1 /* 2 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters 3 * 4 * Copyright (c) 1995-2000 Advanced System Products, Inc. 5 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc. 6 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx> 7 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de> 8 * All Rights Reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or 13 * (at your option) any later version. 14 */ 15 16 /* 17 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys) 18 * changed its name to ConnectCom Solutions, Inc. 19 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets 20 */ 21 22 #include <linux/module.h> 23 #include <linux/string.h> 24 #include <linux/kernel.h> 25 #include <linux/types.h> 26 #include <linux/ioport.h> 27 #include <linux/interrupt.h> 28 #include <linux/delay.h> 29 #include <linux/slab.h> 30 #include <linux/mm.h> 31 #include <linux/proc_fs.h> 32 #include <linux/init.h> 33 #include <linux/blkdev.h> 34 #include <linux/isa.h> 35 #include <linux/eisa.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/dma-mapping.h> 39 #include <linux/firmware.h> 40 #include <linux/dmapool.h> 41 42 #include <asm/io.h> 43 #include <asm/dma.h> 44 45 #include <scsi/scsi_cmnd.h> 46 #include <scsi/scsi_device.h> 47 #include <scsi/scsi_tcq.h> 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_host.h> 50 51 #define DRV_NAME "advansys" 52 #define ASC_VERSION "3.5" /* AdvanSys Driver Version */ 53 54 /* FIXME: 55 * 56 * 1. Use scsi_transport_spi 57 * 2. advansys_info is not safe against multiple simultaneous callers 58 * 3. Add module_param to override ISA/VLB ioport array 59 */ 60 61 /* Enable driver /proc statistics. */ 62 #define ADVANSYS_STATS 63 64 /* Enable driver tracing. */ 65 #undef ADVANSYS_DEBUG 66 67 typedef unsigned char uchar; 68 69 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0) 70 71 #define PCI_VENDOR_ID_ASP 0x10cd 72 #define PCI_DEVICE_ID_ASP_1200A 0x1100 73 #define PCI_DEVICE_ID_ASP_ABP940 0x1200 74 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300 75 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300 76 #define PCI_DEVICE_ID_38C0800_REV1 0x2500 77 #define PCI_DEVICE_ID_38C1600_REV1 0x2700 78 79 #define PortAddr unsigned int /* port address size */ 80 #define inp(port) inb(port) 81 #define outp(port, byte) outb((byte), (port)) 82 83 #define inpw(port) inw(port) 84 #define outpw(port, word) outw((word), (port)) 85 86 #define ASC_MAX_SG_QUEUE 7 87 #define ASC_MAX_SG_LIST 255 88 89 #define ASC_CS_TYPE unsigned short 90 91 #define ASC_IS_ISA (0x0001) 92 #define ASC_IS_ISAPNP (0x0081) 93 #define ASC_IS_EISA (0x0002) 94 #define ASC_IS_PCI (0x0004) 95 #define ASC_IS_PCI_ULTRA (0x0104) 96 #define ASC_IS_PCMCIA (0x0008) 97 #define ASC_IS_MCA (0x0020) 98 #define ASC_IS_VL (0x0040) 99 #define ASC_IS_WIDESCSI_16 (0x0100) 100 #define ASC_IS_WIDESCSI_32 (0x0200) 101 #define ASC_IS_BIG_ENDIAN (0x8000) 102 103 #define ASC_CHIP_MIN_VER_VL (0x01) 104 #define ASC_CHIP_MAX_VER_VL (0x07) 105 #define ASC_CHIP_MIN_VER_PCI (0x09) 106 #define ASC_CHIP_MAX_VER_PCI (0x0F) 107 #define ASC_CHIP_VER_PCI_BIT (0x08) 108 #define ASC_CHIP_MIN_VER_ISA (0x11) 109 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21) 110 #define ASC_CHIP_MAX_VER_ISA (0x27) 111 #define ASC_CHIP_VER_ISA_BIT (0x30) 112 #define ASC_CHIP_VER_ISAPNP_BIT (0x20) 113 #define ASC_CHIP_VER_ASYN_BUG (0x21) 114 #define ASC_CHIP_VER_PCI 0x08 115 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02) 116 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03) 117 #define ASC_CHIP_MIN_VER_EISA (0x41) 118 #define ASC_CHIP_MAX_VER_EISA (0x47) 119 #define ASC_CHIP_VER_EISA_BIT (0x40) 120 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3) 121 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL) 122 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL) 123 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL) 124 125 #define ASC_SCSI_ID_BITS 3 126 #define ASC_SCSI_TIX_TYPE uchar 127 #define ASC_ALL_DEVICE_BIT_SET 0xFF 128 #define ASC_SCSI_BIT_ID_TYPE uchar 129 #define ASC_MAX_TID 7 130 #define ASC_MAX_LUN 7 131 #define ASC_SCSI_WIDTH_BIT_SET 0xFF 132 #define ASC_MAX_SENSE_LEN 32 133 #define ASC_MIN_SENSE_LEN 14 134 #define ASC_SCSI_RESET_HOLD_TIME_US 60 135 136 /* 137 * Narrow boards only support 12-byte commands, while wide boards 138 * extend to 16-byte commands. 139 */ 140 #define ASC_MAX_CDB_LEN 12 141 #define ADV_MAX_CDB_LEN 16 142 143 #define MS_SDTR_LEN 0x03 144 #define MS_WDTR_LEN 0x02 145 146 #define ASC_SG_LIST_PER_Q 7 147 #define QS_FREE 0x00 148 #define QS_READY 0x01 149 #define QS_DISC1 0x02 150 #define QS_DISC2 0x04 151 #define QS_BUSY 0x08 152 #define QS_ABORTED 0x40 153 #define QS_DONE 0x80 154 #define QC_NO_CALLBACK 0x01 155 #define QC_SG_SWAP_QUEUE 0x02 156 #define QC_SG_HEAD 0x04 157 #define QC_DATA_IN 0x08 158 #define QC_DATA_OUT 0x10 159 #define QC_URGENT 0x20 160 #define QC_MSG_OUT 0x40 161 #define QC_REQ_SENSE 0x80 162 #define QCSG_SG_XFER_LIST 0x02 163 #define QCSG_SG_XFER_MORE 0x04 164 #define QCSG_SG_XFER_END 0x08 165 #define QD_IN_PROGRESS 0x00 166 #define QD_NO_ERROR 0x01 167 #define QD_ABORTED_BY_HOST 0x02 168 #define QD_WITH_ERROR 0x04 169 #define QD_INVALID_REQUEST 0x80 170 #define QD_INVALID_HOST_NUM 0x81 171 #define QD_INVALID_DEVICE 0x82 172 #define QD_ERR_INTERNAL 0xFF 173 #define QHSTA_NO_ERROR 0x00 174 #define QHSTA_M_SEL_TIMEOUT 0x11 175 #define QHSTA_M_DATA_OVER_RUN 0x12 176 #define QHSTA_M_DATA_UNDER_RUN 0x12 177 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 178 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14 179 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21 180 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22 181 #define QHSTA_D_HOST_ABORT_FAILED 0x23 182 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24 183 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25 184 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26 185 #define QHSTA_M_WTM_TIMEOUT 0x41 186 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 187 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 188 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 189 #define QHSTA_M_TARGET_STATUS_BUSY 0x45 190 #define QHSTA_M_BAD_TAG_CODE 0x46 191 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47 192 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48 193 #define QHSTA_D_LRAM_CMP_ERROR 0x81 194 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1 195 #define ASC_FLAG_SCSIQ_REQ 0x01 196 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02 197 #define ASC_FLAG_BIOS_ASYNC_IO 0x04 198 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08 199 #define ASC_FLAG_WIN16 0x10 200 #define ASC_FLAG_WIN32 0x20 201 #define ASC_FLAG_ISA_OVER_16MB 0x40 202 #define ASC_FLAG_DOS_VM_CALLBACK 0x80 203 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10 204 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04 205 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08 206 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40 207 #define ASC_SCSIQ_CPY_BEG 4 208 #define ASC_SCSIQ_SGHD_CPY_BEG 2 209 #define ASC_SCSIQ_B_FWD 0 210 #define ASC_SCSIQ_B_BWD 1 211 #define ASC_SCSIQ_B_STATUS 2 212 #define ASC_SCSIQ_B_QNO 3 213 #define ASC_SCSIQ_B_CNTL 4 214 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5 215 #define ASC_SCSIQ_D_DATA_ADDR 8 216 #define ASC_SCSIQ_D_DATA_CNT 12 217 #define ASC_SCSIQ_B_SENSE_LEN 20 218 #define ASC_SCSIQ_DONE_INFO_BEG 22 219 #define ASC_SCSIQ_D_SRBPTR 22 220 #define ASC_SCSIQ_B_TARGET_IX 26 221 #define ASC_SCSIQ_B_CDB_LEN 28 222 #define ASC_SCSIQ_B_TAG_CODE 29 223 #define ASC_SCSIQ_W_VM_ID 30 224 #define ASC_SCSIQ_DONE_STATUS 32 225 #define ASC_SCSIQ_HOST_STATUS 33 226 #define ASC_SCSIQ_SCSI_STATUS 34 227 #define ASC_SCSIQ_CDB_BEG 36 228 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56 229 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60 230 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48 231 #define ASC_SCSIQ_B_SG_WK_QP 49 232 #define ASC_SCSIQ_B_SG_WK_IX 50 233 #define ASC_SCSIQ_W_ALT_DC1 52 234 #define ASC_SCSIQ_B_LIST_CNT 6 235 #define ASC_SCSIQ_B_CUR_LIST_CNT 7 236 #define ASC_SGQ_B_SG_CNTL 4 237 #define ASC_SGQ_B_SG_HEAD_QP 5 238 #define ASC_SGQ_B_SG_LIST_CNT 6 239 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7 240 #define ASC_SGQ_LIST_BEG 8 241 #define ASC_DEF_SCSI1_QNG 4 242 #define ASC_MAX_SCSI1_QNG 4 243 #define ASC_DEF_SCSI2_QNG 16 244 #define ASC_MAX_SCSI2_QNG 32 245 #define ASC_TAG_CODE_MASK 0x23 246 #define ASC_STOP_REQ_RISC_STOP 0x01 247 #define ASC_STOP_ACK_RISC_STOP 0x03 248 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10 249 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20 250 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40 251 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS)) 252 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid)) 253 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID)) 254 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID) 255 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID) 256 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN) 257 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6)) 258 259 typedef struct asc_scsiq_1 { 260 uchar status; 261 uchar q_no; 262 uchar cntl; 263 uchar sg_queue_cnt; 264 uchar target_id; 265 uchar target_lun; 266 __le32 data_addr; 267 __le32 data_cnt; 268 __le32 sense_addr; 269 uchar sense_len; 270 uchar extra_bytes; 271 } ASC_SCSIQ_1; 272 273 typedef struct asc_scsiq_2 { 274 u32 srb_tag; 275 uchar target_ix; 276 uchar flag; 277 uchar cdb_len; 278 uchar tag_code; 279 ushort vm_id; 280 } ASC_SCSIQ_2; 281 282 typedef struct asc_scsiq_3 { 283 uchar done_stat; 284 uchar host_stat; 285 uchar scsi_stat; 286 uchar scsi_msg; 287 } ASC_SCSIQ_3; 288 289 typedef struct asc_scsiq_4 { 290 uchar cdb[ASC_MAX_CDB_LEN]; 291 uchar y_first_sg_list_qp; 292 uchar y_working_sg_qp; 293 uchar y_working_sg_ix; 294 uchar y_res; 295 ushort x_req_count; 296 ushort x_reconnect_rtn; 297 __le32 x_saved_data_addr; 298 __le32 x_saved_data_cnt; 299 } ASC_SCSIQ_4; 300 301 typedef struct asc_q_done_info { 302 ASC_SCSIQ_2 d2; 303 ASC_SCSIQ_3 d3; 304 uchar q_status; 305 uchar q_no; 306 uchar cntl; 307 uchar sense_len; 308 uchar extra_bytes; 309 uchar res; 310 u32 remain_bytes; 311 } ASC_QDONE_INFO; 312 313 typedef struct asc_sg_list { 314 __le32 addr; 315 __le32 bytes; 316 } ASC_SG_LIST; 317 318 typedef struct asc_sg_head { 319 ushort entry_cnt; 320 ushort queue_cnt; 321 ushort entry_to_copy; 322 ushort res; 323 ASC_SG_LIST sg_list[0]; 324 } ASC_SG_HEAD; 325 326 typedef struct asc_scsi_q { 327 ASC_SCSIQ_1 q1; 328 ASC_SCSIQ_2 q2; 329 uchar *cdbptr; 330 ASC_SG_HEAD *sg_head; 331 ushort remain_sg_entry_cnt; 332 ushort next_sg_index; 333 } ASC_SCSI_Q; 334 335 typedef struct asc_scsi_bios_req_q { 336 ASC_SCSIQ_1 r1; 337 ASC_SCSIQ_2 r2; 338 uchar *cdbptr; 339 ASC_SG_HEAD *sg_head; 340 uchar *sense_ptr; 341 ASC_SCSIQ_3 r3; 342 uchar cdb[ASC_MAX_CDB_LEN]; 343 uchar sense[ASC_MIN_SENSE_LEN]; 344 } ASC_SCSI_BIOS_REQ_Q; 345 346 typedef struct asc_risc_q { 347 uchar fwd; 348 uchar bwd; 349 ASC_SCSIQ_1 i1; 350 ASC_SCSIQ_2 i2; 351 ASC_SCSIQ_3 i3; 352 ASC_SCSIQ_4 i4; 353 } ASC_RISC_Q; 354 355 typedef struct asc_sg_list_q { 356 uchar seq_no; 357 uchar q_no; 358 uchar cntl; 359 uchar sg_head_qp; 360 uchar sg_list_cnt; 361 uchar sg_cur_list_cnt; 362 } ASC_SG_LIST_Q; 363 364 typedef struct asc_risc_sg_list_q { 365 uchar fwd; 366 uchar bwd; 367 ASC_SG_LIST_Q sg; 368 ASC_SG_LIST sg_list[7]; 369 } ASC_RISC_SG_LIST_Q; 370 371 #define ASCQ_ERR_Q_STATUS 0x0D 372 #define ASCQ_ERR_CUR_QNG 0x17 373 #define ASCQ_ERR_SG_Q_LINKS 0x18 374 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A 375 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B 376 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C 377 378 /* 379 * Warning code values are set in ASC_DVC_VAR 'warn_code'. 380 */ 381 #define ASC_WARN_NO_ERROR 0x0000 382 #define ASC_WARN_IO_PORT_ROTATE 0x0001 383 #define ASC_WARN_EEPROM_CHKSUM 0x0002 384 #define ASC_WARN_IRQ_MODIFIED 0x0004 385 #define ASC_WARN_AUTO_CONFIG 0x0008 386 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010 387 #define ASC_WARN_EEPROM_RECOVER 0x0020 388 #define ASC_WARN_CFG_MSW_RECOVER 0x0040 389 390 /* 391 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'. 