1 #define DRV_NAME "advansys" 2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */ 3 4 /* 5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters 6 * 7 * Copyright (c) 1995-2000 Advanced System Products, Inc. 8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc. 9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx> 10 * All Rights Reserved. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 */ 17 18 /* 19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys) 20 * changed its name to ConnectCom Solutions, Inc. 21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets 22 */ 23 24 #include <linux/module.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/types.h> 28 #include <linux/ioport.h> 29 #include <linux/interrupt.h> 30 #include <linux/delay.h> 31 #include <linux/slab.h> 32 #include <linux/mm.h> 33 #include <linux/proc_fs.h> 34 #include <linux/init.h> 35 #include <linux/blkdev.h> 36 #include <linux/isa.h> 37 #include <linux/eisa.h> 38 #include <linux/pci.h> 39 #include <linux/spinlock.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/firmware.h> 42 43 #include <asm/io.h> 44 #include <asm/dma.h> 45 46 #include <scsi/scsi_cmnd.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_tcq.h> 49 #include <scsi/scsi.h> 50 #include <scsi/scsi_host.h> 51 52 /* FIXME: 53 * 54 * 1. Although all of the necessary command mapping places have the 55 * appropriate dma_map.. APIs, the driver still processes its internal 56 * queue using bus_to_virt() and virt_to_bus() which are illegal under 57 * the API. The entire queue processing structure will need to be 58 * altered to fix this. 59 * 2. Need to add memory mapping workaround. Test the memory mapping. 60 * If it doesn't work revert to I/O port access. Can a test be done 61 * safely? 62 * 3. Handle an interrupt not working. Keep an interrupt counter in 63 * the interrupt handler. In the timeout function if the interrupt 64 * has not occurred then print a message and run in polled mode. 65 * 4. Need to add support for target mode commands, cf. CAM XPT. 66 * 5. check DMA mapping functions for failure 67 * 6. Use scsi_transport_spi 68 * 7. advansys_info is not safe against multiple simultaneous callers 69 * 8. Add module_param to override ISA/VLB ioport array 70 */ 71 #warning this driver is still not properly converted to the DMA API 72 73 /* Enable driver /proc statistics. */ 74 #define ADVANSYS_STATS 75 76 /* Enable driver tracing. */ 77 #undef ADVANSYS_DEBUG 78 79 /* 80 * Portable Data Types 81 * 82 * Any instance where a 32-bit long or pointer type is assumed 83 * for precision or HW defined structures, the following define 84 * types must be used. In Linux the char, short, and int types 85 * are all consistent at 8, 16, and 32 bits respectively. Pointers 86 * and long types are 64 bits on Alpha and UltraSPARC. 87 */ 88 #define ASC_PADDR __u32 /* Physical/Bus address data type. */ 89 #define ASC_VADDR __u32 /* Virtual address data type. */ 90 #define ASC_DCNT __u32 /* Unsigned Data count type. */ 91 #define ASC_SDCNT __s32 /* Signed Data count type. */ 92 93 typedef unsigned char uchar; 94 95 #ifndef TRUE 96 #define TRUE (1) 97 #endif 98 #ifndef FALSE 99 #define FALSE (0) 100 #endif 101 102 #define ERR (-1) 103 #define UW_ERR (uint)(0xFFFF) 104 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0) 105 106 #define PCI_VENDOR_ID_ASP 0x10cd 107 #define PCI_DEVICE_ID_ASP_1200A 0x1100 108 #define PCI_DEVICE_ID_ASP_ABP940 0x1200 109 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300 110 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300 111 #define PCI_DEVICE_ID_38C0800_REV1 0x2500 112 #define PCI_DEVICE_ID_38C1600_REV1 0x2700 113 114 /* 115 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists. 116 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ() 117 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the 118 * SRB structure. 119 */ 120 #define CC_VERY_LONG_SG_LIST 0 121 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr) 122 123 #define PortAddr unsigned int /* port address size */ 124 #define inp(port) inb(port) 125 #define outp(port, byte) outb((byte), (port)) 126 127 #define inpw(port) inw(port) 128 #define outpw(port, word) outw((word), (port)) 129 130 #define ASC_MAX_SG_QUEUE 7 131 #define ASC_MAX_SG_LIST 255 132 133 #define ASC_CS_TYPE unsigned short 134 135 #define ASC_IS_ISA (0x0001) 136 #define ASC_IS_ISAPNP (0x0081) 137 #define ASC_IS_EISA (0x0002) 138 #define ASC_IS_PCI (0x0004) 139 #define ASC_IS_PCI_ULTRA (0x0104) 140 #define ASC_IS_PCMCIA (0x0008) 141 #define ASC_IS_MCA (0x0020) 142 #define ASC_IS_VL (0x0040) 143 #define ASC_IS_WIDESCSI_16 (0x0100) 144 #define ASC_IS_WIDESCSI_32 (0x0200) 145 #define ASC_IS_BIG_ENDIAN (0x8000) 146 147 #define ASC_CHIP_MIN_VER_VL (0x01) 148 #define ASC_CHIP_MAX_VER_VL (0x07) 149 #define ASC_CHIP_MIN_VER_PCI (0x09) 150 #define ASC_CHIP_MAX_VER_PCI (0x0F) 151 #define ASC_CHIP_VER_PCI_BIT (0x08) 152 #define ASC_CHIP_MIN_VER_ISA (0x11) 153 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21) 154 #define ASC_CHIP_MAX_VER_ISA (0x27) 155 #define ASC_CHIP_VER_ISA_BIT (0x30) 156 #define ASC_CHIP_VER_ISAPNP_BIT (0x20) 157 #define ASC_CHIP_VER_ASYN_BUG (0x21) 158 #define ASC_CHIP_VER_PCI 0x08 159 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02) 160 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03) 161 #define ASC_CHIP_MIN_VER_EISA (0x41) 162 #define ASC_CHIP_MAX_VER_EISA (0x47) 163 #define ASC_CHIP_VER_EISA_BIT (0x40) 164 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3) 165 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL) 166 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL) 167 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL) 168 169 #define ASC_SCSI_ID_BITS 3 170 #define ASC_SCSI_TIX_TYPE uchar 171 #define ASC_ALL_DEVICE_BIT_SET 0xFF 172 #define ASC_SCSI_BIT_ID_TYPE uchar 173 #define ASC_MAX_TID 7 174 #define ASC_MAX_LUN 7 175 #define ASC_SCSI_WIDTH_BIT_SET 0xFF 176 #define ASC_MAX_SENSE_LEN 32 177 #define ASC_MIN_SENSE_LEN 14 178 #define ASC_SCSI_RESET_HOLD_TIME_US 60 179 180 /* 181 * Narrow boards only support 12-byte commands, while wide boards 182 * extend to 16-byte commands. 183 */ 184 #define ASC_MAX_CDB_LEN 12 185 #define ADV_MAX_CDB_LEN 16 186 187 #define MS_SDTR_LEN 0x03 188 #define MS_WDTR_LEN 0x02 189 190 #define ASC_SG_LIST_PER_Q 7 191 #define QS_FREE 0x00 192 #define QS_READY 0x01 193 #define QS_DISC1 0x02 194 #define QS_DISC2 0x04 195 #define QS_BUSY 0x08 196 #define QS_ABORTED 0x40 197 #define QS_DONE 0x80 198 #define QC_NO_CALLBACK 0x01 199 #define QC_SG_SWAP_QUEUE 0x02 200 #define QC_SG_HEAD 0x04 201 #define QC_DATA_IN 0x08 202 #define QC_DATA_OUT 0x10 203 #define QC_URGENT 0x20 204 #define QC_MSG_OUT 0x40 205 #define QC_REQ_SENSE 0x80 206 #define QCSG_SG_XFER_LIST 0x02 207 #define QCSG_SG_XFER_MORE 0x04 208 #define QCSG_SG_XFER_END 0x08 209 #define QD_IN_PROGRESS 0x00 210 #define QD_NO_ERROR 0x01 211 #define QD_ABORTED_BY_HOST 0x02 212 #define QD_WITH_ERROR 0x04 213 #define QD_INVALID_REQUEST 0x80 214 #define QD_INVALID_HOST_NUM 0x81 215 #define QD_INVALID_DEVICE 0x82 216 #define QD_ERR_INTERNAL 0xFF 217 #define QHSTA_NO_ERROR 0x00 218 #define QHSTA_M_SEL_TIMEOUT 0x11 219 #define QHSTA_M_DATA_OVER_RUN 0x12 220 #define QHSTA_M_DATA_UNDER_RUN 0x12 221 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 222 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14 223 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21 224 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22 225 #define QHSTA_D_HOST_ABORT_FAILED 0x23 226 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24 227 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25 228 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26 229 #define QHSTA_M_WTM_TIMEOUT 0x41 230 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 231 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 232 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 233 #define QHSTA_M_TARGET_STATUS_BUSY 0x45 234 #define QHSTA_M_BAD_TAG_CODE 0x46 235 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47 236 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48 237 #define QHSTA_D_LRAM_CMP_ERROR 0x81 238 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1 239 #define ASC_FLAG_SCSIQ_REQ 0x01 240 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02 241 #define ASC_FLAG_BIOS_ASYNC_IO 0x04 242 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08 243 #define ASC_FLAG_WIN16 0x10 244 #define ASC_FLAG_WIN32 0x20 245 #define ASC_FLAG_ISA_OVER_16MB 0x40 246 #define ASC_FLAG_DOS_VM_CALLBACK 0x80 247 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10 248 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04 249 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08 250 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40 251 #define ASC_SCSIQ_CPY_BEG 4 252 #define ASC_SCSIQ_SGHD_CPY_BEG 2 253 #define ASC_SCSIQ_B_FWD 0 254 #define ASC_SCSIQ_B_BWD 1 255 #define ASC_SCSIQ_B_STATUS 2 256 #define ASC_SCSIQ_B_QNO 3 257 #define ASC_SCSIQ_B_CNTL 4 258 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5 259 #define ASC_SCSIQ_D_DATA_ADDR 8 260 #define ASC_SCSIQ_D_DATA_CNT 12 261 #define ASC_SCSIQ_B_SENSE_LEN 20 262 #define ASC_SCSIQ_DONE_INFO_BEG 22 263 #define ASC_SCSIQ_D_SRBPTR 22 264 #define ASC_SCSIQ_B_TARGET_IX 26 265 #define ASC_SCSIQ_B_CDB_LEN 28 266 #define ASC_SCSIQ_B_TAG_CODE 29 267 #define ASC_SCSIQ_W_VM_ID 30 268 #define ASC_SCSIQ_DONE_STATUS 32 269 #define ASC_SCSIQ_HOST_STATUS 33 270 #define ASC_SCSIQ_SCSI_STATUS 34 271 #define ASC_SCSIQ_CDB_BEG 36 272 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56 273 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60 274 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48 275 #define ASC_SCSIQ_B_SG_WK_QP 49 276 #define ASC_SCSIQ_B_SG_WK_IX 50 277 #define ASC_SCSIQ_W_ALT_DC1 52 278 #define ASC_SCSIQ_B_LIST_CNT 6 279 #define ASC_SCSIQ_B_CUR_LIST_CNT 7 280 #define ASC_SGQ_B_SG_CNTL 4 281 #define ASC_SGQ_B_SG_HEAD_QP 5 282 #define ASC_SGQ_B_SG_LIST_CNT 6 283 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7 284 #define ASC_SGQ_LIST_BEG 8 285 #define ASC_DEF_SCSI1_QNG 4 286 #define ASC_MAX_SCSI1_QNG 4 287 #define ASC_DEF_SCSI2_QNG 16 288 #define ASC_MAX_SCSI2_QNG 32 289 #define ASC_TAG_CODE_MASK 0x23 290 #define ASC_STOP_REQ_RISC_STOP 0x01 291 #define ASC_STOP_ACK_RISC_STOP 0x03 292 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10 293 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20 294 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40 295 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS)) 296 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid)) 297 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID)) 298 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID) 299 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID) 300 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN) 301 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6)) 302 303 typedef struct asc_scsiq_1 { 304 uchar status; 305 uchar q_no; 306 uchar cntl; 307 uchar sg_queue_cnt; 308 uchar target_id; 309 uchar target_lun; 310 ASC_PADDR data_addr; 311 ASC_DCNT data_cnt; 312 ASC_PADDR sense_addr; 313 uchar sense_len; 314 uchar extra_bytes; 315 } ASC_SCSIQ_1; 316 317 typedef struct asc_scsiq_2 { 318 ASC_VADDR srb_ptr; 319 uchar target_ix; 320 uchar flag; 321 uchar cdb_len; 322 uchar tag_code; 323 ushort vm_id; 324 } ASC_SCSIQ_2; 325 326 typedef struct asc_scsiq_3 { 327 uchar done_stat; 328 uchar host_stat; 329 uchar scsi_stat; 330 uchar scsi_msg; 331 } ASC_SCSIQ_3; 332 333 typedef struct asc_scsiq_4 { 334 uchar cdb[ASC_MAX_CDB_LEN]; 335 uchar y_first_sg_list_qp; 336 uchar y_working_sg_qp; 337 uchar y_working_sg_ix; 338 uchar y_res; 339 ushort x_req_count; 340 ushort x_reconnect_rtn; 341 ASC_PADDR x_saved_data_addr; 342 ASC_DCNT x_saved_data_cnt; 343 } ASC_SCSIQ_4; 344 345 typedef struct asc_q_done_info { 346 ASC_SCSIQ_2 d2; 347 ASC_SCSIQ_3 d3; 348 uchar q_status; 349 uchar q_no; 350 uchar cntl; 351 uchar sense_len; 352 uchar extra_bytes; 353 uchar res; 354 ASC_DCNT remain_bytes; 355 } ASC_QDONE_INFO; 356 357 typedef struct asc_sg_list { 358 ASC_PADDR addr; 359 ASC_DCNT bytes; 360 } ASC_SG_LIST; 361 362 typedef struct asc_sg_head { 363 ushort entry_cnt; 364 ushort queue_cnt; 365 ushort entry_to_copy; 366 ushort res; 367 ASC_SG_LIST sg_list[0]; 368 } ASC_SG_HEAD; 369 370 typedef struct asc_scsi_q { 371 ASC_SCSIQ_1 q1; 372 ASC_SCSIQ_2 q2; 373 uchar *cdbptr; 374 ASC_SG_HEAD *sg_head; 375 ushort remain_sg_entry_cnt; 376 ushort next_sg_index; 377 } ASC_SCSI_Q; 378 379 typedef struct asc_scsi_req_q { 380 ASC_SCSIQ_1 r1; 381 ASC_SCSIQ_2 r2; 382 uchar *cdbptr; 383 ASC_SG_HEAD *sg_head; 384 uchar *sense_ptr; 385 ASC_SCSIQ_3 r3; 386 uchar cdb[ASC_MAX_CDB_LEN]; 387 uchar sense[ASC_MIN_SENSE_LEN]; 388 } ASC_SCSI_REQ_Q; 389 390 typedef struct asc_scsi_bios_req_q { 391 ASC_SCSIQ_1 r1; 392 ASC_SCSIQ_2 r2; 393 uchar *cdbptr; 394 ASC_SG_HEAD *sg_head; 395 uchar *sense_ptr; 396 ASC_SCSIQ_3 r3; 397 uchar cdb[ASC_MAX_CDB_LEN]; 398 uchar sense[ASC_MIN_SENSE_LEN]; 399 } ASC_SCSI_BIOS_REQ_Q; 400 401 typedef struct asc_risc_q { 402 uchar fwd; 403 uchar bwd; 404 ASC_SCSIQ_1 i1; 405 ASC_SCSIQ_2 i2; 406 ASC_SCSIQ_3 i3; 407 ASC_SCSIQ_4 i4; 408 } ASC_RISC_Q; 409 410 typedef struct asc_sg_list_q { 411 uchar seq_no; 412 uchar q_no; 413 uchar cntl; 414 uchar sg_head_qp; 415 uchar sg_list_cnt; 416 uchar sg_cur_list_cnt; 417 } ASC_SG_LIST_Q; 418 419 typedef struct asc_risc_sg_list_q { 420 uchar fwd; 421 uchar bwd; 422 ASC_SG_LIST_Q sg; 423 ASC_SG_LIST sg_list[7]; 424 } ASC_RISC_SG_LIST_Q; 425 426 #define ASCQ_ERR_Q_STATUS 0x0D 427 #define ASCQ_ERR_CUR_QNG 0x17 428 #define ASCQ_ERR_SG_Q_LINKS 0x18 429 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A 430 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B 431 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C 432 433 /* 434 * Warning code values are set in ASC_DVC_VAR 'warn_code'. 435 */ 436 #define ASC_WARN_NO_ERROR 0x0000 437 #define ASC_WARN_IO_PORT_ROTATE 0x0001 438 #define ASC_WARN_EEPROM_CHKSUM 0x0002 439 #define ASC_WARN_IRQ_MODIFIED 0x0004 440 #define ASC_WARN_AUTO_CONFIG 0x0008 441 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010 442 #define ASC_WARN_EEPROM_RECOVER 0x0020 443 #define ASC_WARN_CFG_MSW_RECOVER 0x0040 444 445 /* 446 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'. 447 */ 448 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */ 449 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */ 450 #define ASC_IERR_SET_PC_ADDR 0x0004 451 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */ 452 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */ 453 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */ 454 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */ 455 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */ 456 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */ 457 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */ 458 #define ASC_IERR_NO_BUS_TYPE 0x0400 459 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */ 460 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */ 461 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */ 462 463 #define ASC_DEF_MAX_TOTAL_QNG (0xF0) 464 #define ASC_MIN_TAG_Q_PER_DVC (0x04) 465 #define ASC_MIN_FREE_Q (0x02) 466 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q)) 467 #define ASC_MAX_TOTAL_QNG 240 468 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16 469 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8 470 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20 471 #define ASC_MAX_INRAM_TAG_QNG 16 472 #define ASC_IOADR_GAP 0x10 473 #define ASC_SYN_MAX_OFFSET 0x0F 474 #define ASC_DEF_SDTR_OFFSET 0x0F 475 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02 476 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41 477 478 /* The narrow chip only supports a limited selection of transfer rates. 479 * These are encoded in the range 0..7 or 0..15 depending whether the chip 480 * is Ultra-capable or not. These tables let us convert from one to the other. 481 */ 482 static const unsigned char asc_syn_xfer_period[8] = { 483 25, 30, 35, 40, 50, 60, 70, 85 484 }; 485 486 static const unsigned char asc_syn_ultra_xfer_period[16] = { 487 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107 488 }; 489 490 typedef struct ext_msg { 491 uchar msg_type; 492 uchar msg_len; 493 uchar msg_req; 494 union { 495 struct { 496 uchar sdtr_xfer_period; 497 uchar sdtr_req_ack_offset; 498 } sdtr; 499 struct { 500 uchar wdtr_width; 501 } wdtr; 502 struct { 503 uchar mdp_b3; 504 uchar mdp_b2; 505 uchar mdp_b1; 506 uchar mdp_b0; 507 } mdp; 508 } u_ext_msg; 509 uchar res; 510 } EXT_MSG; 511 512 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period 513 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset 514 #define wdtr_width u_ext_msg.wdtr.wdtr_width 515 #define mdp_b3 u_ext_msg.mdp_b3 516 #define mdp_b2 u_ext_msg.mdp_b2 517 #define mdp_b1 u_ext_msg.mdp_b1 518 #define mdp_b0 u_ext_msg.mdp_b0 519 520 typedef struct asc_dvc_cfg { 521 ASC_SCSI_BIT_ID_TYPE can_tagged_qng; 522 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled; 523 ASC_SCSI_BIT_ID_TYPE disc_enable; 524 ASC_SCSI_BIT_ID_TYPE sdtr_enable; 525 uchar chip_scsi_id; 526 uchar isa_dma_speed; 527 uchar isa_dma_channel; 528 uchar chip_version; 529 ushort mcode_date; 530 ushort mcode_version; 531 uchar max_tag_qng[ASC_MAX_TID + 1]; 532 uchar sdtr_period_offset[ASC_MAX_TID + 1]; 533 uchar adapter_info[6]; 534 } ASC_DVC_CFG; 535 536 #define ASC_DEF_DVC_CNTL 0xFFFF 537 #define ASC_DEF_CHIP_SCSI_ID 7 538 #define ASC_DEF_ISA_DMA_SPEED 4 539 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001 540 #define ASC_INIT_STATE_END_GET_CFG 0x0002 541 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004 542 #define ASC_INIT_STATE_END_SET_CFG 0x0008 543 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010 544 #define ASC_INIT_STATE_END_LOAD_MC 0x0020 545 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040 546 #define ASC_INIT_STATE_END_INQUIRY 0x0080 547 #define ASC_INIT_RESET_SCSI_DONE 0x0100 548 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000 549 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001 550 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002 551 #define ASC_MIN_TAGGED_CMD 7 552 #define ASC_MAX_SCSI_RESET_WAIT 30 553 #define ASC_OVERRUN_BSIZE 64 554 555 struct asc_dvc_var; /* Forward Declaration. */ 556 557 typedef struct asc_dvc_var { 558 PortAddr iop_base; 559 ushort err_code; 560 ushort dvc_cntl; 561 ushort bug_fix_cntl; 562 ushort bus_type; 563 ASC_SCSI_BIT_ID_TYPE init_sdtr; 564 ASC_SCSI_BIT_ID_TYPE sdtr_done; 565 ASC_SCSI_BIT_ID_TYPE use_tagged_qng; 566 ASC_SCSI_BIT_ID_TYPE unit_not_ready; 567 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy; 568 ASC_SCSI_BIT_ID_TYPE start_motor; 569 uchar *overrun_buf; 570 dma_addr_t overrun_dma; 571 uchar scsi_reset_wait; 572 uchar chip_no; 573 char is_in_int; 574 uchar max_total_qng; 575 uchar cur_total_qng; 576 uchar in_critical_cnt; 577 uchar last_q_shortage; 578 ushort init_state; 579 uchar cur_dvc_qng[ASC_MAX_TID + 1]; 580 uchar max_dvc_qng[ASC_MAX_TID + 1]; 581 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1]; 582 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1]; 583 const uchar *sdtr_period_tbl; 584 ASC_DVC_CFG *cfg; 585 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always; 586 char redo_scam; 587 ushort res2; 588 uchar dos_int13_table[ASC_MAX_TID + 1]; 589 ASC_DCNT max_dma_count; 590 ASC_SCSI_BIT_ID_TYPE no_scam; 591 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer; 592 uchar min_sdtr_index; 593 uchar max_sdtr_index; 594 struct asc_board *drv_ptr; 595 int ptr_map_count; 596 void **ptr_map; 597 ASC_DCNT uc_break; 598 } ASC_DVC_VAR; 599 600 typedef struct asc_dvc_inq_info { 601 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 602 } ASC_DVC_INQ_INFO; 603 604 typedef struct asc_cap_info { 605 ASC_DCNT lba; 606 ASC_DCNT blk_size; 607 } ASC_CAP_INFO; 608 609 typedef struct asc_cap_info_array { 610 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 611 } ASC_CAP_INFO_ARRAY; 612 613 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001 614 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002 615 #define ASC_CNTL_INITIATOR (ushort)0x0001 616 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002 617 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004 618 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008 619 #define ASC_CNTL_NO_SCAM (ushort)0x0010 620 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080 621 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040 622 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100 623 #define ASC_CNTL_RESET_SCSI (ushort)0x0200 624 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400 625 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800 626 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000 627 #define ASC_CNTL_BURST_MODE (ushort)0x2000 628 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000 629 #define ASC_EEP_DVC_CFG_BEG_VL 2 630 #define ASC_EEP_MAX_DVC_ADDR_VL 15 631 #define ASC_EEP_DVC_CFG_BEG 32 632 #define ASC_EEP_MAX_DVC_ADDR 45 633 #define ASC_EEP_MAX_RETRY 20 634 635 /* 636 * These macros keep the chip SCSI id and ISA DMA speed 637 * bitfields in board order. C bitfields aren't portable 638 * between big and little-endian platforms so they are 639 * not used. 640 */ 641 642 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f) 643 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4) 644 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \ 645 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID)) 646 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \ 647 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4) 648 649 typedef struct asceep_config { 650 ushort cfg_lsw; 651 ushort cfg_msw; 652 uchar init_sdtr; 653 uchar disc_enable; 654 uchar use_cmd_qng; 655 uchar start_motor; 656 uchar max_total_qng; 657 uchar max_tag_qng; 658 uchar bios_scan; 659 uchar power_up_wait; 660 uchar no_scam; 661 uchar id_speed; /* low order 4 bits is chip scsi id */ 662 /* high order 4 bits is isa dma speed */ 663 uchar dos_int13_table[ASC_MAX_TID + 1]; 664 uchar adapter_info[6]; 665 ushort cntl; 666 ushort chksum; 667 } ASCEEP_CONFIG; 668 669 #define ASC_EEP_CMD_READ 0x80 670 #define ASC_EEP_CMD_WRITE 0x40 671 #define ASC_EEP_CMD_WRITE_ABLE 0x30 672 #define ASC_EEP_CMD_WRITE_DISABLE 0x00 673 #define ASCV_MSGOUT_BEG 0x0000 674 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3) 675 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4) 676 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006 677 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8) 678 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3) 679 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4) 680 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8) 681 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8) 682 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020 683 #define ASCV_BREAK_ADDR (ushort)0x0028 684 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A 685 #define ASCV_BREAK_CONTROL (ushort)0x002C 686 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E 687 688 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030 689 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032 690 #define ASCV_MCODE_SIZE_W (ushort)0x0034 691 #define ASCV_STOP_CODE_B (ushort)0x0036 692 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037 693 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038 694 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C 695 #define ASCV_HALTCODE_W (ushort)0x0040 696 #define ASCV_CHKSUM_W (ushort)0x0042 697 #define ASCV_MC_DATE_W (ushort)0x0044 698 #define ASCV_MC_VER_W (ushort)0x0046 699 #define ASCV_NEXTRDY_B (ushort)0x0048 700 #define ASCV_DONENEXT_B (ushort)0x0049 701 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A 702 #define ASCV_SCSIBUSY_B (ushort)0x004B 703 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C 704 #define ASCV_CURCDB_B (ushort)0x004D 705 #define ASCV_RCLUN_B (ushort)0x004E 706 #define ASCV_BUSY_QHEAD_B (ushort)0x004F 707 #define ASCV_DISC1_QHEAD_B (ushort)0x0050 708 #define ASCV_DISC_ENABLE_B (ushort)0x0052 709 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053 710 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055 711 #define ASCV_MCODE_CNTL_B (ushort)0x0056 712 #define ASCV_NULL_TARGET_B (ushort)0x0057 713 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058 714 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A 715 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1) 716 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1) 717 #define ASCV_HOST_FLAG_B (ushort)0x005D 718 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064 719 #define ASCV_VER_SERIAL_B (ushort)0x0065 720 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066 721 #define ASCV_WTM_FLAG_B (ushort)0x0068 722 #define ASCV_RISC_FLAG_B (ushort)0x006A 723 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B 724 #define ASC_HOST_FLAG_IN_ISR 0x01 725 #define ASC_HOST_FLAG_ACK_INT 0x02 726 #define ASC_RISC_FLAG_GEN_INT 0x01 727 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02 728 #define IOP_CTRL (0x0F) 729 #define IOP_STATUS (0x0E) 730 #define IOP_INT_ACK IOP_STATUS 731 #define IOP_REG_IFC (0x0D) 732 #define IOP_SYN_OFFSET (0x0B) 733 #define IOP_EXTRA_CONTROL (0x0D) 734 #define IOP_REG_PC (0x0C) 735 #define IOP_RAM_ADDR (0x0A) 736 #define IOP_RAM_DATA (0x08) 737 #define IOP_EEP_DATA (0x06) 738 #define IOP_EEP_CMD (0x07) 739 #define IOP_VERSION (0x03) 740 #define IOP_CONFIG_HIGH (0x04) 741 #define IOP_CONFIG_LOW (0x02) 742 #define IOP_SIG_BYTE (0x01) 743 #define IOP_SIG_WORD (0x00) 744 #define IOP_REG_DC1 (0x0E) 745 #define IOP_REG_DC0 (0x0C) 746 #define IOP_REG_SB (0x0B) 747 #define IOP_REG_DA1 (0x0A) 748 #define IOP_REG_DA0 (0x08) 749 #define IOP_REG_SC (0x09) 750 #define IOP_DMA_SPEED (0x07) 751 #define IOP_REG_FLAG (0x07) 752 #define IOP_FIFO_H (0x06) 753 #define IOP_FIFO_L (0x04) 754 #define IOP_REG_ID (0x05) 755 #define IOP_REG_QP (0x03) 756 #define IOP_REG_IH (0x02) 757 #define IOP_REG_IX (0x01) 758 #define IOP_REG_AX (0x00) 759 #define IFC_REG_LOCK (0x00) 760 #define IFC_REG_UNLOCK (0x09) 761 #define IFC_WR_EN_FILTER (0x10) 762 #define IFC_RD_NO_EEPROM (0x10) 763 #define IFC_SLEW_RATE (0x20) 764 #define IFC_ACT_NEG (0x40) 765 #define IFC_INP_FILTER (0x80) 766 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK) 767 #define SC_SEL (uchar)(0x80) 768 #define SC_BSY (uchar)(0x40) 769 #define SC_ACK (uchar)(0x20) 770 #define SC_REQ (uchar)(0x10) 771 #define SC_ATN (uchar)(0x08) 772 #define SC_IO (uchar)(0x04) 773 #define SC_CD (uchar)(0x02) 774 #define SC_MSG (uchar)(0x01) 775 #define SEC_SCSI_CTL (uchar)(0x80) 776 #define SEC_ACTIVE_NEGATE (uchar)(0x40) 777 #define SEC_SLEW_RATE (uchar)(0x20) 778 #define SEC_ENABLE_FILTER (uchar)(0x10) 779 #define ASC_HALT_EXTMSG_IN (ushort)0x8000 780 #define ASC_HALT_CHK_CONDITION (ushort)0x8100 781 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200 782 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300 783 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400 784 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000 785 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000 786 #define ASC_MAX_QNO 0xF8 787 #define ASC_DATA_SEC_BEG (ushort)0x0080 788 #define ASC_DATA_SEC_END (ushort)0x0080 789 #define ASC_CODE_SEC_BEG (ushort)0x0080 790 #define ASC_CODE_SEC_END (ushort)0x0080 791 #define ASC_QADR_BEG (0x4000) 792 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64) 793 #define ASC_QADR_END (ushort)0x7FFF 794 #define ASC_QLAST_ADR (ushort)0x7FC0 795 #define ASC_QBLK_SIZE 0x40 796 #define ASC_BIOS_DATA_QBEG 0xF8 797 #define ASC_MIN_ACTIVE_QNO 0x01 798 #define ASC_QLINK_END 0xFF 799 #define ASC_EEPROM_WORDS 0x10 800 #define ASC_MAX_MGS_LEN 0x10 801 #define ASC_BIOS_ADDR_DEF 0xDC00 802 #define ASC_BIOS_SIZE 0x3800 803 #define ASC_BIOS_RAM_OFF 0x3800 804 #define ASC_BIOS_RAM_SIZE 0x800 805 #define ASC_BIOS_MIN_ADDR 0xC000 806 #define ASC_BIOS_MAX_ADDR 0xEC00 807 #define ASC_BIOS_BANK_SIZE 0x0400 808 #define ASC_MCODE_START_ADDR 0x0080 809 #define ASC_CFG0_HOST_INT_ON 0x0020 810 #define ASC_CFG0_BIOS_ON 0x0040 811 #define ASC_CFG0_VERA_BURST_ON 0x0080 812 #define ASC_CFG0_SCSI_PARITY_ON 0x0800 813 #define ASC_CFG1_SCSI_TARGET_ON 0x0080 814 #define ASC_CFG1_LRAM_8BITS_ON 0x0800 815 #define ASC_CFG_MSW_CLR_MASK 0x3080 816 #define CSW_TEST1 (ASC_CS_TYPE)0x8000 817 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000 818 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000 819 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000 820 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800 821 #define CSW_TEST2 (ASC_CS_TYPE)0x0400 822 #define CSW_TEST3 (ASC_CS_TYPE)0x0200 823 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100 824 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080 825 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040 826 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020 827 #define CSW_HALTED (ASC_CS_TYPE)0x0010 828 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008 829 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004 830 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002 831 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001 832 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000 833 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100 834 #define CIW_TEST1 (ASC_CS_TYPE)0x0200 835 #define CIW_TEST2 (ASC_CS_TYPE)0x0400 836 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800 837 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000 838 #define CC_CHIP_RESET (uchar)0x80 839 #define CC_SCSI_RESET (uchar)0x40 840 #define CC_HALT (uchar)0x20 841 #define CC_SINGLE_STEP (uchar)0x10 842 #define CC_DMA_ABLE (uchar)0x08 843 #define CC_TEST (uchar)0x04 844 #define CC_BANK_ONE (uchar)0x02 845 #define CC_DIAG (uchar)0x01 846 #define ASC_1000_ID0W 0x04C1 847 #define ASC_1000_ID0W_FIX 0x00C1 848 #define ASC_1000_ID1B 0x25 849 #define ASC_EISA_REV_IOP_MASK (0x0C83) 850 #define ASC_EISA_CFG_IOP_MASK (0x0C86) 851 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000) 852 #define INS_HALTINT (ushort)0x6281 853 #define INS_HALT (ushort)0x6280 854 #define INS_SINT (ushort)0x6200 855 #define INS_RFLAG_WTM (ushort)0x7380 856 #define ASC_MC_SAVE_CODE_WSIZE 0x500 857 #define ASC_MC_SAVE_DATA_WSIZE 0x40 858 859 typedef struct asc_mc_saved { 860 ushort data[ASC_MC_SAVE_DATA_WSIZE]; 861 ushort code[ASC_MC_SAVE_CODE_WSIZE]; 862 } ASC_MC_SAVED; 863 864 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B) 865 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val) 866 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W) 867 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W) 868 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val) 869 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val) 870 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B) 871 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B) 872 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val) 873 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val) 874 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data)) 875 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id)) 876 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data) 877 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id)) 878 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE) 879 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD) 880 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION) 881 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW) 882 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH) 883 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data) 884 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data) 885 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD) 886 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data) 887 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA) 888 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data) 889 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR)) 890 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr) 891 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA) 892 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data) 893 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC) 894 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data) 895 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS) 896 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val) 897 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL) 898 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val) 899 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET) 900 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data) 901 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data) 902 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC) 903 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH)) 904 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID) 905 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL) 906 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data) 907 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX) 908 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data) 909 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX) 910 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data) 911 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH) 912 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data) 913 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP) 914 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data) 915 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L) 916 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data) 917 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H) 918 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data) 919 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED) 920 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data) 921 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0) 922 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data) 923 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1) 924 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data) 925 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0) 926 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data) 927 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1) 928 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data) 929 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID) 930 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data) 931 932 /* 933 * Portable Data Types 934 * 935 * Any instance where a 32-bit long or pointer type is assumed 936 * for precision or HW defined structures, the following define 937 * types must be used. In Linux the char, short, and int types 938 * are all consistent at 8, 16, and 32 bits respectively. Pointers 939 * and long types are 64 bits on Alpha and UltraSPARC. 940 */ 941 #define ADV_PADDR __u32 /* Physical address data type. */ 942 #define ADV_VADDR __u32 /* Virtual address data type. */ 943 #define ADV_DCNT __u32 /* Unsigned Data count type. */ 944 #define ADV_SDCNT __s32 /* Signed Data count type. */ 945 946 /* 947 * These macros are used to convert a virtual address to a 948 * 32-bit value. This currently can be used on Linux Alpha 949 * which uses 64-bit virtual address but a 32-bit bus address. 950 * This is likely to break in the future, but doing this now 951 * will give us time to change the HW and FW to handle 64-bit 952 * addresses. 953 */ 954 #define ADV_VADDR_TO_U32 virt_to_bus 955 #define ADV_U32_TO_VADDR bus_to_virt 956 957 #define AdvPortAddr void __iomem * /* Virtual memory address size */ 958 959 /* 960 * Define Adv Library required memory access macros. 961 */ 962 #define ADV_MEM_READB(addr) readb(addr) 963 #define ADV_MEM_READW(addr) readw(addr) 964 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr) 965 #define ADV_MEM_WRITEW(addr, word) writew(word, addr) 966 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr) 967 968 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15) 969 970 /* 971 * Define total number of simultaneous maximum element scatter-gather 972 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the 973 * maximum number of outstanding commands per wide host adapter. Each 974 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather 975 * elements. Allow each command to have at least one ADV_SG_BLOCK structure. 976 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK 977 * structures or 255 scatter-gather elements. 978 */ 979 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG 980 981 /* 982 * Define maximum number of scatter-gather elements per request. 983 */ 984 #define ADV_MAX_SG_LIST 255 985 #define NO_OF_SG_PER_BLOCK 15 986 987 #define ADV_EEP_DVC_CFG_BEGIN (0x00) 988 #define ADV_EEP_DVC_CFG_END (0x15) 989 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */ 990 #define ADV_EEP_MAX_WORD_ADDR (0x1E) 991 992 #define ADV_EEP_DELAY_MS 100 993 994 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */ 995 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */ 996 /* 997 * For the ASC3550 Bit 13 is Termination Polarity control bit. 998 * For later ICs Bit 13 controls whether the CIS (Card Information 999 * Service Section) is loaded from EEPROM. 1000 */ 1001 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */ 1002 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */ 1003 /* 1004 * ASC38C1600 Bit 11 1005 * 1006 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify 1007 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then 1008 * Function 0 will specify INT B. 1009 * 1010 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify 1011 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then 1012 * Function 1 will specify INT A. 1013 */ 1014 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */ 1015 1016 typedef struct adveep_3550_config { 1017 /* Word Offset, Description */ 1018 1019 ushort cfg_lsw; /* 00 power up initialization */ 1020 /* bit 13 set - Term Polarity Control */ 1021 /* bit 14 set - BIOS Enable */ 1022 /* bit 15 set - Big Endian Mode */ 1023 ushort cfg_msw; /* 01 unused */ 1024 ushort disc_enable; /* 02 disconnect enable */ 1025 ushort wdtr_able; /* 03 Wide DTR able */ 1026 ushort sdtr_able; /* 04 Synchronous DTR able */ 1027 ushort start_motor; /* 05 send start up motor */ 1028 ushort tagqng_able; /* 06 tag queuing able */ 1029 ushort bios_scan; /* 07 BIOS device control */ 1030 ushort scam_tolerant; /* 08 no scam */ 1031 1032 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1033 uchar bios_boot_delay; /* power up wait */ 1034 1035 uchar scsi_reset_delay; /* 10 reset delay */ 1036 uchar bios_id_lun; /* first boot device scsi id & lun */ 1037 /* high nibble is lun */ 1038 /* low nibble is scsi id */ 1039 1040 uchar termination; /* 11 0 - automatic */ 1041 /* 1 - low off / high off */ 1042 /* 2 - low off / high on */ 1043 /* 3 - low on / high on */ 1044 /* There is no low on / high off */ 1045 1046 uchar reserved1; /* reserved byte (not used) */ 1047 1048 ushort bios_ctrl; /* 12 BIOS control bits */ 1049 /* bit 0 BIOS don't act as initiator. */ 1050 /* bit 1 BIOS > 1 GB support */ 1051 /* bit 2 BIOS > 2 Disk Support */ 1052 /* bit 3 BIOS don't support removables */ 1053 /* bit 4 BIOS support bootable CD */ 1054 /* bit 5 BIOS scan enabled */ 1055 /* bit 6 BIOS support multiple LUNs */ 1056 /* bit 7 BIOS display of message */ 1057 /* bit 8 SCAM disabled */ 1058 /* bit 9 Reset SCSI bus during init. */ 1059 /* bit 10 */ 1060 /* bit 11 No verbose initialization. */ 1061 /* bit 12 SCSI parity enabled */ 1062 /* bit 13 */ 1063 /* bit 14 */ 1064 /* bit 15 */ 1065 ushort ultra_able; /* 13 ULTRA speed able */ 1066 ushort reserved2; /* 14 reserved */ 1067 uchar max_host_qng; /* 15 maximum host queuing */ 1068 uchar max_dvc_qng; /* maximum per device queuing */ 1069 ushort dvc_cntl; /* 16 control bit for driver */ 1070 ushort bug_fix; /* 17 control bit for bug fix */ 1071 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1072 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1073 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1074 ushort check_sum; /* 21 EEP check sum */ 1075 uchar oem_name[16]; /* 22 OEM name */ 1076 ushort dvc_err_code; /* 30 last device driver error code */ 1077 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1078 ushort adv_err_addr; /* 32 last uc error address */ 1079 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1080 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1081 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1082 ushort num_of_err; /* 36 number of error */ 1083 } ADVEEP_3550_CONFIG; 1084 1085 typedef struct adveep_38C0800_config { 1086 /* Word Offset, Description */ 1087 1088 ushort cfg_lsw; /* 00 power up initialization */ 1089 /* bit 13 set - Load CIS */ 1090 /* bit 14 set - BIOS Enable */ 1091 /* bit 15 set - Big Endian Mode */ 1092 ushort cfg_msw; /* 01 unused */ 1093 ushort disc_enable; /* 02 disconnect enable */ 1094 ushort wdtr_able; /* 03 Wide DTR able */ 1095 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1096 ushort start_motor; /* 05 send start up motor */ 1097 ushort tagqng_able; /* 06 tag queuing able */ 1098 ushort bios_scan; /* 07 BIOS device control */ 1099 ushort scam_tolerant; /* 08 no scam */ 1100 1101 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1102 uchar bios_boot_delay; /* power up wait */ 1103 1104 uchar scsi_reset_delay; /* 10 reset delay */ 1105 uchar bios_id_lun; /* first boot device scsi id & lun */ 1106 /* high nibble is lun */ 1107 /* low nibble is scsi id */ 1108 1109 uchar termination_se; /* 11 0 - automatic */ 1110 /* 1 - low off / high off */ 1111 /* 2 - low off / high on */ 1112 /* 3 - low on / high on */ 1113 /* There is no low on / high off */ 1114 1115 uchar termination_lvd; /* 11 0 - automatic */ 1116 /* 1 - low off / high off */ 1117 /* 2 - low off / high on */ 1118 /* 3 - low on / high on */ 1119 /* There is no low on / high off */ 1120 1121 ushort bios_ctrl; /* 12 BIOS control bits */ 1122 /* bit 0 BIOS don't act as initiator. */ 1123 /* bit 1 BIOS > 1 GB support */ 1124 /* bit 2 BIOS > 2 Disk Support */ 1125 /* bit 3 BIOS don't support removables */ 1126 /* bit 4 BIOS support bootable CD */ 1127 /* bit 5 BIOS scan enabled */ 1128 /* bit 6 BIOS support multiple LUNs */ 1129 /* bit 7 BIOS display of message */ 1130 /* bit 8 SCAM disabled */ 1131 /* bit 9 Reset SCSI bus during init. */ 1132 /* bit 10 */ 1133 /* bit 11 No verbose initialization. */ 1134 /* bit 12 SCSI parity enabled */ 1135 /* bit 13 */ 1136 /* bit 14 */ 1137 /* bit 15 */ 1138 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1139 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1140 uchar max_host_qng; /* 15 maximum host queueing */ 1141 uchar max_dvc_qng; /* maximum per device queuing */ 1142 ushort dvc_cntl; /* 16 control bit for driver */ 1143 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1144 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1145 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1146 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1147 ushort check_sum; /* 21 EEP check sum */ 1148 uchar oem_name[16]; /* 22 OEM name */ 1149 ushort dvc_err_code; /* 30 last device driver error code */ 1150 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1151 ushort adv_err_addr; /* 32 last uc error address */ 1152 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1153 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1154 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1155 ushort reserved36; /* 36 reserved */ 1156 ushort reserved37; /* 37 reserved */ 1157 ushort reserved38; /* 38 reserved */ 1158 ushort reserved39; /* 39 reserved */ 1159 ushort reserved40; /* 40 reserved */ 1160 ushort reserved41; /* 41 reserved */ 1161 ushort reserved42; /* 42 reserved */ 1162 ushort reserved43; /* 43 reserved */ 1163 ushort reserved44; /* 44 reserved */ 1164 ushort reserved45; /* 45 reserved */ 1165 ushort reserved46; /* 46 reserved */ 1166 ushort reserved47; /* 47 reserved */ 1167 ushort reserved48; /* 48 reserved */ 1168 ushort reserved49; /* 49 reserved */ 1169 ushort reserved50; /* 50 reserved */ 1170 ushort reserved51; /* 51 reserved */ 1171 ushort reserved52; /* 52 reserved */ 1172 ushort reserved53; /* 53 reserved */ 1173 ushort reserved54; /* 54 reserved */ 1174 ushort reserved55; /* 55 reserved */ 1175 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1176 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1177 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1178 ushort subsysid; /* 59 SubSystem ID */ 1179 ushort reserved60; /* 60 reserved */ 1180 ushort reserved61; /* 61 reserved */ 1181 ushort reserved62; /* 62 reserved */ 1182 ushort reserved63; /* 63 reserved */ 1183 } ADVEEP_38C0800_CONFIG; 1184 1185 typedef struct adveep_38C1600_config { 1186 /* Word Offset, Description */ 1187 1188 ushort cfg_lsw; /* 00 power up initialization */ 1189 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */ 1190 /* clear - Func. 0 INTA, Func. 1 INTB */ 1191 /* bit 13 set - Load CIS */ 1192 /* bit 14 set - BIOS Enable */ 1193 /* bit 15 set - Big Endian Mode */ 1194 ushort cfg_msw; /* 01 unused */ 1195 ushort disc_enable; /* 02 disconnect enable */ 1196 ushort wdtr_able; /* 03 Wide DTR able */ 1197 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1198 ushort start_motor; /* 05 send start up motor */ 1199 ushort tagqng_able; /* 06 tag queuing able */ 1200 ushort bios_scan; /* 07 BIOS device control */ 1201 ushort scam_tolerant; /* 08 no scam */ 1202 1203 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1204 uchar bios_boot_delay; /* power up wait */ 1205 1206 uchar scsi_reset_delay; /* 10 reset delay */ 1207 uchar bios_id_lun; /* first boot device scsi id & lun */ 1208 /* high nibble is lun */ 1209 /* low nibble is scsi id */ 1210 1211 uchar termination_se; /* 11 0 - automatic */ 1212 /* 1 - low off / high off */ 1213 /* 2 - low off / high on */ 1214 /* 3 - low on / high on */ 1215 /* There is no low on / high off */ 1216 1217 uchar termination_lvd; /* 11 0 - automatic */ 1218 /* 1 - low off / high off */ 1219 /* 2 - low off / high on */ 1220 /* 3 - low on / high on */ 1221 /* There is no low on / high off */ 1222 1223 ushort bios_ctrl; /* 12 BIOS control bits */ 1224 /* bit 0 BIOS don't act as initiator. */ 1225 /* bit 1 BIOS > 1 GB support */ 1226 /* bit 2 BIOS > 2 Disk Support */ 1227 /* bit 3 BIOS don't support removables */ 1228 /* bit 4 BIOS support bootable CD */ 1229 /* bit 5 BIOS scan enabled */ 1230 /* bit 6 BIOS support multiple LUNs */ 1231 /* bit 7 BIOS display of message */ 1232 /* bit 8 SCAM disabled */ 1233 /* bit 9 Reset SCSI bus during init. */ 1234 /* bit 10 Basic Integrity Checking disabled */ 1235 /* bit 11 No verbose initialization. */ 1236 /* bit 12 SCSI parity enabled */ 1237 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */ 1238 /* bit 14 */ 1239 /* bit 15 */ 1240 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1241 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1242 uchar max_host_qng; /* 15 maximum host queueing */ 1243 uchar max_dvc_qng; /* maximum per device queuing */ 1244 ushort dvc_cntl; /* 16 control bit for driver */ 1245 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1246 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1247 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1248 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1249 ushort check_sum; /* 21 EEP check sum */ 1250 uchar oem_name[16]; /* 22 OEM name */ 1251 ushort dvc_err_code; /* 30 last device driver error code */ 1252 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1253 ushort adv_err_addr; /* 32 last uc error address */ 1254 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1255 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1256 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1257 ushort reserved36; /* 36 reserved */ 1258 ushort reserved37; /* 37 reserved */ 1259 ushort reserved38; /* 38 reserved */ 1260 ushort reserved39; /* 39 reserved */ 1261 ushort reserved40; /* 40 reserved */ 1262 ushort reserved41; /* 41 reserved */ 1263 ushort reserved42; /* 42 reserved */ 1264 ushort reserved43; /* 43 reserved */ 1265 ushort reserved44; /* 44 reserved */ 1266 ushort reserved45; /* 45 reserved */ 1267 ushort reserved46; /* 46 reserved */ 1268 ushort reserved47; /* 47 reserved */ 1269 ushort reserved48; /* 48 reserved */ 1270 ushort reserved49; /* 49 reserved */ 1271 ushort reserved50; /* 50 reserved */ 1272 ushort reserved51; /* 51 reserved */ 1273 ushort reserved52; /* 52 reserved */ 1274 ushort reserved53; /* 53 reserved */ 1275 ushort reserved54; /* 54 reserved */ 1276 ushort reserved55; /* 55 reserved */ 1277 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1278 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1279 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1280 ushort subsysid; /* 59 SubSystem ID */ 1281 ushort reserved60; /* 60 reserved */ 1282 ushort reserved61; /* 61 reserved */ 1283 ushort reserved62; /* 62 reserved */ 1284 ushort reserved63; /* 63 reserved */ 1285 } ADVEEP_38C1600_CONFIG; 1286 1287 /* 1288 * EEPROM Commands 1289 */ 1290 #define ASC_EEP_CMD_DONE 0x0200 1291 1292 /* bios_ctrl */ 1293 #define BIOS_CTRL_BIOS 0x0001 1294 #define BIOS_CTRL_EXTENDED_XLAT 0x0002 1295 #define BIOS_CTRL_GT_2_DISK 0x0004 1296 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008 1297 #define BIOS_CTRL_BOOTABLE_CD 0x0010 1298 #define BIOS_CTRL_MULTIPLE_LUN 0x0040 1299 #define BIOS_CTRL_DISPLAY_MSG 0x0080 1300 #define BIOS_CTRL_NO_SCAM 0x0100 1301 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200 1302 #define BIOS_CTRL_INIT_VERBOSE 0x0800 1303 #define BIOS_CTRL_SCSI_PARITY 0x1000 1304 #define BIOS_CTRL_AIPP_DIS 0x2000 1305 1306 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */ 1307 1308 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1309 1310 /* 1311 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is 1312 * a special 16K Adv Library and Microcode version. After the issue is 1313 * resolved, should restore 32K support. 