to 2765 * ignore a perfectly valid "unexected busfree" 2766 * after our "initiator detected error" message is 2767 * sent. A busfree is the expected response after 2768 * we tell the target that it's L_Q was corrupted. 2769 * (SPI4R09 10.7.3.3.3) 2770 */ 2771 ahd_outb(ahd, LQCTL2, LQIRETRY); 2772 printk("LQIRetry for LQICRCI_LQ to release ACK\n"); 2773 } else if ((lqistat1 & LQICRCI_NLQ) != 0) { 2774 /* 2775 * We detected a CRC error in a NON-LQ packet. 2776 * The hardware has varying behavior in this situation 2777 * depending on whether this packet was part of a 2778 * stream or not. 2779 * 2780 * PKT by PKT mode: 2781 * The hardware has already acked the complete packet. 2782 * If the target honors our outstanding ATN condition, 2783 * we should be (or soon will be) in MSGOUT phase. 2784 * This will trigger the LQIPHASE_LQ status bit as the 2785 * hardware was expecting another LQ. Unexpected 2786 * busfree detection is enabled. Once LQIPHASE_LQ is 2787 * true (first entry into host message loop is much 2788 * the same), we must clear LQIPHASE_LQ and hit 2789 * LQIRETRY so the hardware is ready to handle 2790 * a future LQ. NONPACKREQ will not be asserted again 2791 * once we hit LQIRETRY until another packet is 2792 * processed. The target may either go busfree 2793 * or start another packet in response to our message. 2794 * 2795 * Read Streaming P0 asserted: 2796 * If we raise ATN and the target completes the entire 2797 * stream (P0 asserted during the last packet), the 2798 * hardware will ack all data and return to the ISTART 2799 * state. When the target reponds to our ATN condition, 2800 * LQIPHASE_LQ will be asserted. We should respond to 2801 * this with an LQIRETRY to prepare for any future 2802 * packets. NONPACKREQ will not be asserted again 2803 * once we hit LQIRETRY until another packet is 2804 * processed. The target may either go busfree or 2805 * start another packet in response to our message. 2806 * Busfree detection is enabled. 2807 * 2808 * Read Streaming P0 not asserted: 2809 * If we raise ATN and the target transitions to 2810 * MSGOUT in or after a packet where P0 is not 2811 * asserted, the hardware will assert LQIPHASE_NLQ. 2812 * We should respond to the LQIPHASE_NLQ with an 2813 * LQIRETRY. Should the target stay in a non-pkt 2814 * phase after we send our message, the hardware 2815 * will assert LQIPHASE_LQ. Recovery is then just as 2816 * listed above for the read streaming with P0 asserted. 2817 * Busfree detection is enabled. 2818 */ 2819 if (silent == FALSE) 2820 printk("LQICRC_NLQ\n"); 2821 if (scb == NULL) { 2822 printk("%s: No SCB valid for LQICRC_NLQ. " 2823 "Resetting bus\n", ahd_name(ahd)); 2824 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); 2825 return; 2826 } 2827 } else if ((lqistat1 & LQIBADLQI) != 0) { 2828 printk("Need to handle BADLQI!\n"); 2829 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); 2830 return; 2831 } else if ((perrdiag & (PARITYERR|PREVPHASE)) == PARITYERR) { 2832 if ((curphase & ~P_DATAIN_DT) != 0) { 2833 /* Ack the byte. So we can continue. */ 2834 if (silent == FALSE) 2835 printk("Acking %s to clear perror\n", 2836 ahd_lookup_phase_entry(curphase)->phasemsg); 2837 ahd_inb(ahd, SCSIDAT); 2838 } 2839 2840 if (curphase == P_MESGIN) 2841 msg_out = MSG_PARITY_ERROR; 2842 } 2843 2844 /* 2845 * We've set the hardware to assert ATN if we 2846 * get a parity error on "in" phases, so all we 2847 * need to do is stuff the message buffer with 2848 * the appropriate message. "In" phases have set 2849 * mesg_out to something other than MSG_NOP. 2850 */ 2851 ahd->send_msg_perror = msg_out; 2852 if (scb != NULL && msg_out == MSG_INITIATOR_DET_ERR) 2853 scb->flags |= SCB_TRANSMISSION_ERROR; 2854 ahd_outb(ahd, MSG_OUT, HOST_MSG); 2855 ahd_outb(ahd, CLRINT, CLRSCSIINT); 2856 ahd_unpause(ahd); 2857 } 2858 2859 static void 2860 ahd_handle_lqiphase_error(struct ahd_softc *ahd, u_int lqistat1) 2861 { 2862 /* 2863 * Clear the sources of the interrupts. 2864 */ 2865 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 2866 ahd_outb(ahd, CLRLQIINT1, lqistat1); 2867 2868 /* 2869 * If the "illegal" phase changes were in response 2870 * to our ATN to flag a CRC error, AND we ended up 2871 * on packet boundaries, clear the error, restart the 2872 * LQI manager as appropriate, and go on our merry 2873 * way toward sending the message. Otherwise, reset 2874 * the bus to clear the error. 2875 */ 2876 ahd_set_active_fifo(ahd); 2877 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0 2878 && (ahd_inb(ahd, MDFFSTAT) & DLZERO) != 0) { 2879 if ((lqistat1 & LQIPHASE_LQ) != 0) { 2880 printk("LQIRETRY for LQIPHASE_LQ\n"); 2881 ahd_outb(ahd, LQCTL2, LQIRETRY); 2882 } else if ((lqistat1 & LQIPHASE_NLQ) != 0) { 2883 printk("LQIRETRY for LQIPHASE_NLQ\n"); 2884 ahd_outb(ahd, LQCTL2, LQIRETRY); 2885 } else 2886 panic("ahd_handle_lqiphase_error: No phase errors\n"); 2887 ahd_dump_card_state(ahd); 2888 ahd_outb(ahd, CLRINT, CLRSCSIINT); 2889 ahd_unpause(ahd); 2890 } else { 2891 printk("Reseting Channel for LQI Phase error\n"); 2892 ahd_dump_card_state(ahd); 2893 ahd_reset_channel(ahd, 'A', /*Initiate Reset*/TRUE); 2894 } 2895 } 2896 2897 /* 2898 * Packetized unexpected or expected busfree. 2899 * Entered in mode based on busfreetime. 2900 */ 2901 static int 2902 ahd_handle_pkt_busfree(struct ahd_softc *ahd, u_int busfreetime) 2903 { 2904 u_int lqostat1; 2905 2906 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), 2907 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); 2908 lqostat1 = ahd_inb(ahd, LQOSTAT1); 2909 if ((lqostat1 & LQOBUSFREE) != 0) { 2910 struct scb *scb; 2911 u_int scbid; 2912 u_int saved_scbptr; 2913 u_int waiting_h; 2914 u_int waiting_t; 2915 u_int next; 2916 2917 /* 2918 * The LQO manager detected an unexpected busfree 2919 * either: 2920 * 2921 * 1) During an outgoing LQ. 2922 * 2) After an outgoing LQ but before the first 2923 * REQ of the command packet. 2924 * 3) During an outgoing command packet. 2925 * 2926 * In all cases, CURRSCB is pointing to the 2927 * SCB that encountered the failure. Clean 2928 * up the queue, clear SELDO and LQOBUSFREE, 2929 * and allow the sequencer to restart the select 2930 * out at its lesure. 2931 */ 2932 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 2933 scbid = ahd_inw(ahd, CURRSCB); 2934 scb = ahd_lookup_scb(ahd, scbid); 2935 if (scb == NULL) 2936 panic("SCB not valid during LQOBUSFREE"); 2937 /* 2938 * Clear the status. 2939 */ 2940 ahd_outb(ahd, CLRLQOINT1, CLRLQOBUSFREE); 2941 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) 2942 ahd_outb(ahd, CLRLQOINT1, 0); 2943 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO); 2944 ahd_flush_device_writes(ahd); 2945 ahd_outb(ahd, CLRSINT0, CLRSELDO); 2946 2947 /* 2948 * Return the LQO manager to its idle loop. It will 2949 * not do this automatically if the busfree occurs 2950 * after the first REQ of either the LQ or command 2951 * packet or between the LQ and command packet. 2952 */ 2953 ahd_outb(ahd, LQCTL2, ahd_inb(ahd, LQCTL2) | LQOTOIDLE); 2954 2955 /* 2956 * Update the waiting for selection queue so 2957 * we restart on the correct SCB. 2958 */ 2959 waiting_h = ahd_inw(ahd, WAITING_TID_HEAD); 2960 saved_scbptr = ahd_get_scbptr(ahd); 2961 if (waiting_h != scbid) { 2962 2963 ahd_outw(ahd, WAITING_TID_HEAD, scbid); 2964 waiting_t = ahd_inw(ahd, WAITING_TID_TAIL); 2965 if (waiting_t == waiting_h) { 2966 ahd_outw(ahd, WAITING_TID_TAIL, scbid); 2967 next = SCB_LIST_NULL; 2968 } else { 2969 ahd_set_scbptr(ahd, waiting_h); 2970 next = ahd_inw_scbram(ahd, SCB_NEXT2); 2971 } 2972 ahd_set_scbptr(ahd, scbid); 2973 ahd_outw(ahd, SCB_NEXT2, next); 2974 } 2975 ahd_set_scbptr(ahd, saved_scbptr); 2976 if (scb->crc_retry_count < AHD_MAX_LQ_CRC_ERRORS) { 2977 if (SCB_IS_SILENT(scb) == FALSE) { 2978 ahd_print_path(ahd, scb); 2979 printk("Probable outgoing LQ CRC error. " 2980 "Retrying command\n"); 2981 } 2982 scb->crc_retry_count++; 2983 } else { 2984 ahd_set_transaction_status(scb, CAM_UNCOR_PARITY); 2985 ahd_freeze_scb(scb); 2986 ahd_freeze_devq(ahd, scb); 2987 } 2988 /* Return unpausing the sequencer. */ 2989 return (0); 2990 } else if ((ahd_inb(ahd, PERRDIAG) & PARITYERR) != 0) { 2991 /* 2992 * Ignore what are really parity errors that 2993 * occur on the last REQ of a free running 2994 * clock prior to going busfree. Some drives 2995 * do not properly active negate just before 2996 * going busfree resulting in a parity glitch. 2997 */ 2998 ahd_outb(ahd, CLRSINT1, CLRSCSIPERR|CLRBUSFREE); 2999 #ifdef AHD_DEBUG 3000 if ((ahd_debug & AHD_SHOW_MASKED_ERRORS) != 0) 3001 printk("%s: Parity on last REQ detected " 3002 "during busfree phase.\n", 3003 ahd_name(ahd)); 3004 #endif 3005 /* Return unpausing the sequencer. */ 3006 return (0); 3007 } 3008 if (ahd->src_mode != AHD_MODE_SCSI) { 3009 u_int scbid; 3010 struct scb *scb; 3011 3012 scbid = ahd_get_scbptr(ahd); 3013 scb = ahd_lookup_scb(ahd, scbid); 3014 ahd_print_path(ahd, scb); 3015 printk("Unexpected PKT busfree condition\n"); 3016 ahd_dump_card_state(ahd); 3017 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 'A', 3018 SCB_GET_LUN(scb), SCB_GET_TAG(scb), 3019 ROLE_INITIATOR, CAM_UNEXP_BUSFREE); 3020 3021 /* Return restarting the sequencer. */ 3022 return (1); 3023 } 3024 printk("%s: Unexpected PKT busfree condition\n", ahd_name(ahd)); 3025 ahd_dump_card_state(ahd); 3026 /* Restart the sequencer. */ 3027 return (1); 3028 } 3029 3030 /* 3031 * Non-packetized unexpected or expected busfree. 3032 */ 3033 static int 3034 ahd_handle_nonpkt_busfree(struct ahd_softc *ahd) 3035 { 3036 struct ahd_devinfo devinfo; 3037 struct scb *scb; 3038 u_int lastphase; 3039 u_int saved_scsiid; 3040 u_int saved_lun; 3041 u_int target; 3042 u_int initiator_role_id; 3043 u_int scbid; 3044 u_int ppr_busfree; 3045 int printerror; 3046 3047 /* 3048 * Look at what phase we were last in. If its message out, 3049 * chances are pretty good that the busfree was in response 3050 * to one of our abort requests. 3051 */ 3052 lastphase = ahd_inb(ahd, LASTPHASE); 3053 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID); 3054 saved_lun = ahd_inb(ahd, SAVED_LUN); 3055 target = SCSIID_TARGET(ahd, saved_scsiid); 3056 initiator_role_id = SCSIID_OUR_ID(saved_scsiid); 3057 ahd_compile_devinfo(&devinfo, initiator_role_id, 3058 target, saved_lun, 'A', ROLE_INITIATOR); 3059 printerror = 1; 3060 3061 scbid = ahd_get_scbptr(ahd); 3062 scb = ahd_lookup_scb(ahd, scbid); 3063 if (scb != NULL 3064 && (ahd_inb(ahd, SEQ_FLAGS) & NOT_IDENTIFIED) != 0) 3065 scb = NULL; 3066 3067 ppr_busfree = (ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0; 3068 if (lastphase == P_MESGOUT) { 3069 u_int tag; 3070 3071 tag = SCB_LIST_NULL; 3072 if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT_TAG, TRUE) 3073 || ahd_sent_msg(ahd, AHDMSG_1B, MSG_ABORT, TRUE)) { 3074 int found; 3075 int sent_msg; 3076 3077 if (scb == NULL) { 3078 ahd_print_devinfo(ahd, &devinfo); 3079 printk("Abort for unidentified " 3080 "connection completed.\n"); 3081 /* restart the sequencer. */ 3082 return (1); 3083 } 3084 sent_msg = ahd->msgout_buf[ahd->msgout_index - 1]; 3085 ahd_print_path(ahd, scb); 3086 printk("SCB %d - Abort%s Completed.\n", 3087 SCB_GET_TAG(scb), 3088 sent_msg == MSG_ABORT_TAG ? "" : " Tag"); 3089 3090 if (sent_msg == MSG_ABORT_TAG) 3091 tag = SCB_GET_TAG(scb); 3092 3093 if ((scb->flags & SCB_EXTERNAL_RESET) != 0) { 3094 /* 3095 * This abort is in response to an 3096 * unexpected switch to command phase 3097 * for a packetized connection. Since 3098 * the identify message was never sent, 3099 * "saved lun" is 0. We really want to 3100 * abort only the SCB that encountered 3101 * this error, which could have a different 3102 * lun. The SCB will be retried so the OS 3103 * will see the UA after renegotiating to 3104 * packetized. 3105 */ 3106 tag = SCB_GET_TAG(scb); 3107 saved_lun = scb->hscb->lun; 3108 } 3109 found = ahd_abort_scbs(ahd, target, 'A', saved_lun, 3110 tag, ROLE_INITIATOR, 3111 CAM_REQ_ABORTED); 3112 printk("found == 0x%x\n", found); 3113 printerror = 0; 3114 } else if (ahd_sent_msg(ahd, AHDMSG_1B, 3115 MSG_BUS_DEV_RESET, TRUE)) { 3116 #ifdef __FreeBSD__ 3117 /* 3118 * Don't mark the user's request for this BDR 3119 * as completing with CAM_BDR_SENT. CAM3 3120 * specifies CAM_REQ_CMP. 3121 */ 3122 if (scb != NULL 3123 && scb->io_ctx->ccb_h.func_code== XPT_RESET_DEV 3124 && ahd_match_scb(ahd, scb, target, 'A', 3125 CAM_LUN_WILDCARD, SCB_LIST_NULL, 3126 ROLE_INITIATOR)) 3127 ahd_set_transaction_status(scb, CAM_REQ_CMP); 3128 #endif 3129 ahd_handle_devreset(ahd, &devinfo, CAM_LUN_WILDCARD, 3130 CAM_BDR_SENT, "Bus Device Reset", 3131 /*verbose_level*/0); 3132 printerror = 0; 3133 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, FALSE) 3134 && ppr_busfree == 0) { 3135 struct ahd_initiator_tinfo *tinfo; 3136 struct ahd_tmode_tstate *tstate; 3137 3138 /* 3139 * PPR Rejected. 3140 * 3141 * If the previous negotiation was packetized, 3142 * this could be because the device has been 3143 * reset without our knowledge. Force our 3144 * current negotiation to async and retry the 3145 * negotiation. Otherwise retry the command 3146 * with non-ppr negotiation. 3147 */ 3148 #ifdef AHD_DEBUG 3149 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 3150 printk("PPR negotiation rejected busfree.\n"); 3151 #endif 3152 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel, 3153 devinfo.our_scsiid, 3154 devinfo.target, &tstate); 3155 if ((tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ)!=0) { 3156 ahd_set_width(ahd, &devinfo, 3157 MSG_EXT_WDTR_BUS_8_BIT, 3158 AHD_TRANS_CUR, 3159 /*paused*/TRUE); 3160 ahd_set_syncrate(ahd, &devinfo, 3161 /*period*/0, /*offset*/0, 3162 /*ppr_options*/0, 3163 AHD_TRANS_CUR, 3164 /*paused*/TRUE); 3165 /* 3166 * The expect PPR busfree handler below 3167 * will effect the retry and necessary 3168 * abort. 3169 */ 3170 } else { 3171 tinfo->curr.transport_version = 2; 3172 tinfo->goal.transport_version = 2; 3173 tinfo->goal.ppr_options = 0; 3174 if (scb != NULL) { 3175 /* 3176 * Remove any SCBs in the waiting 3177 * for selection queue that may 3178 * also be for this target so that 3179 * command ordering is preserved. 3180 */ 3181 ahd_freeze_devq(ahd, scb); 3182 ahd_qinfifo_requeue_tail(ahd, scb); 3183 } 3184 printerror = 0; 3185 } 3186 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, FALSE) 3187 && ppr_busfree == 0) { 3188 /* 3189 * Negotiation Rejected. Go-narrow and 3190 * retry command. 3191 */ 3192 #ifdef AHD_DEBUG 3193 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 3194 printk("WDTR negotiation rejected busfree.\n"); 3195 #endif 3196 ahd_set_width(ahd, &devinfo, 3197 MSG_EXT_WDTR_BUS_8_BIT, 3198 AHD_TRANS_CUR|AHD_TRANS_GOAL, 3199 /*paused*/TRUE); 3200 if (scb != NULL) { 3201 /* 3202 * Remove any SCBs in the waiting for 3203 * selection queue that may also be for 3204 * this target so that command ordering 3205 * is preserved. 3206 */ 3207 ahd_freeze_devq(ahd, scb); 3208 ahd_qinfifo_requeue_tail(ahd, scb); 3209 } 3210 printerror = 0; 3211 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, FALSE) 3212 && ppr_busfree == 0) { 3213 /* 3214 * Negotiation Rejected. Go-async and 3215 * retry command. 3216 */ 3217 #ifdef AHD_DEBUG 3218 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 3219 printk("SDTR negotiation rejected busfree.\n"); 3220 #endif 3221 ahd_set_syncrate(ahd, &devinfo, 3222 /*period*/0, /*offset*/0, 3223 /*ppr_options*/0, 3224 AHD_TRANS_CUR|AHD_TRANS_GOAL, 3225 /*paused*/TRUE); 3226 if (scb != NULL) { 3227 /* 3228 * Remove any SCBs in the waiting for 3229 * selection queue that may also be for 3230 * this target so that command ordering 3231 * is preserved. 3232 */ 3233 ahd_freeze_devq(ahd, scb); 3234 ahd_qinfifo_requeue_tail(ahd, scb); 3235 } 3236 printerror = 0; 3237 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_IDE_BUSFREE) != 0 3238 && ahd_sent_msg(ahd, AHDMSG_1B, 3239 MSG_INITIATOR_DET_ERR, TRUE)) { 3240 3241 #ifdef AHD_DEBUG 3242 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 3243 printk("Expected IDE Busfree\n"); 3244 #endif 3245 printerror = 0; 3246 } else if ((ahd->msg_flags & MSG_FLAG_EXPECT_QASREJ_BUSFREE) 3247 && ahd_sent_msg(ahd, AHDMSG_1B, 3248 MSG_MESSAGE_REJECT, TRUE)) { 3249 3250 #ifdef AHD_DEBUG 3251 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 3252 printk("Expected QAS Reject Busfree\n"); 3253 #endif 3254 printerror = 0; 3255 } 3256 } 3257 3258 /* 3259 * The busfree required flag is honored at the end of 3260 * the message phases. We check it last in case we 3261 * had to send some other message that caused a busfree. 3262 */ 3263 if (scb != NULL && printerror != 0 3264 && (lastphase == P_MESGIN || lastphase == P_MESGOUT) 3265 && ((ahd->msg_flags & MSG_FLAG_EXPECT_PPR_BUSFREE) != 0)) { 3266 3267 ahd_freeze_devq(ahd, scb); 3268 ahd_set_transaction_status(scb, CAM_REQUEUE_REQ); 3269 ahd_freeze_scb(scb); 3270 if ((ahd->msg_flags & MSG_FLAG_IU_REQ_CHANGED) != 0) { 3271 ahd_abort_scbs(ahd, SCB_GET_TARGET(ahd, scb), 3272 SCB_GET_CHANNEL(ahd, scb), 3273 SCB_GET_LUN(scb), SCB_LIST_NULL, 3274 ROLE_INITIATOR, CAM_REQ_ABORTED); 3275 } else { 3276 #ifdef AHD_DEBUG 3277 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 3278 printk("PPR Negotiation Busfree.\n"); 3279 #endif 3280 ahd_done(ahd, scb); 3281 } 3282 printerror = 0; 3283 } 3284 if (printerror != 0) { 3285 int aborted; 3286 3287 aborted = 0; 3288 if (scb != NULL) { 3289 u_int tag; 3290 3291 if ((scb->hscb->control & TAG_ENB) != 0) 3292 tag = SCB_GET_TAG(scb); 3293 else 3294 tag = SCB_LIST_NULL; 3295 ahd_print_path(ahd, scb); 3296 aborted = ahd_abort_scbs(ahd, target, 'A', 3297 SCB_GET_LUN(scb), tag, 3298 ROLE_INITIATOR, 3299 CAM_UNEXP_BUSFREE); 3300 } else { 3301 /* 3302 * We had not fully identified this connection, 3303 * so we cannot abort anything. 3304 */ 3305 printk("%s: ", ahd_name(ahd)); 3306 } 3307 printk("Unexpected busfree %s, %d SCBs aborted, " 3308 "PRGMCNT == 0x%x\n", 3309 ahd_lookup_phase_entry(lastphase)->phasemsg, 3310 aborted, 3311 ahd_inw(ahd, PRGMCNT)); 3312 ahd_dump_card_state(ahd); 3313 if (lastphase != P_BUSFREE) 3314 ahd_force_renegotiation(ahd, &devinfo); 3315 } 3316 /* Always restart the sequencer. */ 3317 return (1); 3318 } 3319 3320 static void 3321 ahd_handle_proto_violation(struct ahd_softc *ahd) 3322 { 3323 struct ahd_devinfo devinfo; 3324 struct scb *scb; 3325 u_int scbid; 3326 u_int seq_flags; 3327 u_int curphase; 3328 u_int lastphase; 3329 int found; 3330 3331 ahd_fetch_devinfo(ahd, &devinfo); 3332 scbid = ahd_get_scbptr(ahd); 3333 scb = ahd_lookup_scb(ahd, scbid); 3334 seq_flags = ahd_inb(ahd, SEQ_FLAGS); 3335 curphase = ahd_inb(ahd, SCSISIGI) & PHASE_MASK; 3336 lastphase = ahd_inb(ahd, LASTPHASE); 3337 if ((seq_flags & NOT_IDENTIFIED) != 0) { 3338 3339 /* 3340 * The reconnecting target either did not send an 3341 * identify message, or did, but we didn't find an SCB 3342 * to match. 3343 */ 3344 ahd_print_devinfo(ahd, &devinfo); 3345 printk("Target did not send an IDENTIFY message. " 3346 "LASTPHASE = 0x%x.\n", lastphase); 3347 scb = NULL; 3348 } else if (scb == NULL) { 3349 /* 3350 * We don't seem to have an SCB active for this 3351 * transaction. Print an error and reset the bus. 3352 */ 3353 ahd_print_devinfo(ahd, &devinfo); 3354 printk("No SCB found during protocol violation\n"); 3355 goto proto_violation_reset; 3356 } else { 3357 ahd_set_transaction_status(scb, CAM_SEQUENCE_FAIL); 3358 if ((seq_flags & NO_CDB_SENT) != 0) { 3359 ahd_print_path(ahd, scb); 3360 printk("No or incomplete CDB sent to device.\n"); 3361 } else if ((ahd_inb_scbram(ahd, SCB_CONTROL) 3362 & STATUS_RCVD) == 0) { 3363 /* 3364 * The target never bothered to provide status to 3365 * us prior to completing the command. Since we don't 3366 * know the disposition of this command, we must attempt 3367 * to abort it. Assert ATN and prepare to send an abort 3368 * message. 3369 */ 3370 ahd_print_path(ahd, scb); 3371 printk("Completed command without status.\n"); 3372 } else { 3373 ahd_print_path(ahd, scb); 3374 printk("Unknown protocol violation.\n"); 3375 ahd_dump_card_state(ahd); 3376 } 3377 } 3378 if ((lastphase & ~P_DATAIN_DT) == 0 3379 || lastphase == P_COMMAND) { 3380 proto_violation_reset: 3381 /* 3382 * Target either went directly to data 3383 * phase or didn't respond to our ATN. 3384 * The only safe thing to do is to blow 3385 * it away with a bus reset. 3386 */ 3387 found = ahd_reset_channel(ahd, 'A', TRUE); 3388 printk("%s: Issued Channel %c Bus Reset. " 3389 "%d SCBs aborted\n", ahd_name(ahd), 'A', found); 3390 } else { 3391 /* 3392 * Leave the selection hardware off in case 3393 * this abort attempt will affect yet to 3394 * be sent commands. 3395 */ 3396 ahd_outb(ahd, SCSISEQ0, 3397 ahd_inb(ahd, SCSISEQ0) & ~ENSELO); 3398 ahd_assert_atn(ahd); 3399 ahd_outb(ahd, MSG_OUT, HOST_MSG); 3400 if (scb == NULL) { 3401 ahd_print_devinfo(ahd, &devinfo); 3402 ahd->msgout_buf[0] = MSG_ABORT_TASK; 3403 ahd->msgout_len = 1; 3404 ahd->msgout_index = 0; 3405 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; 3406 } else { 3407 ahd_print_path(ahd, scb); 3408 scb->flags |= SCB_ABORT; 3409 } 3410 printk("Protocol violation %s. Attempting to abort.\n", 3411 ahd_lookup_phase_entry(curphase)->phasemsg); 3412 } 3413 } 3414 3415 /* 3416 * Force renegotiation to occur the next time we initiate 3417 * a command to the current device. 3418 */ 3419 static void 3420 ahd_force_renegotiation(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) 3421 { 3422 struct ahd_initiator_tinfo *targ_info; 3423 struct ahd_tmode_tstate *tstate; 3424 3425 #ifdef AHD_DEBUG 3426 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { 3427 ahd_print_devinfo(ahd, devinfo); 3428 printk("Forcing renegotiation\n"); 3429 } 3430 #endif 3431 targ_info = ahd_fetch_transinfo(ahd, 3432 devinfo->channel, 3433 devinfo->our_scsiid, 3434 devinfo->target, 3435 &tstate); 3436 ahd_update_neg_request(ahd, devinfo, tstate, 3437 targ_info, AHD_NEG_IF_NON_ASYNC); 3438 } 3439 3440 #define AHD_MAX_STEPS 2000 3441 static void 3442 ahd_clear_critical_section(struct ahd_softc *ahd) 3443 { 3444 ahd_mode_state saved_modes; 3445 int stepping; 3446 int steps; 3447 int first_instr; 3448 u_int simode0; 3449 u_int simode1; 3450 u_int simode3; 3451 u_int lqimode0; 3452 u_int lqimode1; 3453 u_int lqomode0; 3454 u_int lqomode1; 3455 3456 if (ahd->num_critical_sections == 0) 3457 return; 3458 3459 stepping = FALSE; 3460 steps = 0; 3461 first_instr = 0; 3462 simode0 = 0; 3463 simode1 = 0; 3464 simode3 = 0; 3465 lqimode0 = 0; 3466 lqimode1 = 0; 3467 lqomode0 = 0; 3468 lqomode1 = 0; 3469 saved_modes = ahd_save_modes(ahd); 3470 for (;;) { 3471 struct cs *cs; 3472 u_int seqaddr; 3473 u_int i; 3474 3475 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 3476 seqaddr = ahd_inw(ahd, CURADDR); 3477 3478 cs = ahd->critical_sections; 3479 for (i = 0; i < ahd->num_critical_sections; i++, cs++) { 3480 3481 if (cs->begin < seqaddr && cs->end >= seqaddr) 3482 break; 3483 } 3484 3485 if (i == ahd->num_critical_sections) 3486 break; 3487 3488 if (steps > AHD_MAX_STEPS) { 3489 printk("%s: Infinite loop in critical section\n" 3490 "%s: First Instruction 0x%x now 0x%x\n", 3491 ahd_name(ahd), ahd_name(ahd), first_instr, 3492 seqaddr); 3493 ahd_dump_card_state(ahd); 3494 panic("critical section loop"); 3495 } 3496 3497 steps++; 3498 #ifdef AHD_DEBUG 3499 if ((ahd_debug & AHD_SHOW_MISC) != 0) 3500 printk("%s: Single stepping at 0x%x\n", ahd_name(ahd), 3501 seqaddr); 3502 #endif 3503 if (stepping == FALSE) { 3504 3505 first_instr = seqaddr; 3506 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); 3507 simode0 = ahd_inb(ahd, SIMODE0); 3508 simode3 = ahd_inb(ahd, SIMODE3); 3509 lqimode0 = ahd_inb(ahd, LQIMODE0); 3510 lqimode1 = ahd_inb(ahd, LQIMODE1); 3511 lqomode0 = ahd_inb(ahd, LQOMODE0); 3512 lqomode1 = ahd_inb(ahd, LQOMODE1); 3513 ahd_outb(ahd, SIMODE0, 0); 3514 ahd_outb(ahd, SIMODE3, 0); 3515 ahd_outb(ahd, LQIMODE0, 0); 3516 ahd_outb(ahd, LQIMODE1, 0); 3517 ahd_outb(ahd, LQOMODE0, 0); 3518 ahd_outb(ahd, LQOMODE1, 0); 3519 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 3520 simode1 = ahd_inb(ahd, SIMODE1); 3521 /* 3522 * We don't clear ENBUSFREE. Unfortunately 3523 * we cannot re-enable busfree detection within 3524 * the current connection, so we must leave it 3525 * on while single stepping. 3526 */ 3527 ahd_outb(ahd, SIMODE1, simode1 & ENBUSFREE); 3528 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) | STEP); 3529 stepping = TRUE; 3530 } 3531 ahd_outb(ahd, CLRSINT1, CLRBUSFREE); 3532 ahd_outb(ahd, CLRINT, CLRSCSIINT); 3533 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode); 3534 ahd_outb(ahd, HCNTRL, ahd->unpause); 3535 while (!ahd_is_paused(ahd)) 3536 ahd_delay(200); 3537 ahd_update_modes(ahd); 3538 } 3539 if (stepping) { 3540 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); 3541 ahd_outb(ahd, SIMODE0, simode0); 3542 ahd_outb(ahd, SIMODE3, simode3); 3543 ahd_outb(ahd, LQIMODE0, lqimode0); 3544 ahd_outb(ahd, LQIMODE1, lqimode1); 3545 ahd_outb(ahd, LQOMODE0, lqomode0); 3546 ahd_outb(ahd, LQOMODE1, lqomode1); 3547 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 3548 ahd_outb(ahd, SEQCTL0, ahd_inb(ahd, SEQCTL0) & ~STEP); 3549 ahd_outb(ahd, SIMODE1, simode1); 3550 /* 3551 * SCSIINT seems to glitch occasionally when 3552 * the interrupt masks are restored. Clear SCSIINT 3553 * one more time so that only persistent errors 3554 * are seen as a real interrupt. 3555 */ 3556 ahd_outb(ahd, CLRINT, CLRSCSIINT); 3557 } 3558 ahd_restore_modes(ahd, saved_modes); 3559 } 3560 3561 /* 3562 * Clear any pending interrupt status. 3563 */ 3564 static void 3565 ahd_clear_intstat(struct ahd_softc *ahd) 3566 { 3567 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), 3568 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); 3569 /* Clear any interrupt conditions this may have caused */ 3570 ahd_outb(ahd, CLRLQIINT0, CLRLQIATNQAS|CLRLQICRCT1|CLRLQICRCT2 3571 |CLRLQIBADLQT|CLRLQIATNLQ|CLRLQIATNCMD); 3572 ahd_outb(ahd, CLRLQIINT1, CLRLQIPHASE_LQ|CLRLQIPHASE_NLQ|CLRLIQABORT 3573 |CLRLQICRCI_LQ|CLRLQICRCI_NLQ|CLRLQIBADLQI 3574 |CLRLQIOVERI_LQ|CLRLQIOVERI_NLQ|CLRNONPACKREQ); 3575 ahd_outb(ahd, CLRLQOINT0, CLRLQOTARGSCBPERR|CLRLQOSTOPT2|CLRLQOATNLQ 3576 |CLRLQOATNPKT|CLRLQOTCRC); 3577 ahd_outb(ahd, CLRLQOINT1, CLRLQOINITSCBPERR|CLRLQOSTOPI2|CLRLQOBADQAS 3578 |CLRLQOBUSFREE|CLRLQOPHACHGINPKT); 3579 if ((ahd->bugs & AHD_CLRLQO_AUTOCLR_BUG) != 0) { 3580 ahd_outb(ahd, CLRLQOINT0, 0); 3581 ahd_outb(ahd, CLRLQOINT1, 0); 3582 } 3583 ahd_outb(ahd, CLRSINT3, CLRNTRAMPERR|CLROSRAMPERR); 3584 ahd_outb(ahd, CLRSINT1, CLRSELTIMEO|CLRATNO|CLRSCSIRSTI 3585 |CLRBUSFREE|CLRSCSIPERR|CLRREQINIT); 3586 ahd_outb(ahd, CLRSINT0, CLRSELDO|CLRSELDI|CLRSELINGO 3587 |CLRIOERR|CLROVERRUN); 3588 ahd_outb(ahd, CLRINT, CLRSCSIINT); 3589 } 3590 3591 /**************************** Debugging Routines ******************************/ 3592 #ifdef AHD_DEBUG 3593 uint32_t ahd_debug = AHD_DEBUG_OPTS; 3594 #endif 3595 3596 #if 0 3597 void 3598 ahd_print_scb(struct scb *scb) 3599 { 3600 struct hardware_scb *hscb; 3601 int i; 3602 3603 hscb = scb->hscb; 3604 printk("scb:%p control:0x%x scsiid:0x%x lun:%d cdb_len:%d\n", 3605 (void *)scb, 3606 hscb->control, 3607 hscb->scsiid, 3608 hscb->lun, 3609 hscb->cdb_len); 3610 printk("Shared Data: "); 3611 for (i = 0; i < sizeof(hscb->shared_data.idata.cdb); i++) 3612 printk("%#02x", hscb->shared_data.idata.cdb[i]); 3613 printk(" dataptr:%#x%x datacnt:%#x sgptr:%#x tag:%#x\n", 3614 (uint32_t)((ahd_le64toh(hscb->dataptr) >> 32) & 0xFFFFFFFF), 3615 (uint32_t)(ahd_le64toh(hscb->dataptr) & 0xFFFFFFFF), 3616 ahd_le32toh(hscb->datacnt), 3617 ahd_le32toh(hscb->sgptr), 3618 SCB_GET_TAG(scb)); 3619 ahd_dump_sglist(scb); 3620 } 3621 #endif /* 0 */ 3622 3623 /************************* Transfer Negotiation *******************************/ 3624 /* 3625 * Allocate per target mode instance (ID we respond to as a target) 3626 * transfer negotiation data structures. 3627 */ 3628 static struct ahd_tmode_tstate * 3629 ahd_alloc_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel) 3630 { 3631 struct ahd_tmode_tstate *master_tstate; 3632 struct ahd_tmode_tstate *tstate; 3633 int i; 3634 3635 master_tstate = ahd->enabled_targets[ahd->our_id]; 3636 if (ahd->enabled_targets[scsi_id] != NULL 3637 && ahd->enabled_targets[scsi_id] != master_tstate) 3638 panic("%s: ahd_alloc_tstate - Target already allocated", 3639 ahd_name(ahd)); 3640 tstate = kmalloc(sizeof(*tstate), GFP_ATOMIC); 3641 if (tstate == NULL) 3642 return (NULL); 3643 3644 /* 3645 * If we have allocated a master tstate, copy user settings from 3646 * the master tstate (taken from SRAM or the EEPROM) for this 3647 * channel, but reset our current and goal settings to async/narrow 3648 * until an initiator talks to us. 3649 */ 3650 if (master_tstate != NULL) { 3651 memcpy(tstate, master_tstate, sizeof(*tstate)); 3652 memset(tstate->enabled_luns, 0, sizeof(tstate->enabled_luns)); 3653 for (i = 0; i < 16; i++) { 3654 memset(&tstate->transinfo[i].curr, 0, 3655 sizeof(tstate->transinfo[i].curr)); 3656 memset(&tstate->transinfo[i].goal, 0, 3657 sizeof(tstate->transinfo[i].goal)); 3658 } 3659 } else 3660 memset(tstate, 0, sizeof(*tstate)); 3661 ahd->enabled_targets[scsi_id] = tstate; 3662 return (tstate); 3663 } 3664 3665 #ifdef AHD_TARGET_MODE 3666 /* 3667 * Free per target mode instance (ID we respond to as a target) 3668 * transfer negotiation data structures. 3669 */ 3670 static void 3671 ahd_free_tstate(struct ahd_softc *ahd, u_int scsi_id, char channel, int force) 3672 { 3673 struct ahd_tmode_tstate *tstate; 3674 3675 /* 3676 * Don't clean up our "master" tstate. 3677 * It has our default user settings. 3678 */ 3679 if (scsi_id == ahd->our_id 3680 && force == FALSE) 3681 return; 3682 3683 tstate = ahd->enabled_targets[scsi_id]; 3684 if (tstate != NULL) 3685 kfree(tstate); 3686 ahd->enabled_targets[scsi_id] = NULL; 3687 } 3688 #endif 3689 3690 /* 3691 * Called when we have an active connection to a target on the bus, 3692 * this function finds the nearest period to the input period limited 3693 * by the capabilities of the bus connectivity of and sync settings for 3694 * the target. 