392 */ 393 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */ 394 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */ 395 #define ASC_IERR_SET_PC_ADDR 0x0004 396 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */ 397 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */ 398 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */ 399 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */ 400 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */ 401 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */ 402 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */ 403 #define ASC_IERR_NO_BUS_TYPE 0x0400 404 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */ 405 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */ 406 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */ 407 408 #define ASC_DEF_MAX_TOTAL_QNG (0xF0) 409 #define ASC_MIN_TAG_Q_PER_DVC (0x04) 410 #define ASC_MIN_FREE_Q (0x02) 411 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q)) 412 #define ASC_MAX_TOTAL_QNG 240 413 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16 414 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8 415 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20 416 #define ASC_MAX_INRAM_TAG_QNG 16 417 #define ASC_IOADR_GAP 0x10 418 #define ASC_SYN_MAX_OFFSET 0x0F 419 #define ASC_DEF_SDTR_OFFSET 0x0F 420 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02 421 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41 422 423 /* The narrow chip only supports a limited selection of transfer rates. 424 * These are encoded in the range 0..7 or 0..15 depending whether the chip 425 * is Ultra-capable or not. These tables let us convert from one to the other. 426 */ 427 static const unsigned char asc_syn_xfer_period[8] = { 428 25, 30, 35, 40, 50, 60, 70, 85 429 }; 430 431 static const unsigned char asc_syn_ultra_xfer_period[16] = { 432 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107 433 }; 434 435 typedef struct ext_msg { 436 uchar msg_type; 437 uchar msg_len; 438 uchar msg_req; 439 union { 440 struct { 441 uchar sdtr_xfer_period; 442 uchar sdtr_req_ack_offset; 443 } sdtr; 444 struct { 445 uchar wdtr_width; 446 } wdtr; 447 struct { 448 uchar mdp_b3; 449 uchar mdp_b2; 450 uchar mdp_b1; 451 uchar mdp_b0; 452 } mdp; 453 } u_ext_msg; 454 uchar res; 455 } EXT_MSG; 456 457 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period 458 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset 459 #define wdtr_width u_ext_msg.wdtr.wdtr_width 460 #define mdp_b3 u_ext_msg.mdp_b3 461 #define mdp_b2 u_ext_msg.mdp_b2 462 #define mdp_b1 u_ext_msg.mdp_b1 463 #define mdp_b0 u_ext_msg.mdp_b0 464 465 typedef struct asc_dvc_cfg { 466 ASC_SCSI_BIT_ID_TYPE can_tagged_qng; 467 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled; 468 ASC_SCSI_BIT_ID_TYPE disc_enable; 469 ASC_SCSI_BIT_ID_TYPE sdtr_enable; 470 uchar chip_scsi_id; 471 uchar isa_dma_speed; 472 uchar isa_dma_channel; 473 uchar chip_version; 474 ushort mcode_date; 475 ushort mcode_version; 476 uchar max_tag_qng[ASC_MAX_TID + 1]; 477 uchar sdtr_period_offset[ASC_MAX_TID + 1]; 478 uchar adapter_info[6]; 479 } ASC_DVC_CFG; 480 481 #define ASC_DEF_DVC_CNTL 0xFFFF 482 #define ASC_DEF_CHIP_SCSI_ID 7 483 #define ASC_DEF_ISA_DMA_SPEED 4 484 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001 485 #define ASC_INIT_STATE_END_GET_CFG 0x0002 486 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004 487 #define ASC_INIT_STATE_END_SET_CFG 0x0008 488 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010 489 #define ASC_INIT_STATE_END_LOAD_MC 0x0020 490 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040 491 #define ASC_INIT_STATE_END_INQUIRY 0x0080 492 #define ASC_INIT_RESET_SCSI_DONE 0x0100 493 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000 494 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001 495 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002 496 #define ASC_MIN_TAGGED_CMD 7 497 #define ASC_MAX_SCSI_RESET_WAIT 30 498 #define ASC_OVERRUN_BSIZE 64 499 500 struct asc_dvc_var; /* Forward Declaration. */ 501 502 typedef struct asc_dvc_var { 503 PortAddr iop_base; 504 ushort err_code; 505 ushort dvc_cntl; 506 ushort bug_fix_cntl; 507 ushort bus_type; 508 ASC_SCSI_BIT_ID_TYPE init_sdtr; 509 ASC_SCSI_BIT_ID_TYPE sdtr_done; 510 ASC_SCSI_BIT_ID_TYPE use_tagged_qng; 511 ASC_SCSI_BIT_ID_TYPE unit_not_ready; 512 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy; 513 ASC_SCSI_BIT_ID_TYPE start_motor; 514 uchar *overrun_buf; 515 dma_addr_t overrun_dma; 516 uchar scsi_reset_wait; 517 uchar chip_no; 518 bool is_in_int; 519 uchar max_total_qng; 520 uchar cur_total_qng; 521 uchar in_critical_cnt; 522 uchar last_q_shortage; 523 ushort init_state; 524 uchar cur_dvc_qng[ASC_MAX_TID + 1]; 525 uchar max_dvc_qng[ASC_MAX_TID + 1]; 526 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1]; 527 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1]; 528 const uchar *sdtr_period_tbl; 529 ASC_DVC_CFG *cfg; 530 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always; 531 char redo_scam; 532 ushort res2; 533 uchar dos_int13_table[ASC_MAX_TID + 1]; 534 unsigned int max_dma_count; 535 ASC_SCSI_BIT_ID_TYPE no_scam; 536 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer; 537 uchar min_sdtr_index; 538 uchar max_sdtr_index; 539 struct asc_board *drv_ptr; 540 unsigned int uc_break; 541 } ASC_DVC_VAR; 542 543 typedef struct asc_dvc_inq_info { 544 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 545 } ASC_DVC_INQ_INFO; 546 547 typedef struct asc_cap_info { 548 u32 lba; 549 u32 blk_size; 550 } ASC_CAP_INFO; 551 552 typedef struct asc_cap_info_array { 553 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 554 } ASC_CAP_INFO_ARRAY; 555 556 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001 557 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002 558 #define ASC_CNTL_INITIATOR (ushort)0x0001 559 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002 560 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004 561 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008 562 #define ASC_CNTL_NO_SCAM (ushort)0x0010 563 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080 564 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040 565 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100 566 #define ASC_CNTL_RESET_SCSI (ushort)0x0200 567 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400 568 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800 569 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000 570 #define ASC_CNTL_BURST_MODE (ushort)0x2000 571 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000 572 #define ASC_EEP_DVC_CFG_BEG_VL 2 573 #define ASC_EEP_MAX_DVC_ADDR_VL 15 574 #define ASC_EEP_DVC_CFG_BEG 32 575 #define ASC_EEP_MAX_DVC_ADDR 45 576 #define ASC_EEP_MAX_RETRY 20 577 578 /* 579 * These macros keep the chip SCSI id and ISA DMA speed 580 * bitfields in board order. C bitfields aren't portable 581 * between big and little-endian platforms so they are 582 * not used. 583 */ 584 585 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f) 586 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4) 587 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \ 588 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID)) 589 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \ 590 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4) 591 592 typedef struct asceep_config { 593 ushort cfg_lsw; 594 ushort cfg_msw; 595 uchar init_sdtr; 596 uchar disc_enable; 597 uchar use_cmd_qng; 598 uchar start_motor; 599 uchar max_total_qng; 600 uchar max_tag_qng; 601 uchar bios_scan; 602 uchar power_up_wait; 603 uchar no_scam; 604 uchar id_speed; /* low order 4 bits is chip scsi id */ 605 /* high order 4 bits is isa dma speed */ 606 uchar dos_int13_table[ASC_MAX_TID + 1]; 607 uchar adapter_info[6]; 608 ushort cntl; 609 ushort chksum; 610 } ASCEEP_CONFIG; 611 612 #define ASC_EEP_CMD_READ 0x80 613 #define ASC_EEP_CMD_WRITE 0x40 614 #define ASC_EEP_CMD_WRITE_ABLE 0x30 615 #define ASC_EEP_CMD_WRITE_DISABLE 0x00 616 #define ASCV_MSGOUT_BEG 0x0000 617 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3) 618 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4) 619 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006 620 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8) 621 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3) 622 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4) 623 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8) 624 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8) 625 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020 626 #define ASCV_BREAK_ADDR (ushort)0x0028 627 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A 628 #define ASCV_BREAK_CONTROL (ushort)0x002C 629 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E 630 631 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030 632 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032 633 #define ASCV_MCODE_SIZE_W (ushort)0x0034 634 #define ASCV_STOP_CODE_B (ushort)0x0036 635 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037 636 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038 637 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C 638 #define ASCV_HALTCODE_W (ushort)0x0040 639 #define ASCV_CHKSUM_W (ushort)0x0042 640 #define ASCV_MC_DATE_W (ushort)0x0044 641 #define ASCV_MC_VER_W (ushort)0x0046 642 #define ASCV_NEXTRDY_B (ushort)0x0048 643 #define ASCV_DONENEXT_B (ushort)0x0049 644 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A 645 #define ASCV_SCSIBUSY_B (ushort)0x004B 646 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C 647 #define ASCV_CURCDB_B (ushort)0x004D 648 #define ASCV_RCLUN_B (ushort)0x004E 649 #define ASCV_BUSY_QHEAD_B (ushort)0x004F 650 #define ASCV_DISC1_QHEAD_B (ushort)0x0050 651 #define ASCV_DISC_ENABLE_B (ushort)0x0052 652 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053 653 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055 654 #define ASCV_MCODE_CNTL_B (ushort)0x0056 655 #define ASCV_NULL_TARGET_B (ushort)0x0057 656 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058 657 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A 658 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1) 659 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1) 660 #define ASCV_HOST_FLAG_B (ushort)0x005D 661 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064 662 #define ASCV_VER_SERIAL_B (ushort)0x0065 663 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066 664 #define ASCV_WTM_FLAG_B (ushort)0x0068 665 #define ASCV_RISC_FLAG_B (ushort)0x006A 666 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B 667 #define ASC_HOST_FLAG_IN_ISR 0x01 668 #define ASC_HOST_FLAG_ACK_INT 0x02 669 #define ASC_RISC_FLAG_GEN_INT 0x01 670 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02 671 #define IOP_CTRL (0x0F) 672 #define IOP_STATUS (0x0E) 673 #define IOP_INT_ACK IOP_STATUS 674 #define IOP_REG_IFC (0x0D) 675 #define IOP_SYN_OFFSET (0x0B) 676 #define IOP_EXTRA_CONTROL (0x0D) 677 #define IOP_REG_PC (0x0C) 678 #define IOP_RAM_ADDR (0x0A) 679 #define IOP_RAM_DATA (0x08) 680 #define IOP_EEP_DATA (0x06) 681 #define IOP_EEP_CMD (0x07) 682 #define IOP_VERSION (0x03) 683 #define IOP_CONFIG_HIGH (0x04) 684 #define IOP_CONFIG_LOW (0x02) 685 #define IOP_SIG_BYTE (0x01) 686 #define IOP_SIG_WORD (0x00) 687 #define IOP_REG_DC1 (0x0E) 688 #define IOP_REG_DC0 (0x0C) 689 #define IOP_REG_SB (0x0B) 690 #define IOP_REG_DA1 (0x0A) 691 #define IOP_REG_DA0 (0x08) 692 #define IOP_REG_SC (0x09) 693 #define IOP_DMA_SPEED (0x07) 694 #define IOP_REG_FLAG (0x07) 695 #define IOP_FIFO_H (0x06) 696 #define IOP_FIFO_L (0x04) 697 #define IOP_REG_ID (0x05) 698 #define IOP_REG_QP (0x03) 699 #define IOP_REG_IH (0x02) 700 #define IOP_REG_IX (0x01) 701 #define IOP_REG_AX (0x00) 702 #define IFC_REG_LOCK (0x00) 703 #define IFC_REG_UNLOCK (0x09) 704 #define IFC_WR_EN_FILTER (0x10) 705 #define IFC_RD_NO_EEPROM (0x10) 706 #define IFC_SLEW_RATE (0x20) 707 #define IFC_ACT_NEG (0x40) 708 #define IFC_INP_FILTER (0x80) 709 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK) 710 #define SC_SEL (uchar)(0x80) 711 #define SC_BSY (uchar)(0x40) 712 #define SC_ACK (uchar)(0x20) 713 #define SC_REQ (uchar)(0x10) 714 #define SC_ATN (uchar)(0x08) 715 #define SC_IO (uchar)(0x04) 716 #define SC_CD (uchar)(0x02) 717 #define SC_MSG (uchar)(0x01) 718 #define SEC_SCSI_CTL (uchar)(0x80) 719 #define SEC_ACTIVE_NEGATE (uchar)(0x40) 720 #define SEC_SLEW_RATE (uchar)(0x20) 721 #define SEC_ENABLE_FILTER (uchar)(0x10) 722 #define ASC_HALT_EXTMSG_IN (ushort)0x8000 723 #define ASC_HALT_CHK_CONDITION (ushort)0x8100 724 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200 725 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300 726 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400 727 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000 728 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000 729 #define ASC_MAX_QNO 0xF8 730 #define ASC_DATA_SEC_BEG (ushort)0x0080 731 #define ASC_DATA_SEC_END (ushort)0x0080 732 #define ASC_CODE_SEC_BEG (ushort)0x0080 733 #define ASC_CODE_SEC_END (ushort)0x0080 734 #define ASC_QADR_BEG (0x4000) 735 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64) 736 #define ASC_QADR_END (ushort)0x7FFF 737 #define ASC_QLAST_ADR (ushort)0x7FC0 738 #define ASC_QBLK_SIZE 0x40 739 #define ASC_BIOS_DATA_QBEG 0xF8 740 #define ASC_MIN_ACTIVE_QNO 0x01 741 #define ASC_QLINK_END 0xFF 742 #define ASC_EEPROM_WORDS 0x10 743 #define ASC_MAX_MGS_LEN 0x10 744 #define ASC_BIOS_ADDR_DEF 0xDC00 745 #define ASC_BIOS_SIZE 0x3800 746 #define ASC_BIOS_RAM_OFF 0x3800 747 #define ASC_BIOS_RAM_SIZE 0x800 748 #define ASC_BIOS_MIN_ADDR 0xC000 749 #define ASC_BIOS_MAX_ADDR 0xEC00 750 #define ASC_BIOS_BANK_SIZE 0x0400 751 #define ASC_MCODE_START_ADDR 0x0080 752 #define ASC_CFG0_HOST_INT_ON 0x0020 753 #define ASC_CFG0_BIOS_ON 0x0040 754 #define ASC_CFG0_VERA_BURST_ON 0x0080 755 #define ASC_CFG0_SCSI_PARITY_ON 0x0800 756 #define ASC_CFG1_SCSI_TARGET_ON 0x0080 757 #define ASC_CFG1_LRAM_8BITS_ON 0x0800 758 #define ASC_CFG_MSW_CLR_MASK 0x3080 759 #define CSW_TEST1 (ASC_CS_TYPE)0x8000 760 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000 761 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000 762 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000 763 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800 764 #define CSW_TEST2 (ASC_CS_TYPE)0x0400 765 #define CSW_TEST3 (ASC_CS_TYPE)0x0200 766 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100 767 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080 768 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040 769 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020 770 #define CSW_HALTED (ASC_CS_TYPE)0x0010 771 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008 772 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004 773 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002 774 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001 775 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000 776 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100 777 #define CIW_TEST1 (ASC_CS_TYPE)0x0200 778 #define CIW_TEST2 (ASC_CS_TYPE)0x0400 779 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800 780 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000 781 #define CC_CHIP_RESET (uchar)0x80 782 #define CC_SCSI_RESET (uchar)0x40 783 #define CC_HALT (uchar)0x20 784 #define CC_SINGLE_STEP (uchar)0x10 785 #define CC_DMA_ABLE (uchar)0x08 786 #define CC_TEST (uchar)0x04 787 #define CC_BANK_ONE (uchar)0x02 788 #define CC_DIAG (uchar)0x01 789 #define ASC_1000_ID0W 0x04C1 790 #define ASC_1000_ID0W_FIX 0x00C1 791 #define ASC_1000_ID1B 0x25 792 #define ASC_EISA_REV_IOP_MASK (0x0C83) 793 #define ASC_EISA_CFG_IOP_MASK (0x0C86) 794 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000) 795 #define INS_HALTINT (ushort)0x6281 796 #define INS_HALT (ushort)0x6280 797 #define INS_SINT (ushort)0x6200 798 #define INS_RFLAG_WTM (ushort)0x7380 799 #define ASC_MC_SAVE_CODE_WSIZE 0x500 800 #define ASC_MC_SAVE_DATA_WSIZE 0x40 801 802 typedef struct asc_mc_saved { 803 ushort data[ASC_MC_SAVE_DATA_WSIZE]; 804 ushort code[ASC_MC_SAVE_CODE_WSIZE]; 805 } ASC_MC_SAVED; 806 807 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B) 808 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val) 809 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W) 810 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W) 811 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val) 812 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val) 813 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B) 814 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B) 815 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val) 816 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val) 817 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data)) 818 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id)) 819 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data) 820 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id)) 821 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE) 822 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD) 823 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION) 824 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW) 825 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH) 826 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data) 827 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data) 828 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD) 829 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data) 830 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA) 831 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data) 832 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR)) 833 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr) 834 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA) 835 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data) 836 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC) 837 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data) 838 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS) 839 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val) 840 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL) 841 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val) 842 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET) 843 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data) 844 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data) 845 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC) 846 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH)) 847 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID) 848 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL) 849 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data) 850 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX) 851 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data) 852 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX) 853 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data) 854 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH) 855 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data) 856 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP) 857 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data) 858 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L) 859 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data) 860 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H) 861 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data) 862 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED) 863 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data) 864 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0) 865 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data) 866 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1) 867 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data) 868 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0) 869 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data) 870 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1) 871 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data) 872 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID) 873 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data) 874 875 #define AdvPortAddr void __iomem * /* Virtual memory address size */ 876 877 /* 878 * Define Adv Library required memory access macros. 879 */ 880 #define ADV_MEM_READB(addr) readb(addr) 881 #define ADV_MEM_READW(addr) readw(addr) 882 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr) 883 #define ADV_MEM_WRITEW(addr, word) writew(word, addr) 884 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr) 885 886 /* 887 * Define total number of simultaneous maximum element scatter-gather 888 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the 889 * maximum number of outstanding commands per wide host adapter. Each 890 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather 891 * elements. Allow each command to have at least one ADV_SG_BLOCK structure. 892 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK 893 * structures or 255 scatter-gather elements. 894 */ 895 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG 896 897 /* 898 * Define maximum number of scatter-gather elements per request. 899 */ 900 #define ADV_MAX_SG_LIST 255 901 #define NO_OF_SG_PER_BLOCK 15 902 903 #define ADV_EEP_DVC_CFG_BEGIN (0x00) 904 #define ADV_EEP_DVC_CFG_END (0x15) 905 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */ 906 #define ADV_EEP_MAX_WORD_ADDR (0x1E) 907 908 #define ADV_EEP_DELAY_MS 100 909 910 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */ 911 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */ 912 /* 913 * For the ASC3550 Bit 13 is Termination Polarity control bit. 914 * For later ICs Bit 13 controls whether the CIS (Card Information 915 * Service Section) is loaded from EEPROM. 916 */ 917 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */ 918 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */ 919 /* 920 * ASC38C1600 Bit 11 921 * 922 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify 923 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then 924 * Function 0 will specify INT B. 925 * 926 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify 927 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then 928 * Function 1 will specify INT A. 929 */ 930 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */ 931 932 typedef struct adveep_3550_config { 933 /* Word Offset, Description */ 934 935 ushort cfg_lsw; /* 00 power up initialization */ 936 /* bit 13 set - Term Polarity Control */ 937 /* bit 14 set - BIOS Enable */ 938 /* bit 15 set - Big Endian Mode */ 939 ushort cfg_msw; /* 01 unused */ 940 ushort disc_enable; /* 02 disconnect enable */ 941 ushort wdtr_able; /* 03 Wide DTR able */ 942 ushort sdtr_able; /* 04 Synchronous DTR able */ 943 ushort start_motor; /* 05 send start up motor */ 944 ushort tagqng_able; /* 06 tag queuing able */ 945 ushort bios_scan; /* 07 BIOS device control */ 946 ushort scam_tolerant; /* 08 no scam */ 947 948 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 949 uchar bios_boot_delay; /* power up wait */ 950 951 uchar scsi_reset_delay; /* 10 reset delay */ 952 uchar bios_id_lun; /* first boot device scsi id & lun */ 953 /* high nibble is lun */ 954 /* low nibble is scsi id */ 955 956 uchar termination; /* 11 0 - automatic */ 957 /* 1 - low off / high off */ 958 /* 2 - low off / high on */ 959 /* 3 - low on / high on */ 960 /* There is no low on / high off */ 961 962 uchar reserved1; /* reserved byte (not used) */ 963 964 ushort bios_ctrl; /* 12 BIOS control bits */ 965 /* bit 0 BIOS don't act as initiator. */ 966 /* bit 1 BIOS > 1 GB support */ 967 /* bit 2 BIOS > 2 Disk Support */ 968 /* bit 3 BIOS don't support removables */ 969 /* bit 4 BIOS support bootable CD */ 970 /* bit 5 BIOS scan enabled */ 971 /* bit 6 BIOS support multiple LUNs */ 972 /* bit 7 BIOS display of message */ 973 /* bit 8 SCAM disabled */ 974 /* bit 9 Reset SCSI bus during init. */ 975 /* bit 10 */ 976 /* bit 11 No verbose initialization. */ 977 /* bit 12 SCSI parity enabled */ 978 /* bit 13 */ 979 /* bit 14 */ 980 /* bit 15 */ 981 ushort ultra_able; /* 13 ULTRA speed able */ 982 ushort reserved2; /* 14 reserved */ 983 uchar max_host_qng; /* 15 maximum host queuing */ 984 uchar max_dvc_qng; /* maximum per device queuing */ 985 ushort dvc_cntl; /* 16 control bit for driver */ 986 ushort bug_fix; /* 17 control bit for bug fix */ 987 ushort serial_number_word1; /* 18 Board serial number word 1 */ 988 ushort serial_number_word2; /* 19 Board serial number word 2 */ 989 ushort serial_number_word3; /* 20 Board serial number word 3 */ 990 ushort check_sum; /* 21 EEP check sum */ 991 uchar oem_name[16]; /* 22 OEM name */ 992 ushort dvc_err_code; /* 30 last device driver error code */ 993 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 994 ushort adv_err_addr; /* 32 last uc error address */ 995 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 996 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 997 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 998 ushort num_of_err; /* 36 number of error */ 999 } ADVEEP_3550_CONFIG; 1000 1001 typedef struct adveep_38C0800_config { 1002 /* Word Offset, Description */ 1003 1004 ushort cfg_lsw; /* 00 power up initialization */ 1005 /* bit 13 set - Load CIS */ 1006 /* bit 14 set - BIOS Enable */ 1007 /* bit 15 set - Big Endian Mode */ 1008 ushort cfg_msw; /* 01 unused */ 1009 ushort disc_enable; /* 02 disconnect enable */ 1010 ushort wdtr_able; /* 03 Wide DTR able */ 1011 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1012 ushort start_motor; /* 05 send