1314 * 1315 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory * 1316 */ 1317 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1318 1319 /* 1320 * Byte I/O register address from base of 'iop_base'. 1321 */ 1322 #define IOPB_INTR_STATUS_REG 0x00 1323 #define IOPB_CHIP_ID_1 0x01 1324 #define IOPB_INTR_ENABLES 0x02 1325 #define IOPB_CHIP_TYPE_REV 0x03 1326 #define IOPB_RES_ADDR_4 0x04 1327 #define IOPB_RES_ADDR_5 0x05 1328 #define IOPB_RAM_DATA 0x06 1329 #define IOPB_RES_ADDR_7 0x07 1330 #define IOPB_FLAG_REG 0x08 1331 #define IOPB_RES_ADDR_9 0x09 1332 #define IOPB_RISC_CSR 0x0A 1333 #define IOPB_RES_ADDR_B 0x0B 1334 #define IOPB_RES_ADDR_C 0x0C 1335 #define IOPB_RES_ADDR_D 0x0D 1336 #define IOPB_SOFT_OVER_WR 0x0E 1337 #define IOPB_RES_ADDR_F 0x0F 1338 #define IOPB_MEM_CFG 0x10 1339 #define IOPB_RES_ADDR_11 0x11 1340 #define IOPB_GPIO_DATA 0x12 1341 #define IOPB_RES_ADDR_13 0x13 1342 #define IOPB_FLASH_PAGE 0x14 1343 #define IOPB_RES_ADDR_15 0x15 1344 #define IOPB_GPIO_CNTL 0x16 1345 #define IOPB_RES_ADDR_17 0x17 1346 #define IOPB_FLASH_DATA 0x18 1347 #define IOPB_RES_ADDR_19 0x19 1348 #define IOPB_RES_ADDR_1A 0x1A 1349 #define IOPB_RES_ADDR_1B 0x1B 1350 #define IOPB_RES_ADDR_1C 0x1C 1351 #define IOPB_RES_ADDR_1D 0x1D 1352 #define IOPB_RES_ADDR_1E 0x1E 1353 #define IOPB_RES_ADDR_1F 0x1F 1354 #define IOPB_DMA_CFG0 0x20 1355 #define IOPB_DMA_CFG1 0x21 1356 #define IOPB_TICKLE 0x22 1357 #define IOPB_DMA_REG_WR 0x23 1358 #define IOPB_SDMA_STATUS 0x24 1359 #define IOPB_SCSI_BYTE_CNT 0x25 1360 #define IOPB_HOST_BYTE_CNT 0x26 1361 #define IOPB_BYTE_LEFT_TO_XFER 0x27 1362 #define IOPB_BYTE_TO_XFER_0 0x28 1363 #define IOPB_BYTE_TO_XFER_1 0x29 1364 #define IOPB_BYTE_TO_XFER_2 0x2A 1365 #define IOPB_BYTE_TO_XFER_3 0x2B 1366 #define IOPB_ACC_GRP 0x2C 1367 #define IOPB_RES_ADDR_2D 0x2D 1368 #define IOPB_DEV_ID 0x2E 1369 #define IOPB_RES_ADDR_2F 0x2F 1370 #define IOPB_SCSI_DATA 0x30 1371 #define IOPB_RES_ADDR_31 0x31 1372 #define IOPB_RES_ADDR_32 0x32 1373 #define IOPB_SCSI_DATA_HSHK 0x33 1374 #define IOPB_SCSI_CTRL 0x34 1375 #define IOPB_RES_ADDR_35 0x35 1376 #define IOPB_RES_ADDR_36 0x36 1377 #define IOPB_RES_ADDR_37 0x37 1378 #define IOPB_RAM_BIST 0x38 1379 #define IOPB_PLL_TEST 0x39 1380 #define IOPB_PCI_INT_CFG 0x3A 1381 #define IOPB_RES_ADDR_3B 0x3B 1382 #define IOPB_RFIFO_CNT 0x3C 1383 #define IOPB_RES_ADDR_3D 0x3D 1384 #define IOPB_RES_ADDR_3E 0x3E 1385 #define IOPB_RES_ADDR_3F 0x3F 1386 1387 /* 1388 * Word I/O register address from base of 'iop_base'. 1389 */ 1390 #define IOPW_CHIP_ID_0 0x00 /* CID0 */ 1391 #define IOPW_CTRL_REG 0x02 /* CC */ 1392 #define IOPW_RAM_ADDR 0x04 /* LA */ 1393 #define IOPW_RAM_DATA 0x06 /* LD */ 1394 #define IOPW_RES_ADDR_08 0x08 1395 #define IOPW_RISC_CSR 0x0A /* CSR */ 1396 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */ 1397 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */ 1398 #define IOPW_RES_ADDR_10 0x10 1399 #define IOPW_SEL_MASK 0x12 /* SM */ 1400 #define IOPW_RES_ADDR_14 0x14 1401 #define IOPW_FLASH_ADDR 0x16 /* FA */ 1402 #define IOPW_RES_ADDR_18 0x18 1403 #define IOPW_EE_CMD 0x1A /* EC */ 1404 #define IOPW_EE_DATA 0x1C /* ED */ 1405 #define IOPW_SFIFO_CNT 0x1E /* SFC */ 1406 #define IOPW_RES_ADDR_20 0x20 1407 #define IOPW_Q_BASE 0x22 /* QB */ 1408 #define IOPW_QP 0x24 /* QP */ 1409 #define IOPW_IX 0x26 /* IX */ 1410 #define IOPW_SP 0x28 /* SP */ 1411 #define IOPW_PC 0x2A /* PC */ 1412 #define IOPW_RES_ADDR_2C 0x2C 1413 #define IOPW_RES_ADDR_2E 0x2E 1414 #define IOPW_SCSI_DATA 0x30 /* SD */ 1415 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */ 1416 #define IOPW_SCSI_CTRL 0x34 /* SC */ 1417 #define IOPW_HSHK_CFG 0x36 /* HCFG */ 1418 #define IOPW_SXFR_STATUS 0x36 /* SXS */ 1419 #define IOPW_SXFR_CNTL 0x38 /* SXL */ 1420 #define IOPW_SXFR_CNTH 0x3A /* SXH */ 1421 #define IOPW_RES_ADDR_3C 0x3C 1422 #define IOPW_RFIFO_DATA 0x3E /* RFD */ 1423 1424 /* 1425 * Doubleword I/O register address from base of 'iop_base'. 1426 */ 1427 #define IOPDW_RES_ADDR_0 0x00 1428 #define IOPDW_RAM_DATA 0x04 1429 #define IOPDW_RES_ADDR_8 0x08 1430 #define IOPDW_RES_ADDR_C 0x0C 1431 #define IOPDW_RES_ADDR_10 0x10 1432 #define IOPDW_COMMA 0x14 1433 #define IOPDW_COMMB 0x18 1434 #define IOPDW_RES_ADDR_1C 0x1C 1435 #define IOPDW_SDMA_ADDR0 0x20 1436 #define IOPDW_SDMA_ADDR1 0x24 1437 #define IOPDW_SDMA_COUNT 0x28 1438 #define IOPDW_SDMA_ERROR 0x2C 1439 #define IOPDW_RDMA_ADDR0 0x30 1440 #define IOPDW_RDMA_ADDR1 0x34 1441 #define IOPDW_RDMA_COUNT 0x38 1442 #define IOPDW_RDMA_ERROR 0x3C 1443 1444 #define ADV_CHIP_ID_BYTE 0x25 1445 #define ADV_CHIP_ID_WORD 0x04C1 1446 1447 #define ADV_INTR_ENABLE_HOST_INTR 0x01 1448 #define ADV_INTR_ENABLE_SEL_INTR 0x02 1449 #define ADV_INTR_ENABLE_DPR_INTR 0x04 1450 #define ADV_INTR_ENABLE_RTA_INTR 0x08 1451 #define ADV_INTR_ENABLE_RMA_INTR 0x10 1452 #define ADV_INTR_ENABLE_RST_INTR 0x20 1453 #define ADV_INTR_ENABLE_DPE_INTR 0x40 1454 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80 1455 1456 #define ADV_INTR_STATUS_INTRA 0x01 1457 #define ADV_INTR_STATUS_INTRB 0x02 1458 #define ADV_INTR_STATUS_INTRC 0x04 1459 1460 #define ADV_RISC_CSR_STOP (0x0000) 1461 #define ADV_RISC_TEST_COND (0x2000) 1462 #define ADV_RISC_CSR_RUN (0x4000) 1463 #define ADV_RISC_CSR_SINGLE_STEP (0x8000) 1464 1465 #define ADV_CTRL_REG_HOST_INTR 0x0100 1466 #define ADV_CTRL_REG_SEL_INTR 0x0200 1467 #define ADV_CTRL_REG_DPR_INTR 0x0400 1468 #define ADV_CTRL_REG_RTA_INTR 0x0800 1469 #define ADV_CTRL_REG_RMA_INTR 0x1000 1470 #define ADV_CTRL_REG_RES_BIT14 0x2000 1471 #define ADV_CTRL_REG_DPE_INTR 0x4000 1472 #define ADV_CTRL_REG_POWER_DONE 0x8000 1473 #define ADV_CTRL_REG_ANY_INTR 0xFF00 1474 1475 #define ADV_CTRL_REG_CMD_RESET 0x00C6 1476 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5 1477 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4 1478 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3 1479 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2 1480 1481 #define ADV_TICKLE_NOP 0x00 1482 #define ADV_TICKLE_A 0x01 1483 #define ADV_TICKLE_B 0x02 1484 #define ADV_TICKLE_C 0x03 1485 1486 #define AdvIsIntPending(port) \ 1487 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR) 1488 1489 /* 1490 * SCSI_CFG0 Register bit definitions 1491 */ 1492 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */ 1493 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */ 1494 #define EVEN_PARITY 0x1000 /* Select Even Parity */ 1495 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */ 1496 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */ 1497 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */ 1498 #define SCAM_EN 0x0080 /* Enable SCAM selection */ 1499 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */ 1500 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */ 1501 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */ 1502 #define OUR_ID 0x000F /* SCSI ID */ 1503 1504 /* 1505 * SCSI_CFG1 Register bit definitions 1506 */ 1507 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */ 1508 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */ 1509 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */ 1510 #define FILTER_SEL 0x0C00 /* Filter Period Selection */ 1511 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */ 1512 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */ 1513 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */ 1514 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */ 1515 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */ 1516 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */ 1517 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */ 1518 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */ 1519 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */ 1520 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */ 1521 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */ 1522 1523 /* 1524 * Addendum for ASC-38C0800 Chip 1525 * 1526 * The ASC-38C1600 Chip uses the same definitions except that the 1527 * bus mode override bits [12:10] have been moved to byte register 1528 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in 1529 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV) 1530 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only. 1531 * Also each ASC-38C1600 function or channel uses only cable bits [5:4] 1532 * and [1:0]. Bits [14], [7:6], [3:2] are unused. 1533 */ 1534 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */ 1535 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */ 1536 #define HVD 0x1000 /* HVD Device Detect */ 1537 #define LVD 0x0800 /* LVD Device Detect */ 1538 #define SE 0x0400 /* SE Device Detect */ 1539 #define TERM_LVD 0x00C0 /* LVD Termination Bits */ 1540 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */ 1541 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */ 1542 #define TERM_SE 0x0030 /* SE Termination Bits */ 1543 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */ 1544 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */ 1545 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */ 1546 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */ 1547 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */ 1548 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */ 1549 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */ 1550 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */ 1551 1552 #define CABLE_ILLEGAL_A 0x7 1553 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */ 1554 1555 #define CABLE_ILLEGAL_B 0xB 1556 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */ 1557 1558 /* 1559 * MEM_CFG Register bit definitions 1560 */ 1561 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */ 1562 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */ 1563 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */ 1564 #define RAM_SZ_2KB 0x00 /* 2 KB */ 1565 #define RAM_SZ_4KB 0x04 /* 4 KB */ 1566 #define RAM_SZ_8KB 0x08 /* 8 KB */ 1567 #define RAM_SZ_16KB 0x0C /* 16 KB */ 1568 #define RAM_SZ_32KB 0x10 /* 32 KB */ 1569 #define RAM_SZ_64KB 0x14 /* 64 KB */ 1570 1571 /* 1572 * DMA_CFG0 Register bit definitions 1573 * 1574 * This register is only accessible to the host. 1575 */ 1576 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */ 1577 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */ 1578 #define FIFO_THRESH_16B 0x00 /* 16 bytes */ 1579 #define FIFO_THRESH_32B 0x20 /* 32 bytes */ 1580 #define FIFO_THRESH_48B 0x30 /* 48 bytes */ 1581 #define FIFO_THRESH_64B 0x40 /* 64 bytes */ 1582 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */ 1583 #define FIFO_THRESH_96B 0x60 /* 96 bytes */ 1584 #define FIFO_THRESH_112B 0x70 /* 112 bytes */ 1585 #define START_CTL 0x0C /* DMA start conditions */ 1586 #define START_CTL_TH 0x00 /* Wait threshold level (default) */ 1587 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */ 1588 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */ 1589 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */ 1590 #define READ_CMD 0x03 /* Memory Read Method */ 1591 #define READ_CMD_MR 0x00 /* Memory Read */ 1592 #define READ_CMD_MRL 0x02 /* Memory Read Long */ 1593 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */ 1594 1595 /* 1596 * ASC-38C0800 RAM BIST Register bit definitions 1597 */ 1598 #define RAM_TEST_MODE 0x80 1599 #define PRE_TEST_MODE 0x40 1600 #define NORMAL_MODE 0x00 1601 #define RAM_TEST_DONE 0x10 1602 #define RAM_TEST_STATUS 0x0F 1603 #define RAM_TEST_HOST_ERROR 0x08 1604 #define RAM_TEST_INTRAM_ERROR 0x04 1605 #define RAM_TEST_RISC_ERROR 0x02 1606 #define RAM_TEST_SCSI_ERROR 0x01 1607 #define RAM_TEST_SUCCESS 0x00 1608 #define PRE_TEST_VALUE 0x05 1609 #define NORMAL_VALUE 0x00 1610 1611 /* 1612 * ASC38C1600 Definitions 1613 * 1614 * IOPB_PCI_INT_CFG Bit Field Definitions 1615 */ 1616 1617 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */ 1618 1619 /* 1620 * Bit 1 can be set to change the interrupt for the Function to operate in 1621 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in 1622 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same 1623 * mode, otherwise the operating mode is undefined. 1624 */ 1625 #define TOTEMPOLE 0x02 1626 1627 /* 1628 * Bit 0 can be used to change the Int Pin for the Function. The value is 1629 * 0 by default for both Functions with Function 0 using INT A and Function 1630 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set, 1631 * INT A is used. 1632 * 1633 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin 1634 * value specified in the PCI Configuration Space. 1635 */ 1636 #define INTAB 0x01 1637 1638 /* 1639 * Adv Library Status Definitions 1640 */ 1641 #define ADV_TRUE 1 1642 #define ADV_FALSE 0 1643 #define ADV_SUCCESS 1 1644 #define ADV_BUSY 0 1645 #define ADV_ERROR (-1) 1646 1647 /* 1648 * ADV_DVC_VAR 'warn_code' values 1649 */ 1650 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */ 1651 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */ 1652 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */ 1653 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */ 1654 1655 #define ADV_MAX_TID 15 /* max. target identifier */ 1656 #define ADV_MAX_LUN 7 /* max. logical unit number */ 1657 1658 /* 1659 * Fixed locations of microcode operating variables. 1660 */ 1661 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */ 1662 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */ 1663 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */ 1664 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */ 1665 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */ 1666 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */ 1667 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */ 1668 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */ 1669 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */ 1670 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */ 1671 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */ 1672 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */ 1673 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */ 1674 #define ASC_MC_CHIP_TYPE 0x009A 1675 #define ASC_MC_INTRB_CODE 0x009B 1676 #define ASC_MC_WDTR_ABLE 0x009C 1677 #define ASC_MC_SDTR_ABLE 0x009E 1678 #define ASC_MC_TAGQNG_ABLE 0x00A0 1679 #define ASC_MC_DISC_ENABLE 0x00A2 1680 #define ASC_MC_IDLE_CMD_STATUS 0x00A4 1681 #define ASC_MC_IDLE_CMD 0x00A6 1682 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8 1683 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC 1684 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE 1685 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0 1686 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2 1687 #define ASC_MC_SDTR_DONE 0x00B6 1688 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0 1689 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0 1690 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100 1691 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */ 1692 #define ASC_MC_WDTR_DONE 0x0124 1693 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */ 1694 #define ASC_MC_ICQ 0x0160 1695 #define ASC_MC_IRQ 0x0164 1696 #define ASC_MC_PPR_ABLE 0x017A 1697 1698 /* 1699 * BIOS LRAM variable absolute offsets. 1700 */ 1701 #define BIOS_CODESEG 0x54 1702 #define BIOS_CODELEN 0x56 1703 #define BIOS_SIGNATURE 0x58 1704 #define BIOS_VERSION 0x5A 1705 1706 /* 1707 * Microcode Control Flags 1708 * 1709 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122) 1710 * and handled by the microcode. 1711 */ 1712 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */ 1713 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */ 1714 1715 /* 1716 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format 1717 */ 1718 #define HSHK_CFG_WIDE_XFR 0x8000 1719 #define HSHK_CFG_RATE 0x0F00 1720 #define HSHK_CFG_OFFSET 0x001F 1721 1722 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */ 1723 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */ 1724 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */ 1725 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */ 1726 1727 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */ 1728 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */ 1729 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */ 1730 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */ 1731 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */ 1732 1733 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */ 1734 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */ 1735 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */ 1736 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */ 1737 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */ 1738 /* 1739 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or 1740 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used. 1741 */ 1742 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */ 1743 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */ 1744 1745 /* 1746 * All fields here are accessed by the board microcode and need to be 1747 * little-endian. 1748 */ 1749 typedef struct adv_carr_t { 1750 ADV_VADDR carr_va; /* Carrier Virtual Address */ 1751 ADV_PADDR carr_pa; /* Carrier Physical Address */ 1752 ADV_VADDR areq_vpa; /* ASC_SCSI_REQ_Q Virtual or Physical Address */ 1753 /* 1754 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer 1755 * 1756 * next_vpa [3:1] Reserved Bits 1757 * next_vpa [0] Done Flag set in Response Queue. 1758 */ 1759 ADV_VADDR next_vpa; 1760 } ADV_CARR_T; 1761 1762 /* 1763 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field. 1764 */ 1765 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0 1766 1767 #define ASC_RQ_DONE 0x00000001 1768 #define ASC_RQ_GOOD 0x00000002 1769 #define ASC_CQ_STOPPER 0x00000000 1770 1771 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK) 1772 1773 #define ADV_CARRIER_NUM_PAGE_CROSSING \ 1774 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE) 1775 1776 #define ADV_CARRIER_BUFSIZE \ 1777 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T)) 1778 1779 /* 1780 * ASC_SCSI_REQ_Q 'a_flag' definitions 1781 * 1782 * The Adv Library should limit use to the lower nibble (4 bits) of 1783 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag. 1784 */ 1785 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */ 1786 #define ADV_SCSIQ_DONE 0x02 /* request done */ 1787 #define ADV_DONT_RETRY 0x08 /* don't do retry */ 1788 1789 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */ 1790 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */ 1791 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */ 1792 1793 /* 1794 * Adapter temporary configuration structure 1795 * 1796 * This structure can be discarded after initialization. Don't add 1797 * fields here needed after initialization. 1798 * 1799 * Field naming convention: 1800 * 1801 * *_enable indicates the field enables or disables a feature. The 1802 * value of the field is never reset. 1803 */ 1804 typedef struct adv_dvc_cfg { 1805 ushort disc_enable; /* enable disconnection */ 1806 uchar chip_version; /* chip version */ 1807 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */ 1808 ushort control_flag; /* Microcode Control Flag */ 1809 ushort mcode_date; /* Microcode date */ 1810 ushort mcode_version; /* Microcode version */ 1811 ushort serial1; /* EEPROM serial number word 1 */ 1812 ushort serial2; /* EEPROM serial number word 2 */ 1813 ushort serial3; /* EEPROM serial number word 3 */ 1814 } ADV_DVC_CFG; 1815 1816 struct adv_dvc_var; 1817 struct adv_scsi_req_q; 1818 1819 typedef struct asc_sg_block { 1820 uchar reserved1; 1821 uchar reserved2; 1822 uchar reserved3; 1823 uchar sg_cnt; /* Valid entries in block. */ 1824 ADV_PADDR sg_ptr; /* Pointer to next sg block. */ 1825 struct { 1826 ADV_PADDR sg_addr; /* SG element address. */ 1827 ADV_DCNT sg_count; /* SG element count. */ 1828 } sg_list[NO_OF_SG_PER_BLOCK]; 1829 } ADV_SG_BLOCK; 1830 1831 /* 1832 * ADV_SCSI_REQ_Q - microcode request structure 1833 * 1834 * All fields in this structure up to byte 60 are used by the microcode. 1835 * The microcode makes assumptions about the size and ordering of fields 1836 * in this structure. Do not change the structure definition here without 1837 * coordinating the change with the microcode. 1838 * 1839 * All fields accessed by microcode must be maintained in little_endian 1840 * order. 1841 */ 1842 typedef struct adv_scsi_req_q { 1843 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */ 1844 uchar target_cmd; 1845 uchar target_id; /* Device target identifier. */ 1846 uchar target_lun; /* Device target logical unit number. */ 1847 ADV_PADDR data_addr; /* Data buffer physical address. */ 1848 ADV_DCNT data_cnt; /* Data count. Ucode sets to residual. */ 1849 ADV_PADDR sense_addr; 1850 ADV_PADDR carr_pa; 1851 uchar mflag; 1852 uchar sense_len; 1853 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */ 1854 uchar scsi_cntl; 1855 uchar done_status; /* Completion status. */ 1856 uchar scsi_status; /* SCSI status byte. */ 1857 uchar host_status; /* Ucode host status. */ 1858 uchar sg_working_ix; 1859 uchar cdb[12]; /* SCSI CDB bytes 0-11. */ 1860 ADV_PADDR sg_real_addr; /* SG list physical address. */ 1861 ADV_PADDR scsiq_rptr; 1862 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */ 1863 ADV_VADDR scsiq_ptr; 1864 ADV_VADDR carr_va; 1865 /* 1866 * End of microcode structure - 60 bytes. The rest of the structure 1867 * is used by the Adv Library and ignored by the microcode. 1868 */ 1869 ADV_VADDR srb_ptr; 1870 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */ 1871 char *vdata_addr; /* Data buffer virtual address. */ 1872 uchar a_flag; 1873 uchar pad[2]; /* Pad out to a word boundary. */ 1874 } ADV_SCSI_REQ_Q; 1875 1876 /* 1877 * The following two structures are used to process Wide Board requests. 1878 * 1879 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library 1880 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the 1881 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the 1882 * Mid-Level SCSI request structure. 1883 * 1884 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each 1885 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux 1886 * up to 255 scatter-gather elements may be used per request or 1887 * ADV_SCSI_REQ_Q. 1888 * 1889 * Both structures must be 32 byte aligned. 1890 */ 1891 typedef struct adv_sgblk { 1892 ADV_SG_BLOCK sg_block; /* Sgblock structure. */ 1893 uchar align[32]; /* Sgblock structure padding. */ 1894 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */ 1895 } adv_sgblk_t; 1896 1897 typedef struct adv_req { 1898 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */ 1899 uchar align[32]; /* Request structure padding. */ 1900 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */ 1901 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */ 1902 struct adv_req *next_reqp; /* Next Request Structure. */ 1903 } adv_req_t; 1904 1905 /* 1906 * Adapter operation variable structure. 1907 * 1908 * One structure is required per host adapter. 1909 * 1910 * Field naming convention: 1911 * 1912 * *_able indicates both whether a feature should be enabled or disabled 1913 * and whether a device isi capable of the feature. At initialization 1914 * this field may be set, but later if a device is found to be incapable 1915 * of the feature, the field is cleared. 1916 */ 1917 typedef struct adv_dvc_var { 1918 AdvPortAddr iop_base; /* I/O port address */ 1919 ushort err_code; /* fatal error code */ 1920 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */ 1921 ushort wdtr_able; /* try WDTR for a device */ 1922 ushort sdtr_able; /* try SDTR for a device */ 1923 ushort ultra_able; /* try SDTR Ultra speed for a device */ 1924 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */ 1925 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */ 1926 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */ 1927 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */ 1928 ushort tagqng_able; /* try tagged queuing with a device */ 1929 ushort ppr_able; /* PPR message capable per TID bitmask. */ 1930 uchar max_dvc_qng; /* maximum number of tagged commands per device */ 1931 ushort start_motor; /* start motor command allowed */ 1932 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */ 1933 uchar chip_no; /* should be assigned by caller */ 1934 uchar max_host_qng; /* maximum number of Q'ed command allowed */ 1935 ushort no_scam; /* scam_tolerant of EEPROM */ 1936 struct asc_board *drv_ptr; /* driver pointer to private structure */ 1937 uchar chip_scsi_id; /* chip SCSI target ID */ 1938 uchar chip_type; 1939 uchar bist_err_code; 1940 ADV_CARR_T *carrier_buf; 1941 ADV_CARR_T *carr_freelist; /* Carrier free list. */ 1942 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */ 1943 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */ 1944 ushort carr_pending_cnt; /* Count of pending carriers. */ 1945 struct adv_req *orig_reqp; /* adv_req_t memory block. */ 1946 /* 1947 * Note: The following fields will not be used after initialization. The 1948 * driver may discard the buffer after initialization is done. 1949 */ 1950 ADV_DVC_CFG *cfg; /* temporary configuration structure */ 1951 } ADV_DVC_VAR; 1952 1953 /* 1954 * Microcode idle loop commands 1955 */ 1956 #define IDLE_CMD_COMPLETED 0 1957 #define IDLE_CMD_STOP_CHIP 0x0001 1958 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002 1959 #define IDLE_CMD_SEND_INT 0x0004 1960 #define IDLE_CMD_ABORT 0x0008 1961 #define IDLE_CMD_DEVICE_RESET 0x0010 1962 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */ 1963 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */ 1964 #define IDLE_CMD_SCSIREQ 0x0080 1965 1966 #define IDLE_CMD_STATUS_SUCCESS 0x0001 1967 #define IDLE_CMD_STATUS_FAILURE 0x0002 1968 1969 /* 1970 * AdvSendIdleCmd() flag definitions. 1971 */ 1972 #define ADV_NOWAIT 0x01 1973 1974 /* 1975 * Wait loop time out values. 1976 */ 1977 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */ 1978 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */ 1979 #define SCSI_MAX_RETRY 10 /* retry count */ 1980 1981 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */ 1982 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */ 1983 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */ 1984 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */ 1985 1986 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */ 1987 1988 /* Read byte from a register. */ 1989 #define AdvReadByteRegister(iop_base, reg_off) \ 1990 (ADV_MEM_READB((iop_base) + (reg_off))) 1991 1992 /* Write byte to a register. */ 1993 #define AdvWriteByteRegister(iop_base, reg_off, byte) \ 1994 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte))) 1995 1996 /* Read word (2 bytes) from a register. */ 1997 #define AdvReadWordRegister(iop_base, reg_off) \ 1998 (ADV_MEM_READW((iop_base) + (reg_off))) 1999 2000 /* Write word (2 bytes) to a register. */ 2001 #define AdvWriteWordRegister(iop_base, reg_off, word) \ 2002 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word))) 2003 2004 /* Write dword (4 bytes) to a register. */ 2005 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \ 2006 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword))) 2007 2008 /* Read byte from LRAM. */ 2009 #define AdvReadByteLram(iop_base, addr, byte) \ 2010 do { \ 2011 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 2012 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \ 2013 } while (0) 2014 2015 /* Write byte to LRAM. */ 2016 #define AdvWriteByteLram(iop_base, addr, byte) \ 2017 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 2018 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte))) 2019 2020 /* Read word (2 bytes) from LRAM. */ 2021 #define AdvReadWordLram(iop_base, addr, word) \ 2022 do { \ 2023 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 2024 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \ 2025 } while (0) 2026 2027 /* Write word (2 bytes) to LRAM. */ 2028 #define AdvWriteWordLram(iop_base, addr, word) \ 2029 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 2030 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 2031 2032 /* Write little-endian double word (4 bytes) to LRAM */ 2033 /* Because of unspecified C language ordering don't use auto-increment. */ 2034 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \ 2035 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 2036 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 2037 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \ 2038 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ 2039 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 2040 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF))))) 2041 2042 /* Read word (2 bytes) from LRAM assuming that the address is already set. */ 2043 #define AdvReadWordAutoIncLram(iop_base) \ 2044 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)) 2045 2046 /* Write word (2 bytes) to LRAM assuming that the address is already set. */ 2047 #define AdvWriteWordAutoIncLram(iop_base, word) \ 2048 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 2049 2050 /* 2051 * Define macro to check for Condor signature. 2052 * 2053 * Evaluate to ADV_TRUE if a Condor chip is found the specified port 2054 * address 'iop_base'. Otherwise evalue to ADV_FALSE. 2055 */ 2056 #define AdvFindSignature(iop_base) \ 2057 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \ 2058 ADV_CHIP_ID_BYTE) && \ 2059 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \ 2060 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE) 2061 2062 /* 2063 * Define macro to Return the version number of the chip at 'iop_base'. 2064 * 2065 * The second parameter 'bus_type' is currently unused. 2066 */ 2067 #define AdvGetChipVersion(iop_base, bus_type) \ 2068 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV) 2069 2070 /* 2071 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must 2072 * match the ASC_SCSI_REQ_Q 'srb_ptr' field. 2073 * 2074 * If the request has not yet been sent to the device it will simply be 2075 * aborted from RISC memory. If the request is disconnected it will be 2076 * aborted on reselection by sending an Abort Message to the target ID. 2077 * 2078 * Return value: 2079 * ADV_TRUE(1) - Queue was successfully aborted. 2080 * ADV_FALSE(0) - Queue was not found on the active queue list. 2081 */ 2082 #define AdvAbortQueue(asc_dvc, scsiq) \ 2083 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \ 2084 (ADV_DCNT) (scsiq)) 2085 2086 /* 2087 * Send a Bus Device Reset Message to the specified target ID. 2088 * 2089 * All outstanding commands will be purged if sending the 2090 * Bus Device Reset Message is successful. 2091 * 2092 * Return Value: 2093 * ADV_TRUE(1) - All requests on the target are purged. 2094 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests 2095 * are not purged. 2096 */ 2097 #define AdvResetDevice(asc_dvc, target_id) \ 2098 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \ 2099 (ADV_DCNT) (target_id)) 2100 2101 /* 2102 * SCSI Wide Type definition. 2103 */ 2104 #define ADV_SCSI_BIT_ID_TYPE ushort 2105 2106 /* 2107 * AdvInitScsiTarget() 'cntl_flag' options. 2108 */ 2109 #define ADV_SCAN_LUN 0x01 2110 #define ADV_CAPINFO_NOLUN 0x02 2111 2112 /* 2113 * Convert target id to target id bit mask. 2114 */ 2115 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID)) 2116 2117 /* 2118 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values. 2119 */ 2120 2121 #define QD_NO_STATUS 0x00 /* Request not completed yet. */ 2122 #define QD_NO_ERROR 0x01 2123 #define QD_ABORTED_BY_HOST 0x02 2124 #define QD_WITH_ERROR 0x04 2125 2126 #define QHSTA_NO_ERROR 0x00 2127 #define QHSTA_M_SEL_TIMEOUT 0x11 2128 #define QHSTA_M_DATA_OVER_RUN 0x12 2129 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 2130 #define QHSTA_M_QUEUE_ABORTED 0x15 2131 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */ 2132 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */ 2133 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */ 2134 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */ 2135 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */ 2136 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */ 2137 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */ 2138 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */ 2139 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */ 2140 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */ 2141 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */ 2142 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */ 2143 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */ 2144 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */ 2145 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */ 2146 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */ 2147 #define QHSTA_M_WTM_TIMEOUT 0x41 2148 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 2149 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 2150 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 2151 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */ 2152 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */ 2153 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */ 2154 2155 /* Return the address that is aligned at the next doubleword >= to 'addr'. */ 2156 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7) 2157 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF) 2158 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F) 2159 2160 /* 2161 * Total contiguous memory needed for driver SG blocks. 2162 * 2163 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum 2164 * number of scatter-gather elements the driver supports in a 2165 * single request. 2166 */ 2167 2168 #define ADV_SG_LIST_MAX_BYTE_SIZE \ 2169 (sizeof(ADV_SG_BLOCK) * \ 2170 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK)) 2171 2172 /* struct asc_board flags */ 2173 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */ 2174 2175 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0) 2176 2177 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */ 2178 2179 #define ASC_INFO_SIZE 128 /* advansys_info() line size */ 2180 2181 /* Asc Library return codes */ 2182 #define ASC_TRUE 1 2183 #define ASC_FALSE 0 2184 #define ASC_NOERROR 1 2185 #define ASC_BUSY 0 2186 #define ASC_ERROR (-1) 2187 2188 /* struct scsi_cmnd function return codes */ 2189 #define STATUS_BYTE(byte) (byte) 2190 #define MSG_BYTE(byte) ((byte) << 8) 2191 #define HOST_BYTE(byte) ((byte) << 16) 2192 #define DRIVER_BYTE(byte) ((byte) << 24) 2193 2194 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1) 2195 #ifndef ADVANSYS_STATS 2196 #define ASC_STATS_ADD(shost, counter, count) 2197 #else /* ADVANSYS_STATS */ 2198 #define ASC_STATS_ADD(shost, counter, count) \ 2199 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count)) 2200 #endif /* ADVANSYS_STATS */ 2201 2202 /* If the result wraps when calculating tenths, return 0. */ 2203 #define ASC_TENTHS(num, den) \ 2204 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \ 2205 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den))))) 2206 2207 /* 2208 * Display a message to the console. 2209 */ 2210 #define ASC_PRINT(s) \ 2211 { \ 2212 printk("advansys: "); \ 2213 printk(s); \ 2214 } 2215 2216 #define ASC_PRINT1(s, a1) \ 2217 { \ 2218 printk("advansys: "); \ 2219 printk((s), (a1)); \ 2220 } 2221 2222 #define ASC_PRINT2(s, a1, a2) \ 2223 { \ 2224 printk("advansys: "); \ 2225 printk((s), (a1), (a2)); \ 2226 } 2227 2228 #define ASC_PRINT3(s, a1, a2, a3) \ 2229 { \ 2230 printk("advansys: "); \ 2231 printk((s), (a1), (a2), (a3)); \ 2232 } 2233 2234 #define ASC_PRINT4(s, a1, a2, a3, a4) \ 2235 { \ 2236 printk("advansys: "); \ 2237 printk((s), (a1), (a2), (a3), (a4)); \ 2238 } 2239 2240 #ifndef ADVANSYS_DEBUG 2241 2242 #define ASC_DBG(lvl, s...) 2243 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) 2244 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) 2245 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2246 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) 2247 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2248 #define ASC_DBG_PRT_HEX(lvl, name, start, length) 2249 #define ASC_DBG_PRT_CDB(lvl, cdb, len) 2250 #define ASC_DBG_PRT_SENSE(lvl, sense, len) 2251 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) 2252 2253 #else /* ADVANSYS_DEBUG */ 2254 2255 /* 2256 * Debugging Message Levels: 2257 * 0: Errors Only 2258 * 1: High-Level Tracing 2259 * 2-N: Verbose Tracing 2260 */ 2261 2262 #define ASC_DBG(lvl, format, arg...) { \ 2263 if (asc_dbglvl >= (lvl)) \ 2264 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \ 2265 __func__ , ## arg); \ 2266 } 2267 2268 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \ 2269 { \ 2270 if (asc_dbglvl >= (lvl)) { \ 2271 asc_prt_scsi_host(s); \ 2272 } \ 2273 } 2274 2275 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \ 2276 { \ 2277 if (asc_dbglvl >= (lvl)) { \ 2278 asc_prt_asc_scsi_q(scsiqp); \ 2279 } \ 2280 } 2281 2282 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \ 2283 { \ 2284 if (asc_dbglvl >= (lvl)) { \ 2285 asc_prt_asc_qdone_info(qdone); \ 2286 } \ 2287 } 2288 2289 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \ 2290 { \ 2291 if (asc_dbglvl >= (lvl)) { \ 2292 asc_prt_adv_scsi_req_q(scsiqp); \ 2293 } \ 2294 } 2295 2296 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \ 2297 { \ 2298 if (asc_dbglvl >= (lvl)) { \ 2299 asc_prt_hex((name), (start), (length)); \ 2300 } \ 2301 } 2302 2303 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \ 2304 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len)); 2305 2306 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \ 2307 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len)); 2308 2309 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \ 2310 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len)); 2311 #endif /* ADVANSYS_DEBUG */ 2312 2313 #ifdef ADVANSYS_STATS 2314 2315 /* Per board statistics structure */ 2316 struct asc_stats { 2317 /* Driver Entrypoint Statistics */ 2318 ADV_DCNT queuecommand; /* # calls to advansys_queuecommand() */ 2319 ADV_DCNT reset; /* # calls to advansys_eh_bus_reset() */ 2320 ADV_DCNT biosparam; /* # calls to advansys_biosparam() */ 2321 ADV_DCNT interrupt; /* # advansys_interrupt() calls */ 2322 ADV_DCNT callback; /* # calls to asc/adv_isr_callback() */ 2323 ADV_DCNT done; /* # calls to request's scsi_done function */ 2324 ADV_DCNT build_error; /* # asc/adv_build_req() ASC_ERROR returns. */ 2325 ADV_DCNT adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */ 2326 ADV_DCNT adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */ 2327 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */ 2328 ADV_DCNT exe_noerror; /* # ASC_NOERROR returns. */ 2329 ADV_DCNT exe_busy; /* # ASC_BUSY returns. */ 2330 ADV_DCNT exe_error; /* # ASC_ERROR returns. */ 2331 ADV_DCNT exe_unknown; /* # unknown returns. */ 2332 /* Data Transfer Statistics */ 2333 ADV_DCNT xfer_cnt; /* # I/O requests received */ 2334 ADV_DCNT xfer_elem; /* # scatter-gather elements */ 2335 ADV_DCNT xfer_sect; /* # 512-byte blocks */ 2336 }; 2337 #endif /* ADVANSYS_STATS */ 2338 2339 /* 2340 * Structure allocated for each board. 2341 * 2342 * This structure is allocated by scsi_host_alloc() at the end 2343 * of the 'Scsi_Host' structure starting at the 'hostdata' 2344 * field. It is guaranteed to be allocated from DMA-able memory. 2345 */ 2346 struct asc_board { 2347 struct device *dev; 2348 uint flags; /* Board flags */ 2349 unsigned int irq; 2350 union { 2351 ASC_DVC_VAR asc_dvc_var; /* Narrow board */ 2352 ADV_DVC_VAR adv_dvc_var; /* Wide board */ 2353 } dvc_var; 2354 union { 2355 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */ 2356 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */ 2357 } dvc_cfg; 2358 ushort asc_n_io_port; /* Number I/O ports. */ 2359 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */ 2360 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */ 2361 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */ 2362 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */ 2363 union { 2364 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */ 2365 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */ 2366 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */ 2367 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */ 2368 } eep_config; 2369 ulong last_reset; /* Saved last reset time */ 2370 /* /proc/scsi/advansys/[0...] */ 2371 #ifdef ADVANSYS_STATS 2372 struct asc_stats asc_stats; /* Board statistics */ 2373 #endif /* ADVANSYS_STATS */ 2374 /* 2375 * The following fields are used only for Narrow Boards. 2376 */ 2377 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */ 2378 /* 2379 * The following fields are used only for Wide Boards. 2380 */ 2381 void __iomem *ioremap_addr; /* I/O Memory remap address. */ 2382 ushort ioport; /* I/O Port address. */ 2383 adv_req_t *adv_reqp; /* Request structures. */ 2384 adv_sgblk_t *adv_sgblkp; /* Scatter-gather structures. */ 2385 ushort bios_signature; /* BIOS Signature. */ 2386 ushort bios_version; /* BIOS Version. */ 2387 ushort bios_codeseg; /* BIOS Code Segment. */ 2388 ushort bios_codelen; /* BIOS Code Segment Length. */ 2389 }; 2390 2391 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \ 2392 dvc_var.asc_dvc_var) 2393 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \ 2394 dvc_var.adv_dvc_var) 2395 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev) 2396 2397 #ifdef ADVANSYS_DEBUG 2398 static int asc_dbglvl = 3; 2399 2400 /* 2401 * asc_prt_asc_dvc_var() 2402 */ 2403 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h) 2404 { 2405 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h); 2406 2407 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl " 2408 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl); 2409 2410 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type, 2411 (unsigned)h->init_sdtr); 2412 2413 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, " 2414 "chip_no 0x%x,\n", (unsigned)h->sdtr_done, 2415 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready, 2416 (unsigned)h->chip_no); 2417 2418 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait " 2419 "%u,\n", (unsigned)h->queue_full_or_busy, 2420 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2421 2422 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, " 2423 "in_critical_cnt %u,\n", (unsigned)h->is_in_int, 2424 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng, 2425 (unsigned)h->in_critical_cnt); 2426 2427 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, " 2428 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage, 2429 (unsigned)h->init_state, (unsigned)h->no_scam, 2430 (unsigned)h->pci_fix_asyn_xfer); 2431 2432 printk(" cfg 0x%lx\n", (ulong)h->cfg); 2433 } 2434 2435 /* 2436 * asc_prt_asc_dvc_cfg() 2437 */ 2438 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h) 2439 { 2440 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h); 2441 2442 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n", 2443 h->can_tagged_qng, h->cmd_qng_enabled); 2444 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n", 2445 h->disc_enable, h->sdtr_enable); 2446 2447 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, " 2448 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed, 2449 h->isa_dma_channel, h->chip_version); 2450 2451 printk(" mcode_date 0x%x, mcode_version %d\n", 2452 h->mcode_date, h->mcode_version); 2453 } 2454 2455 /* 2456 * asc_prt_adv_dvc_var() 2457 * 2458 * Display an ADV_DVC_VAR structure. 2459 */ 2460 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h) 2461 { 2462 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h); 2463 2464 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n", 2465 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able); 2466 2467 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n", 2468 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able); 2469 2470 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n", 2471 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2472 2473 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n", 2474 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng, 2475 (ulong)h->carr_freelist); 2476 2477 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n", 2478 (ulong)h->icq_sp, (ulong)h->irq_sp); 2479 2480 printk(" no_scam 0x%x, tagqng_able 0x%x\n", 2481 (unsigned)h->no_scam, (unsigned)h->tagqng_able); 2482 2483 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n", 2484 (unsigned)h->chip_scsi_id, (ulong)h->cfg); 2485 } 2486 2487 /* 2488 * asc_prt_adv_dvc_cfg() 2489 * 2490 * Display an ADV_DVC_CFG structure. 2491 */ 2492 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h) 2493 { 2494 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h); 2495 2496 printk(" disc_enable 0x%x, termination 0x%x\n", 2497 h->disc_enable, h->termination); 2498 2499 printk(" chip_version 0x%x, mcode_date 0x%x\n", 2500 h->chip_version, h->mcode_date); 2501 2502 printk(" mcode_version 0x%x, control_flag 0x%x\n", 2503 h->mcode_version, h->control_flag); 2504 } 2505 2506 /* 2507 * asc_prt_scsi_host() 2508 */ 2509 static void asc_prt_scsi_host(struct Scsi_Host *s) 2510 { 2511 struct asc_board *boardp = shost_priv(s); 2512 2513 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev)); 2514 printk(" host_busy %u, host_no %d,\n", 2515 s->host_busy, s->host_no); 2516 2517 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n", 2518 (ulong)s->base, (ulong)s->io_port, boardp->irq); 2519 2520 printk(" dma_channel %d, this_id %d, can_queue %d,\n", 2521 s->dma_channel, s->this_id, s->can_queue); 2522 2523 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n", 2524 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma); 2525 2526 if (ASC_NARROW_BOARD(boardp)) { 2527 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var); 2528 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg); 2529 } else { 2530 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var); 2531 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg); 2532 } 2533 } 2534 2535 /* 2536 * asc_prt_hex() 2537 * 2538 * Print hexadecimal output in 4 byte groupings 32 bytes 2539 * or 8 double-words per line. 2540 */ 2541 static void asc_prt_hex(char *f, uchar *s, int l) 2542 { 2543 int i; 2544 int j; 2545 int k; 2546 int m; 2547 2548 printk("%s: (%d bytes)\n", f, l); 2549 2550 for (i = 0; i < l; i += 32) { 2551 2552 /* Display a maximum of 8 double-words per line. */ 2553 if ((k = (l - i) / 4) >= 8) { 2554 k = 8; 2555 m = 0; 2556 } else { 2557 m = (l - i) % 4; 2558 } 2559 2560 for (j = 0; j < k; j++) { 2561 printk(" %2.2X%2.2X%2.2X%2.2X", 2562 (unsigned)s[i + (j * 4)], 2563 (unsigned)s[i + (j * 4) + 1], 2564 (unsigned)s[i + (j * 4) + 2], 2565 (unsigned)s[i + (j * 4) + 3]); 2566 } 2567 2568 switch (m) { 2569 case 0: 2570 default: 2571 break; 2572 case 1: 2573 printk(" %2.2X", (unsigned)s[i + (j * 4)]); 2574 break; 2575 case 2: 2576 printk(" %2.2X%2.2X", 2577 (unsigned)s[i + (j * 4)], 2578 (unsigned)s[i + (j * 4) + 1]); 2579 break; 2580 case 3: 2581 printk(" %2.2X%2.2X%2.2X", 2582 (unsigned)s[i + (j * 4) + 1], 2583 (unsigned)s[i + (j * 4) + 2], 2584 (unsigned)s[i + (j * 4) + 3]); 2585 break; 2586 } 2587 2588 printk("\n"); 2589 } 2590 } 2591 2592 /* 2593 * asc_prt_asc_scsi_q() 2594 */ 2595 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q) 2596 { 2597 ASC_SG_HEAD *sgp; 2598 int i; 2599 2600 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q); 2601 2602 printk 2603 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n", 2604 q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr, 2605 q->q2.tag_code); 2606 2607 printk 2608 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2609 (ulong)le32_to_cpu(q->q1.data_addr), 2610 (ulong)le32_to_cpu(q->q1.data_cnt), 2611 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len); 2612 2613 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n", 2614 (ulong)q->cdbptr, q->q2.cdb_len, 2615 (ulong)q->sg_head, q->q1.sg_queue_cnt); 2616 2617 if (q->sg_head) { 2618 sgp = q->sg_head; 2619 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp); 2620 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt, 2621 sgp->queue_cnt); 2622 for (i = 0; i < sgp->entry_cnt; i++) { 2623 printk(" [%u]: addr 0x%lx, bytes %lu\n", 2624 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr), 2625 (ulong)le32_to_cpu(sgp->sg_list[i].bytes)); 2626 } 2627 2628 } 2629 } 2630 2631 /* 2632 * asc_prt_asc_qdone_info() 2633 */ 2634 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q) 2635 { 2636 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q); 2637 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n", 2638 (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len, 2639 q->d2.tag_code); 2640 printk 2641 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n", 2642 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg); 2643 } 2644 2645 /* 2646 * asc_prt_adv_sgblock() 2647 * 2648 * Display an ADV_SG_BLOCK structure. 2649 */ 2650 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b) 2651 { 2652 int i; 2653 2654 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n", 2655 (ulong)b, sgblockno); 2656 printk(" sg_cnt %u, sg_ptr 0x%lx\n", 2657 b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr)); 2658 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK); 2659 if (b->sg_ptr != 0) 2660 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK); 2661 for (i = 0; i < b->sg_cnt; i++) { 2662 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n", 2663 i, (ulong)b->sg_list[i].sg_addr, 2664 (ulong)b->sg_list[i].sg_count); 2665 } 2666 } 2667 2668 /* 2669 * asc_prt_adv_scsi_req_q() 2670 * 2671 * Display an ADV_SCSI_REQ_Q structure. 