3695 */ 3696 static void 3697 ahd_devlimited_syncrate(struct ahd_softc *ahd, 3698 struct ahd_initiator_tinfo *tinfo, 3699 u_int *period, u_int *ppr_options, role_t role) 3700 { 3701 struct ahd_transinfo *transinfo; 3702 u_int maxsync; 3703 3704 if ((ahd_inb(ahd, SBLKCTL) & ENAB40) != 0 3705 && (ahd_inb(ahd, SSTAT2) & EXP_ACTIVE) == 0) { 3706 maxsync = AHD_SYNCRATE_PACED; 3707 } else { 3708 maxsync = AHD_SYNCRATE_ULTRA; 3709 /* Can't do DT related options on an SE bus */ 3710 *ppr_options &= MSG_EXT_PPR_QAS_REQ; 3711 } 3712 /* 3713 * Never allow a value higher than our current goal 3714 * period otherwise we may allow a target initiated 3715 * negotiation to go above the limit as set by the 3716 * user. In the case of an initiator initiated 3717 * sync negotiation, we limit based on the user 3718 * setting. This allows the system to still accept 3719 * incoming negotiations even if target initiated 3720 * negotiation is not performed. 3721 */ 3722 if (role == ROLE_TARGET) 3723 transinfo = &tinfo->user; 3724 else 3725 transinfo = &tinfo->goal; 3726 *ppr_options &= (transinfo->ppr_options|MSG_EXT_PPR_PCOMP_EN); 3727 if (transinfo->width == MSG_EXT_WDTR_BUS_8_BIT) { 3728 maxsync = max(maxsync, (u_int)AHD_SYNCRATE_ULTRA2); 3729 *ppr_options &= ~MSG_EXT_PPR_DT_REQ; 3730 } 3731 if (transinfo->period == 0) { 3732 *period = 0; 3733 *ppr_options = 0; 3734 } else { 3735 *period = max(*period, (u_int)transinfo->period); 3736 ahd_find_syncrate(ahd, period, ppr_options, maxsync); 3737 } 3738 } 3739 3740 /* 3741 * Look up the valid period to SCSIRATE conversion in our table. 3742 * Return the period and offset that should be sent to the target 3743 * if this was the beginning of an SDTR. 3744 */ 3745 void 3746 ahd_find_syncrate(struct ahd_softc *ahd, u_int *period, 3747 u_int *ppr_options, u_int maxsync) 3748 { 3749 if (*period < maxsync) 3750 *period = maxsync; 3751 3752 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) != 0 3753 && *period > AHD_SYNCRATE_MIN_DT) 3754 *ppr_options &= ~MSG_EXT_PPR_DT_REQ; 3755 3756 if (*period > AHD_SYNCRATE_MIN) 3757 *period = 0; 3758 3759 /* Honor PPR option conformance rules. */ 3760 if (*period > AHD_SYNCRATE_PACED) 3761 *ppr_options &= ~MSG_EXT_PPR_RTI; 3762 3763 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0) 3764 *ppr_options &= (MSG_EXT_PPR_DT_REQ|MSG_EXT_PPR_QAS_REQ); 3765 3766 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0) 3767 *ppr_options &= MSG_EXT_PPR_QAS_REQ; 3768 3769 /* Skip all PACED only entries if IU is not available */ 3770 if ((*ppr_options & MSG_EXT_PPR_IU_REQ) == 0 3771 && *period < AHD_SYNCRATE_DT) 3772 *period = AHD_SYNCRATE_DT; 3773 3774 /* Skip all DT only entries if DT is not available */ 3775 if ((*ppr_options & MSG_EXT_PPR_DT_REQ) == 0 3776 && *period < AHD_SYNCRATE_ULTRA2) 3777 *period = AHD_SYNCRATE_ULTRA2; 3778 } 3779 3780 /* 3781 * Truncate the given synchronous offset to a value the 3782 * current adapter type and syncrate are capable of. 3783 */ 3784 static void 3785 ahd_validate_offset(struct ahd_softc *ahd, 3786 struct ahd_initiator_tinfo *tinfo, 3787 u_int period, u_int *offset, int wide, 3788 role_t role) 3789 { 3790 u_int maxoffset; 3791 3792 /* Limit offset to what we can do */ 3793 if (period == 0) 3794 maxoffset = 0; 3795 else if (period <= AHD_SYNCRATE_PACED) { 3796 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) 3797 maxoffset = MAX_OFFSET_PACED_BUG; 3798 else 3799 maxoffset = MAX_OFFSET_PACED; 3800 } else 3801 maxoffset = MAX_OFFSET_NON_PACED; 3802 *offset = min(*offset, maxoffset); 3803 if (tinfo != NULL) { 3804 if (role == ROLE_TARGET) 3805 *offset = min(*offset, (u_int)tinfo->user.offset); 3806 else 3807 *offset = min(*offset, (u_int)tinfo->goal.offset); 3808 } 3809 } 3810 3811 /* 3812 * Truncate the given transfer width parameter to a value the 3813 * current adapter type is capable of. 3814 */ 3815 static void 3816 ahd_validate_width(struct ahd_softc *ahd, struct ahd_initiator_tinfo *tinfo, 3817 u_int *bus_width, role_t role) 3818 { 3819 switch (*bus_width) { 3820 default: 3821 if (ahd->features & AHD_WIDE) { 3822 /* Respond Wide */ 3823 *bus_width = MSG_EXT_WDTR_BUS_16_BIT; 3824 break; 3825 } 3826 /* FALLTHROUGH */ 3827 case MSG_EXT_WDTR_BUS_8_BIT: 3828 *bus_width = MSG_EXT_WDTR_BUS_8_BIT; 3829 break; 3830 } 3831 if (tinfo != NULL) { 3832 if (role == ROLE_TARGET) 3833 *bus_width = min((u_int)tinfo->user.width, *bus_width); 3834 else 3835 *bus_width = min((u_int)tinfo->goal.width, *bus_width); 3836 } 3837 } 3838 3839 /* 3840 * Update the bitmask of targets for which the controller should 3841 * negotiate with at the next convenient opportunity. This currently 3842 * means the next time we send the initial identify messages for 3843 * a new transaction. 3844 */ 3845 int 3846 ahd_update_neg_request(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, 3847 struct ahd_tmode_tstate *tstate, 3848 struct ahd_initiator_tinfo *tinfo, ahd_neg_type neg_type) 3849 { 3850 u_int auto_negotiate_orig; 3851 3852 auto_negotiate_orig = tstate->auto_negotiate; 3853 if (neg_type == AHD_NEG_ALWAYS) { 3854 /* 3855 * Force our "current" settings to be 3856 * unknown so that unless a bus reset 3857 * occurs the need to renegotiate is 3858 * recorded persistently. 3859 */ 3860 if ((ahd->features & AHD_WIDE) != 0) 3861 tinfo->curr.width = AHD_WIDTH_UNKNOWN; 3862 tinfo->curr.period = AHD_PERIOD_UNKNOWN; 3863 tinfo->curr.offset = AHD_OFFSET_UNKNOWN; 3864 } 3865 if (tinfo->curr.period != tinfo->goal.period 3866 || tinfo->curr.width != tinfo->goal.width 3867 || tinfo->curr.offset != tinfo->goal.offset 3868 || tinfo->curr.ppr_options != tinfo->goal.ppr_options 3869 || (neg_type == AHD_NEG_IF_NON_ASYNC 3870 && (tinfo->goal.offset != 0 3871 || tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT 3872 || tinfo->goal.ppr_options != 0))) 3873 tstate->auto_negotiate |= devinfo->target_mask; 3874 else 3875 tstate->auto_negotiate &= ~devinfo->target_mask; 3876 3877 return (auto_negotiate_orig != tstate->auto_negotiate); 3878 } 3879 3880 /* 3881 * Update the user/goal/curr tables of synchronous negotiation 3882 * parameters as well as, in the case of a current or active update, 3883 * any data structures on the host controller. In the case of an 3884 * active update, the specified target is currently talking to us on 3885 * the bus, so the transfer parameter update must take effect 3886 * immediately. 3887 */ 3888 void 3889 ahd_set_syncrate(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, 3890 u_int period, u_int offset, u_int ppr_options, 3891 u_int type, int paused) 3892 { 3893 struct ahd_initiator_tinfo *tinfo; 3894 struct ahd_tmode_tstate *tstate; 3895 u_int old_period; 3896 u_int old_offset; 3897 u_int old_ppr; 3898 int active; 3899 int update_needed; 3900 3901 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE; 3902 update_needed = 0; 3903 3904 if (period == 0 || offset == 0) { 3905 period = 0; 3906 offset = 0; 3907 } 3908 3909 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, 3910 devinfo->target, &tstate); 3911 3912 if ((type & AHD_TRANS_USER) != 0) { 3913 tinfo->user.period = period; 3914 tinfo->user.offset = offset; 3915 tinfo->user.ppr_options = ppr_options; 3916 } 3917 3918 if ((type & AHD_TRANS_GOAL) != 0) { 3919 tinfo->goal.period = period; 3920 tinfo->goal.offset = offset; 3921 tinfo->goal.ppr_options = ppr_options; 3922 } 3923 3924 old_period = tinfo->curr.period; 3925 old_offset = tinfo->curr.offset; 3926 old_ppr = tinfo->curr.ppr_options; 3927 3928 if ((type & AHD_TRANS_CUR) != 0 3929 && (old_period != period 3930 || old_offset != offset 3931 || old_ppr != ppr_options)) { 3932 3933 update_needed++; 3934 3935 tinfo->curr.period = period; 3936 tinfo->curr.offset = offset; 3937 tinfo->curr.ppr_options = ppr_options; 3938 3939 ahd_send_async(ahd, devinfo->channel, devinfo->target, 3940 CAM_LUN_WILDCARD, AC_TRANSFER_NEG); 3941 if (bootverbose) { 3942 if (offset != 0) { 3943 int options; 3944 3945 printk("%s: target %d synchronous with " 3946 "period = 0x%x, offset = 0x%x", 3947 ahd_name(ahd), devinfo->target, 3948 period, offset); 3949 options = 0; 3950 if ((ppr_options & MSG_EXT_PPR_RD_STRM) != 0) { 3951 printk("(RDSTRM"); 3952 options++; 3953 } 3954 if ((ppr_options & MSG_EXT_PPR_DT_REQ) != 0) { 3955 printk("%s", options ? "|DT" : "(DT"); 3956 options++; 3957 } 3958 if ((ppr_options & MSG_EXT_PPR_IU_REQ) != 0) { 3959 printk("%s", options ? "|IU" : "(IU"); 3960 options++; 3961 } 3962 if ((ppr_options & MSG_EXT_PPR_RTI) != 0) { 3963 printk("%s", options ? "|RTI" : "(RTI"); 3964 options++; 3965 } 3966 if ((ppr_options & MSG_EXT_PPR_QAS_REQ) != 0) { 3967 printk("%s", options ? "|QAS" : "(QAS"); 3968 options++; 3969 } 3970 if (options != 0) 3971 printk(")\n"); 3972 else 3973 printk("\n"); 3974 } else { 3975 printk("%s: target %d using " 3976 "asynchronous transfers%s\n", 3977 ahd_name(ahd), devinfo->target, 3978 (ppr_options & MSG_EXT_PPR_QAS_REQ) != 0 3979 ? "(QAS)" : ""); 3980 } 3981 } 3982 } 3983 /* 3984 * Always refresh the neg-table to handle the case of the 3985 * sequencer setting the ENATNO bit for a MK_MESSAGE request. 3986 * We will always renegotiate in that case if this is a 3987 * packetized request. Also manage the busfree expected flag 3988 * from this common routine so that we catch changes due to 3989 * WDTR or SDTR messages. 3990 */ 3991 if ((type & AHD_TRANS_CUR) != 0) { 3992 if (!paused) 3993 ahd_pause(ahd); 3994 ahd_update_neg_table(ahd, devinfo, &tinfo->curr); 3995 if (!paused) 3996 ahd_unpause(ahd); 3997 if (ahd->msg_type != MSG_TYPE_NONE) { 3998 if ((old_ppr & MSG_EXT_PPR_IU_REQ) 3999 != (ppr_options & MSG_EXT_PPR_IU_REQ)) { 4000 #ifdef AHD_DEBUG 4001 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { 4002 ahd_print_devinfo(ahd, devinfo); 4003 printk("Expecting IU Change busfree\n"); 4004 } 4005 #endif 4006 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE 4007 | MSG_FLAG_IU_REQ_CHANGED; 4008 } 4009 if ((old_ppr & MSG_EXT_PPR_IU_REQ) != 0) { 4010 #ifdef AHD_DEBUG 4011 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 4012 printk("PPR with IU_REQ outstanding\n"); 4013 #endif 4014 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE; 4015 } 4016 } 4017 } 4018 4019 update_needed += ahd_update_neg_request(ahd, devinfo, tstate, 4020 tinfo, AHD_NEG_TO_GOAL); 4021 4022 if (update_needed && active) 4023 ahd_update_pending_scbs(ahd); 4024 } 4025 4026 /* 4027 * Update the user/goal/curr tables of wide negotiation 4028 * parameters as well as, in the case of a current or active update, 4029 * any data structures on the host controller. In the case of an 4030 * active update, the specified target is currently talking to us on 4031 * the bus, so the transfer parameter update must take effect 4032 * immediately. 4033 */ 4034 void 4035 ahd_set_width(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, 4036 u_int width, u_int type, int paused) 4037 { 4038 struct ahd_initiator_tinfo *tinfo; 4039 struct ahd_tmode_tstate *tstate; 4040 u_int oldwidth; 4041 int active; 4042 int update_needed; 4043 4044 active = (type & AHD_TRANS_ACTIVE) == AHD_TRANS_ACTIVE; 4045 update_needed = 0; 4046 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, 4047 devinfo->target, &tstate); 4048 4049 if ((type & AHD_TRANS_USER) != 0) 4050 tinfo->user.width = width; 4051 4052 if ((type & AHD_TRANS_GOAL) != 0) 4053 tinfo->goal.width = width; 4054 4055 oldwidth = tinfo->curr.width; 4056 if ((type & AHD_TRANS_CUR) != 0 && oldwidth != width) { 4057 4058 update_needed++; 4059 4060 tinfo->curr.width = width; 4061 ahd_send_async(ahd, devinfo->channel, devinfo->target, 4062 CAM_LUN_WILDCARD, AC_TRANSFER_NEG); 4063 if (bootverbose) { 4064 printk("%s: target %d using %dbit transfers\n", 4065 ahd_name(ahd), devinfo->target, 4066 8 * (0x01 << width)); 4067 } 4068 } 4069 4070 if ((type & AHD_TRANS_CUR) != 0) { 4071 if (!paused) 4072 ahd_pause(ahd); 4073 ahd_update_neg_table(ahd, devinfo, &tinfo->curr); 4074 if (!paused) 4075 ahd_unpause(ahd); 4076 } 4077 4078 update_needed += ahd_update_neg_request(ahd, devinfo, tstate, 4079 tinfo, AHD_NEG_TO_GOAL); 4080 if (update_needed && active) 4081 ahd_update_pending_scbs(ahd); 4082 4083 } 4084 4085 /* 4086 * Update the current state of tagged queuing for a given target. 4087 */ 4088 static void 4089 ahd_set_tags(struct ahd_softc *ahd, struct scsi_cmnd *cmd, 4090 struct ahd_devinfo *devinfo, ahd_queue_alg alg) 4091 { 4092 struct scsi_device *sdev = cmd->device; 4093 4094 ahd_platform_set_tags(ahd, sdev, devinfo, alg); 4095 ahd_send_async(ahd, devinfo->channel, devinfo->target, 4096 devinfo->lun, AC_TRANSFER_NEG); 4097 } 4098 4099 static void 4100 ahd_update_neg_table(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, 4101 struct ahd_transinfo *tinfo) 4102 { 4103 ahd_mode_state saved_modes; 4104 u_int period; 4105 u_int ppr_opts; 4106 u_int con_opts; 4107 u_int offset; 4108 u_int saved_negoaddr; 4109 uint8_t iocell_opts[sizeof(ahd->iocell_opts)]; 4110 4111 saved_modes = ahd_save_modes(ahd); 4112 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 4113 4114 saved_negoaddr = ahd_inb(ahd, NEGOADDR); 4115 ahd_outb(ahd, NEGOADDR, devinfo->target); 4116 period = tinfo->period; 4117 offset = tinfo->offset; 4118 memcpy(iocell_opts, ahd->iocell_opts, sizeof(ahd->iocell_opts)); 4119 ppr_opts = tinfo->ppr_options & (MSG_EXT_PPR_QAS_REQ|MSG_EXT_PPR_DT_REQ 4120 |MSG_EXT_PPR_IU_REQ|MSG_EXT_PPR_RTI); 4121 con_opts = 0; 4122 if (period == 0) 4123 period = AHD_SYNCRATE_ASYNC; 4124 if (period == AHD_SYNCRATE_160) { 4125 4126 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) { 4127 /* 4128 * When the SPI4 spec was finalized, PACE transfers 4129 * was not made a configurable option in the PPR 4130 * message. Instead it is assumed to be enabled for 4131 * any syncrate faster than 80MHz. Nevertheless, 4132 * Harpoon2A4 allows this to be configurable. 4133 * 4134 * Harpoon2A4 also assumes at most 2 data bytes per 4135 * negotiated REQ/ACK offset. Paced transfers take 4136 * 4, so we must adjust our offset. 4137 */ 4138 ppr_opts |= PPROPT_PACE; 4139 offset *= 2; 4140 4141 /* 4142 * Harpoon2A assumed that there would be a 4143 * fallback rate between 160MHz and 80MHz, 4144 * so 7 is used as the period factor rather 4145 * than 8 for 160MHz. 4146 */ 4147 period = AHD_SYNCRATE_REVA_160; 4148 } 4149 if ((tinfo->ppr_options & MSG_EXT_PPR_PCOMP_EN) == 0) 4150 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= 4151 ~AHD_PRECOMP_MASK; 4152 } else { 4153 /* 4154 * Precomp should be disabled for non-paced transfers. 4155 */ 4156 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= ~AHD_PRECOMP_MASK; 4157 4158 if ((ahd->features & AHD_NEW_IOCELL_OPTS) != 0 4159 && (ppr_opts & MSG_EXT_PPR_DT_REQ) != 0 4160 && (ppr_opts & MSG_EXT_PPR_IU_REQ) == 0) { 4161 /* 4162 * Slow down our CRC interval to be 4163 * compatible with non-packetized 4164 * U160 devices that can't handle a 4165 * CRC at full speed. 4166 */ 4167 con_opts |= ENSLOWCRC; 4168 } 4169 4170 if ((ahd->bugs & AHD_PACED_NEGTABLE_BUG) != 0) { 4171 /* 4172 * On H2A4, revert to a slower slewrate 4173 * on non-paced transfers. 4174 */ 4175 iocell_opts[AHD_PRECOMP_SLEW_INDEX] &= 4176 ~AHD_SLEWRATE_MASK; 4177 } 4178 } 4179 4180 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PRECOMP_SLEW); 4181 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_PRECOMP_SLEW_INDEX]); 4182 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_AMPLITUDE); 4183 ahd_outb(ahd, ANNEXDAT, iocell_opts[AHD_AMPLITUDE_INDEX]); 4184 4185 ahd_outb(ahd, NEGPERIOD, period); 4186 ahd_outb(ahd, NEGPPROPTS, ppr_opts); 4187 ahd_outb(ahd, NEGOFFSET, offset); 4188 4189 if (tinfo->width == MSG_EXT_WDTR_BUS_16_BIT) 4190 con_opts |= WIDEXFER; 4191 4192 /* 4193 * Slow down our CRC interval to be 4194 * compatible with packetized U320 devices 4195 * that can't handle a CRC at full speed 4196 */ 4197 if (ahd->features & AHD_AIC79XXB_SLOWCRC) { 4198 con_opts |= ENSLOWCRC; 4199 } 4200 4201 /* 4202 * During packetized transfers, the target will 4203 * give us the opportunity to send command packets 4204 * without us asserting attention. 4205 */ 4206 if ((tinfo->ppr_options & MSG_EXT_PPR_IU_REQ) == 0) 4207 con_opts |= ENAUTOATNO; 4208 ahd_outb(ahd, NEGCONOPTS, con_opts); 4209 ahd_outb(ahd, NEGOADDR, saved_negoaddr); 4210 ahd_restore_modes(ahd, saved_modes); 4211 } 4212 4213 /* 4214 * When the transfer settings for a connection change, setup for 4215 * negotiation in pending SCBs to effect the change as quickly as 4216 * possible. We also cancel any negotiations that are scheduled 4217 * for inflight SCBs that have not been started yet. 4218 */ 4219 static void 4220 ahd_update_pending_scbs(struct ahd_softc *ahd) 4221 { 4222 struct scb *pending_scb; 4223 int pending_scb_count; 4224 int paused; 4225 u_int saved_scbptr; 4226 ahd_mode_state saved_modes; 4227 4228 /* 4229 * Traverse the pending SCB list and ensure that all of the 4230 * SCBs there have the proper settings. We can only safely 4231 * clear the negotiation required flag (setting requires the 4232 * execution queue to be modified) and this is only possible 4233 * if we are not already attempting to select out for this 4234 * SCB. For this reason, all callers only call this routine 4235 * if we are changing the negotiation settings for the currently 4236 * active transaction on the bus. 4237 */ 4238 pending_scb_count = 0; 4239 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) { 4240 struct ahd_devinfo devinfo; 4241 struct ahd_initiator_tinfo *tinfo; 4242 struct ahd_tmode_tstate *tstate; 4243 4244 ahd_scb_devinfo(ahd, &devinfo, pending_scb); 4245 tinfo = ahd_fetch_transinfo(ahd, devinfo.channel, 4246 devinfo.our_scsiid, 4247 devinfo.target, &tstate); 4248 if ((tstate->auto_negotiate & devinfo.target_mask) == 0 4249 && (pending_scb->flags & SCB_AUTO_NEGOTIATE) != 0) { 4250 pending_scb->flags &= ~SCB_AUTO_NEGOTIATE; 4251 pending_scb->hscb->control &= ~MK_MESSAGE; 4252 } 4253 ahd_sync_scb(ahd, pending_scb, 4254 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 4255 pending_scb_count++; 4256 } 4257 4258 if (pending_scb_count == 0) 4259 return; 4260 4261 if (ahd_is_paused(ahd)) { 4262 paused = 1; 4263 } else { 4264 paused = 0; 4265 ahd_pause(ahd); 4266 } 4267 4268 /* 4269 * Force the sequencer to reinitialize the selection for 4270 * the command at the head of the execution queue if it 4271 * has already been setup. The negotiation changes may 4272 * effect whether we select-out with ATN. It is only 4273 * safe to clear ENSELO when the bus is not free and no 4274 * selection is in progres or completed. 4275 */ 4276 saved_modes = ahd_save_modes(ahd); 4277 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 4278 if ((ahd_inb(ahd, SCSISIGI) & BSYI) != 0 4279 && (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) == 0) 4280 ahd_outb(ahd, SCSISEQ0, ahd_inb(ahd, SCSISEQ0) & ~ENSELO); 4281 saved_scbptr = ahd_get_scbptr(ahd); 4282 /* Ensure that the hscbs down on the card match the new information */ 4283 LIST_FOREACH(pending_scb, &ahd->pending_scbs, pending_links) { 4284 u_int scb_tag; 4285 u_int control; 4286 4287 scb_tag = SCB_GET_TAG(pending_scb); 4288 ahd_set_scbptr(ahd, scb_tag); 4289 control = ahd_inb_scbram(ahd, SCB_CONTROL); 4290 control &= ~MK_MESSAGE; 4291 control |= pending_scb->hscb->control & MK_MESSAGE; 4292 ahd_outb(ahd, SCB_CONTROL, control); 4293 } 4294 ahd_set_scbptr(ahd, saved_scbptr); 4295 ahd_restore_modes(ahd, saved_modes); 4296 4297 if (paused == 0) 4298 ahd_unpause(ahd); 4299 } 4300 4301 /**************************** Pathing Information *****************************/ 4302 static void 4303 ahd_fetch_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) 4304 { 4305 ahd_mode_state saved_modes; 4306 u_int saved_scsiid; 4307 role_t role; 4308 int our_id; 4309 4310 saved_modes = ahd_save_modes(ahd); 4311 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 4312 4313 if (ahd_inb(ahd, SSTAT0) & TARGET) 4314 role = ROLE_TARGET; 4315 else 4316 role = ROLE_INITIATOR; 4317 4318 if (role == ROLE_TARGET 4319 && (ahd_inb(ahd, SEQ_FLAGS) & CMDPHASE_PENDING) != 0) { 4320 /* We were selected, so pull our id from TARGIDIN */ 4321 our_id = ahd_inb(ahd, TARGIDIN) & OID; 4322 } else if (role == ROLE_TARGET) 4323 our_id = ahd_inb(ahd, TOWNID); 4324 else 4325 our_id = ahd_inb(ahd, IOWNID); 4326 4327 saved_scsiid = ahd_inb(ahd, SAVED_SCSIID); 4328 ahd_compile_devinfo(devinfo, 4329 our_id, 4330 SCSIID_TARGET(ahd, saved_scsiid), 4331 ahd_inb(ahd, SAVED_LUN), 4332 SCSIID_CHANNEL(ahd, saved_scsiid), 4333 role); 4334 ahd_restore_modes(ahd, saved_modes); 4335 } 4336 4337 void 4338 ahd_print_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) 4339 { 4340 printk("%s:%c:%d:%d: ", ahd_name(ahd), 'A', 4341 devinfo->target, devinfo->lun); 4342 } 4343 4344 static const struct ahd_phase_table_entry* 4345 ahd_lookup_phase_entry(int phase) 4346 { 4347 const struct ahd_phase_table_entry *entry; 4348 const struct ahd_phase_table_entry *last_entry; 4349 4350 /* 4351 * num_phases doesn't include the default entry which 4352 * will be returned if the phase doesn't match. 4353 */ 4354 last_entry = &ahd_phase_table[num_phases]; 4355 for (entry = ahd_phase_table; entry < last_entry; entry++) { 4356 if (phase == entry->phase) 4357 break; 4358 } 4359 return (entry); 4360 } 4361 4362 void 4363 ahd_compile_devinfo(struct ahd_devinfo *devinfo, u_int our_id, u_int target, 4364 u_int lun, char channel, role_t role) 4365 { 4366 devinfo->our_scsiid = our_id; 4367 devinfo->target = target; 4368 devinfo->lun = lun; 4369 devinfo->target_offset = target; 4370 devinfo->channel = channel; 4371 devinfo->role = role; 4372 if (channel == 'B') 4373 devinfo->target_offset += 8; 4374 devinfo->target_mask = (0x01 << devinfo->target_offset); 4375 } 4376 4377 static void 4378 ahd_scb_devinfo(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, 4379 struct scb *scb) 4380 { 4381 role_t role; 4382 int our_id; 4383 4384 our_id = SCSIID_OUR_ID(scb->hscb->scsiid); 4385 role = ROLE_INITIATOR; 4386 if ((scb->hscb->control & TARGET_SCB) != 0) 4387 role = ROLE_TARGET; 4388 ahd_compile_devinfo(devinfo, our_id, SCB_GET_TARGET(ahd, scb), 4389 SCB_GET_LUN(scb), SCB_GET_CHANNEL(ahd, scb), role); 4390 } 4391 4392 4393 /************************ Message Phase Processing ****************************/ 4394 /* 4395 * When an initiator transaction with the MK_MESSAGE flag either reconnects 4396 * or enters the initial message out phase, we are interrupted. Fill our 4397 * outgoing message buffer with the appropriate message and beging handing 4398 * the message phase(s) manually. 4399 */ 4400 static void 4401 ahd_setup_initiator_msgout(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, 4402 struct scb *scb) 4403 { 4404 /* 4405 * To facilitate adding multiple messages together, 4406 * each routine should increment the index and len 4407 * variables instead of setting them explicitly. 4408 */ 4409 ahd->msgout_index = 0; 4410 ahd->msgout_len = 0; 4411 4412 if (ahd_currently_packetized(ahd)) 4413 ahd->msg_flags |= MSG_FLAG_PACKETIZED; 4414 4415 if (ahd->send_msg_perror 4416 && ahd_inb(ahd, MSG_OUT) == HOST_MSG) { 4417 ahd->msgout_buf[ahd->msgout_index++] = ahd->send_msg_perror; 4418 ahd->msgout_len++; 4419 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; 4420 #ifdef AHD_DEBUG 4421 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 4422 printk("Setting up for Parity Error delivery\n"); 4423 #endif 4424 return; 4425 } else if (scb == NULL) { 4426 printk("%s: WARNING. No pending message for " 4427 "I_T msgin. Issuing NO-OP\n", ahd_name(ahd)); 4428 ahd->msgout_buf[ahd->msgout_index++] = MSG_NOOP; 4429 ahd->msgout_len++; 4430 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; 4431 return; 4432 } 4433 4434 if ((scb->flags & SCB_DEVICE_RESET) == 0 4435 && (scb->flags & SCB_PACKETIZED) == 0 4436 && ahd_inb(ahd, MSG_OUT) == MSG_IDENTIFYFLAG) { 4437 u_int identify_msg; 4438 4439 identify_msg = MSG_IDENTIFYFLAG | SCB_GET_LUN(scb); 4440 if ((scb->hscb->control & DISCENB) != 0) 4441 identify_msg |= MSG_IDENTIFY_DISCFLAG; 4442 ahd->msgout_buf[ahd->msgout_index++] = identify_msg; 4443 ahd->msgout_len++; 4444 4445 if ((scb->hscb->control & TAG_ENB) != 0) { 4446 ahd->msgout_buf[ahd->msgout_index++] = 4447 scb->hscb->control & (TAG_ENB|SCB_TAG_TYPE); 4448 ahd->msgout_buf[ahd->msgout_index++] = SCB_GET_TAG(scb); 4449 ahd->msgout_len += 2; 4450 } 4451 } 4452 4453 if (scb->flags & SCB_DEVICE_RESET) { 4454 ahd->msgout_buf[ahd->msgout_index++] = MSG_BUS_DEV_RESET; 4455 ahd->msgout_len++; 4456 ahd_print_path(ahd, scb); 4457 printk("Bus Device Reset Message Sent\n"); 4458 /* 4459 * Clear our selection hardware in advance of 4460 * the busfree. We may have an entry in the waiting 4461 * Q for this target, and we don't want to go about 4462 * selecting while we handle the busfree and blow it 4463 * away. 4464 */ 4465 ahd_outb(ahd, SCSISEQ0, 0); 4466 } else if ((scb->flags & SCB_ABORT) != 0) { 4467 4468 if ((scb->hscb->control & TAG_ENB) != 0) { 4469 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT_TAG; 4470 } else { 4471 ahd->msgout_buf[ahd->msgout_index++] = MSG_ABORT; 4472 } 4473 ahd->msgout_len++; 4474 ahd_print_path(ahd, scb); 4475 printk("Abort%s Message Sent\n", 4476 (scb->hscb->control & TAG_ENB) != 0 ? " Tag" : ""); 4477 /* 4478 * Clear our selection hardware in advance of 4479 * the busfree. We may have an entry in the waiting 4480 * Q for this target, and we don't want to go about 4481 * selecting while we handle the busfree and blow it 4482 * away. 4483 */ 4484 ahd_outb(ahd, SCSISEQ0, 0); 4485 } else if ((scb->flags & (SCB_AUTO_NEGOTIATE|SCB_NEGOTIATE)) != 0) { 4486 ahd_build_transfer_msg(ahd, devinfo); 4487 /* 4488 * Clear our selection hardware in advance of potential 4489 * PPR IU status change busfree. We may have an entry in 4490 * the waiting Q for this target, and we don't want to go 4491 * about selecting while we handle the busfree and blow 4492 * it away. 4493 */ 4494 ahd_outb(ahd, SCSISEQ0, 0); 4495 } else { 4496 printk("ahd_intr: AWAITING_MSG for an SCB that " 4497 "does not have a waiting message\n"); 4498 printk("SCSIID = %x, target_mask = %x\n", scb->hscb->scsiid, 4499 devinfo->target_mask); 4500 panic("SCB = %d, SCB Control = %x:%x, MSG_OUT = %x " 4501 "SCB flags = %x", SCB_GET_TAG(scb), scb->hscb->control, 4502 ahd_inb_scbram(ahd, SCB_CONTROL), ahd_inb(ahd, MSG_OUT), 4503 scb->flags); 4504 } 4505 4506 /* 4507 * Clear the MK_MESSAGE flag from the SCB so we aren't 4508 * asked to send this message again. 4509 */ 4510 ahd_outb(ahd, SCB_CONTROL, 4511 ahd_inb_scbram(ahd, SCB_CONTROL) & ~MK_MESSAGE); 4512 scb->hscb->control &= ~MK_MESSAGE; 4513 ahd->msgout_index = 0; 4514 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; 4515 } 4516 4517 /* 4518 * Build an appropriate transfer negotiation message for the 4519 * currently active target. 4520 */ 4521 static void 4522 ahd_build_transfer_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) 4523 { 4524 /* 4525 * We need to initiate transfer negotiations. 4526 * If our current and goal settings are identical, 4527 * we want to renegotiate due to a check condition. 4528 */ 4529 struct ahd_initiator_tinfo *tinfo; 4530 struct ahd_tmode_tstate *tstate; 4531 int dowide; 4532 int dosync; 4533 int doppr; 4534 u_int period; 4535 u_int ppr_options; 4536 u_int offset; 4537 4538 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, 4539 devinfo->target, &tstate); 4540 /* 4541 * Filter our period based on the current connection. 4542 * If we can't perform DT transfers on this segment (not in LVD 4543 * mode for instance), then our decision to issue a PPR message 4544 * may change. 4545 */ 4546 period = tinfo->goal.period; 4547 offset = tinfo->goal.offset; 4548 ppr_options = tinfo->goal.ppr_options; 4549 /* Target initiated PPR is not allowed in the SCSI spec */ 4550 if (devinfo->role == ROLE_TARGET) 4551 ppr_options = 0; 4552 ahd_devlimited_syncrate(ahd, tinfo, &period, 4553 &ppr_options, devinfo->role); 4554 dowide = tinfo->curr.width != tinfo->goal.width; 4555 dosync = tinfo->curr.offset != offset || tinfo->curr.period != period; 4556 /* 4557 * Only use PPR if we have options that need it, even if the device 4558 * claims to support it. There might be an expander in the way 4559 * that doesn't. 4560 */ 4561 doppr = ppr_options != 0; 4562 4563 if (!dowide && !dosync && !doppr) { 4564 dowide = tinfo->goal.width != MSG_EXT_WDTR_BUS_8_BIT; 4565 dosync = tinfo->goal.offset != 0; 4566 } 4567 4568 if (!dowide && !dosync && !doppr) { 4569 /* 4570 * Force async with a WDTR message if we have a wide bus, 4571 * or just issue an SDTR with a 0 offset. 4572 */ 4573 if ((ahd->features & AHD_WIDE) != 0) 4574 dowide = 1; 4575 else 4576 dosync = 1; 4577 4578 if (bootverbose) { 4579 ahd_print_devinfo(ahd, devinfo); 4580 printk("Ensuring async\n"); 4581 } 4582 } 4583 /* Target initiated PPR is not allowed in the SCSI spec */ 4584 if (devinfo->role == ROLE_TARGET) 4585 doppr = 0; 4586 4587 /* 4588 * Both the PPR message and SDTR message require the 4589 * goal syncrate to be limited to what the target device 4590 * is capable of handling (based on whether an LVD->SE 4591 * expander is on the bus), so combine these two cases. 4592 * Regardless, guarantee that if we are using WDTR and SDTR 4593 * messages that WDTR comes first. 4594 */ 4595 if (doppr || (dosync && !dowide)) { 4596 4597 offset = tinfo->goal.offset; 4598 ahd_validate_offset(ahd, tinfo, period, &offset, 4599 doppr ? tinfo->goal.width 4600 : tinfo->curr.width, 4601 devinfo->role); 4602 if (doppr) { 4603 ahd_construct_ppr(ahd, devinfo, period, offset, 4604 tinfo->goal.width, ppr_options); 4605 } else { 4606 ahd_construct_sdtr(ahd, devinfo, period, offset); 4607 } 4608 } else { 4609 ahd_construct_wdtr(ahd, devinfo, tinfo->goal.width); 4610 } 4611 } 4612 4613 /* 4614 * Build a synchronous negotiation message in our message 4615 * buffer based on the input parameters. 4616 */ 4617 static void 4618 ahd_construct_sdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, 4619 u_int period, u_int offset) 4620 { 4621 if (offset == 0) 4622 period = AHD_ASYNC_XFER_PERIOD; 4623 ahd->msgout_index += spi_populate_sync_msg( 4624 ahd->msgout_buf + ahd->msgout_index, period, offset); 4625 ahd->msgout_len += 5; 4626 if (bootverbose) { 4627 printk("(%s:%c:%d:%d): Sending SDTR period %x, offset %x\n", 4628 ahd_name(ahd), devinfo->channel, devinfo->target, 4629 devinfo->lun, period, offset); 4630 } 4631 } 4632 4633 /* 4634 * Build a wide negotiateion message in our message 4635 * buffer based on the input parameters. 4636 */ 4637 static void 4638 ahd_construct_wdtr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, 4639 u_int bus_width) 4640 { 4641 ahd->msgout_index += spi_populate_width_msg( 4642 ahd->msgout_buf + ahd->msgout_index, bus_width); 4643 ahd->msgout_len += 4; 4644 if (bootverbose) { 4645 printk("(%s:%c:%d:%d): Sending WDTR %x\n", 4646 ahd_name(ahd), devinfo->channel, devinfo->target, 4647 devinfo->lun, bus_width); 4648 } 4649 } 4650 4651 /* 4652 * Build a parallel protocol request message in our message 4653 * buffer based on the input parameters. 