start up motor */ 1013 ushort tagqng_able; /* 06 tag queuing able */ 1014 ushort bios_scan; /* 07 BIOS device control */ 1015 ushort scam_tolerant; /* 08 no scam */ 1016 1017 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1018 uchar bios_boot_delay; /* power up wait */ 1019 1020 uchar scsi_reset_delay; /* 10 reset delay */ 1021 uchar bios_id_lun; /* first boot device scsi id & lun */ 1022 /* high nibble is lun */ 1023 /* low nibble is scsi id */ 1024 1025 uchar termination_se; /* 11 0 - automatic */ 1026 /* 1 - low off / high off */ 1027 /* 2 - low off / high on */ 1028 /* 3 - low on / high on */ 1029 /* There is no low on / high off */ 1030 1031 uchar termination_lvd; /* 11 0 - automatic */ 1032 /* 1 - low off / high off */ 1033 /* 2 - low off / high on */ 1034 /* 3 - low on / high on */ 1035 /* There is no low on / high off */ 1036 1037 ushort bios_ctrl; /* 12 BIOS control bits */ 1038 /* bit 0 BIOS don't act as initiator. */ 1039 /* bit 1 BIOS > 1 GB support */ 1040 /* bit 2 BIOS > 2 Disk Support */ 1041 /* bit 3 BIOS don't support removables */ 1042 /* bit 4 BIOS support bootable CD */ 1043 /* bit 5 BIOS scan enabled */ 1044 /* bit 6 BIOS support multiple LUNs */ 1045 /* bit 7 BIOS display of message */ 1046 /* bit 8 SCAM disabled */ 1047 /* bit 9 Reset SCSI bus during init. */ 1048 /* bit 10 */ 1049 /* bit 11 No verbose initialization. */ 1050 /* bit 12 SCSI parity enabled */ 1051 /* bit 13 */ 1052 /* bit 14 */ 1053 /* bit 15 */ 1054 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1055 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1056 uchar max_host_qng; /* 15 maximum host queueing */ 1057 uchar max_dvc_qng; /* maximum per device queuing */ 1058 ushort dvc_cntl; /* 16 control bit for driver */ 1059 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1060 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1061 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1062 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1063 ushort check_sum; /* 21 EEP check sum */ 1064 uchar oem_name[16]; /* 22 OEM name */ 1065 ushort dvc_err_code; /* 30 last device driver error code */ 1066 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1067 ushort adv_err_addr; /* 32 last uc error address */ 1068 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1069 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1070 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1071 ushort reserved36; /* 36 reserved */ 1072 ushort reserved37; /* 37 reserved */ 1073 ushort reserved38; /* 38 reserved */ 1074 ushort reserved39; /* 39 reserved */ 1075 ushort reserved40; /* 40 reserved */ 1076 ushort reserved41; /* 41 reserved */ 1077 ushort reserved42; /* 42 reserved */ 1078 ushort reserved43; /* 43 reserved */ 1079 ushort reserved44; /* 44 reserved */ 1080 ushort reserved45; /* 45 reserved */ 1081 ushort reserved46; /* 46 reserved */ 1082 ushort reserved47; /* 47 reserved */ 1083 ushort reserved48; /* 48 reserved */ 1084 ushort reserved49; /* 49 reserved */ 1085 ushort reserved50; /* 50 reserved */ 1086 ushort reserved51; /* 51 reserved */ 1087 ushort reserved52; /* 52 reserved */ 1088 ushort reserved53; /* 53 reserved */ 1089 ushort reserved54; /* 54 reserved */ 1090 ushort reserved55; /* 55 reserved */ 1091 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1092 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1093 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1094 ushort subsysid; /* 59 SubSystem ID */ 1095 ushort reserved60; /* 60 reserved */ 1096 ushort reserved61; /* 61 reserved */ 1097 ushort reserved62; /* 62 reserved */ 1098 ushort reserved63; /* 63 reserved */ 1099 } ADVEEP_38C0800_CONFIG; 1100 1101 typedef struct adveep_38C1600_config { 1102 /* Word Offset, Description */ 1103 1104 ushort cfg_lsw; /* 00 power up initialization */ 1105 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */ 1106 /* clear - Func. 0 INTA, Func. 1 INTB */ 1107 /* bit 13 set - Load CIS */ 1108 /* bit 14 set - BIOS Enable */ 1109 /* bit 15 set - Big Endian Mode */ 1110 ushort cfg_msw; /* 01 unused */ 1111 ushort disc_enable; /* 02 disconnect enable */ 1112 ushort wdtr_able; /* 03 Wide DTR able */ 1113 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1114 ushort start_motor; /* 05 send start up motor */ 1115 ushort tagqng_able; /* 06 tag queuing able */ 1116 ushort bios_scan; /* 07 BIOS device control */ 1117 ushort scam_tolerant; /* 08 no scam */ 1118 1119 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1120 uchar bios_boot_delay; /* power up wait */ 1121 1122 uchar scsi_reset_delay; /* 10 reset delay */ 1123 uchar bios_id_lun; /* first boot device scsi id & lun */ 1124 /* high nibble is lun */ 1125 /* low nibble is scsi id */ 1126 1127 uchar termination_se; /* 11 0 - automatic */ 1128 /* 1 - low off / high off */ 1129 /* 2 - low off / high on */ 1130 /* 3 - low on / high on */ 1131 /* There is no low on / high off */ 1132 1133 uchar termination_lvd; /* 11 0 - automatic */ 1134 /* 1 - low off / high off */ 1135 /* 2 - low off / high on */ 1136 /* 3 - low on / high on */ 1137 /* There is no low on / high off */ 1138 1139 ushort bios_ctrl; /* 12 BIOS control bits */ 1140 /* bit 0 BIOS don't act as initiator. */ 1141 /* bit 1 BIOS > 1 GB support */ 1142 /* bit 2 BIOS > 2 Disk Support */ 1143 /* bit 3 BIOS don't support removables */ 1144 /* bit 4 BIOS support bootable CD */ 1145 /* bit 5 BIOS scan enabled */ 1146 /* bit 6 BIOS support multiple LUNs */ 1147 /* bit 7 BIOS display of message */ 1148 /* bit 8 SCAM disabled */ 1149 /* bit 9 Reset SCSI bus during init. */ 1150 /* bit 10 Basic Integrity Checking disabled */ 1151 /* bit 11 No verbose initialization. */ 1152 /* bit 12 SCSI parity enabled */ 1153 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */ 1154 /* bit 14 */ 1155 /* bit 15 */ 1156 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1157 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1158 uchar max_host_qng; /* 15 maximum host queueing */ 1159 uchar max_dvc_qng; /* maximum per device queuing */ 1160 ushort dvc_cntl; /* 16 control bit for driver */ 1161 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1162 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1163 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1164 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1165 ushort check_sum; /* 21 EEP check sum */ 1166 uchar oem_name[16]; /* 22 OEM name */ 1167 ushort dvc_err_code; /* 30 last device driver error code */ 1168 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1169 ushort adv_err_addr; /* 32 last uc error address */ 1170 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1171 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1172 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1173 ushort reserved36; /* 36 reserved */ 1174 ushort reserved37; /* 37 reserved */ 1175 ushort reserved38; /* 38 reserved */ 1176 ushort reserved39; /* 39 reserved */ 1177 ushort reserved40; /* 40 reserved */ 1178 ushort reserved41; /* 41 reserved */ 1179 ushort reserved42; /* 42 reserved */ 1180 ushort reserved43; /* 43 reserved */ 1181 ushort reserved44; /* 44 reserved */ 1182 ushort reserved45; /* 45 reserved */ 1183 ushort reserved46; /* 46 reserved */ 1184 ushort reserved47; /* 47 reserved */ 1185 ushort reserved48; /* 48 reserved */ 1186 ushort reserved49; /* 49 reserved */ 1187 ushort reserved50; /* 50 reserved */ 1188 ushort reserved51; /* 51 reserved */ 1189 ushort reserved52; /* 52 reserved */ 1190 ushort reserved53; /* 53 reserved */ 1191 ushort reserved54; /* 54 reserved */ 1192 ushort reserved55; /* 55 reserved */ 1193 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1194 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1195 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1196 ushort subsysid; /* 59 SubSystem ID */ 1197 ushort reserved60; /* 60 reserved */ 1198 ushort reserved61; /* 61 reserved */ 1199 ushort reserved62; /* 62 reserved */ 1200 ushort reserved63; /* 63 reserved */ 1201 } ADVEEP_38C1600_CONFIG; 1202 1203 /* 1204 * EEPROM Commands 1205 */ 1206 #define ASC_EEP_CMD_DONE 0x0200 1207 1208 /* bios_ctrl */ 1209 #define BIOS_CTRL_BIOS 0x0001 1210 #define BIOS_CTRL_EXTENDED_XLAT 0x0002 1211 #define BIOS_CTRL_GT_2_DISK 0x0004 1212 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008 1213 #define BIOS_CTRL_BOOTABLE_CD 0x0010 1214 #define BIOS_CTRL_MULTIPLE_LUN 0x0040 1215 #define BIOS_CTRL_DISPLAY_MSG 0x0080 1216 #define BIOS_CTRL_NO_SCAM 0x0100 1217 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200 1218 #define BIOS_CTRL_INIT_VERBOSE 0x0800 1219 #define BIOS_CTRL_SCSI_PARITY 0x1000 1220 #define BIOS_CTRL_AIPP_DIS 0x2000 1221 1222 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */ 1223 1224 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1225 1226 /* 1227 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is 1228 * a special 16K Adv Library and Microcode version. After the issue is 1229 * resolved, should restore 32K support. 1230 * 1231 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory * 1232 */ 1233 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1234 1235 /* 1236 * Byte I/O register address from base of 'iop_base'. 1237 */ 1238 #define IOPB_INTR_STATUS_REG 0x00 1239 #define IOPB_CHIP_ID_1 0x01 1240 #define IOPB_INTR_ENABLES 0x02 1241 #define IOPB_CHIP_TYPE_REV 0x03 1242 #define IOPB_RES_ADDR_4 0x04 1243 #define IOPB_RES_ADDR_5 0x05 1244 #define IOPB_RAM_DATA 0x06 1245 #define IOPB_RES_ADDR_7 0x07 1246 #define IOPB_FLAG_REG 0x08 1247 #define IOPB_RES_ADDR_9 0x09 1248 #define IOPB_RISC_CSR 0x0A 1249 #define IOPB_RES_ADDR_B 0x0B 1250 #define IOPB_RES_ADDR_C 0x0C 1251 #define IOPB_RES_ADDR_D 0x0D 1252 #define IOPB_SOFT_OVER_WR 0x0E 1253 #define IOPB_RES_ADDR_F 0x0F 1254 #define IOPB_MEM_CFG 0x10 1255 #define IOPB_RES_ADDR_11 0x11 1256 #define IOPB_GPIO_DATA 0x12 1257 #define IOPB_RES_ADDR_13 0x13 1258 #define IOPB_FLASH_PAGE 0x14 1259 #define IOPB_RES_ADDR_15 0x15 1260 #define IOPB_GPIO_CNTL 0x16 1261 #define IOPB_RES_ADDR_17 0x17 1262 #define IOPB_FLASH_DATA 0x18 1263 #define IOPB_RES_ADDR_19 0x19 1264 #define IOPB_RES_ADDR_1A 0x1A 1265 #define IOPB_RES_ADDR_1B 0x1B 1266 #define IOPB_RES_ADDR_1C 0x1C 1267 #define IOPB_RES_ADDR_1D 0x1D 1268 #define IOPB_RES_ADDR_1E 0x1E 1269 #define IOPB_RES_ADDR_1F 0x1F 1270 #define IOPB_DMA_CFG0 0x20 1271 #define IOPB_DMA_CFG1 0x21 1272 #define IOPB_TICKLE 0x22 1273 #define IOPB_DMA_REG_WR 0x23 1274 #define IOPB_SDMA_STATUS 0x24 1275 #define IOPB_SCSI_BYTE_CNT 0x25 1276 #define IOPB_HOST_BYTE_CNT 0x26 1277 #define IOPB_BYTE_LEFT_TO_XFER 0x27 1278 #define IOPB_BYTE_TO_XFER_0 0x28 1279 #define IOPB_BYTE_TO_XFER_1 0x29 1280 #define IOPB_BYTE_TO_XFER_2 0x2A 1281 #define IOPB_BYTE_TO_XFER_3 0x2B 1282 #define IOPB_ACC_GRP 0x2C 1283 #define IOPB_RES_ADDR_2D 0x2D 1284 #define IOPB_DEV_ID 0x2E 1285 #define IOPB_RES_ADDR_2F 0x2F 1286 #define IOPB_SCSI_DATA 0x30 1287 #define IOPB_RES_ADDR_31 0x31 1288 #define IOPB_RES_ADDR_32 0x32 1289 #define IOPB_SCSI_DATA_HSHK 0x33 1290 #define IOPB_SCSI_CTRL 0x34 1291 #define IOPB_RES_ADDR_35 0x35 1292 #define IOPB_RES_ADDR_36 0x36 1293 #define IOPB_RES_ADDR_37 0x37 1294 #define IOPB_RAM_BIST 0x38 1295 #define IOPB_PLL_TEST 0x39 1296 #define IOPB_PCI_INT_CFG 0x3A 1297 #define IOPB_RES_ADDR_3B 0x3B 1298 #define IOPB_RFIFO_CNT 0x3C 1299 #define IOPB_RES_ADDR_3D 0x3D 1300 #define IOPB_RES_ADDR_3E 0x3E 1301 #define IOPB_RES_ADDR_3F 0x3F 1302 1303 /* 1304 * Word I/O register address from base of 'iop_base'. 1305 */ 1306 #define IOPW_CHIP_ID_0 0x00 /* CID0 */ 1307 #define IOPW_CTRL_REG 0x02 /* CC */ 1308 #define IOPW_RAM_ADDR 0x04 /* LA */ 1309 #define IOPW_RAM_DATA 0x06 /* LD */ 1310 #define IOPW_RES_ADDR_08 0x08 1311 #define IOPW_RISC_CSR 0x0A /* CSR */ 1312 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */ 1313 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */ 1314 #define IOPW_RES_ADDR_10 0x10 1315 #define IOPW_SEL_MASK 0x12 /* SM */ 1316 #define IOPW_RES_ADDR_14 0x14 1317 #define IOPW_FLASH_ADDR 0x16 /* FA */ 1318 #define IOPW_RES_ADDR_18 0x18 1319 #define IOPW_EE_CMD 0x1A /* EC */ 1320 #define IOPW_EE_DATA 0x1C /* ED */ 1321 #define IOPW_SFIFO_CNT 0x1E /* SFC */ 1322 #define IOPW_RES_ADDR_20 0x20 1323 #define IOPW_Q_BASE 0x22 /* QB */ 1324 #define IOPW_QP 0x24 /* QP */ 1325 #define IOPW_IX 0x26 /* IX */ 1326 #define IOPW_SP 0x28 /* SP */ 1327 #define IOPW_PC 0x2A /* PC */ 1328 #define IOPW_RES_ADDR_2C 0x2C 1329 #define IOPW_RES_ADDR_2E 0x2E 1330 #define IOPW_SCSI_DATA 0x30 /* SD */ 1331 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */ 1332 #define IOPW_SCSI_CTRL 0x34 /* SC */ 1333 #define IOPW_HSHK_CFG 0x36 /* HCFG */ 1334 #define IOPW_SXFR_STATUS 0x36 /* SXS */ 1335 #define IOPW_SXFR_CNTL 0x38 /* SXL */ 1336 #define IOPW_SXFR_CNTH 0x3A /* SXH */ 1337 #define IOPW_RES_ADDR_3C 0x3C 1338 #define IOPW_RFIFO_DATA 0x3E /* RFD */ 1339 1340 /* 1341 * Doubleword I/O register address from base of 'iop_base'. 