2672 */ 2673 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q) 2674 { 2675 int sg_blk_cnt; 2676 struct asc_sg_block *sg_ptr; 2677 2678 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q); 2679 2680 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n", 2681 q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag); 2682 2683 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n", 2684 q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr); 2685 2686 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2687 (ulong)le32_to_cpu(q->data_cnt), 2688 (ulong)le32_to_cpu(q->sense_addr), q->sense_len); 2689 2690 printk 2691 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n", 2692 q->cdb_len, q->done_status, q->host_status, q->scsi_status); 2693 2694 printk(" sg_working_ix 0x%x, target_cmd %u\n", 2695 q->sg_working_ix, q->target_cmd); 2696 2697 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n", 2698 (ulong)le32_to_cpu(q->scsiq_rptr), 2699 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr); 2700 2701 /* Display the request's ADV_SG_BLOCK structures. */ 2702 if (q->sg_list_ptr != NULL) { 2703 sg_blk_cnt = 0; 2704 while (1) { 2705 /* 2706 * 'sg_ptr' is a physical address. Convert it to a virtual 2707 * address by indexing 'sg_blk_cnt' into the virtual address 2708 * array 'sg_list_ptr'. 2709 * 2710 * XXX - Assumes all SG physical blocks are virtually contiguous. 2711 */ 2712 sg_ptr = 2713 &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]); 2714 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr); 2715 if (sg_ptr->sg_ptr == 0) { 2716 break; 2717 } 2718 sg_blk_cnt++; 2719 } 2720 } 2721 } 2722 #endif /* ADVANSYS_DEBUG */ 2723 2724 /* 2725 * The advansys chip/microcode contains a 32-bit identifier for each command 2726 * known as the 'srb'. I don't know what it stands for. The driver used 2727 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it 2728 * with bus_to_virt. Now the driver keeps a per-host map of integers to 2729 * pointers. It auto-expands when full, unless it can't allocate memory. 2730 * Note that an srb of 0 is treated specially by the chip/firmware, hence 2731 * the return of i+1 in this routine, and the corresponding subtraction in 2732 * the inverse routine. 2733 */ 2734 #define BAD_SRB 0 2735 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr) 2736 { 2737 int i; 2738 void **new_ptr; 2739 2740 for (i = 0; i < asc_dvc->ptr_map_count; i++) { 2741 if (!asc_dvc->ptr_map[i]) 2742 goto out; 2743 } 2744 2745 if (asc_dvc->ptr_map_count == 0) 2746 asc_dvc->ptr_map_count = 1; 2747 else 2748 asc_dvc->ptr_map_count *= 2; 2749 2750 new_ptr = krealloc(asc_dvc->ptr_map, 2751 asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC); 2752 if (!new_ptr) 2753 return BAD_SRB; 2754 asc_dvc->ptr_map = new_ptr; 2755 out: 2756 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i); 2757 asc_dvc->ptr_map[i] = ptr; 2758 return i + 1; 2759 } 2760 2761 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb) 2762 { 2763 void *ptr; 2764 2765 srb--; 2766 if (srb >= asc_dvc->ptr_map_count) { 2767 printk("advansys: bad SRB %u, max %u\n", srb, 2768 asc_dvc->ptr_map_count); 2769 return NULL; 2770 } 2771 ptr = asc_dvc->ptr_map[srb]; 2772 asc_dvc->ptr_map[srb] = NULL; 2773 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb); 2774 return ptr; 2775 } 2776 2777 /* 2778 * advansys_info() 2779 * 2780 * Return suitable for printing on the console with the argument 2781 * adapter's configuration information. 2782 * 2783 * Note: The information line should not exceed ASC_INFO_SIZE bytes, 2784 * otherwise the static 'info' array will be overrun. 2785 */ 2786 static const char *advansys_info(struct Scsi_Host *shost) 2787 { 2788 static char info[ASC_INFO_SIZE]; 2789 struct asc_board *boardp = shost_priv(shost); 2790 ASC_DVC_VAR *asc_dvc_varp; 2791 ADV_DVC_VAR *adv_dvc_varp; 2792 char *busname; 2793 char *widename = NULL; 2794 2795 if (ASC_NARROW_BOARD(boardp)) { 2796 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 2797 ASC_DBG(1, "begin\n"); 2798 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 2799 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) == 2800 ASC_IS_ISAPNP) { 2801 busname = "ISA PnP"; 2802 } else { 2803 busname = "ISA"; 2804 } 2805 sprintf(info, 2806 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X", 2807 ASC_VERSION, busname, 2808 (ulong)shost->io_port, 2809 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2810 boardp->irq, shost->dma_channel); 2811 } else { 2812 if (asc_dvc_varp->bus_type & ASC_IS_VL) { 2813 busname = "VL"; 2814 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) { 2815 busname = "EISA"; 2816 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) { 2817 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA) 2818 == ASC_IS_PCI_ULTRA) { 2819 busname = "PCI Ultra"; 2820 } else { 2821 busname = "PCI"; 2822 } 2823 } else { 2824 busname = "?"; 2825 shost_printk(KERN_ERR, shost, "unknown bus " 2826 "type %d\n", asc_dvc_varp->bus_type); 2827 } 2828 sprintf(info, 2829 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X", 2830 ASC_VERSION, busname, (ulong)shost->io_port, 2831 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2832 boardp->irq); 2833 } 2834 } else { 2835 /* 2836 * Wide Adapter Information 2837 * 2838 * Memory-mapped I/O is used instead of I/O space to access 2839 * the adapter, but display the I/O Port range. The Memory 2840 * I/O address is displayed through the driver /proc file. 2841 */ 2842 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2843 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2844 widename = "Ultra-Wide"; 2845 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2846 widename = "Ultra2-Wide"; 2847 } else { 2848 widename = "Ultra3-Wide"; 2849 } 2850 sprintf(info, 2851 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X", 2852 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base, 2853 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq); 2854 } 2855 BUG_ON(strlen(info) >= ASC_INFO_SIZE); 2856 ASC_DBG(1, "end\n"); 2857 return info; 2858 } 2859 2860 #ifdef CONFIG_PROC_FS 2861 2862 /* 2863 * asc_prt_board_devices() 2864 * 2865 * Print driver information for devices attached to the board. 2866 */ 2867 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost) 2868 { 2869 struct asc_board *boardp = shost_priv(shost); 2870 int chip_scsi_id; 2871 int i; 2872 2873 seq_printf(m, 2874 "\nDevice Information for AdvanSys SCSI Host %d:\n", 2875 shost->host_no); 2876 2877 if (ASC_NARROW_BOARD(boardp)) { 2878 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 2879 } else { 2880 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 2881 } 2882 2883 seq_printf(m, "Target IDs Detected:"); 2884 for (i = 0; i <= ADV_MAX_TID; i++) { 2885 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) 2886 seq_printf(m, " %X,", i); 2887 } 2888 seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id); 2889 } 2890 2891 /* 2892 * Display Wide Board BIOS Information. 2893 */ 2894 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost) 2895 { 2896 struct asc_board *boardp = shost_priv(shost); 2897 ushort major, minor, letter; 2898 2899 seq_printf(m, "\nROM BIOS Version: "); 2900 2901 /* 2902 * If the BIOS saved a valid signature, then fill in 2903 * the BIOS code segment base address. 2904 */ 2905 if (boardp->bios_signature != 0x55AA) { 2906 seq_printf(m, "Disabled or Pre-3.1\n"); 2907 seq_printf(m, 2908 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"); 2909 seq_printf(m, 2910 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n"); 2911 } else { 2912 major = (boardp->bios_version >> 12) & 0xF; 2913 minor = (boardp->bios_version >> 8) & 0xF; 2914 letter = (boardp->bios_version & 0xFF); 2915 2916 seq_printf(m, "%d.%d%c\n", 2917 major, minor, 2918 letter >= 26 ? '?' : letter + 'A'); 2919 /* 2920 * Current available ROM BIOS release is 3.1I for UW 2921 * and 3.2I for U2W. This code doesn't differentiate 2922 * UW and U2W boards. 2923 */ 2924 if (major < 3 || (major <= 3 && minor < 1) || 2925 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) { 2926 seq_printf(m, 2927 "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"); 2928 seq_printf(m, 2929 "ftp://ftp.connectcom.net/pub\n"); 2930 } 2931 } 2932 } 2933 2934 /* 2935 * Add serial number to information bar if signature AAh 2936 * is found in at bit 15-9 (7 bits) of word 1. 2937 * 2938 * Serial Number consists fo 12 alpha-numeric digits. 2939 * 2940 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits) 2941 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits) 2942 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits) 2943 * 5 - Product revision (A-J) Word0: " " 2944 * 2945 * Signature Word1: 15-9 (7 bits) 2946 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit) 2947 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits) 2948 * 2949 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits) 2950 * 2951 * Note 1: Only production cards will have a serial number. 2952 * 2953 * Note 2: Signature is most significant 7 bits (0xFE). 2954 * 2955 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE. 2956 */ 2957 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp) 2958 { 2959 ushort w, num; 2960 2961 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) { 2962 return ASC_FALSE; 2963 } else { 2964 /* 2965 * First word - 6 digits. 2966 */ 2967 w = serialnum[0]; 2968 2969 /* Product type - 1st digit. */ 2970 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') { 2971 /* Product type is P=Prototype */ 2972 *cp += 0x8; 2973 } 2974 cp++; 2975 2976 /* Manufacturing location - 2nd digit. */ 2977 *cp++ = 'A' + ((w & 0x1C00) >> 10); 2978 2979 /* Product ID - 3rd, 4th digits. */ 2980 num = w & 0x3FF; 2981 *cp++ = '0' + (num / 100); 2982 num %= 100; 2983 *cp++ = '0' + (num / 10); 2984 2985 /* Product revision - 5th digit. */ 2986 *cp++ = 'A' + (num % 10); 2987 2988 /* 2989 * Second word 2990 */ 2991 w = serialnum[1]; 2992 2993 /* 2994 * Year - 6th digit. 2995 * 2996 * If bit 15 of third word is set, then the 2997 * last digit of the year is greater than 7. 2998 */ 2999 if (serialnum[2] & 0x8000) { 3000 *cp++ = '8' + ((w & 0x1C0) >> 6); 3001 } else { 3002 *cp++ = '0' + ((w & 0x1C0) >> 6); 3003 } 3004 3005 /* Week of year - 7th, 8th digits. */ 3006 num = w & 0x003F; 3007 *cp++ = '0' + num / 10; 3008 num %= 10; 3009 *cp++ = '0' + num; 3010 3011 /* 3012 * Third word 3013 */ 3014 w = serialnum[2] & 0x7FFF; 3015 3016 /* Serial number - 9th digit. */ 3017 *cp++ = 'A' + (w / 1000); 3018 3019 /* 10th, 11th, 12th digits. */ 3020 num = w % 1000; 3021 *cp++ = '0' + num / 100; 3022 num %= 100; 3023 *cp++ = '0' + num / 10; 3024 num %= 10; 3025 *cp++ = '0' + num; 3026 3027 *cp = '\0'; /* Null Terminate the string. */ 3028 return ASC_TRUE; 3029 } 3030 } 3031 3032 /* 3033 * asc_prt_asc_board_eeprom() 3034 * 3035 * Print board EEPROM configuration. 3036 */ 3037 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 3038 { 3039 struct asc_board *boardp = shost_priv(shost); 3040 ASC_DVC_VAR *asc_dvc_varp; 3041 ASCEEP_CONFIG *ep; 3042 int i; 3043 #ifdef CONFIG_ISA 3044 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 }; 3045 #endif /* CONFIG_ISA */ 3046 uchar serialstr[13]; 3047 3048 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 3049 ep = &boardp->eep_config.asc_eep; 3050 3051 seq_printf(m, 3052 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 3053 shost->host_no); 3054 3055 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr) 3056 == ASC_TRUE) 3057 seq_printf(m, " Serial Number: %s\n", serialstr); 3058 else if (ep->adapter_info[5] == 0xBB) 3059 seq_printf(m, 3060 " Default Settings Used for EEPROM-less Adapter.\n"); 3061 else 3062 seq_printf(m, 3063 " Serial Number Signature Not Present.\n"); 3064 3065 seq_printf(m, 3066 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3067 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng, 3068 ep->max_tag_qng); 3069 3070 seq_printf(m, 3071 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam); 3072 3073 seq_printf(m, " Target ID: "); 3074 for (i = 0; i <= ASC_MAX_TID; i++) 3075 seq_printf(m, " %d", i); 3076 seq_printf(m, "\n"); 3077 3078 seq_printf(m, " Disconnects: "); 3079 for (i = 0; i <= ASC_MAX_TID; i++) 3080 seq_printf(m, " %c", 3081 (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3082 seq_printf(m, "\n"); 3083 3084 seq_printf(m, " Command Queuing: "); 3085 for (i = 0; i <= ASC_MAX_TID; i++) 3086 seq_printf(m, " %c", 3087 (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3088 seq_printf(m, "\n"); 3089 3090 seq_printf(m, " Start Motor: "); 3091 for (i = 0; i <= ASC_MAX_TID; i++) 3092 seq_printf(m, " %c", 3093 (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3094 seq_printf(m, "\n"); 3095 3096 seq_printf(m, " Synchronous Transfer:"); 3097 for (i = 0; i <= ASC_MAX_TID; i++) 3098 seq_printf(m, " %c", 3099 (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3100 seq_printf(m, "\n"); 3101 3102 #ifdef CONFIG_ISA 3103 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 3104 seq_printf(m, 3105 " Host ISA DMA speed: %d MB/S\n", 3106 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]); 3107 } 3108 #endif /* CONFIG_ISA */ 3109 } 3110 3111 /* 3112 * asc_prt_adv_board_eeprom() 3113 * 3114 * Print board EEPROM configuration. 3115 */ 3116 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 3117 { 3118 struct asc_board *boardp = shost_priv(shost); 3119 ADV_DVC_VAR *adv_dvc_varp; 3120 int i; 3121 char *termstr; 3122 uchar serialstr[13]; 3123 ADVEEP_3550_CONFIG *ep_3550 = NULL; 3124 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL; 3125 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL; 3126 ushort word; 3127 ushort *wordp; 3128 ushort sdtr_speed = 0; 3129 3130 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 3131 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3132 ep_3550 = &boardp->eep_config.adv_3550_eep; 3133 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3134 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 3135 } else { 3136 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 3137 } 3138 3139 seq_printf(m, 3140 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 3141 shost->host_no); 3142 3143 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3144 wordp = &ep_3550->serial_number_word1; 3145 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3146 wordp = &ep_38C0800->serial_number_word1; 3147 } else { 3148 wordp = &ep_38C1600->serial_number_word1; 3149 } 3150 3151 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) 3152 seq_printf(m, " Serial Number: %s\n", serialstr); 3153 else 3154 seq_printf(m, " Serial Number Signature Not Present.\n"); 3155 3156 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 3157 seq_printf(m, 3158 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3159 ep_3550->adapter_scsi_id, 3160 ep_3550->max_host_qng, ep_3550->max_dvc_qng); 3161 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 3162 seq_printf(m, 3163 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3164 ep_38C0800->adapter_scsi_id, 3165 ep_38C0800->max_host_qng, 3166 ep_38C0800->max_dvc_qng); 3167 else 3168 seq_printf(m, 3169 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3170 ep_38C1600->adapter_scsi_id, 3171 ep_38C1600->max_host_qng, 3172 ep_38C1600->max_dvc_qng); 3173 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3174 word = ep_3550->termination; 3175 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3176 word = ep_38C0800->termination_lvd; 3177 } else { 3178 word = ep_38C1600->termination_lvd; 3179 } 3180 switch (word) { 3181 case 1: 3182 termstr = "Low Off/High Off"; 3183 break; 3184 case 2: 3185 termstr = "Low Off/High On"; 3186 break; 3187 case 3: 3188 termstr = "Low On/High On"; 3189 break; 3190 default: 3191 case 0: 3192 termstr = "Automatic"; 3193 break; 3194 } 3195 3196 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 3197 seq_printf(m, 3198 " termination: %u (%s), bios_ctrl: 0x%x\n", 3199 ep_3550->termination, termstr, 3200 ep_3550->bios_ctrl); 3201 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 3202 seq_printf(m, 3203 " termination: %u (%s), bios_ctrl: 0x%x\n", 3204 ep_38C0800->termination_lvd, termstr, 3205 ep_38C0800->bios_ctrl); 3206 else 3207 seq_printf(m, 3208 " termination: %u (%s), bios_ctrl: 0x%x\n", 3209 ep_38C1600->termination_lvd, termstr, 3210 ep_38C1600->bios_ctrl); 3211 3212 seq_printf(m, " Target ID: "); 3213 for (i = 0; i <= ADV_MAX_TID; i++) 3214 seq_printf(m, " %X", i); 3215 seq_printf(m, "\n"); 3216 3217 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3218 word = ep_3550->disc_enable; 3219 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3220 word = ep_38C0800->disc_enable; 3221 } else { 3222 word = ep_38C1600->disc_enable; 3223 } 3224 seq_printf(m, " Disconnects: "); 3225 for (i = 0; i <= ADV_MAX_TID; i++) 3226 seq_printf(m, " %c", 3227 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3228 seq_printf(m, "\n"); 3229 3230 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3231 word = ep_3550->tagqng_able; 3232 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3233 word = ep_38C0800->tagqng_able; 3234 } else { 3235 word = ep_38C1600->tagqng_able; 3236 } 3237 seq_printf(m, " Command Queuing: "); 3238 for (i = 0; i <= ADV_MAX_TID; i++) 3239 seq_printf(m, " %c", 3240 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3241 seq_printf(m, "\n"); 3242 3243 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3244 word = ep_3550->start_motor; 3245 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3246 word = ep_38C0800->start_motor; 3247 } else { 3248 word = ep_38C1600->start_motor; 3249 } 3250 seq_printf(m, " Start Motor: "); 3251 for (i = 0; i <= ADV_MAX_TID; i++) 3252 seq_printf(m, " %c", 3253 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3254 seq_printf(m, "\n"); 3255 3256 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3257 seq_printf(m, " Synchronous Transfer:"); 3258 for (i = 0; i <= ADV_MAX_TID; i++) 3259 seq_printf(m, " %c", 3260 (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 3261 'Y' : 'N'); 3262 seq_printf(m, "\n"); 3263 } 3264 3265 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3266 seq_printf(m, " Ultra Transfer: "); 3267 for (i = 0; i <= ADV_MAX_TID; i++) 3268 seq_printf(m, " %c", 3269 (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i)) 3270 ? 'Y' : 'N'); 3271 seq_printf(m, "\n"); 3272 } 3273 3274 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3275 word = ep_3550->wdtr_able; 3276 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3277 word = ep_38C0800->wdtr_able; 3278 } else { 3279 word = ep_38C1600->wdtr_able; 3280 } 3281 seq_printf(m, " Wide Transfer: "); 3282 for (i = 0; i <= ADV_MAX_TID; i++) 3283 seq_printf(m, " %c", 3284 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3285 seq_printf(m, "\n"); 3286 3287 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 || 3288 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) { 3289 seq_printf(m, 3290 " Synchronous Transfer Speed (Mhz):\n "); 3291 for (i = 0; i <= ADV_MAX_TID; i++) { 3292 char *speed_str; 3293 3294 if (i == 0) { 3295 sdtr_speed = adv_dvc_varp->sdtr_speed1; 3296 } else if (i == 4) { 3297 sdtr_speed = adv_dvc_varp->sdtr_speed2; 3298 } else if (i == 8) { 3299 sdtr_speed = adv_dvc_varp->sdtr_speed3; 3300 } else if (i == 12) { 3301 sdtr_speed = adv_dvc_varp->sdtr_speed4; 3302 } 3303 switch (sdtr_speed & ADV_MAX_TID) { 3304 case 0: 3305 speed_str = "Off"; 3306 break; 3307 case 1: 3308 speed_str = " 5"; 3309 break; 3310 case 2: 3311 speed_str = " 10"; 3312 break; 3313 case 3: 3314 speed_str = " 20"; 3315 break; 3316 case 4: 3317 speed_str = " 40"; 3318 break; 3319 case 5: 3320 speed_str = " 80"; 3321 break; 3322 default: 3323 speed_str = "Unk"; 3324 break; 3325 } 3326 seq_printf(m, "%X:%s ", i, speed_str); 3327 if (i == 7) 3328 seq_printf(m, "\n "); 3329 sdtr_speed >>= 4; 3330 } 3331 seq_printf(m, "\n"); 3332 } 3333 } 3334 3335 /* 3336 * asc_prt_driver_conf() 3337 */ 3338 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost) 3339 { 3340 struct asc_board *boardp = shost_priv(shost); 3341 int chip_scsi_id; 3342 3343 seq_printf(m, 3344 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", 3345 shost->host_no); 3346 3347 seq_printf(m, 3348 " host_busy %u, max_id %u, max_lun %u, max_channel %u\n", 3349 shost->host_busy, shost->max_id, 3350 shost->max_lun, shost->max_channel); 3351 3352 seq_printf(m, 3353 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", 3354 shost->unique_id, shost->can_queue, shost->this_id, 3355 shost->sg_tablesize, shost->cmd_per_lun); 3356 3357 seq_printf(m, 3358 " unchecked_isa_dma %d, use_clustering %d\n", 3359 shost->unchecked_isa_dma, shost->use_clustering); 3360 3361 seq_printf(m, 3362 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n", 3363 boardp->flags, boardp->last_reset, jiffies, 3364 boardp->asc_n_io_port); 3365 3366 seq_printf(m, " io_port 0x%lx\n", shost->io_port); 3367 3368 if (ASC_NARROW_BOARD(boardp)) { 3369 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 3370 } else { 3371 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 3372 } 3373 } 3374 3375 /* 3376 * asc_prt_asc_board_info() 3377 * 3378 * Print dynamic board configuration information. 3379 */ 3380 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost) 3381 { 3382 struct asc_board *boardp = shost_priv(shost); 3383 int chip_scsi_id; 3384 ASC_DVC_VAR *v; 3385 ASC_DVC_CFG *c; 3386 int i; 3387 int renegotiate = 0; 3388 3389 v = &boardp->dvc_var.asc_dvc_var; 3390 c = &boardp->dvc_cfg.asc_dvc_cfg; 3391 chip_scsi_id = c->chip_scsi_id; 3392 3393 seq_printf(m, 3394 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3395 shost->host_no); 3396 3397 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3398 "mcode_version 0x%x, err_code %u\n", 3399 c->chip_version, c->mcode_date, c->mcode_version, 3400 v->err_code); 3401 3402 /* Current number of commands waiting for the host. */ 3403 seq_printf(m, 3404 " Total Command Pending: %d\n", v->cur_total_qng); 3405 3406 seq_printf(m, " Command Queuing:"); 3407 for (i = 0; i <= ASC_MAX_TID; i++) { 3408 if ((chip_scsi_id == i) || 3409 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3410 continue; 3411 } 3412 seq_printf(m, " %X:%c", 3413 i, 3414 (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3415 } 3416 seq_printf(m, "\n"); 3417 3418 /* Current number of commands waiting for a device. */ 3419 seq_printf(m, " Command Queue Pending:"); 3420 for (i = 0; i <= ASC_MAX_TID; i++) { 3421 if ((chip_scsi_id == i) || 3422 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3423 continue; 3424 } 3425 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]); 3426 } 3427 seq_printf(m, "\n"); 3428 3429 /* Current limit on number of commands that can be sent to a device. */ 3430 seq_printf(m, " Command Queue Limit:"); 3431 for (i = 0; i <= ASC_MAX_TID; i++) { 3432 if ((chip_scsi_id == i) || 3433 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3434 continue; 3435 } 3436 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]); 3437 } 3438 seq_printf(m, "\n"); 3439 3440 /* Indicate whether the device has returned queue full status. */ 3441 seq_printf(m, " Command Queue Full:"); 3442 for (i = 0; i <= ASC_MAX_TID; i++) { 3443 if ((chip_scsi_id == i) || 3444 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3445 continue; 3446 } 3447 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) 3448 seq_printf(m, " %X:Y-%d", 3449 i, boardp->queue_full_cnt[i]); 3450 else 3451 seq_printf(m, " %X:N", i); 3452 } 3453 seq_printf(m, "\n"); 3454 3455 seq_printf(m, " Synchronous Transfer:"); 3456 for (i = 0; i <= ASC_MAX_TID; i++) { 3457 if ((chip_scsi_id == i) || 3458 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3459 continue; 3460 } 3461 seq_printf(m, " %X:%c", 3462 i, 3463 (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3464 } 3465 seq_printf(m, "\n"); 3466 3467 for (i = 0; i <= ASC_MAX_TID; i++) { 3468 uchar syn_period_ix; 3469 3470 if ((chip_scsi_id == i) || 3471 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3472 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) { 3473 continue; 3474 } 3475 3476 seq_printf(m, " %X:", i); 3477 3478 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) { 3479 seq_printf(m, " Asynchronous"); 3480 } else { 3481 syn_period_ix = 3482 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index - 3483 1); 3484 3485 seq_printf(m, 3486 " Transfer Period Factor: %d (%d.%d Mhz),", 3487 v->sdtr_period_tbl[syn_period_ix], 3488 250 / v->sdtr_period_tbl[syn_period_ix], 3489 ASC_TENTHS(250, 3490 v->sdtr_period_tbl[syn_period_ix])); 3491 3492 seq_printf(m, " REQ/ACK Offset: %d", 3493 boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET); 3494 } 3495 3496 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3497 seq_printf(m, "*\n"); 3498 renegotiate = 1; 3499 } else { 3500 seq_printf(m, "\n"); 3501 } 3502 } 3503 3504 if (renegotiate) { 3505 seq_printf(m, 3506 " * = Re-negotiation pending before next command.\n"); 3507 } 3508 } 3509 3510 /* 3511 * asc_prt_adv_board_info() 3512 * 3513 * Print dynamic board configuration information. 3514 */ 3515 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost) 3516 { 3517 struct asc_board *boardp = shost_priv(shost); 3518 int i; 3519 ADV_DVC_VAR *v; 3520 ADV_DVC_CFG *c; 3521 AdvPortAddr iop_base; 3522 ushort chip_scsi_id; 3523 ushort lramword; 3524 uchar lrambyte; 3525 ushort tagqng_able; 3526 ushort sdtr_able, wdtr_able; 3527 ushort wdtr_done, sdtr_done; 3528 ushort period = 0; 3529 int renegotiate = 0; 3530 3531 v = &boardp->dvc_var.adv_dvc_var; 3532 c = &boardp->dvc_cfg.adv_dvc_cfg; 3533 iop_base = v->iop_base; 3534 chip_scsi_id = v->chip_scsi_id; 3535 3536 seq_printf(m, 3537 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3538 shost->host_no); 3539 3540 seq_printf(m, 3541 " iop_base 0x%lx, cable_detect: %X, err_code %u\n", 3542 (unsigned long)v->iop_base, 3543 AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT, 3544 v->err_code); 3545 3546 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3547 "mcode_version 0x%x\n", c->chip_version, 3548 c->mcode_date, c->mcode_version); 3549 3550 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 3551 seq_printf(m, " Queuing Enabled:"); 3552 for (i = 0; i <= ADV_MAX_TID; i++) { 3553 if ((chip_scsi_id == i) || 3554 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3555 continue; 3556 } 3557 3558 seq_printf(m, " %X:%c", 3559 i, 3560 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3561 } 3562 seq_printf(m, "\n"); 3563 3564 seq_printf(m, " Queue Limit:"); 3565 for (i = 0; i <= ADV_MAX_TID; i++) { 3566 if ((chip_scsi_id == i) || 3567 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3568 continue; 3569 } 3570 3571 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i, 3572 lrambyte); 3573 3574 seq_printf(m, " %X:%d", i, lrambyte); 3575 } 3576 seq_printf(m, "\n"); 3577 3578 seq_printf(m, " Command Pending:"); 3579 for (i = 0; i <= ADV_MAX_TID; i++) { 3580 if ((chip_scsi_id == i) || 3581 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3582 continue; 3583 } 3584 3585 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i, 3586 lrambyte); 3587 3588 seq_printf(m, " %X:%d", i, lrambyte); 3589 } 3590 seq_printf(m, "\n"); 3591 3592 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 3593 seq_printf(m, " Wide Enabled:"); 3594 for (i = 0; i <= ADV_MAX_TID; i++) { 3595 if ((chip_scsi_id == i) || 3596 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3597 continue; 3598 } 3599 3600 seq_printf(m, " %X:%c", 3601 i, 3602 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3603 } 3604 seq_printf(m, "\n"); 3605 3606 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done); 3607 seq_printf(m, " Transfer Bit Width:"); 3608 for (i = 0; i <= ADV_MAX_TID; i++) { 3609 if ((chip_scsi_id == i) || 3610 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3611 continue; 3612 } 3613 3614 AdvReadWordLram(iop_base, 3615 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3616 lramword); 3617 3618 seq_printf(m, " %X:%d", 3619 i, (lramword & 0x8000) ? 16 : 8); 3620 3621 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) && 3622 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3623 seq_printf(m, "*"); 3624 renegotiate = 1; 3625 } 3626 } 3627 seq_printf(m, "\n"); 3628 3629 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 3630 seq_printf(m, " Synchronous Enabled:"); 3631 for (i = 0; i <= ADV_MAX_TID; i++) { 3632 if ((chip_scsi_id == i) || 3633 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3634 continue; 3635 } 3636 3637 seq_printf(m, " %X:%c", 3638 i, 3639 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3640 } 3641 seq_printf(m, "\n"); 3642 3643 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done); 3644 for (i = 0; i <= ADV_MAX_TID; i++) { 3645 3646 AdvReadWordLram(iop_base, 3647 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3648 lramword); 3649 lramword &= ~0x8000; 3650 3651 if ((chip_scsi_id == i) || 3652 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3653 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) { 3654 continue; 3655 } 3656 3657 seq_printf(m, " %X:", i); 3658 3659 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */ 3660 seq_printf(m, " Asynchronous"); 3661 } else { 3662 seq_printf(m, " Transfer Period Factor: "); 3663 3664 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */ 3665 seq_printf(m, "9 (80.0 Mhz),"); 3666 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */ 3667 seq_printf(m, "10 (40.0 Mhz),"); 3668 } else { /* 20 Mhz or below. */ 3669 3670 period = (((lramword >> 8) * 25) + 50) / 4; 3671 3672 if (period == 0) { /* Should never happen. */ 3673 seq_printf(m, "%d (? Mhz), ", period); 3674 } else { 3675 seq_printf(m, 3676 "%d (%d.%d Mhz),", 3677 period, 250 / period, 3678 ASC_TENTHS(250, period)); 3679 } 3680 } 3681 3682 seq_printf(m, " REQ/ACK Offset: %d", 3683 lramword & 0x1F); 3684 } 3685 3686 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3687 seq_printf(m, "*\n"); 3688 renegotiate = 1; 3689 } else { 3690 seq_printf(m, "\n"); 3691 } 3692 } 3693 3694 if (renegotiate) { 3695 seq_printf(m, 3696 " * = Re-negotiation pending before next command.\n"); 3697 } 3698 } 3699 3700 #ifdef ADVANSYS_STATS 3701 /* 3702 * asc_prt_board_stats() 3703 */ 3704 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost) 3705 { 3706 struct asc_board *boardp = shost_priv(shost); 3707 struct asc_stats *s = &boardp->asc_stats; 3708 3709 seq_printf(m, 3710 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", 3711 shost->host_no); 3712 3713 seq_printf(m, 3714 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n", 3715 s->queuecommand, s->reset, s->biosparam, 3716 s->interrupt); 3717 3718 seq_printf(m, 3719 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n", 3720 s->callback, s->done, s->build_error, 3721 s->adv_build_noreq, s->adv_build_nosg); 3722 3723 seq_printf(m, 3724 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n", 3725 s->exe_noerror, s->exe_busy, s->exe_error, 3726 s->exe_unknown); 3727 3728 /* 3729 * Display data transfer statistics. 3730 */ 3731 if (s->xfer_cnt > 0) { 3732 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ", 3733 s->xfer_cnt, s->xfer_elem); 3734 3735 seq_printf(m, "xfer_bytes %u.%01u kb\n", 3736 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2)); 3737 3738 /* Scatter gather transfer statistics */ 3739 seq_printf(m, " avg_num_elem %u.%01u, ", 3740 s->xfer_elem / s->xfer_cnt, 3741 ASC_TENTHS(s->xfer_elem, s->xfer_cnt)); 3742 3743 seq_printf(m, "avg_elem_size %u.%01u kb, ", 3744 (s->xfer_sect / 2) / s->xfer_elem, 3745 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem)); 3746 3747 seq_printf(m, "avg_xfer_size %u.%01u kb\n", 3748 (s->xfer_sect / 2) / s->xfer_cnt, 3749 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt)); 3750 } 3751 } 3752 #endif /* ADVANSYS_STATS */ 3753 3754 /* 3755 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...} 3756 * 3757 * m: seq_file to print into 3758 * shost: Scsi_Host 3759 * 3760 * Return the number of bytes read from or written to a 3761 * /proc/scsi/advansys/[0...] file. 3762 */ 3763 static int 3764 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost) 3765 { 3766 struct asc_board *boardp = shost_priv(shost); 3767 3768 ASC_DBG(1, "begin\n"); 3769 3770 /* 3771 * User read of /proc/scsi/advansys/[0...] file. 3772 */ 3773 3774 /* 3775 * Get board configuration information. 3776 * 3777 * advansys_info() returns the board string from its own static buffer. 3778 */ 3779 /* Copy board information. */ 3780 seq_printf(m, "%s\n", (char *)advansys_info(shost)); 3781 /* 3782 * Display Wide Board BIOS Information. 3783 */ 3784 if (!ASC_NARROW_BOARD(boardp)) 3785 asc_prt_adv_bios(m, shost); 3786 3787 /* 3788 * Display driver information for each device attached to the board. 3789 */ 3790 asc_prt_board_devices(m, shost); 3791 3792 /* 3793 * Display EEPROM configuration for the board. 3794 */ 3795 if (ASC_NARROW_BOARD(boardp)) 3796 asc_prt_asc_board_eeprom(m, shost); 3797 else 3798 asc_prt_adv_board_eeprom(m, shost); 3799 3800 /* 3801 * Display driver configuration and information for the board. 3802 */ 3803 asc_prt_driver_conf(m, shost); 3804 3805 #ifdef ADVANSYS_STATS 3806 /* 3807 * Display driver statistics for the board. 3808 */ 3809 asc_prt_board_stats(m, shost); 3810 #endif /* ADVANSYS_STATS */ 3811 3812 /* 3813 * Display Asc Library dynamic configuration information 3814 * for the board. 3815 */ 3816 if (ASC_NARROW_BOARD(boardp)) 3817 asc_prt_asc_board_info(m, shost); 3818 else 3819 asc_prt_adv_board_info(m, shost); 3820 return 0; 3821 } 3822 #endif /* CONFIG_PROC_FS */ 3823 3824 static void asc_scsi_done(struct scsi_cmnd *scp) 3825 { 3826 scsi_dma_unmap(scp); 3827 ASC_STATS(scp->device->host, done); 3828 scp->scsi_done(scp); 3829 } 3830 3831 static void AscSetBank(PortAddr iop_base, uchar bank) 3832 { 3833 uchar val; 3834 3835 val = AscGetChipControl(iop_base) & 3836 (~ 3837 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET | 3838 CC_CHIP_RESET)); 3839 if (bank == 1) { 3840 val |= CC_BANK_ONE; 3841 } else if (bank == 2) { 3842 val |= CC_DIAG | CC_BANK_ONE; 3843 } else { 3844 val &= ~CC_BANK_ONE; 3845 } 3846 AscSetChipControl(iop_base, val); 3847 } 3848 3849 static void AscSetChipIH(PortAddr iop_base, ushort ins_code) 3850 { 3851 AscSetBank(iop_base, 1); 3852 AscWriteChipIH(iop_base, ins_code); 3853 AscSetBank(iop_base, 0); 3854 } 3855 3856 static int AscStartChip(PortAddr iop_base) 3857 { 3858 AscSetChipControl(iop_base, 0); 3859 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3860 return (0); 3861 } 3862 return (1); 3863 } 3864 3865 static int AscStopChip(PortAddr iop_base) 3866 { 3867 uchar cc_val; 3868 3869 cc_val = 3870 AscGetChipControl(iop_base) & 3871 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG)); 3872 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT)); 3873 AscSetChipIH(iop_base, INS_HALT); 3874 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3875 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) { 3876 return (0); 3877 } 3878 return (1); 3879 } 3880 3881 static int AscIsChipHalted(PortAddr iop_base) 3882 { 3883 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3884 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) { 3885 return (1); 3886 } 3887 } 3888 return (0); 3889 } 3890 3891 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc) 3892 { 3893 PortAddr iop_base; 3894 int i = 10; 3895 3896 iop_base = asc_dvc->iop_base; 3897 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) 3898 && (i-- > 0)) { 3899 mdelay(100); 3900 } 3901 AscStopChip(iop_base); 3902 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT); 3903 udelay(60); 3904 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3905 AscSetChipIH(iop_base, INS_HALT); 3906 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT); 3907 AscSetChipControl(iop_base, CC_HALT); 3908 mdelay(200); 3909 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 3910 AscSetChipStatus(iop_base, 0); 3911 return (AscIsChipHalted(iop_base)); 3912 } 3913 3914 static int AscFindSignature(PortAddr iop_base) 3915 { 3916 ushort sig_word; 3917 3918 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n", 3919 iop_base, AscGetChipSignatureByte(iop_base)); 3920 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) { 3921 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n", 3922 iop_base, AscGetChipSignatureWord(iop_base)); 3923 sig_word = AscGetChipSignatureWord(iop_base); 3924 if ((sig_word == (ushort)ASC_1000_ID0W) || 3925 (sig_word == (ushort)ASC_1000_ID0W_FIX)) { 3926 return (1); 3927 } 3928 } 3929 return (0); 3930 } 3931 3932 static void AscEnableInterrupt(PortAddr iop_base) 3933 { 3934 ushort cfg; 3935 3936 cfg = AscGetChipCfgLsw(iop_base); 3937 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON); 3938 } 3939 3940 static void AscDisableInterrupt(PortAddr iop_base) 3941 { 3942 ushort cfg; 3943 3944 cfg = AscGetChipCfgLsw(iop_base); 3945 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON)); 3946 } 3947 3948 static uchar AscReadLramByte(PortAddr iop_base, ushort addr) 3949 { 3950 unsigned char byte_data; 3951 unsigned short word_data; 3952 3953 if (isodd_word(addr)) { 3954 AscSetChipLramAddr(iop_base, addr - 1); 3955 word_data = AscGetChipLramData(iop_base); 3956 byte_data = (word_data >> 8) & 0xFF; 3957 } else { 3958 AscSetChipLramAddr(iop_base, addr); 3959 word_data = AscGetChipLramData(iop_base); 3960 byte_data = word_data & 0xFF; 3961 } 3962 return byte_data; 3963 } 3964 3965 static ushort AscReadLramWord(PortAddr iop_base, ushort addr) 3966 { 3967 ushort word_data; 3968 3969 AscSetChipLramAddr(iop_base, addr); 3970 word_data = AscGetChipLramData(iop_base); 3971 return (word_data); 3972 } 3973 3974 #if CC_VERY_LONG_SG_LIST 3975 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr) 3976 { 3977 ushort val_low, val_high; 3978 ASC_DCNT dword_data; 3979 3980 AscSetChipLramAddr(iop_base, addr); 3981 val_low = AscGetChipLramData(iop_base); 3982 val_high = AscGetChipLramData(iop_base); 3983 dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low; 3984 return (dword_data); 3985 } 3986 #endif /* CC_VERY_LONG_SG_LIST */ 3987 3988 static void 3989 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words) 3990 { 3991 int i; 3992 3993 AscSetChipLramAddr(iop_base, s_addr); 3994 for (i = 0; i < words; i++) { 3995 AscSetChipLramData(iop_base, set_wval); 3996 } 3997 } 3998 3999 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val) 4000 { 4001 AscSetChipLramAddr(iop_base, addr); 4002 AscSetChipLramData(iop_base, word_val); 4003 } 4004 4005 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val) 4006 { 4007 ushort word_data; 4008 4009 if (isodd_word(addr)) { 4010 addr--; 4011 word_data = AscReadLramWord(iop_base, addr); 4012 word_data &= 0x00FF; 4013 word_data |= (((ushort)byte_val << 8) & 0xFF00); 4014 } else { 4015 word_data = AscReadLramWord(iop_base, addr); 4016 word_data &= 0xFF00; 4017 word_data |= ((ushort)byte_val & 0x00FF); 4018 } 4019 AscWriteLramWord(iop_base, addr, word_data); 4020 } 4021 4022 /* 4023 * Copy 2 bytes to LRAM. 4024 * 4025 * The source data is assumed to be in little-endian order in memory 4026 * and is maintained in little-endian order when written to LRAM. 4027 */ 4028 static void 4029 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr, 4030 const uchar *s_buffer, int words) 4031 { 4032 int i; 4033 4034 AscSetChipLramAddr(iop_base, s_addr); 4035 for (i = 0; i < 2 * words; i += 2) { 4036 /* 4037 * On a little-endian system the second argument below 4038 * produces a little-endian ushort which is written to 4039 * LRAM in little-endian order. On a big-endian system 4040 * the second argument produces a big-endian ushort which 4041 * is "transparently" byte-swapped by outpw() and written 4042 * in little-endian order to LRAM. 4043 */ 4044 outpw(iop_base + IOP_RAM_DATA, 4045 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); 4046 } 4047 } 4048 4049 /* 4050 * Copy 4 bytes to LRAM. 4051 * 4052 * The source data is assumed to be in little-endian order in memory 4053 * and is maintained in little-endian order when written to LRAM. 4054 */ 4055 static void 4056 AscMemDWordCopyPtrToLram(PortAddr iop_base, 4057 ushort s_addr, uchar *s_buffer, int dwords) 4058 { 4059 int i; 4060 4061 AscSetChipLramAddr(iop_base, s_addr); 4062 for (i = 0; i < 4 * dwords; i += 4) { 4063 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */ 4064 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */ 4065 } 4066 } 4067 4068 /* 4069 * Copy 2 bytes from LRAM. 4070 * 4071 * The source data is assumed to be in little-endian order in LRAM 4072 * and is maintained in little-endian order when written to memory. 4073 */ 4074 static void 4075 AscMemWordCopyPtrFromLram(PortAddr iop_base, 4076 ushort s_addr, uchar *d_buffer, int words) 4077 { 4078 int i; 4079 ushort word; 4080 4081 AscSetChipLramAddr(iop_base, s_addr); 4082 for (i = 0; i < 2 * words; i += 2) { 4083 word = inpw(iop_base + IOP_RAM_DATA); 4084 d_buffer[i] = word & 0xff; 4085 d_buffer[i + 1] = (word >> 8) & 0xff; 4086 } 4087 } 4088 4089 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words) 4090 { 4091 ASC_DCNT sum; 4092 int i; 4093 4094 sum = 0L; 4095 for (i = 0; i < words; i++, s_addr += 2) { 4096 sum += AscReadLramWord(iop_base, s_addr); 4097 } 4098 return (sum); 4099 } 4100 4101 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc) 4102 { 4103 uchar i; 4104 ushort s_addr; 4105 PortAddr iop_base; 4106 ushort warn_code; 4107 4108 iop_base = asc_dvc->iop_base; 4109 warn_code = 0; 4110 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0, 4111 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) * 4112 64) >> 1)); 4113 i = ASC_MIN_ACTIVE_QNO; 4114 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; 4115 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 4116 (uchar)(i + 1)); 4117 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 4118 (uchar)(asc_dvc->max_total_qng)); 4119 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 4120 (uchar)i); 4121 i++; 4122 s_addr += ASC_QBLK_SIZE; 4123 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { 4124 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 4125 (uchar)(i + 1)); 4126 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 4127 (uchar)(i - 1)); 4128 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 4129 (uchar)i); 4130 } 4131 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 4132 (uchar)ASC_QLINK_END); 4133 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 4134 (uchar)(asc_dvc->max_total_qng - 1)); 4135 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 4136 (uchar)asc_dvc->max_total_qng); 4137 i++; 4138 s_addr += ASC_QBLK_SIZE; 4139 for (; i <= (uchar)(asc_dvc->max_total_qng + 3); 4140 i++, s_addr += ASC_QBLK_SIZE) { 4141 AscWriteLramByte(iop_base, 4142 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i); 4143 AscWriteLramByte(iop_base, 4144 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i); 4145 AscWriteLramByte(iop_base, 4146 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i); 4147 } 4148 return warn_code; 4149 } 4150 4151 static ASC_DCNT 4152 AscLoadMicroCode(PortAddr iop_base, ushort s_addr, 4153 const uchar *mcode_buf, ushort mcode_size) 4154 { 4155 ASC_DCNT chksum; 4156 ushort mcode_word_size; 4157 ushort mcode_chksum; 4158 4159 /* Write the microcode buffer starting at LRAM address 0. */ 4160 mcode_word_size = (ushort)(mcode_size >> 1); 4161 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size); 4162 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size); 4163 4164 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size); 4165 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum); 4166 mcode_chksum = (ushort)AscMemSumLramWord(iop_base, 4167 (ushort)ASC_CODE_SEC_BEG, 4168 (ushort)((mcode_size - 4169 s_addr - (ushort) 4170 ASC_CODE_SEC_BEG) / 4171 2)); 4172 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum); 4173 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum); 4174 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size); 4175 return chksum; 4176 } 4177 4178 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc) 4179 { 4180 PortAddr iop_base; 4181 int i; 4182 ushort lram_addr; 4183 4184 iop_base = asc_dvc->iop_base; 4185 AscPutRiscVarFreeQHead(iop_base, 1); 4186 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng); 4187 AscPutVarFreeQHead(iop_base, 1); 4188 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng); 4189 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B, 4190 (uchar)((int)asc_dvc->max_total_qng + 1)); 4191 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B, 4192 (uchar)((int)asc_dvc->max_total_qng + 2)); 4193 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B, 4194 asc_dvc->max_total_qng); 4195 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0); 4196 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 4197 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); 4198 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0); 4199 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0); 4200 AscPutQDoneInProgress(iop_base, 0); 4201 lram_addr = ASC_QADR_BEG; 4202 for (i = 0; i < 32; i++, lram_addr += 2) { 4203 AscWriteLramWord(iop_base, lram_addr, 0); 4204 } 4205 } 4206 4207 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc) 4208 { 4209 int i; 4210 ushort warn_code; 4211 PortAddr iop_base; 4212 ASC_PADDR phy_addr; 4213 ASC_DCNT phy_size; 4214 struct asc_board *board = asc_dvc_to_board(asc_dvc); 4215 4216 iop_base = asc_dvc->iop_base; 4217 warn_code = 0; 4218 for (i = 0; i <= ASC_MAX_TID; i++) { 4219 AscPutMCodeInitSDTRAtID(iop_base, i, 4220 asc_dvc->cfg->sdtr_period_offset[i]); 4221 } 4222 4223 AscInitQLinkVar(asc_dvc); 4224 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, 4225 asc_dvc->cfg->disc_enable); 4226 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B, 4227 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id)); 4228 4229 /* Ensure overrun buffer is aligned on an 8 byte boundary. */ 4230 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7); 4231 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf, 4232 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4233 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) { 4234 warn_code = -ENOMEM; 4235 goto err_dma_map; 4236 } 4237 phy_addr = cpu_to_le32(asc_dvc->overrun_dma); 4238 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D, 4239 (uchar *)&phy_addr, 1); 4240 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE); 4241 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D, 4242 (uchar *)&phy_size, 1); 4243 4244 asc_dvc->cfg->mcode_date = 4245 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W); 4246 asc_dvc->cfg->mcode_version = 4247 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W); 4248 4249 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 4250 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 4251 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 4252 warn_code = UW_ERR; 4253 goto err_mcode_start; 4254 } 4255 if (AscStartChip(iop_base) != 1) { 4256 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 4257 warn_code = UW_ERR; 4258 goto err_mcode_start; 4259 } 4260 4261 return warn_code; 4262 4263 err_mcode_start: 4264 dma_unmap_single(board->dev, asc_dvc->overrun_dma, 4265 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4266 err_dma_map: 4267 asc_dvc->overrun_dma = 0; 4268 return warn_code; 4269 } 4270 4271 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc) 4272 { 4273 const struct firmware *fw; 4274 const char fwname[] = "advansys/mcode.bin"; 4275 int err; 4276 unsigned long chksum; 4277 ushort warn_code; 4278 PortAddr iop_base; 4279 4280 iop_base = asc_dvc->iop_base; 4281 warn_code = 0; 4282 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) && 4283 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) { 4284 AscResetChipAndScsiBus(asc_dvc); 4285 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4286 } 4287 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC; 4288 if (asc_dvc->err_code != 0) 4289 return UW_ERR; 4290 if (!AscFindSignature(asc_dvc->iop_base)) { 4291 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 4292 return warn_code; 4293 } 4294 AscDisableInterrupt(iop_base); 4295 warn_code |= AscInitLram(asc_dvc); 4296 if (asc_dvc->err_code != 0) 4297 return UW_ERR; 4298 4299 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4300 if (err) { 4301 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4302 fwname, err); 4303 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4304 return err; 4305 } 4306 if (fw->size < 4) { 4307 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4308 fw->size, fwname); 4309 release_firmware(fw); 4310 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4311 return -EINVAL; 4312 } 4313 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4314 (fw->data[1] << 8) | fw->data[0]; 4315 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum); 4316 if (AscLoadMicroCode(iop_base, 0, &fw->data[4], 4317 fw->size - 4) != chksum) { 4318 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4319 release_firmware(fw); 4320 return warn_code; 4321 } 4322 release_firmware(fw); 4323 warn_code |= AscInitMicroCodeVar(asc_dvc); 4324 if (!asc_dvc->overrun_dma) 4325 return warn_code; 4326 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC; 4327 AscEnableInterrupt(iop_base); 4328 return warn_code; 4329 } 4330 4331 /* 4332 * Load the Microcode 4333 * 4334 * Write the microcode image to RISC memory starting at address 0. 4335 * 4336 * The microcode is stored compressed in the following format: 4337 * 4338 * 254 word (508 byte) table indexed by byte code followed 4339 * by the following byte codes: 4340 * 4341 * 1-Byte Code: 4342 * 00: Emit word 0 in table. 4343 * 01: Emit word 1 in table. 4344 * . 4345 * FD: Emit word 253 in table. 4346 * 4347 * Multi-Byte Code: 4348 * FE WW WW: (3 byte code) Word to emit is the next word WW WW. 4349 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. 