4654 */ 4655 static void 4656 ahd_construct_ppr(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, 4657 u_int period, u_int offset, u_int bus_width, 4658 u_int ppr_options) 4659 { 4660 /* 4661 * Always request precompensation from 4662 * the other target if we are running 4663 * at paced syncrates. 4664 */ 4665 if (period <= AHD_SYNCRATE_PACED) 4666 ppr_options |= MSG_EXT_PPR_PCOMP_EN; 4667 if (offset == 0) 4668 period = AHD_ASYNC_XFER_PERIOD; 4669 ahd->msgout_index += spi_populate_ppr_msg( 4670 ahd->msgout_buf + ahd->msgout_index, period, offset, 4671 bus_width, ppr_options); 4672 ahd->msgout_len += 8; 4673 if (bootverbose) { 4674 printk("(%s:%c:%d:%d): Sending PPR bus_width %x, period %x, " 4675 "offset %x, ppr_options %x\n", ahd_name(ahd), 4676 devinfo->channel, devinfo->target, devinfo->lun, 4677 bus_width, period, offset, ppr_options); 4678 } 4679 } 4680 4681 /* 4682 * Clear any active message state. 4683 */ 4684 static void 4685 ahd_clear_msg_state(struct ahd_softc *ahd) 4686 { 4687 ahd_mode_state saved_modes; 4688 4689 saved_modes = ahd_save_modes(ahd); 4690 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 4691 ahd->send_msg_perror = 0; 4692 ahd->msg_flags = MSG_FLAG_NONE; 4693 ahd->msgout_len = 0; 4694 ahd->msgin_index = 0; 4695 ahd->msg_type = MSG_TYPE_NONE; 4696 if ((ahd_inb(ahd, SCSISIGO) & ATNO) != 0) { 4697 /* 4698 * The target didn't care to respond to our 4699 * message request, so clear ATN. 4700 */ 4701 ahd_outb(ahd, CLRSINT1, CLRATNO); 4702 } 4703 ahd_outb(ahd, MSG_OUT, MSG_NOOP); 4704 ahd_outb(ahd, SEQ_FLAGS2, 4705 ahd_inb(ahd, SEQ_FLAGS2) & ~TARGET_MSG_PENDING); 4706 ahd_restore_modes(ahd, saved_modes); 4707 } 4708 4709 /* 4710 * Manual message loop handler. 4711 */ 4712 static void 4713 ahd_handle_message_phase(struct ahd_softc *ahd) 4714 { 4715 struct ahd_devinfo devinfo; 4716 u_int bus_phase; 4717 int end_session; 4718 4719 ahd_fetch_devinfo(ahd, &devinfo); 4720 end_session = FALSE; 4721 bus_phase = ahd_inb(ahd, LASTPHASE); 4722 4723 if ((ahd_inb(ahd, LQISTAT2) & LQIPHASE_OUTPKT) != 0) { 4724 printk("LQIRETRY for LQIPHASE_OUTPKT\n"); 4725 ahd_outb(ahd, LQCTL2, LQIRETRY); 4726 } 4727 reswitch: 4728 switch (ahd->msg_type) { 4729 case MSG_TYPE_INITIATOR_MSGOUT: 4730 { 4731 int lastbyte; 4732 int phasemis; 4733 int msgdone; 4734 4735 if (ahd->msgout_len == 0 && ahd->send_msg_perror == 0) 4736 panic("HOST_MSG_LOOP interrupt with no active message"); 4737 4738 #ifdef AHD_DEBUG 4739 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { 4740 ahd_print_devinfo(ahd, &devinfo); 4741 printk("INITIATOR_MSG_OUT"); 4742 } 4743 #endif 4744 phasemis = bus_phase != P_MESGOUT; 4745 if (phasemis) { 4746 #ifdef AHD_DEBUG 4747 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { 4748 printk(" PHASEMIS %s\n", 4749 ahd_lookup_phase_entry(bus_phase) 4750 ->phasemsg); 4751 } 4752 #endif 4753 if (bus_phase == P_MESGIN) { 4754 /* 4755 * Change gears and see if 4756 * this messages is of interest to 4757 * us or should be passed back to 4758 * the sequencer. 4759 */ 4760 ahd_outb(ahd, CLRSINT1, CLRATNO); 4761 ahd->send_msg_perror = 0; 4762 ahd->msg_type = MSG_TYPE_INITIATOR_MSGIN; 4763 ahd->msgin_index = 0; 4764 goto reswitch; 4765 } 4766 end_session = TRUE; 4767 break; 4768 } 4769 4770 if (ahd->send_msg_perror) { 4771 ahd_outb(ahd, CLRSINT1, CLRATNO); 4772 ahd_outb(ahd, CLRSINT1, CLRREQINIT); 4773 #ifdef AHD_DEBUG 4774 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 4775 printk(" byte 0x%x\n", ahd->send_msg_perror); 4776 #endif 4777 /* 4778 * If we are notifying the target of a CRC error 4779 * during packetized operations, the target is 4780 * within its rights to acknowledge our message 4781 * with a busfree. 4782 */ 4783 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0 4784 && ahd->send_msg_perror == MSG_INITIATOR_DET_ERR) 4785 ahd->msg_flags |= MSG_FLAG_EXPECT_IDE_BUSFREE; 4786 4787 ahd_outb(ahd, RETURN_2, ahd->send_msg_perror); 4788 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE); 4789 break; 4790 } 4791 4792 msgdone = ahd->msgout_index == ahd->msgout_len; 4793 if (msgdone) { 4794 /* 4795 * The target has requested a retry. 4796 * Re-assert ATN, reset our message index to 4797 * 0, and try again. 4798 */ 4799 ahd->msgout_index = 0; 4800 ahd_assert_atn(ahd); 4801 } 4802 4803 lastbyte = ahd->msgout_index == (ahd->msgout_len - 1); 4804 if (lastbyte) { 4805 /* Last byte is signified by dropping ATN */ 4806 ahd_outb(ahd, CLRSINT1, CLRATNO); 4807 } 4808 4809 /* 4810 * Clear our interrupt status and present 4811 * the next byte on the bus. 4812 */ 4813 ahd_outb(ahd, CLRSINT1, CLRREQINIT); 4814 #ifdef AHD_DEBUG 4815 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 4816 printk(" byte 0x%x\n", 4817 ahd->msgout_buf[ahd->msgout_index]); 4818 #endif 4819 ahd_outb(ahd, RETURN_2, ahd->msgout_buf[ahd->msgout_index++]); 4820 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_WRITE); 4821 break; 4822 } 4823 case MSG_TYPE_INITIATOR_MSGIN: 4824 { 4825 int phasemis; 4826 int message_done; 4827 4828 #ifdef AHD_DEBUG 4829 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { 4830 ahd_print_devinfo(ahd, &devinfo); 4831 printk("INITIATOR_MSG_IN"); 4832 } 4833 #endif 4834 phasemis = bus_phase != P_MESGIN; 4835 if (phasemis) { 4836 #ifdef AHD_DEBUG 4837 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { 4838 printk(" PHASEMIS %s\n", 4839 ahd_lookup_phase_entry(bus_phase) 4840 ->phasemsg); 4841 } 4842 #endif 4843 ahd->msgin_index = 0; 4844 if (bus_phase == P_MESGOUT 4845 && (ahd->send_msg_perror != 0 4846 || (ahd->msgout_len != 0 4847 && ahd->msgout_index == 0))) { 4848 ahd->msg_type = MSG_TYPE_INITIATOR_MSGOUT; 4849 goto reswitch; 4850 } 4851 end_session = TRUE; 4852 break; 4853 } 4854 4855 /* Pull the byte in without acking it */ 4856 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIBUS); 4857 #ifdef AHD_DEBUG 4858 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 4859 printk(" byte 0x%x\n", 4860 ahd->msgin_buf[ahd->msgin_index]); 4861 #endif 4862 4863 message_done = ahd_parse_msg(ahd, &devinfo); 4864 4865 if (message_done) { 4866 /* 4867 * Clear our incoming message buffer in case there 4868 * is another message following this one. 4869 */ 4870 ahd->msgin_index = 0; 4871 4872 /* 4873 * If this message illicited a response, 4874 * assert ATN so the target takes us to the 4875 * message out phase. 4876 */ 4877 if (ahd->msgout_len != 0) { 4878 #ifdef AHD_DEBUG 4879 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) { 4880 ahd_print_devinfo(ahd, &devinfo); 4881 printk("Asserting ATN for response\n"); 4882 } 4883 #endif 4884 ahd_assert_atn(ahd); 4885 } 4886 } else 4887 ahd->msgin_index++; 4888 4889 if (message_done == MSGLOOP_TERMINATED) { 4890 end_session = TRUE; 4891 } else { 4892 /* Ack the byte */ 4893 ahd_outb(ahd, CLRSINT1, CLRREQINIT); 4894 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_READ); 4895 } 4896 break; 4897 } 4898 case MSG_TYPE_TARGET_MSGIN: 4899 { 4900 int msgdone; 4901 int msgout_request; 4902 4903 /* 4904 * By default, the message loop will continue. 4905 */ 4906 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG); 4907 4908 if (ahd->msgout_len == 0) 4909 panic("Target MSGIN with no active message"); 4910 4911 /* 4912 * If we interrupted a mesgout session, the initiator 4913 * will not know this until our first REQ. So, we 4914 * only honor mesgout requests after we've sent our 4915 * first byte. 4916 */ 4917 if ((ahd_inb(ahd, SCSISIGI) & ATNI) != 0 4918 && ahd->msgout_index > 0) 4919 msgout_request = TRUE; 4920 else 4921 msgout_request = FALSE; 4922 4923 if (msgout_request) { 4924 4925 /* 4926 * Change gears and see if 4927 * this messages is of interest to 4928 * us or should be passed back to 4929 * the sequencer. 4930 */ 4931 ahd->msg_type = MSG_TYPE_TARGET_MSGOUT; 4932 ahd_outb(ahd, SCSISIGO, P_MESGOUT | BSYO); 4933 ahd->msgin_index = 0; 4934 /* Dummy read to REQ for first byte */ 4935 ahd_inb(ahd, SCSIDAT); 4936 ahd_outb(ahd, SXFRCTL0, 4937 ahd_inb(ahd, SXFRCTL0) | SPIOEN); 4938 break; 4939 } 4940 4941 msgdone = ahd->msgout_index == ahd->msgout_len; 4942 if (msgdone) { 4943 ahd_outb(ahd, SXFRCTL0, 4944 ahd_inb(ahd, SXFRCTL0) & ~SPIOEN); 4945 end_session = TRUE; 4946 break; 4947 } 4948 4949 /* 4950 * Present the next byte on the bus. 4951 */ 4952 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) | SPIOEN); 4953 ahd_outb(ahd, SCSIDAT, ahd->msgout_buf[ahd->msgout_index++]); 4954 break; 4955 } 4956 case MSG_TYPE_TARGET_MSGOUT: 4957 { 4958 int lastbyte; 4959 int msgdone; 4960 4961 /* 4962 * By default, the message loop will continue. 4963 */ 4964 ahd_outb(ahd, RETURN_1, CONT_MSG_LOOP_TARG); 4965 4966 /* 4967 * The initiator signals that this is 4968 * the last byte by dropping ATN. 4969 */ 4970 lastbyte = (ahd_inb(ahd, SCSISIGI) & ATNI) == 0; 4971 4972 /* 4973 * Read the latched byte, but turn off SPIOEN first 4974 * so that we don't inadvertently cause a REQ for the 4975 * next byte. 4976 */ 4977 ahd_outb(ahd, SXFRCTL0, ahd_inb(ahd, SXFRCTL0) & ~SPIOEN); 4978 ahd->msgin_buf[ahd->msgin_index] = ahd_inb(ahd, SCSIDAT); 4979 msgdone = ahd_parse_msg(ahd, &devinfo); 4980 if (msgdone == MSGLOOP_TERMINATED) { 4981 /* 4982 * The message is *really* done in that it caused 4983 * us to go to bus free. The sequencer has already 4984 * been reset at this point, so pull the ejection 4985 * handle. 4986 */ 4987 return; 4988 } 4989 4990 ahd->msgin_index++; 4991 4992 /* 4993 * XXX Read spec about initiator dropping ATN too soon 4994 * and use msgdone to detect it. 4995 */ 4996 if (msgdone == MSGLOOP_MSGCOMPLETE) { 4997 ahd->msgin_index = 0; 4998 4999 /* 5000 * If this message illicited a response, transition 5001 * to the Message in phase and send it. 5002 */ 5003 if (ahd->msgout_len != 0) { 5004 ahd_outb(ahd, SCSISIGO, P_MESGIN | BSYO); 5005 ahd_outb(ahd, SXFRCTL0, 5006 ahd_inb(ahd, SXFRCTL0) | SPIOEN); 5007 ahd->msg_type = MSG_TYPE_TARGET_MSGIN; 5008 ahd->msgin_index = 0; 5009 break; 5010 } 5011 } 5012 5013 if (lastbyte) 5014 end_session = TRUE; 5015 else { 5016 /* Ask for the next byte. */ 5017 ahd_outb(ahd, SXFRCTL0, 5018 ahd_inb(ahd, SXFRCTL0) | SPIOEN); 5019 } 5020 5021 break; 5022 } 5023 default: 5024 panic("Unknown REQINIT message type"); 5025 } 5026 5027 if (end_session) { 5028 if ((ahd->msg_flags & MSG_FLAG_PACKETIZED) != 0) { 5029 printk("%s: Returning to Idle Loop\n", 5030 ahd_name(ahd)); 5031 ahd_clear_msg_state(ahd); 5032 5033 /* 5034 * Perform the equivalent of a clear_target_state. 5035 */ 5036 ahd_outb(ahd, LASTPHASE, P_BUSFREE); 5037 ahd_outb(ahd, SEQ_FLAGS, NOT_IDENTIFIED|NO_CDB_SENT); 5038 ahd_outb(ahd, SEQCTL0, FASTMODE|SEQRESET); 5039 } else { 5040 ahd_clear_msg_state(ahd); 5041 ahd_outb(ahd, RETURN_1, EXIT_MSG_LOOP); 5042 } 5043 } 5044 } 5045 5046 /* 5047 * See if we sent a particular extended message to the target. 5048 * If "full" is true, return true only if the target saw the full 5049 * message. If "full" is false, return true if the target saw at 5050 * least the first byte of the message. 5051 */ 5052 static int 5053 ahd_sent_msg(struct ahd_softc *ahd, ahd_msgtype type, u_int msgval, int full) 5054 { 5055 int found; 5056 u_int index; 5057 5058 found = FALSE; 5059 index = 0; 5060 5061 while (index < ahd->msgout_len) { 5062 if (ahd->msgout_buf[index] == MSG_EXTENDED) { 5063 u_int end_index; 5064 5065 end_index = index + 1 + ahd->msgout_buf[index + 1]; 5066 if (ahd->msgout_buf[index+2] == msgval 5067 && type == AHDMSG_EXT) { 5068 5069 if (full) { 5070 if (ahd->msgout_index > end_index) 5071 found = TRUE; 5072 } else if (ahd->msgout_index > index) 5073 found = TRUE; 5074 } 5075 index = end_index; 5076 } else if (ahd->msgout_buf[index] >= MSG_SIMPLE_TASK 5077 && ahd->msgout_buf[index] <= MSG_IGN_WIDE_RESIDUE) { 5078 5079 /* Skip tag type and tag id or residue param*/ 5080 index += 2; 5081 } else { 5082 /* Single byte message */ 5083 if (type == AHDMSG_1B 5084 && ahd->msgout_index > index 5085 && (ahd->msgout_buf[index] == msgval 5086 || ((ahd->msgout_buf[index] & MSG_IDENTIFYFLAG) != 0 5087 && msgval == MSG_IDENTIFYFLAG))) 5088 found = TRUE; 5089 index++; 5090 } 5091 5092 if (found) 5093 break; 5094 } 5095 return (found); 5096 } 5097 5098 /* 5099 * Wait for a complete incoming message, parse it, and respond accordingly. 5100 */ 5101 static int 5102 ahd_parse_msg(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) 5103 { 5104 struct ahd_initiator_tinfo *tinfo; 5105 struct ahd_tmode_tstate *tstate; 5106 int reject; 5107 int done; 5108 int response; 5109 5110 done = MSGLOOP_IN_PROG; 5111 response = FALSE; 5112 reject = FALSE; 5113 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, devinfo->our_scsiid, 5114 devinfo->target, &tstate); 5115 5116 /* 5117 * Parse as much of the message as is available, 5118 * rejecting it if we don't support it. When 5119 * the entire message is available and has been 5120 * handled, return MSGLOOP_MSGCOMPLETE, indicating 5121 * that we have parsed an entire message. 5122 * 5123 * In the case of extended messages, we accept the length 5124 * byte outright and perform more checking once we know the 5125 * extended message type. 5126 */ 5127 switch (ahd->msgin_buf[0]) { 5128 case MSG_DISCONNECT: 5129 case MSG_SAVEDATAPOINTER: 5130 case MSG_CMDCOMPLETE: 5131 case MSG_RESTOREPOINTERS: 5132 case MSG_IGN_WIDE_RESIDUE: 5133 /* 5134 * End our message loop as these are messages 5135 * the sequencer handles on its own. 5136 */ 5137 done = MSGLOOP_TERMINATED; 5138 break; 5139 case MSG_MESSAGE_REJECT: 5140 response = ahd_handle_msg_reject(ahd, devinfo); 5141 /* FALLTHROUGH */ 5142 case MSG_NOOP: 5143 done = MSGLOOP_MSGCOMPLETE; 5144 break; 5145 case MSG_EXTENDED: 5146 { 5147 /* Wait for enough of the message to begin validation */ 5148 if (ahd->msgin_index < 2) 5149 break; 5150 switch (ahd->msgin_buf[2]) { 5151 case MSG_EXT_SDTR: 5152 { 5153 u_int period; 5154 u_int ppr_options; 5155 u_int offset; 5156 u_int saved_offset; 5157 5158 if (ahd->msgin_buf[1] != MSG_EXT_SDTR_LEN) { 5159 reject = TRUE; 5160 break; 5161 } 5162 5163 /* 5164 * Wait until we have both args before validating 5165 * and acting on this message. 5166 * 5167 * Add one to MSG_EXT_SDTR_LEN to account for 5168 * the extended message preamble. 5169 */ 5170 if (ahd->msgin_index < (MSG_EXT_SDTR_LEN + 1)) 5171 break; 5172 5173 period = ahd->msgin_buf[3]; 5174 ppr_options = 0; 5175 saved_offset = offset = ahd->msgin_buf[4]; 5176 ahd_devlimited_syncrate(ahd, tinfo, &period, 5177 &ppr_options, devinfo->role); 5178 ahd_validate_offset(ahd, tinfo, period, &offset, 5179 tinfo->curr.width, devinfo->role); 5180 if (bootverbose) { 5181 printk("(%s:%c:%d:%d): Received " 5182 "SDTR period %x, offset %x\n\t" 5183 "Filtered to period %x, offset %x\n", 5184 ahd_name(ahd), devinfo->channel, 5185 devinfo->target, devinfo->lun, 5186 ahd->msgin_buf[3], saved_offset, 5187 period, offset); 5188 } 5189 ahd_set_syncrate(ahd, devinfo, period, 5190 offset, ppr_options, 5191 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, 5192 /*paused*/TRUE); 5193 5194 /* 5195 * See if we initiated Sync Negotiation 5196 * and didn't have to fall down to async 5197 * transfers. 5198 */ 5199 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, TRUE)) { 5200 /* We started it */ 5201 if (saved_offset != offset) { 5202 /* Went too low - force async */ 5203 reject = TRUE; 5204 } 5205 } else { 5206 /* 5207 * Send our own SDTR in reply 5208 */ 5209 if (bootverbose 5210 && devinfo->role == ROLE_INITIATOR) { 5211 printk("(%s:%c:%d:%d): Target " 5212 "Initiated SDTR\n", 5213 ahd_name(ahd), devinfo->channel, 5214 devinfo->target, devinfo->lun); 5215 } 5216 ahd->msgout_index = 0; 5217 ahd->msgout_len = 0; 5218 ahd_construct_sdtr(ahd, devinfo, 5219 period, offset); 5220 ahd->msgout_index = 0; 5221 response = TRUE; 5222 } 5223 done = MSGLOOP_MSGCOMPLETE; 5224 break; 5225 } 5226 case MSG_EXT_WDTR: 5227 { 5228 u_int bus_width; 5229 u_int saved_width; 5230 u_int sending_reply; 5231 5232 sending_reply = FALSE; 5233 if (ahd->msgin_buf[1] != MSG_EXT_WDTR_LEN) { 5234 reject = TRUE; 5235 break; 5236 } 5237 5238 /* 5239 * Wait until we have our arg before validating 5240 * and acting on this message. 5241 * 5242 * Add one to MSG_EXT_WDTR_LEN to account for 5243 * the extended message preamble. 5244 */ 5245 if (ahd->msgin_index < (MSG_EXT_WDTR_LEN + 1)) 5246 break; 5247 5248 bus_width = ahd->msgin_buf[3]; 5249 saved_width = bus_width; 5250 ahd_validate_width(ahd, tinfo, &bus_width, 5251 devinfo->role); 5252 if (bootverbose) { 5253 printk("(%s:%c:%d:%d): Received WDTR " 5254 "%x filtered to %x\n", 5255 ahd_name(ahd), devinfo->channel, 5256 devinfo->target, devinfo->lun, 5257 saved_width, bus_width); 5258 } 5259 5260 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, TRUE)) { 5261 /* 5262 * Don't send a WDTR back to the 5263 * target, since we asked first. 5264 * If the width went higher than our 5265 * request, reject it. 5266 */ 5267 if (saved_width > bus_width) { 5268 reject = TRUE; 5269 printk("(%s:%c:%d:%d): requested %dBit " 5270 "transfers. Rejecting...\n", 5271 ahd_name(ahd), devinfo->channel, 5272 devinfo->target, devinfo->lun, 5273 8 * (0x01 << bus_width)); 5274 bus_width = 0; 5275 } 5276 } else { 5277 /* 5278 * Send our own WDTR in reply 5279 */ 5280 if (bootverbose 5281 && devinfo->role == ROLE_INITIATOR) { 5282 printk("(%s:%c:%d:%d): Target " 5283 "Initiated WDTR\n", 5284 ahd_name(ahd), devinfo->channel, 5285 devinfo->target, devinfo->lun); 5286 } 5287 ahd->msgout_index = 0; 5288 ahd->msgout_len = 0; 5289 ahd_construct_wdtr(ahd, devinfo, bus_width); 5290 ahd->msgout_index = 0; 5291 response = TRUE; 5292 sending_reply = TRUE; 5293 } 5294 /* 5295 * After a wide message, we are async, but 5296 * some devices don't seem to honor this portion 5297 * of the spec. Force a renegotiation of the 5298 * sync component of our transfer agreement even 5299 * if our goal is async. By updating our width 5300 * after forcing the negotiation, we avoid 5301 * renegotiating for width. 5302 */ 5303 ahd_update_neg_request(ahd, devinfo, tstate, 5304 tinfo, AHD_NEG_ALWAYS); 5305 ahd_set_width(ahd, devinfo, bus_width, 5306 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, 5307 /*paused*/TRUE); 5308 if (sending_reply == FALSE && reject == FALSE) { 5309 5310 /* 5311 * We will always have an SDTR to send. 5312 */ 5313 ahd->msgout_index = 0; 5314 ahd->msgout_len = 0; 5315 ahd_build_transfer_msg(ahd, devinfo); 5316 ahd->msgout_index = 0; 5317 response = TRUE; 5318 } 5319 done = MSGLOOP_MSGCOMPLETE; 5320 break; 5321 } 5322 case MSG_EXT_PPR: 5323 { 5324 u_int period; 5325 u_int offset; 5326 u_int bus_width; 5327 u_int ppr_options; 5328 u_int saved_width; 5329 u_int saved_offset; 5330 u_int saved_ppr_options; 5331 5332 if (ahd->msgin_buf[1] != MSG_EXT_PPR_LEN) { 5333 reject = TRUE; 5334 break; 5335 } 5336 5337 /* 5338 * Wait until we have all args before validating 5339 * and acting on this message. 5340 * 5341 * Add one to MSG_EXT_PPR_LEN to account for 5342 * the extended message preamble. 5343 */ 5344 if (ahd->msgin_index < (MSG_EXT_PPR_LEN + 1)) 5345 break; 5346 5347 period = ahd->msgin_buf[3]; 5348 offset = ahd->msgin_buf[5]; 5349 bus_width = ahd->msgin_buf[6]; 5350 saved_width = bus_width; 5351 ppr_options = ahd->msgin_buf[7]; 5352 /* 5353 * According to the spec, a DT only 5354 * period factor with no DT option 5355 * set implies async. 5356 */ 5357 if ((ppr_options & MSG_EXT_PPR_DT_REQ) == 0 5358 && period <= 9) 5359 offset = 0; 5360 saved_ppr_options = ppr_options; 5361 saved_offset = offset; 5362 5363 /* 5364 * Transfer options are only available if we 5365 * are negotiating wide. 5366 */ 5367 if (bus_width == 0) 5368 ppr_options &= MSG_EXT_PPR_QAS_REQ; 5369 5370 ahd_validate_width(ahd, tinfo, &bus_width, 5371 devinfo->role); 5372 ahd_devlimited_syncrate(ahd, tinfo, &period, 5373 &ppr_options, devinfo->role); 5374 ahd_validate_offset(ahd, tinfo, period, &offset, 5375 bus_width, devinfo->role); 5376 5377 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, TRUE)) { 5378 /* 5379 * If we are unable to do any of the 5380 * requested options (we went too low), 5381 * then we'll have to reject the message. 5382 */ 5383 if (saved_width > bus_width 5384 || saved_offset != offset 5385 || saved_ppr_options != ppr_options) { 5386 reject = TRUE; 5387 period = 0; 5388 offset = 0; 5389 bus_width = 0; 5390 ppr_options = 0; 5391 } 5392 } else { 5393 if (devinfo->role != ROLE_TARGET) 5394 printk("(%s:%c:%d:%d): Target " 5395 "Initiated PPR\n", 5396 ahd_name(ahd), devinfo->channel, 5397 devinfo->target, devinfo->lun); 5398 else 5399 printk("(%s:%c:%d:%d): Initiator " 5400 "Initiated PPR\n", 5401 ahd_name(ahd), devinfo->channel, 5402 devinfo->target, devinfo->lun); 5403 ahd->msgout_index = 0; 5404 ahd->msgout_len = 0; 5405 ahd_construct_ppr(ahd, devinfo, period, offset, 5406 bus_width, ppr_options); 5407 ahd->msgout_index = 0; 5408 response = TRUE; 5409 } 5410 if (bootverbose) { 5411 printk("(%s:%c:%d:%d): Received PPR width %x, " 5412 "period %x, offset %x,options %x\n" 5413 "\tFiltered to width %x, period %x, " 5414 "offset %x, options %x\n", 5415 ahd_name(ahd), devinfo->channel, 5416 devinfo->target, devinfo->lun, 5417 saved_width, ahd->msgin_buf[3], 5418 saved_offset, saved_ppr_options, 5419 bus_width, period, offset, ppr_options); 5420 } 5421 ahd_set_width(ahd, devinfo, bus_width, 5422 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, 5423 /*paused*/TRUE); 5424 ahd_set_syncrate(ahd, devinfo, period, 5425 offset, ppr_options, 5426 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, 5427 /*paused*/TRUE); 5428 5429 done = MSGLOOP_MSGCOMPLETE; 5430 break; 5431 } 5432 default: 5433 /* Unknown extended message. Reject it. */ 5434 reject = TRUE; 5435 break; 5436 } 5437 break; 5438 } 5439 #ifdef AHD_TARGET_MODE 5440 case MSG_BUS_DEV_RESET: 5441 ahd_handle_devreset(ahd, devinfo, CAM_LUN_WILDCARD, 5442 CAM_BDR_SENT, 5443 "Bus Device Reset Received", 5444 /*verbose_level*/0); 5445 ahd_restart(ahd); 5446 done = MSGLOOP_TERMINATED; 5447 break; 5448 case MSG_ABORT_TAG: 5449 case MSG_ABORT: 5450 case MSG_CLEAR_QUEUE: 5451 { 5452 int tag; 5453 5454 /* Target mode messages */ 5455 if (devinfo->role != ROLE_TARGET) { 5456 reject = TRUE; 5457 break; 5458 } 5459 tag = SCB_LIST_NULL; 5460 if (ahd->msgin_buf[0] == MSG_ABORT_TAG) 5461 tag = ahd_inb(ahd, INITIATOR_TAG); 5462 ahd_abort_scbs(ahd, devinfo->target, devinfo->channel, 5463 devinfo->lun, tag, ROLE_TARGET, 5464 CAM_REQ_ABORTED); 5465 5466 tstate = ahd->enabled_targets[devinfo->our_scsiid]; 5467 if (tstate != NULL) { 5468 struct ahd_tmode_lstate* lstate; 5469 5470 lstate = tstate->enabled_luns[devinfo->lun]; 5471 if (lstate != NULL) { 5472 ahd_queue_lstate_event(ahd, lstate, 5473 devinfo->our_scsiid, 5474 ahd->msgin_buf[0], 5475 /*arg*/tag); 5476 ahd_send_lstate_events(ahd, lstate); 5477 } 5478 } 5479 ahd_restart(ahd); 5480 done = MSGLOOP_TERMINATED; 5481 break; 5482 } 5483 #endif 5484 case MSG_QAS_REQUEST: 5485 #ifdef AHD_DEBUG 5486 if ((ahd_debug & AHD_SHOW_MESSAGES) != 0) 5487 printk("%s: QAS request. SCSISIGI == 0x%x\n", 5488 ahd_name(ahd), ahd_inb(ahd, SCSISIGI)); 5489 #endif 5490 ahd->msg_flags |= MSG_FLAG_EXPECT_QASREJ_BUSFREE; 5491 /* FALLTHROUGH */ 5492 case MSG_TERM_IO_PROC: 5493 default: 5494 reject = TRUE; 5495 break; 5496 } 5497 5498 if (reject) { 5499 /* 5500 * Setup to reject the message. 5501 */ 5502 ahd->msgout_index = 0; 5503 ahd->msgout_len = 1; 5504 ahd->msgout_buf[0] = MSG_MESSAGE_REJECT; 5505 done = MSGLOOP_MSGCOMPLETE; 5506 response = TRUE; 5507 } 5508 5509 if (done != MSGLOOP_IN_PROG && !response) 5510 /* Clear the outgoing message buffer */ 5511 ahd->msgout_len = 0; 5512 5513 return (done); 5514 } 5515 5516 /* 5517 * Process a message reject message. 5518 */ 5519 static int 5520 ahd_handle_msg_reject(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) 5521 { 5522 /* 5523 * What we care about here is if we had an 5524 * outstanding SDTR or WDTR message for this 5525 * target. If we did, this is a signal that 5526 * the target is refusing negotiation. 5527 */ 5528 struct scb *scb; 5529 struct ahd_initiator_tinfo *tinfo; 5530 struct ahd_tmode_tstate *tstate; 5531 u_int scb_index; 5532 u_int last_msg; 5533 int response = 0; 5534 5535 scb_index = ahd_get_scbptr(ahd); 5536 scb = ahd_lookup_scb(ahd, scb_index); 5537 tinfo = ahd_fetch_transinfo(ahd, devinfo->channel, 5538 devinfo->our_scsiid, 5539 devinfo->target, &tstate); 5540 /* Might be necessary */ 5541 last_msg = ahd_inb(ahd, LAST_MSG); 5542 5543 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/FALSE)) { 5544 if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_PPR, /*full*/TRUE) 5545 && tinfo->goal.period <= AHD_SYNCRATE_PACED) { 5546 /* 5547 * Target may not like our SPI-4 PPR Options. 5548 * Attempt to negotiate 80MHz which will turn 5549 * off these options. 5550 */ 5551 if (bootverbose) { 5552 printk("(%s:%c:%d:%d): PPR Rejected. " 5553 "Trying simple U160 PPR\n", 5554 ahd_name(ahd), devinfo->channel, 5555 devinfo->target, devinfo->lun); 5556 } 5557 tinfo->goal.period = AHD_SYNCRATE_DT; 5558 tinfo->goal.ppr_options &= MSG_EXT_PPR_IU_REQ 5559 | MSG_EXT_PPR_QAS_REQ 5560 | MSG_EXT_PPR_DT_REQ; 5561 } else { 5562 /* 5563 * Target does not support the PPR message. 5564 * Attempt to negotiate SPI-2 style. 5565 */ 5566 if (bootverbose) { 5567 printk("(%s:%c:%d:%d): PPR Rejected. " 5568 "Trying WDTR/SDTR\n", 5569 ahd_name(ahd), devinfo->channel, 5570 devinfo->target, devinfo->lun); 5571 } 5572 tinfo->goal.ppr_options = 0; 5573 tinfo->curr.transport_version = 2; 5574 tinfo->goal.transport_version = 2; 5575 } 5576 ahd->msgout_index = 0; 5577 ahd->msgout_len = 0; 5578 ahd_build_transfer_msg(ahd, devinfo); 5579 ahd->msgout_index = 0; 5580 response = 1; 5581 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_WDTR, /*full*/FALSE)) { 5582 5583 /* note 8bit xfers */ 5584 printk("(%s:%c:%d:%d): refuses WIDE negotiation. Using " 5585 "8bit transfers\n", ahd_name(ahd), 5586 devinfo->channel, devinfo->target, devinfo->lun); 5587 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT, 5588 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, 5589 /*paused*/TRUE); 5590 /* 5591 * No need to clear the sync rate. If the target 5592 * did not accept the command, our syncrate is 5593 * unaffected. If the target started the negotiation, 5594 * but rejected our response, we already cleared the 5595 * sync rate before sending our WDTR. 5596 */ 5597 if (tinfo->goal.offset != tinfo->curr.offset) { 5598 5599 /* Start the sync negotiation */ 5600 ahd->msgout_index = 0; 5601 ahd->msgout_len = 0; 5602 ahd_build_transfer_msg(ahd, devinfo); 5603 ahd->msgout_index = 0; 5604 response = 1; 5605 } 5606 } else if (ahd_sent_msg(ahd, AHDMSG_EXT, MSG_EXT_SDTR, /*full*/FALSE)) { 5607 /* note asynch xfers and clear flag */ 5608 ahd_set_syncrate(ahd, devinfo, /*period*/0, 5609 /*offset*/0, /*ppr_options*/0, 5610 AHD_TRANS_ACTIVE|AHD_TRANS_GOAL, 5611 /*paused*/TRUE); 5612 printk("(%s:%c:%d:%d): refuses synchronous negotiation. " 5613 "Using asynchronous transfers\n", 5614 ahd_name(ahd), devinfo->channel, 5615 devinfo->target, devinfo->lun); 5616 } else if ((scb->hscb->control & MSG_SIMPLE_TASK) != 0) { 5617 int tag_type; 5618 int mask; 5619 5620 tag_type = (scb->hscb->control & MSG_SIMPLE_TASK); 5621 5622 if (tag_type == MSG_SIMPLE_TASK) { 5623 printk("(%s:%c:%d:%d): refuses tagged commands. " 5624 "Performing non-tagged I/O\n", ahd_name(ahd), 5625 devinfo->channel, devinfo->target, devinfo->lun); 5626 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_NONE); 5627 mask = ~0x23; 5628 } else { 5629 printk("(%s:%c:%d:%d): refuses %s tagged commands. " 5630 "Performing simple queue tagged I/O only\n", 5631 ahd_name(ahd), devinfo->channel, devinfo->target, 5632 devinfo->lun, tag_type == MSG_ORDERED_TASK 5633 ? "ordered" : "head of queue"); 5634 ahd_set_tags(ahd, scb->io_ctx, devinfo, AHD_QUEUE_BASIC); 5635 mask = ~0x03; 5636 } 5637 5638 /* 5639 * Resend the identify for this CCB as the target 5640 * may believe that the selection is invalid otherwise. 5641 */ 5642 ahd_outb(ahd, SCB_CONTROL, 5643 ahd_inb_scbram(ahd, SCB_CONTROL) & mask); 5644 scb->hscb->control &= mask; 5645 ahd_set_transaction_tag(scb, /*enabled*/FALSE, 5646 /*type*/MSG_SIMPLE_TASK); 5647 ahd_outb(ahd, MSG_OUT, MSG_IDENTIFYFLAG); 5648 ahd_assert_atn(ahd); 5649 ahd_busy_tcl(ahd, BUILD_TCL(scb->hscb->scsiid, devinfo->lun), 5650 SCB_GET_TAG(scb)); 5651 5652 /* 5653 * Requeue all tagged commands for this target 5654 * currently in our possession so they can be 5655 * converted to untagged commands. 5656 */ 5657 ahd_search_qinfifo(ahd, SCB_GET_TARGET(ahd, scb), 5658 SCB_GET_CHANNEL(ahd, scb), 5659 SCB_GET_LUN(scb), /*tag*/SCB_LIST_NULL, 5660 ROLE_INITIATOR, CAM_REQUEUE_REQ, 5661 SEARCH_COMPLETE); 5662 } else if (ahd_sent_msg(ahd, AHDMSG_1B, MSG_IDENTIFYFLAG, TRUE)) { 5663 /* 5664 * Most likely the device believes that we had 5665 * previously negotiated packetized. 5666 */ 5667 ahd->msg_flags |= MSG_FLAG_EXPECT_PPR_BUSFREE 5668 | MSG_FLAG_IU_REQ_CHANGED; 5669 5670 ahd_force_renegotiation(ahd, devinfo); 5671 ahd->msgout_index = 0; 5672 ahd->msgout_len = 0; 5673 ahd_build_transfer_msg(ahd, devinfo); 5674 ahd->msgout_index = 0; 5675 response = 1; 5676 } else { 5677 /* 5678 * Otherwise, we ignore it. 5679 */ 5680 printk("%s:%c:%d: Message reject for %x -- ignored\n", 5681 ahd_name(ahd), devinfo->channel, devinfo->target, 5682 last_msg); 5683 } 5684 return (response); 5685 } 5686 5687 /* 5688 * Process an ingnore wide residue message. 5689 */ 5690 static void 5691 ahd_handle_ign_wide_residue(struct ahd_softc *ahd, struct ahd_devinfo *devinfo) 5692 { 5693 u_int scb_index; 5694 struct scb *scb; 5695 5696 scb_index = ahd_get_scbptr(ahd); 5697 scb = ahd_lookup_scb(ahd, scb_index); 5698 /* 5699 * XXX Actually check data direction in the sequencer? 5700 * Perhaps add datadir to some spare bits in the hscb? 5701 */ 5702 if ((ahd_inb(ahd, SEQ_FLAGS) & DPHASE) == 0 5703 || ahd_get_transfer_dir(scb) != CAM_DIR_IN) { 5704 /* 5705 * Ignore the message if we haven't 5706 * seen an appropriate data phase yet. 5707 */ 5708 } else { 5709 /* 5710 * If the residual occurred on the last 5711 * transfer and the transfer request was 5712 * expected to end on an odd count, do 5713 * nothing. Otherwise, subtract a byte 5714 * and update the residual count accordingly. 5715 */ 5716 uint32_t sgptr; 5717 5718 sgptr = ahd_inb_scbram(ahd, SCB_RESIDUAL_SGPTR); 5719 if ((sgptr & SG_LIST_NULL) != 0 5720 && (ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE) 5721 & SCB_XFERLEN_ODD) != 0) { 5722 /* 5723 * If the residual occurred on the last 5724 * transfer and the transfer request was 5725 * expected to end on an odd count, do 5726 * nothing. 