1342 */ 1343 #define IOPDW_RES_ADDR_0 0x00 1344 #define IOPDW_RAM_DATA 0x04 1345 #define IOPDW_RES_ADDR_8 0x08 1346 #define IOPDW_RES_ADDR_C 0x0C 1347 #define IOPDW_RES_ADDR_10 0x10 1348 #define IOPDW_COMMA 0x14 1349 #define IOPDW_COMMB 0x18 1350 #define IOPDW_RES_ADDR_1C 0x1C 1351 #define IOPDW_SDMA_ADDR0 0x20 1352 #define IOPDW_SDMA_ADDR1 0x24 1353 #define IOPDW_SDMA_COUNT 0x28 1354 #define IOPDW_SDMA_ERROR 0x2C 1355 #define IOPDW_RDMA_ADDR0 0x30 1356 #define IOPDW_RDMA_ADDR1 0x34 1357 #define IOPDW_RDMA_COUNT 0x38 1358 #define IOPDW_RDMA_ERROR 0x3C 1359 1360 #define ADV_CHIP_ID_BYTE 0x25 1361 #define ADV_CHIP_ID_WORD 0x04C1 1362 1363 #define ADV_INTR_ENABLE_HOST_INTR 0x01 1364 #define ADV_INTR_ENABLE_SEL_INTR 0x02 1365 #define ADV_INTR_ENABLE_DPR_INTR 0x04 1366 #define ADV_INTR_ENABLE_RTA_INTR 0x08 1367 #define ADV_INTR_ENABLE_RMA_INTR 0x10 1368 #define ADV_INTR_ENABLE_RST_INTR 0x20 1369 #define ADV_INTR_ENABLE_DPE_INTR 0x40 1370 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80 1371 1372 #define ADV_INTR_STATUS_INTRA 0x01 1373 #define ADV_INTR_STATUS_INTRB 0x02 1374 #define ADV_INTR_STATUS_INTRC 0x04 1375 1376 #define ADV_RISC_CSR_STOP (0x0000) 1377 #define ADV_RISC_TEST_COND (0x2000) 1378 #define ADV_RISC_CSR_RUN (0x4000) 1379 #define ADV_RISC_CSR_SINGLE_STEP (0x8000) 1380 1381 #define ADV_CTRL_REG_HOST_INTR 0x0100 1382 #define ADV_CTRL_REG_SEL_INTR 0x0200 1383 #define ADV_CTRL_REG_DPR_INTR 0x0400 1384 #define ADV_CTRL_REG_RTA_INTR 0x0800 1385 #define ADV_CTRL_REG_RMA_INTR 0x1000 1386 #define ADV_CTRL_REG_RES_BIT14 0x2000 1387 #define ADV_CTRL_REG_DPE_INTR 0x4000 1388 #define ADV_CTRL_REG_POWER_DONE 0x8000 1389 #define ADV_CTRL_REG_ANY_INTR 0xFF00 1390 1391 #define ADV_CTRL_REG_CMD_RESET 0x00C6 1392 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5 1393 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4 1394 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3 1395 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2 1396 1397 #define ADV_TICKLE_NOP 0x00 1398 #define ADV_TICKLE_A 0x01 1399 #define ADV_TICKLE_B 0x02 1400 #define ADV_TICKLE_C 0x03 1401 1402 #define AdvIsIntPending(port) \ 1403 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR) 1404 1405 /* 1406 * SCSI_CFG0 Register bit definitions 1407 */ 1408 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */ 1409 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */ 1410 #define EVEN_PARITY 0x1000 /* Select Even Parity */ 1411 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */ 1412 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */ 1413 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */ 1414 #define SCAM_EN 0x0080 /* Enable SCAM selection */ 1415 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */ 1416 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */ 1417 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */ 1418 #define OUR_ID 0x000F /* SCSI ID */ 1419 1420 /* 1421 * SCSI_CFG1 Register bit definitions 1422 */ 1423 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */ 1424 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */ 1425 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */ 1426 #define FILTER_SEL 0x0C00 /* Filter Period Selection */ 1427 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */ 1428 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */ 1429 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */ 1430 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */ 1431 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */ 1432 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */ 1433 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */ 1434 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */ 1435 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */ 1436 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */ 1437 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */ 1438 1439 /* 1440 * Addendum for ASC-38C0800 Chip 1441 * 1442 * The ASC-38C1600 Chip uses the same definitions except that the 1443 * bus mode override bits [12:10] have been moved to byte register 1444 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in 1445 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV) 1446 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only. 1447 * Also each ASC-38C1600 function or channel uses only cable bits [5:4] 1448 * and [1:0]. Bits [14], [7:6], [3:2] are unused. 1449 */ 1450 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */ 1451 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */ 1452 #define HVD 0x1000 /* HVD Device Detect */ 1453 #define LVD 0x0800 /* LVD Device Detect */ 1454 #define SE 0x0400 /* SE Device Detect */ 1455 #define TERM_LVD 0x00C0 /* LVD Termination Bits */ 1456 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */ 1457 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */ 1458 #define TERM_SE 0x0030 /* SE Termination Bits */ 1459 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */ 1460 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */ 1461 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */ 1462 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */ 1463 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */ 1464 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */ 1465 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */ 1466 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */ 1467 1468 #define CABLE_ILLEGAL_A 0x7 1469 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */ 1470 1471 #define CABLE_ILLEGAL_B 0xB 1472 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */ 1473 1474 /* 1475 * MEM_CFG Register bit definitions 1476 */ 1477 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */ 1478 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */ 1479 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */ 1480 #define RAM_SZ_2KB 0x00 /* 2 KB */ 1481 #define RAM_SZ_4KB 0x04 /* 4 KB */ 1482 #define RAM_SZ_8KB 0x08 /* 8 KB */ 1483 #define RAM_SZ_16KB 0x0C /* 16 KB */ 1484 #define RAM_SZ_32KB 0x10 /* 32 KB */ 1485 #define RAM_SZ_64KB 0x14 /* 64 KB */ 1486 1487 /* 1488 * DMA_CFG0 Register bit definitions 1489 * 1490 * This register is only accessible to the host. 1491 */ 1492 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */ 1493 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */ 1494 #define FIFO_THRESH_16B 0x00 /* 16 bytes */ 1495 #define FIFO_THRESH_32B 0x20 /* 32 bytes */ 1496 #define FIFO_THRESH_48B 0x30 /* 48 bytes */ 1497 #define FIFO_THRESH_64B 0x40 /* 64 bytes */ 1498 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */ 1499 #define FIFO_THRESH_96B 0x60 /* 96 bytes */ 1500 #define FIFO_THRESH_112B 0x70 /* 112 bytes */ 1501 #define START_CTL 0x0C /* DMA start conditions */ 1502 #define START_CTL_TH 0x00 /* Wait threshold level (default) */ 1503 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */ 1504 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */ 1505 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */ 1506 #define READ_CMD 0x03 /* Memory Read Method */ 1507 #define READ_CMD_MR 0x00 /* Memory Read */ 1508 #define READ_CMD_MRL 0x02 /* Memory Read Long */ 1509 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */ 1510 1511 /* 1512 * ASC-38C0800 RAM BIST Register bit definitions 1513 */ 1514 #define RAM_TEST_MODE 0x80 1515 #define PRE_TEST_MODE 0x40 1516 #define NORMAL_MODE 0x00 1517 #define RAM_TEST_DONE 0x10 1518 #define RAM_TEST_STATUS 0x0F 1519 #define RAM_TEST_HOST_ERROR 0x08 1520 #define RAM_TEST_INTRAM_ERROR 0x04 1521 #define RAM_TEST_RISC_ERROR 0x02 1522 #define RAM_TEST_SCSI_ERROR 0x01 1523 #define RAM_TEST_SUCCESS 0x00 1524 #define PRE_TEST_VALUE 0x05 1525 #define NORMAL_VALUE 0x00 1526 1527 /* 1528 * ASC38C1600 Definitions 1529 * 1530 * IOPB_PCI_INT_CFG Bit Field Definitions 1531 */ 1532 1533 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */ 1534 1535 /* 1536 * Bit 1 can be set to change the interrupt for the Function to operate in 1537 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in 1538 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same 1539 * mode, otherwise the operating mode is undefined. 1540 */ 1541 #define TOTEMPOLE 0x02 1542 1543 /* 1544 * Bit 0 can be used to change the Int Pin for the Function. The value is 1545 * 0 by default for both Functions with Function 0 using INT A and Function 1546 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set, 1547 * INT A is used. 1548 * 1549 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin 1550 * value specified in the PCI Configuration Space. 1551 */ 1552 #define INTAB 0x01 1553 1554 /* 1555 * Adv Library Status Definitions 1556 */ 1557 #define ADV_TRUE 1 1558 #define ADV_FALSE 0 1559 #define ADV_SUCCESS 1 1560 #define ADV_BUSY 0 1561 #define ADV_ERROR (-1) 1562 1563 /* 1564 * ADV_DVC_VAR 'warn_code' values 1565 */ 1566 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */ 1567 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */ 1568 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */ 1569 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */ 1570 1571 #define ADV_MAX_TID 15 /* max. target identifier */ 1572 #define ADV_MAX_LUN 7 /* max. logical unit number */ 1573 1574 /* 1575 * Fixed locations of microcode operating variables. 1576 */ 1577 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */ 1578 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */ 1579 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */ 1580 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */ 1581 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */ 1582 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */ 1583 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */ 1584 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */ 1585 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */ 1586 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */ 1587 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */ 1588 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */ 1589 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */ 1590 #define ASC_MC_CHIP_TYPE 0x009A 1591 #define ASC_MC_INTRB_CODE 0x009B 1592 #define ASC_MC_WDTR_ABLE 0x009C 1593 #define ASC_MC_SDTR_ABLE 0x009E 1594 #define ASC_MC_TAGQNG_ABLE 0x00A0 1595 #define ASC_MC_DISC_ENABLE 0x00A2 1596 #define ASC_MC_IDLE_CMD_STATUS 0x00A4 1597 #define ASC_MC_IDLE_CMD 0x00A6 1598 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8 1599 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC 1600 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE 1601 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0 1602 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2 1603 #define ASC_MC_SDTR_DONE 0x00B6 1604 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0 1605 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0 1606 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100 1607 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */ 1608 #define ASC_MC_WDTR_DONE 0x0124 1609 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */ 1610 #define ASC_MC_ICQ 0x0160 1611 #define ASC_MC_IRQ 0x0164 1612 #define ASC_MC_PPR_ABLE 0x017A 1613 1614 /* 1615 * BIOS LRAM variable absolute offsets. 1616 */ 1617 #define BIOS_CODESEG 0x54 1618 #define BIOS_CODELEN 0x56 1619 #define BIOS_SIGNATURE 0x58 1620 #define BIOS_VERSION 0x5A 1621 1622 /* 1623 * Microcode Control Flags 1624 * 1625 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122) 1626 * and handled by the microcode. 1627 */ 1628 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */ 1629 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */ 1630 1631 /* 1632 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format 1633 */ 1634 #define HSHK_CFG_WIDE_XFR 0x8000 1635 #define HSHK_CFG_RATE 0x0F00 1636 #define HSHK_CFG_OFFSET 0x001F 1637 1638 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */ 1639 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */ 1640 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */ 1641 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */ 1642 1643 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */ 1644 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */ 1645 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */ 1646 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */ 1647 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */ 1648 1649 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */ 1650 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */ 1651 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */ 1652 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */ 1653 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */ 1654 /* 1655 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or 1656 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used. 1657 */ 1658 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */ 1659 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */ 1660 1661 /* 1662 * All fields here are accessed by the board microcode and need to be 1663 * little-endian. 