4350 * 4351 * Returns 0 or an error if the checksum doesn't match 4352 */ 4353 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf, 4354 int size, int memsize, int chksum) 4355 { 4356 int i, j, end, len = 0; 4357 ADV_DCNT sum; 4358 4359 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4360 4361 for (i = 253 * 2; i < size; i++) { 4362 if (buf[i] == 0xff) { 4363 unsigned short word = (buf[i + 3] << 8) | buf[i + 2]; 4364 for (j = 0; j < buf[i + 1]; j++) { 4365 AdvWriteWordAutoIncLram(iop_base, word); 4366 len += 2; 4367 } 4368 i += 3; 4369 } else if (buf[i] == 0xfe) { 4370 unsigned short word = (buf[i + 2] << 8) | buf[i + 1]; 4371 AdvWriteWordAutoIncLram(iop_base, word); 4372 i += 2; 4373 len += 2; 4374 } else { 4375 unsigned int off = buf[i] * 2; 4376 unsigned short word = (buf[off + 1] << 8) | buf[off]; 4377 AdvWriteWordAutoIncLram(iop_base, word); 4378 len += 2; 4379 } 4380 } 4381 4382 end = len; 4383 4384 while (len < memsize) { 4385 AdvWriteWordAutoIncLram(iop_base, 0); 4386 len += 2; 4387 } 4388 4389 /* Verify the microcode checksum. */ 4390 sum = 0; 4391 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4392 4393 for (len = 0; len < end; len += 2) { 4394 sum += AdvReadWordAutoIncLram(iop_base); 4395 } 4396 4397 if (sum != chksum) 4398 return ASC_IERR_MCODE_CHKSUM; 4399 4400 return 0; 4401 } 4402 4403 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc) 4404 { 4405 ADV_CARR_T *carrp; 4406 ADV_SDCNT buf_size; 4407 ADV_PADDR carr_paddr; 4408 4409 carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf); 4410 asc_dvc->carr_freelist = NULL; 4411 if (carrp == asc_dvc->carrier_buf) { 4412 buf_size = ADV_CARRIER_BUFSIZE; 4413 } else { 4414 buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T); 4415 } 4416 4417 do { 4418 /* Get physical address of the carrier 'carrp'. */ 4419 carr_paddr = cpu_to_le32(virt_to_bus(carrp)); 4420 4421 buf_size -= sizeof(ADV_CARR_T); 4422 4423 carrp->carr_pa = carr_paddr; 4424 carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp)); 4425 4426 /* 4427 * Insert the carrier at the beginning of the freelist. 4428 */ 4429 carrp->next_vpa = 4430 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist)); 4431 asc_dvc->carr_freelist = carrp; 4432 4433 carrp++; 4434 } while (buf_size > 0); 4435 } 4436 4437 /* 4438 * Send an idle command to the chip and wait for completion. 4439 * 4440 * Command completion is polled for once per microsecond. 4441 * 4442 * The function can be called from anywhere including an interrupt handler. 4443 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical() 4444 * functions to prevent reentrancy. 4445 * 4446 * Return Values: 4447 * ADV_TRUE - command completed successfully 4448 * ADV_FALSE - command failed 4449 * ADV_ERROR - command timed out 4450 */ 4451 static int 4452 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc, 4453 ushort idle_cmd, ADV_DCNT idle_cmd_parameter) 4454 { 4455 int result; 4456 ADV_DCNT i, j; 4457 AdvPortAddr iop_base; 4458 4459 iop_base = asc_dvc->iop_base; 4460 4461 /* 4462 * Clear the idle command status which is set by the microcode 4463 * to a non-zero value to indicate when the command is completed. 4464 * The non-zero result is one of the IDLE_CMD_STATUS_* values 4465 */ 4466 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0); 4467 4468 /* 4469 * Write the idle command value after the idle command parameter 4470 * has been written to avoid a race condition. If the order is not 4471 * followed, the microcode may process the idle command before the 4472 * parameters have been written to LRAM. 4473 */ 4474 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER, 4475 cpu_to_le32(idle_cmd_parameter)); 4476 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd); 4477 4478 /* 4479 * Tickle the RISC to tell it to process the idle command. 4480 */ 4481 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B); 4482 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 4483 /* 4484 * Clear the tickle value. In the ASC-3550 the RISC flag 4485 * command 'clr_tickle_b' does not work unless the host 4486 * value is cleared. 4487 */ 4488 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); 4489 } 4490 4491 /* Wait for up to 100 millisecond for the idle command to timeout. */ 4492 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) { 4493 /* Poll once each microsecond for command completion. */ 4494 for (j = 0; j < SCSI_US_PER_MSEC; j++) { 4495 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, 4496 result); 4497 if (result != 0) 4498 return result; 4499 udelay(1); 4500 } 4501 } 4502 4503 BUG(); /* The idle command should never timeout. */ 4504 return ADV_ERROR; 4505 } 4506 4507 /* 4508 * Reset SCSI Bus and purge all outstanding requests. 4509 * 4510 * Return Value: 4511 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset. 4512 * ADV_FALSE(0) - Microcode command failed. 4513 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC 4514 * may be hung which requires driver recovery. 4515 */ 4516 static int AdvResetSB(ADV_DVC_VAR *asc_dvc) 4517 { 4518 int status; 4519 4520 /* 4521 * Send the SCSI Bus Reset idle start idle command which asserts 4522 * the SCSI Bus Reset signal. 4523 */ 4524 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L); 4525 if (status != ADV_TRUE) { 4526 return status; 4527 } 4528 4529 /* 4530 * Delay for the specified SCSI Bus Reset hold time. 4531 * 4532 * The hold time delay is done on the host because the RISC has no 4533 * microsecond accurate timer. 4534 */ 4535 udelay(ASC_SCSI_RESET_HOLD_TIME_US); 4536 4537 /* 4538 * Send the SCSI Bus Reset end idle command which de-asserts 4539 * the SCSI Bus Reset signal and purges any pending requests. 4540 */ 4541 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L); 4542 if (status != ADV_TRUE) { 4543 return status; 4544 } 4545 4546 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4547 4548 return status; 4549 } 4550 4551 /* 4552 * Initialize the ASC-3550. 4553 * 4554 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 4555 * 4556 * For a non-fatal error return a warning code. If there are no warnings 4557 * then 0 is returned. 4558 * 4559 * Needed after initialization for error recovery. 4560 */ 4561 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc) 4562 { 4563 const struct firmware *fw; 4564 const char fwname[] = "advansys/3550.bin"; 4565 AdvPortAddr iop_base; 4566 ushort warn_code; 4567 int begin_addr; 4568 int end_addr; 4569 ushort code_sum; 4570 int word; 4571 int i; 4572 int err; 4573 unsigned long chksum; 4574 ushort scsi_cfg1; 4575 uchar tid; 4576 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 4577 ushort wdtr_able = 0, sdtr_able, tagqng_able; 4578 uchar max_cmd[ADV_MAX_TID + 1]; 4579 4580 /* If there is already an error, don't continue. */ 4581 if (asc_dvc->err_code != 0) 4582 return ADV_ERROR; 4583 4584 /* 4585 * The caller must set 'chip_type' to ADV_CHIP_ASC3550. 4586 */ 4587 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) { 4588 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 4589 return ADV_ERROR; 4590 } 4591 4592 warn_code = 0; 4593 iop_base = asc_dvc->iop_base; 4594 4595 /* 4596 * Save the RISC memory BIOS region before writing the microcode. 4597 * The BIOS may already be loaded and using its RISC LRAM region 4598 * so its region must be saved and restored. 4599 * 4600 * Note: This code makes the assumption, which is currently true, 4601 * that a chip reset does not clear RISC LRAM. 4602 */ 4603 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4604 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4605 bios_mem[i]); 4606 } 4607 4608 /* 4609 * Save current per TID negotiated values. 4610 */ 4611 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { 4612 ushort bios_version, major, minor; 4613 4614 bios_version = 4615 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2]; 4616 major = (bios_version >> 12) & 0xF; 4617 minor = (bios_version >> 8) & 0xF; 4618 if (major < 3 || (major == 3 && minor == 1)) { 4619 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */ 4620 AdvReadWordLram(iop_base, 0x120, wdtr_able); 4621 } else { 4622 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4623 } 4624 } 4625 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4626 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 4627 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4628 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 4629 max_cmd[tid]); 4630 } 4631 4632 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4633 if (err) { 4634 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4635 fwname, err); 4636 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4637 return err; 4638 } 4639 if (fw->size < 4) { 4640 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4641 fw->size, fwname); 4642 release_firmware(fw); 4643 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4644 return -EINVAL; 4645 } 4646 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4647 (fw->data[1] << 8) | fw->data[0]; 4648 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 4649 fw->size - 4, ADV_3550_MEMSIZE, 4650 chksum); 4651 release_firmware(fw); 4652 if (asc_dvc->err_code) 4653 return ADV_ERROR; 4654 4655 /* 4656 * Restore the RISC memory BIOS region. 4657 */ 4658 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4659 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4660 bios_mem[i]); 4661 } 4662 4663 /* 4664 * Calculate and write the microcode code checksum to the microcode 4665 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 4666 */ 4667 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 4668 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 4669 code_sum = 0; 4670 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 4671 for (word = begin_addr; word < end_addr; word += 2) { 4672 code_sum += AdvReadWordAutoIncLram(iop_base); 4673 } 4674 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 4675 4676 /* 4677 * Read and save microcode version and date. 4678 */ 4679 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 4680 asc_dvc->cfg->mcode_date); 4681 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 4682 asc_dvc->cfg->mcode_version); 4683 4684 /* 4685 * Set the chip type to indicate the ASC3550. 4686 */ 4687 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550); 4688 4689 /* 4690 * If the PCI Configuration Command Register "Parity Error Response 4691 * Control" Bit was clear (0), then set the microcode variable 4692 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 4693 * to ignore DMA parity errors. 4694 */ 4695 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 4696 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4697 word |= CONTROL_FLAG_IGNORE_PERR; 4698 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4699 } 4700 4701 /* 4702 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO 4703 * threshold of 128 bytes. This register is only accessible to the host. 4704 */ 4705 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 4706 START_CTL_EMFU | READ_CMD_MRM); 4707 4708 /* 4709 * Microcode operating variables for WDTR, SDTR, and command tag 4710 * queuing will be set in slave_configure() based on what a 4711 * device reports it is capable of in Inquiry byte 7. 4712 * 4713 * If SCSI Bus Resets have been disabled, then directly set 4714 * SDTR and WDTR from the EEPROM configuration. This will allow 4715 * the BIOS and warm boot to work without a SCSI bus hang on 4716 * the Inquiry caused by host and target mismatched DTR values. 4717 * Without the SCSI Bus Reset, before an Inquiry a device can't 4718 * be assumed to be in Asynchronous, Narrow mode. 4719 */ 4720 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 4721 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 4722 asc_dvc->wdtr_able); 4723 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 4724 asc_dvc->sdtr_able); 4725 } 4726 4727 /* 4728 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, 4729 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID 4730 * bitmask. These values determine the maximum SDTR speed negotiated 4731 * with a device. 4732 * 4733 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 4734 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 4735 * without determining here whether the device supports SDTR. 4736 * 4737 * 4-bit speed SDTR speed name 4738 * =========== =============== 4739 * 0000b (0x0) SDTR disabled 4740 * 0001b (0x1) 5 Mhz 4741 * 0010b (0x2) 10 Mhz 4742 * 0011b (0x3) 20 Mhz (Ultra) 4743 * 0100b (0x4) 40 Mhz (LVD/Ultra2) 4744 * 0101b (0x5) 80 Mhz (LVD2/Ultra3) 4745 * 0110b (0x6) Undefined 4746 * . 4747 * 1111b (0xF) Undefined 4748 */ 4749 word = 0; 4750 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4751 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) { 4752 /* Set Ultra speed for TID 'tid'. */ 4753 word |= (0x3 << (4 * (tid % 4))); 4754 } else { 4755 /* Set Fast speed for TID 'tid'. */ 4756 word |= (0x2 << (4 * (tid % 4))); 4757 } 4758 if (tid == 3) { /* Check if done with sdtr_speed1. */ 4759 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word); 4760 word = 0; 4761 } else if (tid == 7) { /* Check if done with sdtr_speed2. */ 4762 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word); 4763 word = 0; 4764 } else if (tid == 11) { /* Check if done with sdtr_speed3. */ 4765 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word); 4766 word = 0; 4767 } else if (tid == 15) { /* Check if done with sdtr_speed4. */ 4768 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word); 4769 /* End of loop. */ 4770 } 4771 } 4772 4773 /* 4774 * Set microcode operating variable for the disconnect per TID bitmask. 4775 */ 4776 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 4777 asc_dvc->cfg->disc_enable); 4778 4779 /* 4780 * Set SCSI_CFG0 Microcode Default Value. 4781 * 4782 * The microcode will set the SCSI_CFG0 register using this value 4783 * after it is started below. 4784 */ 4785 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 4786 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 4787 asc_dvc->chip_scsi_id); 4788 4789 /* 4790 * Determine SCSI_CFG1 Microcode Default Value. 4791 * 4792 * The microcode will set the SCSI_CFG1 register using this value 4793 * after it is started below. 4794 */ 4795 4796 /* Read current SCSI_CFG1 Register value. */ 4797 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 4798 4799 /* 4800 * If all three connectors are in use, return an error. 4801 */ 4802 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || 4803 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { 4804 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION; 4805 return ADV_ERROR; 4806 } 4807 4808 /* 4809 * If the internal narrow cable is reversed all of the SCSI_CTRL 4810 * register signals will be set. Check for and return an error if 4811 * this condition is found. 4812 */ 4813 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 4814 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 4815 return ADV_ERROR; 4816 } 4817 4818 /* 4819 * If this is a differential board and a single-ended device 4820 * is attached to one of the connectors, return an error. 4821 */ 4822 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) { 4823 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE; 4824 return ADV_ERROR; 4825 } 4826 4827 /* 4828 * If automatic termination control is enabled, then set the 4829 * termination value based on a table listed in a_condor.h. 4830 * 4831 * If manual termination was specified with an EEPROM setting 4832 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and 4833 * is ready to be 'ored' into SCSI_CFG1. 4834 */ 4835 if (asc_dvc->cfg->termination == 0) { 4836 /* 4837 * The software always controls termination by setting TERM_CTL_SEL. 4838 * If TERM_CTL_SEL were set to 0, the hardware would set termination. 4839 */ 4840 asc_dvc->cfg->termination |= TERM_CTL_SEL; 4841 4842 switch (scsi_cfg1 & CABLE_DETECT) { 4843 /* TERM_CTL_H: on, TERM_CTL_L: on */ 4844 case 0x3: 4845 case 0x7: 4846 case 0xB: 4847 case 0xD: 4848 case 0xE: 4849 case 0xF: 4850 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L); 4851 break; 4852 4853 /* TERM_CTL_H: on, TERM_CTL_L: off */ 4854 case 0x1: 4855 case 0x5: 4856 case 0x9: 4857 case 0xA: 4858 case 0xC: 4859 asc_dvc->cfg->termination |= TERM_CTL_H; 4860 break; 4861 4862 /* TERM_CTL_H: off, TERM_CTL_L: off */ 4863 case 0x2: 4864 case 0x6: 4865 break; 4866 } 4867 } 4868 4869 /* 4870 * Clear any set TERM_CTL_H and TERM_CTL_L bits. 4871 */ 4872 scsi_cfg1 &= ~TERM_CTL; 4873 4874 /* 4875 * Invert the TERM_CTL_H and TERM_CTL_L bits and then 4876 * set 'scsi_cfg1'. The TERM_POL bit does not need to be 4877 * referenced, because the hardware internally inverts 4878 * the Termination High and Low bits if TERM_POL is set. 4879 */ 4880 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL)); 4881 4882 /* 4883 * Set SCSI_CFG1 Microcode Default Value 4884 * 4885 * Set filter value and possibly modified termination control 4886 * bits in the Microcode SCSI_CFG1 Register Value. 4887 * 4888 * The microcode will set the SCSI_CFG1 register using this value 4889 * after it is started below. 4890 */ 4891 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, 4892 FLTR_DISABLE | scsi_cfg1); 4893 4894 /* 4895 * Set MEM_CFG Microcode Default Value 4896 * 4897 * The microcode will set the MEM_CFG register using this value 4898 * after it is started below. 4899 * 4900 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 4901 * are defined. 4902 * 4903 * ASC-3550 has 8KB internal memory. 4904 */ 4905 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 4906 BIOS_EN | RAM_SZ_8KB); 4907 4908 /* 4909 * Set SEL_MASK Microcode Default Value 4910 * 4911 * The microcode will set the SEL_MASK register using this value 4912 * after it is started below. 4913 */ 4914 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 4915 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 4916 4917 AdvBuildCarrierFreelist(asc_dvc); 4918 4919 /* 4920 * Set-up the Host->RISC Initiator Command Queue (ICQ). 4921 */ 4922 4923 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { 4924 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4925 return ADV_ERROR; 4926 } 4927 asc_dvc->carr_freelist = (ADV_CARR_T *) 4928 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); 4929 4930 /* 4931 * The first command issued will be placed in the stopper carrier. 4932 */ 4933 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 4934 4935 /* 4936 * Set RISC ICQ physical address start value. 4937 */ 4938 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 4939 4940 /* 4941 * Set-up the RISC->Host Initiator Response Queue (IRQ). 4942 */ 4943 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { 4944 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4945 return ADV_ERROR; 4946 } 4947 asc_dvc->carr_freelist = (ADV_CARR_T *) 4948 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); 4949 4950 /* 4951 * The first command completed by the RISC will be placed in 4952 * the stopper. 4953 * 4954 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is 4955 * completed the RISC will set the ASC_RQ_STOPPER bit. 4956 */ 4957 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 4958 4959 /* 4960 * Set RISC IRQ physical address start value. 4961 */ 4962 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 4963 asc_dvc->carr_pending_cnt = 0; 4964 4965 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 4966 (ADV_INTR_ENABLE_HOST_INTR | 4967 ADV_INTR_ENABLE_GLOBAL_INTR)); 4968 4969 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 4970 AdvWriteWordRegister(iop_base, IOPW_PC, word); 4971 4972 /* finally, finally, gentlemen, start your engine */ 4973 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 4974 4975 /* 4976 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 4977 * Resets should be performed. The RISC has to be running 4978 * to issue a SCSI Bus Reset. 4979 */ 4980 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 4981 /* 4982 * If the BIOS Signature is present in memory, restore the 4983 * BIOS Handshake Configuration Table and do not perform 4984 * a SCSI Bus Reset. 4985 */ 4986 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 4987 0x55AA) { 4988 /* 4989 * Restore per TID negotiated values. 4990 */ 4991 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4992 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4993 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 4994 tagqng_able); 4995 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4996 AdvWriteByteLram(iop_base, 4997 ASC_MC_NUMBER_OF_MAX_CMD + tid, 4998 max_cmd[tid]); 4999 } 5000 } else { 5001 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5002 warn_code = ASC_WARN_BUSRESET_ERROR; 5003 } 5004 } 5005 } 5006 5007 return warn_code; 5008 } 5009 5010 /* 5011 * Initialize the ASC-38C0800. 5012 * 5013 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 5014 * 5015 * For a non-fatal error return a warning code. If there are no warnings 5016 * then 0 is returned. 5017 * 5018 * Needed after initialization for error recovery. 5019 */ 5020 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc) 5021 { 5022 const struct firmware *fw; 5023 const char fwname[] = "advansys/38C0800.bin"; 5024 AdvPortAddr iop_base; 5025 ushort warn_code; 5026 int begin_addr; 5027 int end_addr; 5028 ushort code_sum; 5029 int word; 5030 int i; 5031 int err; 5032 unsigned long chksum; 5033 ushort scsi_cfg1; 5034 uchar byte; 5035 uchar tid; 5036 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 5037 ushort wdtr_able, sdtr_able, tagqng_able; 5038 uchar max_cmd[ADV_MAX_TID + 1]; 5039 5040 /* If there is already an error, don't continue. */ 5041 if (asc_dvc->err_code != 0) 5042 return ADV_ERROR; 5043 5044 /* 5045 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800. 5046 */ 5047 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) { 5048 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 5049 return ADV_ERROR; 5050 } 5051 5052 warn_code = 0; 5053 iop_base = asc_dvc->iop_base; 5054 5055 /* 5056 * Save the RISC memory BIOS region before writing the microcode. 5057 * The BIOS may already be loaded and using its RISC LRAM region 5058 * so its region must be saved and restored. 5059 * 5060 * Note: This code makes the assumption, which is currently true, 5061 * that a chip reset does not clear RISC LRAM. 5062 */ 5063 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5064 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5065 bios_mem[i]); 5066 } 5067 5068 /* 5069 * Save current per TID negotiated values. 5070 */ 5071 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5072 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5073 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5074 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5075 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5076 max_cmd[tid]); 5077 } 5078 5079 /* 5080 * RAM BIST (RAM Built-In Self Test) 5081 * 5082 * Address : I/O base + offset 0x38h register (byte). 5083 * Function: Bit 7-6(RW) : RAM mode 5084 * Normal Mode : 0x00 5085 * Pre-test Mode : 0x40 5086 * RAM Test Mode : 0x80 5087 * Bit 5 : unused 5088 * Bit 4(RO) : Done bit 5089 * Bit 3-0(RO) : Status 5090 * Host Error : 0x08 5091 * Int_RAM Error : 0x04 5092 * RISC Error : 0x02 5093 * SCSI Error : 0x01 5094 * No Error : 0x00 5095 * 5096 * Note: RAM BIST code should be put right here, before loading the 5097 * microcode and after saving the RISC memory BIOS region. 5098 */ 5099 5100 /* 5101 * LRAM Pre-test 5102 * 5103 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 5104 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 5105 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 5106 * to NORMAL_MODE, return an error too. 5107 */ 5108 for (i = 0; i < 2; i++) { 5109 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 5110 mdelay(10); /* Wait for 10ms before reading back. */ 5111 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5112 if ((byte & RAM_TEST_DONE) == 0 5113 || (byte & 0x0F) != PRE_TEST_VALUE) { 5114 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5115 return ADV_ERROR; 5116 } 5117 5118 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5119 mdelay(10); /* Wait for 10ms before reading back. */ 5120 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 5121 != NORMAL_VALUE) { 5122 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5123 return ADV_ERROR; 5124 } 5125 } 5126 5127 /* 5128 * LRAM Test - It takes about 1.5 ms to run through the test. 5129 * 5130 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 5131 * If Done bit not set or Status not 0, save register byte, set the 5132 * err_code, and return an error. 5133 */ 5134 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 5135 mdelay(10); /* Wait for 10ms before checking status. */ 5136 5137 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5138 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 5139 /* Get here if Done bit not set or Status not 0. */ 5140 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 5141 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 5142 return ADV_ERROR; 5143 } 5144 5145 /* We need to reset back to normal mode after LRAM test passes. */ 5146 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5147 5148 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 5149 if (err) { 5150 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 5151 fwname, err); 5152 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5153 return err; 5154 } 5155 if (fw->size < 4) { 5156 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 5157 fw->size, fwname); 5158 release_firmware(fw); 5159 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5160 return -EINVAL; 5161 } 5162 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 5163 (fw->data[1] << 8) | fw->data[0]; 5164 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 5165 fw->size - 4, ADV_38C0800_MEMSIZE, 5166 chksum); 5167 release_firmware(fw); 5168 if (asc_dvc->err_code) 5169 return ADV_ERROR; 5170 5171 /* 5172 * Restore the RISC memory BIOS region. 5173 */ 5174 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5175 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5176 bios_mem[i]); 5177 } 5178 5179 /* 5180 * Calculate and write the microcode code checksum to the microcode 5181 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5182 */ 5183 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5184 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5185 code_sum = 0; 5186 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5187 for (word = begin_addr; word < end_addr; word += 2) { 5188 code_sum += AdvReadWordAutoIncLram(iop_base); 5189 } 5190 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5191 5192 /* 5193 * Read microcode version and date. 5194 */ 5195 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5196 asc_dvc->cfg->mcode_date); 5197 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5198 asc_dvc->cfg->mcode_version); 5199 5200 /* 5201 * Set the chip type to indicate the ASC38C0800. 5202 */ 5203 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800); 5204 5205 /* 5206 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 5207 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 5208 * cable detection and then we are able to read C_DET[3:0]. 5209 * 5210 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 5211 * Microcode Default Value' section below. 5212 */ 5213 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5214 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 5215 scsi_cfg1 | DIS_TERM_DRV); 5216 5217 /* 5218 * If the PCI Configuration Command Register "Parity Error Response 5219 * Control" Bit was clear (0), then set the microcode variable 5220 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5221 * to ignore DMA parity errors. 5222 */ 5223 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5224 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5225 word |= CONTROL_FLAG_IGNORE_PERR; 5226 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5227 } 5228 5229 /* 5230 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2] 5231 * bits for the default FIFO threshold. 5232 * 5233 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes. 5234 * 5235 * For DMA Errata #4 set the BC_THRESH_ENB bit. 5236 */ 5237 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5238 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | 5239 READ_CMD_MRM); 5240 5241 /* 5242 * Microcode operating variables for WDTR, SDTR, and command tag 5243 * queuing will be set in slave_configure() based on what a 5244 * device reports it is capable of in Inquiry byte 7. 5245 * 5246 * If SCSI Bus Resets have been disabled, then directly set 5247 * SDTR and WDTR from the EEPROM configuration. This will allow 5248 * the BIOS and warm boot to work without a SCSI bus hang on 5249 * the Inquiry caused by host and target mismatched DTR values. 5250 * Without the SCSI Bus Reset, before an Inquiry a device can't 5251 * be assumed to be in Asynchronous, Narrow mode. 5252 */ 5253 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5254 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5255 asc_dvc->wdtr_able); 5256 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5257 asc_dvc->sdtr_able); 5258 } 5259 5260 /* 5261 * Set microcode operating variables for DISC and SDTR_SPEED1, 5262 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5263 * configuration values. 5264 * 5265 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5266 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5267 * without determining here whether the device supports SDTR. 5268 */ 5269 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5270 asc_dvc->cfg->disc_enable); 5271 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5272 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5273 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5274 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5275 5276 /* 5277 * Set SCSI_CFG0 Microcode Default Value. 5278 * 5279 * The microcode will set the SCSI_CFG0 register using this value 5280 * after it is started below. 5281 */ 5282 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5283 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5284 asc_dvc->chip_scsi_id); 5285 5286 /* 5287 * Determine SCSI_CFG1 Microcode Default Value. 5288 * 5289 * The microcode will set the SCSI_CFG1 register using this value 5290 * after it is started below. 5291 */ 5292 5293 /* Read current SCSI_CFG1 Register value. */ 5294 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5295 5296 /* 5297 * If the internal narrow cable is reversed all of the SCSI_CTRL 5298 * register signals will be set. Check for and return an error if 5299 * this condition is found. 5300 */ 5301 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5302 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5303 return ADV_ERROR; 5304 } 5305 5306 /* 5307 * All kind of combinations of devices attached to one of four 5308 * connectors are acceptable except HVD device attached. For example, 5309 * LVD device can be attached to SE connector while SE device attached 5310 * to LVD connector. If LVD device attached to SE connector, it only 5311 * runs up to Ultra speed. 5312 * 5313 * If an HVD device is attached to one of LVD connectors, return an 5314 * error. However, there is no way to detect HVD device attached to 5315 * SE connectors. 5316 */ 5317 if (scsi_cfg1 & HVD) { 5318 asc_dvc->err_code = ASC_IERR_HVD_DEVICE; 5319 return ADV_ERROR; 5320 } 5321 5322 /* 5323 * If either SE or LVD automatic termination control is enabled, then 5324 * set the termination value based on a table listed in a_condor.h. 5325 * 5326 * If manual termination was specified with an EEPROM setting then 5327 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready 5328 * to be 'ored' into SCSI_CFG1. 5329 */ 5330 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5331 /* SE automatic termination control is enabled. */ 5332 switch (scsi_cfg1 & C_DET_SE) { 5333 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5334 case 0x1: 5335 case 0x2: 5336 case 0x3: 5337 asc_dvc->cfg->termination |= TERM_SE; 5338 break; 5339 5340 /* TERM_SE_HI: on, TERM_SE_LO: off */ 5341 case 0x0: 5342 asc_dvc->cfg->termination |= TERM_SE_HI; 5343 break; 5344 } 5345 } 5346 5347 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) { 5348 /* LVD automatic termination control is enabled. */ 5349 switch (scsi_cfg1 & C_DET_LVD) { 5350 /* TERM_LVD_HI: on, TERM_LVD_LO: on */ 5351 case 0x4: 5352 case 0x8: 5353 case 0xC: 5354 asc_dvc->cfg->termination |= TERM_LVD; 5355 break; 5356 5357 /* TERM_LVD_HI: off, TERM_LVD_LO: off */ 5358 case 0x0: 5359 break; 5360 } 5361 } 5362 5363 /* 5364 * Clear any set TERM_SE and TERM_LVD bits. 5365 */ 5366 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD); 5367 5368 /* 5369 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. 5370 */ 5371 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0); 5372 5373 /* 5374 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE 5375 * bits and set possibly modified termination control bits in the 5376 * Microcode SCSI_CFG1 Register Value. 5377 */ 5378 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE); 5379 5380 /* 5381 * Set SCSI_CFG1 Microcode Default Value 5382 * 5383 * Set possibly modified termination control and reset DIS_TERM_DRV 5384 * bits in the Microcode SCSI_CFG1 Register Value. 5385 * 5386 * The microcode will set the SCSI_CFG1 register using this value 5387 * after it is started below. 5388 */ 5389 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5390 5391 /* 5392 * Set MEM_CFG Microcode Default Value 5393 * 5394 * The microcode will set the MEM_CFG register using this value 5395 * after it is started below. 5396 * 5397 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5398 * are defined. 5399 * 5400 * ASC-38C0800 has 16KB internal memory. 5401 */ 5402 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5403 BIOS_EN | RAM_SZ_16KB); 5404 5405 /* 5406 * Set SEL_MASK Microcode Default Value 5407 * 5408 * The microcode will set the SEL_MASK register using this value 5409 * after it is started below. 5410 */ 5411 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5412 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5413 5414 AdvBuildCarrierFreelist(asc_dvc); 5415 5416 /* 5417 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5418 */ 5419 5420 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { 5421 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5422 return ADV_ERROR; 5423 } 5424 asc_dvc->carr_freelist = (ADV_CARR_T *) 5425 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); 5426 5427 /* 5428 * The first command issued will be placed in the stopper carrier. 5429 */ 5430 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 5431 5432 /* 5433 * Set RISC ICQ physical address start value. 5434 * carr_pa is LE, must be native before write 5435 */ 5436 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5437 5438 /* 5439 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5440 */ 5441 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { 5442 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5443 return ADV_ERROR; 5444 } 5445 asc_dvc->carr_freelist = (ADV_CARR_T *) 5446 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); 5447 5448 /* 5449 * The first command completed by the RISC will be placed in 5450 * the stopper. 5451 * 5452 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is 5453 * completed the RISC will set the ASC_RQ_STOPPER bit. 5454 */ 5455 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 5456 5457 /* 5458 * Set RISC IRQ physical address start value. 5459 * 5460 * carr_pa is LE, must be native before write * 5461 */ 5462 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5463 asc_dvc->carr_pending_cnt = 0; 5464 5465 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5466 (ADV_INTR_ENABLE_HOST_INTR | 5467 ADV_INTR_ENABLE_GLOBAL_INTR)); 5468 5469 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5470 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5471 5472 /* finally, finally, gentlemen, start your engine */ 5473 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5474 5475 /* 5476 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5477 * Resets should be performed. The RISC has to be running 5478 * to issue a SCSI Bus Reset. 5479 */ 5480 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5481 /* 5482 * If the BIOS Signature is present in memory, restore the 5483 * BIOS Handshake Configuration Table and do not perform 5484 * a SCSI Bus Reset. 5485 */ 5486 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5487 0x55AA) { 5488 /* 5489 * Restore per TID negotiated values. 5490 */ 5491 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5492 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5493 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5494 tagqng_able); 5495 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5496 AdvWriteByteLram(iop_base, 5497 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5498 max_cmd[tid]); 5499 } 5500 } else { 5501 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5502 warn_code = ASC_WARN_BUSRESET_ERROR; 5503 } 5504 } 5505 } 5506 5507 return warn_code; 5508 } 5509 5510 /* 5511 * Initialize the ASC-38C1600. 5512 * 5513 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 5514 * 5515 * For a non-fatal error return a warning code. If there are no warnings 5516 * then 0 is returned. 5517 * 5518 * Needed after initialization for error recovery. 5519 */ 5520 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc) 5521 { 5522 const struct firmware *fw; 5523 const char fwname[] = "advansys/38C1600.bin"; 5524 AdvPortAddr iop_base; 5525 ushort warn_code; 5526 int begin_addr; 5527 int end_addr; 5528 ushort code_sum; 5529 long word; 5530 int i; 5531 int err; 5532 unsigned long chksum; 5533 ushort scsi_cfg1; 5534 uchar byte; 5535 uchar tid; 5536 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 5537 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able; 5538 uchar max_cmd[ASC_MAX_TID + 1]; 5539 5540 /* If there is already an error, don't continue. */ 5541 if (asc_dvc->err_code != 0) { 5542 return ADV_ERROR; 5543 } 5544 5545 /* 5546 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600. 5547 */ 5548 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 5549 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 5550 return ADV_ERROR; 5551 } 5552 5553 warn_code = 0; 5554 iop_base = asc_dvc->iop_base; 5555 5556 /* 5557 * Save the RISC memory BIOS region before writing the microcode. 5558 * The BIOS may already be loaded and using its RISC LRAM region 5559 * so its region must be saved and restored. 5560 * 5561 * Note: This code makes the assumption, which is currently true, 5562 * that a chip reset does not clear RISC LRAM. 5563 */ 5564 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5565 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5566 bios_mem[i]); 5567 } 5568 5569 /* 5570 * Save current per TID negotiated values. 5571 */ 5572 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5573 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5574 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5575 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5576 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 5577 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5578 max_cmd[tid]); 5579 } 5580 5581 /* 5582 * RAM BIST (Built-In Self Test) 5583 * 5584 * Address : I/O base + offset 0x38h register (byte). 5585 * Function: Bit 7-6(RW) : RAM mode 5586 * Normal Mode : 0x00 5587 * Pre-test Mode : 0x40 5588 * RAM Test Mode : 0x80 5589 * Bit 5 : unused 5590 * Bit 4(RO) : Done bit 5591 * Bit 3-0(RO) : Status 5592 * Host Error : 0x08 5593 * Int_RAM Error : 0x04 5594 * RISC Error : 0x02 5595 * SCSI Error : 0x01 5596 * No Error : 0x00 5597 * 5598 * Note: RAM BIST code should be put right here, before loading the 5599 * microcode and after saving the RISC memory BIOS region. 5600 */ 5601 5602 /* 5603 * LRAM Pre-test 5604 * 5605 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 5606 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 5607 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 5608 * to NORMAL_MODE, return an error too. 5609 */ 5610 for (i = 0; i < 2; i++) { 5611 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 5612 mdelay(10); /* Wait for 10ms before reading back. */ 5613 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5614 if ((byte & RAM_TEST_DONE) == 0 5615 || (byte & 0x0F) != PRE_TEST_VALUE) { 5616 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5617 return ADV_ERROR; 5618 } 5619 5620 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5621 mdelay(10); /* Wait for 10ms before reading back. */ 5622 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 5623 != NORMAL_VALUE) { 5624 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5625 return ADV_ERROR; 5626 } 5627 } 5628 5629 /* 5630 * LRAM Test - It takes about 1.5 ms to run through the test. 5631 * 5632 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 5633 * If Done bit not set or Status not 0, save register byte, set the 5634 * err_code, and return an error. 5635 */ 5636 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 5637 mdelay(10); /* Wait for 10ms before checking status. */ 5638 5639 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5640 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 5641 /* Get here if Done bit not set or Status not 0. */ 5642 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 5643 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 5644 return ADV_ERROR; 5645 } 5646 5647 /* We need to reset back to normal mode after LRAM test passes. */ 5648 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5649 5650 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 5651 if (err) { 5652 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 5653 fwname, err); 5654 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5655 return err; 5656 } 5657 if (fw->size < 4) { 5658 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 5659 fw->size, fwname); 5660 release_firmware(fw); 5661 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5662 return -EINVAL; 5663 } 5664 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 5665 (fw->data[1] << 8) | fw->data[0]; 5666 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 5667 fw->size - 4, ADV_38C1600_MEMSIZE, 5668 chksum); 5669 release_firmware(fw); 5670 if (asc_dvc->err_code) 5671 return ADV_ERROR; 5672 5673 /* 5674 * Restore the RISC memory BIOS region. 5675 */ 5676 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5677 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5678 bios_mem[i]); 5679 } 5680 5681 /* 5682 * Calculate and write the microcode code checksum to the microcode 5683 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5684 */ 5685 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5686 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5687 code_sum = 0; 5688 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5689 for (word = begin_addr; word < end_addr; word += 2) { 5690 code_sum += AdvReadWordAutoIncLram(iop_base); 5691 } 5692 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5693 5694 /* 5695 * Read microcode version and date. 5696 */ 5697 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5698 asc_dvc->cfg->mcode_date); 5699 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5700 asc_dvc->cfg->mcode_version); 5701 5702 /* 5703 * Set the chip type to indicate the ASC38C1600. 5704 */ 5705 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600); 5706 5707 /* 5708 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 5709 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 5710 * cable detection and then we are able to read C_DET[3:0]. 5711 * 5712 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 5713 * Microcode Default Value' section below. 5714 */ 5715 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5716 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 5717 scsi_cfg1 | DIS_TERM_DRV); 5718 5719 /* 5720 * If the PCI Configuration Command Register "Parity Error Response 5721 * Control" Bit was clear (0), then set the microcode variable 5722 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5723 * to ignore DMA parity errors. 5724 */ 5725 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5726 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5727 word |= CONTROL_FLAG_IGNORE_PERR; 5728 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5729 } 5730 5731 /* 5732 * If the BIOS control flag AIPP (Asynchronous Information 5733 * Phase Protection) disable bit is not set, then set the firmware 5734 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable 5735 * AIPP checking and encoding. 5736 */ 5737 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) { 5738 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5739 word |= CONTROL_FLAG_ENABLE_AIPP; 5740 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5741 } 5742 5743 /* 5744 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4], 5745 * and START_CTL_TH [3:2]. 5746 */ 5747 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5748 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); 5749 5750 /* 5751 * Microcode operating variables for WDTR, SDTR, and command tag 5752 * queuing will be set in slave_configure() based on what a 5753 * device reports it is capable of in Inquiry byte 7. 5754 * 5755 * If SCSI Bus Resets have been disabled, then directly set 5756 * SDTR and WDTR from the EEPROM configuration. This will allow 5757 * the BIOS and warm boot to work without a SCSI bus hang on 5758 * the Inquiry caused by host and target mismatched DTR values. 5759 * Without the SCSI Bus Reset, before an Inquiry a device can't 5760 * be assumed to be in Asynchronous, Narrow mode. 5761 */ 5762 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5763 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5764 asc_dvc->wdtr_able); 5765 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5766 asc_dvc->sdtr_able); 5767 } 5768 5769 /* 5770 * Set microcode operating variables for DISC and SDTR_SPEED1, 5771 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5772 * configuration values. 5773 * 5774 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5775 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5776 * without determining here whether the device supports SDTR. 5777 */ 5778 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5779 asc_dvc->cfg->disc_enable); 5780 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5781 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5782 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5783 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5784 5785 /* 5786 * Set SCSI_CFG0 Microcode Default Value. 5787 * 5788 * The microcode will set the SCSI_CFG0 register using this value 5789 * after it is started below. 5790 */ 5791 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5792 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5793 asc_dvc->chip_scsi_id); 5794 5795 /* 5796 * Calculate SCSI_CFG1 Microcode Default Value. 5797 * 5798 * The microcode will set the SCSI_CFG1 register using this value 5799 * after it is started below. 5800 * 5801 * Each ASC-38C1600 function has only two cable detect bits. 5802 * The bus mode override bits are in IOPB_SOFT_OVER_WR. 5803 */ 5804 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5805 5806 /* 5807 * If the cable is reversed all of the SCSI_CTRL register signals 5808 * will be set. Check for and return an error if this condition is 5809 * found. 5810 */ 5811 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5812 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5813 return ADV_ERROR; 5814 } 5815 5816 /* 5817 * Each ASC-38C1600 function has two connectors. Only an HVD device 5818 * can not be connected to either connector. An LVD device or SE device 5819 * may be connected to either connecor. If an SE device is connected, 5820 * then at most Ultra speed (20 Mhz) can be used on both connectors. 5821 * 5822 * If an HVD device is attached, return an error. 5823 */ 5824 if (scsi_cfg1 & HVD) { 5825 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE; 5826 return ADV_ERROR; 5827 } 5828 5829 /* 5830 * Each function in the ASC-38C1600 uses only the SE cable detect and 5831 * termination because there are two connectors for each function. Each 5832 * function may use either LVD or SE mode. Corresponding the SE automatic 5833 * termination control EEPROM bits are used for each function. Each 5834 * function has its own EEPROM. If SE automatic control is enabled for 5835 * the function, then set the termination value based on a table listed 5836 * in a_condor.h. 5837 * 5838 * If manual termination is specified in the EEPROM for the function, 5839 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is 5840 * ready to be 'ored' into SCSI_CFG1. 5841 */ 5842 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5843 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 5844 /* SE automatic termination control is enabled. */ 5845 switch (scsi_cfg1 & C_DET_SE) { 5846 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5847 case 0x1: 5848 case 0x2: 5849 case 0x3: 5850 asc_dvc->cfg->termination |= TERM_SE; 5851 break; 5852 5853 case 0x0: 5854 if (PCI_FUNC(pdev->devfn) == 0) { 5855 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ 5856 } else { 5857 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ 5858 asc_dvc->cfg->termination |= TERM_SE_HI; 5859 } 5860 break; 5861 } 5862 } 5863 5864 /* 5865 * Clear any set TERM_SE bits. 5866 */ 5867 scsi_cfg1 &= ~TERM_SE; 5868 5869 /* 5870 * Invert the TERM_SE bits and then set 'scsi_cfg1'. 5871 */ 5872 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE); 5873 5874 /* 5875 * Clear Big Endian and Terminator Polarity bits and set possibly 5876 * modified termination control bits in the Microcode SCSI_CFG1 5877 * Register Value. 5878 * 5879 * Big Endian bit is not used even on big endian machines. 5880 */ 5881 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL); 5882 5883 /* 5884 * Set SCSI_CFG1 Microcode Default Value 5885 * 5886 * Set possibly modified termination control bits in the Microcode 5887 * SCSI_CFG1 Register Value. 5888 * 5889 * The microcode will set the SCSI_CFG1 register using this value 5890 * after it is started below. 5891 */ 5892 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5893 5894 /* 5895 * Set MEM_CFG Microcode Default Value 5896 * 5897 * The microcode will set the MEM_CFG register using this value 5898 * after it is started below. 