5727 */ 5728 } else { 5729 uint32_t data_cnt; 5730 uint64_t data_addr; 5731 uint32_t sglen; 5732 5733 /* Pull in the rest of the sgptr */ 5734 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); 5735 data_cnt = ahd_inl_scbram(ahd, SCB_RESIDUAL_DATACNT); 5736 if ((sgptr & SG_LIST_NULL) != 0) { 5737 /* 5738 * The residual data count is not updated 5739 * for the command run to completion case. 5740 * Explicitly zero the count. 5741 */ 5742 data_cnt &= ~AHD_SG_LEN_MASK; 5743 } 5744 data_addr = ahd_inq(ahd, SHADDR); 5745 data_cnt += 1; 5746 data_addr -= 1; 5747 sgptr &= SG_PTR_MASK; 5748 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 5749 struct ahd_dma64_seg *sg; 5750 5751 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); 5752 5753 /* 5754 * The residual sg ptr points to the next S/G 5755 * to load so we must go back one. 5756 */ 5757 sg--; 5758 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK; 5759 if (sg != scb->sg_list 5760 && sglen < (data_cnt & AHD_SG_LEN_MASK)) { 5761 5762 sg--; 5763 sglen = ahd_le32toh(sg->len); 5764 /* 5765 * Preserve High Address and SG_LIST 5766 * bits while setting the count to 1. 5767 */ 5768 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK)); 5769 data_addr = ahd_le64toh(sg->addr) 5770 + (sglen & AHD_SG_LEN_MASK) 5771 - 1; 5772 5773 /* 5774 * Increment sg so it points to the 5775 * "next" sg. 5776 */ 5777 sg++; 5778 sgptr = ahd_sg_virt_to_bus(ahd, scb, 5779 sg); 5780 } 5781 } else { 5782 struct ahd_dma_seg *sg; 5783 5784 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); 5785 5786 /* 5787 * The residual sg ptr points to the next S/G 5788 * to load so we must go back one. 5789 */ 5790 sg--; 5791 sglen = ahd_le32toh(sg->len) & AHD_SG_LEN_MASK; 5792 if (sg != scb->sg_list 5793 && sglen < (data_cnt & AHD_SG_LEN_MASK)) { 5794 5795 sg--; 5796 sglen = ahd_le32toh(sg->len); 5797 /* 5798 * Preserve High Address and SG_LIST 5799 * bits while setting the count to 1. 5800 */ 5801 data_cnt = 1|(sglen&(~AHD_SG_LEN_MASK)); 5802 data_addr = ahd_le32toh(sg->addr) 5803 + (sglen & AHD_SG_LEN_MASK) 5804 - 1; 5805 5806 /* 5807 * Increment sg so it points to the 5808 * "next" sg. 5809 */ 5810 sg++; 5811 sgptr = ahd_sg_virt_to_bus(ahd, scb, 5812 sg); 5813 } 5814 } 5815 /* 5816 * Toggle the "oddness" of the transfer length 5817 * to handle this mid-transfer ignore wide 5818 * residue. This ensures that the oddness is 5819 * correct for subsequent data transfers. 5820 */ 5821 ahd_outb(ahd, SCB_TASK_ATTRIBUTE, 5822 ahd_inb_scbram(ahd, SCB_TASK_ATTRIBUTE) 5823 ^ SCB_XFERLEN_ODD); 5824 5825 ahd_outl(ahd, SCB_RESIDUAL_SGPTR, sgptr); 5826 ahd_outl(ahd, SCB_RESIDUAL_DATACNT, data_cnt); 5827 /* 5828 * The FIFO's pointers will be updated if/when the 5829 * sequencer re-enters a data phase. 5830 */ 5831 } 5832 } 5833 } 5834 5835 5836 /* 5837 * Reinitialize the data pointers for the active transfer 5838 * based on its current residual. 5839 */ 5840 static void 5841 ahd_reinitialize_dataptrs(struct ahd_softc *ahd) 5842 { 5843 struct scb *scb; 5844 ahd_mode_state saved_modes; 5845 u_int scb_index; 5846 u_int wait; 5847 uint32_t sgptr; 5848 uint32_t resid; 5849 uint64_t dataptr; 5850 5851 AHD_ASSERT_MODES(ahd, AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK, 5852 AHD_MODE_DFF0_MSK|AHD_MODE_DFF1_MSK); 5853 5854 scb_index = ahd_get_scbptr(ahd); 5855 scb = ahd_lookup_scb(ahd, scb_index); 5856 5857 /* 5858 * Release and reacquire the FIFO so we 5859 * have a clean slate. 5860 */ 5861 ahd_outb(ahd, DFFSXFRCTL, CLRCHN); 5862 wait = 1000; 5863 while (--wait && !(ahd_inb(ahd, MDFFSTAT) & FIFOFREE)) 5864 ahd_delay(100); 5865 if (wait == 0) { 5866 ahd_print_path(ahd, scb); 5867 printk("ahd_reinitialize_dataptrs: Forcing FIFO free.\n"); 5868 ahd_outb(ahd, DFFSXFRCTL, RSTCHN|CLRSHCNT); 5869 } 5870 saved_modes = ahd_save_modes(ahd); 5871 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 5872 ahd_outb(ahd, DFFSTAT, 5873 ahd_inb(ahd, DFFSTAT) 5874 | (saved_modes == 0x11 ? CURRFIFO_1 : CURRFIFO_0)); 5875 5876 /* 5877 * Determine initial values for data_addr and data_cnt 5878 * for resuming the data phase. 5879 */ 5880 sgptr = ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR); 5881 sgptr &= SG_PTR_MASK; 5882 5883 resid = (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 2) << 16) 5884 | (ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT + 1) << 8) 5885 | ahd_inb_scbram(ahd, SCB_RESIDUAL_DATACNT); 5886 5887 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) { 5888 struct ahd_dma64_seg *sg; 5889 5890 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); 5891 5892 /* The residual sg_ptr always points to the next sg */ 5893 sg--; 5894 5895 dataptr = ahd_le64toh(sg->addr) 5896 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK) 5897 - resid; 5898 ahd_outl(ahd, HADDR + 4, dataptr >> 32); 5899 } else { 5900 struct ahd_dma_seg *sg; 5901 5902 sg = ahd_sg_bus_to_virt(ahd, scb, sgptr); 5903 5904 /* The residual sg_ptr always points to the next sg */ 5905 sg--; 5906 5907 dataptr = ahd_le32toh(sg->addr) 5908 + (ahd_le32toh(sg->len) & AHD_SG_LEN_MASK) 5909 - resid; 5910 ahd_outb(ahd, HADDR + 4, 5911 (ahd_le32toh(sg->len) & ~AHD_SG_LEN_MASK) >> 24); 5912 } 5913 ahd_outl(ahd, HADDR, dataptr); 5914 ahd_outb(ahd, HCNT + 2, resid >> 16); 5915 ahd_outb(ahd, HCNT + 1, resid >> 8); 5916 ahd_outb(ahd, HCNT, resid); 5917 } 5918 5919 /* 5920 * Handle the effects of issuing a bus device reset message. 5921 */ 5922 static void 5923 ahd_handle_devreset(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, 5924 u_int lun, cam_status status, char *message, 5925 int verbose_level) 5926 { 5927 #ifdef AHD_TARGET_MODE 5928 struct ahd_tmode_tstate* tstate; 5929 #endif 5930 int found; 5931 5932 found = ahd_abort_scbs(ahd, devinfo->target, devinfo->channel, 5933 lun, SCB_LIST_NULL, devinfo->role, 5934 status); 5935 5936 #ifdef AHD_TARGET_MODE 5937 /* 5938 * Send an immediate notify ccb to all target mord peripheral 5939 * drivers affected by this action. 5940 */ 5941 tstate = ahd->enabled_targets[devinfo->our_scsiid]; 5942 if (tstate != NULL) { 5943 u_int cur_lun; 5944 u_int max_lun; 5945 5946 if (lun != CAM_LUN_WILDCARD) { 5947 cur_lun = 0; 5948 max_lun = AHD_NUM_LUNS - 1; 5949 } else { 5950 cur_lun = lun; 5951 max_lun = lun; 5952 } 5953 for (;cur_lun <= max_lun; cur_lun++) { 5954 struct ahd_tmode_lstate* lstate; 5955 5956 lstate = tstate->enabled_luns[cur_lun]; 5957 if (lstate == NULL) 5958 continue; 5959 5960 ahd_queue_lstate_event(ahd, lstate, devinfo->our_scsiid, 5961 MSG_BUS_DEV_RESET, /*arg*/0); 5962 ahd_send_lstate_events(ahd, lstate); 5963 } 5964 } 5965 #endif 5966 5967 /* 5968 * Go back to async/narrow transfers and renegotiate. 5969 */ 5970 ahd_set_width(ahd, devinfo, MSG_EXT_WDTR_BUS_8_BIT, 5971 AHD_TRANS_CUR, /*paused*/TRUE); 5972 ahd_set_syncrate(ahd, devinfo, /*period*/0, /*offset*/0, 5973 /*ppr_options*/0, AHD_TRANS_CUR, 5974 /*paused*/TRUE); 5975 5976 if (status != CAM_SEL_TIMEOUT) 5977 ahd_send_async(ahd, devinfo->channel, devinfo->target, 5978 CAM_LUN_WILDCARD, AC_SENT_BDR); 5979 5980 if (message != NULL && bootverbose) 5981 printk("%s: %s on %c:%d. %d SCBs aborted\n", ahd_name(ahd), 5982 message, devinfo->channel, devinfo->target, found); 5983 } 5984 5985 #ifdef AHD_TARGET_MODE 5986 static void 5987 ahd_setup_target_msgin(struct ahd_softc *ahd, struct ahd_devinfo *devinfo, 5988 struct scb *scb) 5989 { 5990 5991 /* 5992 * To facilitate adding multiple messages together, 5993 * each routine should increment the index and len 5994 * variables instead of setting them explicitly. 5995 */ 5996 ahd->msgout_index = 0; 5997 ahd->msgout_len = 0; 5998 5999 if (scb != NULL && (scb->flags & SCB_AUTO_NEGOTIATE) != 0) 6000 ahd_build_transfer_msg(ahd, devinfo); 6001 else 6002 panic("ahd_intr: AWAITING target message with no message"); 6003 6004 ahd->msgout_index = 0; 6005 ahd->msg_type = MSG_TYPE_TARGET_MSGIN; 6006 } 6007 #endif 6008 /**************************** Initialization **********************************/ 6009 static u_int 6010 ahd_sglist_size(struct ahd_softc *ahd) 6011 { 6012 bus_size_t list_size; 6013 6014 list_size = sizeof(struct ahd_dma_seg) * AHD_NSEG; 6015 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) 6016 list_size = sizeof(struct ahd_dma64_seg) * AHD_NSEG; 6017 return (list_size); 6018 } 6019 6020 /* 6021 * Calculate the optimum S/G List allocation size. S/G elements used 6022 * for a given transaction must be physically contiguous. Assume the 6023 * OS will allocate full pages to us, so it doesn't make sense to request 6024 * less than a page. 6025 */ 6026 static u_int 6027 ahd_sglist_allocsize(struct ahd_softc *ahd) 6028 { 6029 bus_size_t sg_list_increment; 6030 bus_size_t sg_list_size; 6031 bus_size_t max_list_size; 6032 bus_size_t best_list_size; 6033 6034 /* Start out with the minimum required for AHD_NSEG. */ 6035 sg_list_increment = ahd_sglist_size(ahd); 6036 sg_list_size = sg_list_increment; 6037 6038 /* Get us as close as possible to a page in size. */ 6039 while ((sg_list_size + sg_list_increment) <= PAGE_SIZE) 6040 sg_list_size += sg_list_increment; 6041 6042 /* 6043 * Try to reduce the amount of wastage by allocating 6044 * multiple pages. 6045 */ 6046 best_list_size = sg_list_size; 6047 max_list_size = roundup(sg_list_increment, PAGE_SIZE); 6048 if (max_list_size < 4 * PAGE_SIZE) 6049 max_list_size = 4 * PAGE_SIZE; 6050 if (max_list_size > (AHD_SCB_MAX_ALLOC * sg_list_increment)) 6051 max_list_size = (AHD_SCB_MAX_ALLOC * sg_list_increment); 6052 while ((sg_list_size + sg_list_increment) <= max_list_size 6053 && (sg_list_size % PAGE_SIZE) != 0) { 6054 bus_size_t new_mod; 6055 bus_size_t best_mod; 6056 6057 sg_list_size += sg_list_increment; 6058 new_mod = sg_list_size % PAGE_SIZE; 6059 best_mod = best_list_size % PAGE_SIZE; 6060 if (new_mod > best_mod || new_mod == 0) { 6061 best_list_size = sg_list_size; 6062 } 6063 } 6064 return (best_list_size); 6065 } 6066 6067 /* 6068 * Allocate a controller structure for a new device 6069 * and perform initial initializion. 6070 */ 6071 struct ahd_softc * 6072 ahd_alloc(void *platform_arg, char *name) 6073 { 6074 struct ahd_softc *ahd; 6075 6076 #ifndef __FreeBSD__ 6077 ahd = kmalloc(sizeof(*ahd), GFP_ATOMIC); 6078 if (!ahd) { 6079 printk("aic7xxx: cannot malloc softc!\n"); 6080 kfree(name); 6081 return NULL; 6082 } 6083 #else 6084 ahd = device_get_softc((device_t)platform_arg); 6085 #endif 6086 memset(ahd, 0, sizeof(*ahd)); 6087 ahd->seep_config = kmalloc(sizeof(*ahd->seep_config), GFP_ATOMIC); 6088 if (ahd->seep_config == NULL) { 6089 #ifndef __FreeBSD__ 6090 kfree(ahd); 6091 #endif 6092 kfree(name); 6093 return (NULL); 6094 } 6095 LIST_INIT(&ahd->pending_scbs); 6096 /* We don't know our unit number until the OSM sets it */ 6097 ahd->name = name; 6098 ahd->unit = -1; 6099 ahd->description = NULL; 6100 ahd->bus_description = NULL; 6101 ahd->channel = 'A'; 6102 ahd->chip = AHD_NONE; 6103 ahd->features = AHD_FENONE; 6104 ahd->bugs = AHD_BUGNONE; 6105 ahd->flags = AHD_SPCHK_ENB_A|AHD_RESET_BUS_A|AHD_TERM_ENB_A 6106 | AHD_EXTENDED_TRANS_A|AHD_STPWLEVEL_A; 6107 ahd_timer_init(&ahd->reset_timer); 6108 ahd_timer_init(&ahd->stat_timer); 6109 ahd->int_coalescing_timer = AHD_INT_COALESCING_TIMER_DEFAULT; 6110 ahd->int_coalescing_maxcmds = AHD_INT_COALESCING_MAXCMDS_DEFAULT; 6111 ahd->int_coalescing_mincmds = AHD_INT_COALESCING_MINCMDS_DEFAULT; 6112 ahd->int_coalescing_threshold = AHD_INT_COALESCING_THRESHOLD_DEFAULT; 6113 ahd->int_coalescing_stop_threshold = 6114 AHD_INT_COALESCING_STOP_THRESHOLD_DEFAULT; 6115 6116 if (ahd_platform_alloc(ahd, platform_arg) != 0) { 6117 ahd_free(ahd); 6118 ahd = NULL; 6119 } 6120 #ifdef AHD_DEBUG 6121 if ((ahd_debug & AHD_SHOW_MEMORY) != 0) { 6122 printk("%s: scb size = 0x%x, hscb size = 0x%x\n", 6123 ahd_name(ahd), (u_int)sizeof(struct scb), 6124 (u_int)sizeof(struct hardware_scb)); 6125 } 6126 #endif 6127 return (ahd); 6128 } 6129 6130 int 6131 ahd_softc_init(struct ahd_softc *ahd) 6132 { 6133 6134 ahd->unpause = 0; 6135 ahd->pause = PAUSE; 6136 return (0); 6137 } 6138 6139 void 6140 ahd_set_unit(struct ahd_softc *ahd, int unit) 6141 { 6142 ahd->unit = unit; 6143 } 6144 6145 void 6146 ahd_set_name(struct ahd_softc *ahd, char *name) 6147 { 6148 if (ahd->name != NULL) 6149 kfree(ahd->name); 6150 ahd->name = name; 6151 } 6152 6153 void 6154 ahd_free(struct ahd_softc *ahd) 6155 { 6156 int i; 6157 6158 switch (ahd->init_level) { 6159 default: 6160 case 5: 6161 ahd_shutdown(ahd); 6162 /* FALLTHROUGH */ 6163 case 4: 6164 ahd_dmamap_unload(ahd, ahd->shared_data_dmat, 6165 ahd->shared_data_map.dmamap); 6166 /* FALLTHROUGH */ 6167 case 3: 6168 ahd_dmamem_free(ahd, ahd->shared_data_dmat, ahd->qoutfifo, 6169 ahd->shared_data_map.dmamap); 6170 ahd_dmamap_destroy(ahd, ahd->shared_data_dmat, 6171 ahd->shared_data_map.dmamap); 6172 /* FALLTHROUGH */ 6173 case 2: 6174 ahd_dma_tag_destroy(ahd, ahd->shared_data_dmat); 6175 case 1: 6176 #ifndef __linux__ 6177 ahd_dma_tag_destroy(ahd, ahd->buffer_dmat); 6178 #endif 6179 break; 6180 case 0: 6181 break; 6182 } 6183 6184 #ifndef __linux__ 6185 ahd_dma_tag_destroy(ahd, ahd->parent_dmat); 6186 #endif 6187 ahd_platform_free(ahd); 6188 ahd_fini_scbdata(ahd); 6189 for (i = 0; i < AHD_NUM_TARGETS; i++) { 6190 struct ahd_tmode_tstate *tstate; 6191 6192 tstate = ahd->enabled_targets[i]; 6193 if (tstate != NULL) { 6194 #ifdef AHD_TARGET_MODE 6195 int j; 6196 6197 for (j = 0; j < AHD_NUM_LUNS; j++) { 6198 struct ahd_tmode_lstate *lstate; 6199 6200 lstate = tstate->enabled_luns[j]; 6201 if (lstate != NULL) { 6202 xpt_free_path(lstate->path); 6203 kfree(lstate); 6204 } 6205 } 6206 #endif 6207 kfree(tstate); 6208 } 6209 } 6210 #ifdef AHD_TARGET_MODE 6211 if (ahd->black_hole != NULL) { 6212 xpt_free_path(ahd->black_hole->path); 6213 kfree(ahd->black_hole); 6214 } 6215 #endif 6216 if (ahd->name != NULL) 6217 kfree(ahd->name); 6218 if (ahd->seep_config != NULL) 6219 kfree(ahd->seep_config); 6220 if (ahd->saved_stack != NULL) 6221 kfree(ahd->saved_stack); 6222 #ifndef __FreeBSD__ 6223 kfree(ahd); 6224 #endif 6225 return; 6226 } 6227 6228 static void 6229 ahd_shutdown(void *arg) 6230 { 6231 struct ahd_softc *ahd; 6232 6233 ahd = (struct ahd_softc *)arg; 6234 6235 /* 6236 * Stop periodic timer callbacks. 6237 */ 6238 ahd_timer_stop(&ahd->reset_timer); 6239 ahd_timer_stop(&ahd->stat_timer); 6240 6241 /* This will reset most registers to 0, but not all */ 6242 ahd_reset(ahd, /*reinit*/FALSE); 6243 } 6244 6245 /* 6246 * Reset the controller and record some information about it 6247 * that is only available just after a reset. If "reinit" is 6248 * non-zero, this reset occurred after initial configuration 6249 * and the caller requests that the chip be fully reinitialized 6250 * to a runable state. Chip interrupts are *not* enabled after 6251 * a reinitialization. The caller must enable interrupts via 6252 * ahd_intr_enable(). 6253 */ 6254 int 6255 ahd_reset(struct ahd_softc *ahd, int reinit) 6256 { 6257 u_int sxfrctl1; 6258 int wait; 6259 uint32_t cmd; 6260 6261 /* 6262 * Preserve the value of the SXFRCTL1 register for all channels. 6263 * It contains settings that affect termination and we don't want 6264 * to disturb the integrity of the bus. 6265 */ 6266 ahd_pause(ahd); 6267 ahd_update_modes(ahd); 6268 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 6269 sxfrctl1 = ahd_inb(ahd, SXFRCTL1); 6270 6271 cmd = ahd_pci_read_config(ahd->dev_softc, PCIR_COMMAND, /*bytes*/2); 6272 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) { 6273 uint32_t mod_cmd; 6274 6275 /* 6276 * A4 Razor #632 6277 * During the assertion of CHIPRST, the chip 6278 * does not disable its parity logic prior to 6279 * the start of the reset. This may cause a 6280 * parity error to be detected and thus a 6281 * spurious SERR or PERR assertion. Disble 6282 * PERR and SERR responses during the CHIPRST. 6283 */ 6284 mod_cmd = cmd & ~(PCIM_CMD_PERRESPEN|PCIM_CMD_SERRESPEN); 6285 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, 6286 mod_cmd, /*bytes*/2); 6287 } 6288 ahd_outb(ahd, HCNTRL, CHIPRST | ahd->pause); 6289 6290 /* 6291 * Ensure that the reset has finished. We delay 1000us 6292 * prior to reading the register to make sure the chip 6293 * has sufficiently completed its reset to handle register 6294 * accesses. 6295 */ 6296 wait = 1000; 6297 do { 6298 ahd_delay(1000); 6299 } while (--wait && !(ahd_inb(ahd, HCNTRL) & CHIPRSTACK)); 6300 6301 if (wait == 0) { 6302 printk("%s: WARNING - Failed chip reset! " 6303 "Trying to initialize anyway.\n", ahd_name(ahd)); 6304 } 6305 ahd_outb(ahd, HCNTRL, ahd->pause); 6306 6307 if ((ahd->bugs & AHD_PCIX_CHIPRST_BUG) != 0) { 6308 /* 6309 * Clear any latched PCI error status and restore 6310 * previous SERR and PERR response enables. 6311 */ 6312 ahd_pci_write_config(ahd->dev_softc, PCIR_STATUS + 1, 6313 0xFF, /*bytes*/1); 6314 ahd_pci_write_config(ahd->dev_softc, PCIR_COMMAND, 6315 cmd, /*bytes*/2); 6316 } 6317 6318 /* 6319 * Mode should be SCSI after a chip reset, but lets 6320 * set it just to be safe. We touch the MODE_PTR 6321 * register directly so as to bypass the lazy update 6322 * code in ahd_set_modes(). 6323 */ 6324 ahd_known_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 6325 ahd_outb(ahd, MODE_PTR, 6326 ahd_build_mode_state(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI)); 6327 6328 /* 6329 * Restore SXFRCTL1. 6330 * 6331 * We must always initialize STPWEN to 1 before we 6332 * restore the saved values. STPWEN is initialized 6333 * to a tri-state condition which can only be cleared 6334 * by turning it on. 6335 */ 6336 ahd_outb(ahd, SXFRCTL1, sxfrctl1|STPWEN); 6337 ahd_outb(ahd, SXFRCTL1, sxfrctl1); 6338 6339 /* Determine chip configuration */ 6340 ahd->features &= ~AHD_WIDE; 6341 if ((ahd_inb(ahd, SBLKCTL) & SELWIDE) != 0) 6342 ahd->features |= AHD_WIDE; 6343 6344 /* 6345 * If a recovery action has forced a chip reset, 6346 * re-initialize the chip to our liking. 6347 */ 6348 if (reinit != 0) 6349 ahd_chip_init(ahd); 6350 6351 return (0); 6352 } 6353 6354 /* 6355 * Determine the number of SCBs available on the controller 6356 */ 6357 static int 6358 ahd_probe_scbs(struct ahd_softc *ahd) { 6359 int i; 6360 6361 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK), 6362 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK)); 6363 for (i = 0; i < AHD_SCB_MAX; i++) { 6364 int j; 6365 6366 ahd_set_scbptr(ahd, i); 6367 ahd_outw(ahd, SCB_BASE, i); 6368 for (j = 2; j < 64; j++) 6369 ahd_outb(ahd, SCB_BASE+j, 0); 6370 /* Start out life as unallocated (needing an abort) */ 6371 ahd_outb(ahd, SCB_CONTROL, MK_MESSAGE); 6372 if (ahd_inw_scbram(ahd, SCB_BASE) != i) 6373 break; 6374 ahd_set_scbptr(ahd, 0); 6375 if (ahd_inw_scbram(ahd, SCB_BASE) != 0) 6376 break; 6377 } 6378 return (i); 6379 } 6380 6381 static void 6382 ahd_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) 6383 { 6384 dma_addr_t *baddr; 6385 6386 baddr = (dma_addr_t *)arg; 6387 *baddr = segs->ds_addr; 6388 } 6389 6390 static void 6391 ahd_initialize_hscbs(struct ahd_softc *ahd) 6392 { 6393 int i; 6394 6395 for (i = 0; i < ahd->scb_data.maxhscbs; i++) { 6396 ahd_set_scbptr(ahd, i); 6397 6398 /* Clear the control byte. */ 6399 ahd_outb(ahd, SCB_CONTROL, 0); 6400 6401 /* Set the next pointer */ 6402 ahd_outw(ahd, SCB_NEXT, SCB_LIST_NULL); 6403 } 6404 } 6405 6406 static int 6407 ahd_init_scbdata(struct ahd_softc *ahd) 6408 { 6409 struct scb_data *scb_data; 6410 int i; 6411 6412 scb_data = &ahd->scb_data; 6413 TAILQ_INIT(&scb_data->free_scbs); 6414 for (i = 0; i < AHD_NUM_TARGETS * AHD_NUM_LUNS_NONPKT; i++) 6415 LIST_INIT(&scb_data->free_scb_lists[i]); 6416 LIST_INIT(&scb_data->any_dev_free_scb_list); 6417 SLIST_INIT(&scb_data->hscb_maps); 6418 SLIST_INIT(&scb_data->sg_maps); 6419 SLIST_INIT(&scb_data->sense_maps); 6420 6421 /* Determine the number of hardware SCBs and initialize them */ 6422 scb_data->maxhscbs = ahd_probe_scbs(ahd); 6423 if (scb_data->maxhscbs == 0) { 6424 printk("%s: No SCB space found\n", ahd_name(ahd)); 6425 return (ENXIO); 6426 } 6427 6428 ahd_initialize_hscbs(ahd); 6429 6430 /* 6431 * Create our DMA tags. These tags define the kinds of device 6432 * accessible memory allocations and memory mappings we will 6433 * need to perform during normal operation. 6434 * 6435 * Unless we need to further restrict the allocation, we rely 6436 * on the restrictions of the parent dmat, hence the common 6437 * use of MAXADDR and MAXSIZE. 6438 */ 6439 6440 /* DMA tag for our hardware scb structures */ 6441 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1, 6442 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, 6443 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, 6444 /*highaddr*/BUS_SPACE_MAXADDR, 6445 /*filter*/NULL, /*filterarg*/NULL, 6446 PAGE_SIZE, /*nsegments*/1, 6447 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, 6448 /*flags*/0, &scb_data->hscb_dmat) != 0) { 6449 goto error_exit; 6450 } 6451 6452 scb_data->init_level++; 6453 6454 /* DMA tag for our S/G structures. */ 6455 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/8, 6456 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, 6457 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, 6458 /*highaddr*/BUS_SPACE_MAXADDR, 6459 /*filter*/NULL, /*filterarg*/NULL, 6460 ahd_sglist_allocsize(ahd), /*nsegments*/1, 6461 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, 6462 /*flags*/0, &scb_data->sg_dmat) != 0) { 6463 goto error_exit; 6464 } 6465 #ifdef AHD_DEBUG 6466 if ((ahd_debug & AHD_SHOW_MEMORY) != 0) 6467 printk("%s: ahd_sglist_allocsize = 0x%x\n", ahd_name(ahd), 6468 ahd_sglist_allocsize(ahd)); 6469 #endif 6470 6471 scb_data->init_level++; 6472 6473 /* DMA tag for our sense buffers. We allocate in page sized chunks */ 6474 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1, 6475 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, 6476 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, 6477 /*highaddr*/BUS_SPACE_MAXADDR, 6478 /*filter*/NULL, /*filterarg*/NULL, 6479 PAGE_SIZE, /*nsegments*/1, 6480 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, 6481 /*flags*/0, &scb_data->sense_dmat) != 0) { 6482 goto error_exit; 6483 } 6484 6485 scb_data->init_level++; 6486 6487 /* Perform initial CCB allocation */ 6488 ahd_alloc_scbs(ahd); 6489 6490 if (scb_data->numscbs == 0) { 6491 printk("%s: ahd_init_scbdata - " 6492 "Unable to allocate initial scbs\n", 6493 ahd_name(ahd)); 6494 goto error_exit; 6495 } 6496 6497 /* 6498 * Note that we were successful 6499 */ 6500 return (0); 6501 6502 error_exit: 6503 6504 return (ENOMEM); 6505 } 6506 6507 static struct scb * 6508 ahd_find_scb_by_tag(struct ahd_softc *ahd, u_int tag) 6509 { 6510 struct scb *scb; 6511 6512 /* 6513 * Look on the pending list. 6514 */ 6515 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { 6516 if (SCB_GET_TAG(scb) == tag) 6517 return (scb); 6518 } 6519 6520 /* 6521 * Then on all of the collision free lists. 6522 */ 6523 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) { 6524 struct scb *list_scb; 6525 6526 list_scb = scb; 6527 do { 6528 if (SCB_GET_TAG(list_scb) == tag) 6529 return (list_scb); 6530 list_scb = LIST_NEXT(list_scb, collision_links); 6531 } while (list_scb); 6532 } 6533 6534 /* 6535 * And finally on the generic free list. 6536 */ 6537 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) { 6538 if (SCB_GET_TAG(scb) == tag) 6539 return (scb); 6540 } 6541 6542 return (NULL); 6543 } 6544 6545 static void 6546 ahd_fini_scbdata(struct ahd_softc *ahd) 6547 { 6548 struct scb_data *scb_data; 6549 6550 scb_data = &ahd->scb_data; 6551 if (scb_data == NULL) 6552 return; 6553 6554 switch (scb_data->init_level) { 6555 default: 6556 case 7: 6557 { 6558 struct map_node *sns_map; 6559 6560 while ((sns_map = SLIST_FIRST(&scb_data->sense_maps)) != NULL) { 6561 SLIST_REMOVE_HEAD(&scb_data->sense_maps, links); 6562 ahd_dmamap_unload(ahd, scb_data->sense_dmat, 6563 sns_map->dmamap); 6564 ahd_dmamem_free(ahd, scb_data->sense_dmat, 6565 sns_map->vaddr, sns_map->dmamap); 6566 kfree(sns_map); 6567 } 6568 ahd_dma_tag_destroy(ahd, scb_data->sense_dmat); 6569 /* FALLTHROUGH */ 6570 } 6571 case 6: 6572 { 6573 struct map_node *sg_map; 6574 6575 while ((sg_map = SLIST_FIRST(&scb_data->sg_maps)) != NULL) { 6576 SLIST_REMOVE_HEAD(&scb_data->sg_maps, links); 6577 ahd_dmamap_unload(ahd, scb_data->sg_dmat, 6578 sg_map->dmamap); 6579 ahd_dmamem_free(ahd, scb_data->sg_dmat, 6580 sg_map->vaddr, sg_map->dmamap); 6581 kfree(sg_map); 6582 } 6583 ahd_dma_tag_destroy(ahd, scb_data->sg_dmat); 6584 /* FALLTHROUGH */ 6585 } 6586 case 5: 6587 { 6588 struct map_node *hscb_map; 6589 6590 while ((hscb_map = SLIST_FIRST(&scb_data->hscb_maps)) != NULL) { 6591 SLIST_REMOVE_HEAD(&scb_data->hscb_maps, links); 6592 ahd_dmamap_unload(ahd, scb_data->hscb_dmat, 6593 hscb_map->dmamap); 6594 ahd_dmamem_free(ahd, scb_data->hscb_dmat, 6595 hscb_map->vaddr, hscb_map->dmamap); 6596 kfree(hscb_map); 6597 } 6598 ahd_dma_tag_destroy(ahd, scb_data->hscb_dmat); 6599 /* FALLTHROUGH */ 6600 } 6601 case 4: 6602 case 3: 6603 case 2: 6604 case 1: 6605 case 0: 6606 break; 6607 } 6608 } 6609 6610 /* 6611 * DSP filter Bypass must be enabled until the first selection 6612 * after a change in bus mode (Razor #491 and #493). 6613 */ 6614 static void 6615 ahd_setup_iocell_workaround(struct ahd_softc *ahd) 6616 { 6617 ahd_mode_state saved_modes; 6618 6619 saved_modes = ahd_save_modes(ahd); 6620 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); 6621 ahd_outb(ahd, DSPDATACTL, ahd_inb(ahd, DSPDATACTL) 6622 | BYPASSENAB | RCVROFFSTDIS | XMITOFFSTDIS); 6623 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) | (ENSELDO|ENSELDI)); 6624 #ifdef AHD_DEBUG 6625 if ((ahd_debug & AHD_SHOW_MISC) != 0) 6626 printk("%s: Setting up iocell workaround\n", ahd_name(ahd)); 6627 #endif 6628 ahd_restore_modes(ahd, saved_modes); 6629 ahd->flags &= ~AHD_HAD_FIRST_SEL; 6630 } 6631 6632 static void 6633 ahd_iocell_first_selection(struct ahd_softc *ahd) 6634 { 6635 ahd_mode_state saved_modes; 6636 u_int sblkctl; 6637 6638 if ((ahd->flags & AHD_HAD_FIRST_SEL) != 0) 6639 return; 6640 saved_modes = ahd_save_modes(ahd); 6641 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 6642 sblkctl = ahd_inb(ahd, SBLKCTL); 6643 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); 6644 #ifdef AHD_DEBUG 6645 if ((ahd_debug & AHD_SHOW_MISC) != 0) 6646 printk("%s: iocell first selection\n", ahd_name(ahd)); 6647 #endif 6648 if ((sblkctl & ENAB40) != 0) { 6649 ahd_outb(ahd, DSPDATACTL, 6650 ahd_inb(ahd, DSPDATACTL) & ~BYPASSENAB); 6651 #ifdef AHD_DEBUG 6652 if ((ahd_debug & AHD_SHOW_MISC) != 0) 6653 printk("%s: BYPASS now disabled\n", ahd_name(ahd)); 6654 #endif 6655 } 6656 ahd_outb(ahd, SIMODE0, ahd_inb(ahd, SIMODE0) & ~(ENSELDO|ENSELDI)); 6657 ahd_outb(ahd, CLRINT, CLRSCSIINT); 6658 ahd_restore_modes(ahd, saved_modes); 6659 ahd->flags |= AHD_HAD_FIRST_SEL; 6660 } 6661 6662 /*************************** SCB Management ***********************************/ 6663 static void 6664 ahd_add_col_list(struct ahd_softc *ahd, struct scb *scb, u_int col_idx) 6665 { 6666 struct scb_list *free_list; 6667 struct scb_tailq *free_tailq; 6668 struct scb *first_scb; 6669 6670 scb->flags |= SCB_ON_COL_LIST; 6671 AHD_SET_SCB_COL_IDX(scb, col_idx); 6672 free_list = &ahd->scb_data.free_scb_lists[col_idx]; 6673 free_tailq = &ahd->scb_data.free_scbs; 6674 first_scb = LIST_FIRST(free_list); 6675 if (first_scb != NULL) { 6676 LIST_INSERT_AFTER(first_scb, scb, collision_links); 6677 } else { 6678 LIST_INSERT_HEAD(free_list, scb, collision_links); 6679 TAILQ_INSERT_TAIL(free_tailq, scb, links.tqe); 6680 } 6681 } 6682 6683 static void 6684 ahd_rem_col_list(struct ahd_softc *ahd, struct scb *scb) 6685 { 6686 struct scb_list *free_list; 6687 struct scb_tailq *free_tailq; 6688 struct scb *first_scb; 6689 u_int col_idx; 6690 6691 scb->flags &= ~SCB_ON_COL_LIST; 6692 col_idx = AHD_GET_SCB_COL_IDX(ahd, scb); 6693 free_list = &ahd->scb_data.free_scb_lists[col_idx]; 6694 free_tailq = &ahd->scb_data.free_scbs; 6695 first_scb = LIST_FIRST(free_list); 6696 if (first_scb == scb) { 6697 struct scb *next_scb; 6698 6699 /* 6700 * Maintain order in the collision free 6701 * lists for fairness if this device has 6702 * other colliding tags active. 6703 */ 6704 next_scb = LIST_NEXT(scb, collision_links); 6705 if (next_scb != NULL) { 6706 TAILQ_INSERT_AFTER(free_tailq, scb, 6707 next_scb, links.tqe); 6708 } 6709 TAILQ_REMOVE(free_tailq, scb, links.tqe); 6710 } 6711 LIST_REMOVE(scb, collision_links); 6712 } 6713 6714 /* 6715 * Get a free scb. If there are none, see if we can allocate a new SCB. 6716 */ 6717 struct scb * 6718 ahd_get_scb(struct ahd_softc *ahd, u_int col_idx) 6719 { 6720 struct scb *scb; 6721 int tries; 6722 6723 tries = 0; 6724 look_again: 6725 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) { 6726 if (AHD_GET_SCB_COL_IDX(ahd, scb) != col_idx) { 6727 ahd_rem_col_list(ahd, scb); 6728 goto found; 6729 } 6730 } 6731 if ((scb = LIST_FIRST(&ahd->scb_data.any_dev_free_scb_list)) == NULL) { 6732 6733 if (tries++ != 0) 6734 return (NULL); 6735 ahd_alloc_scbs(ahd); 6736 goto look_again; 6737 } 6738 LIST_REMOVE(scb, links.le); 6739 if (col_idx != AHD_NEVER_COL_IDX 6740 && (scb->col_scb != NULL) 6741 && (scb->col_scb->flags & SCB_ACTIVE) == 0) { 6742 LIST_REMOVE(scb->col_scb, links.le); 6743 ahd_add_col_list(ahd, scb->col_scb, col_idx); 6744 } 6745 found: 6746 scb->flags |= SCB_ACTIVE; 6747 return (scb); 6748 } 6749 6750 /* 6751 * Return an SCB resource to the free list. 6752 */ 6753 void 6754 ahd_free_scb(struct ahd_softc *ahd, struct scb *scb) 6755 { 6756 /* Clean up for the next user */ 6757 scb->flags = SCB_FLAG_NONE; 6758 scb->hscb->control = 0; 6759 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = NULL; 6760 6761 if (scb->col_scb == NULL) { 6762 6763 /* 6764 * No collision possible. Just free normally. 6765 */ 6766 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, 6767 scb, links.le); 6768 } else if ((scb->col_scb->flags & SCB_ON_COL_LIST) != 0) { 6769 6770 /* 6771 * The SCB we might have collided with is on 6772 * a free collision list. Put both SCBs on 6773 * the generic list. 6774 */ 6775 ahd_rem_col_list(ahd, scb->col_scb); 6776 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, 6777 scb, links.le); 6778 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, 6779 scb->col_scb, links.le); 6780 } else if ((scb->col_scb->flags 6781 & (SCB_PACKETIZED|SCB_ACTIVE)) == SCB_ACTIVE 6782 && (scb->col_scb->hscb->control & TAG_ENB) != 0) { 6783 6784 /* 6785 * The SCB we might collide with on the next allocation 6786 * is still active in a non-packetized, tagged, context. 