1664 */ 1665 typedef struct adv_carr_t { 1666 __le32 carr_va; /* Carrier Virtual Address */ 1667 __le32 carr_pa; /* Carrier Physical Address */ 1668 __le32 areq_vpa; /* ADV_SCSI_REQ_Q Virtual or Physical Address */ 1669 /* 1670 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer 1671 * 1672 * next_vpa [3:1] Reserved Bits 1673 * next_vpa [0] Done Flag set in Response Queue. 1674 */ 1675 __le32 next_vpa; 1676 } ADV_CARR_T; 1677 1678 /* 1679 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field. 1680 */ 1681 #define ADV_NEXT_VPA_MASK 0xFFFFFFF0 1682 1683 #define ADV_RQ_DONE 0x00000001 1684 #define ADV_RQ_GOOD 0x00000002 1685 #define ADV_CQ_STOPPER 0x00000000 1686 1687 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK) 1688 1689 /* 1690 * Each carrier is 64 bytes, and we need three additional 1691 * carrier for icq, irq, and the termination carrier. 1692 */ 1693 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3) 1694 1695 #define ADV_CARRIER_BUFSIZE \ 1696 (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) 1697 1698 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */ 1699 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */ 1700 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */ 1701 1702 /* 1703 * Adapter temporary configuration structure 1704 * 1705 * This structure can be discarded after initialization. Don't add 1706 * fields here needed after initialization. 1707 * 1708 * Field naming convention: 1709 * 1710 * *_enable indicates the field enables or disables a feature. The 1711 * value of the field is never reset. 1712 */ 1713 typedef struct adv_dvc_cfg { 1714 ushort disc_enable; /* enable disconnection */ 1715 uchar chip_version; /* chip version */ 1716 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */ 1717 ushort control_flag; /* Microcode Control Flag */ 1718 ushort mcode_date; /* Microcode date */ 1719 ushort mcode_version; /* Microcode version */ 1720 ushort serial1; /* EEPROM serial number word 1 */ 1721 ushort serial2; /* EEPROM serial number word 2 */ 1722 ushort serial3; /* EEPROM serial number word 3 */ 1723 } ADV_DVC_CFG; 1724 1725 struct adv_dvc_var; 1726 struct adv_scsi_req_q; 1727 1728 typedef struct adv_sg_block { 1729 uchar reserved1; 1730 uchar reserved2; 1731 uchar reserved3; 1732 uchar sg_cnt; /* Valid entries in block. */ 1733 __le32 sg_ptr; /* Pointer to next sg block. */ 1734 struct { 1735 __le32 sg_addr; /* SG element address. */ 1736 __le32 sg_count; /* SG element count. */ 1737 } sg_list[NO_OF_SG_PER_BLOCK]; 1738 } ADV_SG_BLOCK; 1739 1740 /* 1741 * ADV_SCSI_REQ_Q - microcode request structure 1742 * 1743 * All fields in this structure up to byte 60 are used by the microcode. 1744 * The microcode makes assumptions about the size and ordering of fields 1745 * in this structure. Do not change the structure definition here without 1746 * coordinating the change with the microcode. 1747 * 1748 * All fields accessed by microcode must be maintained in little_endian 1749 * order. 1750 */ 1751 typedef struct adv_scsi_req_q { 1752 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */ 1753 uchar target_cmd; 1754 uchar target_id; /* Device target identifier. */ 1755 uchar target_lun; /* Device target logical unit number. */ 1756 __le32 data_addr; /* Data buffer physical address. */ 1757 __le32 data_cnt; /* Data count. Ucode sets to residual. */ 1758 __le32 sense_addr; 1759 __le32 carr_pa; 1760 uchar mflag; 1761 uchar sense_len; 1762 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */ 1763 uchar scsi_cntl; 1764 uchar done_status; /* Completion status. */ 1765 uchar scsi_status; /* SCSI status byte. */ 1766 uchar host_status; /* Ucode host status. */ 1767 uchar sg_working_ix; 1768 uchar cdb[12]; /* SCSI CDB bytes 0-11. */ 1769 __le32 sg_real_addr; /* SG list physical address. */ 1770 __le32 scsiq_rptr; 1771 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */ 1772 __le32 scsiq_ptr; 1773 __le32 carr_va; 1774 /* 1775 * End of microcode structure - 60 bytes. The rest of the structure 1776 * is used by the Adv Library and ignored by the microcode. 1777 */ 1778 u32 srb_tag; 1779 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */ 1780 } ADV_SCSI_REQ_Q; 1781 1782 /* 1783 * The following two structures are used to process Wide Board requests. 1784 * 1785 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library 1786 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the 1787 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points 1788 * to the Mid-Level SCSI request structure. 1789 * 1790 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each 1791 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux 1792 * up to 255 scatter-gather elements may be used per request or 1793 * ADV_SCSI_REQ_Q. 1794 * 1795 * Both structures must be 32 byte aligned. 1796 */ 1797 typedef struct adv_sgblk { 1798 ADV_SG_BLOCK sg_block; /* Sgblock structure. */ 1799 dma_addr_t sg_addr; /* Physical address */ 1800 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */ 1801 } adv_sgblk_t; 1802 1803 typedef struct adv_req { 1804 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */ 1805 uchar align[24]; /* Request structure padding. */ 1806 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */ 1807 dma_addr_t req_addr; 1808 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */ 1809 } adv_req_t __aligned(32); 1810 1811 /* 1812 * Adapter operation variable structure. 1813 * 1814 * One structure is required per host adapter. 1815 * 1816 * Field naming convention: 1817 * 1818 * *_able indicates both whether a feature should be enabled or disabled 1819 * and whether a device isi capable of the feature. At initialization 1820 * this field may be set, but later if a device is found to be incapable 1821 * of the feature, the field is cleared. 1822 */ 1823 typedef struct adv_dvc_var { 1824 AdvPortAddr iop_base; /* I/O port address */ 1825 ushort err_code; /* fatal error code */ 1826 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */ 1827 ushort wdtr_able; /* try WDTR for a device */ 1828 ushort sdtr_able; /* try SDTR for a device */ 1829 ushort ultra_able; /* try SDTR Ultra speed for a device */ 1830 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */ 1831 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */ 1832 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */ 1833 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */ 1834 ushort tagqng_able; /* try tagged queuing with a device */ 1835 ushort ppr_able; /* PPR message capable per TID bitmask. */ 1836 uchar max_dvc_qng; /* maximum number of tagged commands per device */ 1837 ushort start_motor; /* start motor command allowed */ 1838 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */ 1839 uchar chip_no; /* should be assigned by caller */ 1840 uchar max_host_qng; /* maximum number of Q'ed command allowed */ 1841 ushort no_scam; /* scam_tolerant of EEPROM */ 1842 struct asc_board *drv_ptr; /* driver pointer to private structure */ 1843 uchar chip_scsi_id; /* chip SCSI target ID */ 1844 uchar chip_type; 1845 uchar bist_err_code; 1846 ADV_CARR_T *carrier; 1847 ADV_CARR_T *carr_freelist; /* Carrier free list. */ 1848 dma_addr_t carrier_addr; 1849 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */ 1850 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */ 1851 ushort carr_pending_cnt; /* Count of pending carriers. */ 1852 /* 1853 * Note: The following fields will not be used after initialization. The 1854 * driver may discard the buffer after initialization is done. 1855 */ 1856 ADV_DVC_CFG *cfg; /* temporary configuration structure */ 1857 } ADV_DVC_VAR; 1858 1859 /* 1860 * Microcode idle loop commands 1861 */ 1862 #define IDLE_CMD_COMPLETED 0 1863 #define IDLE_CMD_STOP_CHIP 0x0001 1864 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002 1865 #define IDLE_CMD_SEND_INT 0x0004 1866 #define IDLE_CMD_ABORT 0x0008 1867 #define IDLE_CMD_DEVICE_RESET 0x0010 1868 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */ 1869 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */ 1870 #define IDLE_CMD_SCSIREQ 0x0080 1871 1872 #define IDLE_CMD_STATUS_SUCCESS 0x0001 1873 #define IDLE_CMD_STATUS_FAILURE 0x0002 1874 1875 /* 1876 * AdvSendIdleCmd() flag definitions. 1877 */ 1878 #define ADV_NOWAIT 0x01 1879 1880 /* 1881 * Wait loop time out values. 1882 */ 1883 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */ 1884 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */ 1885 #define SCSI_MAX_RETRY 10 /* retry count */ 1886 1887 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */ 1888 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */ 1889 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */ 1890 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */ 1891 1892 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */ 1893 1894 /* Read byte from a register. */ 1895 #define AdvReadByteRegister(iop_base, reg_off) \ 1896 (ADV_MEM_READB((iop_base) + (reg_off))) 1897 1898 /* Write byte to a register. */ 1899 #define AdvWriteByteRegister(iop_base, reg_off, byte) \ 1900 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte))) 1901 1902 /* Read word (2 bytes) from a register. */ 1903 #define AdvReadWordRegister(iop_base, reg_off) \ 1904 (ADV_MEM_READW((iop_base) + (reg_off))) 1905 1906 /* Write word (2 bytes) to a register. */ 1907 #define AdvWriteWordRegister(iop_base, reg_off, word) \ 1908 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word))) 1909 1910 /* Write dword (4 bytes) to a register. */ 1911 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \ 1912 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword))) 1913 1914 /* Read byte from LRAM. */ 1915 #define AdvReadByteLram(iop_base, addr, byte) \ 1916 do { \ 1917 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 1918 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \ 1919 } while (0) 1920 1921 /* Write byte to LRAM. */ 1922 #define AdvWriteByteLram(iop_base, addr, byte) \ 1923 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1924 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte))) 1925 1926 /* Read word (2 bytes) from LRAM. */ 1927 #define AdvReadWordLram(iop_base, addr, word) \ 1928 do { \ 1929 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 1930 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \ 1931 } while (0) 1932 1933 /* Write word (2 bytes) to LRAM. */ 1934 #define AdvWriteWordLram(iop_base, addr, word) \ 1935 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1936 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 1937 1938 /* Write little-endian double word (4 bytes) to LRAM */ 1939 /* Because of unspecified C language ordering don't use auto-increment. */ 1940 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \ 1941 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 1942 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 1943 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \ 1944 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ 1945 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 1946 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF))))) 1947 1948 /* Read word (2 bytes) from LRAM assuming that the address is already set. */ 1949 #define AdvReadWordAutoIncLram(iop_base) \ 1950 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)) 1951 1952 /* Write word (2 bytes) to LRAM assuming that the address is already set. */ 1953 #define AdvWriteWordAutoIncLram(iop_base, word) \ 1954 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 1955 1956 /* 1957 * Define macro to check for Condor signature. 1958 * 1959 * Evaluate to ADV_TRUE if a Condor chip is found the specified port 1960 * address 'iop_base'. Otherwise evalue to ADV_FALSE. 1961 */ 1962 #define AdvFindSignature(iop_base) \ 1963 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \ 1964 ADV_CHIP_ID_BYTE) && \ 1965 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \ 1966 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE) 1967 1968 /* 1969 * Define macro to Return the version number of the chip at 'iop_base'. 1970 * 1971 * The second parameter 'bus_type' is currently unused. 