5899 * 5900 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5901 * are defined. 5902 * 5903 * ASC-38C1600 has 32KB internal memory. 5904 * 5905 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come 5906 * out a special 16K Adv Library and Microcode version. After the issue 5907 * resolved, we should turn back to the 32K support. Both a_condor.h and 5908 * mcode.sas files also need to be updated. 5909 * 5910 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5911 * BIOS_EN | RAM_SZ_32KB); 5912 */ 5913 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5914 BIOS_EN | RAM_SZ_16KB); 5915 5916 /* 5917 * Set SEL_MASK Microcode Default Value 5918 * 5919 * The microcode will set the SEL_MASK register using this value 5920 * after it is started below. 5921 */ 5922 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5923 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5924 5925 AdvBuildCarrierFreelist(asc_dvc); 5926 5927 /* 5928 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5929 */ 5930 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { 5931 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5932 return ADV_ERROR; 5933 } 5934 asc_dvc->carr_freelist = (ADV_CARR_T *) 5935 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); 5936 5937 /* 5938 * The first command issued will be placed in the stopper carrier. 5939 */ 5940 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 5941 5942 /* 5943 * Set RISC ICQ physical address start value. Initialize the 5944 * COMMA register to the same value otherwise the RISC will 5945 * prematurely detect a command is available. 5946 */ 5947 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5948 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 5949 le32_to_cpu(asc_dvc->icq_sp->carr_pa)); 5950 5951 /* 5952 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5953 */ 5954 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { 5955 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5956 return ADV_ERROR; 5957 } 5958 asc_dvc->carr_freelist = (ADV_CARR_T *) 5959 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); 5960 5961 /* 5962 * The first command completed by the RISC will be placed in 5963 * the stopper. 5964 * 5965 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is 5966 * completed the RISC will set the ASC_RQ_STOPPER bit. 5967 */ 5968 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 5969 5970 /* 5971 * Set RISC IRQ physical address start value. 5972 */ 5973 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5974 asc_dvc->carr_pending_cnt = 0; 5975 5976 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5977 (ADV_INTR_ENABLE_HOST_INTR | 5978 ADV_INTR_ENABLE_GLOBAL_INTR)); 5979 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5980 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5981 5982 /* finally, finally, gentlemen, start your engine */ 5983 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5984 5985 /* 5986 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5987 * Resets should be performed. The RISC has to be running 5988 * to issue a SCSI Bus Reset. 5989 */ 5990 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5991 /* 5992 * If the BIOS Signature is present in memory, restore the 5993 * per TID microcode operating variables. 5994 */ 5995 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5996 0x55AA) { 5997 /* 5998 * Restore per TID negotiated values. 5999 */ 6000 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 6001 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 6002 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 6003 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 6004 tagqng_able); 6005 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 6006 AdvWriteByteLram(iop_base, 6007 ASC_MC_NUMBER_OF_MAX_CMD + tid, 6008 max_cmd[tid]); 6009 } 6010 } else { 6011 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 6012 warn_code = ASC_WARN_BUSRESET_ERROR; 6013 } 6014 } 6015 } 6016 6017 return warn_code; 6018 } 6019 6020 /* 6021 * Reset chip and SCSI Bus. 6022 * 6023 * Return Value: 6024 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful. 6025 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure. 6026 */ 6027 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc) 6028 { 6029 int status; 6030 ushort wdtr_able, sdtr_able, tagqng_able; 6031 ushort ppr_able = 0; 6032 uchar tid, max_cmd[ADV_MAX_TID + 1]; 6033 AdvPortAddr iop_base; 6034 ushort bios_sig; 6035 6036 iop_base = asc_dvc->iop_base; 6037 6038 /* 6039 * Save current per TID negotiated values. 6040 */ 6041 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 6042 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 6043 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 6044 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 6045 } 6046 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 6047 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 6048 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 6049 max_cmd[tid]); 6050 } 6051 6052 /* 6053 * Force the AdvInitAsc3550/38C0800Driver() function to 6054 * perform a SCSI Bus Reset by clearing the BIOS signature word. 6055 * The initialization functions assumes a SCSI Bus Reset is not 6056 * needed if the BIOS signature word is present. 6057 */ 6058 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 6059 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0); 6060 6061 /* 6062 * Stop chip and reset it. 6063 */ 6064 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP); 6065 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); 6066 mdelay(100); 6067 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 6068 ADV_CTRL_REG_CMD_WR_IO_REG); 6069 6070 /* 6071 * Reset Adv Library error code, if any, and try 6072 * re-initializing the chip. 6073 */ 6074 asc_dvc->err_code = 0; 6075 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 6076 status = AdvInitAsc38C1600Driver(asc_dvc); 6077 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 6078 status = AdvInitAsc38C0800Driver(asc_dvc); 6079 } else { 6080 status = AdvInitAsc3550Driver(asc_dvc); 6081 } 6082 6083 /* Translate initialization return value to status value. */ 6084 if (status == 0) { 6085 status = ADV_TRUE; 6086 } else { 6087 status = ADV_FALSE; 6088 } 6089 6090 /* 6091 * Restore the BIOS signature word. 6092 */ 6093 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 6094 6095 /* 6096 * Restore per TID negotiated values. 6097 */ 6098 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 6099 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 6100 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 6101 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 6102 } 6103 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 6104 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 6105 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 6106 max_cmd[tid]); 6107 } 6108 6109 return status; 6110 } 6111 6112 /* 6113 * adv_async_callback() - Adv Library asynchronous event callback function. 6114 */ 6115 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code) 6116 { 6117 switch (code) { 6118 case ADV_ASYNC_SCSI_BUS_RESET_DET: 6119 /* 6120 * The firmware detected a SCSI Bus reset. 6121 */ 6122 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n"); 6123 break; 6124 6125 case ADV_ASYNC_RDMA_FAILURE: 6126 /* 6127 * Handle RDMA failure by resetting the SCSI Bus and 6128 * possibly the chip if it is unresponsive. Log the error 6129 * with a unique code. 6130 */ 6131 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n"); 6132 AdvResetChipAndSB(adv_dvc_varp); 6133 break; 6134 6135 case ADV_HOST_SCSI_BUS_RESET: 6136 /* 6137 * Host generated SCSI bus reset occurred. 6138 */ 6139 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n"); 6140 break; 6141 6142 default: 6143 ASC_DBG(0, "unknown code 0x%x\n", code); 6144 break; 6145 } 6146 } 6147 6148 /* 6149 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR(). 6150 * 6151 * Callback function for the Wide SCSI Adv Library. 6152 */ 6153 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp) 6154 { 6155 struct asc_board *boardp; 6156 adv_req_t *reqp; 6157 adv_sgblk_t *sgblkp; 6158 struct scsi_cmnd *scp; 6159 struct Scsi_Host *shost; 6160 ADV_DCNT resid_cnt; 6161 6162 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n", 6163 (ulong)adv_dvc_varp, (ulong)scsiqp); 6164 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 6165 6166 /* 6167 * Get the adv_req_t structure for the command that has been 6168 * completed. The adv_req_t structure actually contains the 6169 * completed ADV_SCSI_REQ_Q structure. 6170 */ 6171 reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr); 6172 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp); 6173 if (reqp == NULL) { 6174 ASC_PRINT("adv_isr_callback: reqp is NULL\n"); 6175 return; 6176 } 6177 6178 /* 6179 * Get the struct scsi_cmnd structure and Scsi_Host structure for the 6180 * command that has been completed. 6181 * 6182 * Note: The adv_req_t request structure and adv_sgblk_t structure, 6183 * if any, are dropped, because a board structure pointer can not be 6184 * determined. 6185 */ 6186 scp = reqp->cmndp; 6187 ASC_DBG(1, "scp 0x%p\n", scp); 6188 if (scp == NULL) { 6189 ASC_PRINT 6190 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); 6191 return; 6192 } 6193 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 6194 6195 shost = scp->device->host; 6196 ASC_STATS(shost, callback); 6197 ASC_DBG(1, "shost 0x%p\n", shost); 6198 6199 boardp = shost_priv(shost); 6200 BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var); 6201 6202 /* 6203 * 'done_status' contains the command's ending status. 6204 */ 6205 switch (scsiqp->done_status) { 6206 case QD_NO_ERROR: 6207 ASC_DBG(2, "QD_NO_ERROR\n"); 6208 scp->result = 0; 6209 6210 /* 6211 * Check for an underrun condition. 6212 * 6213 * If there was no error and an underrun condition, then 6214 * then return the number of underrun bytes. 6215 */ 6216 resid_cnt = le32_to_cpu(scsiqp->data_cnt); 6217 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 && 6218 resid_cnt <= scsi_bufflen(scp)) { 6219 ASC_DBG(1, "underrun condition %lu bytes\n", 6220 (ulong)resid_cnt); 6221 scsi_set_resid(scp, resid_cnt); 6222 } 6223 break; 6224 6225 case QD_WITH_ERROR: 6226 ASC_DBG(2, "QD_WITH_ERROR\n"); 6227 switch (scsiqp->host_status) { 6228 case QHSTA_NO_ERROR: 6229 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) { 6230 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 6231 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 6232 SCSI_SENSE_BUFFERSIZE); 6233 /* 6234 * Note: The 'status_byte()' macro used by 6235 * target drivers defined in scsi.h shifts the 6236 * status byte returned by host drivers right 6237 * by 1 bit. This is why target drivers also 6238 * use right shifted status byte definitions. 6239 * For instance target drivers use 6240 * CHECK_CONDITION, defined to 0x1, instead of 6241 * the SCSI defined check condition value of 6242 * 0x2. Host drivers are supposed to return 6243 * the status byte as it is defined by SCSI. 6244 */ 6245 scp->result = DRIVER_BYTE(DRIVER_SENSE) | 6246 STATUS_BYTE(scsiqp->scsi_status); 6247 } else { 6248 scp->result = STATUS_BYTE(scsiqp->scsi_status); 6249 } 6250 break; 6251 6252 default: 6253 /* Some other QHSTA error occurred. */ 6254 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status); 6255 scp->result = HOST_BYTE(DID_BAD_TARGET); 6256 break; 6257 } 6258 break; 6259 6260 case QD_ABORTED_BY_HOST: 6261 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 6262 scp->result = 6263 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status); 6264 break; 6265 6266 default: 6267 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status); 6268 scp->result = 6269 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status); 6270 break; 6271 } 6272 6273 /* 6274 * If the 'init_tidmask' bit isn't already set for the target and the 6275 * current request finished normally, then set the bit for the target 6276 * to indicate that a device is present. 6277 */ 6278 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6279 scsiqp->done_status == QD_NO_ERROR && 6280 scsiqp->host_status == QHSTA_NO_ERROR) { 6281 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6282 } 6283 6284 asc_scsi_done(scp); 6285 6286 /* 6287 * Free all 'adv_sgblk_t' structures allocated for the request. 6288 */ 6289 while ((sgblkp = reqp->sgblkp) != NULL) { 6290 /* Remove 'sgblkp' from the request list. */ 6291 reqp->sgblkp = sgblkp->next_sgblkp; 6292 6293 /* Add 'sgblkp' to the board free list. */ 6294 sgblkp->next_sgblkp = boardp->adv_sgblkp; 6295 boardp->adv_sgblkp = sgblkp; 6296 } 6297 6298 /* 6299 * Free the adv_req_t structure used with the command by adding 6300 * it back to the board free list. 6301 */ 6302 reqp->next_reqp = boardp->adv_reqp; 6303 boardp->adv_reqp = reqp; 6304 6305 ASC_DBG(1, "done\n"); 6306 } 6307 6308 /* 6309 * Adv Library Interrupt Service Routine 6310 * 6311 * This function is called by a driver's interrupt service routine. 6312 * The function disables and re-enables interrupts. 6313 * 6314 * When a microcode idle command is completed, the ADV_DVC_VAR 6315 * 'idle_cmd_done' field is set to ADV_TRUE. 6316 * 6317 * Note: AdvISR() can be called when interrupts are disabled or even 6318 * when there is no hardware interrupt condition present. It will 6319 * always check for completed idle commands and microcode requests. 6320 * This is an important feature that shouldn't be changed because it 6321 * allows commands to be completed from polling mode loops. 6322 * 6323 * Return: 6324 * ADV_TRUE(1) - interrupt was pending 6325 * ADV_FALSE(0) - no interrupt was pending 6326 */ 6327 static int AdvISR(ADV_DVC_VAR *asc_dvc) 6328 { 6329 AdvPortAddr iop_base; 6330 uchar int_stat; 6331 ushort target_bit; 6332 ADV_CARR_T *free_carrp; 6333 ADV_VADDR irq_next_vpa; 6334 ADV_SCSI_REQ_Q *scsiq; 6335 6336 iop_base = asc_dvc->iop_base; 6337 6338 /* Reading the register clears the interrupt. */ 6339 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG); 6340 6341 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB | 6342 ADV_INTR_STATUS_INTRC)) == 0) { 6343 return ADV_FALSE; 6344 } 6345 6346 /* 6347 * Notify the driver of an asynchronous microcode condition by 6348 * calling the adv_async_callback function. The function 6349 * is passed the microcode ASC_MC_INTRB_CODE byte value. 6350 */ 6351 if (int_stat & ADV_INTR_STATUS_INTRB) { 6352 uchar intrb_code; 6353 6354 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code); 6355 6356 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 6357 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 6358 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE && 6359 asc_dvc->carr_pending_cnt != 0) { 6360 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 6361 ADV_TICKLE_A); 6362 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 6363 AdvWriteByteRegister(iop_base, 6364 IOPB_TICKLE, 6365 ADV_TICKLE_NOP); 6366 } 6367 } 6368 } 6369 6370 adv_async_callback(asc_dvc, intrb_code); 6371 } 6372 6373 /* 6374 * Check if the IRQ stopper carrier contains a completed request. 6375 */ 6376 while (((irq_next_vpa = 6377 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) { 6378 /* 6379 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure. 6380 * The RISC will have set 'areq_vpa' to a virtual address. 6381 * 6382 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr 6383 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion 6384 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr' 6385 * in AdvExeScsiQueue(). 6386 */ 6387 scsiq = (ADV_SCSI_REQ_Q *) 6388 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa)); 6389 6390 /* 6391 * Request finished with good status and the queue was not 6392 * DMAed to host memory by the firmware. Set all status fields 6393 * to indicate good status. 6394 */ 6395 if ((irq_next_vpa & ASC_RQ_GOOD) != 0) { 6396 scsiq->done_status = QD_NO_ERROR; 6397 scsiq->host_status = scsiq->scsi_status = 0; 6398 scsiq->data_cnt = 0L; 6399 } 6400 6401 /* 6402 * Advance the stopper pointer to the next carrier 6403 * ignoring the lower four bits. Free the previous 6404 * stopper carrier. 6405 */ 6406 free_carrp = asc_dvc->irq_sp; 6407 asc_dvc->irq_sp = (ADV_CARR_T *) 6408 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa)); 6409 6410 free_carrp->next_vpa = 6411 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist)); 6412 asc_dvc->carr_freelist = free_carrp; 6413 asc_dvc->carr_pending_cnt--; 6414 6415 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id); 6416 6417 /* 6418 * Clear request microcode control flag. 6419 */ 6420 scsiq->cntl = 0; 6421 6422 /* 6423 * Notify the driver of the completed request by passing 6424 * the ADV_SCSI_REQ_Q pointer to its callback function. 6425 */ 6426 scsiq->a_flag |= ADV_SCSIQ_DONE; 6427 adv_isr_callback(asc_dvc, scsiq); 6428 /* 6429 * Note: After the driver callback function is called, 'scsiq' 6430 * can no longer be referenced. 6431 * 6432 * Fall through and continue processing other completed 6433 * requests... 6434 */ 6435 } 6436 return ADV_TRUE; 6437 } 6438 6439 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code) 6440 { 6441 if (asc_dvc->err_code == 0) { 6442 asc_dvc->err_code = err_code; 6443 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W, 6444 err_code); 6445 } 6446 return err_code; 6447 } 6448 6449 static void AscAckInterrupt(PortAddr iop_base) 6450 { 6451 uchar host_flag; 6452 uchar risc_flag; 6453 ushort loop; 6454 6455 loop = 0; 6456 do { 6457 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B); 6458 if (loop++ > 0x7FFF) { 6459 break; 6460 } 6461 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); 6462 host_flag = 6463 AscReadLramByte(iop_base, 6464 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); 6465 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 6466 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT)); 6467 AscSetChipStatus(iop_base, CIW_INT_ACK); 6468 loop = 0; 6469 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) { 6470 AscSetChipStatus(iop_base, CIW_INT_ACK); 6471 if (loop++ > 3) { 6472 break; 6473 } 6474 } 6475 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 6476 } 6477 6478 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time) 6479 { 6480 const uchar *period_table; 6481 int max_index; 6482 int min_index; 6483 int i; 6484 6485 period_table = asc_dvc->sdtr_period_tbl; 6486 max_index = (int)asc_dvc->max_sdtr_index; 6487 min_index = (int)asc_dvc->min_sdtr_index; 6488 if ((syn_time <= period_table[max_index])) { 6489 for (i = min_index; i < (max_index - 1); i++) { 6490 if (syn_time <= period_table[i]) { 6491 return (uchar)i; 6492 } 6493 } 6494 return (uchar)max_index; 6495 } else { 6496 return (uchar)(max_index + 1); 6497 } 6498 } 6499 6500 static uchar 6501 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset) 6502 { 6503 EXT_MSG sdtr_buf; 6504 uchar sdtr_period_index; 6505 PortAddr iop_base; 6506 6507 iop_base = asc_dvc->iop_base; 6508 sdtr_buf.msg_type = EXTENDED_MESSAGE; 6509 sdtr_buf.msg_len = MS_SDTR_LEN; 6510 sdtr_buf.msg_req = EXTENDED_SDTR; 6511 sdtr_buf.xfer_period = sdtr_period; 6512 sdtr_offset &= ASC_SYN_MAX_OFFSET; 6513 sdtr_buf.req_ack_offset = sdtr_offset; 6514 sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6515 if (sdtr_period_index <= asc_dvc->max_sdtr_index) { 6516 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6517 (uchar *)&sdtr_buf, 6518 sizeof(EXT_MSG) >> 1); 6519 return ((sdtr_period_index << 4) | sdtr_offset); 6520 } else { 6521 sdtr_buf.req_ack_offset = 0; 6522 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6523 (uchar *)&sdtr_buf, 6524 sizeof(EXT_MSG) >> 1); 6525 return 0; 6526 } 6527 } 6528 6529 static uchar 6530 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset) 6531 { 6532 uchar byte; 6533 uchar sdtr_period_ix; 6534 6535 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6536 if (sdtr_period_ix > asc_dvc->max_sdtr_index) 6537 return 0xFF; 6538 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); 6539 return byte; 6540 } 6541 6542 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data) 6543 { 6544 ASC_SCSI_BIT_ID_TYPE org_id; 6545 int i; 6546 int sta = TRUE; 6547 6548 AscSetBank(iop_base, 1); 6549 org_id = AscReadChipDvcID(iop_base); 6550 for (i = 0; i <= ASC_MAX_TID; i++) { 6551 if (org_id == (0x01 << i)) 6552 break; 6553 } 6554 org_id = (ASC_SCSI_BIT_ID_TYPE) i; 6555 AscWriteChipDvcID(iop_base, id); 6556 if (AscReadChipDvcID(iop_base) == (0x01 << id)) { 6557 AscSetBank(iop_base, 0); 6558 AscSetChipSyn(iop_base, sdtr_data); 6559 if (AscGetChipSyn(iop_base) != sdtr_data) { 6560 sta = FALSE; 6561 } 6562 } else { 6563 sta = FALSE; 6564 } 6565 AscSetBank(iop_base, 1); 6566 AscWriteChipDvcID(iop_base, org_id); 6567 AscSetBank(iop_base, 0); 6568 return (sta); 6569 } 6570 6571 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no) 6572 { 6573 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 6574 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data); 6575 } 6576 6577 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc) 6578 { 6579 EXT_MSG ext_msg; 6580 EXT_MSG out_msg; 6581 ushort halt_q_addr; 6582 int sdtr_accept; 6583 ushort int_halt_code; 6584 ASC_SCSI_BIT_ID_TYPE scsi_busy; 6585 ASC_SCSI_BIT_ID_TYPE target_id; 6586 PortAddr iop_base; 6587 uchar tag_code; 6588 uchar q_status; 6589 uchar halt_qp; 6590 uchar sdtr_data; 6591 uchar target_ix; 6592 uchar q_cntl, tid_no; 6593 uchar cur_dvc_qng; 6594 uchar asyn_sdtr; 6595 uchar scsi_status; 6596 struct asc_board *boardp; 6597 6598 BUG_ON(!asc_dvc->drv_ptr); 6599 boardp = asc_dvc->drv_ptr; 6600 6601 iop_base = asc_dvc->iop_base; 6602 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W); 6603 6604 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B); 6605 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); 6606 target_ix = AscReadLramByte(iop_base, 6607 (ushort)(halt_q_addr + 6608 (ushort)ASC_SCSIQ_B_TARGET_IX)); 6609 q_cntl = AscReadLramByte(iop_base, 6610 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 6611 tid_no = ASC_TIX_TO_TID(target_ix); 6612 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no); 6613 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6614 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; 6615 } else { 6616 asyn_sdtr = 0; 6617 } 6618 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { 6619 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6620 AscSetChipSDTR(iop_base, 0, tid_no); 6621 boardp->sdtr_data[tid_no] = 0; 6622 } 6623 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6624 return (0); 6625 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { 6626 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6627 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6628 boardp->sdtr_data[tid_no] = asyn_sdtr; 6629 } 6630 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6631 return (0); 6632 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) { 6633 AscMemWordCopyPtrFromLram(iop_base, 6634 ASCV_MSGIN_BEG, 6635 (uchar *)&ext_msg, 6636 sizeof(EXT_MSG) >> 1); 6637 6638 if (ext_msg.msg_type == EXTENDED_MESSAGE && 6639 ext_msg.msg_req == EXTENDED_SDTR && 6640 ext_msg.msg_len == MS_SDTR_LEN) { 6641 sdtr_accept = TRUE; 6642 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) { 6643 6644 sdtr_accept = FALSE; 6645 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; 6646 } 6647 if ((ext_msg.xfer_period < 6648 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index]) 6649 || (ext_msg.xfer_period > 6650 asc_dvc->sdtr_period_tbl[asc_dvc-> 6651 max_sdtr_index])) { 6652 sdtr_accept = FALSE; 6653 ext_msg.xfer_period = 6654 asc_dvc->sdtr_period_tbl[asc_dvc-> 6655 min_sdtr_index]; 6656 } 6657 if (sdtr_accept) { 6658 sdtr_data = 6659 AscCalSDTRData(asc_dvc, ext_msg.xfer_period, 6660 ext_msg.req_ack_offset); 6661 if ((sdtr_data == 0xFF)) { 6662 6663 q_cntl |= QC_MSG_OUT; 6664 asc_dvc->init_sdtr &= ~target_id; 6665 asc_dvc->sdtr_done &= ~target_id; 6666 AscSetChipSDTR(iop_base, asyn_sdtr, 6667 tid_no); 6668 boardp->sdtr_data[tid_no] = asyn_sdtr; 6669 } 6670 } 6671 if (ext_msg.req_ack_offset == 0) { 6672 6673 q_cntl &= ~QC_MSG_OUT; 6674 asc_dvc->init_sdtr &= ~target_id; 6675 asc_dvc->sdtr_done &= ~target_id; 6676 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6677 } else { 6678 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) { 6679 q_cntl &= ~QC_MSG_OUT; 6680 asc_dvc->sdtr_done |= target_id; 6681 asc_dvc->init_sdtr |= target_id; 6682 asc_dvc->pci_fix_asyn_xfer &= 6683 ~target_id; 6684 sdtr_data = 6685 AscCalSDTRData(asc_dvc, 6686 ext_msg.xfer_period, 6687 ext_msg. 6688 req_ack_offset); 6689 AscSetChipSDTR(iop_base, sdtr_data, 6690 tid_no); 6691 boardp->sdtr_data[tid_no] = sdtr_data; 6692 } else { 6693 q_cntl |= QC_MSG_OUT; 6694 AscMsgOutSDTR(asc_dvc, 6695 ext_msg.xfer_period, 6696 ext_msg.req_ack_offset); 6697 asc_dvc->pci_fix_asyn_xfer &= 6698 ~target_id; 6699 sdtr_data = 6700 AscCalSDTRData(asc_dvc, 6701 ext_msg.xfer_period, 6702 ext_msg. 6703 req_ack_offset); 6704 AscSetChipSDTR(iop_base, sdtr_data, 6705 tid_no); 6706 boardp->sdtr_data[tid_no] = sdtr_data; 6707 asc_dvc->sdtr_done |= target_id; 6708 asc_dvc->init_sdtr |= target_id; 6709 } 6710 } 6711 6712 AscWriteLramByte(iop_base, 6713 (ushort)(halt_q_addr + 6714 (ushort)ASC_SCSIQ_B_CNTL), 6715 q_cntl); 6716 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6717 return (0); 6718 } else if (ext_msg.msg_type == EXTENDED_MESSAGE && 6719 ext_msg.msg_req == EXTENDED_WDTR && 6720 ext_msg.msg_len == MS_WDTR_LEN) { 6721 6722 ext_msg.wdtr_width = 0; 6723 AscMemWordCopyPtrToLram(iop_base, 6724 ASCV_MSGOUT_BEG, 6725 (uchar *)&ext_msg, 6726 sizeof(EXT_MSG) >> 1); 6727 q_cntl |= QC_MSG_OUT; 6728 AscWriteLramByte(iop_base, 6729 (ushort)(halt_q_addr + 6730 (ushort)ASC_SCSIQ_B_CNTL), 6731 q_cntl); 6732 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6733 return (0); 6734 } else { 6735 6736 ext_msg.msg_type = MESSAGE_REJECT; 6737 AscMemWordCopyPtrToLram(iop_base, 6738 ASCV_MSGOUT_BEG, 6739 (uchar *)&ext_msg, 6740 sizeof(EXT_MSG) >> 1); 6741 q_cntl |= QC_MSG_OUT; 6742 AscWriteLramByte(iop_base, 6743 (ushort)(halt_q_addr + 6744 (ushort)ASC_SCSIQ_B_CNTL), 6745 q_cntl); 6746 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6747 return (0); 6748 } 6749 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) { 6750 6751 q_cntl |= QC_REQ_SENSE; 6752 6753 if ((asc_dvc->init_sdtr & target_id) != 0) { 6754 6755 asc_dvc->sdtr_done &= ~target_id; 6756 6757 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 6758 q_cntl |= QC_MSG_OUT; 6759 AscMsgOutSDTR(asc_dvc, 6760 asc_dvc-> 6761 sdtr_period_tbl[(sdtr_data >> 4) & 6762 (uchar)(asc_dvc-> 6763 max_sdtr_index - 6764 1)], 6765 (uchar)(sdtr_data & (uchar) 6766 ASC_SYN_MAX_OFFSET)); 6767 } 6768 6769 AscWriteLramByte(iop_base, 6770 (ushort)(halt_q_addr + 6771 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6772 6773 tag_code = AscReadLramByte(iop_base, 6774 (ushort)(halt_q_addr + (ushort) 6775 ASC_SCSIQ_B_TAG_CODE)); 6776 tag_code &= 0xDC; 6777 if ((asc_dvc->pci_fix_asyn_xfer & target_id) 6778 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id) 6779 ) { 6780 6781 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT 6782 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); 6783 6784 } 6785 AscWriteLramByte(iop_base, 6786 (ushort)(halt_q_addr + 6787 (ushort)ASC_SCSIQ_B_TAG_CODE), 6788 tag_code); 6789 6790 q_status = AscReadLramByte(iop_base, 6791 (ushort)(halt_q_addr + (ushort) 6792 ASC_SCSIQ_B_STATUS)); 6793 q_status |= (QS_READY | QS_BUSY); 6794 AscWriteLramByte(iop_base, 6795 (ushort)(halt_q_addr + 6796 (ushort)ASC_SCSIQ_B_STATUS), 6797 q_status); 6798 6799 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B); 6800 scsi_busy &= ~target_id; 6801 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6802 6803 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6804 return (0); 6805 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { 6806 6807 AscMemWordCopyPtrFromLram(iop_base, 6808 ASCV_MSGOUT_BEG, 6809 (uchar *)&out_msg, 6810 sizeof(EXT_MSG) >> 1); 6811 6812 if ((out_msg.msg_type == EXTENDED_MESSAGE) && 6813 (out_msg.msg_len == MS_SDTR_LEN) && 6814 (out_msg.msg_req == EXTENDED_SDTR)) { 6815 6816 asc_dvc->init_sdtr &= ~target_id; 6817 asc_dvc->sdtr_done &= ~target_id; 6818 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6819 boardp->sdtr_data[tid_no] = asyn_sdtr; 6820 } 6821 q_cntl &= ~QC_MSG_OUT; 6822 AscWriteLramByte(iop_base, 6823 (ushort)(halt_q_addr + 6824 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6825 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6826 return (0); 6827 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { 6828 6829 scsi_status = AscReadLramByte(iop_base, 6830 (ushort)((ushort)halt_q_addr + 6831 (ushort) 6832 ASC_SCSIQ_SCSI_STATUS)); 6833 cur_dvc_qng = 6834 AscReadLramByte(iop_base, 6835 (ushort)((ushort)ASC_QADR_BEG + 6836 (ushort)target_ix)); 6837 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) { 6838 6839 scsi_busy = AscReadLramByte(iop_base, 6840 (ushort)ASCV_SCSIBUSY_B); 6841 scsi_busy |= target_id; 6842 AscWriteLramByte(iop_base, 6843 (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6844 asc_dvc->queue_full_or_busy |= target_id; 6845 6846 if (scsi_status == SAM_STAT_TASK_SET_FULL) { 6847 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { 6848 cur_dvc_qng -= 1; 6849 asc_dvc->max_dvc_qng[tid_no] = 6850 cur_dvc_qng; 6851 6852 AscWriteLramByte(iop_base, 6853 (ushort)((ushort) 6854 ASCV_MAX_DVC_QNG_BEG 6855 + (ushort) 6856 tid_no), 6857 cur_dvc_qng); 6858 6859 /* 6860 * Set the device queue depth to the 6861 * number of active requests when the 6862 * QUEUE FULL condition was encountered. 6863 */ 6864 boardp->queue_full |= target_id; 6865 boardp->queue_full_cnt[tid_no] = 6866 cur_dvc_qng; 6867 } 6868 } 6869 } 6870 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6871 return (0); 6872 } 6873 #if CC_VERY_LONG_SG_LIST 6874 else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) { 6875 uchar q_no; 6876 ushort q_addr; 6877 uchar sg_wk_q_no; 6878 uchar first_sg_wk_q_no; 6879 ASC_SCSI_Q *scsiq; /* Ptr to driver request. */ 6880 ASC_SG_HEAD *sg_head; /* Ptr to driver SG request. */ 6881 ASC_SG_LIST_Q scsi_sg_q; /* Structure written to queue. */ 6882 ushort sg_list_dwords; 6883 ushort sg_entry_cnt; 6884 uchar next_qp; 6885 int i; 6886 6887 q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP); 6888 if (q_no == ASC_QLINK_END) 6889 return 0; 6890 6891 q_addr = ASC_QNO_TO_QADDR(q_no); 6892 6893 /* 6894 * Convert the request's SRB pointer to a host ASC_SCSI_REQ 6895 * structure pointer using a macro provided by the driver. 6896 * The ASC_SCSI_REQ pointer provides a pointer to the 6897 * host ASC_SG_HEAD structure. 6898 */ 6899 /* Read request's SRB pointer. */ 6900 scsiq = (ASC_SCSI_Q *) 6901 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base, 6902 (ushort) 6903 (q_addr + 6904 ASC_SCSIQ_D_SRBPTR)))); 6905 6906 /* 6907 * Get request's first and working SG queue. 6908 */ 6909 sg_wk_q_no = AscReadLramByte(iop_base, 6910 (ushort)(q_addr + 6911 ASC_SCSIQ_B_SG_WK_QP)); 6912 6913 first_sg_wk_q_no = AscReadLramByte(iop_base, 6914 (ushort)(q_addr + 6915 ASC_SCSIQ_B_FIRST_SG_WK_QP)); 6916 6917 /* 6918 * Reset request's working SG queue back to the 6919 * first SG queue. 6920 */ 6921 AscWriteLramByte(iop_base, 6922 (ushort)(q_addr + 6923 (ushort)ASC_SCSIQ_B_SG_WK_QP), 6924 first_sg_wk_q_no); 6925 6926 sg_head = scsiq->sg_head; 6927 6928 /* 6929 * Set sg_entry_cnt to the number of SG elements 6930 * that will be completed on this interrupt. 6931 * 6932 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1 6933 * SG elements. The data_cnt and data_addr fields which 6934 * add 1 to the SG element capacity are not used when 6935 * restarting SG handling after a halt. 6936 */ 6937 if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) { 6938 sg_entry_cnt = ASC_MAX_SG_LIST - 1; 6939 6940 /* 6941 * Keep track of remaining number of SG elements that 6942 * will need to be handled on the next interrupt. 6943 */ 6944 scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1); 6945 } else { 6946 sg_entry_cnt = scsiq->remain_sg_entry_cnt; 6947 scsiq->remain_sg_entry_cnt = 0; 6948 } 6949 6950 /* 6951 * Copy SG elements into the list of allocated SG queues. 6952 * 6953 * Last index completed is saved in scsiq->next_sg_index. 6954 */ 6955 next_qp = first_sg_wk_q_no; 6956 q_addr = ASC_QNO_TO_QADDR(next_qp); 6957 scsi_sg_q.sg_head_qp = q_no; 6958 scsi_sg_q.cntl = QCSG_SG_XFER_LIST; 6959 for (i = 0; i < sg_head->queue_cnt; i++) { 6960 scsi_sg_q.seq_no = i + 1; 6961 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { 6962 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); 6963 sg_entry_cnt -= ASC_SG_LIST_PER_Q; 6964 /* 6965 * After very first SG queue RISC FW uses next 6966 * SG queue first element then checks sg_list_cnt 6967 * against zero and then decrements, so set 6968 * sg_list_cnt 1 less than number of SG elements 6969 * in each SG queue. 6970 */ 6971 scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1; 6972 scsi_sg_q.sg_cur_list_cnt = 6973 ASC_SG_LIST_PER_Q - 1; 6974 } else { 6975 /* 6976 * This is the last SG queue in the list of 6977 * allocated SG queues. If there are more 6978 * SG elements than will fit in the allocated 6979 * queues, then set the QCSG_SG_XFER_MORE flag. 6980 */ 6981 if (scsiq->remain_sg_entry_cnt != 0) { 6982 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE; 6983 } else { 6984 scsi_sg_q.cntl |= QCSG_SG_XFER_END; 6985 } 6986 /* equals sg_entry_cnt * 2 */ 6987 sg_list_dwords = sg_entry_cnt << 1; 6988 scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1; 6989 scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1; 6990 sg_entry_cnt = 0; 6991 } 6992 6993 scsi_sg_q.q_no = next_qp; 6994 AscMemWordCopyPtrToLram(iop_base, 6995 q_addr + ASC_SCSIQ_SGHD_CPY_BEG, 6996 (uchar *)&scsi_sg_q, 6997 sizeof(ASC_SG_LIST_Q) >> 1); 6998 6999 AscMemDWordCopyPtrToLram(iop_base, 7000 q_addr + ASC_SGQ_LIST_BEG, 7001 (uchar *)&sg_head-> 7002 sg_list[scsiq->next_sg_index], 7003 sg_list_dwords); 7004 7005 scsiq->next_sg_index += ASC_SG_LIST_PER_Q; 7006 7007 /* 7008 * If the just completed SG queue contained the 7009 * last SG element, then no more SG queues need 7010 * to be written. 7011 */ 7012 if (scsi_sg_q.cntl & QCSG_SG_XFER_END) { 7013 break; 7014 } 7015 7016 next_qp = AscReadLramByte(iop_base, 7017 (ushort)(q_addr + 7018 ASC_SCSIQ_B_FWD)); 7019 q_addr = ASC_QNO_TO_QADDR(next_qp); 7020 } 7021 7022 /* 7023 * Clear the halt condition so the RISC will be restarted 7024 * after the return. 7025 */ 7026 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 7027 return (0); 7028 } 7029 #endif /* CC_VERY_LONG_SG_LIST */ 7030 return (0); 7031 } 7032 7033 /* 7034 * void 7035 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 7036 * 7037 * Calling/Exit State: 7038 * none 7039 * 7040 * Description: 7041 * Input an ASC_QDONE_INFO structure from the chip 7042 */ 7043 static void 7044 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 7045 { 7046 int i; 7047 ushort word; 7048 7049 AscSetChipLramAddr(iop_base, s_addr); 7050 for (i = 0; i < 2 * words; i += 2) { 7051 if (i == 10) { 7052 continue; 7053 } 7054 word = inpw(iop_base + IOP_RAM_DATA); 7055 inbuf[i] = word & 0xff; 7056 inbuf[i + 1] = (word >> 8) & 0xff; 7057 } 7058 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words); 7059 } 7060 7061 static uchar 7062 _AscCopyLramScsiDoneQ(PortAddr iop_base, 7063 ushort q_addr, 7064 ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count) 7065 { 7066 ushort _val; 7067 uchar sg_queue_cnt; 7068 7069 DvcGetQinfo(iop_base, 7070 q_addr + ASC_SCSIQ_DONE_INFO_BEG, 7071 (uchar *)scsiq, 7072 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2); 7073 7074 _val = AscReadLramWord(iop_base, 7075 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS)); 7076 scsiq->q_status = (uchar)_val; 7077 scsiq->q_no = (uchar)(_val >> 8); 7078 _val = AscReadLramWord(iop_base, 7079 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 7080 scsiq->cntl = (uchar)_val; 7081 sg_queue_cnt = (uchar)(_val >> 8); 7082 _val = AscReadLramWord(iop_base, 7083 (ushort)(q_addr + 7084 (ushort)ASC_SCSIQ_B_SENSE_LEN)); 7085 scsiq->sense_len = (uchar)_val; 7086 scsiq->extra_bytes = (uchar)(_val >> 8); 7087 7088 /* 7089 * Read high word of remain bytes from alternate location. 7090 */ 7091 scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base, 7092 (ushort)(q_addr + 7093 (ushort) 7094 ASC_SCSIQ_W_ALT_DC1))) 7095 << 16); 7096 /* 7097 * Read low word of remain bytes from original location. 7098 */ 7099 scsiq->remain_bytes += AscReadLramWord(iop_base, 7100 (ushort)(q_addr + (ushort) 7101 ASC_SCSIQ_DW_REMAIN_XFER_CNT)); 7102 7103 scsiq->remain_bytes &= max_dma_count; 7104 return sg_queue_cnt; 7105 } 7106 7107 /* 7108 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR(). 7109 * 7110 * Interrupt callback function for the Narrow SCSI Asc Library. 7111 */ 7112 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep) 7113 { 7114 struct asc_board *boardp; 7115 struct scsi_cmnd *scp; 7116 struct Scsi_Host *shost; 7117 7118 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep); 7119 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep); 7120 7121 scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr); 7122 if (!scp) 7123 return; 7124 7125 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 7126 7127 shost = scp->device->host; 7128 ASC_STATS(shost, callback); 7129 ASC_DBG(1, "shost 0x%p\n", shost); 7130 7131 boardp = shost_priv(shost); 7132 BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var); 7133 7134 dma_unmap_single(boardp->dev, scp->SCp.dma_handle, 7135 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 7136 /* 7137 * 'qdonep' contains the command's ending status. 7138 */ 7139 switch (qdonep->d3.done_stat) { 7140 case QD_NO_ERROR: 7141 ASC_DBG(2, "QD_NO_ERROR\n"); 7142 scp->result = 0; 7143 7144 /* 7145 * Check for an underrun condition. 7146 * 7147 * If there was no error and an underrun condition, then 7148 * return the number of underrun bytes. 7149 */ 7150 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 && 7151 qdonep->remain_bytes <= scsi_bufflen(scp)) { 7152 ASC_DBG(1, "underrun condition %u bytes\n", 7153 (unsigned)qdonep->remain_bytes); 7154 scsi_set_resid(scp, qdonep->remain_bytes); 7155 } 7156 break; 7157 7158 case QD_WITH_ERROR: 7159 ASC_DBG(2, "QD_WITH_ERROR\n"); 7160 switch (qdonep->d3.host_stat) { 7161 case QHSTA_NO_ERROR: 7162 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) { 7163 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 7164 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 7165 SCSI_SENSE_BUFFERSIZE); 7166 /* 7167 * Note: The 'status_byte()' macro used by 7168 * target drivers defined in scsi.h shifts the 7169 * status byte returned by host drivers right 7170 * by 1 bit. This is why target drivers also 7171 * use right shifted status byte definitions. 7172 * For instance target drivers use 7173 * CHECK_CONDITION, defined to 0x1, instead of 7174 * the SCSI defined check condition value of 7175 * 0x2. Host drivers are supposed to return 7176 * the status byte as it is defined by SCSI. 7177 */ 7178 scp->result = DRIVER_BYTE(DRIVER_SENSE) | 7179 STATUS_BYTE(qdonep->d3.scsi_stat); 7180 } else { 7181 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat); 7182 } 7183 break; 7184 7185 default: 7186 /* QHSTA error occurred */ 7187 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat); 7188 scp->result = HOST_BYTE(DID_BAD_TARGET); 7189 break; 7190 } 7191 break; 7192 7193 case QD_ABORTED_BY_HOST: 7194 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 7195 scp->result = 7196 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3. 7197 scsi_msg) | 7198 STATUS_BYTE(qdonep->d3.scsi_stat); 7199 break; 7200 7201 default: 7202 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat); 7203 scp->result = 7204 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3. 7205 scsi_msg) | 7206 STATUS_BYTE(qdonep->d3.scsi_stat); 7207 break; 7208 } 7209 7210 /* 7211 * If the 'init_tidmask' bit isn't already set for the target and the 7212 * current request finished normally, then set the bit for the target 7213 * to indicate that a device is present. 7214 */ 7215 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 7216 qdonep->d3.done_stat == QD_NO_ERROR && 7217 qdonep->d3.host_stat == QHSTA_NO_ERROR) { 7218 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 7219 } 7220 7221 asc_scsi_done(scp); 7222 } 7223 7224 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc) 7225 { 7226 uchar next_qp; 7227 uchar n_q_used; 7228 uchar sg_list_qp; 7229 uchar sg_queue_cnt; 7230 uchar q_cnt; 7231 uchar done_q_tail; 7232 uchar tid_no; 7233 ASC_SCSI_BIT_ID_TYPE scsi_busy; 7234 ASC_SCSI_BIT_ID_TYPE target_id; 7235 PortAddr iop_base; 7236 ushort q_addr; 7237 ushort sg_q_addr; 7238 uchar cur_target_qng; 7239 ASC_QDONE_INFO scsiq_buf; 7240 ASC_QDONE_INFO *scsiq; 7241 int false_overrun; 7242 7243 iop_base = asc_dvc->iop_base; 7244 n_q_used = 1; 7245 scsiq = (ASC_QDONE_INFO *)&scsiq_buf; 7246 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base); 7247 q_addr = ASC_QNO_TO_QADDR(done_q_tail); 7248 next_qp = AscReadLramByte(iop_base, 7249 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD)); 7250 if (next_qp != ASC_QLINK_END) { 7251 AscPutVarDoneQTail(iop_base, next_qp); 7252 q_addr = ASC_QNO_TO_QADDR(next_qp); 7253 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, 7254 asc_dvc->max_dma_count); 7255 AscWriteLramByte(iop_base, 7256 (ushort)(q_addr + 7257 (ushort)ASC_SCSIQ_B_STATUS), 7258 (uchar)(scsiq-> 7259 q_status & (uchar)~(QS_READY | 7260 QS_ABORTED))); 7261 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); 7262 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); 7263 if ((scsiq->cntl & QC_SG_HEAD) != 0) { 7264 sg_q_addr = q_addr; 7265 sg_list_qp = next_qp; 7266 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { 7267 sg_list_qp = AscReadLramByte(iop_base, 7268 (ushort)(sg_q_addr 7269 + (ushort) 7270 ASC_SCSIQ_B_FWD)); 7271 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); 7272 if (sg_list_qp == ASC_QLINK_END) { 7273 AscSetLibErrorCode(asc_dvc, 7274 ASCQ_ERR_SG_Q_LINKS); 7275 scsiq->d3.done_stat = QD_WITH_ERROR; 7276 scsiq->d3.host_stat = 7277 QHSTA_D_QDONE_SG_LIST_CORRUPTED; 7278 goto FATAL_ERR_QDONE; 7279 } 7280 AscWriteLramByte(iop_base, 7281 (ushort)(sg_q_addr + (ushort) 7282 ASC_SCSIQ_B_STATUS), 7283 QS_FREE); 7284 } 7285 n_q_used = sg_queue_cnt + 1; 7286 AscPutVarDoneQTail(iop_base, sg_list_qp); 7287 } 7288 if (asc_dvc->queue_full_or_busy & target_id) { 7289 cur_target_qng = AscReadLramByte(iop_base, 7290 (ushort)((ushort) 7291 ASC_QADR_BEG 7292 + (ushort) 7293 scsiq->d2. 7294 target_ix)); 7295 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) { 7296 scsi_busy = AscReadLramByte(iop_base, (ushort) 7297 ASCV_SCSIBUSY_B); 7298 scsi_busy &= ~target_id; 7299 AscWriteLramByte(iop_base, 7300 (ushort)ASCV_SCSIBUSY_B, 7301 scsi_busy); 7302 asc_dvc->queue_full_or_busy &= ~target_id; 7303 } 7304 } 7305 if (asc_dvc->cur_total_qng >= n_q_used) { 7306 asc_dvc->cur_total_qng -= n_q_used; 7307 if (asc_dvc->cur_dvc_qng[tid_no] != 0) { 7308 asc_dvc->cur_dvc_qng[tid_no]--; 7309 } 7310 } else { 7311 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG); 7312 scsiq->d3.done_stat = QD_WITH_ERROR; 7313 goto FATAL_ERR_QDONE; 7314 } 7315 if ((scsiq->d2.srb_ptr == 0UL) || 7316 ((scsiq->q_status & QS_ABORTED) != 0)) { 7317 return (0x11); 7318 } else if (scsiq->q_status == QS_DONE) { 7319 false_overrun = FALSE; 7320 if (scsiq->extra_bytes != 0) { 7321 scsiq->remain_bytes += 7322 (ADV_DCNT)scsiq->extra_bytes; 7323 } 7324 if (scsiq->d3.done_stat == QD_WITH_ERROR) { 7325 if (scsiq->d3.host_stat == 7326 QHSTA_M_DATA_OVER_RUN) { 7327 if ((scsiq-> 7328 cntl & (QC_DATA_IN | QC_DATA_OUT)) 7329 == 0) { 7330 scsiq->d3.done_stat = 7331 QD_NO_ERROR; 7332 scsiq->d3.host_stat = 7333 QHSTA_NO_ERROR; 7334 } else if (false_overrun) { 7335 scsiq->d3.done_stat = 7336 QD_NO_ERROR; 7337 scsiq->d3.host_stat = 7338 QHSTA_NO_ERROR; 7339 } 7340 } else if (scsiq->d3.host_stat == 7341 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { 7342 AscStopChip(iop_base); 7343 AscSetChipControl(iop_base, 7344 (uchar)(CC_SCSI_RESET 7345 | CC_HALT)); 7346 udelay(60); 7347 AscSetChipControl(iop_base, CC_HALT); 7348 AscSetChipStatus(iop_base, 7349 CIW_CLR_SCSI_RESET_INT); 7350 AscSetChipStatus(iop_base, 0); 7351 AscSetChipControl(iop_base, 0); 7352 } 7353 } 7354 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 7355 asc_isr_callback(asc_dvc, scsiq); 7356 } else { 7357 if ((AscReadLramByte(iop_base, 7358 (ushort)(q_addr + (ushort) 7359 ASC_SCSIQ_CDB_BEG)) 7360 == START_STOP)) { 7361 asc_dvc->unit_not_ready &= ~target_id; 7362 if (scsiq->d3.done_stat != QD_NO_ERROR) { 7363 asc_dvc->start_motor &= 7364 ~target_id; 7365 } 7366 } 7367 } 7368 return (1); 7369 } else { 7370 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS); 7371 FATAL_ERR_QDONE: 7372 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 7373 asc_isr_callback(asc_dvc, scsiq); 7374 } 7375 return (0x80); 7376 } 7377 } 7378 return (0); 7379 } 7380 7381 static int AscISR(ASC_DVC_VAR *asc_dvc) 7382 { 7383 ASC_CS_TYPE chipstat; 7384 PortAddr iop_base; 7385 ushort saved_ram_addr; 7386 uchar ctrl_reg; 7387 uchar saved_ctrl_reg; 7388 int int_pending; 7389 int status; 7390 uchar host_flag; 7391 7392 iop_base = asc_dvc->iop_base; 7393 int_pending = FALSE; 7394 7395 if (AscIsIntPending(iop_base) == 0) 7396 return int_pending; 7397 7398 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) { 7399 return ERR; 7400 } 7401 if (asc_dvc->in_critical_cnt != 0) { 7402 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL); 7403 return ERR; 7404 } 7405 if (asc_dvc->is_in_int) { 7406 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY); 7407 return ERR; 7408 } 7409 asc_dvc->is_in_int = TRUE; 7410 ctrl_reg = AscGetChipControl(iop_base); 7411 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET | 7412 CC_SINGLE_STEP | CC_DIAG | CC_TEST)); 7413 chipstat = AscGetChipStatus(iop_base); 7414 if (chipstat & CSW_SCSI_RESET_LATCH) { 7415 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { 7416 int i = 10; 7417 int_pending = TRUE; 7418 asc_dvc->sdtr_done = 0; 7419 saved_ctrl_reg &= (uchar)(~CC_HALT); 7420 while ((AscGetChipStatus(iop_base) & 7421 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) { 7422 mdelay(100); 7423 } 7424 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT)); 7425 AscSetChipControl(iop_base, CC_HALT); 7426 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 7427 AscSetChipStatus(iop_base, 0); 7428 chipstat = AscGetChipStatus(iop_base); 7429 } 7430 } 7431 saved_ram_addr = AscGetChipLramAddr(iop_base); 7432 host_flag = AscReadLramByte(iop_base, 7433 ASCV_HOST_FLAG_B) & 7434 (uchar)(~ASC_HOST_FLAG_IN_ISR); 7435 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 7436 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR)); 7437 if ((chipstat & CSW_INT_PENDING) || (int_pending)) { 7438 AscAckInterrupt(iop_base); 7439 int_pending = TRUE; 7440 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) { 7441 if (AscIsrChipHalted(asc_dvc) == ERR) { 7442 goto ISR_REPORT_QDONE_FATAL_ERROR; 7443 } else { 7444 saved_ctrl_reg &= (uchar)(~CC_HALT); 7445 } 7446 } else { 7447 ISR_REPORT_QDONE_FATAL_ERROR: 7448 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) { 7449 while (((status = 7450 AscIsrQDone(asc_dvc)) & 0x01) != 0) { 7451 } 7452 } else { 7453 do { 7454 if ((status = 7455 AscIsrQDone(asc_dvc)) == 1) { 7456 break; 7457 } 7458 } while (status == 0x11); 7459 } 7460 if ((status & 0x80) != 0) 7461 int_pending = ERR; 7462 } 7463 } 7464 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 7465 AscSetChipLramAddr(iop_base, saved_ram_addr); 7466 AscSetChipControl(iop_base, saved_ctrl_reg); 7467 asc_dvc->is_in_int = FALSE; 7468 return int_pending; 7469 } 7470 7471 /* 7472 * advansys_reset() 7473 * 7474 * Reset the bus associated with the command 'scp'. 7475 * 7476 * This function runs its own thread. Interrupts must be blocked but 7477 * sleeping is allowed and no locking other than for host structures is 7478 * required. Returns SUCCESS or FAILED. 7479 */ 7480 static int advansys_reset(struct scsi_cmnd *scp) 7481 { 7482 struct Scsi_Host *shost = scp->device->host; 7483 struct asc_board *boardp = shost_priv(shost); 7484 unsigned long flags; 7485 int status; 7486 int ret = SUCCESS; 7487 7488 ASC_DBG(1, "0x%p\n", scp); 7489 7490 ASC_STATS(shost, reset); 7491 7492 scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n"); 7493 7494 if (ASC_NARROW_BOARD(boardp)) { 7495 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7496 7497 /* Reset the chip and SCSI bus. */ 7498 ASC_DBG(1, "before AscInitAsc1000Driver()\n"); 7499 status = AscInitAsc1000Driver(asc_dvc); 7500 7501 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */ 7502 if (asc_dvc->err_code || !asc_dvc->overrun_dma) { 7503 scmd_printk(KERN_INFO, scp, "SCSI bus reset error: " 7504 "0x%x, status: 0x%x\n", asc_dvc->err_code, 7505 status); 7506 ret = FAILED; 7507 } else if (status) { 7508 scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: " 7509 "0x%x\n", status); 7510 } else { 7511 scmd_printk(KERN_INFO, scp, "SCSI bus reset " 7512 "successful\n"); 7513 } 7514 7515 ASC_DBG(1, "after AscInitAsc1000Driver()\n"); 7516 spin_lock_irqsave(shost->host_lock, flags); 7517 } else { 7518 /* 7519 * If the suggest reset bus flags are set, then reset the bus. 7520 * Otherwise only reset the device. 7521 */ 7522 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 7523 7524 /* 7525 * Reset the target's SCSI bus. 7526 */ 7527 ASC_DBG(1, "before AdvResetChipAndSB()\n"); 7528 switch (AdvResetChipAndSB(adv_dvc)) { 7529 case ASC_TRUE: 7530 scmd_printk(KERN_INFO, scp, "SCSI bus reset " 7531 "successful\n"); 7532 break; 7533 case ASC_FALSE: 7534 default: 7535 scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n"); 7536 ret = FAILED; 7537 break; 7538 } 7539 spin_lock_irqsave(shost->host_lock, flags); 7540 AdvISR(adv_dvc); 7541 } 7542 7543 /* Save the time of the most recently completed reset. */ 7544 boardp->last_reset = jiffies; 7545 spin_unlock_irqrestore(shost->host_lock, flags); 7546 7547 ASC_DBG(1, "ret %d\n", ret); 7548 7549 return ret; 7550 } 7551 7552 /* 7553 * advansys_biosparam() 7554 * 7555 * Translate disk drive geometry if the "BIOS greater than 1 GB" 7556 * support is enabled for a drive. 