6787 * Put us on the SCB collision list. 6788 */ 6789 ahd_add_col_list(ahd, scb, 6790 AHD_GET_SCB_COL_IDX(ahd, scb->col_scb)); 6791 } else { 6792 /* 6793 * The SCB we might collide with on the next allocation 6794 * is either active in a packetized context, or free. 6795 * Since we can't collide, put this SCB on the generic 6796 * free list. 6797 */ 6798 LIST_INSERT_HEAD(&ahd->scb_data.any_dev_free_scb_list, 6799 scb, links.le); 6800 } 6801 6802 ahd_platform_scb_free(ahd, scb); 6803 } 6804 6805 static void 6806 ahd_alloc_scbs(struct ahd_softc *ahd) 6807 { 6808 struct scb_data *scb_data; 6809 struct scb *next_scb; 6810 struct hardware_scb *hscb; 6811 struct map_node *hscb_map; 6812 struct map_node *sg_map; 6813 struct map_node *sense_map; 6814 uint8_t *segs; 6815 uint8_t *sense_data; 6816 dma_addr_t hscb_busaddr; 6817 dma_addr_t sg_busaddr; 6818 dma_addr_t sense_busaddr; 6819 int newcount; 6820 int i; 6821 6822 scb_data = &ahd->scb_data; 6823 if (scb_data->numscbs >= AHD_SCB_MAX_ALLOC) 6824 /* Can't allocate any more */ 6825 return; 6826 6827 if (scb_data->scbs_left != 0) { 6828 int offset; 6829 6830 offset = (PAGE_SIZE / sizeof(*hscb)) - scb_data->scbs_left; 6831 hscb_map = SLIST_FIRST(&scb_data->hscb_maps); 6832 hscb = &((struct hardware_scb *)hscb_map->vaddr)[offset]; 6833 hscb_busaddr = hscb_map->physaddr + (offset * sizeof(*hscb)); 6834 } else { 6835 hscb_map = kmalloc(sizeof(*hscb_map), GFP_ATOMIC); 6836 6837 if (hscb_map == NULL) 6838 return; 6839 6840 /* Allocate the next batch of hardware SCBs */ 6841 if (ahd_dmamem_alloc(ahd, scb_data->hscb_dmat, 6842 (void **)&hscb_map->vaddr, 6843 BUS_DMA_NOWAIT, &hscb_map->dmamap) != 0) { 6844 kfree(hscb_map); 6845 return; 6846 } 6847 6848 SLIST_INSERT_HEAD(&scb_data->hscb_maps, hscb_map, links); 6849 6850 ahd_dmamap_load(ahd, scb_data->hscb_dmat, hscb_map->dmamap, 6851 hscb_map->vaddr, PAGE_SIZE, ahd_dmamap_cb, 6852 &hscb_map->physaddr, /*flags*/0); 6853 6854 hscb = (struct hardware_scb *)hscb_map->vaddr; 6855 hscb_busaddr = hscb_map->physaddr; 6856 scb_data->scbs_left = PAGE_SIZE / sizeof(*hscb); 6857 } 6858 6859 if (scb_data->sgs_left != 0) { 6860 int offset; 6861 6862 offset = ((ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd)) 6863 - scb_data->sgs_left) * ahd_sglist_size(ahd); 6864 sg_map = SLIST_FIRST(&scb_data->sg_maps); 6865 segs = sg_map->vaddr + offset; 6866 sg_busaddr = sg_map->physaddr + offset; 6867 } else { 6868 sg_map = kmalloc(sizeof(*sg_map), GFP_ATOMIC); 6869 6870 if (sg_map == NULL) 6871 return; 6872 6873 /* Allocate the next batch of S/G lists */ 6874 if (ahd_dmamem_alloc(ahd, scb_data->sg_dmat, 6875 (void **)&sg_map->vaddr, 6876 BUS_DMA_NOWAIT, &sg_map->dmamap) != 0) { 6877 kfree(sg_map); 6878 return; 6879 } 6880 6881 SLIST_INSERT_HEAD(&scb_data->sg_maps, sg_map, links); 6882 6883 ahd_dmamap_load(ahd, scb_data->sg_dmat, sg_map->dmamap, 6884 sg_map->vaddr, ahd_sglist_allocsize(ahd), 6885 ahd_dmamap_cb, &sg_map->physaddr, /*flags*/0); 6886 6887 segs = sg_map->vaddr; 6888 sg_busaddr = sg_map->physaddr; 6889 scb_data->sgs_left = 6890 ahd_sglist_allocsize(ahd) / ahd_sglist_size(ahd); 6891 #ifdef AHD_DEBUG 6892 if (ahd_debug & AHD_SHOW_MEMORY) 6893 printk("Mapped SG data\n"); 6894 #endif 6895 } 6896 6897 if (scb_data->sense_left != 0) { 6898 int offset; 6899 6900 offset = PAGE_SIZE - (AHD_SENSE_BUFSIZE * scb_data->sense_left); 6901 sense_map = SLIST_FIRST(&scb_data->sense_maps); 6902 sense_data = sense_map->vaddr + offset; 6903 sense_busaddr = sense_map->physaddr + offset; 6904 } else { 6905 sense_map = kmalloc(sizeof(*sense_map), GFP_ATOMIC); 6906 6907 if (sense_map == NULL) 6908 return; 6909 6910 /* Allocate the next batch of sense buffers */ 6911 if (ahd_dmamem_alloc(ahd, scb_data->sense_dmat, 6912 (void **)&sense_map->vaddr, 6913 BUS_DMA_NOWAIT, &sense_map->dmamap) != 0) { 6914 kfree(sense_map); 6915 return; 6916 } 6917 6918 SLIST_INSERT_HEAD(&scb_data->sense_maps, sense_map, links); 6919 6920 ahd_dmamap_load(ahd, scb_data->sense_dmat, sense_map->dmamap, 6921 sense_map->vaddr, PAGE_SIZE, ahd_dmamap_cb, 6922 &sense_map->physaddr, /*flags*/0); 6923 6924 sense_data = sense_map->vaddr; 6925 sense_busaddr = sense_map->physaddr; 6926 scb_data->sense_left = PAGE_SIZE / AHD_SENSE_BUFSIZE; 6927 #ifdef AHD_DEBUG 6928 if (ahd_debug & AHD_SHOW_MEMORY) 6929 printk("Mapped sense data\n"); 6930 #endif 6931 } 6932 6933 newcount = min(scb_data->sense_left, scb_data->scbs_left); 6934 newcount = min(newcount, scb_data->sgs_left); 6935 newcount = min(newcount, (AHD_SCB_MAX_ALLOC - scb_data->numscbs)); 6936 for (i = 0; i < newcount; i++) { 6937 struct scb_platform_data *pdata; 6938 u_int col_tag; 6939 #ifndef __linux__ 6940 int error; 6941 #endif 6942 6943 next_scb = kmalloc(sizeof(*next_scb), GFP_ATOMIC); 6944 if (next_scb == NULL) 6945 break; 6946 6947 pdata = kmalloc(sizeof(*pdata), GFP_ATOMIC); 6948 if (pdata == NULL) { 6949 kfree(next_scb); 6950 break; 6951 } 6952 next_scb->platform_data = pdata; 6953 next_scb->hscb_map = hscb_map; 6954 next_scb->sg_map = sg_map; 6955 next_scb->sense_map = sense_map; 6956 next_scb->sg_list = segs; 6957 next_scb->sense_data = sense_data; 6958 next_scb->sense_busaddr = sense_busaddr; 6959 memset(hscb, 0, sizeof(*hscb)); 6960 next_scb->hscb = hscb; 6961 hscb->hscb_busaddr = ahd_htole32(hscb_busaddr); 6962 6963 /* 6964 * The sequencer always starts with the second entry. 6965 * The first entry is embedded in the scb. 6966 */ 6967 next_scb->sg_list_busaddr = sg_busaddr; 6968 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) 6969 next_scb->sg_list_busaddr 6970 += sizeof(struct ahd_dma64_seg); 6971 else 6972 next_scb->sg_list_busaddr += sizeof(struct ahd_dma_seg); 6973 next_scb->ahd_softc = ahd; 6974 next_scb->flags = SCB_FLAG_NONE; 6975 #ifndef __linux__ 6976 error = ahd_dmamap_create(ahd, ahd->buffer_dmat, /*flags*/0, 6977 &next_scb->dmamap); 6978 if (error != 0) { 6979 kfree(next_scb); 6980 kfree(pdata); 6981 break; 6982 } 6983 #endif 6984 next_scb->hscb->tag = ahd_htole16(scb_data->numscbs); 6985 col_tag = scb_data->numscbs ^ 0x100; 6986 next_scb->col_scb = ahd_find_scb_by_tag(ahd, col_tag); 6987 if (next_scb->col_scb != NULL) 6988 next_scb->col_scb->col_scb = next_scb; 6989 ahd_free_scb(ahd, next_scb); 6990 hscb++; 6991 hscb_busaddr += sizeof(*hscb); 6992 segs += ahd_sglist_size(ahd); 6993 sg_busaddr += ahd_sglist_size(ahd); 6994 sense_data += AHD_SENSE_BUFSIZE; 6995 sense_busaddr += AHD_SENSE_BUFSIZE; 6996 scb_data->numscbs++; 6997 scb_data->sense_left--; 6998 scb_data->scbs_left--; 6999 scb_data->sgs_left--; 7000 } 7001 } 7002 7003 void 7004 ahd_controller_info(struct ahd_softc *ahd, char *buf) 7005 { 7006 const char *speed; 7007 const char *type; 7008 int len; 7009 7010 len = sprintf(buf, "%s: ", ahd_chip_names[ahd->chip & AHD_CHIPID_MASK]); 7011 buf += len; 7012 7013 speed = "Ultra320 "; 7014 if ((ahd->features & AHD_WIDE) != 0) { 7015 type = "Wide "; 7016 } else { 7017 type = "Single "; 7018 } 7019 len = sprintf(buf, "%s%sChannel %c, SCSI Id=%d, ", 7020 speed, type, ahd->channel, ahd->our_id); 7021 buf += len; 7022 7023 sprintf(buf, "%s, %d SCBs", ahd->bus_description, 7024 ahd->scb_data.maxhscbs); 7025 } 7026 7027 static const char *channel_strings[] = { 7028 "Primary Low", 7029 "Primary High", 7030 "Secondary Low", 7031 "Secondary High" 7032 }; 7033 7034 static const char *termstat_strings[] = { 7035 "Terminated Correctly", 7036 "Over Terminated", 7037 "Under Terminated", 7038 "Not Configured" 7039 }; 7040 7041 /***************************** Timer Facilities *******************************/ 7042 #define ahd_timer_init init_timer 7043 #define ahd_timer_stop del_timer_sync 7044 typedef void ahd_linux_callback_t (u_long); 7045 7046 static void 7047 ahd_timer_reset(ahd_timer_t *timer, int usec, ahd_callback_t *func, void *arg) 7048 { 7049 struct ahd_softc *ahd; 7050 7051 ahd = (struct ahd_softc *)arg; 7052 del_timer(timer); 7053 timer->data = (u_long)arg; 7054 timer->expires = jiffies + (usec * HZ)/1000000; 7055 timer->function = (ahd_linux_callback_t*)func; 7056 add_timer(timer); 7057 } 7058 7059 /* 7060 * Start the board, ready for normal operation 7061 */ 7062 int 7063 ahd_init(struct ahd_softc *ahd) 7064 { 7065 uint8_t *next_vaddr; 7066 dma_addr_t next_baddr; 7067 size_t driver_data_size; 7068 int i; 7069 int error; 7070 u_int warn_user; 7071 uint8_t current_sensing; 7072 uint8_t fstat; 7073 7074 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 7075 7076 ahd->stack_size = ahd_probe_stack_size(ahd); 7077 ahd->saved_stack = kmalloc(ahd->stack_size * sizeof(uint16_t), GFP_ATOMIC); 7078 if (ahd->saved_stack == NULL) 7079 return (ENOMEM); 7080 7081 /* 7082 * Verify that the compiler hasn't over-aggressively 7083 * padded important structures. 7084 */ 7085 if (sizeof(struct hardware_scb) != 64) 7086 panic("Hardware SCB size is incorrect"); 7087 7088 #ifdef AHD_DEBUG 7089 if ((ahd_debug & AHD_DEBUG_SEQUENCER) != 0) 7090 ahd->flags |= AHD_SEQUENCER_DEBUG; 7091 #endif 7092 7093 /* 7094 * Default to allowing initiator operations. 7095 */ 7096 ahd->flags |= AHD_INITIATORROLE; 7097 7098 /* 7099 * Only allow target mode features if this unit has them enabled. 7100 */ 7101 if ((AHD_TMODE_ENABLE & (0x1 << ahd->unit)) == 0) 7102 ahd->features &= ~AHD_TARGETMODE; 7103 7104 #ifndef __linux__ 7105 /* DMA tag for mapping buffers into device visible space. */ 7106 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1, 7107 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, 7108 /*lowaddr*/ahd->flags & AHD_39BIT_ADDRESSING 7109 ? (dma_addr_t)0x7FFFFFFFFFULL 7110 : BUS_SPACE_MAXADDR_32BIT, 7111 /*highaddr*/BUS_SPACE_MAXADDR, 7112 /*filter*/NULL, /*filterarg*/NULL, 7113 /*maxsize*/(AHD_NSEG - 1) * PAGE_SIZE, 7114 /*nsegments*/AHD_NSEG, 7115 /*maxsegsz*/AHD_MAXTRANSFER_SIZE, 7116 /*flags*/BUS_DMA_ALLOCNOW, 7117 &ahd->buffer_dmat) != 0) { 7118 return (ENOMEM); 7119 } 7120 #endif 7121 7122 ahd->init_level++; 7123 7124 /* 7125 * DMA tag for our command fifos and other data in system memory 7126 * the card's sequencer must be able to access. For initiator 7127 * roles, we need to allocate space for the qoutfifo. When providing 7128 * for the target mode role, we must additionally provide space for 7129 * the incoming target command fifo. 7130 */ 7131 driver_data_size = AHD_SCB_MAX * sizeof(*ahd->qoutfifo) 7132 + sizeof(struct hardware_scb); 7133 if ((ahd->features & AHD_TARGETMODE) != 0) 7134 driver_data_size += AHD_TMODE_CMDS * sizeof(struct target_cmd); 7135 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) 7136 driver_data_size += PKT_OVERRUN_BUFSIZE; 7137 if (ahd_dma_tag_create(ahd, ahd->parent_dmat, /*alignment*/1, 7138 /*boundary*/BUS_SPACE_MAXADDR_32BIT + 1, 7139 /*lowaddr*/BUS_SPACE_MAXADDR_32BIT, 7140 /*highaddr*/BUS_SPACE_MAXADDR, 7141 /*filter*/NULL, /*filterarg*/NULL, 7142 driver_data_size, 7143 /*nsegments*/1, 7144 /*maxsegsz*/BUS_SPACE_MAXSIZE_32BIT, 7145 /*flags*/0, &ahd->shared_data_dmat) != 0) { 7146 return (ENOMEM); 7147 } 7148 7149 ahd->init_level++; 7150 7151 /* Allocation of driver data */ 7152 if (ahd_dmamem_alloc(ahd, ahd->shared_data_dmat, 7153 (void **)&ahd->shared_data_map.vaddr, 7154 BUS_DMA_NOWAIT, 7155 &ahd->shared_data_map.dmamap) != 0) { 7156 return (ENOMEM); 7157 } 7158 7159 ahd->init_level++; 7160 7161 /* And permanently map it in */ 7162 ahd_dmamap_load(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap, 7163 ahd->shared_data_map.vaddr, driver_data_size, 7164 ahd_dmamap_cb, &ahd->shared_data_map.physaddr, 7165 /*flags*/0); 7166 ahd->qoutfifo = (struct ahd_completion *)ahd->shared_data_map.vaddr; 7167 next_vaddr = (uint8_t *)&ahd->qoutfifo[AHD_QOUT_SIZE]; 7168 next_baddr = ahd->shared_data_map.physaddr 7169 + AHD_QOUT_SIZE*sizeof(struct ahd_completion); 7170 if ((ahd->features & AHD_TARGETMODE) != 0) { 7171 ahd->targetcmds = (struct target_cmd *)next_vaddr; 7172 next_vaddr += AHD_TMODE_CMDS * sizeof(struct target_cmd); 7173 next_baddr += AHD_TMODE_CMDS * sizeof(struct target_cmd); 7174 } 7175 7176 if ((ahd->bugs & AHD_PKT_BITBUCKET_BUG) != 0) { 7177 ahd->overrun_buf = next_vaddr; 7178 next_vaddr += PKT_OVERRUN_BUFSIZE; 7179 next_baddr += PKT_OVERRUN_BUFSIZE; 7180 } 7181 7182 /* 7183 * We need one SCB to serve as the "next SCB". Since the 7184 * tag identifier in this SCB will never be used, there is 7185 * no point in using a valid HSCB tag from an SCB pulled from 7186 * the standard free pool. So, we allocate this "sentinel" 7187 * specially from the DMA safe memory chunk used for the QOUTFIFO. 7188 */ 7189 ahd->next_queued_hscb = (struct hardware_scb *)next_vaddr; 7190 ahd->next_queued_hscb_map = &ahd->shared_data_map; 7191 ahd->next_queued_hscb->hscb_busaddr = ahd_htole32(next_baddr); 7192 7193 ahd->init_level++; 7194 7195 /* Allocate SCB data now that buffer_dmat is initialized */ 7196 if (ahd_init_scbdata(ahd) != 0) 7197 return (ENOMEM); 7198 7199 if ((ahd->flags & AHD_INITIATORROLE) == 0) 7200 ahd->flags &= ~AHD_RESET_BUS_A; 7201 7202 /* 7203 * Before committing these settings to the chip, give 7204 * the OSM one last chance to modify our configuration. 7205 */ 7206 ahd_platform_init(ahd); 7207 7208 /* Bring up the chip. */ 7209 ahd_chip_init(ahd); 7210 7211 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 7212 7213 if ((ahd->flags & AHD_CURRENT_SENSING) == 0) 7214 goto init_done; 7215 7216 /* 7217 * Verify termination based on current draw and 7218 * warn user if the bus is over/under terminated. 7219 */ 7220 error = ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 7221 CURSENSE_ENB); 7222 if (error != 0) { 7223 printk("%s: current sensing timeout 1\n", ahd_name(ahd)); 7224 goto init_done; 7225 } 7226 for (i = 20, fstat = FLX_FSTAT_BUSY; 7227 (fstat & FLX_FSTAT_BUSY) != 0 && i; i--) { 7228 error = ahd_read_flexport(ahd, FLXADDR_FLEXSTAT, &fstat); 7229 if (error != 0) { 7230 printk("%s: current sensing timeout 2\n", 7231 ahd_name(ahd)); 7232 goto init_done; 7233 } 7234 } 7235 if (i == 0) { 7236 printk("%s: Timedout during current-sensing test\n", 7237 ahd_name(ahd)); 7238 goto init_done; 7239 } 7240 7241 /* Latch Current Sensing status. */ 7242 error = ahd_read_flexport(ahd, FLXADDR_CURRENT_STAT, ¤t_sensing); 7243 if (error != 0) { 7244 printk("%s: current sensing timeout 3\n", ahd_name(ahd)); 7245 goto init_done; 7246 } 7247 7248 /* Diable current sensing. */ 7249 ahd_write_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, 0); 7250 7251 #ifdef AHD_DEBUG 7252 if ((ahd_debug & AHD_SHOW_TERMCTL) != 0) { 7253 printk("%s: current_sensing == 0x%x\n", 7254 ahd_name(ahd), current_sensing); 7255 } 7256 #endif 7257 warn_user = 0; 7258 for (i = 0; i < 4; i++, current_sensing >>= FLX_CSTAT_SHIFT) { 7259 u_int term_stat; 7260 7261 term_stat = (current_sensing & FLX_CSTAT_MASK); 7262 switch (term_stat) { 7263 case FLX_CSTAT_OVER: 7264 case FLX_CSTAT_UNDER: 7265 warn_user++; 7266 case FLX_CSTAT_INVALID: 7267 case FLX_CSTAT_OKAY: 7268 if (warn_user == 0 && bootverbose == 0) 7269 break; 7270 printk("%s: %s Channel %s\n", ahd_name(ahd), 7271 channel_strings[i], termstat_strings[term_stat]); 7272 break; 7273 } 7274 } 7275 if (warn_user) { 7276 printk("%s: WARNING. Termination is not configured correctly.\n" 7277 "%s: WARNING. SCSI bus operations may FAIL.\n", 7278 ahd_name(ahd), ahd_name(ahd)); 7279 } 7280 init_done: 7281 ahd_restart(ahd); 7282 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US, 7283 ahd_stat_timer, ahd); 7284 return (0); 7285 } 7286 7287 /* 7288 * (Re)initialize chip state after a chip reset. 7289 */ 7290 static void 7291 ahd_chip_init(struct ahd_softc *ahd) 7292 { 7293 uint32_t busaddr; 7294 u_int sxfrctl1; 7295 u_int scsiseq_template; 7296 u_int wait; 7297 u_int i; 7298 u_int target; 7299 7300 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 7301 /* 7302 * Take the LED out of diagnostic mode 7303 */ 7304 ahd_outb(ahd, SBLKCTL, ahd_inb(ahd, SBLKCTL) & ~(DIAGLEDEN|DIAGLEDON)); 7305 7306 /* 7307 * Return HS_MAILBOX to its default value. 7308 */ 7309 ahd->hs_mailbox = 0; 7310 ahd_outb(ahd, HS_MAILBOX, 0); 7311 7312 /* Set the SCSI Id, SXFRCTL0, SXFRCTL1, and SIMODE1. */ 7313 ahd_outb(ahd, IOWNID, ahd->our_id); 7314 ahd_outb(ahd, TOWNID, ahd->our_id); 7315 sxfrctl1 = (ahd->flags & AHD_TERM_ENB_A) != 0 ? STPWEN : 0; 7316 sxfrctl1 |= (ahd->flags & AHD_SPCHK_ENB_A) != 0 ? ENSPCHK : 0; 7317 if ((ahd->bugs & AHD_LONG_SETIMO_BUG) 7318 && (ahd->seltime != STIMESEL_MIN)) { 7319 /* 7320 * The selection timer duration is twice as long 7321 * as it should be. Halve it by adding "1" to 7322 * the user specified setting. 7323 */ 7324 sxfrctl1 |= ahd->seltime + STIMESEL_BUG_ADJ; 7325 } else { 7326 sxfrctl1 |= ahd->seltime; 7327 } 7328 7329 ahd_outb(ahd, SXFRCTL0, DFON); 7330 ahd_outb(ahd, SXFRCTL1, sxfrctl1|ahd->seltime|ENSTIMER|ACTNEGEN); 7331 ahd_outb(ahd, SIMODE1, ENSELTIMO|ENSCSIRST|ENSCSIPERR); 7332 7333 /* 7334 * Now that termination is set, wait for up 7335 * to 500ms for our transceivers to settle. If 7336 * the adapter does not have a cable attached, 7337 * the transceivers may never settle, so don't 7338 * complain if we fail here. 7339 */ 7340 for (wait = 10000; 7341 (ahd_inb(ahd, SBLKCTL) & (ENAB40|ENAB20)) == 0 && wait; 7342 wait--) 7343 ahd_delay(100); 7344 7345 /* Clear any false bus resets due to the transceivers settling */ 7346 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI); 7347 ahd_outb(ahd, CLRINT, CLRSCSIINT); 7348 7349 /* Initialize mode specific S/G state. */ 7350 for (i = 0; i < 2; i++) { 7351 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i); 7352 ahd_outb(ahd, LONGJMP_ADDR + 1, INVALID_ADDR); 7353 ahd_outb(ahd, SG_STATE, 0); 7354 ahd_outb(ahd, CLRSEQINTSRC, 0xFF); 7355 ahd_outb(ahd, SEQIMODE, 7356 ENSAVEPTRS|ENCFG4DATA|ENCFG4ISTAT 7357 |ENCFG4TSTAT|ENCFG4ICMD|ENCFG4TCMD); 7358 } 7359 7360 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); 7361 ahd_outb(ahd, DSCOMMAND0, ahd_inb(ahd, DSCOMMAND0)|MPARCKEN|CACHETHEN); 7362 ahd_outb(ahd, DFF_THRSH, RD_DFTHRSH_75|WR_DFTHRSH_75); 7363 ahd_outb(ahd, SIMODE0, ENIOERR|ENOVERRUN); 7364 ahd_outb(ahd, SIMODE3, ENNTRAMPERR|ENOSRAMPERR); 7365 if ((ahd->bugs & AHD_BUSFREEREV_BUG) != 0) { 7366 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|AUTO_MSGOUT_DE); 7367 } else { 7368 ahd_outb(ahd, OPTIONMODE, AUTOACKEN|BUSFREEREV|AUTO_MSGOUT_DE); 7369 } 7370 ahd_outb(ahd, SCSCHKN, CURRFIFODEF|WIDERESEN|SHVALIDSTDIS); 7371 if ((ahd->chip & AHD_BUS_MASK) == AHD_PCIX) 7372 /* 7373 * Do not issue a target abort when a split completion 7374 * error occurs. Let our PCIX interrupt handler deal 7375 * with it instead. H2A4 Razor #625 7376 */ 7377 ahd_outb(ahd, PCIXCTL, ahd_inb(ahd, PCIXCTL) | SPLTSTADIS); 7378 7379 if ((ahd->bugs & AHD_LQOOVERRUN_BUG) != 0) 7380 ahd_outb(ahd, LQOSCSCTL, LQONOCHKOVER); 7381 7382 /* 7383 * Tweak IOCELL settings. 7384 */ 7385 if ((ahd->flags & AHD_HP_BOARD) != 0) { 7386 for (i = 0; i < NUMDSPS; i++) { 7387 ahd_outb(ahd, DSPSELECT, i); 7388 ahd_outb(ahd, WRTBIASCTL, WRTBIASCTL_HP_DEFAULT); 7389 } 7390 #ifdef AHD_DEBUG 7391 if ((ahd_debug & AHD_SHOW_MISC) != 0) 7392 printk("%s: WRTBIASCTL now 0x%x\n", ahd_name(ahd), 7393 WRTBIASCTL_HP_DEFAULT); 7394 #endif 7395 } 7396 ahd_setup_iocell_workaround(ahd); 7397 7398 /* 7399 * Enable LQI Manager interrupts. 7400 */ 7401 ahd_outb(ahd, LQIMODE1, ENLQIPHASE_LQ|ENLQIPHASE_NLQ|ENLIQABORT 7402 | ENLQICRCI_LQ|ENLQICRCI_NLQ|ENLQIBADLQI 7403 | ENLQIOVERI_LQ|ENLQIOVERI_NLQ); 7404 ahd_outb(ahd, LQOMODE0, ENLQOATNLQ|ENLQOATNPKT|ENLQOTCRC); 7405 /* 7406 * We choose to have the sequencer catch LQOPHCHGINPKT errors 7407 * manually for the command phase at the start of a packetized 7408 * selection case. ENLQOBUSFREE should be made redundant by 7409 * the BUSFREE interrupt, but it seems that some LQOBUSFREE 7410 * events fail to assert the BUSFREE interrupt so we must 7411 * also enable LQOBUSFREE interrupts. 7412 */ 7413 ahd_outb(ahd, LQOMODE1, ENLQOBUSFREE); 7414 7415 /* 7416 * Setup sequencer interrupt handlers. 7417 */ 7418 ahd_outw(ahd, INTVEC1_ADDR, ahd_resolve_seqaddr(ahd, LABEL_seq_isr)); 7419 ahd_outw(ahd, INTVEC2_ADDR, ahd_resolve_seqaddr(ahd, LABEL_timer_isr)); 7420 7421 /* 7422 * Setup SCB Offset registers. 7423 */ 7424 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { 7425 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, 7426 pkt_long_lun)); 7427 } else { 7428 ahd_outb(ahd, LUNPTR, offsetof(struct hardware_scb, lun)); 7429 } 7430 ahd_outb(ahd, CMDLENPTR, offsetof(struct hardware_scb, cdb_len)); 7431 ahd_outb(ahd, ATTRPTR, offsetof(struct hardware_scb, task_attribute)); 7432 ahd_outb(ahd, FLAGPTR, offsetof(struct hardware_scb, task_management)); 7433 ahd_outb(ahd, CMDPTR, offsetof(struct hardware_scb, 7434 shared_data.idata.cdb)); 7435 ahd_outb(ahd, QNEXTPTR, 7436 offsetof(struct hardware_scb, next_hscb_busaddr)); 7437 ahd_outb(ahd, ABRTBITPTR, MK_MESSAGE_BIT_OFFSET); 7438 ahd_outb(ahd, ABRTBYTEPTR, offsetof(struct hardware_scb, control)); 7439 if ((ahd->bugs & AHD_PKT_LUN_BUG) != 0) { 7440 ahd_outb(ahd, LUNLEN, 7441 sizeof(ahd->next_queued_hscb->pkt_long_lun) - 1); 7442 } else { 7443 ahd_outb(ahd, LUNLEN, LUNLEN_SINGLE_LEVEL_LUN); 7444 } 7445 ahd_outb(ahd, CDBLIMIT, SCB_CDB_LEN_PTR - 1); 7446 ahd_outb(ahd, MAXCMD, 0xFF); 7447 ahd_outb(ahd, SCBAUTOPTR, 7448 AUSCBPTR_EN | offsetof(struct hardware_scb, tag)); 7449 7450 /* We haven't been enabled for target mode yet. */ 7451 ahd_outb(ahd, MULTARGID, 0); 7452 ahd_outb(ahd, MULTARGID + 1, 0); 7453 7454 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 7455 /* Initialize the negotiation table. */ 7456 if ((ahd->features & AHD_NEW_IOCELL_OPTS) == 0) { 7457 /* 7458 * Clear the spare bytes in the neg table to avoid 7459 * spurious parity errors. 7460 */ 7461 for (target = 0; target < AHD_NUM_TARGETS; target++) { 7462 ahd_outb(ahd, NEGOADDR, target); 7463 ahd_outb(ahd, ANNEXCOL, AHD_ANNEXCOL_PER_DEV0); 7464 for (i = 0; i < AHD_NUM_PER_DEV_ANNEXCOLS; i++) 7465 ahd_outb(ahd, ANNEXDAT, 0); 7466 } 7467 } 7468 for (target = 0; target < AHD_NUM_TARGETS; target++) { 7469 struct ahd_devinfo devinfo; 7470 struct ahd_initiator_tinfo *tinfo; 7471 struct ahd_tmode_tstate *tstate; 7472 7473 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, 7474 target, &tstate); 7475 ahd_compile_devinfo(&devinfo, ahd->our_id, 7476 target, CAM_LUN_WILDCARD, 7477 'A', ROLE_INITIATOR); 7478 ahd_update_neg_table(ahd, &devinfo, &tinfo->curr); 7479 } 7480 7481 ahd_outb(ahd, CLRSINT3, NTRAMPERR|OSRAMPERR); 7482 ahd_outb(ahd, CLRINT, CLRSCSIINT); 7483 7484 #ifdef NEEDS_MORE_TESTING 7485 /* 7486 * Always enable abort on incoming L_Qs if this feature is 7487 * supported. We use this to catch invalid SCB references. 7488 */ 7489 if ((ahd->bugs & AHD_ABORT_LQI_BUG) == 0) 7490 ahd_outb(ahd, LQCTL1, ABORTPENDING); 7491 else 7492 #endif 7493 ahd_outb(ahd, LQCTL1, 0); 7494 7495 /* All of our queues are empty */ 7496 ahd->qoutfifonext = 0; 7497 ahd->qoutfifonext_valid_tag = QOUTFIFO_ENTRY_VALID; 7498 ahd_outb(ahd, QOUTFIFO_ENTRY_VALID_TAG, QOUTFIFO_ENTRY_VALID); 7499 for (i = 0; i < AHD_QOUT_SIZE; i++) 7500 ahd->qoutfifo[i].valid_tag = 0; 7501 ahd_sync_qoutfifo(ahd, BUS_DMASYNC_PREREAD); 7502 7503 ahd->qinfifonext = 0; 7504 for (i = 0; i < AHD_QIN_SIZE; i++) 7505 ahd->qinfifo[i] = SCB_LIST_NULL; 7506 7507 if ((ahd->features & AHD_TARGETMODE) != 0) { 7508 /* All target command blocks start out invalid. */ 7509 for (i = 0; i < AHD_TMODE_CMDS; i++) 7510 ahd->targetcmds[i].cmd_valid = 0; 7511 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_PREREAD); 7512 ahd->tqinfifonext = 1; 7513 ahd_outb(ahd, KERNEL_TQINPOS, ahd->tqinfifonext - 1); 7514 ahd_outb(ahd, TQINPOS, ahd->tqinfifonext); 7515 } 7516 7517 /* Initialize Scratch Ram. */ 7518 ahd_outb(ahd, SEQ_FLAGS, 0); 7519 ahd_outb(ahd, SEQ_FLAGS2, 0); 7520 7521 /* We don't have any waiting selections */ 7522 ahd_outw(ahd, WAITING_TID_HEAD, SCB_LIST_NULL); 7523 ahd_outw(ahd, WAITING_TID_TAIL, SCB_LIST_NULL); 7524 ahd_outw(ahd, MK_MESSAGE_SCB, SCB_LIST_NULL); 7525 ahd_outw(ahd, MK_MESSAGE_SCSIID, 0xFF); 7526 for (i = 0; i < AHD_NUM_TARGETS; i++) 7527 ahd_outw(ahd, WAITING_SCB_TAILS + (2 * i), SCB_LIST_NULL); 7528 7529 /* 7530 * Nobody is waiting to be DMAed into the QOUTFIFO. 7531 */ 7532 ahd_outw(ahd, COMPLETE_SCB_HEAD, SCB_LIST_NULL); 7533 ahd_outw(ahd, COMPLETE_SCB_DMAINPROG_HEAD, SCB_LIST_NULL); 7534 ahd_outw(ahd, COMPLETE_DMA_SCB_HEAD, SCB_LIST_NULL); 7535 ahd_outw(ahd, COMPLETE_DMA_SCB_TAIL, SCB_LIST_NULL); 7536 ahd_outw(ahd, COMPLETE_ON_QFREEZE_HEAD, SCB_LIST_NULL); 7537 7538 /* 7539 * The Freeze Count is 0. 7540 */ 7541 ahd->qfreeze_cnt = 0; 7542 ahd_outw(ahd, QFREEZE_COUNT, 0); 7543 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, 0); 7544 7545 /* 7546 * Tell the sequencer where it can find our arrays in memory. 7547 */ 7548 busaddr = ahd->shared_data_map.physaddr; 7549 ahd_outl(ahd, SHARED_DATA_ADDR, busaddr); 7550 ahd_outl(ahd, QOUTFIFO_NEXT_ADDR, busaddr); 7551 7552 /* 7553 * Setup the allowed SCSI Sequences based on operational mode. 7554 * If we are a target, we'll enable select in operations once 7555 * we've had a lun enabled. 7556 */ 7557 scsiseq_template = ENAUTOATNP; 7558 if ((ahd->flags & AHD_INITIATORROLE) != 0) 7559 scsiseq_template |= ENRSELI; 7560 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq_template); 7561 7562 /* There are no busy SCBs yet. */ 7563 for (target = 0; target < AHD_NUM_TARGETS; target++) { 7564 int lun; 7565 7566 for (lun = 0; lun < AHD_NUM_LUNS_NONPKT; lun++) 7567 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(target, 'A', lun)); 7568 } 7569 7570 /* 7571 * Initialize the group code to command length table. 7572 * Vendor Unique codes are set to 0 so we only capture 7573 * the first byte of the cdb. These can be overridden 7574 * when target mode is enabled. 7575 */ 7576 ahd_outb(ahd, CMDSIZE_TABLE, 5); 7577 ahd_outb(ahd, CMDSIZE_TABLE + 1, 9); 7578 ahd_outb(ahd, CMDSIZE_TABLE + 2, 9); 7579 ahd_outb(ahd, CMDSIZE_TABLE + 3, 0); 7580 ahd_outb(ahd, CMDSIZE_TABLE + 4, 15); 7581 ahd_outb(ahd, CMDSIZE_TABLE + 5, 11); 7582 ahd_outb(ahd, CMDSIZE_TABLE + 6, 0); 7583 ahd_outb(ahd, CMDSIZE_TABLE + 7, 0); 7584 7585 /* Tell the sequencer of our initial queue positions */ 7586 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); 7587 ahd_outb(ahd, QOFF_CTLSTA, SCB_QSIZE_512); 7588 ahd->qinfifonext = 0; 7589 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); 7590 ahd_set_hescb_qoff(ahd, 0); 7591 ahd_set_snscb_qoff(ahd, 0); 7592 ahd_set_sescb_qoff(ahd, 0); 7593 ahd_set_sdscb_qoff(ahd, 0); 7594 7595 /* 7596 * Tell the sequencer which SCB will be the next one it receives. 7597 */ 7598 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr); 7599 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr); 7600 7601 /* 7602 * Default to coalescing disabled. 7603 */ 7604 ahd_outw(ahd, INT_COALESCING_CMDCOUNT, 0); 7605 ahd_outw(ahd, CMDS_PENDING, 0); 7606 ahd_update_coalescing_values(ahd, ahd->int_coalescing_timer, 7607 ahd->int_coalescing_maxcmds, 7608 ahd->int_coalescing_mincmds); 7609 ahd_enable_coalescing(ahd, FALSE); 7610 7611 ahd_loadseq(ahd); 7612 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 7613 7614 if (ahd->features & AHD_AIC79XXB_SLOWCRC) { 7615 u_int negodat3 = ahd_inb(ahd, NEGCONOPTS); 7616 7617 negodat3 |= ENSLOWCRC; 7618 ahd_outb(ahd, NEGCONOPTS, negodat3); 7619 negodat3 = ahd_inb(ahd, NEGCONOPTS); 7620 if (!(negodat3 & ENSLOWCRC)) 7621 printk("aic79xx: failed to set the SLOWCRC bit\n"); 7622 else 7623 printk("aic79xx: SLOWCRC bit set\n"); 7624 } 7625 } 7626 7627 /* 7628 * Setup default device and controller settings. 7629 * This should only be called if our probe has 7630 * determined that no configuration data is available. 7631 */ 7632 int 7633 ahd_default_config(struct ahd_softc *ahd) 7634 { 7635 int targ; 7636 7637 ahd->our_id = 7; 7638 7639 /* 7640 * Allocate a tstate to house information for our 7641 * initiator presence on the bus as well as the user 7642 * data for any target mode initiator. 7643 */ 7644 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) { 7645 printk("%s: unable to allocate ahd_tmode_tstate. " 7646 "Failing attach\n", ahd_name(ahd)); 7647 return (ENOMEM); 7648 } 7649 7650 for (targ = 0; targ < AHD_NUM_TARGETS; targ++) { 7651 struct ahd_devinfo devinfo; 7652 struct ahd_initiator_tinfo *tinfo; 7653 struct ahd_tmode_tstate *tstate; 7654 uint16_t target_mask; 7655 7656 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, 7657 targ, &tstate); 7658 /* 7659 * We support SPC2 and SPI4. 7660 */ 7661 tinfo->user.protocol_version = 4; 7662 tinfo->user.transport_version = 4; 7663 7664 target_mask = 0x01 << targ; 7665 ahd->user_discenable |= target_mask; 7666 tstate->discenable |= target_mask; 7667 ahd->user_tagenable |= target_mask; 7668 #ifdef AHD_FORCE_160 7669 tinfo->user.period = AHD_SYNCRATE_DT; 7670 #else 7671 tinfo->user.period = AHD_SYNCRATE_160; 7672 #endif 7673 tinfo->user.offset = MAX_OFFSET; 7674 tinfo->user.ppr_options = MSG_EXT_PPR_RD_STRM 7675 | MSG_EXT_PPR_WR_FLOW 7676 | MSG_EXT_PPR_HOLD_MCS 7677 | MSG_EXT_PPR_IU_REQ 7678 | MSG_EXT_PPR_QAS_REQ 7679 | MSG_EXT_PPR_DT_REQ; 7680 if ((ahd->features & AHD_RTI) != 0) 7681 tinfo->user.ppr_options |= MSG_EXT_PPR_RTI; 7682 7683 tinfo->user.width = MSG_EXT_WDTR_BUS_16_BIT; 7684 7685 /* 7686 * Start out Async/Narrow/Untagged and with 7687 * conservative protocol support. 7688 */ 7689 tinfo->goal.protocol_version = 2; 7690 tinfo->goal.transport_version = 2; 7691 tinfo->curr.protocol_version = 2; 7692 tinfo->curr.transport_version = 2; 7693 ahd_compile_devinfo(&devinfo, ahd->our_id, 7694 targ, CAM_LUN_WILDCARD, 7695 'A', ROLE_INITIATOR); 7696 tstate->tagenable &= ~target_mask; 7697 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, 7698 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE); 7699 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0, 7700 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL, 7701 /*paused*/TRUE); 7702 } 7703 return (0); 7704 } 7705 7706 /* 7707 * Parse device configuration information. 7708 */ 7709 int 7710 ahd_parse_cfgdata(struct ahd_softc *ahd, struct seeprom_config *sc) 7711 { 7712 int targ; 7713 int max_targ; 7714 7715 max_targ = sc->max_targets & CFMAXTARG; 7716 ahd->our_id = sc->brtime_id & CFSCSIID; 7717 7718 /* 7719 * Allocate a tstate to house information for our 7720 * initiator presence on the bus as well as the user 7721 * data for any target mode initiator. 7722 */ 7723 if (ahd_alloc_tstate(ahd, ahd->our_id, 'A') == NULL) { 7724 printk("%s: unable to allocate ahd_tmode_tstate. " 7725 "Failing attach\n", ahd_name(ahd)); 7726 return (ENOMEM); 7727 } 7728 7729 for (targ = 0; targ < max_targ; targ++) { 7730 struct ahd_devinfo devinfo; 7731 struct ahd_initiator_tinfo *tinfo; 7732 struct ahd_transinfo *user_tinfo; 7733 struct ahd_tmode_tstate *tstate; 7734 uint16_t target_mask; 7735 7736 tinfo = ahd_fetch_transinfo(ahd, 'A', ahd->our_id, 7737 targ, &tstate); 7738 user_tinfo = &tinfo->user; 7739 7740 /* 7741 * We support SPC2 and SPI4. 