1972 */ 1973 #define AdvGetChipVersion(iop_base, bus_type) \ 1974 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV) 1975 1976 /* 1977 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must 1978 * match the ADV_SCSI_REQ_Q 'srb_tag' field. 1979 * 1980 * If the request has not yet been sent to the device it will simply be 1981 * aborted from RISC memory. If the request is disconnected it will be 1982 * aborted on reselection by sending an Abort Message to the target ID. 1983 * 1984 * Return value: 1985 * ADV_TRUE(1) - Queue was successfully aborted. 1986 * ADV_FALSE(0) - Queue was not found on the active queue list. 1987 */ 1988 #define AdvAbortQueue(asc_dvc, srb_tag) \ 1989 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \ 1990 (ADV_DCNT) (srb_tag)) 1991 1992 /* 1993 * Send a Bus Device Reset Message to the specified target ID. 1994 * 1995 * All outstanding commands will be purged if sending the 1996 * Bus Device Reset Message is successful. 1997 * 1998 * Return Value: 1999 * ADV_TRUE(1) - All requests on the target are purged. 2000 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests 2001 * are not purged. 2002 */ 2003 #define AdvResetDevice(asc_dvc, target_id) \ 2004 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \ 2005 (ADV_DCNT) (target_id)) 2006 2007 /* 2008 * SCSI Wide Type definition. 2009 */ 2010 #define ADV_SCSI_BIT_ID_TYPE ushort 2011 2012 /* 2013 * AdvInitScsiTarget() 'cntl_flag' options. 2014 */ 2015 #define ADV_SCAN_LUN 0x01 2016 #define ADV_CAPINFO_NOLUN 0x02 2017 2018 /* 2019 * Convert target id to target id bit mask. 2020 */ 2021 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID)) 2022 2023 /* 2024 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values. 2025 */ 2026 2027 #define QD_NO_STATUS 0x00 /* Request not completed yet. */ 2028 #define QD_NO_ERROR 0x01 2029 #define QD_ABORTED_BY_HOST 0x02 2030 #define QD_WITH_ERROR 0x04 2031 2032 #define QHSTA_NO_ERROR 0x00 2033 #define QHSTA_M_SEL_TIMEOUT 0x11 2034 #define QHSTA_M_DATA_OVER_RUN 0x12 2035 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 2036 #define QHSTA_M_QUEUE_ABORTED 0x15 2037 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */ 2038 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */ 2039 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */ 2040 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */ 2041 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */ 2042 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */ 2043 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */ 2044 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */ 2045 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */ 2046 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */ 2047 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */ 2048 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */ 2049 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */ 2050 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */ 2051 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */ 2052 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */ 2053 #define QHSTA_M_WTM_TIMEOUT 0x41 2054 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 2055 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 2056 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 2057 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */ 2058 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */ 2059 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */ 2060 2061 /* Return the address that is aligned at the next doubleword >= to 'addr'. */ 2062 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F) 2063 2064 /* 2065 * Total contiguous memory needed for driver SG blocks. 2066 * 2067 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum 2068 * number of scatter-gather elements the driver supports in a 2069 * single request. 2070 */ 2071 2072 #define ADV_SG_LIST_MAX_BYTE_SIZE \ 2073 (sizeof(ADV_SG_BLOCK) * \ 2074 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK)) 2075 2076 /* struct asc_board flags */ 2077 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */ 2078 2079 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0) 2080 2081 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */ 2082 2083 #define ASC_INFO_SIZE 128 /* advansys_info() line size */ 2084 2085 /* Asc Library return codes */ 2086 #define ASC_TRUE 1 2087 #define ASC_FALSE 0 2088 #define ASC_NOERROR 1 2089 #define ASC_BUSY 0 2090 #define ASC_ERROR (-1) 2091 2092 /* struct scsi_cmnd function return codes */ 2093 #define STATUS_BYTE(byte) (byte) 2094 #define MSG_BYTE(byte) ((byte) << 8) 2095 #define HOST_BYTE(byte) ((byte) << 16) 2096 #define DRIVER_BYTE(byte) ((byte) << 24) 2097 2098 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1) 2099 #ifndef ADVANSYS_STATS 2100 #define ASC_STATS_ADD(shost, counter, count) 2101 #else /* ADVANSYS_STATS */ 2102 #define ASC_STATS_ADD(shost, counter, count) \ 2103 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count)) 2104 #endif /* ADVANSYS_STATS */ 2105 2106 /* If the result wraps when calculating tenths, return 0. */ 2107 #define ASC_TENTHS(num, den) \ 2108 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \ 2109 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den))))) 2110 2111 /* 2112 * Display a message to the console. 2113 */ 2114 #define ASC_PRINT(s) \ 2115 { \ 2116 printk("advansys: "); \ 2117 printk(s); \ 2118 } 2119 2120 #define ASC_PRINT1(s, a1) \ 2121 { \ 2122 printk("advansys: "); \ 2123 printk((s), (a1)); \ 2124 } 2125 2126 #define ASC_PRINT2(s, a1, a2) \ 2127 { \ 2128 printk("advansys: "); \ 2129 printk((s), (a1), (a2)); \ 2130 } 2131 2132 #define ASC_PRINT3(s, a1, a2, a3) \ 2133 { \ 2134 printk("advansys: "); \ 2135 printk((s), (a1), (a2), (a3)); \ 2136 } 2137 2138 #define ASC_PRINT4(s, a1, a2, a3, a4) \ 2139 { \ 2140 printk("advansys: "); \ 2141 printk((s), (a1), (a2), (a3), (a4)); \ 2142 } 2143 2144 #ifndef ADVANSYS_DEBUG 2145 2146 #define ASC_DBG(lvl, s...) 2147 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) 2148 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) 2149 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2150 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) 2151 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2152 #define ASC_DBG_PRT_HEX(lvl, name, start, length) 2153 #define ASC_DBG_PRT_CDB(lvl, cdb, len) 2154 #define ASC_DBG_PRT_SENSE(lvl, sense, len) 2155 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) 2156 2157 #else /* ADVANSYS_DEBUG */ 2158 2159 /* 2160 * Debugging Message Levels: 2161 * 0: Errors Only 2162 * 1: High-Level Tracing 2163 * 2-N: Verbose Tracing 2164 */ 2165 2166 #define ASC_DBG(lvl, format, arg...) { \ 2167 if (asc_dbglvl >= (lvl)) \ 2168 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \ 2169 __func__ , ## arg); \ 2170 } 2171 2172 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \ 2173 { \ 2174 if (asc_dbglvl >= (lvl)) { \ 2175 asc_prt_scsi_host(s); \ 2176 } \ 2177 } 2178 2179 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \ 2180 { \ 2181 if (asc_dbglvl >= (lvl)) { \ 2182 asc_prt_asc_scsi_q(scsiqp); \ 2183 } \ 2184 } 2185 2186 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \ 2187 { \ 2188 if (asc_dbglvl >= (lvl)) { \ 2189 asc_prt_asc_qdone_info(qdone); \ 2190 } \ 2191 } 2192 2193 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \ 2194 { \ 2195 if (asc_dbglvl >= (lvl)) { \ 2196 asc_prt_adv_scsi_req_q(scsiqp); \ 2197 } \ 2198 } 2199 2200 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \ 2201 { \ 2202 if (asc_dbglvl >= (lvl)) { \ 2203 asc_prt_hex((name), (start), (length)); \ 2204 } \ 2205 } 2206 2207 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \ 2208 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len)); 2209 2210 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \ 2211 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len)); 2212 2213 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \ 2214 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len)); 2215 #endif /* ADVANSYS_DEBUG */ 2216 2217 #ifdef ADVANSYS_STATS 2218 2219 /* Per board statistics structure */ 2220 struct asc_stats { 2221 /* Driver Entrypoint Statistics */ 2222 unsigned int queuecommand; /* # calls to advansys_queuecommand() */ 2223 unsigned int reset; /* # calls to advansys_eh_bus_reset() */ 2224 unsigned int biosparam; /* # calls to advansys_biosparam() */ 2225 unsigned int interrupt; /* # advansys_interrupt() calls */ 2226 unsigned int callback; /* # calls to asc/adv_isr_callback() */ 2227 unsigned int done; /* # calls to request's scsi_done function */ 2228 unsigned int build_error; /* # asc/adv_build_req() ASC_ERROR returns. */ 2229 unsigned int adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */ 2230 unsigned int adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */ 2231 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */ 2232 unsigned int exe_noerror; /* # ASC_NOERROR returns. */ 2233 unsigned int exe_busy; /* # ASC_BUSY returns. */ 2234 unsigned int exe_error; /* # ASC_ERROR returns. */ 2235 unsigned int exe_unknown; /* # unknown returns. */ 2236 /* Data Transfer Statistics */ 2237 unsigned int xfer_cnt; /* # I/O requests received */ 2238 unsigned int xfer_elem; /* # scatter-gather elements */ 2239 unsigned int xfer_sect; /* # 512-byte blocks */ 2240 }; 2241 #endif /* ADVANSYS_STATS */ 2242 2243 /* 2244 * Structure allocated for each board. 2245 * 2246 * This structure is allocated by scsi_host_alloc() at the end 2247 * of the 'Scsi_Host' structure starting at the 'hostdata' 2248 * field. It is guaranteed to be allocated from DMA-able memory. 2249 */ 2250 struct asc_board { 2251 struct device *dev; 2252 struct Scsi_Host *shost; 2253 uint flags; /* Board flags */ 2254 unsigned int irq; 2255 union { 2256 ASC_DVC_VAR asc_dvc_var; /* Narrow board */ 2257 ADV_DVC_VAR adv_dvc_var; /* Wide board */ 2258 } dvc_var; 2259 union { 2260 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */ 2261 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */ 2262 } dvc_cfg; 2263 ushort asc_n_io_port; /* Number I/O ports. */ 2264 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */ 2265 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */ 2266 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */ 2267 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */ 2268 union { 2269 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */ 2270 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */ 2271 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */ 2272 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */ 2273 } eep_config; 2274 /* /proc/scsi/advansys/[0...] */ 2275 #ifdef ADVANSYS_STATS 2276 struct asc_stats asc_stats; /* Board statistics */ 2277 #endif /* ADVANSYS_STATS */ 2278 /* 2279 * The following fields are used only for Narrow Boards. 2280 */ 2281 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */ 2282 /* 2283 * The following fields are used only for Wide Boards. 2284 */ 2285 void __iomem *ioremap_addr; /* I/O Memory remap address. */ 2286 ushort ioport; /* I/O Port address. */ 2287 adv_req_t *adv_reqp; /* Request structures. */ 2288 dma_addr_t adv_reqp_addr; 2289 size_t adv_reqp_size; 2290 struct dma_pool *adv_sgblk_pool; /* Scatter-gather structures. */ 2291 ushort bios_signature; /* BIOS Signature. */ 2292 ushort bios_version; /* BIOS Version. */ 2293 ushort bios_codeseg; /* BIOS Code Segment. */ 2294 ushort bios_codelen; /* BIOS Code Segment Length. */ 2295 }; 2296 2297 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \ 2298 dvc_var.asc_dvc_var) 2299 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \ 2300 dvc_var.adv_dvc_var) 2301 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev) 2302 2303 #ifdef ADVANSYS_DEBUG 2304 static int asc_dbglvl = 3; 2305 2306 /* 2307 * asc_prt_asc_dvc_var() 2308 */ 2309 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h) 2310 { 2311 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h); 2312 2313 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl " 2314 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl); 2315 2316 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type, 2317 (unsigned)h->init_sdtr); 2318 2319 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, " 2320 "chip_no 0x%x,\n", (unsigned)h->sdtr_done, 2321 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready, 2322 (unsigned)h->chip_no); 2323 2324 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait " 2325 "%u,\n", (unsigned)h->queue_full_or_busy, 2326 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2327 2328 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, " 2329 "in_critical_cnt %u,\n", (unsigned)h->is_in_int, 2330 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng, 2331 (unsigned)h->in_critical_cnt); 2332 2333 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, " 2334 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage, 2335 (unsigned)h->init_state, (unsigned)h->no_scam, 2336 (unsigned)h->pci_fix_asyn_xfer); 2337 2338 printk(" cfg 0x%lx\n", (ulong)h->cfg); 2339 } 2340 2341 /* 2342 * asc_prt_asc_dvc_cfg() 2343 */ 2344 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h) 2345 { 2346 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h); 2347 2348 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n", 2349 h->can_tagged_qng, h->cmd_qng_enabled); 2350 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n", 2351 h->disc_enable, h->sdtr_enable); 2352 2353 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, " 2354 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed, 2355 h->isa_dma_channel, h->chip_version); 2356 2357 printk(" mcode_date 0x%x, mcode_version %d\n", 2358 h->mcode_date, h->mcode_version); 2359 } 2360 2361 /* 2362 * asc_prt_adv_dvc_var() 2363 * 2364 * Display an ADV_DVC_VAR structure. 