7557 * 7558 * ip (information pointer) is an int array with the following definition: 7559 * ip[0]: heads 7560 * ip[1]: sectors 7561 * ip[2]: cylinders 7562 */ 7563 static int 7564 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev, 7565 sector_t capacity, int ip[]) 7566 { 7567 struct asc_board *boardp = shost_priv(sdev->host); 7568 7569 ASC_DBG(1, "begin\n"); 7570 ASC_STATS(sdev->host, biosparam); 7571 if (ASC_NARROW_BOARD(boardp)) { 7572 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl & 7573 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) { 7574 ip[0] = 255; 7575 ip[1] = 63; 7576 } else { 7577 ip[0] = 64; 7578 ip[1] = 32; 7579 } 7580 } else { 7581 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl & 7582 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) { 7583 ip[0] = 255; 7584 ip[1] = 63; 7585 } else { 7586 ip[0] = 64; 7587 ip[1] = 32; 7588 } 7589 } 7590 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]); 7591 ASC_DBG(1, "end\n"); 7592 return 0; 7593 } 7594 7595 /* 7596 * First-level interrupt handler. 7597 * 7598 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host. 7599 */ 7600 static irqreturn_t advansys_interrupt(int irq, void *dev_id) 7601 { 7602 struct Scsi_Host *shost = dev_id; 7603 struct asc_board *boardp = shost_priv(shost); 7604 irqreturn_t result = IRQ_NONE; 7605 7606 ASC_DBG(2, "boardp 0x%p\n", boardp); 7607 spin_lock(shost->host_lock); 7608 if (ASC_NARROW_BOARD(boardp)) { 7609 if (AscIsIntPending(shost->io_port)) { 7610 result = IRQ_HANDLED; 7611 ASC_STATS(shost, interrupt); 7612 ASC_DBG(1, "before AscISR()\n"); 7613 AscISR(&boardp->dvc_var.asc_dvc_var); 7614 } 7615 } else { 7616 ASC_DBG(1, "before AdvISR()\n"); 7617 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) { 7618 result = IRQ_HANDLED; 7619 ASC_STATS(shost, interrupt); 7620 } 7621 } 7622 spin_unlock(shost->host_lock); 7623 7624 ASC_DBG(1, "end\n"); 7625 return result; 7626 } 7627 7628 static int AscHostReqRiscHalt(PortAddr iop_base) 7629 { 7630 int count = 0; 7631 int sta = 0; 7632 uchar saved_stop_code; 7633 7634 if (AscIsChipHalted(iop_base)) 7635 return (1); 7636 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); 7637 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 7638 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP); 7639 do { 7640 if (AscIsChipHalted(iop_base)) { 7641 sta = 1; 7642 break; 7643 } 7644 mdelay(100); 7645 } while (count++ < 20); 7646 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code); 7647 return (sta); 7648 } 7649 7650 static int 7651 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data) 7652 { 7653 int sta = FALSE; 7654 7655 if (AscHostReqRiscHalt(iop_base)) { 7656 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 7657 AscStartChip(iop_base); 7658 } 7659 return sta; 7660 } 7661 7662 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev) 7663 { 7664 char type = sdev->type; 7665 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id; 7666 7667 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN)) 7668 return; 7669 if (asc_dvc->init_sdtr & tid_bits) 7670 return; 7671 7672 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0)) 7673 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits; 7674 7675 asc_dvc->pci_fix_asyn_xfer |= tid_bits; 7676 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) || 7677 (type == TYPE_ROM) || (type == TYPE_TAPE)) 7678 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; 7679 7680 if (asc_dvc->pci_fix_asyn_xfer & tid_bits) 7681 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id, 7682 ASYN_SDTR_DATA_FIX_PCI_REV_AB); 7683 } 7684 7685 static void 7686 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc) 7687 { 7688 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id; 7689 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng; 7690 7691 if (sdev->lun == 0) { 7692 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr; 7693 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) { 7694 asc_dvc->init_sdtr |= tid_bit; 7695 } else { 7696 asc_dvc->init_sdtr &= ~tid_bit; 7697 } 7698 7699 if (orig_init_sdtr != asc_dvc->init_sdtr) 7700 AscAsyncFix(asc_dvc, sdev); 7701 } 7702 7703 if (sdev->tagged_supported) { 7704 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) { 7705 if (sdev->lun == 0) { 7706 asc_dvc->cfg->can_tagged_qng |= tid_bit; 7707 asc_dvc->use_tagged_qng |= tid_bit; 7708 } 7709 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, 7710 asc_dvc->max_dvc_qng[sdev->id]); 7711 } 7712 } else { 7713 if (sdev->lun == 0) { 7714 asc_dvc->cfg->can_tagged_qng &= ~tid_bit; 7715 asc_dvc->use_tagged_qng &= ~tid_bit; 7716 } 7717 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun); 7718 } 7719 7720 if ((sdev->lun == 0) && 7721 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) { 7722 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B, 7723 asc_dvc->cfg->disc_enable); 7724 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B, 7725 asc_dvc->use_tagged_qng); 7726 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B, 7727 asc_dvc->cfg->can_tagged_qng); 7728 7729 asc_dvc->max_dvc_qng[sdev->id] = 7730 asc_dvc->cfg->max_tag_qng[sdev->id]; 7731 AscWriteLramByte(asc_dvc->iop_base, 7732 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id), 7733 asc_dvc->max_dvc_qng[sdev->id]); 7734 } 7735 } 7736 7737 /* 7738 * Wide Transfers 7739 * 7740 * If the EEPROM enabled WDTR for the device and the device supports wide 7741 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and 7742 * write the new value to the microcode. 7743 */ 7744 static void 7745 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask) 7746 { 7747 unsigned short cfg_word; 7748 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7749 if ((cfg_word & tidmask) != 0) 7750 return; 7751 7752 cfg_word |= tidmask; 7753 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7754 7755 /* 7756 * Clear the microcode SDTR and WDTR negotiation done indicators for 7757 * the target to cause it to negotiate with the new setting set above. 7758 * WDTR when accepted causes the target to enter asynchronous mode, so 7759 * SDTR must be negotiated. 7760 */ 7761 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7762 cfg_word &= ~tidmask; 7763 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7764 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7765 cfg_word &= ~tidmask; 7766 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7767 } 7768 7769 /* 7770 * Synchronous Transfers 7771 * 7772 * If the EEPROM enabled SDTR for the device and the device 7773 * supports synchronous transfers, then turn on the device's 7774 * 'sdtr_able' bit. Write the new value to the microcode. 7775 */ 7776 static void 7777 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask) 7778 { 7779 unsigned short cfg_word; 7780 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7781 if ((cfg_word & tidmask) != 0) 7782 return; 7783 7784 cfg_word |= tidmask; 7785 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7786 7787 /* 7788 * Clear the microcode "SDTR negotiation" done indicator for the 7789 * target to cause it to negotiate with the new setting set above. 7790 */ 7791 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7792 cfg_word &= ~tidmask; 7793 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7794 } 7795 7796 /* 7797 * PPR (Parallel Protocol Request) Capable 7798 * 7799 * If the device supports DT mode, then it must be PPR capable. 7800 * The PPR message will be used in place of the SDTR and WDTR 7801 * messages to negotiate synchronous speed and offset, transfer 7802 * width, and protocol options. 7803 */ 7804 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc, 7805 AdvPortAddr iop_base, unsigned short tidmask) 7806 { 7807 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7808 adv_dvc->ppr_able |= tidmask; 7809 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7810 } 7811 7812 static void 7813 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc) 7814 { 7815 AdvPortAddr iop_base = adv_dvc->iop_base; 7816 unsigned short tidmask = 1 << sdev->id; 7817 7818 if (sdev->lun == 0) { 7819 /* 7820 * Handle WDTR, SDTR, and Tag Queuing. If the feature 7821 * is enabled in the EEPROM and the device supports the 7822 * feature, then enable it in the microcode. 7823 */ 7824 7825 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr) 7826 advansys_wide_enable_wdtr(iop_base, tidmask); 7827 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr) 7828 advansys_wide_enable_sdtr(iop_base, tidmask); 7829 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr) 7830 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask); 7831 7832 /* 7833 * Tag Queuing is disabled for the BIOS which runs in polled 7834 * mode and would see no benefit from Tag Queuing. Also by 7835 * disabling Tag Queuing in the BIOS devices with Tag Queuing 7836 * bugs will at least work with the BIOS. 7837 */ 7838 if ((adv_dvc->tagqng_able & tidmask) && 7839 sdev->tagged_supported) { 7840 unsigned short cfg_word; 7841 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); 7842 cfg_word |= tidmask; 7843 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 7844 cfg_word); 7845 AdvWriteByteLram(iop_base, 7846 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id, 7847 adv_dvc->max_dvc_qng); 7848 } 7849 } 7850 7851 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) { 7852 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, 7853 adv_dvc->max_dvc_qng); 7854 } else { 7855 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun); 7856 } 7857 } 7858 7859 /* 7860 * Set the number of commands to queue per device for the 7861 * specified host adapter. 7862 */ 7863 static int advansys_slave_configure(struct scsi_device *sdev) 7864 { 7865 struct asc_board *boardp = shost_priv(sdev->host); 7866 7867 if (ASC_NARROW_BOARD(boardp)) 7868 advansys_narrow_slave_configure(sdev, 7869 &boardp->dvc_var.asc_dvc_var); 7870 else 7871 advansys_wide_slave_configure(sdev, 7872 &boardp->dvc_var.adv_dvc_var); 7873 7874 return 0; 7875 } 7876 7877 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp) 7878 { 7879 struct asc_board *board = shost_priv(scp->device->host); 7880 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer, 7881 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 7882 dma_cache_sync(board->dev, scp->sense_buffer, 7883 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 7884 return cpu_to_le32(scp->SCp.dma_handle); 7885 } 7886 7887 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 7888 struct asc_scsi_q *asc_scsi_q) 7889 { 7890 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7891 int use_sg; 7892 7893 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q)); 7894 7895 /* 7896 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'. 7897 */ 7898 asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp); 7899 if (asc_scsi_q->q2.srb_ptr == BAD_SRB) { 7900 scp->result = HOST_BYTE(DID_SOFT_ERROR); 7901 return ASC_ERROR; 7902 } 7903 7904 /* 7905 * Build the ASC_SCSI_Q request. 7906 */ 7907 asc_scsi_q->cdbptr = &scp->cmnd[0]; 7908 asc_scsi_q->q2.cdb_len = scp->cmd_len; 7909 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id); 7910 asc_scsi_q->q1.target_lun = scp->device->lun; 7911 asc_scsi_q->q2.target_ix = 7912 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun); 7913 asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp); 7914 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE; 7915 7916 /* 7917 * If there are any outstanding requests for the current target, 7918 * then every 255th request send an ORDERED request. This heuristic 7919 * tries to retain the benefit of request sorting while preventing 7920 * request starvation. 255 is the max number of tags or pending commands 7921 * a device may have outstanding. 7922 * 7923 * The request count is incremented below for every successfully 7924 * started request. 7925 * 7926 */ 7927 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) && 7928 (boardp->reqcnt[scp->device->id] % 255) == 0) { 7929 asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG; 7930 } else { 7931 asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG; 7932 } 7933 7934 /* Build ASC_SCSI_Q */ 7935 use_sg = scsi_dma_map(scp); 7936 if (use_sg != 0) { 7937 int sgcnt; 7938 struct scatterlist *slp; 7939 struct asc_sg_head *asc_sg_head; 7940 7941 if (use_sg > scp->device->host->sg_tablesize) { 7942 scmd_printk(KERN_ERR, scp, "use_sg %d > " 7943 "sg_tablesize %d\n", use_sg, 7944 scp->device->host->sg_tablesize); 7945 scsi_dma_unmap(scp); 7946 scp->result = HOST_BYTE(DID_ERROR); 7947 return ASC_ERROR; 7948 } 7949 7950 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) + 7951 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC); 7952 if (!asc_sg_head) { 7953 scsi_dma_unmap(scp); 7954 scp->result = HOST_BYTE(DID_SOFT_ERROR); 7955 return ASC_ERROR; 7956 } 7957 7958 asc_scsi_q->q1.cntl |= QC_SG_HEAD; 7959 asc_scsi_q->sg_head = asc_sg_head; 7960 asc_scsi_q->q1.data_cnt = 0; 7961 asc_scsi_q->q1.data_addr = 0; 7962 /* This is a byte value, otherwise it would need to be swapped. */ 7963 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg; 7964 ASC_STATS_ADD(scp->device->host, xfer_elem, 7965 asc_sg_head->entry_cnt); 7966 7967 /* 7968 * Convert scatter-gather list into ASC_SG_HEAD list. 7969 */ 7970 scsi_for_each_sg(scp, slp, use_sg, sgcnt) { 7971 asc_sg_head->sg_list[sgcnt].addr = 7972 cpu_to_le32(sg_dma_address(slp)); 7973 asc_sg_head->sg_list[sgcnt].bytes = 7974 cpu_to_le32(sg_dma_len(slp)); 7975 ASC_STATS_ADD(scp->device->host, xfer_sect, 7976 DIV_ROUND_UP(sg_dma_len(slp), 512)); 7977 } 7978 } 7979 7980 ASC_STATS(scp->device->host, xfer_cnt); 7981 7982 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q); 7983 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 7984 7985 return ASC_NOERROR; 7986 } 7987 7988 /* 7989 * Build scatter-gather list for Adv Library (Wide Board). 7990 * 7991 * Additional ADV_SG_BLOCK structures will need to be allocated 7992 * if the total number of scatter-gather elements exceeds 7993 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are 7994 * assumed to be physically contiguous. 7995 * 7996 * Return: 7997 * ADV_SUCCESS(1) - SG List successfully created 7998 * ADV_ERROR(-1) - SG List creation failed 7999 */ 8000 static int 8001 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp, 8002 int use_sg) 8003 { 8004 adv_sgblk_t *sgblkp; 8005 ADV_SCSI_REQ_Q *scsiqp; 8006 struct scatterlist *slp; 8007 int sg_elem_cnt; 8008 ADV_SG_BLOCK *sg_block, *prev_sg_block; 8009 ADV_PADDR sg_block_paddr; 8010 int i; 8011 8012 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q); 8013 slp = scsi_sglist(scp); 8014 sg_elem_cnt = use_sg; 8015 prev_sg_block = NULL; 8016 reqp->sgblkp = NULL; 8017 8018 for (;;) { 8019 /* 8020 * Allocate a 'adv_sgblk_t' structure from the board free 8021 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK 8022 * (15) scatter-gather elements. 8023 */ 8024 if ((sgblkp = boardp->adv_sgblkp) == NULL) { 8025 ASC_DBG(1, "no free adv_sgblk_t\n"); 8026 ASC_STATS(scp->device->host, adv_build_nosg); 8027 8028 /* 8029 * Allocation failed. Free 'adv_sgblk_t' structures 8030 * already allocated for the request. 8031 */ 8032 while ((sgblkp = reqp->sgblkp) != NULL) { 8033 /* Remove 'sgblkp' from the request list. */ 8034 reqp->sgblkp = sgblkp->next_sgblkp; 8035 8036 /* Add 'sgblkp' to the board free list. */ 8037 sgblkp->next_sgblkp = boardp->adv_sgblkp; 8038 boardp->adv_sgblkp = sgblkp; 8039 } 8040 return ASC_BUSY; 8041 } 8042 8043 /* Complete 'adv_sgblk_t' board allocation. */ 8044 boardp->adv_sgblkp = sgblkp->next_sgblkp; 8045 sgblkp->next_sgblkp = NULL; 8046 8047 /* 8048 * Get 8 byte aligned virtual and physical addresses 8049 * for the allocated ADV_SG_BLOCK structure. 8050 */ 8051 sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block); 8052 sg_block_paddr = virt_to_bus(sg_block); 8053 8054 /* 8055 * Check if this is the first 'adv_sgblk_t' for the 8056 * request. 8057 */ 8058 if (reqp->sgblkp == NULL) { 8059 /* Request's first scatter-gather block. */ 8060 reqp->sgblkp = sgblkp; 8061 8062 /* 8063 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical 8064 * address pointers. 8065 */ 8066 scsiqp->sg_list_ptr = sg_block; 8067 scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr); 8068 } else { 8069 /* Request's second or later scatter-gather block. */ 8070 sgblkp->next_sgblkp = reqp->sgblkp; 8071 reqp->sgblkp = sgblkp; 8072 8073 /* 8074 * Point the previous ADV_SG_BLOCK structure to 8075 * the newly allocated ADV_SG_BLOCK structure. 8076 */ 8077 prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr); 8078 } 8079 8080 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { 8081 sg_block->sg_list[i].sg_addr = 8082 cpu_to_le32(sg_dma_address(slp)); 8083 sg_block->sg_list[i].sg_count = 8084 cpu_to_le32(sg_dma_len(slp)); 8085 ASC_STATS_ADD(scp->device->host, xfer_sect, 8086 DIV_ROUND_UP(sg_dma_len(slp), 512)); 8087 8088 if (--sg_elem_cnt == 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */ 8089 sg_block->sg_cnt = i + 1; 8090 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */ 8091 return ADV_SUCCESS; 8092 } 8093 slp++; 8094 } 8095 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK; 8096 prev_sg_block = sg_block; 8097 } 8098 } 8099 8100 /* 8101 * Build a request structure for the Adv Library (Wide Board). 8102 * 8103 * If an adv_req_t can not be allocated to issue the request, 8104 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR. 8105 * 8106 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the 8107 * microcode for DMA addresses or math operations are byte swapped 8108 * to little-endian order. 8109 */ 8110 static int 8111 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 8112 ADV_SCSI_REQ_Q **adv_scsiqpp) 8113 { 8114 adv_req_t *reqp; 8115 ADV_SCSI_REQ_Q *scsiqp; 8116 int i; 8117 int ret; 8118 int use_sg; 8119 8120 /* 8121 * Allocate an adv_req_t structure from the board to execute 8122 * the command. 8123 */ 8124 if (boardp->adv_reqp == NULL) { 8125 ASC_DBG(1, "no free adv_req_t\n"); 8126 ASC_STATS(scp->device->host, adv_build_noreq); 8127 return ASC_BUSY; 8128 } else { 8129 reqp = boardp->adv_reqp; 8130 boardp->adv_reqp = reqp->next_reqp; 8131 reqp->next_reqp = NULL; 8132 } 8133 8134 /* 8135 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers. 8136 */ 8137 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q); 8138 8139 /* 8140 * Initialize the structure. 8141 */ 8142 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0; 8143 8144 /* 8145 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure. 8146 */ 8147 scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp); 8148 8149 /* 8150 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure. 8151 */ 8152 reqp->cmndp = scp; 8153 8154 /* 8155 * Build the ADV_SCSI_REQ_Q request. 8156 */ 8157 8158 /* Set CDB length and copy it to the request structure. */ 8159 scsiqp->cdb_len = scp->cmd_len; 8160 /* Copy first 12 CDB bytes to cdb[]. */ 8161 for (i = 0; i < scp->cmd_len && i < 12; i++) { 8162 scsiqp->cdb[i] = scp->cmnd[i]; 8163 } 8164 /* Copy last 4 CDB bytes, if present, to cdb16[]. */ 8165 for (; i < scp->cmd_len; i++) { 8166 scsiqp->cdb16[i - 12] = scp->cmnd[i]; 8167 } 8168 8169 scsiqp->target_id = scp->device->id; 8170 scsiqp->target_lun = scp->device->lun; 8171 8172 scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0])); 8173 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE; 8174 8175 /* Build ADV_SCSI_REQ_Q */ 8176 8177 use_sg = scsi_dma_map(scp); 8178 if (use_sg == 0) { 8179 /* Zero-length transfer */ 8180 reqp->sgblkp = NULL; 8181 scsiqp->data_cnt = 0; 8182 scsiqp->vdata_addr = NULL; 8183 8184 scsiqp->data_addr = 0; 8185 scsiqp->sg_list_ptr = NULL; 8186 scsiqp->sg_real_addr = 0; 8187 } else { 8188 if (use_sg > ADV_MAX_SG_LIST) { 8189 scmd_printk(KERN_ERR, scp, "use_sg %d > " 8190 "ADV_MAX_SG_LIST %d\n", use_sg, 8191 scp->device->host->sg_tablesize); 8192 scsi_dma_unmap(scp); 8193 scp->result = HOST_BYTE(DID_ERROR); 8194 8195 /* 8196 * Free the 'adv_req_t' structure by adding it back 8197 * to the board free list. 8198 */ 8199 reqp->next_reqp = boardp->adv_reqp; 8200 boardp->adv_reqp = reqp; 8201 8202 return ASC_ERROR; 8203 } 8204 8205 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp)); 8206 8207 ret = adv_get_sglist(boardp, reqp, scp, use_sg); 8208 if (ret != ADV_SUCCESS) { 8209 /* 8210 * Free the adv_req_t structure by adding it back to 8211 * the board free list. 8212 */ 8213 reqp->next_reqp = boardp->adv_reqp; 8214 boardp->adv_reqp = reqp; 8215 8216 return ret; 8217 } 8218 8219 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg); 8220 } 8221 8222 ASC_STATS(scp->device->host, xfer_cnt); 8223 8224 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 8225 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 8226 8227 *adv_scsiqpp = scsiqp; 8228 8229 return ASC_NOERROR; 8230 } 8231 8232 static int AscSgListToQueue(int sg_list) 8233 { 8234 int n_sg_list_qs; 8235 8236 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); 8237 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) 8238 n_sg_list_qs++; 8239 return n_sg_list_qs + 1; 8240 } 8241 8242 static uint 8243 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs) 8244 { 8245 uint cur_used_qs; 8246 uint cur_free_qs; 8247 ASC_SCSI_BIT_ID_TYPE target_id; 8248 uchar tid_no; 8249 8250 target_id = ASC_TIX_TO_TARGET_ID(target_ix); 8251 tid_no = ASC_TIX_TO_TID(target_ix); 8252 if ((asc_dvc->unit_not_ready & target_id) || 8253 (asc_dvc->queue_full_or_busy & target_id)) { 8254 return 0; 8255 } 8256 if (n_qs == 1) { 8257 cur_used_qs = (uint) asc_dvc->cur_total_qng + 8258 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q; 8259 } else { 8260 cur_used_qs = (uint) asc_dvc->cur_total_qng + 8261 (uint) ASC_MIN_FREE_Q; 8262 } 8263 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) { 8264 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs; 8265 if (asc_dvc->cur_dvc_qng[tid_no] >= 8266 asc_dvc->max_dvc_qng[tid_no]) { 8267 return 0; 8268 } 8269 return cur_free_qs; 8270 } 8271 if (n_qs > 1) { 8272 if ((n_qs > asc_dvc->last_q_shortage) 8273 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) { 8274 asc_dvc->last_q_shortage = n_qs; 8275 } 8276 } 8277 return 0; 8278 } 8279 8280 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head) 8281 { 8282 ushort q_addr; 8283 uchar next_qp; 8284 uchar q_status; 8285 8286 q_addr = ASC_QNO_TO_QADDR(free_q_head); 8287 q_status = (uchar)AscReadLramByte(iop_base, 8288 (ushort)(q_addr + 8289 ASC_SCSIQ_B_STATUS)); 8290 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); 8291 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END)) 8292 return next_qp; 8293 return ASC_QLINK_END; 8294 } 8295 8296 static uchar 8297 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q) 8298 { 8299 uchar i; 8300 8301 for (i = 0; i < n_free_q; i++) { 8302 free_q_head = AscAllocFreeQueue(iop_base, free_q_head); 8303 if (free_q_head == ASC_QLINK_END) 8304 break; 8305 } 8306 return free_q_head; 8307 } 8308 8309 /* 8310 * void 8311 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 8312 * 8313 * Calling/Exit State: 8314 * none 8315 * 8316 * Description: 8317 * Output an ASC_SCSI_Q structure to the chip 8318 */ 8319 static void 8320 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 8321 { 8322 int i; 8323 8324 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words); 8325 AscSetChipLramAddr(iop_base, s_addr); 8326 for (i = 0; i < 2 * words; i += 2) { 8327 if (i == 4 || i == 20) { 8328 continue; 8329 } 8330 outpw(iop_base + IOP_RAM_DATA, 8331 ((ushort)outbuf[i + 1] << 8) | outbuf[i]); 8332 } 8333 } 8334 8335 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 8336 { 8337 ushort q_addr; 8338 uchar tid_no; 8339 uchar sdtr_data; 8340 uchar syn_period_ix; 8341 uchar syn_offset; 8342 PortAddr iop_base; 8343 8344 iop_base = asc_dvc->iop_base; 8345 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) && 8346 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) { 8347 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); 8348 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 8349 syn_period_ix = 8350 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1); 8351 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; 8352 AscMsgOutSDTR(asc_dvc, 8353 asc_dvc->sdtr_period_tbl[syn_period_ix], 8354 syn_offset); 8355 scsiq->q1.cntl |= QC_MSG_OUT; 8356 } 8357 q_addr = ASC_QNO_TO_QADDR(q_no); 8358 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) { 8359 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG; 8360 } 8361 scsiq->q1.status = QS_FREE; 8362 AscMemWordCopyPtrToLram(iop_base, 8363 q_addr + ASC_SCSIQ_CDB_BEG, 8364 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1); 8365 8366 DvcPutScsiQ(iop_base, 8367 q_addr + ASC_SCSIQ_CPY_BEG, 8368 (uchar *)&scsiq->q1.cntl, 8369 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1); 8370 AscWriteLramWord(iop_base, 8371 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS), 8372 (ushort)(((ushort)scsiq->q1. 8373 q_no << 8) | (ushort)QS_READY)); 8374 return 1; 8375 } 8376 8377 static int 8378 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 8379 { 8380 int sta; 8381 int i; 8382 ASC_SG_HEAD *sg_head; 8383 ASC_SG_LIST_Q scsi_sg_q; 8384 ASC_DCNT saved_data_addr; 8385 ASC_DCNT saved_data_cnt; 8386 PortAddr iop_base; 8387 ushort sg_list_dwords; 8388 ushort sg_index; 8389 ushort sg_entry_cnt; 8390 ushort q_addr; 8391 uchar next_qp; 8392 8393 iop_base = asc_dvc->iop_base; 8394 sg_head = scsiq->sg_head; 8395 saved_data_addr = scsiq->q1.data_addr; 8396 saved_data_cnt = scsiq->q1.data_cnt; 8397 scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr; 8398 scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes; 8399 #if CC_VERY_LONG_SG_LIST 8400 /* 8401 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST 8402 * then not all SG elements will fit in the allocated queues. 8403 * The rest of the SG elements will be copied when the RISC 8404 * completes the SG elements that fit and halts. 8405 */ 8406 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) { 8407 /* 8408 * Set sg_entry_cnt to be the number of SG elements that 8409 * will fit in the allocated SG queues. It is minus 1, because 8410 * the first SG element is handled above. ASC_MAX_SG_LIST is 8411 * already inflated by 1 to account for this. For example it 8412 * may be 50 which is 1 + 7 queues * 7 SG elements. 8413 */ 8414 sg_entry_cnt = ASC_MAX_SG_LIST - 1; 8415 8416 /* 8417 * Keep track of remaining number of SG elements that will 8418 * need to be handled from a_isr.c. 8419 */ 8420 scsiq->remain_sg_entry_cnt = 8421 sg_head->entry_cnt - ASC_MAX_SG_LIST; 8422 } else { 8423 #endif /* CC_VERY_LONG_SG_LIST */ 8424 /* 8425 * Set sg_entry_cnt to be the number of SG elements that 8426 * will fit in the allocated SG queues. It is minus 1, because 8427 * the first SG element is handled above. 8428 */ 8429 sg_entry_cnt = sg_head->entry_cnt - 1; 8430 #if CC_VERY_LONG_SG_LIST 8431 } 8432 #endif /* CC_VERY_LONG_SG_LIST */ 8433 if (sg_entry_cnt != 0) { 8434 scsiq->q1.cntl |= QC_SG_HEAD; 8435 q_addr = ASC_QNO_TO_QADDR(q_no); 8436 sg_index = 1; 8437 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; 8438 scsi_sg_q.sg_head_qp = q_no; 8439 scsi_sg_q.cntl = QCSG_SG_XFER_LIST; 8440 for (i = 0; i < sg_head->queue_cnt; i++) { 8441 scsi_sg_q.seq_no = i + 1; 8442 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { 8443 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); 8444 sg_entry_cnt -= ASC_SG_LIST_PER_Q; 8445 if (i == 0) { 8446 scsi_sg_q.sg_list_cnt = 8447 ASC_SG_LIST_PER_Q; 8448 scsi_sg_q.sg_cur_list_cnt = 8449 ASC_SG_LIST_PER_Q; 8450 } else { 8451 scsi_sg_q.sg_list_cnt = 8452 ASC_SG_LIST_PER_Q - 1; 8453 scsi_sg_q.sg_cur_list_cnt = 8454 ASC_SG_LIST_PER_Q - 1; 8455 } 8456 } else { 8457 #if CC_VERY_LONG_SG_LIST 8458 /* 8459 * This is the last SG queue in the list of 8460 * allocated SG queues. If there are more 8461 * SG elements than will fit in the allocated 8462 * queues, then set the QCSG_SG_XFER_MORE flag. 8463 */ 8464 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) { 8465 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE; 8466 } else { 8467 #endif /* CC_VERY_LONG_SG_LIST */ 8468 scsi_sg_q.cntl |= QCSG_SG_XFER_END; 8469 #if CC_VERY_LONG_SG_LIST 8470 } 8471 #endif /* CC_VERY_LONG_SG_LIST */ 8472 sg_list_dwords = sg_entry_cnt << 1; 8473 if (i == 0) { 8474 scsi_sg_q.sg_list_cnt = sg_entry_cnt; 8475 scsi_sg_q.sg_cur_list_cnt = 8476 sg_entry_cnt; 8477 } else { 8478 scsi_sg_q.sg_list_cnt = 8479 sg_entry_cnt - 1; 8480 scsi_sg_q.sg_cur_list_cnt = 8481 sg_entry_cnt - 1; 8482 } 8483 sg_entry_cnt = 0; 8484 } 8485 next_qp = AscReadLramByte(iop_base, 8486 (ushort)(q_addr + 8487 ASC_SCSIQ_B_FWD)); 8488 scsi_sg_q.q_no = next_qp; 8489 q_addr = ASC_QNO_TO_QADDR(next_qp); 8490 AscMemWordCopyPtrToLram(iop_base, 8491 q_addr + ASC_SCSIQ_SGHD_CPY_BEG, 8492 (uchar *)&scsi_sg_q, 8493 sizeof(ASC_SG_LIST_Q) >> 1); 8494 AscMemDWordCopyPtrToLram(iop_base, 8495 q_addr + ASC_SGQ_LIST_BEG, 8496 (uchar *)&sg_head-> 8497 sg_list[sg_index], 8498 sg_list_dwords); 8499 sg_index += ASC_SG_LIST_PER_Q; 8500 scsiq->next_sg_index = sg_index; 8501 } 8502 } else { 8503 scsiq->q1.cntl &= ~QC_SG_HEAD; 8504 } 8505 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no); 8506 scsiq->q1.data_addr = saved_data_addr; 8507 scsiq->q1.data_cnt = saved_data_cnt; 8508 return (sta); 8509 } 8510 8511 static int 8512 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required) 8513 { 8514 PortAddr iop_base; 8515 uchar free_q_head; 8516 uchar next_qp; 8517 uchar tid_no; 8518 uchar target_ix; 8519 int sta; 8520 8521 iop_base = asc_dvc->iop_base; 8522 target_ix = scsiq->q2.target_ix; 8523 tid_no = ASC_TIX_TO_TID(target_ix); 8524 sta = 0; 8525 free_q_head = (uchar)AscGetVarFreeQHead(iop_base); 8526 if (n_q_required > 1) { 8527 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head, 8528 (uchar)n_q_required); 8529 if (next_qp != ASC_QLINK_END) { 8530 asc_dvc->last_q_shortage = 0; 8531 scsiq->sg_head->queue_cnt = n_q_required - 1; 8532 scsiq->q1.q_no = free_q_head; 8533 sta = AscPutReadySgListQueue(asc_dvc, scsiq, 8534 free_q_head); 8535 } 8536 } else if (n_q_required == 1) { 8537 next_qp = AscAllocFreeQueue(iop_base, free_q_head); 8538 if (next_qp != ASC_QLINK_END) { 8539 scsiq->q1.q_no = free_q_head; 8540 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head); 8541 } 8542 } 8543 if (sta == 1) { 8544 AscPutVarFreeQHead(iop_base, next_qp); 8545 asc_dvc->cur_total_qng += n_q_required; 8546 asc_dvc->cur_dvc_qng[tid_no]++; 8547 } 8548 return sta; 8549 } 8550 8551 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16 8552 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = { 8553 INQUIRY, 8554 REQUEST_SENSE, 8555 READ_CAPACITY, 8556 READ_TOC, 8557 MODE_SELECT, 8558 MODE_SENSE, 8559 MODE_SELECT_10, 8560 MODE_SENSE_10, 8561 0xFF, 8562 0xFF, 8563 0xFF, 8564 0xFF, 8565 0xFF, 8566 0xFF, 8567 0xFF, 8568 0xFF 8569 }; 8570 8571 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq) 8572 { 8573 PortAddr iop_base; 8574 int sta; 8575 int n_q_required; 8576 int disable_syn_offset_one_fix; 8577 int i; 8578 ASC_PADDR addr; 8579 ushort sg_entry_cnt = 0; 8580 ushort sg_entry_cnt_minus_one = 0; 8581 uchar target_ix; 8582 uchar tid_no; 8583 uchar sdtr_data; 8584 uchar extra_bytes; 8585 uchar scsi_cmd; 8586 uchar disable_cmd; 8587 ASC_SG_HEAD *sg_head; 8588 ASC_DCNT data_cnt; 8589 8590 iop_base = asc_dvc->iop_base; 8591 sg_head = scsiq->sg_head; 8592 if (asc_dvc->err_code != 0) 8593 return (ERR); 8594 scsiq->q1.q_no = 0; 8595 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) { 8596 scsiq->q1.extra_bytes = 0; 8597 } 8598 sta = 0; 8599 target_ix = scsiq->q2.target_ix; 8600 tid_no = ASC_TIX_TO_TID(target_ix); 8601 n_q_required = 1; 8602 if (scsiq->cdbptr[0] == REQUEST_SENSE) { 8603 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) { 8604 asc_dvc->sdtr_done &= ~scsiq->q1.target_id; 8605 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 8606 AscMsgOutSDTR(asc_dvc, 8607 asc_dvc-> 8608 sdtr_period_tbl[(sdtr_data >> 4) & 8609 (uchar)(asc_dvc-> 8610 max_sdtr_index - 8611 1)], 8612 (uchar)(sdtr_data & (uchar) 8613 ASC_SYN_MAX_OFFSET)); 8614 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT); 8615 } 8616 } 8617 if (asc_dvc->in_critical_cnt != 0) { 8618 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY); 8619 return (ERR); 8620 } 8621 asc_dvc->in_critical_cnt++; 8622 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8623 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) { 8624 asc_dvc->in_critical_cnt--; 8625 return (ERR); 8626 } 8627 #if !CC_VERY_LONG_SG_LIST 8628 if (sg_entry_cnt > ASC_MAX_SG_LIST) { 8629 asc_dvc->in_critical_cnt--; 8630 return (ERR); 8631 } 8632 #endif /* !CC_VERY_LONG_SG_LIST */ 8633 if (sg_entry_cnt == 1) { 8634 scsiq->q1.data_addr = 8635 (ADV_PADDR)sg_head->sg_list[0].addr; 8636 scsiq->q1.data_cnt = 8637 (ADV_DCNT)sg_head->sg_list[0].bytes; 8638 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE); 8639 } 8640 sg_entry_cnt_minus_one = sg_entry_cnt - 1; 8641 } 8642 scsi_cmd = scsiq->cdbptr[0]; 8643 disable_syn_offset_one_fix = FALSE; 8644 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) && 8645 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { 8646 if (scsiq->q1.cntl & QC_SG_HEAD) { 8647 data_cnt = 0; 8648 for (i = 0; i < sg_entry_cnt; i++) { 8649 data_cnt += 8650 (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i]. 8651 bytes); 8652 } 8653 } else { 8654 data_cnt = le32_to_cpu(scsiq->q1.data_cnt); 8655 } 8656 if (data_cnt != 0UL) { 8657 if (data_cnt < 512UL) { 8658 disable_syn_offset_one_fix = TRUE; 8659 } else { 8660 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST; 8661 i++) { 8662 disable_cmd = 8663 _syn_offset_one_disable_cmd[i]; 8664 if (disable_cmd == 0xFF) { 8665 break; 8666 } 8667 if (scsi_cmd == disable_cmd) { 8668 disable_syn_offset_one_fix = 8669 TRUE; 8670 break; 8671 } 8672 } 8673 } 8674 } 8675 } 8676 if (disable_syn_offset_one_fix) { 8677 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG; 8678 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | 8679 ASC_TAG_FLAG_DISABLE_DISCONNECT); 8680 } else { 8681 scsiq->q2.tag_code &= 0x27; 8682 } 8683 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8684 if (asc_dvc->bug_fix_cntl) { 8685 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8686 if ((scsi_cmd == READ_6) || 8687 (scsi_cmd == READ_10)) { 8688 addr = 8689 (ADV_PADDR)le32_to_cpu(sg_head-> 8690 sg_list 8691 [sg_entry_cnt_minus_one]. 8692 addr) + 8693 (ADV_DCNT)le32_to_cpu(sg_head-> 8694 sg_list 8695 [sg_entry_cnt_minus_one]. 8696 bytes); 8697 extra_bytes = 8698 (uchar)((ushort)addr & 0x0003); 8699 if ((extra_bytes != 0) 8700 && 8701 ((scsiq->q2. 8702 tag_code & 8703 ASC_TAG_FLAG_EXTRA_BYTES) 8704 == 0)) { 8705 scsiq->q2.tag_code |= 8706 ASC_TAG_FLAG_EXTRA_BYTES; 8707 scsiq->q1.extra_bytes = 8708 extra_bytes; 8709 data_cnt = 8710 le32_to_cpu(sg_head-> 8711 sg_list 8712 [sg_entry_cnt_minus_one]. 8713 bytes); 8714 data_cnt -= 8715 (ASC_DCNT) extra_bytes; 8716 sg_head-> 8717 sg_list 8718 [sg_entry_cnt_minus_one]. 8719 bytes = 8720 cpu_to_le32(data_cnt); 8721 } 8722 } 8723 } 8724 } 8725 sg_head->entry_to_copy = sg_head->entry_cnt; 8726 #if CC_VERY_LONG_SG_LIST 8727 /* 8728 * Set the sg_entry_cnt to the maximum possible. The rest of 8729 * the SG elements will be copied when the RISC completes the 8730 * SG elements that fit and halts. 8731 */ 8732 if (sg_entry_cnt > ASC_MAX_SG_LIST) { 8733 sg_entry_cnt = ASC_MAX_SG_LIST; 8734 } 8735 #endif /* CC_VERY_LONG_SG_LIST */ 8736 n_q_required = AscSgListToQueue(sg_entry_cnt); 8737 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >= 8738 (uint) n_q_required) 8739 || ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8740 if ((sta = 8741 AscSendScsiQueue(asc_dvc, scsiq, 8742 n_q_required)) == 1) { 8743 asc_dvc->in_critical_cnt--; 8744 return (sta); 8745 } 8746 } 8747 } else { 8748 if (asc_dvc->bug_fix_cntl) { 8749 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8750 if ((scsi_cmd == READ_6) || 8751 (scsi_cmd == READ_10)) { 8752 addr = 8753 le32_to_cpu(scsiq->q1.data_addr) + 8754 le32_to_cpu(scsiq->q1.data_cnt); 8755 extra_bytes = 8756 (uchar)((ushort)addr & 0x0003); 8757 if ((extra_bytes != 0) 8758 && 8759 ((scsiq->q2. 8760 tag_code & 8761 ASC_TAG_FLAG_EXTRA_BYTES) 8762 == 0)) { 8763 data_cnt = 8764 le32_to_cpu(scsiq->q1. 8765 data_cnt); 8766 if (((ushort)data_cnt & 0x01FF) 8767 == 0) { 8768 scsiq->q2.tag_code |= 8769 ASC_TAG_FLAG_EXTRA_BYTES; 8770 data_cnt -= (ASC_DCNT) 8771 extra_bytes; 8772 scsiq->q1.data_cnt = 8773 cpu_to_le32 8774 (data_cnt); 8775 scsiq->q1.extra_bytes = 8776 extra_bytes; 8777 } 8778 } 8779 } 8780 } 8781 } 8782 n_q_required = 1; 8783 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) || 8784 ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8785 if ((sta = AscSendScsiQueue(asc_dvc, scsiq, 8786 n_q_required)) == 1) { 8787 asc_dvc->in_critical_cnt--; 8788 return (sta); 8789 } 8790 } 8791 } 8792 asc_dvc->in_critical_cnt--; 8793 return (sta); 8794 } 8795 8796 /* 8797 * AdvExeScsiQueue() - Send a request to the RISC microcode program. 8798 * 8799 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q, 8800 * add the carrier to the ICQ (Initiator Command Queue), and tickle the 8801 * RISC to notify it a new command is ready to be executed. 8802 * 8803 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be 8804 * set to SCSI_MAX_RETRY. 8805 * 8806 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode 8807 * for DMA addresses or math operations are byte swapped to little-endian 8808 * order. 8809 * 8810 * Return: 8811 * ADV_SUCCESS(1) - The request was successfully queued. 8812 * ADV_BUSY(0) - Resource unavailable; Retry again after pending 8813 * request completes. 8814 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure 8815 * host IC error. 8816 */ 8817 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq) 8818 { 8819 AdvPortAddr iop_base; 8820 ADV_PADDR req_paddr; 8821 ADV_CARR_T *new_carrp; 8822 8823 /* 8824 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID. 8825 */ 8826 if (scsiq->target_id > ADV_MAX_TID) { 8827 scsiq->host_status = QHSTA_M_INVALID_DEVICE; 8828 scsiq->done_status = QD_WITH_ERROR; 8829 return ADV_ERROR; 8830 } 8831 8832 iop_base = asc_dvc->iop_base; 8833 8834 /* 8835 * Allocate a carrier ensuring at least one carrier always 8836 * remains on the freelist and initialize fields. 8837 */ 8838 if ((new_carrp = asc_dvc->carr_freelist) == NULL) { 8839 return ADV_BUSY; 8840 } 8841 asc_dvc->carr_freelist = (ADV_CARR_T *) 8842 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa)); 8843 asc_dvc->carr_pending_cnt++; 8844 8845 /* 8846 * Set the carrier to be a stopper by setting 'next_vpa' 8847 * to the stopper value. The current stopper will be changed 8848 * below to point to the new stopper. 8849 */ 8850 new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 8851 8852 /* 8853 * Clear the ADV_SCSI_REQ_Q done flag. 8854 */ 8855 scsiq->a_flag &= ~ADV_SCSIQ_DONE; 8856 8857 req_paddr = virt_to_bus(scsiq); 8858 BUG_ON(req_paddr & 31); 8859 /* Wait for assertion before making little-endian */ 8860 req_paddr = cpu_to_le32(req_paddr); 8861 8862 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */ 8863 scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq)); 8864 scsiq->scsiq_rptr = req_paddr; 8865 8866 scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp)); 8867 /* 8868 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian 8869 * order during initialization. 8870 */ 8871 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa; 8872 8873 /* 8874 * Use the current stopper to send the ADV_SCSI_REQ_Q command to 8875 * the microcode. The newly allocated stopper will become the new 8876 * stopper. 8877 */ 8878 asc_dvc->icq_sp->areq_vpa = req_paddr; 8879 8880 /* 8881 * Set the 'next_vpa' pointer for the old stopper to be the 8882 * physical address of the new stopper. The RISC can only 8883 * follow physical addresses. 8884 */ 8885 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa; 8886 8887 /* 8888 * Set the host adapter stopper pointer to point to the new carrier. 8889 */ 8890 asc_dvc->icq_sp = new_carrp; 8891 8892 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 8893 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 8894 /* 8895 * Tickle the RISC to tell it to read its Command Queue Head pointer. 8896 */ 8897 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A); 8898 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 8899 /* 8900 * Clear the tickle value. In the ASC-3550 the RISC flag 8901 * command 'clr_tickle_a' does not work unless the host 8902 * value is cleared. 8903 */ 8904 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 8905 ADV_TICKLE_NOP); 8906 } 8907 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 8908 /* 8909 * Notify the RISC a carrier is ready by writing the physical 8910 * address of the new carrier stopper to the COMMA register. 8911 */ 8912 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 8913 le32_to_cpu(new_carrp->carr_pa)); 8914 } 8915 8916 return ADV_SUCCESS; 8917 } 8918 8919 /* 8920 * Execute a single 'Scsi_Cmnd'. 8921 */ 8922 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp) 8923 { 8924 int ret, err_code; 8925 struct asc_board *boardp = shost_priv(scp->device->host); 8926 8927 ASC_DBG(1, "scp 0x%p\n", scp); 8928 8929 if (ASC_NARROW_BOARD(boardp)) { 8930 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 8931 struct asc_scsi_q asc_scsi_q; 8932 8933 /* asc_build_req() can not return ASC_BUSY. */ 8934 ret = asc_build_req(boardp, scp, &asc_scsi_q); 8935 if (ret == ASC_ERROR) { 8936 ASC_STATS(scp->device->host, build_error); 8937 return ASC_ERROR; 8938 } 8939 8940 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q); 8941 kfree(asc_scsi_q.sg_head); 8942 err_code = asc_dvc->err_code; 8943 } else { 8944 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 8945 ADV_SCSI_REQ_Q *adv_scsiqp; 8946 8947 switch (adv_build_req(boardp, scp, &adv_scsiqp)) { 8948 case ASC_NOERROR: 8949 ASC_DBG(3, "adv_build_req ASC_NOERROR\n"); 8950 break; 8951 case ASC_BUSY: 8952 ASC_DBG(1, "adv_build_req ASC_BUSY\n"); 8953 /* 8954 * The asc_stats fields 'adv_build_noreq' and 8955 * 'adv_build_nosg' count wide board busy conditions. 8956 * They are updated in adv_build_req and 8957 * adv_get_sglist, respectively. 8958 */ 8959 return ASC_BUSY; 8960 case ASC_ERROR: 8961 default: 8962 ASC_DBG(1, "adv_build_req ASC_ERROR\n"); 8963 ASC_STATS(scp->device->host, build_error); 8964 return ASC_ERROR; 8965 } 8966 8967 ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp); 8968 err_code = adv_dvc->err_code; 8969 } 8970 8971 switch (ret) { 8972 case ASC_NOERROR: 8973 ASC_STATS(scp->device->host, exe_noerror); 8974 /* 8975 * Increment monotonically increasing per device 8976 * successful request counter. Wrapping doesn't matter. 8977 */ 8978 boardp->reqcnt[scp->device->id]++; 8979 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n"); 8980 break; 8981 case ASC_BUSY: 8982 ASC_STATS(scp->device->host, exe_busy); 8983 break; 8984 case ASC_ERROR: 8985 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, " 8986 "err_code 0x%x\n", err_code); 8987 ASC_STATS(scp->device->host, exe_error); 8988 scp->result = HOST_BYTE(DID_ERROR); 8989 break; 8990 default: 8991 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, " 8992 "err_code 0x%x\n", err_code); 8993 ASC_STATS(scp->device->host, exe_unknown); 8994 scp->result = HOST_BYTE(DID_ERROR); 8995 break; 8996 } 8997 8998 ASC_DBG(1, "end\n"); 8999 return ret; 9000 } 9001 9002 /* 9003 * advansys_queuecommand() - interrupt-driven I/O entrypoint. 9004 * 9005 * This function always returns 0. Command return status is saved 9006 * in the 'scp' result field. 9007 */ 9008 static int 9009 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *)) 9010 { 9011 struct Scsi_Host *shost = scp->device->host; 9012 int asc_res, result = 0; 9013 9014 ASC_STATS(shost, queuecommand); 9015 scp->scsi_done = done; 9016 9017 asc_res = asc_execute_scsi_cmnd(scp); 9018 9019 switch (asc_res) { 9020 case ASC_NOERROR: 9021 break; 9022 case ASC_BUSY: 9023 result = SCSI_MLQUEUE_HOST_BUSY; 9024 break; 9025 case ASC_ERROR: 9026 default: 9027 asc_scsi_done(scp); 9028 break; 9029 } 9030 9031 return result; 9032 } 9033 9034 static DEF_SCSI_QCMD(advansys_queuecommand) 9035 9036 static ushort AscGetEisaChipCfg(PortAddr iop_base) 9037 { 9038 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 9039 (PortAddr) (ASC_EISA_CFG_IOP_MASK); 9040 return inpw(eisa_cfg_iop); 9041 } 9042 9043 /* 9044 * Return the BIOS address of the adapter at the specified 9045 * I/O port and with the specified bus type. 9046 */ 9047 static unsigned short AscGetChipBiosAddress(PortAddr iop_base, 9048 unsigned short bus_type) 9049 { 9050 unsigned short cfg_lsw; 9051 unsigned short bios_addr; 9052 9053 /* 9054 * The PCI BIOS is re-located by the motherboard BIOS. Because 9055 * of this the driver can not determine where a PCI BIOS is 9056 * loaded and executes. 9057 */ 9058 if (bus_type & ASC_IS_PCI) 9059 return 0; 9060 9061 if ((bus_type & ASC_IS_EISA) != 0) { 9062 cfg_lsw = AscGetEisaChipCfg(iop_base); 9063 cfg_lsw &= 0x000F; 9064 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE; 9065 return bios_addr; 9066 } 9067 9068 cfg_lsw = AscGetChipCfgLsw(iop_base); 9069 9070 /* 9071 * ISA PnP uses the top bit as the 32K BIOS flag 9072 */ 9073 if (bus_type == ASC_IS_ISAPNP) 9074 cfg_lsw &= 0x7FFF; 9075 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE; 9076 return bios_addr; 9077 } 9078 9079 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id) 9080 { 9081 ushort cfg_lsw; 9082 9083 if (AscGetChipScsiID(iop_base) == new_host_id) { 9084 return (new_host_id); 9085 } 9086 cfg_lsw = AscGetChipCfgLsw(iop_base); 9087 cfg_lsw &= 0xF8FF; 9088 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8); 9089 AscSetChipCfgLsw(iop_base, cfg_lsw); 9090 return (AscGetChipScsiID(iop_base)); 9091 } 9092 9093 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base) 9094 { 9095 unsigned char sc; 9096 9097 AscSetBank(iop_base, 1); 9098 sc = inp(iop_base + IOP_REG_SC); 9099 AscSetBank(iop_base, 0); 9100 return sc; 9101 } 9102 9103 static unsigned char AscGetChipVersion(PortAddr iop_base, 9104 unsigned short bus_type) 9105 { 9106 if (bus_type & ASC_IS_EISA) { 9107 PortAddr eisa_iop; 9108 unsigned char revision; 9109 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 9110 (PortAddr) ASC_EISA_REV_IOP_MASK; 9111 revision = inp(eisa_iop); 9112 return ASC_CHIP_MIN_VER_EISA - 1 + revision; 9113 } 9114 return AscGetChipVerNo(iop_base); 9115 } 9116 9117 #ifdef CONFIG_ISA 9118 static void AscEnableIsaDma(uchar dma_channel) 9119 { 9120 if (dma_channel < 4) { 9121 outp(0x000B, (ushort)(0xC0 | dma_channel)); 9122 outp(0x000A, dma_channel); 9123 } else if (dma_channel < 8) { 9124 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4))); 9125 outp(0x00D4, (ushort)(dma_channel - 4)); 9126 } 9127 } 9128 #endif /* CONFIG_ISA */ 9129 9130 static int AscStopQueueExe(PortAddr iop_base) 9131 { 9132 int count = 0; 9133 9134 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) { 9135 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 9136 ASC_STOP_REQ_RISC_STOP); 9137 do { 9138 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) & 9139 ASC_STOP_ACK_RISC_STOP) { 9140 return (1); 9141 } 9142 mdelay(100); 9143 } while (count++ < 20); 9144 } 9145 return (0); 9146 } 9147 9148 static ASC_DCNT AscGetMaxDmaCount(ushort bus_type) 9149 { 9150 if (bus_type & ASC_IS_ISA) 9151 return ASC_MAX_ISA_DMA_COUNT; 9152 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) 9153 return ASC_MAX_VL_DMA_COUNT; 9154 return ASC_MAX_PCI_DMA_COUNT; 9155 } 9156 9157 #ifdef CONFIG_ISA 9158 static ushort AscGetIsaDmaChannel(PortAddr iop_base) 9159 { 9160 ushort channel; 9161 9162 channel = AscGetChipCfgLsw(iop_base) & 0x0003; 9163 if (channel == 0x03) 9164 return (0); 9165 else if (channel == 0x00) 9166 return (7); 9167 return (channel + 4); 9168 } 9169 9170 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel) 9171 { 9172 ushort cfg_lsw; 9173 uchar value; 9174 9175 if ((dma_channel >= 5) && (dma_channel <= 7)) { 9176 if (dma_channel == 7) 9177 value = 0x00; 9178 else 9179 value = dma_channel - 4; 9180 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC; 9181 cfg_lsw |= value; 9182 AscSetChipCfgLsw(iop_base, cfg_lsw); 9183 return (AscGetIsaDmaChannel(iop_base)); 9184 } 9185 return 0; 9186 } 9187 9188 static uchar AscGetIsaDmaSpeed(PortAddr iop_base) 9189 { 9190 uchar speed_value; 9191 9192 AscSetBank(iop_base, 1); 9193 speed_value = AscReadChipDmaSpeed(iop_base); 9194 speed_value &= 0x07; 9195 AscSetBank(iop_base, 0); 9196 return speed_value; 9197 } 9198 9199 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value) 9200 { 9201 speed_value &= 0x07; 9202 AscSetBank(iop_base, 1); 9203 AscWriteChipDmaSpeed(iop_base, speed_value); 9204 AscSetBank(iop_base, 0); 9205 return AscGetIsaDmaSpeed(iop_base); 9206 } 9207 #endif /* CONFIG_ISA */ 9208 9209 static ushort AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc) 9210 { 9211 int i; 9212 PortAddr iop_base; 9213 ushort warn_code; 9214 uchar chip_version; 9215 9216 iop_base = asc_dvc->iop_base; 9217 warn_code = 0; 9218 asc_dvc->err_code = 0; 9219 if ((asc_dvc->bus_type & 9220 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) { 9221 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE; 9222 } 9223 AscSetChipControl(iop_base, CC_HALT); 9224 AscSetChipStatus(iop_base, 0); 9225 asc_dvc->bug_fix_cntl = 0; 9226 asc_dvc->pci_fix_asyn_xfer = 0; 9227 asc_dvc->pci_fix_asyn_xfer_always = 0; 9228 /* asc_dvc->init_state initialized in AscInitGetConfig(). */ 9229 asc_dvc->sdtr_done = 0; 9230 asc_dvc->cur_total_qng = 0; 9231 asc_dvc->is_in_int = 0; 9232 asc_dvc->in_critical_cnt = 0; 9233 asc_dvc->last_q_shortage = 0; 9234 asc_dvc->use_tagged_qng = 0; 9235 asc_dvc->no_scam = 0; 9236 asc_dvc->unit_not_ready = 0; 9237 asc_dvc->queue_full_or_busy = 0; 9238 asc_dvc->redo_scam = 0; 9239 asc_dvc->res2 = 0; 9240 asc_dvc->min_sdtr_index = 0; 9241 asc_dvc->cfg->can_tagged_qng = 0; 9242 asc_dvc->cfg->cmd_qng_enabled = 0; 9243 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL; 9244 asc_dvc->init_sdtr = 0; 9245 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; 9246 asc_dvc->scsi_reset_wait = 3; 9247 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET; 9248 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type); 9249 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET; 9250 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET; 9251 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; 9252 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type); 9253 asc_dvc->cfg->chip_version = chip_version; 9254 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period; 9255 asc_dvc->max_sdtr_index = 7; 9256 if ((asc_dvc->bus_type & ASC_IS_PCI) && 9257 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { 9258 asc_dvc->bus_type = ASC_IS_PCI_ULTRA; 9259 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period; 9260 asc_dvc->max_sdtr_index = 15; 9261 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) { 9262 AscSetExtraControl(iop_base, 9263 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 9264 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) { 9265 AscSetExtraControl(iop_base, 9266 (SEC_ACTIVE_NEGATE | 9267 SEC_ENABLE_FILTER)); 9268 } 9269 } 9270 if (asc_dvc->bus_type == ASC_IS_PCI) { 9271 AscSetExtraControl(iop_base, 9272 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 9273 } 9274 9275 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED; 9276 #ifdef CONFIG_ISA 9277 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) { 9278 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) { 9279 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT); 9280 asc_dvc->bus_type = ASC_IS_ISAPNP; 9281 } 9282 asc_dvc->cfg->isa_dma_channel = 9283 (uchar)AscGetIsaDmaChannel(iop_base); 9284 } 9285 #endif /* CONFIG_ISA */ 9286 for (i = 0; i <= ASC_MAX_TID; i++) { 9287 asc_dvc->cur_dvc_qng[i] = 0; 9288 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; 9289 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L; 9290 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L; 9291 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; 9292 } 9293 return warn_code; 9294 } 9295 9296 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg) 9297 { 9298 int retry; 9299 9300 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) { 9301 unsigned char read_back; 9302 AscSetChipEEPCmd(iop_base, cmd_reg); 9303 mdelay(1); 9304 read_back = AscGetChipEEPCmd(iop_base); 9305 if (read_back == cmd_reg) 9306 return 1; 9307 } 9308 return 0; 9309 } 9310 9311 static void AscWaitEEPRead(void) 9312 { 9313 mdelay(1); 9314 } 9315 9316 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr) 9317 { 9318 ushort read_wval; 9319 uchar cmd_reg; 9320 9321 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 9322 AscWaitEEPRead(); 9323 cmd_reg = addr | ASC_EEP_CMD_READ; 9324 AscWriteEEPCmdReg(iop_base, cmd_reg); 9325 AscWaitEEPRead(); 9326 read_wval = AscGetChipEEPData(iop_base); 9327 AscWaitEEPRead(); 9328 return read_wval; 9329 } 9330 9331 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 9332 ushort bus_type) 9333 { 9334 ushort wval; 9335 ushort sum; 9336 ushort *wbuf; 9337 int cfg_beg; 9338 int cfg_end; 9339 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 9340 int s_addr; 9341 9342 wbuf = (ushort *)cfg_buf; 9343 sum = 0; 9344 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */ 9345 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9346 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 9347 sum += *wbuf; 9348 } 9349 if (bus_type & ASC_IS_VL) { 9350 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 9351 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 9352 } else { 9353 cfg_beg = ASC_EEP_DVC_CFG_BEG; 9354 cfg_end = ASC_EEP_MAX_DVC_ADDR; 9355 } 9356 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 9357 wval = AscReadEEPWord(iop_base, (uchar)s_addr); 9358 if (s_addr <= uchar_end_in_config) { 9359 /* 9360 * Swap all char fields - must unswap bytes already swapped 9361 * by AscReadEEPWord(). 