7742 */ 7743 tinfo->user.protocol_version = 4; 7744 tinfo->user.transport_version = 4; 7745 7746 target_mask = 0x01 << targ; 7747 ahd->user_discenable &= ~target_mask; 7748 tstate->discenable &= ~target_mask; 7749 ahd->user_tagenable &= ~target_mask; 7750 if (sc->device_flags[targ] & CFDISC) { 7751 tstate->discenable |= target_mask; 7752 ahd->user_discenable |= target_mask; 7753 ahd->user_tagenable |= target_mask; 7754 } else { 7755 /* 7756 * Cannot be packetized without disconnection. 7757 */ 7758 sc->device_flags[targ] &= ~CFPACKETIZED; 7759 } 7760 7761 user_tinfo->ppr_options = 0; 7762 user_tinfo->period = (sc->device_flags[targ] & CFXFER); 7763 if (user_tinfo->period < CFXFER_ASYNC) { 7764 if (user_tinfo->period <= AHD_PERIOD_10MHz) 7765 user_tinfo->ppr_options |= MSG_EXT_PPR_DT_REQ; 7766 user_tinfo->offset = MAX_OFFSET; 7767 } else { 7768 user_tinfo->offset = 0; 7769 user_tinfo->period = AHD_ASYNC_XFER_PERIOD; 7770 } 7771 #ifdef AHD_FORCE_160 7772 if (user_tinfo->period <= AHD_SYNCRATE_160) 7773 user_tinfo->period = AHD_SYNCRATE_DT; 7774 #endif 7775 7776 if ((sc->device_flags[targ] & CFPACKETIZED) != 0) { 7777 user_tinfo->ppr_options |= MSG_EXT_PPR_RD_STRM 7778 | MSG_EXT_PPR_WR_FLOW 7779 | MSG_EXT_PPR_HOLD_MCS 7780 | MSG_EXT_PPR_IU_REQ; 7781 if ((ahd->features & AHD_RTI) != 0) 7782 user_tinfo->ppr_options |= MSG_EXT_PPR_RTI; 7783 } 7784 7785 if ((sc->device_flags[targ] & CFQAS) != 0) 7786 user_tinfo->ppr_options |= MSG_EXT_PPR_QAS_REQ; 7787 7788 if ((sc->device_flags[targ] & CFWIDEB) != 0) 7789 user_tinfo->width = MSG_EXT_WDTR_BUS_16_BIT; 7790 else 7791 user_tinfo->width = MSG_EXT_WDTR_BUS_8_BIT; 7792 #ifdef AHD_DEBUG 7793 if ((ahd_debug & AHD_SHOW_MISC) != 0) 7794 printk("(%d): %x:%x:%x:%x\n", targ, user_tinfo->width, 7795 user_tinfo->period, user_tinfo->offset, 7796 user_tinfo->ppr_options); 7797 #endif 7798 /* 7799 * Start out Async/Narrow/Untagged and with 7800 * conservative protocol support. 7801 */ 7802 tstate->tagenable &= ~target_mask; 7803 tinfo->goal.protocol_version = 2; 7804 tinfo->goal.transport_version = 2; 7805 tinfo->curr.protocol_version = 2; 7806 tinfo->curr.transport_version = 2; 7807 ahd_compile_devinfo(&devinfo, ahd->our_id, 7808 targ, CAM_LUN_WILDCARD, 7809 'A', ROLE_INITIATOR); 7810 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, 7811 AHD_TRANS_CUR|AHD_TRANS_GOAL, /*paused*/TRUE); 7812 ahd_set_syncrate(ahd, &devinfo, /*period*/0, /*offset*/0, 7813 /*ppr_options*/0, AHD_TRANS_CUR|AHD_TRANS_GOAL, 7814 /*paused*/TRUE); 7815 } 7816 7817 ahd->flags &= ~AHD_SPCHK_ENB_A; 7818 if (sc->bios_control & CFSPARITY) 7819 ahd->flags |= AHD_SPCHK_ENB_A; 7820 7821 ahd->flags &= ~AHD_RESET_BUS_A; 7822 if (sc->bios_control & CFRESETB) 7823 ahd->flags |= AHD_RESET_BUS_A; 7824 7825 ahd->flags &= ~AHD_EXTENDED_TRANS_A; 7826 if (sc->bios_control & CFEXTEND) 7827 ahd->flags |= AHD_EXTENDED_TRANS_A; 7828 7829 ahd->flags &= ~AHD_BIOS_ENABLED; 7830 if ((sc->bios_control & CFBIOSSTATE) == CFBS_ENABLED) 7831 ahd->flags |= AHD_BIOS_ENABLED; 7832 7833 ahd->flags &= ~AHD_STPWLEVEL_A; 7834 if ((sc->adapter_control & CFSTPWLEVEL) != 0) 7835 ahd->flags |= AHD_STPWLEVEL_A; 7836 7837 return (0); 7838 } 7839 7840 /* 7841 * Parse device configuration information. 7842 */ 7843 int 7844 ahd_parse_vpddata(struct ahd_softc *ahd, struct vpd_config *vpd) 7845 { 7846 int error; 7847 7848 error = ahd_verify_vpd_cksum(vpd); 7849 if (error == 0) 7850 return (EINVAL); 7851 if ((vpd->bios_flags & VPDBOOTHOST) != 0) 7852 ahd->flags |= AHD_BOOT_CHANNEL; 7853 return (0); 7854 } 7855 7856 void 7857 ahd_intr_enable(struct ahd_softc *ahd, int enable) 7858 { 7859 u_int hcntrl; 7860 7861 hcntrl = ahd_inb(ahd, HCNTRL); 7862 hcntrl &= ~INTEN; 7863 ahd->pause &= ~INTEN; 7864 ahd->unpause &= ~INTEN; 7865 if (enable) { 7866 hcntrl |= INTEN; 7867 ahd->pause |= INTEN; 7868 ahd->unpause |= INTEN; 7869 } 7870 ahd_outb(ahd, HCNTRL, hcntrl); 7871 } 7872 7873 static void 7874 ahd_update_coalescing_values(struct ahd_softc *ahd, u_int timer, u_int maxcmds, 7875 u_int mincmds) 7876 { 7877 if (timer > AHD_TIMER_MAX_US) 7878 timer = AHD_TIMER_MAX_US; 7879 ahd->int_coalescing_timer = timer; 7880 7881 if (maxcmds > AHD_INT_COALESCING_MAXCMDS_MAX) 7882 maxcmds = AHD_INT_COALESCING_MAXCMDS_MAX; 7883 if (mincmds > AHD_INT_COALESCING_MINCMDS_MAX) 7884 mincmds = AHD_INT_COALESCING_MINCMDS_MAX; 7885 ahd->int_coalescing_maxcmds = maxcmds; 7886 ahd_outw(ahd, INT_COALESCING_TIMER, timer / AHD_TIMER_US_PER_TICK); 7887 ahd_outb(ahd, INT_COALESCING_MAXCMDS, -maxcmds); 7888 ahd_outb(ahd, INT_COALESCING_MINCMDS, -mincmds); 7889 } 7890 7891 static void 7892 ahd_enable_coalescing(struct ahd_softc *ahd, int enable) 7893 { 7894 7895 ahd->hs_mailbox &= ~ENINT_COALESCE; 7896 if (enable) 7897 ahd->hs_mailbox |= ENINT_COALESCE; 7898 ahd_outb(ahd, HS_MAILBOX, ahd->hs_mailbox); 7899 ahd_flush_device_writes(ahd); 7900 ahd_run_qoutfifo(ahd); 7901 } 7902 7903 /* 7904 * Ensure that the card is paused in a location 7905 * outside of all critical sections and that all 7906 * pending work is completed prior to returning. 7907 * This routine should only be called from outside 7908 * an interrupt context. 7909 */ 7910 void 7911 ahd_pause_and_flushwork(struct ahd_softc *ahd) 7912 { 7913 u_int intstat; 7914 u_int maxloops; 7915 7916 maxloops = 1000; 7917 ahd->flags |= AHD_ALL_INTERRUPTS; 7918 ahd_pause(ahd); 7919 /* 7920 * Freeze the outgoing selections. We do this only 7921 * until we are safely paused without further selections 7922 * pending. 7923 */ 7924 ahd->qfreeze_cnt--; 7925 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt); 7926 ahd_outb(ahd, SEQ_FLAGS2, ahd_inb(ahd, SEQ_FLAGS2) | SELECTOUT_QFROZEN); 7927 do { 7928 7929 ahd_unpause(ahd); 7930 /* 7931 * Give the sequencer some time to service 7932 * any active selections. 7933 */ 7934 ahd_delay(500); 7935 7936 ahd_intr(ahd); 7937 ahd_pause(ahd); 7938 intstat = ahd_inb(ahd, INTSTAT); 7939 if ((intstat & INT_PEND) == 0) { 7940 ahd_clear_critical_section(ahd); 7941 intstat = ahd_inb(ahd, INTSTAT); 7942 } 7943 } while (--maxloops 7944 && (intstat != 0xFF || (ahd->features & AHD_REMOVABLE) == 0) 7945 && ((intstat & INT_PEND) != 0 7946 || (ahd_inb(ahd, SCSISEQ0) & ENSELO) != 0 7947 || (ahd_inb(ahd, SSTAT0) & (SELDO|SELINGO)) != 0)); 7948 7949 if (maxloops == 0) { 7950 printk("Infinite interrupt loop, INTSTAT = %x", 7951 ahd_inb(ahd, INTSTAT)); 7952 } 7953 ahd->qfreeze_cnt++; 7954 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt); 7955 7956 ahd_flush_qoutfifo(ahd); 7957 7958 ahd->flags &= ~AHD_ALL_INTERRUPTS; 7959 } 7960 7961 #ifdef CONFIG_PM 7962 int 7963 ahd_suspend(struct ahd_softc *ahd) 7964 { 7965 7966 ahd_pause_and_flushwork(ahd); 7967 7968 if (LIST_FIRST(&ahd->pending_scbs) != NULL) { 7969 ahd_unpause(ahd); 7970 return (EBUSY); 7971 } 7972 ahd_shutdown(ahd); 7973 return (0); 7974 } 7975 7976 void 7977 ahd_resume(struct ahd_softc *ahd) 7978 { 7979 7980 ahd_reset(ahd, /*reinit*/TRUE); 7981 ahd_intr_enable(ahd, TRUE); 7982 ahd_restart(ahd); 7983 } 7984 #endif 7985 7986 /************************** Busy Target Table *********************************/ 7987 /* 7988 * Set SCBPTR to the SCB that contains the busy 7989 * table entry for TCL. Return the offset into 7990 * the SCB that contains the entry for TCL. 7991 * saved_scbid is dereferenced and set to the 7992 * scbid that should be restored once manipualtion 7993 * of the TCL entry is complete. 7994 */ 7995 static inline u_int 7996 ahd_index_busy_tcl(struct ahd_softc *ahd, u_int *saved_scbid, u_int tcl) 7997 { 7998 /* 7999 * Index to the SCB that contains the busy entry. 8000 */ 8001 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 8002 *saved_scbid = ahd_get_scbptr(ahd); 8003 ahd_set_scbptr(ahd, TCL_LUN(tcl) 8004 | ((TCL_TARGET_OFFSET(tcl) & 0xC) << 4)); 8005 8006 /* 8007 * And now calculate the SCB offset to the entry. 8008 * Each entry is 2 bytes wide, hence the 8009 * multiplication by 2. 8010 */ 8011 return (((TCL_TARGET_OFFSET(tcl) & 0x3) << 1) + SCB_DISCONNECTED_LISTS); 8012 } 8013 8014 /* 8015 * Return the untagged transaction id for a given target/channel lun. 8016 */ 8017 static u_int 8018 ahd_find_busy_tcl(struct ahd_softc *ahd, u_int tcl) 8019 { 8020 u_int scbid; 8021 u_int scb_offset; 8022 u_int saved_scbptr; 8023 8024 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl); 8025 scbid = ahd_inw_scbram(ahd, scb_offset); 8026 ahd_set_scbptr(ahd, saved_scbptr); 8027 return (scbid); 8028 } 8029 8030 static void 8031 ahd_busy_tcl(struct ahd_softc *ahd, u_int tcl, u_int scbid) 8032 { 8033 u_int scb_offset; 8034 u_int saved_scbptr; 8035 8036 scb_offset = ahd_index_busy_tcl(ahd, &saved_scbptr, tcl); 8037 ahd_outw(ahd, scb_offset, scbid); 8038 ahd_set_scbptr(ahd, saved_scbptr); 8039 } 8040 8041 /************************** SCB and SCB queue management **********************/ 8042 static int 8043 ahd_match_scb(struct ahd_softc *ahd, struct scb *scb, int target, 8044 char channel, int lun, u_int tag, role_t role) 8045 { 8046 int targ = SCB_GET_TARGET(ahd, scb); 8047 char chan = SCB_GET_CHANNEL(ahd, scb); 8048 int slun = SCB_GET_LUN(scb); 8049 int match; 8050 8051 match = ((chan == channel) || (channel == ALL_CHANNELS)); 8052 if (match != 0) 8053 match = ((targ == target) || (target == CAM_TARGET_WILDCARD)); 8054 if (match != 0) 8055 match = ((lun == slun) || (lun == CAM_LUN_WILDCARD)); 8056 if (match != 0) { 8057 #ifdef AHD_TARGET_MODE 8058 int group; 8059 8060 group = XPT_FC_GROUP(scb->io_ctx->ccb_h.func_code); 8061 if (role == ROLE_INITIATOR) { 8062 match = (group != XPT_FC_GROUP_TMODE) 8063 && ((tag == SCB_GET_TAG(scb)) 8064 || (tag == SCB_LIST_NULL)); 8065 } else if (role == ROLE_TARGET) { 8066 match = (group == XPT_FC_GROUP_TMODE) 8067 && ((tag == scb->io_ctx->csio.tag_id) 8068 || (tag == SCB_LIST_NULL)); 8069 } 8070 #else /* !AHD_TARGET_MODE */ 8071 match = ((tag == SCB_GET_TAG(scb)) || (tag == SCB_LIST_NULL)); 8072 #endif /* AHD_TARGET_MODE */ 8073 } 8074 8075 return match; 8076 } 8077 8078 static void 8079 ahd_freeze_devq(struct ahd_softc *ahd, struct scb *scb) 8080 { 8081 int target; 8082 char channel; 8083 int lun; 8084 8085 target = SCB_GET_TARGET(ahd, scb); 8086 lun = SCB_GET_LUN(scb); 8087 channel = SCB_GET_CHANNEL(ahd, scb); 8088 8089 ahd_search_qinfifo(ahd, target, channel, lun, 8090 /*tag*/SCB_LIST_NULL, ROLE_UNKNOWN, 8091 CAM_REQUEUE_REQ, SEARCH_COMPLETE); 8092 8093 ahd_platform_freeze_devq(ahd, scb); 8094 } 8095 8096 void 8097 ahd_qinfifo_requeue_tail(struct ahd_softc *ahd, struct scb *scb) 8098 { 8099 struct scb *prev_scb; 8100 ahd_mode_state saved_modes; 8101 8102 saved_modes = ahd_save_modes(ahd); 8103 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); 8104 prev_scb = NULL; 8105 if (ahd_qinfifo_count(ahd) != 0) { 8106 u_int prev_tag; 8107 u_int prev_pos; 8108 8109 prev_pos = AHD_QIN_WRAP(ahd->qinfifonext - 1); 8110 prev_tag = ahd->qinfifo[prev_pos]; 8111 prev_scb = ahd_lookup_scb(ahd, prev_tag); 8112 } 8113 ahd_qinfifo_requeue(ahd, prev_scb, scb); 8114 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); 8115 ahd_restore_modes(ahd, saved_modes); 8116 } 8117 8118 static void 8119 ahd_qinfifo_requeue(struct ahd_softc *ahd, struct scb *prev_scb, 8120 struct scb *scb) 8121 { 8122 if (prev_scb == NULL) { 8123 uint32_t busaddr; 8124 8125 busaddr = ahd_le32toh(scb->hscb->hscb_busaddr); 8126 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr); 8127 } else { 8128 prev_scb->hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr; 8129 ahd_sync_scb(ahd, prev_scb, 8130 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 8131 } 8132 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb); 8133 ahd->qinfifonext++; 8134 scb->hscb->next_hscb_busaddr = ahd->next_queued_hscb->hscb_busaddr; 8135 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); 8136 } 8137 8138 static int 8139 ahd_qinfifo_count(struct ahd_softc *ahd) 8140 { 8141 u_int qinpos; 8142 u_int wrap_qinpos; 8143 u_int wrap_qinfifonext; 8144 8145 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK); 8146 qinpos = ahd_get_snscb_qoff(ahd); 8147 wrap_qinpos = AHD_QIN_WRAP(qinpos); 8148 wrap_qinfifonext = AHD_QIN_WRAP(ahd->qinfifonext); 8149 if (wrap_qinfifonext >= wrap_qinpos) 8150 return (wrap_qinfifonext - wrap_qinpos); 8151 else 8152 return (wrap_qinfifonext 8153 + ARRAY_SIZE(ahd->qinfifo) - wrap_qinpos); 8154 } 8155 8156 static void 8157 ahd_reset_cmds_pending(struct ahd_softc *ahd) 8158 { 8159 struct scb *scb; 8160 ahd_mode_state saved_modes; 8161 u_int pending_cmds; 8162 8163 saved_modes = ahd_save_modes(ahd); 8164 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); 8165 8166 /* 8167 * Don't count any commands as outstanding that the 8168 * sequencer has already marked for completion. 8169 */ 8170 ahd_flush_qoutfifo(ahd); 8171 8172 pending_cmds = 0; 8173 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { 8174 pending_cmds++; 8175 } 8176 ahd_outw(ahd, CMDS_PENDING, pending_cmds - ahd_qinfifo_count(ahd)); 8177 ahd_restore_modes(ahd, saved_modes); 8178 ahd->flags &= ~AHD_UPDATE_PEND_CMDS; 8179 } 8180 8181 static void 8182 ahd_done_with_status(struct ahd_softc *ahd, struct scb *scb, uint32_t status) 8183 { 8184 cam_status ostat; 8185 cam_status cstat; 8186 8187 ostat = ahd_get_transaction_status(scb); 8188 if (ostat == CAM_REQ_INPROG) 8189 ahd_set_transaction_status(scb, status); 8190 cstat = ahd_get_transaction_status(scb); 8191 if (cstat != CAM_REQ_CMP) 8192 ahd_freeze_scb(scb); 8193 ahd_done(ahd, scb); 8194 } 8195 8196 int 8197 ahd_search_qinfifo(struct ahd_softc *ahd, int target, char channel, 8198 int lun, u_int tag, role_t role, uint32_t status, 8199 ahd_search_action action) 8200 { 8201 struct scb *scb; 8202 struct scb *mk_msg_scb; 8203 struct scb *prev_scb; 8204 ahd_mode_state saved_modes; 8205 u_int qinstart; 8206 u_int qinpos; 8207 u_int qintail; 8208 u_int tid_next; 8209 u_int tid_prev; 8210 u_int scbid; 8211 u_int seq_flags2; 8212 u_int savedscbptr; 8213 uint32_t busaddr; 8214 int found; 8215 int targets; 8216 8217 /* Must be in CCHAN mode */ 8218 saved_modes = ahd_save_modes(ahd); 8219 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); 8220 8221 /* 8222 * Halt any pending SCB DMA. The sequencer will reinitiate 8223 * this dma if the qinfifo is not empty once we unpause. 8224 */ 8225 if ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN|CCSCBDIR)) 8226 == (CCARREN|CCSCBEN|CCSCBDIR)) { 8227 ahd_outb(ahd, CCSCBCTL, 8228 ahd_inb(ahd, CCSCBCTL) & ~(CCARREN|CCSCBEN)); 8229 while ((ahd_inb(ahd, CCSCBCTL) & (CCARREN|CCSCBEN)) != 0) 8230 ; 8231 } 8232 /* Determine sequencer's position in the qinfifo. */ 8233 qintail = AHD_QIN_WRAP(ahd->qinfifonext); 8234 qinstart = ahd_get_snscb_qoff(ahd); 8235 qinpos = AHD_QIN_WRAP(qinstart); 8236 found = 0; 8237 prev_scb = NULL; 8238 8239 if (action == SEARCH_PRINT) { 8240 printk("qinstart = %d qinfifonext = %d\nQINFIFO:", 8241 qinstart, ahd->qinfifonext); 8242 } 8243 8244 /* 8245 * Start with an empty queue. Entries that are not chosen 8246 * for removal will be re-added to the queue as we go. 8247 */ 8248 ahd->qinfifonext = qinstart; 8249 busaddr = ahd_le32toh(ahd->next_queued_hscb->hscb_busaddr); 8250 ahd_outl(ahd, NEXT_QUEUED_SCB_ADDR, busaddr); 8251 8252 while (qinpos != qintail) { 8253 scb = ahd_lookup_scb(ahd, ahd->qinfifo[qinpos]); 8254 if (scb == NULL) { 8255 printk("qinpos = %d, SCB index = %d\n", 8256 qinpos, ahd->qinfifo[qinpos]); 8257 panic("Loop 1\n"); 8258 } 8259 8260 if (ahd_match_scb(ahd, scb, target, channel, lun, tag, role)) { 8261 /* 8262 * We found an scb that needs to be acted on. 8263 */ 8264 found++; 8265 switch (action) { 8266 case SEARCH_COMPLETE: 8267 if ((scb->flags & SCB_ACTIVE) == 0) 8268 printk("Inactive SCB in qinfifo\n"); 8269 ahd_done_with_status(ahd, scb, status); 8270 /* FALLTHROUGH */ 8271 case SEARCH_REMOVE: 8272 break; 8273 case SEARCH_PRINT: 8274 printk(" 0x%x", ahd->qinfifo[qinpos]); 8275 /* FALLTHROUGH */ 8276 case SEARCH_COUNT: 8277 ahd_qinfifo_requeue(ahd, prev_scb, scb); 8278 prev_scb = scb; 8279 break; 8280 } 8281 } else { 8282 ahd_qinfifo_requeue(ahd, prev_scb, scb); 8283 prev_scb = scb; 8284 } 8285 qinpos = AHD_QIN_WRAP(qinpos+1); 8286 } 8287 8288 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext); 8289 8290 if (action == SEARCH_PRINT) 8291 printk("\nWAITING_TID_QUEUES:\n"); 8292 8293 /* 8294 * Search waiting for selection lists. We traverse the 8295 * list of "their ids" waiting for selection and, if 8296 * appropriate, traverse the SCBs of each "their id" 8297 * looking for matches. 8298 */ 8299 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 8300 seq_flags2 = ahd_inb(ahd, SEQ_FLAGS2); 8301 if ((seq_flags2 & PENDING_MK_MESSAGE) != 0) { 8302 scbid = ahd_inw(ahd, MK_MESSAGE_SCB); 8303 mk_msg_scb = ahd_lookup_scb(ahd, scbid); 8304 } else 8305 mk_msg_scb = NULL; 8306 savedscbptr = ahd_get_scbptr(ahd); 8307 tid_next = ahd_inw(ahd, WAITING_TID_HEAD); 8308 tid_prev = SCB_LIST_NULL; 8309 targets = 0; 8310 for (scbid = tid_next; !SCBID_IS_NULL(scbid); scbid = tid_next) { 8311 u_int tid_head; 8312 u_int tid_tail; 8313 8314 targets++; 8315 if (targets > AHD_NUM_TARGETS) 8316 panic("TID LIST LOOP"); 8317 8318 if (scbid >= ahd->scb_data.numscbs) { 8319 printk("%s: Waiting TID List inconsistency. " 8320 "SCB index == 0x%x, yet numscbs == 0x%x.", 8321 ahd_name(ahd), scbid, ahd->scb_data.numscbs); 8322 ahd_dump_card_state(ahd); 8323 panic("for safety"); 8324 } 8325 scb = ahd_lookup_scb(ahd, scbid); 8326 if (scb == NULL) { 8327 printk("%s: SCB = 0x%x Not Active!\n", 8328 ahd_name(ahd), scbid); 8329 panic("Waiting TID List traversal\n"); 8330 } 8331 ahd_set_scbptr(ahd, scbid); 8332 tid_next = ahd_inw_scbram(ahd, SCB_NEXT2); 8333 if (ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD, 8334 SCB_LIST_NULL, ROLE_UNKNOWN) == 0) { 8335 tid_prev = scbid; 8336 continue; 8337 } 8338 8339 /* 8340 * We found a list of scbs that needs to be searched. 8341 */ 8342 if (action == SEARCH_PRINT) 8343 printk(" %d ( ", SCB_GET_TARGET(ahd, scb)); 8344 tid_head = scbid; 8345 found += ahd_search_scb_list(ahd, target, channel, 8346 lun, tag, role, status, 8347 action, &tid_head, &tid_tail, 8348 SCB_GET_TARGET(ahd, scb)); 8349 /* 8350 * Check any MK_MESSAGE SCB that is still waiting to 8351 * enter this target's waiting for selection queue. 8352 */ 8353 if (mk_msg_scb != NULL 8354 && ahd_match_scb(ahd, mk_msg_scb, target, channel, 8355 lun, tag, role)) { 8356 8357 /* 8358 * We found an scb that needs to be acted on. 8359 */ 8360 found++; 8361 switch (action) { 8362 case SEARCH_COMPLETE: 8363 if ((mk_msg_scb->flags & SCB_ACTIVE) == 0) 8364 printk("Inactive SCB pending MK_MSG\n"); 8365 ahd_done_with_status(ahd, mk_msg_scb, status); 8366 /* FALLTHROUGH */ 8367 case SEARCH_REMOVE: 8368 { 8369 u_int tail_offset; 8370 8371 printk("Removing MK_MSG scb\n"); 8372 8373 /* 8374 * Reset our tail to the tail of the 8375 * main per-target list. 8376 */ 8377 tail_offset = WAITING_SCB_TAILS 8378 + (2 * SCB_GET_TARGET(ahd, mk_msg_scb)); 8379 ahd_outw(ahd, tail_offset, tid_tail); 8380 8381 seq_flags2 &= ~PENDING_MK_MESSAGE; 8382 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2); 8383 ahd_outw(ahd, CMDS_PENDING, 8384 ahd_inw(ahd, CMDS_PENDING)-1); 8385 mk_msg_scb = NULL; 8386 break; 8387 } 8388 case SEARCH_PRINT: 8389 printk(" 0x%x", SCB_GET_TAG(scb)); 8390 /* FALLTHROUGH */ 8391 case SEARCH_COUNT: 8392 break; 8393 } 8394 } 8395 8396 if (mk_msg_scb != NULL 8397 && SCBID_IS_NULL(tid_head) 8398 && ahd_match_scb(ahd, scb, target, channel, CAM_LUN_WILDCARD, 8399 SCB_LIST_NULL, ROLE_UNKNOWN)) { 8400 8401 /* 8402 * When removing the last SCB for a target 8403 * queue with a pending MK_MESSAGE scb, we 8404 * must queue the MK_MESSAGE scb. 8405 */ 8406 printk("Queueing mk_msg_scb\n"); 8407 tid_head = ahd_inw(ahd, MK_MESSAGE_SCB); 8408 seq_flags2 &= ~PENDING_MK_MESSAGE; 8409 ahd_outb(ahd, SEQ_FLAGS2, seq_flags2); 8410 mk_msg_scb = NULL; 8411 } 8412 if (tid_head != scbid) 8413 ahd_stitch_tid_list(ahd, tid_prev, tid_head, tid_next); 8414 if (!SCBID_IS_NULL(tid_head)) 8415 tid_prev = tid_head; 8416 if (action == SEARCH_PRINT) 8417 printk(")\n"); 8418 } 8419 8420 /* Restore saved state. */ 8421 ahd_set_scbptr(ahd, savedscbptr); 8422 ahd_restore_modes(ahd, saved_modes); 8423 return (found); 8424 } 8425 8426 static int 8427 ahd_search_scb_list(struct ahd_softc *ahd, int target, char channel, 8428 int lun, u_int tag, role_t role, uint32_t status, 8429 ahd_search_action action, u_int *list_head, 8430 u_int *list_tail, u_int tid) 8431 { 8432 struct scb *scb; 8433 u_int scbid; 8434 u_int next; 8435 u_int prev; 8436 int found; 8437 8438 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 8439 found = 0; 8440 prev = SCB_LIST_NULL; 8441 next = *list_head; 8442 *list_tail = SCB_LIST_NULL; 8443 for (scbid = next; !SCBID_IS_NULL(scbid); scbid = next) { 8444 if (scbid >= ahd->scb_data.numscbs) { 8445 printk("%s:SCB List inconsistency. " 8446 "SCB == 0x%x, yet numscbs == 0x%x.", 8447 ahd_name(ahd), scbid, ahd->scb_data.numscbs); 8448 ahd_dump_card_state(ahd); 8449 panic("for safety"); 8450 } 8451 scb = ahd_lookup_scb(ahd, scbid); 8452 if (scb == NULL) { 8453 printk("%s: SCB = %d Not Active!\n", 8454 ahd_name(ahd), scbid); 8455 panic("Waiting List traversal\n"); 8456 } 8457 ahd_set_scbptr(ahd, scbid); 8458 *list_tail = scbid; 8459 next = ahd_inw_scbram(ahd, SCB_NEXT); 8460 if (ahd_match_scb(ahd, scb, target, channel, 8461 lun, SCB_LIST_NULL, role) == 0) { 8462 prev = scbid; 8463 continue; 8464 } 8465 found++; 8466 switch (action) { 8467 case SEARCH_COMPLETE: 8468 if ((scb->flags & SCB_ACTIVE) == 0) 8469 printk("Inactive SCB in Waiting List\n"); 8470 ahd_done_with_status(ahd, scb, status); 8471 /* FALLTHROUGH */ 8472 case SEARCH_REMOVE: 8473 ahd_rem_wscb(ahd, scbid, prev, next, tid); 8474 *list_tail = prev; 8475 if (SCBID_IS_NULL(prev)) 8476 *list_head = next; 8477 break; 8478 case SEARCH_PRINT: 8479 printk("0x%x ", scbid); 8480 case SEARCH_COUNT: 8481 prev = scbid; 8482 break; 8483 } 8484 if (found > AHD_SCB_MAX) 8485 panic("SCB LIST LOOP"); 8486 } 8487 if (action == SEARCH_COMPLETE 8488 || action == SEARCH_REMOVE) 8489 ahd_outw(ahd, CMDS_PENDING, ahd_inw(ahd, CMDS_PENDING) - found); 8490 return (found); 8491 } 8492 8493 static void 8494 ahd_stitch_tid_list(struct ahd_softc *ahd, u_int tid_prev, 8495 u_int tid_cur, u_int tid_next) 8496 { 8497 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 8498 8499 if (SCBID_IS_NULL(tid_cur)) { 8500 8501 /* Bypass current TID list */ 8502 if (SCBID_IS_NULL(tid_prev)) { 8503 ahd_outw(ahd, WAITING_TID_HEAD, tid_next); 8504 } else { 8505 ahd_set_scbptr(ahd, tid_prev); 8506 ahd_outw(ahd, SCB_NEXT2, tid_next); 8507 } 8508 if (SCBID_IS_NULL(tid_next)) 8509 ahd_outw(ahd, WAITING_TID_TAIL, tid_prev); 8510 } else { 8511 8512 /* Stitch through tid_cur */ 8513 if (SCBID_IS_NULL(tid_prev)) { 8514 ahd_outw(ahd, WAITING_TID_HEAD, tid_cur); 8515 } else { 8516 ahd_set_scbptr(ahd, tid_prev); 8517 ahd_outw(ahd, SCB_NEXT2, tid_cur); 8518 } 8519 ahd_set_scbptr(ahd, tid_cur); 8520 ahd_outw(ahd, SCB_NEXT2, tid_next); 8521 8522 if (SCBID_IS_NULL(tid_next)) 8523 ahd_outw(ahd, WAITING_TID_TAIL, tid_cur); 8524 } 8525 } 8526 8527 /* 8528 * Manipulate the waiting for selection list and return the 8529 * scb that follows the one that we remove. 8530 */ 8531 static u_int 8532 ahd_rem_wscb(struct ahd_softc *ahd, u_int scbid, 8533 u_int prev, u_int next, u_int tid) 8534 { 8535 u_int tail_offset; 8536 8537 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 8538 if (!SCBID_IS_NULL(prev)) { 8539 ahd_set_scbptr(ahd, prev); 8540 ahd_outw(ahd, SCB_NEXT, next); 8541 } 8542 8543 /* 8544 * SCBs that have MK_MESSAGE set in them may 8545 * cause the tail pointer to be updated without 8546 * setting the next pointer of the previous tail. 8547 * Only clear the tail if the removed SCB was 8548 * the tail. 8549 */ 8550 tail_offset = WAITING_SCB_TAILS + (2 * tid); 8551 if (SCBID_IS_NULL(next) 8552 && ahd_inw(ahd, tail_offset) == scbid) 8553 ahd_outw(ahd, tail_offset, prev); 8554 8555 ahd_add_scb_to_free_list(ahd, scbid); 8556 return (next); 8557 } 8558 8559 /* 8560 * Add the SCB as selected by SCBPTR onto the on chip list of 8561 * free hardware SCBs. This list is empty/unused if we are not 8562 * performing SCB paging. 8563 */ 8564 static void 8565 ahd_add_scb_to_free_list(struct ahd_softc *ahd, u_int scbid) 8566 { 8567 /* XXX Need some other mechanism to designate "free". */ 8568 /* 8569 * Invalidate the tag so that our abort 8570 * routines don't think it's active. 8571 ahd_outb(ahd, SCB_TAG, SCB_LIST_NULL); 8572 */ 8573 } 8574 8575 /******************************** Error Handling ******************************/ 8576 /* 8577 * Abort all SCBs that match the given description (target/channel/lun/tag), 8578 * setting their status to the passed in status if the status has not already 8579 * been modified from CAM_REQ_INPROG. This routine assumes that the sequencer 8580 * is paused before it is called. 8581 */ 8582 static int 8583 ahd_abort_scbs(struct ahd_softc *ahd, int target, char channel, 8584 int lun, u_int tag, role_t role, uint32_t status) 8585 { 8586 struct scb *scbp; 8587 struct scb *scbp_next; 8588 u_int i, j; 8589 u_int maxtarget; 8590 u_int minlun; 8591 u_int maxlun; 8592 int found; 8593 ahd_mode_state saved_modes; 8594 8595 /* restore this when we're done */ 8596 saved_modes = ahd_save_modes(ahd); 8597 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 8598 8599 found = ahd_search_qinfifo(ahd, target, channel, lun, SCB_LIST_NULL, 8600 role, CAM_REQUEUE_REQ, SEARCH_COMPLETE); 8601 8602 /* 8603 * Clean out the busy target table for any untagged commands. 8604 */ 8605 i = 0; 8606 maxtarget = 16; 8607 if (target != CAM_TARGET_WILDCARD) { 8608 i = target; 8609 if (channel == 'B') 8610 i += 8; 8611 maxtarget = i + 1; 8612 } 8613 8614 if (lun == CAM_LUN_WILDCARD) { 8615 minlun = 0; 8616 maxlun = AHD_NUM_LUNS_NONPKT; 8617 } else if (lun >= AHD_NUM_LUNS_NONPKT) { 8618 minlun = maxlun = 0; 8619 } else { 8620 minlun = lun; 8621 maxlun = lun + 1; 8622 } 8623 8624 if (role != ROLE_TARGET) { 8625 for (;i < maxtarget; i++) { 8626 for (j = minlun;j < maxlun; j++) { 8627 u_int scbid; 8628 u_int tcl; 8629 8630 tcl = BUILD_TCL_RAW(i, 'A', j); 8631 scbid = ahd_find_busy_tcl(ahd, tcl); 8632 scbp = ahd_lookup_scb(ahd, scbid); 8633 if (scbp == NULL 8634 || ahd_match_scb(ahd, scbp, target, channel, 8635 lun, tag, role) == 0) 8636 continue; 8637 ahd_unbusy_tcl(ahd, BUILD_TCL_RAW(i, 'A', j)); 8638 } 8639 } 8640 } 8641 8642 /* 8643 * Don't abort commands that have already completed, 8644 * but haven't quite made it up to the host yet. 8645 */ 8646 ahd_flush_qoutfifo(ahd); 8647 8648 /* 8649 * Go through the pending CCB list and look for 8650 * commands for this target that are still active. 8651 * These are other tagged commands that were 8652 * disconnected when the reset occurred. 8653 */ 8654 scbp_next = LIST_FIRST(&ahd->pending_scbs); 8655 while (scbp_next != NULL) { 8656 scbp = scbp_next; 8657 scbp_next = LIST_NEXT(scbp, pending_links); 8658 if (ahd_match_scb(ahd, scbp, target, channel, lun, tag, role)) { 8659 cam_status ostat; 8660 8661 ostat = ahd_get_transaction_status(scbp); 8662 if (ostat == CAM_REQ_INPROG) 8663 ahd_set_transaction_status(scbp, status); 8664 if (ahd_get_transaction_status(scbp) != CAM_REQ_CMP) 8665 ahd_freeze_scb(scbp); 8666 if ((scbp->flags & SCB_ACTIVE) == 0) 8667 printk("Inactive SCB on pending list\n"); 8668 ahd_done(ahd, scbp); 8669 found++; 8670 } 8671 } 8672 ahd_restore_modes(ahd, saved_modes); 8673 ahd_platform_abort_scbs(ahd, target, channel, lun, tag, role, status); 8674 ahd->flags |= AHD_UPDATE_PEND_CMDS; 8675 return found; 8676 } 8677 8678 static void 8679 ahd_reset_current_bus(struct ahd_softc *ahd) 8680 { 8681 uint8_t scsiseq; 8682 8683 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 8684 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) & ~ENSCSIRST); 8685 scsiseq = ahd_inb(ahd, SCSISEQ0) & ~(ENSELO|ENARBO|SCSIRSTO); 8686 ahd_outb(ahd, SCSISEQ0, scsiseq | SCSIRSTO); 8687 ahd_flush_device_writes(ahd); 8688 ahd_delay(AHD_BUSRESET_DELAY); 8689 /* Turn off the bus reset */ 8690 ahd_outb(ahd, SCSISEQ0, scsiseq); 8691 ahd_flush_device_writes(ahd); 8692 ahd_delay(AHD_BUSRESET_DELAY); 8693 if ((ahd->bugs & AHD_SCSIRST_BUG) != 0) { 8694 /* 8695 * 2A Razor #474 8696 * Certain chip state is not cleared for 8697 * SCSI bus resets that we initiate, so 8698 * we must reset the chip. 8699 */ 8700 ahd_reset(ahd, /*reinit*/TRUE); 8701 ahd_intr_enable(ahd, /*enable*/TRUE); 8702 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 8703 } 8704 8705 ahd_clear_intstat(ahd); 8706 } 8707 8708 int 8709 ahd_reset_channel(struct ahd_softc *ahd, char channel, int initiate_reset) 8710 { 8711 struct ahd_devinfo caminfo; 8712 u_int initiator; 8713 u_int target; 8714 u_int max_scsiid; 8715 int found; 8716 u_int fifo; 8717 u_int next_fifo; 8718 uint8_t scsiseq; 8719 8720 /* 8721 * Check if the last bus reset is cleared 8722 */ 8723 if (ahd->flags & AHD_BUS_RESET_ACTIVE) { 8724 printk("%s: bus reset still active\n", 8725 ahd_name(ahd)); 8726 return 0; 8727 } 8728 ahd->flags |= AHD_BUS_RESET_ACTIVE; 8729 8730 ahd->pending_device = NULL; 8731 8732 ahd_compile_devinfo(&caminfo, 8733 CAM_TARGET_WILDCARD, 8734 CAM_TARGET_WILDCARD, 8735 CAM_LUN_WILDCARD, 8736 channel, ROLE_UNKNOWN); 8737 ahd_pause(ahd); 8738 8739 /* Make sure the sequencer is in a safe location. */ 8740 ahd_clear_critical_section(ahd); 8741 8742 /* 8743 * Run our command complete fifos to ensure that we perform 8744 * completion processing on any commands that 'completed' 8745 * before the reset occurred. 8746 */ 8747 ahd_run_qoutfifo(ahd); 8748 #ifdef AHD_TARGET_MODE 8749 if ((ahd->flags & AHD_TARGETROLE) != 0) { 8750 ahd_run_tqinfifo(ahd, /*paused*/TRUE); 8751 } 8752 #endif 8753 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 8754 8755 /* 8756 * Disable selections so no automatic hardware 8757 * functions will modify chip state. 8758 */ 8759 ahd_outb(ahd, SCSISEQ0, 0); 8760 ahd_outb(ahd, SCSISEQ1, 0); 8761 8762 /* 8763 * Safely shut down our DMA engines. Always start with 8764 * the FIFO that is not currently active (if any are 8765 * actively connected). 8766 */ 8767 next_fifo = fifo = ahd_inb(ahd, DFFSTAT) & CURRFIFO; 8768 if (next_fifo > CURRFIFO_1) 8769 /* If disconneced, arbitrarily start with FIFO1. */ 8770 next_fifo = fifo = 0; 8771 do { 8772 next_fifo ^= CURRFIFO_1; 8773 ahd_set_modes(ahd, next_fifo, next_fifo); 8774 ahd_outb(ahd, DFCNTRL, 8775 ahd_inb(ahd, DFCNTRL) & ~(SCSIEN|HDMAEN)); 8776 while ((ahd_inb(ahd, DFCNTRL) & HDMAENACK) != 0) 8777 ahd_delay(10); 8778 /* 8779 * Set CURRFIFO to the now inactive channel. 8780 */ 8781 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 8782 ahd_outb(ahd, DFFSTAT, next_fifo); 8783 } while (next_fifo != fifo); 8784 8785 /* 8786 * Reset the bus if we are initiating this reset 8787 */ 8788 ahd_clear_msg_state(ahd); 8789 ahd_outb(ahd, SIMODE1, 8790 ahd_inb(ahd, SIMODE1) & ~(ENBUSFREE|ENSCSIRST)); 8791 8792 if (initiate_reset) 8793 ahd_reset_current_bus(ahd); 8794 8795 ahd_clear_intstat(ahd); 8796 8797 /* 8798 * Clean up all the state information for the 8799 * pending transactions on this bus. 8800 */ 8801 found = ahd_abort_scbs(ahd, CAM_TARGET_WILDCARD, channel, 8802 CAM_LUN_WILDCARD, SCB_LIST_NULL, 8803 ROLE_UNKNOWN, CAM_SCSI_BUS_RESET); 8804 8805 /* 8806 * Cleanup anything left in the FIFOs. 8807 */ 8808 ahd_clear_fifo(ahd, 0); 8809 ahd_clear_fifo(ahd, 1); 8810 8811 /* 8812 * Clear SCSI interrupt status 8813 */ 8814 ahd_outb(ahd, CLRSINT1, CLRSCSIRSTI); 8815 8816 /* 8817 * Reenable selections 8818 */ 8819 ahd_outb(ahd, SIMODE1, ahd_inb(ahd, SIMODE1) | ENSCSIRST); 8820 scsiseq = ahd_inb(ahd, SCSISEQ_TEMPLATE); 8821 ahd_outb(ahd, SCSISEQ1, scsiseq & (ENSELI|ENRSELI|ENAUTOATNP)); 8822 8823 max_scsiid = (ahd->features & AHD_WIDE) ? 15 : 7; 8824 #ifdef AHD_TARGET_MODE 8825 /* 8826 * Send an immediate notify ccb to all target more peripheral 8827 * drivers affected by this action. 8828 */ 8829 for (target = 0; target <= max_scsiid; target++) { 8830 struct ahd_tmode_tstate* tstate; 8831 u_int lun; 8832 8833 tstate = ahd->enabled_targets[target]; 8834 if (tstate == NULL) 8835 continue; 8836 for (lun = 0; lun < AHD_NUM_LUNS; lun++) { 8837 struct ahd_tmode_lstate* lstate; 8838 8839 lstate = tstate->enabled_luns[lun]; 8840 if (lstate == NULL) 8841 continue; 8842 8843 ahd_queue_lstate_event(ahd, lstate, CAM_TARGET_WILDCARD, 8844 EVENT_TYPE_BUS_RESET, /*arg*/0); 8845 ahd_send_lstate_events(ahd, lstate); 8846 } 8847 } 8848 #endif 8849 /* 8850 * Revert to async/narrow transfers until we renegotiate. 8851 */ 8852 for (target = 0; target <= max_scsiid; target++) { 8853 8854 if (ahd->enabled_targets[target] == NULL) 8855 continue; 8856 for (initiator = 0; initiator <= max_scsiid; initiator++) { 8857 struct ahd_devinfo devinfo; 8858 8859 ahd_compile_devinfo(&devinfo, target, initiator, 8860 CAM_LUN_WILDCARD, 8861 'A', ROLE_UNKNOWN); 8862 ahd_set_width(ahd, &devinfo, MSG_EXT_WDTR_BUS_8_BIT, 8863 AHD_TRANS_CUR, /*paused*/TRUE); 8864 ahd_set_syncrate(ahd, &devinfo, /*period*/0, 8865 /*offset*/0, /*ppr_options*/0, 8866 AHD_TRANS_CUR, /*paused*/TRUE); 8867 } 8868 } 8869 8870 /* Notify the XPT that a bus reset occurred */ 8871 ahd_send_async(ahd, caminfo.channel, CAM_TARGET_WILDCARD, 8872 CAM_LUN_WILDCARD, AC_BUS_RESET); 8873 8874 ahd_restart(ahd); 8875 8876 return (found); 8877 } 8878 8879 /**************************** Statistics Processing ***************************/ 8880 static void 8881 ahd_stat_timer(void *arg) 8882 { 8883 struct ahd_softc *ahd = arg; 8884 u_long s; 8885 int enint_coal; 8886 8887 ahd_lock(ahd, &s); 8888 8889 enint_coal = ahd->hs_mailbox & ENINT_COALESCE; 8890 if (ahd->cmdcmplt_total > ahd->int_coalescing_threshold) 8891 enint_coal |= ENINT_COALESCE; 8892 else if (ahd->cmdcmplt_total < ahd->int_coalescing_stop_threshold) 8893 enint_coal &= ~ENINT_COALESCE; 8894 8895 if (enint_coal != (ahd->hs_mailbox & ENINT_COALESCE)) { 8896 ahd_enable_coalescing(ahd, enint_coal); 8897 #ifdef AHD_DEBUG 8898 if ((ahd_debug & AHD_SHOW_INT_COALESCING) != 0) 8899 printk("%s: Interrupt coalescing " 8900 "now %sabled. Cmds %d\n", 8901 ahd_name(ahd), 8902 (enint_coal & ENINT_COALESCE) ? "en" : "dis", 8903 ahd->cmdcmplt_total); 8904 #endif 8905 } 8906 8907 ahd->cmdcmplt_bucket = (ahd->cmdcmplt_bucket+1) & (AHD_STAT_BUCKETS-1); 8908 ahd->cmdcmplt_total -= ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]; 8909 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket] = 0; 8910 ahd_timer_reset(&ahd->stat_timer, AHD_STAT_UPDATE_US, 8911 ahd_stat_timer, ahd); 8912 ahd_unlock(ahd, &s); 8913 } 8914 8915 /****************************** Status Processing *****************************/ 8916 8917 static void 8918 ahd_handle_scsi_status(struct ahd_softc *ahd, struct scb *scb) 8919 { 8920 struct hardware_scb *hscb; 8921 int paused; 8922 8923 /* 8924 * The sequencer freezes its select-out queue 8925 * anytime a SCSI status error occurs. We must 8926 * handle the error and increment our qfreeze count 8927 * to allow the sequencer to continue. We don't 8928 * bother clearing critical sections here since all 8929 * operations are on data structures that the sequencer 8930 * is not touching once the queue is frozen. 8931 */ 8932 hscb = scb->hscb; 8933 8934 if (ahd_is_paused(ahd)) { 8935 paused = 1; 8936 } else { 8937 paused = 0; 8938 ahd_pause(ahd); 8939 } 8940 8941 /* Freeze the queue until the client sees the error. */ 8942 ahd_freeze_devq(ahd, scb); 8943 ahd_freeze_scb(scb); 8944 ahd->qfreeze_cnt++; 8945 ahd_outw(ahd, KERNEL_QFREEZE_COUNT, ahd->qfreeze_cnt); 8946 8947 if (paused == 0) 8948 ahd_unpause(ahd); 8949 8950 /* Don't want to clobber the original sense code */ 8951 if ((scb->flags & SCB_SENSE) != 0) { 8952 /* 8953 * Clear the SCB_SENSE Flag and perform 8954 * a normal command completion. 8955 */ 8956 scb->flags &= ~SCB_SENSE; 8957 ahd_set_transaction_status(scb, CAM_AUTOSENSE_FAIL); 8958 ahd_done(ahd, scb); 8959 return; 8960 } 8961 ahd_set_transaction_status(scb, CAM_SCSI_STATUS_ERROR); 8962 ahd_set_scsi_status(scb, hscb->shared_data.istatus.scsi_status); 8963 switch (hscb->shared_data.istatus.scsi_status) { 8964 case STATUS_PKT_SENSE: 8965 { 8966 struct scsi_status_iu_header *siu; 8967 8968 ahd_sync_sense(ahd, scb, BUS_DMASYNC_POSTREAD); 8969 siu = (struct scsi_status_iu_header *)scb->sense_data; 8970 ahd_set_scsi_status(scb, siu->status); 8971 #ifdef AHD_DEBUG 8972 if ((ahd_debug & AHD_SHOW_SENSE) != 0) { 8973 ahd_print_path(ahd, scb); 8974 printk("SCB 0x%x Received PKT Status of 0x%x\n", 8975 SCB_GET_TAG(scb), siu->status); 8976 printk("\tflags = 0x%x, sense len = 0x%x, " 8977 "pktfail = 0x%x\n", 8978 siu->flags, scsi_4btoul(siu->sense_length), 8979 scsi_4btoul(siu->pkt_failures_length)); 8980 } 8981 #endif 8982 if ((siu->flags & SIU_RSPVALID) != 0) { 8983 ahd_print_path(ahd, scb); 8984 if (scsi_4btoul(siu->pkt_failures_length) < 4) { 8985 printk("Unable to parse pkt_failures\n"); 8986 } else { 8987 8988 switch (SIU_PKTFAIL_CODE(siu)) { 8989 case SIU_PFC_NONE: 8990 printk("No packet failure found\n"); 8991 break; 8992 case SIU_PFC_CIU_FIELDS_INVALID: 8993 printk("Invalid Command IU Field\n"); 8994 break; 8995 case SIU_PFC_TMF_NOT_SUPPORTED: 8996 printk("TMF not supported\n"); 8997 break; 8998 case SIU_PFC_TMF_FAILED: 8999 printk("TMF failed\n"); 9000 break; 9001 case SIU_PFC_INVALID_TYPE_CODE: 9002 printk("Invalid L_Q Type code\n"); 9003 break; 9004 case SIU_PFC_ILLEGAL_REQUEST: 9005 printk("Illegal request\n"); 9006 default: 9007 break; 9008 } 9009 } 9010 if (siu->status == SCSI_STATUS_OK) 9011 ahd_set_transaction_status(scb, 9012 CAM_REQ_CMP_ERR); 9013 } 9014 if ((siu->flags & SIU_SNSVALID) != 0) { 9015 scb->flags |= SCB_PKT_SENSE; 9016 #ifdef AHD_DEBUG 9017 if ((ahd_debug & AHD_SHOW_SENSE) != 0) 9018 printk("Sense data available\n"); 9019 #endif 9020 } 9021 ahd_done(ahd, scb); 9022 break; 9023 } 9024 case SCSI_STATUS_CMD_TERMINATED: 9025 case SCSI_STATUS_CHECK_COND: 9026 { 9027 struct ahd_devinfo devinfo; 9028 struct ahd_dma_seg *sg; 9029 struct scsi_sense *sc; 9030 struct ahd_initiator_tinfo *targ_info; 9031 struct ahd_tmode_tstate *tstate; 9032 struct ahd_transinfo *tinfo; 9033 #ifdef AHD_DEBUG 9034 if (ahd_debug & AHD_SHOW_SENSE) { 9035 ahd_print_path(ahd, scb); 9036 printk("SCB %d: requests Check Status\n", 9037 SCB_GET_TAG(scb)); 9038 } 9039 #endif 9040 9041 if (ahd_perform_autosense(scb) == 0) 9042 break; 9043 9044 ahd_compile_devinfo(&devinfo, SCB_GET_OUR_ID(scb), 9045 SCB_GET_TARGET(ahd, scb), 9046 SCB_GET_LUN(scb), 9047 SCB_GET_CHANNEL(ahd, scb), 9048 ROLE_INITIATOR); 9049 targ_info = ahd_fetch_transinfo(ahd, 9050 devinfo.channel, 9051 devinfo.our_scsiid, 9052 devinfo.target, 9053 &tstate); 9054 tinfo = &targ_info->curr; 9055 sg = scb->sg_list; 9056 sc = (struct scsi_sense *)hscb->shared_data.idata.cdb; 9057 /* 9058 * Save off the residual if there is one. 9059 */ 9060 ahd_update_residual(ahd, scb); 9061 #ifdef AHD_DEBUG 9062 if (ahd_debug & AHD_SHOW_SENSE) { 9063 ahd_print_path(ahd, scb); 9064 printk("Sending Sense\n"); 9065 } 9066 #endif 9067 scb->sg_count = 0; 9068 sg = ahd_sg_setup(ahd, scb, sg, ahd_get_sense_bufaddr(ahd, scb), 9069 ahd_get_sense_bufsize(ahd, scb), 9070 /*last*/TRUE); 9071 sc->opcode = REQUEST_SENSE; 9072 sc->byte2 = 0; 9073 if (tinfo->protocol_version <= SCSI_REV_2 9074 && SCB_GET_LUN(scb) < 8) 9075 sc->byte2 = SCB_GET_LUN(scb) << 5; 9076 sc->unused[0] = 0; 9077 sc->unused[1] = 0; 9078 sc->length = ahd_get_sense_bufsize(ahd, scb); 9079 sc->control = 0; 9080 9081 /* 9082 * We can't allow the target to disconnect. 9083 * This will be an untagged transaction and 9084 * having the target disconnect will make this 9085 * transaction indestinguishable from outstanding 9086 * tagged transactions. 9087 */ 9088 hscb->control = 0; 9089 9090 /* 9091 * This request sense could be because the 9092 * the device lost power or in some other 9093 * way has lost our transfer negotiations. 9094 * Renegotiate if appropriate. Unit attention 9095 * errors will be reported before any data 9096 * phases occur. 9097 */ 9098 if (ahd_get_residual(scb) == ahd_get_transfer_length(scb)) { 9099 ahd_update_neg_request(ahd, &devinfo, 9100 tstate, targ_info, 9101 AHD_NEG_IF_NON_ASYNC); 9102 } 9103 if (tstate->auto_negotiate & devinfo.target_mask) { 9104 hscb->control |= MK_MESSAGE; 9105 scb->flags &= 9106 ~(SCB_NEGOTIATE|SCB_ABORT|SCB_DEVICE_RESET); 9107 scb->flags |= SCB_AUTO_NEGOTIATE; 9108 } 9109 hscb->cdb_len = sizeof(*sc); 9110 ahd_setup_data_scb(ahd, scb); 9111 scb->flags |= SCB_SENSE; 9112 ahd_queue_scb(ahd, scb); 9113 break; 9114 } 9115 case SCSI_STATUS_OK: 9116 printk("%s: Interrupted for status of 0???\n", 9117 ahd_name(ahd)); 9118 /* FALLTHROUGH */ 9119 default: 9120 ahd_done(ahd, scb); 9121 break; 9122 } 9123 } 9124 9125 static void 9126 ahd_handle_scb_status(struct ahd_softc *ahd, struct scb *scb) 9127 { 9128 if (scb->hscb->shared_data.istatus.scsi_status != 0) { 9129 ahd_handle_scsi_status(ahd, scb); 9130 } else { 9131 ahd_calc_residual(ahd, scb); 9132 ahd_done(ahd, scb); 9133 } 9134 } 9135 9136 /* 9137 * Calculate the residual for a just completed SCB. 9138 */ 9139 static void 9140 ahd_calc_residual(struct ahd_softc *ahd, struct scb *scb) 9141 { 9142 struct hardware_scb *hscb; 9143 struct initiator_status *spkt; 9144 uint32_t sgptr; 9145 uint32_t resid_sgptr; 9146 uint32_t resid; 9147 9148 /* 9149 * 5 cases. 9150 * 1) No residual. 9151 * SG_STATUS_VALID clear in sgptr. 9152 * 2) Transferless command 9153 * 3) Never performed any transfers. 9154 * sgptr has SG_FULL_RESID set. 9155 * 4) No residual but target did not 9156 * save data pointers after the 9157 * last transfer, so sgptr was 9158 * never updated. 9159 * 5) We have a partial residual. 9160 * Use residual_sgptr to determine 9161 * where we are. 9162 */ 9163 9164 hscb = scb->hscb; 9165 sgptr = ahd_le32toh(hscb->sgptr); 9166 if ((sgptr & SG_STATUS_VALID) == 0) 9167 /* Case 1 */ 9168 return; 9169 sgptr &= ~SG_STATUS_VALID; 9170 9171 if ((sgptr & SG_LIST_NULL) != 0) 9172 /* Case 2 */ 9173 return; 9174 9175 /* 9176 * Residual fields are the same in both 9177 * target and initiator status packets, 9178 * so we can always use the initiator fields 9179 * regardless of the role for this SCB. 9180 */ 9181 spkt = &hscb->shared_data.istatus; 9182 resid_sgptr = ahd_le32toh(spkt->residual_sgptr); 9183 if ((sgptr & SG_FULL_RESID) != 0) { 9184 /* Case 3 */ 9185 resid = ahd_get_transfer_length(scb); 9186 } else if ((resid_sgptr & SG_LIST_NULL) != 0) { 9187 /* Case 4 */ 9188 return; 9189 } else if ((resid_sgptr & SG_OVERRUN_RESID) != 0) { 9190 ahd_print_path(ahd, scb); 9191 printk("data overrun detected Tag == 0x%x.\n", 9192 SCB_GET_TAG(scb)); 9193 ahd_freeze_devq(ahd, scb); 9194 ahd_set_transaction_status(scb, CAM_DATA_RUN_ERR); 9195 ahd_freeze_scb(scb); 9196 return; 9197 } else if ((resid_sgptr & ~SG_PTR_MASK) != 0) { 9198 panic("Bogus resid sgptr value 0x%x\n", resid_sgptr); 9199 /* NOTREACHED */ 9200 } else { 9201 struct ahd_dma_seg *sg; 9202 9203 /* 9204 * Remainder of the SG where the transfer 9205 * stopped. 9206 */ 9207 resid = ahd_le32toh(spkt->residual_datacnt) & AHD_SG_LEN_MASK; 9208 sg = ahd_sg_bus_to_virt(ahd, scb, resid_sgptr & SG_PTR_MASK); 9209 9210 /* The residual sg_ptr always points to the next sg */ 9211 sg--; 9212 9213 /* 9214 * Add up the contents of all residual 9215 * SG segments that are after the SG where 9216 * the transfer stopped. 9217 */ 9218 while ((ahd_le32toh(sg->len) & AHD_DMA_LAST_SEG) == 0) { 9219 sg++; 9220 resid += ahd_le32toh(sg->len) & AHD_SG_LEN_MASK; 9221 } 9222 } 9223 if ((scb->flags & SCB_SENSE) == 0) 9224 ahd_set_residual(scb, resid); 9225 else 9226 ahd_set_sense_residual(scb, resid); 9227 9228 #ifdef AHD_DEBUG 9229 if ((ahd_debug & AHD_SHOW_MISC) != 0) { 9230 ahd_print_path(ahd, scb); 9231 printk("Handled %sResidual of %d bytes\n", 9232 (scb->flags & SCB_SENSE) ? "Sense " : "", resid); 9233 } 9234 #endif 9235 } 9236 9237 /******************************* Target Mode **********************************/ 9238 #ifdef AHD_TARGET_MODE 9239 /* 9240 * Add a target mode event to this lun's queue 9241 */ 9242 static void 9243 ahd_queue_lstate_event(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate, 9244 u_int initiator_id, u_int event_type, u_int event_arg) 9245 { 9246 struct ahd_tmode_event *event; 9247 int pending; 9248 9249 xpt_freeze_devq(lstate->path, /*count*/1); 9250 if (lstate->event_w_idx >= lstate->event_r_idx) 9251 pending = lstate->event_w_idx - lstate->event_r_idx; 9252 else 9253 pending = AHD_TMODE_EVENT_BUFFER_SIZE + 1 9254 - (lstate->event_r_idx - lstate->event_w_idx); 9255 9256 if (event_type == EVENT_TYPE_BUS_RESET 9257 || event_type == MSG_BUS_DEV_RESET) { 9258 /* 9259 * Any earlier events are irrelevant, so reset our buffer. 9260 * This has the effect of allowing us to deal with reset 9261 * floods (an external device holding down the reset line) 9262 * without losing the event that is really interesting. 9263 */ 9264 lstate->event_r_idx = 0; 9265 lstate->event_w_idx = 0; 9266 xpt_release_devq(lstate->path, pending, /*runqueue*/FALSE); 9267 } 9268 9269 if (pending == AHD_TMODE_EVENT_BUFFER_SIZE) { 9270 xpt_print_path(lstate->path); 9271 printk("immediate event %x:%x lost\n", 9272 lstate->event_buffer[lstate->event_r_idx].event_type, 9273 lstate->event_buffer[lstate->event_r_idx].event_arg); 9274 lstate->event_r_idx++; 9275 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE) 9276 lstate->event_r_idx = 0; 9277 xpt_release_devq(lstate->path, /*count*/1, /*runqueue*/FALSE); 9278 } 9279 9280 event = &lstate->event_buffer[lstate->event_w_idx]; 9281 event->initiator_id = initiator_id; 9282 event->event_type = event_type; 9283 event->event_arg = event_arg; 9284 lstate->event_w_idx++; 9285 if (lstate->event_w_idx == AHD_TMODE_EVENT_BUFFER_SIZE) 9286 lstate->event_w_idx = 0; 9287 } 9288 9289 /* 9290 * Send any target mode events queued up waiting 9291 * for immediate notify resources. 9292 */ 9293 void 9294 ahd_send_lstate_events(struct ahd_softc *ahd, struct ahd_tmode_lstate *lstate) 9295 { 9296 struct ccb_hdr *ccbh; 9297 struct ccb_immed_notify *inot; 9298 9299 while (lstate->event_r_idx != lstate->event_w_idx 9300 && (ccbh = SLIST_FIRST(&lstate->immed_notifies)) != NULL) { 9301 struct ahd_tmode_event *event; 9302 9303 event = &lstate->event_buffer[lstate->event_r_idx]; 9304 SLIST_REMOVE_HEAD(&lstate->immed_notifies, sim_links.sle); 9305 inot = (struct ccb_immed_notify *)ccbh; 9306 switch (event->event_type) { 9307 case EVENT_TYPE_BUS_RESET: 9308 ccbh->status = CAM_SCSI_BUS_RESET|CAM_DEV_QFRZN; 9309 break; 9310 default: 9311 ccbh->status = CAM_MESSAGE_RECV|CAM_DEV_QFRZN; 9312 inot->message_args[0] = event->event_type; 9313 inot->message_args[1] = event->event_arg; 9314 break; 9315 } 9316 inot->initiator_id = event->initiator_id; 9317 inot->sense_len = 0; 9318 xpt_done((union ccb *)inot); 9319 lstate->event_r_idx++; 9320 if (lstate->event_r_idx == AHD_TMODE_EVENT_BUFFER_SIZE) 9321 lstate->event_r_idx = 0; 9322 } 9323 } 9324 #endif 9325 9326 /******************** Sequencer Program Patching/Download *********************/ 9327 9328 #ifdef AHD_DUMP_SEQ 9329 void 9330 ahd_dumpseq(struct ahd_softc* ahd) 9331 { 9332 int i; 9333 int max_prog; 9334 9335 max_prog = 2048; 9336 9337 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM); 9338 ahd_outw(ahd, PRGMCNT, 0); 9339 for (i = 0; i < max_prog; i++) { 9340 uint8_t ins_bytes[4]; 9341 9342 ahd_insb(ahd, SEQRAM, ins_bytes, 4); 9343 printk("0x%08x\n", ins_bytes[0] << 24 9344 | ins_bytes[1] << 16 9345 | ins_bytes[2] << 8 9346 | ins_bytes[3]); 9347 } 9348 } 9349 #endif 9350 9351 static void 9352 ahd_loadseq(struct ahd_softc *ahd) 9353 { 9354 struct cs cs_table[num_critical_sections]; 9355 u_int begin_set[num_critical_sections]; 9356 u_int end_set[num_critical_sections]; 9357 const struct patch *cur_patch; 9358 u_int cs_count; 9359 u_int cur_cs; 9360 u_int i; 9361 int downloaded; 9362 u_int skip_addr; 9363 u_int sg_prefetch_cnt; 9364 u_int sg_prefetch_cnt_limit; 9365 u_int sg_prefetch_align; 9366 u_int sg_size; 9367 u_int cacheline_mask; 9368 uint8_t download_consts[DOWNLOAD_CONST_COUNT]; 9369 9370 if (bootverbose) 9371 printk("%s: Downloading Sequencer Program...", 9372 ahd_name(ahd)); 9373 9374 #if DOWNLOAD_CONST_COUNT != 8 9375 #error "Download Const Mismatch" 9376 #endif 9377 /* 9378 * Start out with 0 critical sections 9379 * that apply to this firmware load. 9380 */ 9381 cs_count = 0; 9382 cur_cs = 0; 9383 memset(begin_set, 0, sizeof(begin_set)); 9384 memset(end_set, 0, sizeof(end_set)); 9385 9386 /* 9387 * Setup downloadable constant table. 9388 * 9389 * The computation for the S/G prefetch variables is 9390 * a bit complicated. We would like to always fetch 9391 * in terms of cachelined sized increments. However, 9392 * if the cacheline is not an even multiple of the 9393 * SG element size or is larger than our SG RAM, using 9394 * just the cache size might leave us with only a portion 9395 * of an SG element at the tail of a prefetch. If the 9396 * cacheline is larger than our S/G prefetch buffer less 9397 * the size of an SG element, we may round down to a cacheline 9398 * that doesn't contain any or all of the S/G of interest 9399 * within the bounds of our S/G ram. Provide variables to 9400 * the sequencer that will allow it to handle these edge 9401 * cases. 9402 */ 9403 /* Start by aligning to the nearest cacheline. */ 9404 sg_prefetch_align = ahd->pci_cachesize; 9405 if (sg_prefetch_align == 0) 9406 sg_prefetch_align = 8; 9407 /* Round down to the nearest power of 2. */ 9408 while (powerof2(sg_prefetch_align) == 0) 9409 sg_prefetch_align--; 9410 9411 cacheline_mask = sg_prefetch_align - 1; 9412 9413 /* 9414 * If the cacheline boundary is greater than half our prefetch RAM 9415 * we risk not being able to fetch even a single complete S/G 9416 * segment if we align to that boundary. 9417 */ 9418 if (sg_prefetch_align > CCSGADDR_MAX/2) 9419 sg_prefetch_align = CCSGADDR_MAX/2; 9420 /* Start by fetching a single cacheline. */ 9421 sg_prefetch_cnt = sg_prefetch_align; 9422 /* 9423 * Increment the prefetch count by cachelines until 9424 * at least one S/G element will fit. 9425 */ 9426 sg_size = sizeof(struct ahd_dma_seg); 9427 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) 9428 sg_size = sizeof(struct ahd_dma64_seg); 9429 while (sg_prefetch_cnt < sg_size) 9430 sg_prefetch_cnt += sg_prefetch_align; 9431 /* 9432 * If the cacheline is not an even multiple of 9433 * the S/G size, we may only get a partial S/G when 9434 * we align. Add a cacheline if this is the case. 9435 */ 9436 if ((sg_prefetch_align % sg_size) != 0 9437 && (sg_prefetch_cnt < CCSGADDR_MAX)) 9438 sg_prefetch_cnt += sg_prefetch_align; 9439 /* 9440 * Lastly, compute a value that the sequencer can use 9441 * to determine if the remainder of the CCSGRAM buffer 9442 * has a full S/G element in it. 9443 */ 9444 sg_prefetch_cnt_limit = -(sg_prefetch_cnt - sg_size + 1); 9445 download_consts[SG_PREFETCH_CNT] = sg_prefetch_cnt; 9446 download_consts[SG_PREFETCH_CNT_LIMIT] = sg_prefetch_cnt_limit; 9447 download_consts[SG_PREFETCH_ALIGN_MASK] = ~(sg_prefetch_align - 1); 9448 download_consts[SG_PREFETCH_ADDR_MASK] = (sg_prefetch_align - 1); 9449 download_consts[SG_SIZEOF] = sg_size; 9450 download_consts[PKT_OVERRUN_BUFOFFSET] = 9451 (ahd->overrun_buf - (uint8_t *)ahd->qoutfifo) / 256; 9452 download_consts[SCB_TRANSFER_SIZE] = SCB_TRANSFER_SIZE_1BYTE_LUN; 9453 download_consts[CACHELINE_MASK] = cacheline_mask; 9454 cur_patch = patches; 9455 downloaded = 0; 9456 skip_addr = 0; 9457 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE|LOADRAM); 9458 ahd_outw(ahd, PRGMCNT, 0); 9459 9460 for (i = 0; i < sizeof(seqprog)/4; i++) { 9461 if (ahd_check_patch(ahd, &cur_patch, i, &skip_addr) == 0) { 9462 /* 9463 * Don't download this instruction as it 9464 * is in a patch that was removed. 9465 */ 9466 continue; 9467 } 9468 /* 9469 * Move through the CS table until we find a CS 9470 * that might apply to this instruction. 9471 */ 9472 for (; cur_cs < num_critical_sections; cur_cs++) { 9473 if (critical_sections[cur_cs].end <= i) { 9474 if (begin_set[cs_count] == TRUE 9475 && end_set[cs_count] == FALSE) { 9476 cs_table[cs_count].end = downloaded; 9477 end_set[cs_count] = TRUE; 9478 cs_count++; 9479 } 9480 continue; 9481 } 9482 if (critical_sections[cur_cs].begin <= i 9483 && begin_set[cs_count] == FALSE) { 9484 cs_table[cs_count].begin = downloaded; 9485 begin_set[cs_count] = TRUE; 9486 } 9487 break; 9488 } 9489 ahd_download_instr(ahd, i, download_consts); 9490 downloaded++; 9491 } 9492 9493 ahd->num_critical_sections = cs_count; 9494 if (cs_count != 0) { 9495 9496 cs_count *= sizeof(struct cs); 9497 ahd->critical_sections = kmalloc(cs_count, GFP_ATOMIC); 9498 if (ahd->critical_sections == NULL) 9499 panic("ahd_loadseq: Could not malloc"); 9500 memcpy(ahd->critical_sections, cs_table, cs_count); 9501 } 9502 ahd_outb(ahd, SEQCTL0, PERRORDIS|FAILDIS|FASTMODE); 9503 9504 if (bootverbose) { 9505 printk(" %d instructions downloaded\n", downloaded); 9506 printk("%s: Features 0x%x, Bugs 0x%x, Flags 0x%x\n", 9507 ahd_name(ahd), ahd->features, ahd->bugs, ahd->flags); 9508 } 9509 } 9510 9511 static int 9512 ahd_check_patch(struct ahd_softc *ahd, const struct patch **start_patch, 9513 u_int start_instr, u_int *skip_addr) 9514 { 9515 const struct patch *cur_patch; 9516 const struct patch *last_patch; 9517 u_int num_patches; 9518 9519 num_patches = ARRAY_SIZE(patches); 9520 last_patch = &patches[num_patches]; 9521 cur_patch = *start_patch; 9522 9523 while (cur_patch < last_patch && start_instr == cur_patch->begin) { 9524 9525 if (cur_patch->patch_func(ahd) == 0) { 9526 9527 /* Start rejecting code */ 9528 *skip_addr = start_instr + cur_patch->skip_instr; 9529 cur_patch += cur_patch->skip_patch; 9530 } else { 9531 /* Accepted this patch. Advance to the next 9532 * one and wait for our intruction pointer to 9533 * hit this point. 9534 */ 9535 cur_patch++; 9536 } 9537 } 9538 9539 *start_patch = cur_patch; 9540 if (start_instr < *skip_addr) 9541 /* Still skipping */ 9542 return (0); 9543 9544 return (1); 9545 } 9546 9547 static u_int 9548 ahd_resolve_seqaddr(struct ahd_softc *ahd, u_int address) 9549 { 9550 const struct patch *cur_patch; 9551 int address_offset; 9552 u_int skip_addr; 9553 u_int i; 9554 9555 address_offset = 0; 9556 cur_patch = patches; 9557 skip_addr = 0; 9558 9559 for (i = 0; i < address;) { 9560 9561 ahd_check_patch(ahd, &cur_patch, i, &skip_addr); 9562 9563 if (skip_addr > i) { 9564 int end_addr; 9565 9566 end_addr = min(address, skip_addr); 9567 address_offset += end_addr - i; 9568 i = skip_addr; 9569 } else { 9570 i++; 9571 } 9572 } 9573 return (address - address_offset); 9574 } 9575 9576 static void 9577 ahd_download_instr(struct ahd_softc *ahd, u_int instrptr, uint8_t *dconsts) 9578 { 9579 union ins_formats instr; 9580 struct ins_format1 *fmt1_ins; 9581 struct ins_format3 *fmt3_ins; 9582 u_int opcode; 9583 9584 /* 9585 * The firmware is always compiled into a little endian format. 9586 */ 9587 instr.integer = ahd_le32toh(*(uint32_t*)&seqprog[instrptr * 4]); 9588 9589 fmt1_ins = &instr.format1; 9590 fmt3_ins = NULL; 9591 9592 /* Pull the opcode */ 9593 opcode = instr.format1.opcode; 9594 switch (opcode) { 9595 case AIC_OP_JMP: 9596 case AIC_OP_JC: 9597 case AIC_OP_JNC: 9598 case AIC_OP_CALL: 9599 case AIC_OP_JNE: 9600 case AIC_OP_JNZ: 9601 case AIC_OP_JE: 9602 case AIC_OP_JZ: 9603 { 9604 fmt3_ins = &instr.format3; 9605 fmt3_ins->address = ahd_resolve_seqaddr(ahd, fmt3_ins->address); 9606 /* FALLTHROUGH */ 9607 } 9608 case AIC_OP_OR: 9609 case AIC_OP_AND: 9610 case AIC_OP_XOR: 9611 case AIC_OP_ADD: 9612 case AIC_OP_ADC: 9613 case AIC_OP_BMOV: 9614 if (fmt1_ins->parity != 0) { 9615 fmt1_ins->immediate = dconsts[fmt1_ins->immediate]; 9616 } 9617 fmt1_ins->parity = 0; 9618 /* FALLTHROUGH */ 9619 case AIC_OP_ROL: 9620 { 9621 int i, count; 9622 9623 /* Calculate odd parity for the instruction */ 9624 for (i = 0, count = 0; i < 31; i++) { 9625 uint32_t mask; 9626 9627 mask = 0x01 << i; 9628 if ((instr.integer & mask) != 0) 9629 count++; 9630 } 9631 if ((count & 0x01) == 0) 9632 instr.format1.parity = 1; 9633 9634 /* The sequencer is a little endian cpu */ 9635 instr.integer = ahd_htole32(instr.integer); 9636 ahd_outsb(ahd, SEQRAM, instr.bytes, 4); 9637 break; 9638 } 9639 default: 9640 panic("Unknown opcode encountered in seq program"); 9641 break; 9642 } 9643 } 9644 9645 static int 9646 ahd_probe_stack_size(struct ahd_softc *ahd) 9647 { 9648 int last_probe; 9649 9650 last_probe = 0; 9651 while (1) { 9652 int i; 9653 9654 /* 9655 * We avoid using 0 as a pattern to avoid 9656 * confusion if the stack implementation 9657 * "back-fills" with zeros when "poping' 9658 * entries. 9659 */ 9660 for (i = 1; i <= last_probe+1; i++) { 9661 ahd_outb(ahd, STACK, i & 0xFF); 9662 ahd_outb(ahd, STACK, (i >> 8) & 0xFF); 9663 } 9664 9665 /* Verify */ 9666 for (i = last_probe+1; i > 0; i--) { 9667 u_int stack_entry; 9668 9669 stack_entry = ahd_inb(ahd, STACK) 9670 |(ahd_inb(ahd, STACK) << 8); 9671 if (stack_entry != i) 9672 goto sized; 9673 } 9674 last_probe++; 9675 } 9676 sized: 9677 return (last_probe); 9678 } 9679 9680 int 9681 ahd_print_register(const ahd_reg_parse_entry_t *table, u_int num_entries, 9682 const char *name, u_int address, u_int value, 9683 u_int *cur_column, u_int wrap_point) 9684 { 9685 int printed; 9686 u_int printed_mask; 9687 9688 if (cur_column != NULL && *cur_column >= wrap_point) { 9689 printk("\n"); 9690 *cur_column = 0; 9691 } 9692 printed = printk("%s[0x%x]", name, value); 9693 if (table == NULL) { 9694 printed += printk(" "); 9695 *cur_column += printed; 9696 return (printed); 9697 } 9698 printed_mask = 0; 9699 while (printed_mask != 0xFF) { 9700 int entry; 9701 9702 for (entry = 0; entry < num_entries; entry++) { 9703 if (((value & table[entry].mask) 9704 != table[entry].value) 9705 || ((printed_mask & table[entry].mask) 9706 == table[entry].mask)) 9707 continue; 9708 9709 printed += printk("%s%s", 9710 printed_mask == 0 ? ":(" : "|", 9711 table[entry].name); 9712 printed_mask |= table[entry].mask; 9713 9714 break; 9715 } 9716 if (entry >= num_entries) 9717 break; 9718 } 9719 if (printed_mask != 0) 9720 printed += printk(") "); 9721 else 9722 printed += printk(" "); 9723 if (cur_column != NULL) 9724 *cur_column += printed; 9725 return (printed); 9726 } 9727 9728 void 9729 ahd_dump_card_state(struct ahd_softc *ahd) 9730 { 9731 struct scb *scb; 9732 ahd_mode_state saved_modes; 9733 u_int dffstat; 9734 int paused; 9735 u_int scb_index; 9736 u_int saved_scb_index; 9737 u_int cur_col; 9738 int i; 9739 9740 if (ahd_is_paused(ahd)) { 9741 paused = 1; 9742 } else { 9743 paused = 0; 9744 ahd_pause(ahd); 9745 } 9746 saved_modes = ahd_save_modes(ahd); 9747 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 9748 printk(">>>>>>>>>>>>>>>>>> Dump Card State Begins <<<<<<<<<<<<<<<<<\n" 9749 "%s: Dumping Card State at program address 0x%x Mode 0x%x\n", 9750 ahd_name(ahd), 9751 ahd_inw(ahd, CURADDR), 9752 ahd_build_mode_state(ahd, ahd->saved_src_mode, 9753 ahd->saved_dst_mode)); 9754 if (paused) 9755 printk("Card was paused\n"); 9756 9757 if (ahd_check_cmdcmpltqueues(ahd)) 9758 printk("Completions are pending\n"); 9759 9760 /* 9761 * Mode independent registers. 