9362 */ 9363 *wbuf = le16_to_cpu(wval); 9364 } else { 9365 /* Don't swap word field at the end - cntl field. */ 9366 *wbuf = wval; 9367 } 9368 sum += wval; /* Checksum treats all EEPROM data as words. */ 9369 } 9370 /* 9371 * Read the checksum word which will be compared against 'sum' 9372 * by the caller. Word field already swapped. 9373 */ 9374 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 9375 return sum; 9376 } 9377 9378 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc) 9379 { 9380 PortAddr iop_base; 9381 ushort q_addr; 9382 ushort saved_word; 9383 int sta; 9384 9385 iop_base = asc_dvc->iop_base; 9386 sta = 0; 9387 q_addr = ASC_QNO_TO_QADDR(241); 9388 saved_word = AscReadLramWord(iop_base, q_addr); 9389 AscSetChipLramAddr(iop_base, q_addr); 9390 AscSetChipLramData(iop_base, 0x55AA); 9391 mdelay(10); 9392 AscSetChipLramAddr(iop_base, q_addr); 9393 if (AscGetChipLramData(iop_base) == 0x55AA) { 9394 sta = 1; 9395 AscWriteLramWord(iop_base, q_addr, saved_word); 9396 } 9397 return (sta); 9398 } 9399 9400 static void AscWaitEEPWrite(void) 9401 { 9402 mdelay(20); 9403 } 9404 9405 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg) 9406 { 9407 ushort read_back; 9408 int retry; 9409 9410 retry = 0; 9411 while (TRUE) { 9412 AscSetChipEEPData(iop_base, data_reg); 9413 mdelay(1); 9414 read_back = AscGetChipEEPData(iop_base); 9415 if (read_back == data_reg) { 9416 return (1); 9417 } 9418 if (retry++ > ASC_EEP_MAX_RETRY) { 9419 return (0); 9420 } 9421 } 9422 } 9423 9424 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val) 9425 { 9426 ushort read_wval; 9427 9428 read_wval = AscReadEEPWord(iop_base, addr); 9429 if (read_wval != word_val) { 9430 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE); 9431 AscWaitEEPRead(); 9432 AscWriteEEPDataReg(iop_base, word_val); 9433 AscWaitEEPRead(); 9434 AscWriteEEPCmdReg(iop_base, 9435 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr)); 9436 AscWaitEEPWrite(); 9437 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 9438 AscWaitEEPRead(); 9439 return (AscReadEEPWord(iop_base, addr)); 9440 } 9441 return (read_wval); 9442 } 9443 9444 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 9445 ushort bus_type) 9446 { 9447 int n_error; 9448 ushort *wbuf; 9449 ushort word; 9450 ushort sum; 9451 int s_addr; 9452 int cfg_beg; 9453 int cfg_end; 9454 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 9455 9456 wbuf = (ushort *)cfg_buf; 9457 n_error = 0; 9458 sum = 0; 9459 /* Write two config words; AscWriteEEPWord() will swap bytes. */ 9460 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9461 sum += *wbuf; 9462 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 9463 n_error++; 9464 } 9465 } 9466 if (bus_type & ASC_IS_VL) { 9467 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 9468 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 9469 } else { 9470 cfg_beg = ASC_EEP_DVC_CFG_BEG; 9471 cfg_end = ASC_EEP_MAX_DVC_ADDR; 9472 } 9473 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 9474 if (s_addr <= uchar_end_in_config) { 9475 /* 9476 * This is a char field. Swap char fields before they are 9477 * swapped again by AscWriteEEPWord(). 9478 */ 9479 word = cpu_to_le16(*wbuf); 9480 if (word != 9481 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) { 9482 n_error++; 9483 } 9484 } else { 9485 /* Don't swap word field at the end - cntl field. */ 9486 if (*wbuf != 9487 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 9488 n_error++; 9489 } 9490 } 9491 sum += *wbuf; /* Checksum calculated from word values. */ 9492 } 9493 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */ 9494 *wbuf = sum; 9495 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) { 9496 n_error++; 9497 } 9498 9499 /* Read EEPROM back again. */ 9500 wbuf = (ushort *)cfg_buf; 9501 /* 9502 * Read two config words; Byte-swapping done by AscReadEEPWord(). 9503 */ 9504 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9505 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) { 9506 n_error++; 9507 } 9508 } 9509 if (bus_type & ASC_IS_VL) { 9510 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 9511 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 9512 } else { 9513 cfg_beg = ASC_EEP_DVC_CFG_BEG; 9514 cfg_end = ASC_EEP_MAX_DVC_ADDR; 9515 } 9516 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 9517 if (s_addr <= uchar_end_in_config) { 9518 /* 9519 * Swap all char fields. Must unswap bytes already swapped 9520 * by AscReadEEPWord(). 9521 */ 9522 word = 9523 le16_to_cpu(AscReadEEPWord 9524 (iop_base, (uchar)s_addr)); 9525 } else { 9526 /* Don't swap word field at the end - cntl field. */ 9527 word = AscReadEEPWord(iop_base, (uchar)s_addr); 9528 } 9529 if (*wbuf != word) { 9530 n_error++; 9531 } 9532 } 9533 /* Read checksum; Byte swapping not needed. */ 9534 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) { 9535 n_error++; 9536 } 9537 return n_error; 9538 } 9539 9540 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 9541 ushort bus_type) 9542 { 9543 int retry; 9544 int n_error; 9545 9546 retry = 0; 9547 while (TRUE) { 9548 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, 9549 bus_type)) == 0) { 9550 break; 9551 } 9552 if (++retry > ASC_EEP_MAX_RETRY) { 9553 break; 9554 } 9555 } 9556 return n_error; 9557 } 9558 9559 static ushort AscInitFromEEP(ASC_DVC_VAR *asc_dvc) 9560 { 9561 ASCEEP_CONFIG eep_config_buf; 9562 ASCEEP_CONFIG *eep_config; 9563 PortAddr iop_base; 9564 ushort chksum; 9565 ushort warn_code; 9566 ushort cfg_msw, cfg_lsw; 9567 int i; 9568 int write_eep = 0; 9569 9570 iop_base = asc_dvc->iop_base; 9571 warn_code = 0; 9572 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE); 9573 AscStopQueueExe(iop_base); 9574 if ((AscStopChip(iop_base) == FALSE) || 9575 (AscGetChipScsiCtrl(iop_base) != 0)) { 9576 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE; 9577 AscResetChipAndScsiBus(asc_dvc); 9578 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 9579 } 9580 if (AscIsChipHalted(iop_base) == FALSE) { 9581 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 9582 return (warn_code); 9583 } 9584 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 9585 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 9586 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 9587 return (warn_code); 9588 } 9589 eep_config = (ASCEEP_CONFIG *)&eep_config_buf; 9590 cfg_msw = AscGetChipCfgMsw(iop_base); 9591 cfg_lsw = AscGetChipCfgLsw(iop_base); 9592 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 9593 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9594 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 9595 AscSetChipCfgMsw(iop_base, cfg_msw); 9596 } 9597 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); 9598 ASC_DBG(1, "chksum 0x%x\n", chksum); 9599 if (chksum == 0) { 9600 chksum = 0xaa55; 9601 } 9602 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 9603 warn_code |= ASC_WARN_AUTO_CONFIG; 9604 if (asc_dvc->cfg->chip_version == 3) { 9605 if (eep_config->cfg_lsw != cfg_lsw) { 9606 warn_code |= ASC_WARN_EEPROM_RECOVER; 9607 eep_config->cfg_lsw = 9608 AscGetChipCfgLsw(iop_base); 9609 } 9610 if (eep_config->cfg_msw != cfg_msw) { 9611 warn_code |= ASC_WARN_EEPROM_RECOVER; 9612 eep_config->cfg_msw = 9613 AscGetChipCfgMsw(iop_base); 9614 } 9615 } 9616 } 9617 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9618 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; 9619 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum); 9620 if (chksum != eep_config->chksum) { 9621 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == 9622 ASC_CHIP_VER_PCI_ULTRA_3050) { 9623 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n"); 9624 eep_config->init_sdtr = 0xFF; 9625 eep_config->disc_enable = 0xFF; 9626 eep_config->start_motor = 0xFF; 9627 eep_config->use_cmd_qng = 0; 9628 eep_config->max_total_qng = 0xF0; 9629 eep_config->max_tag_qng = 0x20; 9630 eep_config->cntl = 0xBFFF; 9631 ASC_EEP_SET_CHIP_ID(eep_config, 7); 9632 eep_config->no_scam = 0; 9633 eep_config->adapter_info[0] = 0; 9634 eep_config->adapter_info[1] = 0; 9635 eep_config->adapter_info[2] = 0; 9636 eep_config->adapter_info[3] = 0; 9637 eep_config->adapter_info[4] = 0; 9638 /* Indicate EEPROM-less board. */ 9639 eep_config->adapter_info[5] = 0xBB; 9640 } else { 9641 ASC_PRINT 9642 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n"); 9643 write_eep = 1; 9644 warn_code |= ASC_WARN_EEPROM_CHKSUM; 9645 } 9646 } 9647 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr; 9648 asc_dvc->cfg->disc_enable = eep_config->disc_enable; 9649 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng; 9650 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config); 9651 asc_dvc->start_motor = eep_config->start_motor; 9652 asc_dvc->dvc_cntl = eep_config->cntl; 9653 asc_dvc->no_scam = eep_config->no_scam; 9654 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0]; 9655 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1]; 9656 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2]; 9657 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3]; 9658 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4]; 9659 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5]; 9660 if (!AscTestExternalLram(asc_dvc)) { 9661 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == 9662 ASC_IS_PCI_ULTRA)) { 9663 eep_config->max_total_qng = 9664 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; 9665 eep_config->max_tag_qng = 9666 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; 9667 } else { 9668 eep_config->cfg_msw |= 0x0800; 9669 cfg_msw |= 0x0800; 9670 AscSetChipCfgMsw(iop_base, cfg_msw); 9671 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; 9672 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; 9673 } 9674 } else { 9675 } 9676 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) { 9677 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; 9678 } 9679 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) { 9680 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; 9681 } 9682 if (eep_config->max_tag_qng > eep_config->max_total_qng) { 9683 eep_config->max_tag_qng = eep_config->max_total_qng; 9684 } 9685 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) { 9686 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; 9687 } 9688 asc_dvc->max_total_qng = eep_config->max_total_qng; 9689 if ((eep_config->use_cmd_qng & eep_config->disc_enable) != 9690 eep_config->use_cmd_qng) { 9691 eep_config->disc_enable = eep_config->use_cmd_qng; 9692 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9693 } 9694 ASC_EEP_SET_CHIP_ID(eep_config, 9695 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID); 9696 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config); 9697 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && 9698 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { 9699 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; 9700 } 9701 9702 for (i = 0; i <= ASC_MAX_TID; i++) { 9703 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; 9704 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng; 9705 asc_dvc->cfg->sdtr_period_offset[i] = 9706 (uchar)(ASC_DEF_SDTR_OFFSET | 9707 (asc_dvc->min_sdtr_index << 4)); 9708 } 9709 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); 9710 if (write_eep) { 9711 if ((i = AscSetEEPConfig(iop_base, eep_config, 9712 asc_dvc->bus_type)) != 0) { 9713 ASC_PRINT1 9714 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n", 9715 i); 9716 } else { 9717 ASC_PRINT 9718 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n"); 9719 } 9720 } 9721 return (warn_code); 9722 } 9723 9724 static int AscInitGetConfig(struct Scsi_Host *shost) 9725 { 9726 struct asc_board *board = shost_priv(shost); 9727 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9728 unsigned short warn_code = 0; 9729 9730 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG; 9731 if (asc_dvc->err_code != 0) 9732 return asc_dvc->err_code; 9733 9734 if (AscFindSignature(asc_dvc->iop_base)) { 9735 warn_code |= AscInitAscDvcVar(asc_dvc); 9736 warn_code |= AscInitFromEEP(asc_dvc); 9737 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG; 9738 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) 9739 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; 9740 } else { 9741 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9742 } 9743 9744 switch (warn_code) { 9745 case 0: /* No error */ 9746 break; 9747 case ASC_WARN_IO_PORT_ROTATE: 9748 shost_printk(KERN_WARNING, shost, "I/O port address " 9749 "modified\n"); 9750 break; 9751 case ASC_WARN_AUTO_CONFIG: 9752 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9753 "enabled\n"); 9754 break; 9755 case ASC_WARN_EEPROM_CHKSUM: 9756 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9757 break; 9758 case ASC_WARN_IRQ_MODIFIED: 9759 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9760 break; 9761 case ASC_WARN_CMD_QNG_CONFLICT: 9762 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o " 9763 "disconnects\n"); 9764 break; 9765 default: 9766 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9767 warn_code); 9768 break; 9769 } 9770 9771 if (asc_dvc->err_code != 0) 9772 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9773 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9774 9775 return asc_dvc->err_code; 9776 } 9777 9778 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 9779 { 9780 struct asc_board *board = shost_priv(shost); 9781 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9782 PortAddr iop_base = asc_dvc->iop_base; 9783 unsigned short cfg_msw; 9784 unsigned short warn_code = 0; 9785 9786 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG; 9787 if (asc_dvc->err_code != 0) 9788 return asc_dvc->err_code; 9789 if (!AscFindSignature(asc_dvc->iop_base)) { 9790 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9791 return asc_dvc->err_code; 9792 } 9793 9794 cfg_msw = AscGetChipCfgMsw(iop_base); 9795 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 9796 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9797 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 9798 AscSetChipCfgMsw(iop_base, cfg_msw); 9799 } 9800 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) != 9801 asc_dvc->cfg->cmd_qng_enabled) { 9802 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled; 9803 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9804 } 9805 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 9806 warn_code |= ASC_WARN_AUTO_CONFIG; 9807 } 9808 #ifdef CONFIG_PCI 9809 if (asc_dvc->bus_type & ASC_IS_PCI) { 9810 cfg_msw &= 0xFFC0; 9811 AscSetChipCfgMsw(iop_base, cfg_msw); 9812 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { 9813 } else { 9814 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 9815 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 9816 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; 9817 asc_dvc->bug_fix_cntl |= 9818 ASC_BUG_FIX_ASYN_USE_SYN; 9819 } 9820 } 9821 } else 9822 #endif /* CONFIG_PCI */ 9823 if (asc_dvc->bus_type == ASC_IS_ISAPNP) { 9824 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) 9825 == ASC_CHIP_VER_ASYN_BUG) { 9826 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; 9827 } 9828 } 9829 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) != 9830 asc_dvc->cfg->chip_scsi_id) { 9831 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID; 9832 } 9833 #ifdef CONFIG_ISA 9834 if (asc_dvc->bus_type & ASC_IS_ISA) { 9835 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel); 9836 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed); 9837 } 9838 #endif /* CONFIG_ISA */ 9839 9840 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG; 9841 9842 switch (warn_code) { 9843 case 0: /* No error. */ 9844 break; 9845 case ASC_WARN_IO_PORT_ROTATE: 9846 shost_printk(KERN_WARNING, shost, "I/O port address " 9847 "modified\n"); 9848 break; 9849 case ASC_WARN_AUTO_CONFIG: 9850 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9851 "enabled\n"); 9852 break; 9853 case ASC_WARN_EEPROM_CHKSUM: 9854 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9855 break; 9856 case ASC_WARN_IRQ_MODIFIED: 9857 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9858 break; 9859 case ASC_WARN_CMD_QNG_CONFLICT: 9860 shost_printk(KERN_WARNING, shost, "tag queuing w/o " 9861 "disconnects\n"); 9862 break; 9863 default: 9864 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9865 warn_code); 9866 break; 9867 } 9868 9869 if (asc_dvc->err_code != 0) 9870 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9871 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9872 9873 return asc_dvc->err_code; 9874 } 9875 9876 /* 9877 * EEPROM Configuration. 9878 * 9879 * All drivers should use this structure to set the default EEPROM 9880 * configuration. The BIOS now uses this structure when it is built. 9881 * Additional structure information can be found in a_condor.h where 9882 * the structure is defined. 9883 * 9884 * The *_Field_IsChar structs are needed to correct for endianness. 9885 * These values are read from the board 16 bits at a time directly 9886 * into the structs. Because some fields are char, the values will be 9887 * in the wrong order. The *_Field_IsChar tells when to flip the 9888 * bytes. Data read and written to PCI memory is automatically swapped 9889 * on big-endian platforms so char fields read as words are actually being 9890 * unswapped on big-endian platforms. 9891 */ 9892 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = { 9893 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */ 9894 0x0000, /* cfg_msw */ 9895 0xFFFF, /* disc_enable */ 9896 0xFFFF, /* wdtr_able */ 9897 0xFFFF, /* sdtr_able */ 9898 0xFFFF, /* start_motor */ 9899 0xFFFF, /* tagqng_able */ 9900 0xFFFF, /* bios_scan */ 9901 0, /* scam_tolerant */ 9902 7, /* adapter_scsi_id */ 9903 0, /* bios_boot_delay */ 9904 3, /* scsi_reset_delay */ 9905 0, /* bios_id_lun */ 9906 0, /* termination */ 9907 0, /* reserved1 */ 9908 0xFFE7, /* bios_ctrl */ 9909 0xFFFF, /* ultra_able */ 9910 0, /* reserved2 */ 9911 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */ 9912 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9913 0, /* dvc_cntl */ 9914 0, /* bug_fix */ 9915 0, /* serial_number_word1 */ 9916 0, /* serial_number_word2 */ 9917 0, /* serial_number_word3 */ 9918 0, /* check_sum */ 9919 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9920 , /* oem_name[16] */ 9921 0, /* dvc_err_code */ 9922 0, /* adv_err_code */ 9923 0, /* adv_err_addr */ 9924 0, /* saved_dvc_err_code */ 9925 0, /* saved_adv_err_code */ 9926 0, /* saved_adv_err_addr */ 9927 0 /* num_of_err */ 9928 }; 9929 9930 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = { 9931 0, /* cfg_lsw */ 9932 0, /* cfg_msw */ 9933 0, /* -disc_enable */ 9934 0, /* wdtr_able */ 9935 0, /* sdtr_able */ 9936 0, /* start_motor */ 9937 0, /* tagqng_able */ 9938 0, /* bios_scan */ 9939 0, /* scam_tolerant */ 9940 1, /* adapter_scsi_id */ 9941 1, /* bios_boot_delay */ 9942 1, /* scsi_reset_delay */ 9943 1, /* bios_id_lun */ 9944 1, /* termination */ 9945 1, /* reserved1 */ 9946 0, /* bios_ctrl */ 9947 0, /* ultra_able */ 9948 0, /* reserved2 */ 9949 1, /* max_host_qng */ 9950 1, /* max_dvc_qng */ 9951 0, /* dvc_cntl */ 9952 0, /* bug_fix */ 9953 0, /* serial_number_word1 */ 9954 0, /* serial_number_word2 */ 9955 0, /* serial_number_word3 */ 9956 0, /* check_sum */ 9957 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9958 , /* oem_name[16] */ 9959 0, /* dvc_err_code */ 9960 0, /* adv_err_code */ 9961 0, /* adv_err_addr */ 9962 0, /* saved_dvc_err_code */ 9963 0, /* saved_adv_err_code */ 9964 0, /* saved_adv_err_addr */ 9965 0 /* num_of_err */ 9966 }; 9967 9968 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = { 9969 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 9970 0x0000, /* 01 cfg_msw */ 9971 0xFFFF, /* 02 disc_enable */ 9972 0xFFFF, /* 03 wdtr_able */ 9973 0x4444, /* 04 sdtr_speed1 */ 9974 0xFFFF, /* 05 start_motor */ 9975 0xFFFF, /* 06 tagqng_able */ 9976 0xFFFF, /* 07 bios_scan */ 9977 0, /* 08 scam_tolerant */ 9978 7, /* 09 adapter_scsi_id */ 9979 0, /* bios_boot_delay */ 9980 3, /* 10 scsi_reset_delay */ 9981 0, /* bios_id_lun */ 9982 0, /* 11 termination_se */ 9983 0, /* termination_lvd */ 9984 0xFFE7, /* 12 bios_ctrl */ 9985 0x4444, /* 13 sdtr_speed2 */ 9986 0x4444, /* 14 sdtr_speed3 */ 9987 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 9988 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9989 0, /* 16 dvc_cntl */ 9990 0x4444, /* 17 sdtr_speed4 */ 9991 0, /* 18 serial_number_word1 */ 9992 0, /* 19 serial_number_word2 */ 9993 0, /* 20 serial_number_word3 */ 9994 0, /* 21 check_sum */ 9995 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9996 , /* 22-29 oem_name[16] */ 9997 0, /* 30 dvc_err_code */ 9998 0, /* 31 adv_err_code */ 9999 0, /* 32 adv_err_addr */ 10000 0, /* 33 saved_dvc_err_code */ 10001 0, /* 34 saved_adv_err_code */ 10002 0, /* 35 saved_adv_err_addr */ 10003 0, /* 36 reserved */ 10004 0, /* 37 reserved */ 10005 0, /* 38 reserved */ 10006 0, /* 39 reserved */ 10007 0, /* 40 reserved */ 10008 0, /* 41 reserved */ 10009 0, /* 42 reserved */ 10010 0, /* 43 reserved */ 10011 0, /* 44 reserved */ 10012 0, /* 45 reserved */ 10013 0, /* 46 reserved */ 10014 0, /* 47 reserved */ 10015 0, /* 48 reserved */ 10016 0, /* 49 reserved */ 10017 0, /* 50 reserved */ 10018 0, /* 51 reserved */ 10019 0, /* 52 reserved */ 10020 0, /* 53 reserved */ 10021 0, /* 54 reserved */ 10022 0, /* 55 reserved */ 10023 0, /* 56 cisptr_lsw */ 10024 0, /* 57 cisprt_msw */ 10025 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 10026 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */ 10027 0, /* 60 reserved */ 10028 0, /* 61 reserved */ 10029 0, /* 62 reserved */ 10030 0 /* 63 reserved */ 10031 }; 10032 10033 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = { 10034 0, /* 00 cfg_lsw */ 10035 0, /* 01 cfg_msw */ 10036 0, /* 02 disc_enable */ 10037 0, /* 03 wdtr_able */ 10038 0, /* 04 sdtr_speed1 */ 10039 0, /* 05 start_motor */ 10040 0, /* 06 tagqng_able */ 10041 0, /* 07 bios_scan */ 10042 0, /* 08 scam_tolerant */ 10043 1, /* 09 adapter_scsi_id */ 10044 1, /* bios_boot_delay */ 10045 1, /* 10 scsi_reset_delay */ 10046 1, /* bios_id_lun */ 10047 1, /* 11 termination_se */ 10048 1, /* termination_lvd */ 10049 0, /* 12 bios_ctrl */ 10050 0, /* 13 sdtr_speed2 */ 10051 0, /* 14 sdtr_speed3 */ 10052 1, /* 15 max_host_qng */ 10053 1, /* max_dvc_qng */ 10054 0, /* 16 dvc_cntl */ 10055 0, /* 17 sdtr_speed4 */ 10056 0, /* 18 serial_number_word1 */ 10057 0, /* 19 serial_number_word2 */ 10058 0, /* 20 serial_number_word3 */ 10059 0, /* 21 check_sum */ 10060 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 10061 , /* 22-29 oem_name[16] */ 10062 0, /* 30 dvc_err_code */ 10063 0, /* 31 adv_err_code */ 10064 0, /* 32 adv_err_addr */ 10065 0, /* 33 saved_dvc_err_code */ 10066 0, /* 34 saved_adv_err_code */ 10067 0, /* 35 saved_adv_err_addr */ 10068 0, /* 36 reserved */ 10069 0, /* 37 reserved */ 10070 0, /* 38 reserved */ 10071 0, /* 39 reserved */ 10072 0, /* 40 reserved */ 10073 0, /* 41 reserved */ 10074 0, /* 42 reserved */ 10075 0, /* 43 reserved */ 10076 0, /* 44 reserved */ 10077 0, /* 45 reserved */ 10078 0, /* 46 reserved */ 10079 0, /* 47 reserved */ 10080 0, /* 48 reserved */ 10081 0, /* 49 reserved */ 10082 0, /* 50 reserved */ 10083 0, /* 51 reserved */ 10084 0, /* 52 reserved */ 10085 0, /* 53 reserved */ 10086 0, /* 54 reserved */ 10087 0, /* 55 reserved */ 10088 0, /* 56 cisptr_lsw */ 10089 0, /* 57 cisprt_msw */ 10090 0, /* 58 subsysvid */ 10091 0, /* 59 subsysid */ 10092 0, /* 60 reserved */ 10093 0, /* 61 reserved */ 10094 0, /* 62 reserved */ 10095 0 /* 63 reserved */ 10096 }; 10097 10098 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = { 10099 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 10100 0x0000, /* 01 cfg_msw */ 10101 0xFFFF, /* 02 disc_enable */ 10102 0xFFFF, /* 03 wdtr_able */ 10103 0x5555, /* 04 sdtr_speed1 */ 10104 0xFFFF, /* 05 start_motor */ 10105 0xFFFF, /* 06 tagqng_able */ 10106 0xFFFF, /* 07 bios_scan */ 10107 0, /* 08 scam_tolerant */ 10108 7, /* 09 adapter_scsi_id */ 10109 0, /* bios_boot_delay */ 10110 3, /* 10 scsi_reset_delay */ 10111 0, /* bios_id_lun */ 10112 0, /* 11 termination_se */ 10113 0, /* termination_lvd */ 10114 0xFFE7, /* 12 bios_ctrl */ 10115 0x5555, /* 13 sdtr_speed2 */ 10116 0x5555, /* 14 sdtr_speed3 */ 10117 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 10118 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 10119 0, /* 16 dvc_cntl */ 10120 0x5555, /* 17 sdtr_speed4 */ 10121 0, /* 18 serial_number_word1 */ 10122 0, /* 19 serial_number_word2 */ 10123 0, /* 20 serial_number_word3 */ 10124 0, /* 21 check_sum */ 10125 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 10126 , /* 22-29 oem_name[16] */ 10127 0, /* 30 dvc_err_code */ 10128 0, /* 31 adv_err_code */ 10129 0, /* 32 adv_err_addr */ 10130 0, /* 33 saved_dvc_err_code */ 10131 0, /* 34 saved_adv_err_code */ 10132 0, /* 35 saved_adv_err_addr */ 10133 0, /* 36 reserved */ 10134 0, /* 37 reserved */ 10135 0, /* 38 reserved */ 10136 0, /* 39 reserved */ 10137 0, /* 40 reserved */ 10138 0, /* 41 reserved */ 10139 0, /* 42 reserved */ 10140 0, /* 43 reserved */ 10141 0, /* 44 reserved */ 10142 0, /* 45 reserved */ 10143 0, /* 46 reserved */ 10144 0, /* 47 reserved */ 10145 0, /* 48 reserved */ 10146 0, /* 49 reserved */ 10147 0, /* 50 reserved */ 10148 0, /* 51 reserved */ 10149 0, /* 52 reserved */ 10150 0, /* 53 reserved */ 10151 0, /* 54 reserved */ 10152 0, /* 55 reserved */ 10153 0, /* 56 cisptr_lsw */ 10154 0, /* 57 cisprt_msw */ 10155 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 10156 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */ 10157 0, /* 60 reserved */ 10158 0, /* 61 reserved */ 10159 0, /* 62 reserved */ 10160 0 /* 63 reserved */ 10161 }; 10162 10163 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = { 10164 0, /* 00 cfg_lsw */ 10165 0, /* 01 cfg_msw */ 10166 0, /* 02 disc_enable */ 10167 0, /* 03 wdtr_able */ 10168 0, /* 04 sdtr_speed1 */ 10169 0, /* 05 start_motor */ 10170 0, /* 06 tagqng_able */ 10171 0, /* 07 bios_scan */ 10172 0, /* 08 scam_tolerant */ 10173 1, /* 09 adapter_scsi_id */ 10174 1, /* bios_boot_delay */ 10175 1, /* 10 scsi_reset_delay */ 10176 1, /* bios_id_lun */ 10177 1, /* 11 termination_se */ 10178 1, /* termination_lvd */ 10179 0, /* 12 bios_ctrl */ 10180 0, /* 13 sdtr_speed2 */ 10181 0, /* 14 sdtr_speed3 */ 10182 1, /* 15 max_host_qng */ 10183 1, /* max_dvc_qng */ 10184 0, /* 16 dvc_cntl */ 10185 0, /* 17 sdtr_speed4 */ 10186 0, /* 18 serial_number_word1 */ 10187 0, /* 19 serial_number_word2 */ 10188 0, /* 20 serial_number_word3 */ 10189 0, /* 21 check_sum */ 10190 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 10191 , /* 22-29 oem_name[16] */ 10192 0, /* 30 dvc_err_code */ 10193 0, /* 31 adv_err_code */ 10194 0, /* 32 adv_err_addr */ 10195 0, /* 33 saved_dvc_err_code */ 10196 0, /* 34 saved_adv_err_code */ 10197 0, /* 35 saved_adv_err_addr */ 10198 0, /* 36 reserved */ 10199 0, /* 37 reserved */ 10200 0, /* 38 reserved */ 10201 0, /* 39 reserved */ 10202 0, /* 40 reserved */ 10203 0, /* 41 reserved */ 10204 0, /* 42 reserved */ 10205 0, /* 43 reserved */ 10206 0, /* 44 reserved */ 10207 0, /* 45 reserved */ 10208 0, /* 46 reserved */ 10209 0, /* 47 reserved */ 10210 0, /* 48 reserved */ 10211 0, /* 49 reserved */ 10212 0, /* 50 reserved */ 10213 0, /* 51 reserved */ 10214 0, /* 52 reserved */ 10215 0, /* 53 reserved */ 10216 0, /* 54 reserved */ 10217 0, /* 55 reserved */ 10218 0, /* 56 cisptr_lsw */ 10219 0, /* 57 cisprt_msw */ 10220 0, /* 58 subsysvid */ 10221 0, /* 59 subsysid */ 10222 0, /* 60 reserved */ 10223 0, /* 61 reserved */ 10224 0, /* 62 reserved */ 10225 0 /* 63 reserved */ 10226 }; 10227 10228 #ifdef CONFIG_PCI 10229 /* 10230 * Wait for EEPROM command to complete 10231 */ 10232 static void AdvWaitEEPCmd(AdvPortAddr iop_base) 10233 { 10234 int eep_delay_ms; 10235 10236 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) { 10237 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) & 10238 ASC_EEP_CMD_DONE) { 10239 break; 10240 } 10241 mdelay(1); 10242 } 10243 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) == 10244 0) 10245 BUG(); 10246 } 10247 10248 /* 10249 * Read the EEPROM from specified location 10250 */ 10251 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr) 10252 { 10253 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10254 ASC_EEP_CMD_READ | eep_word_addr); 10255 AdvWaitEEPCmd(iop_base); 10256 return AdvReadWordRegister(iop_base, IOPW_EE_DATA); 10257 } 10258 10259 /* 10260 * Write the EEPROM from 'cfg_buf'. 10261 */ 10262 static void AdvSet3550EEPConfig(AdvPortAddr iop_base, 10263 ADVEEP_3550_CONFIG *cfg_buf) 10264 { 10265 ushort *wbuf; 10266 ushort addr, chksum; 10267 ushort *charfields; 10268 10269 wbuf = (ushort *)cfg_buf; 10270 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 10271 chksum = 0; 10272 10273 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 10274 AdvWaitEEPCmd(iop_base); 10275 10276 /* 10277 * Write EEPROM from word 0 to word 20. 10278 */ 10279 for (addr = ADV_EEP_DVC_CFG_BEGIN; 10280 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 10281 ushort word; 10282 10283 if (*charfields++) { 10284 word = cpu_to_le16(*wbuf); 10285 } else { 10286 word = *wbuf; 10287 } 10288 chksum += *wbuf; /* Checksum is calculated from word values. */ 10289 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10290 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10291 ASC_EEP_CMD_WRITE | addr); 10292 AdvWaitEEPCmd(iop_base); 10293 mdelay(ADV_EEP_DELAY_MS); 10294 } 10295 10296 /* 10297 * Write EEPROM checksum at word 21. 10298 */ 10299 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 10300 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 10301 AdvWaitEEPCmd(iop_base); 10302 wbuf++; 10303 charfields++; 10304 10305 /* 10306 * Write EEPROM OEM name at words 22 to 29. 10307 */ 10308 for (addr = ADV_EEP_DVC_CTL_BEGIN; 10309 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 10310 ushort word; 10311 10312 if (*charfields++) { 10313 word = cpu_to_le16(*wbuf); 10314 } else { 10315 word = *wbuf; 10316 } 10317 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10318 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10319 ASC_EEP_CMD_WRITE | addr); 10320 AdvWaitEEPCmd(iop_base); 10321 } 10322 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 10323 AdvWaitEEPCmd(iop_base); 10324 } 10325 10326 /* 10327 * Write the EEPROM from 'cfg_buf'. 10328 */ 10329 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base, 10330 ADVEEP_38C0800_CONFIG *cfg_buf) 10331 { 10332 ushort *wbuf; 10333 ushort *charfields; 10334 ushort addr, chksum; 10335 10336 wbuf = (ushort *)cfg_buf; 10337 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 10338 chksum = 0; 10339 10340 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 10341 AdvWaitEEPCmd(iop_base); 10342 10343 /* 10344 * Write EEPROM from word 0 to word 20. 10345 */ 10346 for (addr = ADV_EEP_DVC_CFG_BEGIN; 10347 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 10348 ushort word; 10349 10350 if (*charfields++) { 10351 word = cpu_to_le16(*wbuf); 10352 } else { 10353 word = *wbuf; 10354 } 10355 chksum += *wbuf; /* Checksum is calculated from word values. */ 10356 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10357 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10358 ASC_EEP_CMD_WRITE | addr); 10359 AdvWaitEEPCmd(iop_base); 10360 mdelay(ADV_EEP_DELAY_MS); 10361 } 10362 10363 /* 10364 * Write EEPROM checksum at word 21. 10365 */ 10366 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 10367 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 10368 AdvWaitEEPCmd(iop_base); 10369 wbuf++; 10370 charfields++; 10371 10372 /* 10373 * Write EEPROM OEM name at words 22 to 29. 10374 */ 10375 for (addr = ADV_EEP_DVC_CTL_BEGIN; 10376 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 10377 ushort word; 10378 10379 if (*charfields++) { 10380 word = cpu_to_le16(*wbuf); 10381 } else { 10382 word = *wbuf; 10383 } 10384 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10385 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10386 ASC_EEP_CMD_WRITE | addr); 10387 AdvWaitEEPCmd(iop_base); 10388 } 10389 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 10390 AdvWaitEEPCmd(iop_base); 10391 } 10392 10393 /* 10394 * Write the EEPROM from 'cfg_buf'. 10395 */ 10396 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base, 10397 ADVEEP_38C1600_CONFIG *cfg_buf) 10398 { 10399 ushort *wbuf; 10400 ushort *charfields; 10401 ushort addr, chksum; 10402 10403 wbuf = (ushort *)cfg_buf; 10404 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 10405 chksum = 0; 10406 10407 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 10408 AdvWaitEEPCmd(iop_base); 10409 10410 /* 10411 * Write EEPROM from word 0 to word 20. 10412 */ 10413 for (addr = ADV_EEP_DVC_CFG_BEGIN; 10414 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 10415 ushort word; 10416 10417 if (*charfields++) { 10418 word = cpu_to_le16(*wbuf); 10419 } else { 10420 word = *wbuf; 10421 } 10422 chksum += *wbuf; /* Checksum is calculated from word values. */ 10423 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10424 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10425 ASC_EEP_CMD_WRITE | addr); 10426 AdvWaitEEPCmd(iop_base); 10427 mdelay(ADV_EEP_DELAY_MS); 10428 } 10429 10430 /* 10431 * Write EEPROM checksum at word 21. 10432 */ 10433 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 10434 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 10435 AdvWaitEEPCmd(iop_base); 10436 wbuf++; 10437 charfields++; 10438 10439 /* 10440 * Write EEPROM OEM name at words 22 to 29. 10441 */ 10442 for (addr = ADV_EEP_DVC_CTL_BEGIN; 10443 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 10444 ushort word; 10445 10446 if (*charfields++) { 10447 word = cpu_to_le16(*wbuf); 10448 } else { 10449 word = *wbuf; 10450 } 10451 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10452 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10453 ASC_EEP_CMD_WRITE | addr); 10454 AdvWaitEEPCmd(iop_base); 10455 } 10456 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 10457 AdvWaitEEPCmd(iop_base); 10458 } 10459 10460 /* 10461 * Read EEPROM configuration into the specified buffer. 10462 * 10463 * Return a checksum based on the EEPROM configuration read. 10464 */ 10465 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base, 10466 ADVEEP_3550_CONFIG *cfg_buf) 10467 { 10468 ushort wval, chksum; 10469 ushort *wbuf; 10470 int eep_addr; 10471 ushort *charfields; 10472 10473 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 10474 wbuf = (ushort *)cfg_buf; 10475 chksum = 0; 10476 10477 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10478 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10479 wval = AdvReadEEPWord(iop_base, eep_addr); 10480 chksum += wval; /* Checksum is calculated from word values. */ 10481 if (*charfields++) { 10482 *wbuf = le16_to_cpu(wval); 10483 } else { 10484 *wbuf = wval; 10485 } 10486 } 10487 /* Read checksum word. */ 10488 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10489 wbuf++; 10490 charfields++; 10491 10492 /* Read rest of EEPROM not covered by the checksum. */ 10493 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10494 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10495 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10496 if (*charfields++) { 10497 *wbuf = le16_to_cpu(*wbuf); 10498 } 10499 } 10500 return chksum; 10501 } 10502 10503 /* 10504 * Read EEPROM configuration into the specified buffer. 10505 * 10506 * Return a checksum based on the EEPROM configuration read. 10507 */ 10508 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base, 10509 ADVEEP_38C0800_CONFIG *cfg_buf) 10510 { 10511 ushort wval, chksum; 10512 ushort *wbuf; 10513 int eep_addr; 10514 ushort *charfields; 10515 10516 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 10517 wbuf = (ushort *)cfg_buf; 10518 chksum = 0; 10519 10520 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10521 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10522 wval = AdvReadEEPWord(iop_base, eep_addr); 10523 chksum += wval; /* Checksum is calculated from word values. */ 10524 if (*charfields++) { 10525 *wbuf = le16_to_cpu(wval); 10526 } else { 10527 *wbuf = wval; 10528 } 10529 } 10530 /* Read checksum word. */ 10531 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10532 wbuf++; 10533 charfields++; 10534 10535 /* Read rest of EEPROM not covered by the checksum. */ 10536 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10537 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10538 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10539 if (*charfields++) { 10540 *wbuf = le16_to_cpu(*wbuf); 10541 } 10542 } 10543 return chksum; 10544 } 10545 10546 /* 10547 * Read EEPROM configuration into the specified buffer. 10548 * 10549 * Return a checksum based on the EEPROM configuration read. 10550 */ 10551 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base, 10552 ADVEEP_38C1600_CONFIG *cfg_buf) 10553 { 10554 ushort wval, chksum; 10555 ushort *wbuf; 10556 int eep_addr; 10557 ushort *charfields; 10558 10559 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 10560 wbuf = (ushort *)cfg_buf; 10561 chksum = 0; 10562 10563 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10564 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10565 wval = AdvReadEEPWord(iop_base, eep_addr); 10566 chksum += wval; /* Checksum is calculated from word values. */ 10567 if (*charfields++) { 10568 *wbuf = le16_to_cpu(wval); 10569 } else { 10570 *wbuf = wval; 10571 } 10572 } 10573 /* Read checksum word. */ 10574 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10575 wbuf++; 10576 charfields++; 10577 10578 /* Read rest of EEPROM not covered by the checksum. */ 10579 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10580 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10581 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10582 if (*charfields++) { 10583 *wbuf = le16_to_cpu(*wbuf); 10584 } 10585 } 10586 return chksum; 10587 } 10588 10589 /* 10590 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 10591 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 10592 * all of this is done. 10593 * 10594 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10595 * 10596 * For a non-fatal error return a warning code. If there are no warnings 10597 * then 0 is returned. 10598 * 10599 * Note: Chip is stopped on entry. 10600 */ 10601 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc) 10602 { 10603 AdvPortAddr iop_base; 10604 ushort warn_code; 10605 ADVEEP_3550_CONFIG eep_config; 10606 10607 iop_base = asc_dvc->iop_base; 10608 10609 warn_code = 0; 10610 10611 /* 10612 * Read the board's EEPROM configuration. 10613 * 10614 * Set default values if a bad checksum is found. 10615 */ 10616 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { 10617 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10618 10619 /* 10620 * Set EEPROM default values. 10621 */ 10622 memcpy(&eep_config, &Default_3550_EEPROM_Config, 10623 sizeof(ADVEEP_3550_CONFIG)); 10624 10625 /* 10626 * Assume the 6 byte board serial number that was read from 10627 * EEPROM is correct even if the EEPROM checksum failed. 10628 */ 10629 eep_config.serial_number_word3 = 10630 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10631 10632 eep_config.serial_number_word2 = 10633 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10634 10635 eep_config.serial_number_word1 = 10636 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10637 10638 AdvSet3550EEPConfig(iop_base, &eep_config); 10639 } 10640 /* 10641 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 10642 * EEPROM configuration that was read. 10643 * 10644 * This is the mapping of EEPROM fields to Adv Library fields. 10645 */ 10646 asc_dvc->wdtr_able = eep_config.wdtr_able; 10647 asc_dvc->sdtr_able = eep_config.sdtr_able; 10648 asc_dvc->ultra_able = eep_config.ultra_able; 10649 asc_dvc->tagqng_able = eep_config.tagqng_able; 10650 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10651 asc_dvc->max_host_qng = eep_config.max_host_qng; 10652 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10653 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10654 asc_dvc->start_motor = eep_config.start_motor; 10655 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10656 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10657 asc_dvc->no_scam = eep_config.scam_tolerant; 10658 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10659 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10660 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10661 10662 /* 10663 * Set the host maximum queuing (max. 253, min. 16) and the per device 10664 * maximum queuing (max. 63, min. 4). 10665 */ 10666 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10667 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10668 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10669 /* If the value is zero, assume it is uninitialized. */ 10670 if (eep_config.max_host_qng == 0) { 10671 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10672 } else { 10673 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10674 } 10675 } 10676 10677 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10678 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10679 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10680 /* If the value is zero, assume it is uninitialized. */ 10681 if (eep_config.max_dvc_qng == 0) { 10682 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10683 } else { 10684 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10685 } 10686 } 10687 10688 /* 10689 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10690 * set 'max_dvc_qng' to 'max_host_qng'. 10691 */ 10692 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10693 eep_config.max_dvc_qng = eep_config.max_host_qng; 10694 } 10695 10696 /* 10697 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10698 * values based on possibly adjusted EEPROM values. 10699 */ 10700 asc_dvc->max_host_qng = eep_config.max_host_qng; 10701 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10702 10703 /* 10704 * If the EEPROM 'termination' field is set to automatic (0), then set 10705 * the ADV_DVC_CFG 'termination' field to automatic also. 10706 * 10707 * If the termination is specified with a non-zero 'termination' 10708 * value check that a legal value is set and set the ADV_DVC_CFG 10709 * 'termination' field appropriately. 10710 */ 10711 if (eep_config.termination == 0) { 10712 asc_dvc->cfg->termination = 0; /* auto termination */ 10713 } else { 10714 /* Enable manual control with low off / high off. */ 10715 if (eep_config.termination == 1) { 10716 asc_dvc->cfg->termination = TERM_CTL_SEL; 10717 10718 /* Enable manual control with low off / high on. */ 10719 } else if (eep_config.termination == 2) { 10720 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H; 10721 10722 /* Enable manual control with low on / high on. */ 10723 } else if (eep_config.termination == 3) { 10724 asc_dvc->cfg->termination = 10725 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L; 10726 } else { 10727 /* 10728 * The EEPROM 'termination' field contains a bad value. Use 10729 * automatic termination instead. 10730 */ 10731 asc_dvc->cfg->termination = 0; 10732 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10733 } 10734 } 10735 10736 return warn_code; 10737 } 10738 10739 /* 10740 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 10741 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 10742 * all of this is done. 10743 * 10744 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10745 * 10746 * For a non-fatal error return a warning code. If there are no warnings 10747 * then 0 is returned. 10748 * 10749 * Note: Chip is stopped on entry. 10750 */ 10751 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc) 10752 { 10753 AdvPortAddr iop_base; 10754 ushort warn_code; 10755 ADVEEP_38C0800_CONFIG eep_config; 10756 uchar tid, termination; 10757 ushort sdtr_speed = 0; 10758 10759 iop_base = asc_dvc->iop_base; 10760 10761 warn_code = 0; 10762 10763 /* 10764 * Read the board's EEPROM configuration. 10765 * 10766 * Set default values if a bad checksum is found. 10767 */ 10768 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) != 10769 eep_config.check_sum) { 10770 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10771 10772 /* 10773 * Set EEPROM default values. 10774 */ 10775 memcpy(&eep_config, &Default_38C0800_EEPROM_Config, 10776 sizeof(ADVEEP_38C0800_CONFIG)); 10777 10778 /* 10779 * Assume the 6 byte board serial number that was read from 10780 * EEPROM is correct even if the EEPROM checksum failed. 10781 */ 10782 eep_config.serial_number_word3 = 10783 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10784 10785 eep_config.serial_number_word2 = 10786 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10787 10788 eep_config.serial_number_word1 = 10789 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10790 10791 AdvSet38C0800EEPConfig(iop_base, &eep_config); 10792 } 10793 /* 10794 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the 10795 * EEPROM configuration that was read. 10796 * 10797 * This is the mapping of EEPROM fields to Adv Library fields. 