9762 */ 9763 cur_col = 0; 9764 ahd_intstat_print(ahd_inb(ahd, INTSTAT), &cur_col, 50); 9765 ahd_seloid_print(ahd_inb(ahd, SELOID), &cur_col, 50); 9766 ahd_selid_print(ahd_inb(ahd, SELID), &cur_col, 50); 9767 ahd_hs_mailbox_print(ahd_inb(ahd, LOCAL_HS_MAILBOX), &cur_col, 50); 9768 ahd_intctl_print(ahd_inb(ahd, INTCTL), &cur_col, 50); 9769 ahd_seqintstat_print(ahd_inb(ahd, SEQINTSTAT), &cur_col, 50); 9770 ahd_saved_mode_print(ahd_inb(ahd, SAVED_MODE), &cur_col, 50); 9771 ahd_dffstat_print(ahd_inb(ahd, DFFSTAT), &cur_col, 50); 9772 ahd_scsisigi_print(ahd_inb(ahd, SCSISIGI), &cur_col, 50); 9773 ahd_scsiphase_print(ahd_inb(ahd, SCSIPHASE), &cur_col, 50); 9774 ahd_scsibus_print(ahd_inb(ahd, SCSIBUS), &cur_col, 50); 9775 ahd_lastphase_print(ahd_inb(ahd, LASTPHASE), &cur_col, 50); 9776 ahd_scsiseq0_print(ahd_inb(ahd, SCSISEQ0), &cur_col, 50); 9777 ahd_scsiseq1_print(ahd_inb(ahd, SCSISEQ1), &cur_col, 50); 9778 ahd_seqctl0_print(ahd_inb(ahd, SEQCTL0), &cur_col, 50); 9779 ahd_seqintctl_print(ahd_inb(ahd, SEQINTCTL), &cur_col, 50); 9780 ahd_seq_flags_print(ahd_inb(ahd, SEQ_FLAGS), &cur_col, 50); 9781 ahd_seq_flags2_print(ahd_inb(ahd, SEQ_FLAGS2), &cur_col, 50); 9782 ahd_qfreeze_count_print(ahd_inw(ahd, QFREEZE_COUNT), &cur_col, 50); 9783 ahd_kernel_qfreeze_count_print(ahd_inw(ahd, KERNEL_QFREEZE_COUNT), 9784 &cur_col, 50); 9785 ahd_mk_message_scb_print(ahd_inw(ahd, MK_MESSAGE_SCB), &cur_col, 50); 9786 ahd_mk_message_scsiid_print(ahd_inb(ahd, MK_MESSAGE_SCSIID), 9787 &cur_col, 50); 9788 ahd_sstat0_print(ahd_inb(ahd, SSTAT0), &cur_col, 50); 9789 ahd_sstat1_print(ahd_inb(ahd, SSTAT1), &cur_col, 50); 9790 ahd_sstat2_print(ahd_inb(ahd, SSTAT2), &cur_col, 50); 9791 ahd_sstat3_print(ahd_inb(ahd, SSTAT3), &cur_col, 50); 9792 ahd_perrdiag_print(ahd_inb(ahd, PERRDIAG), &cur_col, 50); 9793 ahd_simode1_print(ahd_inb(ahd, SIMODE1), &cur_col, 50); 9794 ahd_lqistat0_print(ahd_inb(ahd, LQISTAT0), &cur_col, 50); 9795 ahd_lqistat1_print(ahd_inb(ahd, LQISTAT1), &cur_col, 50); 9796 ahd_lqistat2_print(ahd_inb(ahd, LQISTAT2), &cur_col, 50); 9797 ahd_lqostat0_print(ahd_inb(ahd, LQOSTAT0), &cur_col, 50); 9798 ahd_lqostat1_print(ahd_inb(ahd, LQOSTAT1), &cur_col, 50); 9799 ahd_lqostat2_print(ahd_inb(ahd, LQOSTAT2), &cur_col, 50); 9800 printk("\n"); 9801 printk("\nSCB Count = %d CMDS_PENDING = %d LASTSCB 0x%x " 9802 "CURRSCB 0x%x NEXTSCB 0x%x\n", 9803 ahd->scb_data.numscbs, ahd_inw(ahd, CMDS_PENDING), 9804 ahd_inw(ahd, LASTSCB), ahd_inw(ahd, CURRSCB), 9805 ahd_inw(ahd, NEXTSCB)); 9806 cur_col = 0; 9807 /* QINFIFO */ 9808 ahd_search_qinfifo(ahd, CAM_TARGET_WILDCARD, ALL_CHANNELS, 9809 CAM_LUN_WILDCARD, SCB_LIST_NULL, 9810 ROLE_UNKNOWN, /*status*/0, SEARCH_PRINT); 9811 saved_scb_index = ahd_get_scbptr(ahd); 9812 printk("Pending list:"); 9813 i = 0; 9814 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { 9815 if (i++ > AHD_SCB_MAX) 9816 break; 9817 cur_col = printk("\n%3d FIFO_USE[0x%x] ", SCB_GET_TAG(scb), 9818 ahd_inb_scbram(ahd, SCB_FIFO_USE_COUNT)); 9819 ahd_set_scbptr(ahd, SCB_GET_TAG(scb)); 9820 ahd_scb_control_print(ahd_inb_scbram(ahd, SCB_CONTROL), 9821 &cur_col, 60); 9822 ahd_scb_scsiid_print(ahd_inb_scbram(ahd, SCB_SCSIID), 9823 &cur_col, 60); 9824 } 9825 printk("\nTotal %d\n", i); 9826 9827 printk("Kernel Free SCB list: "); 9828 i = 0; 9829 TAILQ_FOREACH(scb, &ahd->scb_data.free_scbs, links.tqe) { 9830 struct scb *list_scb; 9831 9832 list_scb = scb; 9833 do { 9834 printk("%d ", SCB_GET_TAG(list_scb)); 9835 list_scb = LIST_NEXT(list_scb, collision_links); 9836 } while (list_scb && i++ < AHD_SCB_MAX); 9837 } 9838 9839 LIST_FOREACH(scb, &ahd->scb_data.any_dev_free_scb_list, links.le) { 9840 if (i++ > AHD_SCB_MAX) 9841 break; 9842 printk("%d ", SCB_GET_TAG(scb)); 9843 } 9844 printk("\n"); 9845 9846 printk("Sequencer Complete DMA-inprog list: "); 9847 scb_index = ahd_inw(ahd, COMPLETE_SCB_DMAINPROG_HEAD); 9848 i = 0; 9849 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { 9850 ahd_set_scbptr(ahd, scb_index); 9851 printk("%d ", scb_index); 9852 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); 9853 } 9854 printk("\n"); 9855 9856 printk("Sequencer Complete list: "); 9857 scb_index = ahd_inw(ahd, COMPLETE_SCB_HEAD); 9858 i = 0; 9859 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { 9860 ahd_set_scbptr(ahd, scb_index); 9861 printk("%d ", scb_index); 9862 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); 9863 } 9864 printk("\n"); 9865 9866 9867 printk("Sequencer DMA-Up and Complete list: "); 9868 scb_index = ahd_inw(ahd, COMPLETE_DMA_SCB_HEAD); 9869 i = 0; 9870 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { 9871 ahd_set_scbptr(ahd, scb_index); 9872 printk("%d ", scb_index); 9873 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); 9874 } 9875 printk("\n"); 9876 printk("Sequencer On QFreeze and Complete list: "); 9877 scb_index = ahd_inw(ahd, COMPLETE_ON_QFREEZE_HEAD); 9878 i = 0; 9879 while (!SCBID_IS_NULL(scb_index) && i++ < AHD_SCB_MAX) { 9880 ahd_set_scbptr(ahd, scb_index); 9881 printk("%d ", scb_index); 9882 scb_index = ahd_inw_scbram(ahd, SCB_NEXT_COMPLETE); 9883 } 9884 printk("\n"); 9885 ahd_set_scbptr(ahd, saved_scb_index); 9886 dffstat = ahd_inb(ahd, DFFSTAT); 9887 for (i = 0; i < 2; i++) { 9888 #ifdef AHD_DEBUG 9889 struct scb *fifo_scb; 9890 #endif 9891 u_int fifo_scbptr; 9892 9893 ahd_set_modes(ahd, AHD_MODE_DFF0 + i, AHD_MODE_DFF0 + i); 9894 fifo_scbptr = ahd_get_scbptr(ahd); 9895 printk("\n\n%s: FIFO%d %s, LONGJMP == 0x%x, SCB 0x%x\n", 9896 ahd_name(ahd), i, 9897 (dffstat & (FIFO0FREE << i)) ? "Free" : "Active", 9898 ahd_inw(ahd, LONGJMP_ADDR), fifo_scbptr); 9899 cur_col = 0; 9900 ahd_seqimode_print(ahd_inb(ahd, SEQIMODE), &cur_col, 50); 9901 ahd_seqintsrc_print(ahd_inb(ahd, SEQINTSRC), &cur_col, 50); 9902 ahd_dfcntrl_print(ahd_inb(ahd, DFCNTRL), &cur_col, 50); 9903 ahd_dfstatus_print(ahd_inb(ahd, DFSTATUS), &cur_col, 50); 9904 ahd_sg_cache_shadow_print(ahd_inb(ahd, SG_CACHE_SHADOW), 9905 &cur_col, 50); 9906 ahd_sg_state_print(ahd_inb(ahd, SG_STATE), &cur_col, 50); 9907 ahd_dffsxfrctl_print(ahd_inb(ahd, DFFSXFRCTL), &cur_col, 50); 9908 ahd_soffcnt_print(ahd_inb(ahd, SOFFCNT), &cur_col, 50); 9909 ahd_mdffstat_print(ahd_inb(ahd, MDFFSTAT), &cur_col, 50); 9910 if (cur_col > 50) { 9911 printk("\n"); 9912 cur_col = 0; 9913 } 9914 cur_col += printk("SHADDR = 0x%x%x, SHCNT = 0x%x ", 9915 ahd_inl(ahd, SHADDR+4), 9916 ahd_inl(ahd, SHADDR), 9917 (ahd_inb(ahd, SHCNT) 9918 | (ahd_inb(ahd, SHCNT + 1) << 8) 9919 | (ahd_inb(ahd, SHCNT + 2) << 16))); 9920 if (cur_col > 50) { 9921 printk("\n"); 9922 cur_col = 0; 9923 } 9924 cur_col += printk("HADDR = 0x%x%x, HCNT = 0x%x ", 9925 ahd_inl(ahd, HADDR+4), 9926 ahd_inl(ahd, HADDR), 9927 (ahd_inb(ahd, HCNT) 9928 | (ahd_inb(ahd, HCNT + 1) << 8) 9929 | (ahd_inb(ahd, HCNT + 2) << 16))); 9930 ahd_ccsgctl_print(ahd_inb(ahd, CCSGCTL), &cur_col, 50); 9931 #ifdef AHD_DEBUG 9932 if ((ahd_debug & AHD_SHOW_SG) != 0) { 9933 fifo_scb = ahd_lookup_scb(ahd, fifo_scbptr); 9934 if (fifo_scb != NULL) 9935 ahd_dump_sglist(fifo_scb); 9936 } 9937 #endif 9938 } 9939 printk("\nLQIN: "); 9940 for (i = 0; i < 20; i++) 9941 printk("0x%x ", ahd_inb(ahd, LQIN + i)); 9942 printk("\n"); 9943 ahd_set_modes(ahd, AHD_MODE_CFG, AHD_MODE_CFG); 9944 printk("%s: LQISTATE = 0x%x, LQOSTATE = 0x%x, OPTIONMODE = 0x%x\n", 9945 ahd_name(ahd), ahd_inb(ahd, LQISTATE), ahd_inb(ahd, LQOSTATE), 9946 ahd_inb(ahd, OPTIONMODE)); 9947 printk("%s: OS_SPACE_CNT = 0x%x MAXCMDCNT = 0x%x\n", 9948 ahd_name(ahd), ahd_inb(ahd, OS_SPACE_CNT), 9949 ahd_inb(ahd, MAXCMDCNT)); 9950 printk("%s: SAVED_SCSIID = 0x%x SAVED_LUN = 0x%x\n", 9951 ahd_name(ahd), ahd_inb(ahd, SAVED_SCSIID), 9952 ahd_inb(ahd, SAVED_LUN)); 9953 ahd_simode0_print(ahd_inb(ahd, SIMODE0), &cur_col, 50); 9954 printk("\n"); 9955 ahd_set_modes(ahd, AHD_MODE_CCHAN, AHD_MODE_CCHAN); 9956 cur_col = 0; 9957 ahd_ccscbctl_print(ahd_inb(ahd, CCSCBCTL), &cur_col, 50); 9958 printk("\n"); 9959 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode); 9960 printk("%s: REG0 == 0x%x, SINDEX = 0x%x, DINDEX = 0x%x\n", 9961 ahd_name(ahd), ahd_inw(ahd, REG0), ahd_inw(ahd, SINDEX), 9962 ahd_inw(ahd, DINDEX)); 9963 printk("%s: SCBPTR == 0x%x, SCB_NEXT == 0x%x, SCB_NEXT2 == 0x%x\n", 9964 ahd_name(ahd), ahd_get_scbptr(ahd), 9965 ahd_inw_scbram(ahd, SCB_NEXT), 9966 ahd_inw_scbram(ahd, SCB_NEXT2)); 9967 printk("CDB %x %x %x %x %x %x\n", 9968 ahd_inb_scbram(ahd, SCB_CDB_STORE), 9969 ahd_inb_scbram(ahd, SCB_CDB_STORE+1), 9970 ahd_inb_scbram(ahd, SCB_CDB_STORE+2), 9971 ahd_inb_scbram(ahd, SCB_CDB_STORE+3), 9972 ahd_inb_scbram(ahd, SCB_CDB_STORE+4), 9973 ahd_inb_scbram(ahd, SCB_CDB_STORE+5)); 9974 printk("STACK:"); 9975 for (i = 0; i < ahd->stack_size; i++) { 9976 ahd->saved_stack[i] = 9977 ahd_inb(ahd, STACK)|(ahd_inb(ahd, STACK) << 8); 9978 printk(" 0x%x", ahd->saved_stack[i]); 9979 } 9980 for (i = ahd->stack_size-1; i >= 0; i--) { 9981 ahd_outb(ahd, STACK, ahd->saved_stack[i] & 0xFF); 9982 ahd_outb(ahd, STACK, (ahd->saved_stack[i] >> 8) & 0xFF); 9983 } 9984 printk("\n<<<<<<<<<<<<<<<<< Dump Card State Ends >>>>>>>>>>>>>>>>>>\n"); 9985 ahd_restore_modes(ahd, saved_modes); 9986 if (paused == 0) 9987 ahd_unpause(ahd); 9988 } 9989 9990 #if 0 9991 void 9992 ahd_dump_scbs(struct ahd_softc *ahd) 9993 { 9994 ahd_mode_state saved_modes; 9995 u_int saved_scb_index; 9996 int i; 9997 9998 saved_modes = ahd_save_modes(ahd); 9999 ahd_set_modes(ahd, AHD_MODE_SCSI, AHD_MODE_SCSI); 10000 saved_scb_index = ahd_get_scbptr(ahd); 10001 for (i = 0; i < AHD_SCB_MAX; i++) { 10002 ahd_set_scbptr(ahd, i); 10003 printk("%3d", i); 10004 printk("(CTRL 0x%x ID 0x%x N 0x%x N2 0x%x SG 0x%x, RSG 0x%x)\n", 10005 ahd_inb_scbram(ahd, SCB_CONTROL), 10006 ahd_inb_scbram(ahd, SCB_SCSIID), 10007 ahd_inw_scbram(ahd, SCB_NEXT), 10008 ahd_inw_scbram(ahd, SCB_NEXT2), 10009 ahd_inl_scbram(ahd, SCB_SGPTR), 10010 ahd_inl_scbram(ahd, SCB_RESIDUAL_SGPTR)); 10011 } 10012 printk("\n"); 10013 ahd_set_scbptr(ahd, saved_scb_index); 10014 ahd_restore_modes(ahd, saved_modes); 10015 } 10016 #endif /* 0 */ 10017 10018 /**************************** Flexport Logic **********************************/ 10019 /* 10020 * Read count 16bit words from 16bit word address start_addr from the 10021 * SEEPROM attached to the controller, into buf, using the controller's 10022 * SEEPROM reading state machine. Optionally treat the data as a byte 10023 * stream in terms of byte order. 10024 */ 10025 int 10026 ahd_read_seeprom(struct ahd_softc *ahd, uint16_t *buf, 10027 u_int start_addr, u_int count, int bytestream) 10028 { 10029 u_int cur_addr; 10030 u_int end_addr; 10031 int error; 10032 10033 /* 10034 * If we never make it through the loop even once, 10035 * we were passed invalid arguments. 10036 */ 10037 error = EINVAL; 10038 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 10039 end_addr = start_addr + count; 10040 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) { 10041 10042 ahd_outb(ahd, SEEADR, cur_addr); 10043 ahd_outb(ahd, SEECTL, SEEOP_READ | SEESTART); 10044 10045 error = ahd_wait_seeprom(ahd); 10046 if (error) 10047 break; 10048 if (bytestream != 0) { 10049 uint8_t *bytestream_ptr; 10050 10051 bytestream_ptr = (uint8_t *)buf; 10052 *bytestream_ptr++ = ahd_inb(ahd, SEEDAT); 10053 *bytestream_ptr = ahd_inb(ahd, SEEDAT+1); 10054 } else { 10055 /* 10056 * ahd_inw() already handles machine byte order. 10057 */ 10058 *buf = ahd_inw(ahd, SEEDAT); 10059 } 10060 buf++; 10061 } 10062 return (error); 10063 } 10064 10065 /* 10066 * Write count 16bit words from buf, into SEEPROM attache to the 10067 * controller starting at 16bit word address start_addr, using the 10068 * controller's SEEPROM writing state machine. 10069 */ 10070 int 10071 ahd_write_seeprom(struct ahd_softc *ahd, uint16_t *buf, 10072 u_int start_addr, u_int count) 10073 { 10074 u_int cur_addr; 10075 u_int end_addr; 10076 int error; 10077 int retval; 10078 10079 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 10080 error = ENOENT; 10081 10082 /* Place the chip into write-enable mode */ 10083 ahd_outb(ahd, SEEADR, SEEOP_EWEN_ADDR); 10084 ahd_outb(ahd, SEECTL, SEEOP_EWEN | SEESTART); 10085 error = ahd_wait_seeprom(ahd); 10086 if (error) 10087 return (error); 10088 10089 /* 10090 * Write the data. If we don't get through the loop at 10091 * least once, the arguments were invalid. 10092 */ 10093 retval = EINVAL; 10094 end_addr = start_addr + count; 10095 for (cur_addr = start_addr; cur_addr < end_addr; cur_addr++) { 10096 ahd_outw(ahd, SEEDAT, *buf++); 10097 ahd_outb(ahd, SEEADR, cur_addr); 10098 ahd_outb(ahd, SEECTL, SEEOP_WRITE | SEESTART); 10099 10100 retval = ahd_wait_seeprom(ahd); 10101 if (retval) 10102 break; 10103 } 10104 10105 /* 10106 * Disable writes. 10107 */ 10108 ahd_outb(ahd, SEEADR, SEEOP_EWDS_ADDR); 10109 ahd_outb(ahd, SEECTL, SEEOP_EWDS | SEESTART); 10110 error = ahd_wait_seeprom(ahd); 10111 if (error) 10112 return (error); 10113 return (retval); 10114 } 10115 10116 /* 10117 * Wait ~100us for the serial eeprom to satisfy our request. 10118 */ 10119 static int 10120 ahd_wait_seeprom(struct ahd_softc *ahd) 10121 { 10122 int cnt; 10123 10124 cnt = 5000; 10125 while ((ahd_inb(ahd, SEESTAT) & (SEEARBACK|SEEBUSY)) != 0 && --cnt) 10126 ahd_delay(5); 10127 10128 if (cnt == 0) 10129 return (ETIMEDOUT); 10130 return (0); 10131 } 10132 10133 /* 10134 * Validate the two checksums in the per_channel 10135 * vital product data struct. 10136 */ 10137 static int 10138 ahd_verify_vpd_cksum(struct vpd_config *vpd) 10139 { 10140 int i; 10141 int maxaddr; 10142 uint32_t checksum; 10143 uint8_t *vpdarray; 10144 10145 vpdarray = (uint8_t *)vpd; 10146 maxaddr = offsetof(struct vpd_config, vpd_checksum); 10147 checksum = 0; 10148 for (i = offsetof(struct vpd_config, resource_type); i < maxaddr; i++) 10149 checksum = checksum + vpdarray[i]; 10150 if (checksum == 0 10151 || (-checksum & 0xFF) != vpd->vpd_checksum) 10152 return (0); 10153 10154 checksum = 0; 10155 maxaddr = offsetof(struct vpd_config, checksum); 10156 for (i = offsetof(struct vpd_config, default_target_flags); 10157 i < maxaddr; i++) 10158 checksum = checksum + vpdarray[i]; 10159 if (checksum == 0 10160 || (-checksum & 0xFF) != vpd->checksum) 10161 return (0); 10162 return (1); 10163 } 10164 10165 int 10166 ahd_verify_cksum(struct seeprom_config *sc) 10167 { 10168 int i; 10169 int maxaddr; 10170 uint32_t checksum; 10171 uint16_t *scarray; 10172 10173 maxaddr = (sizeof(*sc)/2) - 1; 10174 checksum = 0; 10175 scarray = (uint16_t *)sc; 10176 10177 for (i = 0; i < maxaddr; i++) 10178 checksum = checksum + scarray[i]; 10179 if (checksum == 0 10180 || (checksum & 0xFFFF) != sc->checksum) { 10181 return (0); 10182 } else { 10183 return (1); 10184 } 10185 } 10186 10187 int 10188 ahd_acquire_seeprom(struct ahd_softc *ahd) 10189 { 10190 /* 10191 * We should be able to determine the SEEPROM type 10192 * from the flexport logic, but unfortunately not 10193 * all implementations have this logic and there is 10194 * no programatic method for determining if the logic 10195 * is present. 10196 */ 10197 return (1); 10198 #if 0 10199 uint8_t seetype; 10200 int error; 10201 10202 error = ahd_read_flexport(ahd, FLXADDR_ROMSTAT_CURSENSECTL, &seetype); 10203 if (error != 0 10204 || ((seetype & FLX_ROMSTAT_SEECFG) == FLX_ROMSTAT_SEE_NONE)) 10205 return (0); 10206 return (1); 10207 #endif 10208 } 10209 10210 void 10211 ahd_release_seeprom(struct ahd_softc *ahd) 10212 { 10213 /* Currently a no-op */ 10214 } 10215 10216 /* 10217 * Wait at most 2 seconds for flexport arbitration to succeed. 10218 */ 10219 static int 10220 ahd_wait_flexport(struct ahd_softc *ahd) 10221 { 10222 int cnt; 10223 10224 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 10225 cnt = 1000000 * 2 / 5; 10226 while ((ahd_inb(ahd, BRDCTL) & FLXARBACK) == 0 && --cnt) 10227 ahd_delay(5); 10228 10229 if (cnt == 0) 10230 return (ETIMEDOUT); 10231 return (0); 10232 } 10233 10234 int 10235 ahd_write_flexport(struct ahd_softc *ahd, u_int addr, u_int value) 10236 { 10237 int error; 10238 10239 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 10240 if (addr > 7) 10241 panic("ahd_write_flexport: address out of range"); 10242 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3)); 10243 error = ahd_wait_flexport(ahd); 10244 if (error != 0) 10245 return (error); 10246 ahd_outb(ahd, BRDDAT, value); 10247 ahd_flush_device_writes(ahd); 10248 ahd_outb(ahd, BRDCTL, BRDSTB|BRDEN|(addr << 3)); 10249 ahd_flush_device_writes(ahd); 10250 ahd_outb(ahd, BRDCTL, BRDEN|(addr << 3)); 10251 ahd_flush_device_writes(ahd); 10252 ahd_outb(ahd, BRDCTL, 0); 10253 ahd_flush_device_writes(ahd); 10254 return (0); 10255 } 10256 10257 int 10258 ahd_read_flexport(struct ahd_softc *ahd, u_int addr, uint8_t *value) 10259 { 10260 int error; 10261 10262 AHD_ASSERT_MODES(ahd, AHD_MODE_SCSI_MSK, AHD_MODE_SCSI_MSK); 10263 if (addr > 7) 10264 panic("ahd_read_flexport: address out of range"); 10265 ahd_outb(ahd, BRDCTL, BRDRW|BRDEN|(addr << 3)); 10266 error = ahd_wait_flexport(ahd); 10267 if (error != 0) 10268 return (error); 10269 *value = ahd_inb(ahd, BRDDAT); 10270 ahd_outb(ahd, BRDCTL, 0); 10271 ahd_flush_device_writes(ahd); 10272 return (0); 10273 } 10274 10275 /************************* Target Mode ****************************************/ 10276 #ifdef AHD_TARGET_MODE 10277 cam_status 10278 ahd_find_tmode_devs(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb, 10279 struct ahd_tmode_tstate **tstate, 10280 struct ahd_tmode_lstate **lstate, 10281 int notfound_failure) 10282 { 10283 10284 if ((ahd->features & AHD_TARGETMODE) == 0) 10285 return (CAM_REQ_INVALID); 10286 10287 /* 10288 * Handle the 'black hole' device that sucks up 10289 * requests to unattached luns on enabled targets. 10290 */ 10291 if (ccb->ccb_h.target_id == CAM_TARGET_WILDCARD 10292 && ccb->ccb_h.target_lun == CAM_LUN_WILDCARD) { 10293 *tstate = NULL; 10294 *lstate = ahd->black_hole; 10295 } else { 10296 u_int max_id; 10297 10298 max_id = (ahd->features & AHD_WIDE) ? 16 : 8; 10299 if (ccb->ccb_h.target_id >= max_id) 10300 return (CAM_TID_INVALID); 10301 10302 if (ccb->ccb_h.target_lun >= AHD_NUM_LUNS) 10303 return (CAM_LUN_INVALID); 10304 10305 *tstate = ahd->enabled_targets[ccb->ccb_h.target_id]; 10306 *lstate = NULL; 10307 if (*tstate != NULL) 10308 *lstate = 10309 (*tstate)->enabled_luns[ccb->ccb_h.target_lun]; 10310 } 10311 10312 if (notfound_failure != 0 && *lstate == NULL) 10313 return (CAM_PATH_INVALID); 10314 10315 return (CAM_REQ_CMP); 10316 } 10317 10318 void 10319 ahd_handle_en_lun(struct ahd_softc *ahd, struct cam_sim *sim, union ccb *ccb) 10320 { 10321 #if NOT_YET 10322 struct ahd_tmode_tstate *tstate; 10323 struct ahd_tmode_lstate *lstate; 10324 struct ccb_en_lun *cel; 10325 cam_status status; 10326 u_int target; 10327 u_int lun; 10328 u_int target_mask; 10329 u_long s; 10330 char channel; 10331 10332 status = ahd_find_tmode_devs(ahd, sim, ccb, &tstate, &lstate, 10333 /*notfound_failure*/FALSE); 10334 10335 if (status != CAM_REQ_CMP) { 10336 ccb->ccb_h.status = status; 10337 return; 10338 } 10339 10340 if ((ahd->features & AHD_MULTIROLE) != 0) { 10341 u_int our_id; 10342 10343 our_id = ahd->our_id; 10344 if (ccb->ccb_h.target_id != our_id) { 10345 if ((ahd->features & AHD_MULTI_TID) != 0 10346 && (ahd->flags & AHD_INITIATORROLE) != 0) { 10347 /* 10348 * Only allow additional targets if 10349 * the initiator role is disabled. 10350 * The hardware cannot handle a re-select-in 10351 * on the initiator id during a re-select-out 10352 * on a different target id. 10353 */ 10354 status = CAM_TID_INVALID; 10355 } else if ((ahd->flags & AHD_INITIATORROLE) != 0 10356 || ahd->enabled_luns > 0) { 10357 /* 10358 * Only allow our target id to change 10359 * if the initiator role is not configured 10360 * and there are no enabled luns which 10361 * are attached to the currently registered 10362 * scsi id. 10363 */ 10364 status = CAM_TID_INVALID; 10365 } 10366 } 10367 } 10368 10369 if (status != CAM_REQ_CMP) { 10370 ccb->ccb_h.status = status; 10371 return; 10372 } 10373 10374 /* 10375 * We now have an id that is valid. 10376 * If we aren't in target mode, switch modes. 10377 */ 10378 if ((ahd->flags & AHD_TARGETROLE) == 0 10379 && ccb->ccb_h.target_id != CAM_TARGET_WILDCARD) { 10380 u_long s; 10381 10382 printk("Configuring Target Mode\n"); 10383 ahd_lock(ahd, &s); 10384 if (LIST_FIRST(&ahd->pending_scbs) != NULL) { 10385 ccb->ccb_h.status = CAM_BUSY; 10386 ahd_unlock(ahd, &s); 10387 return; 10388 } 10389 ahd->flags |= AHD_TARGETROLE; 10390 if ((ahd->features & AHD_MULTIROLE) == 0) 10391 ahd->flags &= ~AHD_INITIATORROLE; 10392 ahd_pause(ahd); 10393 ahd_loadseq(ahd); 10394 ahd_restart(ahd); 10395 ahd_unlock(ahd, &s); 10396 } 10397 cel = &ccb->cel; 10398 target = ccb->ccb_h.target_id; 10399 lun = ccb->ccb_h.target_lun; 10400 channel = SIM_CHANNEL(ahd, sim); 10401 target_mask = 0x01 << target; 10402 if (channel == 'B') 10403 target_mask <<= 8; 10404 10405 if (cel->enable != 0) { 10406 u_int scsiseq1; 10407 10408 /* Are we already enabled?? */ 10409 if (lstate != NULL) { 10410 xpt_print_path(ccb->ccb_h.path); 10411 printk("Lun already enabled\n"); 10412 ccb->ccb_h.status = CAM_LUN_ALRDY_ENA; 10413 return; 10414 } 10415 10416 if (cel->grp6_len != 0 10417 || cel->grp7_len != 0) { 10418 /* 10419 * Don't (yet?) support vendor 10420 * specific commands. 10421 */ 10422 ccb->ccb_h.status = CAM_REQ_INVALID; 10423 printk("Non-zero Group Codes\n"); 10424 return; 10425 } 10426 10427 /* 10428 * Seems to be okay. 10429 * Setup our data structures. 10430 */ 10431 if (target != CAM_TARGET_WILDCARD && tstate == NULL) { 10432 tstate = ahd_alloc_tstate(ahd, target, channel); 10433 if (tstate == NULL) { 10434 xpt_print_path(ccb->ccb_h.path); 10435 printk("Couldn't allocate tstate\n"); 10436 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 10437 return; 10438 } 10439 } 10440 lstate = kmalloc(sizeof(*lstate), GFP_ATOMIC); 10441 if (lstate == NULL) { 10442 xpt_print_path(ccb->ccb_h.path); 10443 printk("Couldn't allocate lstate\n"); 10444 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 10445 return; 10446 } 10447 memset(lstate, 0, sizeof(*lstate)); 10448 status = xpt_create_path(&lstate->path, /*periph*/NULL, 10449 xpt_path_path_id(ccb->ccb_h.path), 10450 xpt_path_target_id(ccb->ccb_h.path), 10451 xpt_path_lun_id(ccb->ccb_h.path)); 10452 if (status != CAM_REQ_CMP) { 10453 kfree(lstate); 10454 xpt_print_path(ccb->ccb_h.path); 10455 printk("Couldn't allocate path\n"); 10456 ccb->ccb_h.status = CAM_RESRC_UNAVAIL; 10457 return; 10458 } 10459 SLIST_INIT(&lstate->accept_tios); 10460 SLIST_INIT(&lstate->immed_notifies); 10461 ahd_lock(ahd, &s); 10462 ahd_pause(ahd); 10463 if (target != CAM_TARGET_WILDCARD) { 10464 tstate->enabled_luns[lun] = lstate; 10465 ahd->enabled_luns++; 10466 10467 if ((ahd->features & AHD_MULTI_TID) != 0) { 10468 u_int targid_mask; 10469 10470 targid_mask = ahd_inw(ahd, TARGID); 10471 targid_mask |= target_mask; 10472 ahd_outw(ahd, TARGID, targid_mask); 10473 ahd_update_scsiid(ahd, targid_mask); 10474 } else { 10475 u_int our_id; 10476 char channel; 10477 10478 channel = SIM_CHANNEL(ahd, sim); 10479 our_id = SIM_SCSI_ID(ahd, sim); 10480 10481 /* 10482 * This can only happen if selections 10483 * are not enabled 10484 */ 10485 if (target != our_id) { 10486 u_int sblkctl; 10487 char cur_channel; 10488 int swap; 10489 10490 sblkctl = ahd_inb(ahd, SBLKCTL); 10491 cur_channel = (sblkctl & SELBUSB) 10492 ? 'B' : 'A'; 10493 if ((ahd->features & AHD_TWIN) == 0) 10494 cur_channel = 'A'; 10495 swap = cur_channel != channel; 10496 ahd->our_id = target; 10497 10498 if (swap) 10499 ahd_outb(ahd, SBLKCTL, 10500 sblkctl ^ SELBUSB); 10501 10502 ahd_outb(ahd, SCSIID, target); 10503 10504 if (swap) 10505 ahd_outb(ahd, SBLKCTL, sblkctl); 10506 } 10507 } 10508 } else 10509 ahd->black_hole = lstate; 10510 /* Allow select-in operations */ 10511 if (ahd->black_hole != NULL && ahd->enabled_luns > 0) { 10512 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE); 10513 scsiseq1 |= ENSELI; 10514 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1); 10515 scsiseq1 = ahd_inb(ahd, SCSISEQ1); 10516 scsiseq1 |= ENSELI; 10517 ahd_outb(ahd, SCSISEQ1, scsiseq1); 10518 } 10519 ahd_unpause(ahd); 10520 ahd_unlock(ahd, &s); 10521 ccb->ccb_h.status = CAM_REQ_CMP; 10522 xpt_print_path(ccb->ccb_h.path); 10523 printk("Lun now enabled for target mode\n"); 10524 } else { 10525 struct scb *scb; 10526 int i, empty; 10527 10528 if (lstate == NULL) { 10529 ccb->ccb_h.status = CAM_LUN_INVALID; 10530 return; 10531 } 10532 10533 ahd_lock(ahd, &s); 10534 10535 ccb->ccb_h.status = CAM_REQ_CMP; 10536 LIST_FOREACH(scb, &ahd->pending_scbs, pending_links) { 10537 struct ccb_hdr *ccbh; 10538 10539 ccbh = &scb->io_ctx->ccb_h; 10540 if (ccbh->func_code == XPT_CONT_TARGET_IO 10541 && !xpt_path_comp(ccbh->path, ccb->ccb_h.path)){ 10542 printk("CTIO pending\n"); 10543 ccb->ccb_h.status = CAM_REQ_INVALID; 10544 ahd_unlock(ahd, &s); 10545 return; 10546 } 10547 } 10548 10549 if (SLIST_FIRST(&lstate->accept_tios) != NULL) { 10550 printk("ATIOs pending\n"); 10551 ccb->ccb_h.status = CAM_REQ_INVALID; 10552 } 10553 10554 if (SLIST_FIRST(&lstate->immed_notifies) != NULL) { 10555 printk("INOTs pending\n"); 10556 ccb->ccb_h.status = CAM_REQ_INVALID; 10557 } 10558 10559 if (ccb->ccb_h.status != CAM_REQ_CMP) { 10560 ahd_unlock(ahd, &s); 10561 return; 10562 } 10563 10564 xpt_print_path(ccb->ccb_h.path); 10565 printk("Target mode disabled\n"); 10566 xpt_free_path(lstate->path); 10567 kfree(lstate); 10568 10569 ahd_pause(ahd); 10570 /* Can we clean up the target too? */ 10571 if (target != CAM_TARGET_WILDCARD) { 10572 tstate->enabled_luns[lun] = NULL; 10573 ahd->enabled_luns--; 10574 for (empty = 1, i = 0; i < 8; i++) 10575 if (tstate->enabled_luns[i] != NULL) { 10576 empty = 0; 10577 break; 10578 } 10579 10580 if (empty) { 10581 ahd_free_tstate(ahd, target, channel, 10582 /*force*/FALSE); 10583 if (ahd->features & AHD_MULTI_TID) { 10584 u_int targid_mask; 10585 10586 targid_mask = ahd_inw(ahd, TARGID); 10587 targid_mask &= ~target_mask; 10588 ahd_outw(ahd, TARGID, targid_mask); 10589 ahd_update_scsiid(ahd, targid_mask); 10590 } 10591 } 10592 } else { 10593 10594 ahd->black_hole = NULL; 10595 10596 /* 10597 * We can't allow selections without 10598 * our black hole device. 10599 */ 10600 empty = TRUE; 10601 } 10602 if (ahd->enabled_luns == 0) { 10603 /* Disallow select-in */ 10604 u_int scsiseq1; 10605 10606 scsiseq1 = ahd_inb(ahd, SCSISEQ_TEMPLATE); 10607 scsiseq1 &= ~ENSELI; 10608 ahd_outb(ahd, SCSISEQ_TEMPLATE, scsiseq1); 10609 scsiseq1 = ahd_inb(ahd, SCSISEQ1); 10610 scsiseq1 &= ~ENSELI; 10611 ahd_outb(ahd, SCSISEQ1, scsiseq1); 10612 10613 if ((ahd->features & AHD_MULTIROLE) == 0) { 10614 printk("Configuring Initiator Mode\n"); 10615 ahd->flags &= ~AHD_TARGETROLE; 10616 ahd->flags |= AHD_INITIATORROLE; 10617 ahd_pause(ahd); 10618 ahd_loadseq(ahd); 10619 ahd_restart(ahd); 10620 /* 10621 * Unpaused. The extra unpause 10622 * that follows is harmless. 10623 */ 10624 } 10625 } 10626 ahd_unpause(ahd); 10627 ahd_unlock(ahd, &s); 10628 } 10629 #endif 10630 } 10631 10632 static void 10633 ahd_update_scsiid(struct ahd_softc *ahd, u_int targid_mask) 10634 { 10635 #if NOT_YET 10636 u_int scsiid_mask; 10637 u_int scsiid; 10638 10639 if ((ahd->features & AHD_MULTI_TID) == 0) 10640 panic("ahd_update_scsiid called on non-multitid unit\n"); 10641 10642 /* 10643 * Since we will rely on the TARGID mask 10644 * for selection enables, ensure that OID 10645 * in SCSIID is not set to some other ID 10646 * that we don't want to allow selections on. 10647 */ 10648 if ((ahd->features & AHD_ULTRA2) != 0) 10649 scsiid = ahd_inb(ahd, SCSIID_ULTRA2); 10650 else 10651 scsiid = ahd_inb(ahd, SCSIID); 10652 scsiid_mask = 0x1 << (scsiid & OID); 10653 if ((targid_mask & scsiid_mask) == 0) { 10654 u_int our_id; 10655 10656 /* ffs counts from 1 */ 10657 our_id = ffs(targid_mask); 10658 if (our_id == 0) 10659 our_id = ahd->our_id; 10660 else 10661 our_id--; 10662 scsiid &= TID; 10663 scsiid |= our_id; 10664 } 10665 if ((ahd->features & AHD_ULTRA2) != 0) 10666 ahd_outb(ahd, SCSIID_ULTRA2, scsiid); 10667 else 10668 ahd_outb(ahd, SCSIID, scsiid); 10669 #endif 10670 } 10671 10672 static void 10673 ahd_run_tqinfifo(struct ahd_softc *ahd, int paused) 10674 { 10675 struct target_cmd *cmd; 10676 10677 ahd_sync_tqinfifo(ahd, BUS_DMASYNC_POSTREAD); 10678 while ((cmd = &ahd->targetcmds[ahd->tqinfifonext])->cmd_valid != 0) { 10679 10680 /* 10681 * Only advance through the queue if we 10682 * have the resources to process the command. 10683 */ 10684 if (ahd_handle_target_cmd(ahd, cmd) != 0) 10685 break; 10686 10687 cmd->cmd_valid = 0; 10688 ahd_dmamap_sync(ahd, ahd->shared_data_dmat, 10689 ahd->shared_data_map.dmamap, 10690 ahd_targetcmd_offset(ahd, ahd->tqinfifonext), 10691 sizeof(struct target_cmd), 10692 BUS_DMASYNC_PREREAD); 10693 ahd->tqinfifonext++; 10694 10695 /* 10696 * Lazily update our position in the target mode incoming 10697 * command queue as seen by the sequencer. 10698 */ 10699 if ((ahd->tqinfifonext & (HOST_TQINPOS - 1)) == 1) { 10700 u_int hs_mailbox; 10701 10702 hs_mailbox = ahd_inb(ahd, HS_MAILBOX); 10703 hs_mailbox &= ~HOST_TQINPOS; 10704 hs_mailbox |= ahd->tqinfifonext & HOST_TQINPOS; 10705 ahd_outb(ahd, HS_MAILBOX, hs_mailbox); 10706 } 10707 } 10708 } 10709 10710 static int 10711 ahd_handle_target_cmd(struct ahd_softc *ahd, struct target_cmd *cmd) 10712 { 10713 struct ahd_tmode_tstate *tstate; 10714 struct ahd_tmode_lstate *lstate; 10715 struct ccb_accept_tio *atio; 10716 uint8_t *byte; 10717 int initiator; 10718 int target; 10719 int lun; 10720 10721 initiator = SCSIID_TARGET(ahd, cmd->scsiid); 10722 target = SCSIID_OUR_ID(cmd->scsiid); 10723 lun = (cmd->identify & MSG_IDENTIFY_LUNMASK); 10724 10725 byte = cmd->bytes; 10726 tstate = ahd->enabled_targets[target]; 10727 lstate = NULL; 10728 if (tstate != NULL) 10729 lstate = tstate->enabled_luns[lun]; 10730 10731 /* 10732 * Commands for disabled luns go to the black hole driver. 10733 */ 10734 if (lstate == NULL) 10735 lstate = ahd->black_hole; 10736 10737 atio = (struct ccb_accept_tio*)SLIST_FIRST(&lstate->accept_tios); 10738 if (atio == NULL) { 10739 ahd->flags |= AHD_TQINFIFO_BLOCKED; 10740 /* 10741 * Wait for more ATIOs from the peripheral driver for this lun. 10742 */ 10743 return (1); 10744 } else 10745 ahd->flags &= ~AHD_TQINFIFO_BLOCKED; 10746 #ifdef AHD_DEBUG 10747 if ((ahd_debug & AHD_SHOW_TQIN) != 0) 10748 printk("Incoming command from %d for %d:%d%s\n", 10749 initiator, target, lun, 10750 lstate == ahd->black_hole ? "(Black Holed)" : ""); 10751 #endif 10752 SLIST_REMOVE_HEAD(&lstate->accept_tios, sim_links.sle); 10753 10754 if (lstate == ahd->black_hole) { 10755 /* Fill in the wildcards */ 10756 atio->ccb_h.target_id = target; 10757 atio->ccb_h.target_lun = lun; 10758 } 10759 10760 /* 10761 * Package it up and send it off to 10762 * whomever has this lun enabled. 10763 */ 10764 atio->sense_len = 0; 10765 atio->init_id = initiator; 10766 if (byte[0] != 0xFF) { 10767 /* Tag was included */ 10768 atio->tag_action = *byte++; 10769 atio->tag_id = *byte++; 10770 atio->ccb_h.flags = CAM_TAG_ACTION_VALID; 10771 } else { 10772 atio->ccb_h.flags = 0; 10773 } 10774 byte++; 10775 10776 /* Okay. Now determine the cdb size based on the command code */ 10777 switch (*byte >> CMD_GROUP_CODE_SHIFT) { 10778 case 0: 10779 atio->cdb_len = 6; 10780 break; 10781 case 1: 10782 case 2: 10783 atio->cdb_len = 10; 10784 break; 10785 case 4: 10786 atio->cdb_len = 16; 10787 break; 10788 case 5: 10789 atio->cdb_len = 12; 10790 break; 10791 case 3: 10792 default: 10793 /* Only copy the opcode. */ 10794 atio->cdb_len = 1; 10795 printk("Reserved or VU command code type encountered\n"); 10796 break; 10797 } 10798 10799 memcpy(atio->cdb_io.cdb_bytes, byte, atio->cdb_len); 10800 10801 atio->ccb_h.status |= CAM_CDB_RECVD; 10802 10803 if ((cmd->identify & MSG_IDENTIFY_DISCFLAG) == 0) { 10804 /* 10805 * We weren't allowed to disconnect. 10806 * We're hanging on the bus until a 10807 * continue target I/O comes in response 10808 * to this accept tio. 10809 */ 10810 #ifdef AHD_DEBUG 10811 if ((ahd_debug & AHD_SHOW_TQIN) != 0) 10812 printk("Received Immediate Command %d:%d:%d - %p\n", 10813 initiator, target, lun, ahd->pending_device); 10814 #endif 10815 ahd->pending_device = lstate; 10816 ahd_freeze_ccb((union ccb *)atio); 10817 atio->ccb_h.flags |= CAM_DIS_DISCONNECT; 10818 } 10819 xpt_done((union ccb*)atio); 10820 return (0); 10821 } 10822 10823 #endif 10824