10798 */ 10799 asc_dvc->wdtr_able = eep_config.wdtr_able; 10800 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 10801 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 10802 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 10803 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 10804 asc_dvc->tagqng_able = eep_config.tagqng_able; 10805 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10806 asc_dvc->max_host_qng = eep_config.max_host_qng; 10807 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10808 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10809 asc_dvc->start_motor = eep_config.start_motor; 10810 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10811 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10812 asc_dvc->no_scam = eep_config.scam_tolerant; 10813 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10814 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10815 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10816 10817 /* 10818 * For every Target ID if any of its 'sdtr_speed[1234]' bits 10819 * are set, then set an 'sdtr_able' bit for it. 10820 */ 10821 asc_dvc->sdtr_able = 0; 10822 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 10823 if (tid == 0) { 10824 sdtr_speed = asc_dvc->sdtr_speed1; 10825 } else if (tid == 4) { 10826 sdtr_speed = asc_dvc->sdtr_speed2; 10827 } else if (tid == 8) { 10828 sdtr_speed = asc_dvc->sdtr_speed3; 10829 } else if (tid == 12) { 10830 sdtr_speed = asc_dvc->sdtr_speed4; 10831 } 10832 if (sdtr_speed & ADV_MAX_TID) { 10833 asc_dvc->sdtr_able |= (1 << tid); 10834 } 10835 sdtr_speed >>= 4; 10836 } 10837 10838 /* 10839 * Set the host maximum queuing (max. 253, min. 16) and the per device 10840 * maximum queuing (max. 63, min. 4). 10841 */ 10842 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10843 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10844 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10845 /* If the value is zero, assume it is uninitialized. */ 10846 if (eep_config.max_host_qng == 0) { 10847 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10848 } else { 10849 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10850 } 10851 } 10852 10853 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10854 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10855 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10856 /* If the value is zero, assume it is uninitialized. */ 10857 if (eep_config.max_dvc_qng == 0) { 10858 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10859 } else { 10860 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10861 } 10862 } 10863 10864 /* 10865 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10866 * set 'max_dvc_qng' to 'max_host_qng'. 10867 */ 10868 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10869 eep_config.max_dvc_qng = eep_config.max_host_qng; 10870 } 10871 10872 /* 10873 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10874 * values based on possibly adjusted EEPROM values. 10875 */ 10876 asc_dvc->max_host_qng = eep_config.max_host_qng; 10877 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10878 10879 /* 10880 * If the EEPROM 'termination' field is set to automatic (0), then set 10881 * the ADV_DVC_CFG 'termination' field to automatic also. 10882 * 10883 * If the termination is specified with a non-zero 'termination' 10884 * value check that a legal value is set and set the ADV_DVC_CFG 10885 * 'termination' field appropriately. 10886 */ 10887 if (eep_config.termination_se == 0) { 10888 termination = 0; /* auto termination for SE */ 10889 } else { 10890 /* Enable manual control with low off / high off. */ 10891 if (eep_config.termination_se == 1) { 10892 termination = 0; 10893 10894 /* Enable manual control with low off / high on. */ 10895 } else if (eep_config.termination_se == 2) { 10896 termination = TERM_SE_HI; 10897 10898 /* Enable manual control with low on / high on. */ 10899 } else if (eep_config.termination_se == 3) { 10900 termination = TERM_SE; 10901 } else { 10902 /* 10903 * The EEPROM 'termination_se' field contains a bad value. 10904 * Use automatic termination instead. 10905 */ 10906 termination = 0; 10907 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10908 } 10909 } 10910 10911 if (eep_config.termination_lvd == 0) { 10912 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 10913 } else { 10914 /* Enable manual control with low off / high off. */ 10915 if (eep_config.termination_lvd == 1) { 10916 asc_dvc->cfg->termination = termination; 10917 10918 /* Enable manual control with low off / high on. */ 10919 } else if (eep_config.termination_lvd == 2) { 10920 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 10921 10922 /* Enable manual control with low on / high on. */ 10923 } else if (eep_config.termination_lvd == 3) { 10924 asc_dvc->cfg->termination = termination | TERM_LVD; 10925 } else { 10926 /* 10927 * The EEPROM 'termination_lvd' field contains a bad value. 10928 * Use automatic termination instead. 10929 */ 10930 asc_dvc->cfg->termination = termination; 10931 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10932 } 10933 } 10934 10935 return warn_code; 10936 } 10937 10938 /* 10939 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and 10940 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while 10941 * all of this is done. 10942 * 10943 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 10944 * 10945 * For a non-fatal error return a warning code. If there are no warnings 10946 * then 0 is returned. 10947 * 10948 * Note: Chip is stopped on entry. 10949 */ 10950 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc) 10951 { 10952 AdvPortAddr iop_base; 10953 ushort warn_code; 10954 ADVEEP_38C1600_CONFIG eep_config; 10955 uchar tid, termination; 10956 ushort sdtr_speed = 0; 10957 10958 iop_base = asc_dvc->iop_base; 10959 10960 warn_code = 0; 10961 10962 /* 10963 * Read the board's EEPROM configuration. 10964 * 10965 * Set default values if a bad checksum is found. 10966 */ 10967 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) != 10968 eep_config.check_sum) { 10969 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 10970 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10971 10972 /* 10973 * Set EEPROM default values. 10974 */ 10975 memcpy(&eep_config, &Default_38C1600_EEPROM_Config, 10976 sizeof(ADVEEP_38C1600_CONFIG)); 10977 10978 if (PCI_FUNC(pdev->devfn) != 0) { 10979 u8 ints; 10980 /* 10981 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 10982 * and old Mac system booting problem. The Expansion 10983 * ROM must be disabled in Function 1 for these systems 10984 */ 10985 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE; 10986 /* 10987 * Clear the INTAB (bit 11) if the GPIO 0 input 10988 * indicates the Function 1 interrupt line is wired 10989 * to INTB. 10990 * 10991 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input: 10992 * 1 - Function 1 interrupt line wired to INT A. 10993 * 0 - Function 1 interrupt line wired to INT B. 10994 * 10995 * Note: Function 0 is always wired to INTA. 10996 * Put all 5 GPIO bits in input mode and then read 10997 * their input values. 10998 */ 10999 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0); 11000 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA); 11001 if ((ints & 0x01) == 0) 11002 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB; 11003 } 11004 11005 /* 11006 * Assume the 6 byte board serial number that was read from 11007 * EEPROM is correct even if the EEPROM checksum failed. 11008 */ 11009 eep_config.serial_number_word3 = 11010 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 11011 eep_config.serial_number_word2 = 11012 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 11013 eep_config.serial_number_word1 = 11014 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 11015 11016 AdvSet38C1600EEPConfig(iop_base, &eep_config); 11017 } 11018 11019 /* 11020 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 11021 * EEPROM configuration that was read. 11022 * 11023 * This is the mapping of EEPROM fields to Adv Library fields. 11024 */ 11025 asc_dvc->wdtr_able = eep_config.wdtr_able; 11026 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 11027 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 11028 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 11029 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 11030 asc_dvc->ppr_able = 0; 11031 asc_dvc->tagqng_able = eep_config.tagqng_able; 11032 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 11033 asc_dvc->max_host_qng = eep_config.max_host_qng; 11034 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 11035 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID); 11036 asc_dvc->start_motor = eep_config.start_motor; 11037 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 11038 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 11039 asc_dvc->no_scam = eep_config.scam_tolerant; 11040 11041 /* 11042 * For every Target ID if any of its 'sdtr_speed[1234]' bits 11043 * are set, then set an 'sdtr_able' bit for it. 11044 */ 11045 asc_dvc->sdtr_able = 0; 11046 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 11047 if (tid == 0) { 11048 sdtr_speed = asc_dvc->sdtr_speed1; 11049 } else if (tid == 4) { 11050 sdtr_speed = asc_dvc->sdtr_speed2; 11051 } else if (tid == 8) { 11052 sdtr_speed = asc_dvc->sdtr_speed3; 11053 } else if (tid == 12) { 11054 sdtr_speed = asc_dvc->sdtr_speed4; 11055 } 11056 if (sdtr_speed & ASC_MAX_TID) { 11057 asc_dvc->sdtr_able |= (1 << tid); 11058 } 11059 sdtr_speed >>= 4; 11060 } 11061 11062 /* 11063 * Set the host maximum queuing (max. 253, min. 16) and the per device 11064 * maximum queuing (max. 63, min. 4). 11065 */ 11066 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 11067 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 11068 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 11069 /* If the value is zero, assume it is uninitialized. */ 11070 if (eep_config.max_host_qng == 0) { 11071 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 11072 } else { 11073 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 11074 } 11075 } 11076 11077 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 11078 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 11079 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 11080 /* If the value is zero, assume it is uninitialized. */ 11081 if (eep_config.max_dvc_qng == 0) { 11082 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 11083 } else { 11084 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 11085 } 11086 } 11087 11088 /* 11089 * If 'max_dvc_qng' is greater than 'max_host_qng', then 11090 * set 'max_dvc_qng' to 'max_host_qng'. 11091 */ 11092 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 11093 eep_config.max_dvc_qng = eep_config.max_host_qng; 11094 } 11095 11096 /* 11097 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng' 11098 * values based on possibly adjusted EEPROM values. 11099 */ 11100 asc_dvc->max_host_qng = eep_config.max_host_qng; 11101 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 11102 11103 /* 11104 * If the EEPROM 'termination' field is set to automatic (0), then set 11105 * the ASC_DVC_CFG 'termination' field to automatic also. 11106 * 11107 * If the termination is specified with a non-zero 'termination' 11108 * value check that a legal value is set and set the ASC_DVC_CFG 11109 * 'termination' field appropriately. 11110 */ 11111 if (eep_config.termination_se == 0) { 11112 termination = 0; /* auto termination for SE */ 11113 } else { 11114 /* Enable manual control with low off / high off. */ 11115 if (eep_config.termination_se == 1) { 11116 termination = 0; 11117 11118 /* Enable manual control with low off / high on. */ 11119 } else if (eep_config.termination_se == 2) { 11120 termination = TERM_SE_HI; 11121 11122 /* Enable manual control with low on / high on. */ 11123 } else if (eep_config.termination_se == 3) { 11124 termination = TERM_SE; 11125 } else { 11126 /* 11127 * The EEPROM 'termination_se' field contains a bad value. 11128 * Use automatic termination instead. 11129 */ 11130 termination = 0; 11131 warn_code |= ASC_WARN_EEPROM_TERMINATION; 11132 } 11133 } 11134 11135 if (eep_config.termination_lvd == 0) { 11136 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 11137 } else { 11138 /* Enable manual control with low off / high off. */ 11139 if (eep_config.termination_lvd == 1) { 11140 asc_dvc->cfg->termination = termination; 11141 11142 /* Enable manual control with low off / high on. */ 11143 } else if (eep_config.termination_lvd == 2) { 11144 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 11145 11146 /* Enable manual control with low on / high on. */ 11147 } else if (eep_config.termination_lvd == 3) { 11148 asc_dvc->cfg->termination = termination | TERM_LVD; 11149 } else { 11150 /* 11151 * The EEPROM 'termination_lvd' field contains a bad value. 11152 * Use automatic termination instead. 11153 */ 11154 asc_dvc->cfg->termination = termination; 11155 warn_code |= ASC_WARN_EEPROM_TERMINATION; 11156 } 11157 } 11158 11159 return warn_code; 11160 } 11161 11162 /* 11163 * Initialize the ADV_DVC_VAR structure. 11164 * 11165 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 11166 * 11167 * For a non-fatal error return a warning code. If there are no warnings 11168 * then 0 is returned. 11169 */ 11170 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 11171 { 11172 struct asc_board *board = shost_priv(shost); 11173 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var; 11174 unsigned short warn_code = 0; 11175 AdvPortAddr iop_base = asc_dvc->iop_base; 11176 u16 cmd; 11177 int status; 11178 11179 asc_dvc->err_code = 0; 11180 11181 /* 11182 * Save the state of the PCI Configuration Command Register 11183 * "Parity Error Response Control" Bit. If the bit is clear (0), 11184 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore 11185 * DMA parity errors. 11186 */ 11187 asc_dvc->cfg->control_flag = 0; 11188 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 11189 if ((cmd & PCI_COMMAND_PARITY) == 0) 11190 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR; 11191 11192 asc_dvc->cfg->chip_version = 11193 AdvGetChipVersion(iop_base, asc_dvc->bus_type); 11194 11195 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n", 11196 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1), 11197 (ushort)ADV_CHIP_ID_BYTE); 11198 11199 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n", 11200 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0), 11201 (ushort)ADV_CHIP_ID_WORD); 11202 11203 /* 11204 * Reset the chip to start and allow register writes. 11205 */ 11206 if (AdvFindSignature(iop_base) == 0) { 11207 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 11208 return ADV_ERROR; 11209 } else { 11210 /* 11211 * The caller must set 'chip_type' to a valid setting. 11212 */ 11213 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 && 11214 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 && 11215 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 11216 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE; 11217 return ADV_ERROR; 11218 } 11219 11220 /* 11221 * Reset Chip. 11222 */ 11223 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 11224 ADV_CTRL_REG_CMD_RESET); 11225 mdelay(100); 11226 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 11227 ADV_CTRL_REG_CMD_WR_IO_REG); 11228 11229 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 11230 status = AdvInitFrom38C1600EEP(asc_dvc); 11231 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 11232 status = AdvInitFrom38C0800EEP(asc_dvc); 11233 } else { 11234 status = AdvInitFrom3550EEP(asc_dvc); 11235 } 11236 warn_code |= status; 11237 } 11238 11239 if (warn_code != 0) 11240 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code); 11241 11242 if (asc_dvc->err_code) 11243 shost_printk(KERN_ERR, shost, "error code 0x%x\n", 11244 asc_dvc->err_code); 11245 11246 return asc_dvc->err_code; 11247 } 11248 #endif 11249 11250 static struct scsi_host_template advansys_template = { 11251 .proc_name = DRV_NAME, 11252 #ifdef CONFIG_PROC_FS 11253 .show_info = advansys_show_info, 11254 #endif 11255 .name = DRV_NAME, 11256 .info = advansys_info, 11257 .queuecommand = advansys_queuecommand, 11258 .eh_bus_reset_handler = advansys_reset, 11259 .bios_param = advansys_biosparam, 11260 .slave_configure = advansys_slave_configure, 11261 /* 11262 * Because the driver may control an ISA adapter 'unchecked_isa_dma' 11263 * must be set. The flag will be cleared in advansys_board_found 11264 * for non-ISA adapters. 11265 */ 11266 .unchecked_isa_dma = 1, 11267 /* 11268 * All adapters controlled by this driver are capable of large 11269 * scatter-gather lists. According to the mid-level SCSI documentation 11270 * this obviates any performance gain provided by setting 11271 * 'use_clustering'. But empirically while CPU utilization is increased 11272 * by enabling clustering, I/O throughput increases as well. 11273 */ 11274 .use_clustering = ENABLE_CLUSTERING, 11275 }; 11276 11277 static int advansys_wide_init_chip(struct Scsi_Host *shost) 11278 { 11279 struct asc_board *board = shost_priv(shost); 11280 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 11281 int req_cnt = 0; 11282 adv_req_t *reqp = NULL; 11283 int sg_cnt = 0; 11284 adv_sgblk_t *sgp; 11285 int warn_code, err_code; 11286 11287 /* 11288 * Allocate buffer carrier structures. The total size 11289 * is about 4 KB, so allocate all at once. 11290 */ 11291 adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL); 11292 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf); 11293 11294 if (!adv_dvc->carrier_buf) 11295 goto kmalloc_failed; 11296 11297 /* 11298 * Allocate up to 'max_host_qng' request structures for the Wide 11299 * board. The total size is about 16 KB, so allocate all at once. 11300 * If the allocation fails decrement and try again. 11301 */ 11302 for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) { 11303 reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL); 11304 11305 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt, 11306 (ulong)sizeof(adv_req_t) * req_cnt); 11307 11308 if (reqp) 11309 break; 11310 } 11311 11312 if (!reqp) 11313 goto kmalloc_failed; 11314 11315 adv_dvc->orig_reqp = reqp; 11316 11317 /* 11318 * Allocate up to ADV_TOT_SG_BLOCK request structures for 11319 * the Wide board. Each structure is about 136 bytes. 11320 */ 11321 board->adv_sgblkp = NULL; 11322 for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) { 11323 sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL); 11324 11325 if (!sgp) 11326 break; 11327 11328 sgp->next_sgblkp = board->adv_sgblkp; 11329 board->adv_sgblkp = sgp; 11330 11331 } 11332 11333 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t), 11334 sizeof(adv_sgblk_t) * sg_cnt); 11335 11336 if (!board->adv_sgblkp) 11337 goto kmalloc_failed; 11338 11339 /* 11340 * Point 'adv_reqp' to the request structures and 11341 * link them together. 11342 */ 11343 req_cnt--; 11344 reqp[req_cnt].next_reqp = NULL; 11345 for (; req_cnt > 0; req_cnt--) { 11346 reqp[req_cnt - 1].next_reqp = &reqp[req_cnt]; 11347 } 11348 board->adv_reqp = &reqp[0]; 11349 11350 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) { 11351 ASC_DBG(2, "AdvInitAsc3550Driver()\n"); 11352 warn_code = AdvInitAsc3550Driver(adv_dvc); 11353 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) { 11354 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n"); 11355 warn_code = AdvInitAsc38C0800Driver(adv_dvc); 11356 } else { 11357 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n"); 11358 warn_code = AdvInitAsc38C1600Driver(adv_dvc); 11359 } 11360 err_code = adv_dvc->err_code; 11361 11362 if (warn_code || err_code) { 11363 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error " 11364 "0x%x\n", warn_code, err_code); 11365 } 11366 11367 goto exit; 11368 11369 kmalloc_failed: 11370 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n"); 11371 err_code = ADV_ERROR; 11372 exit: 11373 return err_code; 11374 } 11375 11376 static void advansys_wide_free_mem(struct asc_board *board) 11377 { 11378 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 11379 kfree(adv_dvc->carrier_buf); 11380 adv_dvc->carrier_buf = NULL; 11381 kfree(adv_dvc->orig_reqp); 11382 adv_dvc->orig_reqp = board->adv_reqp = NULL; 11383 while (board->adv_sgblkp) { 11384 adv_sgblk_t *sgp = board->adv_sgblkp; 11385 board->adv_sgblkp = sgp->next_sgblkp; 11386 kfree(sgp); 11387 } 11388 } 11389 11390 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop, 11391 int bus_type) 11392 { 11393 struct pci_dev *pdev; 11394 struct asc_board *boardp = shost_priv(shost); 11395 ASC_DVC_VAR *asc_dvc_varp = NULL; 11396 ADV_DVC_VAR *adv_dvc_varp = NULL; 11397 int share_irq, warn_code, ret; 11398 11399 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL; 11400 11401 if (ASC_NARROW_BOARD(boardp)) { 11402 ASC_DBG(1, "narrow board\n"); 11403 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 11404 asc_dvc_varp->bus_type = bus_type; 11405 asc_dvc_varp->drv_ptr = boardp; 11406 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg; 11407 asc_dvc_varp->iop_base = iop; 11408 } else { 11409 #ifdef CONFIG_PCI 11410 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 11411 adv_dvc_varp->drv_ptr = boardp; 11412 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg; 11413 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) { 11414 ASC_DBG(1, "wide board ASC-3550\n"); 11415 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550; 11416 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) { 11417 ASC_DBG(1, "wide board ASC-38C0800\n"); 11418 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800; 11419 } else { 11420 ASC_DBG(1, "wide board ASC-38C1600\n"); 11421 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600; 11422 } 11423 11424 boardp->asc_n_io_port = pci_resource_len(pdev, 1); 11425 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1); 11426 if (!boardp->ioremap_addr) { 11427 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) " 11428 "returned NULL\n", 11429 (long)pci_resource_start(pdev, 1), 11430 boardp->asc_n_io_port); 11431 ret = -ENODEV; 11432 goto err_shost; 11433 } 11434 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr; 11435 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base); 11436 11437 /* 11438 * Even though it isn't used to access wide boards, other 11439 * than for the debug line below, save I/O Port address so 11440 * that it can be reported. 11441 */ 11442 boardp->ioport = iop; 11443 11444 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n", 11445 (ushort)inp(iop + 1), (ushort)inpw(iop)); 11446 #endif /* CONFIG_PCI */ 11447 } 11448 11449 if (ASC_NARROW_BOARD(boardp)) { 11450 /* 11451 * Set the board bus type and PCI IRQ before 11452 * calling AscInitGetConfig(). 11453 */ 11454 switch (asc_dvc_varp->bus_type) { 11455 #ifdef CONFIG_ISA 11456 case ASC_IS_ISA: 11457 shost->unchecked_isa_dma = TRUE; 11458 share_irq = 0; 11459 break; 11460 case ASC_IS_VL: 11461 shost->unchecked_isa_dma = FALSE; 11462 share_irq = 0; 11463 break; 11464 case ASC_IS_EISA: 11465 shost->unchecked_isa_dma = FALSE; 11466 share_irq = IRQF_SHARED; 11467 break; 11468 #endif /* CONFIG_ISA */ 11469 #ifdef CONFIG_PCI 11470 case ASC_IS_PCI: 11471 shost->unchecked_isa_dma = FALSE; 11472 share_irq = IRQF_SHARED; 11473 break; 11474 #endif /* CONFIG_PCI */ 11475 default: 11476 shost_printk(KERN_ERR, shost, "unknown adapter type: " 11477 "%d\n", asc_dvc_varp->bus_type); 11478 shost->unchecked_isa_dma = TRUE; 11479 share_irq = 0; 11480 break; 11481 } 11482 11483 /* 11484 * NOTE: AscInitGetConfig() may change the board's 11485 * bus_type value. The bus_type value should no 11486 * longer be used. If the bus_type field must be 11487 * referenced only use the bit-wise AND operator "&". 11488 */ 11489 ASC_DBG(2, "AscInitGetConfig()\n"); 11490 ret = AscInitGetConfig(shost) ? -ENODEV : 0; 11491 } else { 11492 #ifdef CONFIG_PCI 11493 /* 11494 * For Wide boards set PCI information before calling 11495 * AdvInitGetConfig(). 11496 */ 11497 shost->unchecked_isa_dma = FALSE; 11498 share_irq = IRQF_SHARED; 11499 ASC_DBG(2, "AdvInitGetConfig()\n"); 11500 11501 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0; 11502 #endif /* CONFIG_PCI */ 11503 } 11504 11505 if (ret) 11506 goto err_unmap; 11507 11508 /* 11509 * Save the EEPROM configuration so that it can be displayed 11510 * from /proc/scsi/advansys/[0...]. 11511 */ 11512 if (ASC_NARROW_BOARD(boardp)) { 11513 11514 ASCEEP_CONFIG *ep; 11515 11516 /* 11517 * Set the adapter's target id bit in the 'init_tidmask' field. 11518 */ 11519 boardp->init_tidmask |= 11520 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id); 11521 11522 /* 11523 * Save EEPROM settings for the board. 11524 */ 11525 ep = &boardp->eep_config.asc_eep; 11526 11527 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable; 11528 ep->disc_enable = asc_dvc_varp->cfg->disc_enable; 11529 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled; 11530 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed); 11531 ep->start_motor = asc_dvc_varp->start_motor; 11532 ep->cntl = asc_dvc_varp->dvc_cntl; 11533 ep->no_scam = asc_dvc_varp->no_scam; 11534 ep->max_total_qng = asc_dvc_varp->max_total_qng; 11535 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id); 11536 /* 'max_tag_qng' is set to the same value for every device. */ 11537 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0]; 11538 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0]; 11539 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1]; 11540 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2]; 11541 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3]; 11542 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4]; 11543 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5]; 11544 11545 /* 11546 * Modify board configuration. 11547 */ 11548 ASC_DBG(2, "AscInitSetConfig()\n"); 11549 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0; 11550 if (ret) 11551 goto err_unmap; 11552 } else { 11553 ADVEEP_3550_CONFIG *ep_3550; 11554 ADVEEP_38C0800_CONFIG *ep_38C0800; 11555 ADVEEP_38C1600_CONFIG *ep_38C1600; 11556 11557 /* 11558 * Save Wide EEP Configuration Information. 11559 */ 11560 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 11561 ep_3550 = &boardp->eep_config.adv_3550_eep; 11562 11563 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; 11564 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng; 11565 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11566 ep_3550->termination = adv_dvc_varp->cfg->termination; 11567 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable; 11568 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl; 11569 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able; 11570 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able; 11571 ep_3550->ultra_able = adv_dvc_varp->ultra_able; 11572 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able; 11573 ep_3550->start_motor = adv_dvc_varp->start_motor; 11574 ep_3550->scsi_reset_delay = 11575 adv_dvc_varp->scsi_reset_wait; 11576 ep_3550->serial_number_word1 = 11577 adv_dvc_varp->cfg->serial1; 11578 ep_3550->serial_number_word2 = 11579 adv_dvc_varp->cfg->serial2; 11580 ep_3550->serial_number_word3 = 11581 adv_dvc_varp->cfg->serial3; 11582 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 11583 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 11584 11585 ep_38C0800->adapter_scsi_id = 11586 adv_dvc_varp->chip_scsi_id; 11587 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng; 11588 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11589 ep_38C0800->termination_lvd = 11590 adv_dvc_varp->cfg->termination; 11591 ep_38C0800->disc_enable = 11592 adv_dvc_varp->cfg->disc_enable; 11593 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl; 11594 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able; 11595 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 11596 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 11597 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 11598 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 11599 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 11600 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 11601 ep_38C0800->start_motor = adv_dvc_varp->start_motor; 11602 ep_38C0800->scsi_reset_delay = 11603 adv_dvc_varp->scsi_reset_wait; 11604 ep_38C0800->serial_number_word1 = 11605 adv_dvc_varp->cfg->serial1; 11606 ep_38C0800->serial_number_word2 = 11607 adv_dvc_varp->cfg->serial2; 11608 ep_38C0800->serial_number_word3 = 11609 adv_dvc_varp->cfg->serial3; 11610 } else { 11611 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 11612 11613 ep_38C1600->adapter_scsi_id = 11614 adv_dvc_varp->chip_scsi_id; 11615 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng; 11616 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11617 ep_38C1600->termination_lvd = 11618 adv_dvc_varp->cfg->termination; 11619 ep_38C1600->disc_enable = 11620 adv_dvc_varp->cfg->disc_enable; 11621 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl; 11622 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able; 11623 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 11624 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 11625 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 11626 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 11627 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 11628 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 11629 ep_38C1600->start_motor = adv_dvc_varp->start_motor; 11630 ep_38C1600->scsi_reset_delay = 11631 adv_dvc_varp->scsi_reset_wait; 11632 ep_38C1600->serial_number_word1 = 11633 adv_dvc_varp->cfg->serial1; 11634 ep_38C1600->serial_number_word2 = 11635 adv_dvc_varp->cfg->serial2; 11636 ep_38C1600->serial_number_word3 = 11637 adv_dvc_varp->cfg->serial3; 11638 } 11639 11640 /* 11641 * Set the adapter's target id bit in the 'init_tidmask' field. 11642 */ 11643 boardp->init_tidmask |= 11644 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id); 11645 } 11646 11647 /* 11648 * Channels are numbered beginning with 0. For AdvanSys one host 11649 * structure supports one channel. Multi-channel boards have a 11650 * separate host structure for each channel. 11651 */ 11652 shost->max_channel = 0; 11653 if (ASC_NARROW_BOARD(boardp)) { 11654 shost->max_id = ASC_MAX_TID + 1; 11655 shost->max_lun = ASC_MAX_LUN + 1; 11656 shost->max_cmd_len = ASC_MAX_CDB_LEN; 11657 11658 shost->io_port = asc_dvc_varp->iop_base; 11659 boardp->asc_n_io_port = ASC_IOADR_GAP; 11660 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id; 11661 11662 /* Set maximum number of queues the adapter can handle. */ 11663 shost->can_queue = asc_dvc_varp->max_total_qng; 11664 } else { 11665 shost->max_id = ADV_MAX_TID + 1; 11666 shost->max_lun = ADV_MAX_LUN + 1; 11667 shost->max_cmd_len = ADV_MAX_CDB_LEN; 11668 11669 /* 11670 * Save the I/O Port address and length even though 11671 * I/O ports are not used to access Wide boards. 11672 * Instead the Wide boards are accessed with 11673 * PCI Memory Mapped I/O. 11674 */ 11675 shost->io_port = iop; 11676 11677 shost->this_id = adv_dvc_varp->chip_scsi_id; 11678 11679 /* Set maximum number of queues the adapter can handle. */ 11680 shost->can_queue = adv_dvc_varp->max_host_qng; 11681 } 11682 11683 /* 11684 * Following v1.3.89, 'cmd_per_lun' is no longer needed 11685 * and should be set to zero. 11686 * 11687 * But because of a bug introduced in v1.3.89 if the driver is 11688 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level 11689 * SCSI function 'allocate_device' will panic. To allow the driver 11690 * to work as a module in these kernels set 'cmd_per_lun' to 1. 11691 * 11692 * Note: This is wrong. cmd_per_lun should be set to the depth 11693 * you want on untagged devices always. 11694 #ifdef MODULE 11695 */ 11696 shost->cmd_per_lun = 1; 11697 /* #else 11698 shost->cmd_per_lun = 0; 11699 #endif */ 11700 11701 /* 11702 * Set the maximum number of scatter-gather elements the 11703 * adapter can handle. 11704 */ 11705 if (ASC_NARROW_BOARD(boardp)) { 11706 /* 11707 * Allow two commands with 'sg_tablesize' scatter-gather 11708 * elements to be executed simultaneously. This value is 11709 * the theoretical hardware limit. It may be decreased 11710 * below. 11711 */ 11712 shost->sg_tablesize = 11713 (((asc_dvc_varp->max_total_qng - 2) / 2) * 11714 ASC_SG_LIST_PER_Q) + 1; 11715 } else { 11716 shost->sg_tablesize = ADV_MAX_SG_LIST; 11717 } 11718 11719 /* 11720 * The value of 'sg_tablesize' can not exceed the SCSI 11721 * mid-level driver definition of SG_ALL. SG_ALL also 11722 * must not be exceeded, because it is used to define the 11723 * size of the scatter-gather table in 'struct asc_sg_head'. 11724 */ 11725 if (shost->sg_tablesize > SG_ALL) { 11726 shost->sg_tablesize = SG_ALL; 11727 } 11728 11729 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize); 11730 11731 /* BIOS start address. */ 11732 if (ASC_NARROW_BOARD(boardp)) { 11733 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base, 11734 asc_dvc_varp->bus_type); 11735 } else { 11736 /* 11737 * Fill-in BIOS board variables. The Wide BIOS saves 11738 * information in LRAM that is used by the driver. 11739 */ 11740 AdvReadWordLram(adv_dvc_varp->iop_base, 11741 BIOS_SIGNATURE, boardp->bios_signature); 11742 AdvReadWordLram(adv_dvc_varp->iop_base, 11743 BIOS_VERSION, boardp->bios_version); 11744 AdvReadWordLram(adv_dvc_varp->iop_base, 11745 BIOS_CODESEG, boardp->bios_codeseg); 11746 AdvReadWordLram(adv_dvc_varp->iop_base, 11747 BIOS_CODELEN, boardp->bios_codelen); 11748 11749 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n", 11750 boardp->bios_signature, boardp->bios_version); 11751 11752 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n", 11753 boardp->bios_codeseg, boardp->bios_codelen); 11754 11755 /* 11756 * If the BIOS saved a valid signature, then fill in 11757 * the BIOS code segment base address. 11758 */ 11759 if (boardp->bios_signature == 0x55AA) { 11760 /* 11761 * Convert x86 realmode code segment to a linear 11762 * address by shifting left 4. 11763 */ 11764 shost->base = ((ulong)boardp->bios_codeseg << 4); 11765 } else { 11766 shost->base = 0; 11767 } 11768 } 11769 11770 /* 11771 * Register Board Resources - I/O Port, DMA, IRQ 11772 */ 11773 11774 /* Register DMA Channel for Narrow boards. */ 11775 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */ 11776 #ifdef CONFIG_ISA 11777 if (ASC_NARROW_BOARD(boardp)) { 11778 /* Register DMA channel for ISA bus. */ 11779 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 11780 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel; 11781 ret = request_dma(shost->dma_channel, DRV_NAME); 11782 if (ret) { 11783 shost_printk(KERN_ERR, shost, "request_dma() " 11784 "%d failed %d\n", 11785 shost->dma_channel, ret); 11786 goto err_unmap; 11787 } 11788 AscEnableIsaDma(shost->dma_channel); 11789 } 11790 } 11791 #endif /* CONFIG_ISA */ 11792 11793 /* Register IRQ Number. */ 11794 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost); 11795 11796 ret = request_irq(boardp->irq, advansys_interrupt, share_irq, 11797 DRV_NAME, shost); 11798 11799 if (ret) { 11800 if (ret == -EBUSY) { 11801 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11802 "already in use\n", boardp->irq); 11803 } else if (ret == -EINVAL) { 11804 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11805 "not valid\n", boardp->irq); 11806 } else { 11807 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11808 "failed with %d\n", boardp->irq, ret); 11809 } 11810 goto err_free_dma; 11811 } 11812 11813 /* 11814 * Initialize board RISC chip and enable interrupts. 11815 */ 11816 if (ASC_NARROW_BOARD(boardp)) { 11817 ASC_DBG(2, "AscInitAsc1000Driver()\n"); 11818 11819 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL); 11820 if (!asc_dvc_varp->overrun_buf) { 11821 ret = -ENOMEM; 11822 goto err_free_irq; 11823 } 11824 warn_code = AscInitAsc1000Driver(asc_dvc_varp); 11825 11826 if (warn_code || asc_dvc_varp->err_code) { 11827 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, " 11828 "warn 0x%x, error 0x%x\n", 11829 asc_dvc_varp->init_state, warn_code, 11830 asc_dvc_varp->err_code); 11831 if (!asc_dvc_varp->overrun_dma) { 11832 ret = -ENODEV; 11833 goto err_free_mem; 11834 } 11835 } 11836 } else { 11837 if (advansys_wide_init_chip(shost)) { 11838 ret = -ENODEV; 11839 goto err_free_mem; 11840 } 11841 } 11842 11843 ASC_DBG_PRT_SCSI_HOST(2, shost); 11844 11845 ret = scsi_add_host(shost, boardp->dev); 11846 if (ret) 11847 goto err_free_mem; 11848 11849 scsi_scan_host(shost); 11850 return 0; 11851 11852 err_free_mem: 11853 if (ASC_NARROW_BOARD(boardp)) { 11854 if (asc_dvc_varp->overrun_dma) 11855 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma, 11856 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11857 kfree(asc_dvc_varp->overrun_buf); 11858 } else 11859 advansys_wide_free_mem(boardp); 11860 err_free_irq: 11861 free_irq(boardp->irq, shost); 11862 err_free_dma: 11863 #ifdef CONFIG_ISA 11864 if (shost->dma_channel != NO_ISA_DMA) 11865 free_dma(shost->dma_channel); 11866 #endif 11867 err_unmap: 11868 if (boardp->ioremap_addr) 11869 iounmap(boardp->ioremap_addr); 11870 err_shost: 11871 return ret; 11872 } 11873 11874 /* 11875 * advansys_release() 11876 * 11877 * Release resources allocated for a single AdvanSys adapter. 11878 */ 11879 static int advansys_release(struct Scsi_Host *shost) 11880 { 11881 struct asc_board *board = shost_priv(shost); 11882 ASC_DBG(1, "begin\n"); 11883 scsi_remove_host(shost); 11884 free_irq(board->irq, shost); 11885 #ifdef CONFIG_ISA 11886 if (shost->dma_channel != NO_ISA_DMA) { 11887 ASC_DBG(1, "free_dma()\n"); 11888 free_dma(shost->dma_channel); 11889 } 11890 #endif 11891 if (ASC_NARROW_BOARD(board)) { 11892 dma_unmap_single(board->dev, 11893 board->dvc_var.asc_dvc_var.overrun_dma, 11894 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11895 kfree(board->dvc_var.asc_dvc_var.overrun_buf); 11896 } else { 11897 iounmap(board->ioremap_addr); 11898 advansys_wide_free_mem(board); 11899 } 11900 scsi_host_put(shost); 11901 ASC_DBG(1, "end\n"); 11902 return 0; 11903 } 11904 11905 #define ASC_IOADR_TABLE_MAX_IX 11 11906 11907 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = { 11908 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190, 11909 0x0210, 0x0230, 0x0250, 0x0330 11910 }; 11911 11912 /* 11913 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as: 11914 * 00: 10 11915 * 01: 11 11916 * 10: 12 11917 * 11: 15 11918 */ 11919 static unsigned int advansys_isa_irq_no(PortAddr iop_base) 11920 { 11921 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 11922 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10; 11923 if (chip_irq == 13) 11924 chip_irq = 15; 11925 return chip_irq; 11926 } 11927 11928 static int advansys_isa_probe(struct device *dev, unsigned int id) 11929 { 11930 int err = -ENODEV; 11931 PortAddr iop_base = _asc_def_iop_base[id]; 11932 struct Scsi_Host *shost; 11933 struct asc_board *board; 11934 11935 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 11936 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 11937 return -ENODEV; 11938 } 11939 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 11940 if (!AscFindSignature(iop_base)) 11941 goto release_region; 11942 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT)) 11943 goto release_region; 11944 11945 err = -ENOMEM; 11946 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11947 if (!shost) 11948 goto release_region; 11949 11950 board = shost_priv(shost); 11951 board->irq = advansys_isa_irq_no(iop_base); 11952 board->dev = dev; 11953 11954 err = advansys_board_found(shost, iop_base, ASC_IS_ISA); 11955 if (err) 11956 goto free_host; 11957 11958 dev_set_drvdata(dev, shost); 11959 return 0; 11960 11961 free_host: 11962 scsi_host_put(shost); 11963 release_region: 11964 release_region(iop_base, ASC_IOADR_GAP); 11965 return err; 11966 } 11967 11968 static int advansys_isa_remove(struct device *dev, unsigned int id) 11969 { 11970 int ioport = _asc_def_iop_base[id]; 11971 advansys_release(dev_get_drvdata(dev)); 11972 release_region(ioport, ASC_IOADR_GAP); 11973 return 0; 11974 } 11975 11976 static struct isa_driver advansys_isa_driver = { 11977 .probe = advansys_isa_probe, 11978 .remove = advansys_isa_remove, 11979 .driver = { 11980 .owner = THIS_MODULE, 11981 .name = DRV_NAME, 11982 }, 11983 }; 11984 11985 /* 11986 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as: 11987 * 000: invalid 11988 * 001: 10 11989 * 010: 11 11990 * 011: 12 11991 * 100: invalid 11992 * 101: 14 11993 * 110: 15 11994 * 111: invalid 11995 */ 11996 static unsigned int advansys_vlb_irq_no(PortAddr iop_base) 11997 { 11998 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 11999 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9; 12000 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15)) 12001 return 0; 12002 return chip_irq; 12003 } 12004 12005 static int advansys_vlb_probe(struct device *dev, unsigned int id) 12006 { 12007 int err = -ENODEV; 12008 PortAddr iop_base = _asc_def_iop_base[id]; 12009 struct Scsi_Host *shost; 12010 struct asc_board *board; 12011 12012 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 12013 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 12014 return -ENODEV; 12015 } 12016 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 12017 if (!AscFindSignature(iop_base)) 12018 goto release_region; 12019 /* 12020 * I don't think this condition can actually happen, but the old 12021 * driver did it, and the chances of finding a VLB setup in 2007 12022 * to do testing with is slight to none. 12023 */ 12024 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL) 12025 goto release_region; 12026 12027 err = -ENOMEM; 12028 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 12029 if (!shost) 12030 goto release_region; 12031 12032 board = shost_priv(shost); 12033 board->irq = advansys_vlb_irq_no(iop_base); 12034 board->dev = dev; 12035 12036 err = advansys_board_found(shost, iop_base, ASC_IS_VL); 12037 if (err) 12038 goto free_host; 12039 12040 dev_set_drvdata(dev, shost); 12041 return 0; 12042 12043 free_host: 12044 scsi_host_put(shost); 12045 release_region: 12046 release_region(iop_base, ASC_IOADR_GAP); 12047 return -ENODEV; 12048 } 12049 12050 static struct isa_driver advansys_vlb_driver = { 12051 .probe = advansys_vlb_probe, 12052 .remove = advansys_isa_remove, 12053 .driver = { 12054 .owner = THIS_MODULE, 12055 .name = "advansys_vlb", 12056 }, 12057 }; 12058 12059 static struct eisa_device_id advansys_eisa_table[] = { 12060 { "ABP7401" }, 12061 { "ABP7501" }, 12062 { "" } 12063 }; 12064 12065 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table); 12066 12067 /* 12068 * EISA is a little more tricky than PCI; each EISA device may have two 12069 * channels, and this driver is written to make each channel its own Scsi_Host 12070 */ 12071 struct eisa_scsi_data { 12072 struct Scsi_Host *host[2]; 12073 }; 12074 12075 /* 12076 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as: 12077 * 000: 10 12078 * 001: 11 12079 * 010: 12 12080 * 011: invalid 12081 * 100: 14 12082 * 101: 15 12083 * 110: invalid 12084 * 111: invalid 12085 */ 12086 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev) 12087 { 12088 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86); 12089 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10; 12090 if ((chip_irq == 13) || (chip_irq > 15)) 12091 return 0; 12092 return chip_irq; 12093 } 12094 12095 static int advansys_eisa_probe(struct device *dev) 12096 { 12097 int i, ioport, irq = 0; 12098 int err; 12099 struct eisa_device *edev = to_eisa_device(dev); 12100 struct eisa_scsi_data *data; 12101 12102 err = -ENOMEM; 12103 data = kzalloc(sizeof(*data), GFP_KERNEL); 12104 if (!data) 12105 goto fail; 12106 ioport = edev->base_addr + 0xc30; 12107 12108 err = -ENODEV; 12109 for (i = 0; i < 2; i++, ioport += 0x20) { 12110 struct asc_board *board; 12111 struct Scsi_Host *shost; 12112 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) { 12113 printk(KERN_WARNING "Region %x-%x busy\n", ioport, 12114 ioport + ASC_IOADR_GAP - 1); 12115 continue; 12116 } 12117 if (!AscFindSignature(ioport)) { 12118 release_region(ioport, ASC_IOADR_GAP); 12119 continue; 12120 } 12121 12122 /* 12123 * I don't know why we need to do this for EISA chips, but 12124 * not for any others. It looks to be equivalent to 12125 * AscGetChipCfgMsw, but I may have overlooked something, 12126 * so I'm not converting it until I get an EISA board to 12127 * test with. 12128 */ 12129 inw(ioport + 4); 12130 12131 if (!irq) 12132 irq = advansys_eisa_irq_no(edev); 12133 12134 err = -ENOMEM; 12135 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 12136 if (!shost) 12137 goto release_region; 12138 12139 board = shost_priv(shost); 12140 board->irq = irq; 12141 board->dev = dev; 12142 12143 err = advansys_board_found(shost, ioport, ASC_IS_EISA); 12144 if (!err) { 12145 data->host[i] = shost; 12146 continue; 12147 } 12148 12149 scsi_host_put(shost); 12150 release_region: 12151 release_region(ioport, ASC_IOADR_GAP); 12152 break; 12153 } 12154 12155 if (err) 12156 goto free_data; 12157 dev_set_drvdata(dev, data); 12158 return 0; 12159 12160 free_data: 12161 kfree(data->host[0]); 12162 kfree(data->host[1]); 12163 kfree(data); 12164 fail: 12165 return err; 12166 } 12167 12168 static int advansys_eisa_remove(struct device *dev) 12169 { 12170 int i; 12171 struct eisa_scsi_data *data = dev_get_drvdata(dev); 12172 12173 for (i = 0; i < 2; i++) { 12174 int ioport; 12175 struct Scsi_Host *shost = data->host[i]; 12176 if (!shost) 12177 continue; 12178 ioport = shost->io_port; 12179 advansys_release(shost); 12180 release_region(ioport, ASC_IOADR_GAP); 12181 } 12182 12183 kfree(data); 12184 return 0; 12185 } 12186 12187 static struct eisa_driver advansys_eisa_driver = { 12188 .id_table = advansys_eisa_table, 12189 .driver = { 12190 .name = DRV_NAME, 12191 .probe = advansys_eisa_probe, 12192 .remove = advansys_eisa_remove, 12193 } 12194 }; 12195 12196 /* PCI Devices supported by this driver */ 12197 static struct pci_device_id advansys_pci_tbl[] = { 12198 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A, 12199 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12200 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940, 12201 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12202 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U, 12203 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12204 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW, 12205 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12206 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1, 12207 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12208 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1, 12209 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12210 {} 12211 }; 12212 12213 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl); 12214 12215 static void advansys_set_latency(struct pci_dev *pdev) 12216 { 12217 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 12218 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 12219 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0); 12220 } else { 12221 u8 latency; 12222 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency); 12223 if (latency < 0x20) 12224 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20); 12225 } 12226 } 12227 12228 static int advansys_pci_probe(struct pci_dev *pdev, 12229 const struct pci_device_id *ent) 12230 { 12231 int err, ioport; 12232 struct Scsi_Host *shost; 12233 struct asc_board *board; 12234 12235 err = pci_enable_device(pdev); 12236 if (err) 12237 goto fail; 12238 err = pci_request_regions(pdev, DRV_NAME); 12239 if (err) 12240 goto disable_device; 12241 pci_set_master(pdev); 12242 advansys_set_latency(pdev); 12243 12244 err = -ENODEV; 12245 if (pci_resource_len(pdev, 0) == 0) 12246 goto release_region; 12247 12248 ioport = pci_resource_start(pdev, 0); 12249 12250 err = -ENOMEM; 12251 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 12252 if (!shost) 12253 goto release_region; 12254 12255 board = shost_priv(shost); 12256 board->irq = pdev->irq; 12257 board->dev = &pdev->dev; 12258 12259 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW || 12260 pdev->device == PCI_DEVICE_ID_38C0800_REV1 || 12261 pdev->device == PCI_DEVICE_ID_38C1600_REV1) { 12262 board->flags |= ASC_IS_WIDE_BOARD; 12263 } 12264 12265 err = advansys_board_found(shost, ioport, ASC_IS_PCI); 12266 if (err) 12267 goto free_host; 12268 12269 pci_set_drvdata(pdev, shost); 12270 return 0; 12271 12272 free_host: 12273 scsi_host_put(shost); 12274 release_region: 12275 pci_release_regions(pdev); 12276 disable_device: 12277 pci_disable_device(pdev); 12278 fail: 12279 return err; 12280 } 12281 12282 static void advansys_pci_remove(struct pci_dev *pdev) 12283 { 12284 advansys_release(pci_get_drvdata(pdev)); 12285 pci_release_regions(pdev); 12286 pci_disable_device(pdev); 12287 } 12288 12289 static struct pci_driver advansys_pci_driver = { 12290 .name = DRV_NAME, 12291 .id_table = advansys_pci_tbl, 12292 .probe = advansys_pci_probe, 12293 .remove = advansys_pci_remove, 12294 }; 12295 12296 static int __init advansys_init(void) 12297 { 12298 int error; 12299 12300 error = isa_register_driver(&advansys_isa_driver, 12301 ASC_IOADR_TABLE_MAX_IX); 12302 if (error) 12303 goto fail; 12304 12305 error = isa_register_driver(&advansys_vlb_driver, 12306 ASC_IOADR_TABLE_MAX_IX); 12307 if (error) 12308 goto unregister_isa; 12309 12310 error = eisa_driver_register(&advansys_eisa_driver); 12311 if (error) 12312 goto unregister_vlb; 12313 12314 error = pci_register_driver(&advansys_pci_driver); 12315 if (error) 12316 goto unregister_eisa; 12317 12318 return 0; 12319 12320 unregister_eisa: 12321 eisa_driver_unregister(&advansys_eisa_driver); 12322 unregister_vlb: 12323 isa_unregister_driver(&advansys_vlb_driver); 12324 unregister_isa: 12325 isa_unregister_driver(&advansys_isa_driver); 12326 fail: 12327 return error; 12328 } 12329 12330 static void __exit advansys_exit(void) 12331 { 12332 pci_unregister_driver(&advansys_pci_driver); 12333 eisa_driver_unregister(&advansys_eisa_driver); 12334 isa_unregister_driver(&advansys_vlb_driver); 12335 isa_unregister_driver(&advansys_isa_driver); 12336 } 12337 12338 module_init(advansys_init); 12339 module_exit(advansys_exit); 12340 12341 MODULE_LICENSE("GPL"); 12342 MODULE_FIRMWARE("advansys/mcode.bin"); 12343 MODULE_FIRMWARE("advansys/3550.bin"); 12344 MODULE_FIRMWARE("advansys/38C0800.bin"); 12345 MODULE_FIRMWARE("advansys/38C1600.bin"); 12346