2365 */ 2366 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h) 2367 { 2368 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h); 2369 2370 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n", 2371 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able); 2372 2373 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n", 2374 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able); 2375 2376 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n", 2377 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2378 2379 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n", 2380 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng, 2381 h->carr_freelist); 2382 2383 printk(" icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp); 2384 2385 printk(" no_scam 0x%x, tagqng_able 0x%x\n", 2386 (unsigned)h->no_scam, (unsigned)h->tagqng_able); 2387 2388 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n", 2389 (unsigned)h->chip_scsi_id, (ulong)h->cfg); 2390 } 2391 2392 /* 2393 * asc_prt_adv_dvc_cfg() 2394 * 2395 * Display an ADV_DVC_CFG structure. 2396 */ 2397 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h) 2398 { 2399 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h); 2400 2401 printk(" disc_enable 0x%x, termination 0x%x\n", 2402 h->disc_enable, h->termination); 2403 2404 printk(" chip_version 0x%x, mcode_date 0x%x\n", 2405 h->chip_version, h->mcode_date); 2406 2407 printk(" mcode_version 0x%x, control_flag 0x%x\n", 2408 h->mcode_version, h->control_flag); 2409 } 2410 2411 /* 2412 * asc_prt_scsi_host() 2413 */ 2414 static void asc_prt_scsi_host(struct Scsi_Host *s) 2415 { 2416 struct asc_board *boardp = shost_priv(s); 2417 2418 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev)); 2419 printk(" host_busy %u, host_no %d,\n", 2420 atomic_read(&s->host_busy), s->host_no); 2421 2422 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n", 2423 (ulong)s->base, (ulong)s->io_port, boardp->irq); 2424 2425 printk(" dma_channel %d, this_id %d, can_queue %d,\n", 2426 s->dma_channel, s->this_id, s->can_queue); 2427 2428 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n", 2429 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma); 2430 2431 if (ASC_NARROW_BOARD(boardp)) { 2432 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var); 2433 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg); 2434 } else { 2435 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var); 2436 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg); 2437 } 2438 } 2439 2440 /* 2441 * asc_prt_hex() 2442 * 2443 * Print hexadecimal output in 4 byte groupings 32 bytes 2444 * or 8 double-words per line. 2445 */ 2446 static void asc_prt_hex(char *f, uchar *s, int l) 2447 { 2448 int i; 2449 int j; 2450 int k; 2451 int m; 2452 2453 printk("%s: (%d bytes)\n", f, l); 2454 2455 for (i = 0; i < l; i += 32) { 2456 2457 /* Display a maximum of 8 double-words per line. */ 2458 if ((k = (l - i) / 4) >= 8) { 2459 k = 8; 2460 m = 0; 2461 } else { 2462 m = (l - i) % 4; 2463 } 2464 2465 for (j = 0; j < k; j++) { 2466 printk(" %2.2X%2.2X%2.2X%2.2X", 2467 (unsigned)s[i + (j * 4)], 2468 (unsigned)s[i + (j * 4) + 1], 2469 (unsigned)s[i + (j * 4) + 2], 2470 (unsigned)s[i + (j * 4) + 3]); 2471 } 2472 2473 switch (m) { 2474 case 0: 2475 default: 2476 break; 2477 case 1: 2478 printk(" %2.2X", (unsigned)s[i + (j * 4)]); 2479 break; 2480 case 2: 2481 printk(" %2.2X%2.2X", 2482 (unsigned)s[i + (j * 4)], 2483 (unsigned)s[i + (j * 4) + 1]); 2484 break; 2485 case 3: 2486 printk(" %2.2X%2.2X%2.2X", 2487 (unsigned)s[i + (j * 4) + 1], 2488 (unsigned)s[i + (j * 4) + 2], 2489 (unsigned)s[i + (j * 4) + 3]); 2490 break; 2491 } 2492 2493 printk("\n"); 2494 } 2495 } 2496 2497 /* 2498 * asc_prt_asc_scsi_q() 2499 */ 2500 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q) 2501 { 2502 ASC_SG_HEAD *sgp; 2503 int i; 2504 2505 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q); 2506 2507 printk 2508 (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n", 2509 q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag, 2510 q->q2.tag_code); 2511 2512 printk 2513 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2514 (ulong)le32_to_cpu(q->q1.data_addr), 2515 (ulong)le32_to_cpu(q->q1.data_cnt), 2516 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len); 2517 2518 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n", 2519 (ulong)q->cdbptr, q->q2.cdb_len, 2520 (ulong)q->sg_head, q->q1.sg_queue_cnt); 2521 2522 if (q->sg_head) { 2523 sgp = q->sg_head; 2524 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp); 2525 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt, 2526 sgp->queue_cnt); 2527 for (i = 0; i < sgp->entry_cnt; i++) { 2528 printk(" [%u]: addr 0x%lx, bytes %lu\n", 2529 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr), 2530 (ulong)le32_to_cpu(sgp->sg_list[i].bytes)); 2531 } 2532 2533 } 2534 } 2535 2536 /* 2537 * asc_prt_asc_qdone_info() 2538 */ 2539 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q) 2540 { 2541 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q); 2542 printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n", 2543 q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len, 2544 q->d2.tag_code); 2545 printk 2546 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n", 2547 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg); 2548 } 2549 2550 /* 2551 * asc_prt_adv_sgblock() 2552 * 2553 * Display an ADV_SG_BLOCK structure. 2554 */ 2555 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b) 2556 { 2557 int i; 2558 2559 printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n", 2560 (ulong)b, sgblockno); 2561 printk(" sg_cnt %u, sg_ptr 0x%x\n", 2562 b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr)); 2563 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK); 2564 if (b->sg_ptr != 0) 2565 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK); 2566 for (i = 0; i < b->sg_cnt; i++) { 2567 printk(" [%u]: sg_addr 0x%x, sg_count 0x%x\n", 2568 i, (u32)le32_to_cpu(b->sg_list[i].sg_addr), 2569 (u32)le32_to_cpu(b->sg_list[i].sg_count)); 2570 } 2571 } 2572 2573 /* 2574 * asc_prt_adv_scsi_req_q() 2575 * 2576 * Display an ADV_SCSI_REQ_Q structure. 2577 */ 2578 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q) 2579 { 2580 int sg_blk_cnt; 2581 struct adv_sg_block *sg_ptr; 2582 adv_sgblk_t *sgblkp; 2583 2584 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q); 2585 2586 printk(" target_id %u, target_lun %u, srb_tag 0x%x\n", 2587 q->target_id, q->target_lun, q->srb_tag); 2588 2589 printk(" cntl 0x%x, data_addr 0x%lx\n", 2590 q->cntl, (ulong)le32_to_cpu(q->data_addr)); 2591 2592 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2593 (ulong)le32_to_cpu(q->data_cnt), 2594 (ulong)le32_to_cpu(q->sense_addr), q->sense_len); 2595 2596 printk 2597 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n", 2598 q->cdb_len, q->done_status, q->host_status, q->scsi_status); 2599 2600 printk(" sg_working_ix 0x%x, target_cmd %u\n", 2601 q->sg_working_ix, q->target_cmd); 2602 2603 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n", 2604 (ulong)le32_to_cpu(q->scsiq_rptr), 2605 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr); 2606 2607 /* Display the request's ADV_SG_BLOCK structures. */ 2608 if (q->sg_list_ptr != NULL) { 2609 sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block); 2610 sg_blk_cnt = 0; 2611 while (sgblkp) { 2612 sg_ptr = &sgblkp->sg_block; 2613 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr); 2614 if (sg_ptr->sg_ptr == 0) { 2615 break; 2616 } 2617 sgblkp = sgblkp->next_sgblkp; 2618 sg_blk_cnt++; 2619 } 2620 } 2621 } 2622 #endif /* ADVANSYS_DEBUG */ 2623 2624 /* 2625 * advansys_info() 2626 * 2627 * Return suitable for printing on the console with the argument 2628 * adapter's configuration information. 2629 * 2630 * Note: The information line should not exceed ASC_INFO_SIZE bytes, 2631 * otherwise the static 'info' array will be overrun. 2632 */ 2633 static const char *advansys_info(struct Scsi_Host *shost) 2634 { 2635 static char info[ASC_INFO_SIZE]; 2636 struct asc_board *boardp = shost_priv(shost); 2637 ASC_DVC_VAR *asc_dvc_varp; 2638 ADV_DVC_VAR *adv_dvc_varp; 2639 char *busname; 2640 char *widename = NULL; 2641 2642 if (ASC_NARROW_BOARD(boardp)) { 2643 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 2644 ASC_DBG(1, "begin\n"); 2645 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 2646 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) == 2647 ASC_IS_ISAPNP) { 2648 busname = "ISA PnP"; 2649 } else { 2650 busname = "ISA"; 2651 } 2652 sprintf(info, 2653 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X", 2654 ASC_VERSION, busname, 2655 (ulong)shost->io_port, 2656 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2657 boardp->irq, shost->dma_channel); 2658 } else { 2659 if (asc_dvc_varp->bus_type & ASC_IS_VL) { 2660 busname = "VL"; 2661 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) { 2662 busname = "EISA"; 2663 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) { 2664 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA) 2665 == ASC_IS_PCI_ULTRA) { 2666 busname = "PCI Ultra"; 2667 } else { 2668 busname = "PCI"; 2669 } 2670 } else { 2671 busname = "?"; 2672 shost_printk(KERN_ERR, shost, "unknown bus " 2673 "type %d\n", asc_dvc_varp->bus_type); 2674 } 2675 sprintf(info, 2676 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X", 2677 ASC_VERSION, busname, (ulong)shost->io_port, 2678 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2679 boardp->irq); 2680 } 2681 } else { 2682 /* 2683 * Wide Adapter Information 2684 * 2685 * Memory-mapped I/O is used instead of I/O space to access 2686 * the adapter, but display the I/O Port range. The Memory 2687 * I/O address is displayed through the driver /proc file. 2688 */ 2689 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2690 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2691 widename = "Ultra-Wide"; 2692 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2693 widename = "Ultra2-Wide"; 2694 } else { 2695 widename = "Ultra3-Wide"; 2696 } 2697 sprintf(info, 2698 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X", 2699 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base, 2700 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq); 2701 } 2702 BUG_ON(strlen(info) >= ASC_INFO_SIZE); 2703 ASC_DBG(1, "end\n"); 2704 return info; 2705 } 2706 2707 #ifdef CONFIG_PROC_FS 2708 2709 /* 2710 * asc_prt_board_devices() 2711 * 2712 * Print driver information for devices attached to the board. 2713 */ 2714 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost) 2715 { 2716 struct asc_board *boardp = shost_priv(shost); 2717 int chip_scsi_id; 2718 int i; 2719 2720 seq_printf(m, 2721 "\nDevice Information for AdvanSys SCSI Host %d:\n", 2722 shost->host_no); 2723 2724 if (ASC_NARROW_BOARD(boardp)) { 2725 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 2726 } else { 2727 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 2728 } 2729 2730 seq_puts(m, "Target IDs Detected:"); 2731 for (i = 0; i <= ADV_MAX_TID; i++) { 2732 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) 2733 seq_printf(m, " %X,", i); 2734 } 2735 seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id); 2736 } 2737 2738 /* 2739 * Display Wide Board BIOS Information. 2740 */ 2741 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost) 2742 { 2743 struct asc_board *boardp = shost_priv(shost); 2744 ushort major, minor, letter; 2745 2746 seq_puts(m, "\nROM BIOS Version: "); 2747 2748 /* 2749 * If the BIOS saved a valid signature, then fill in 2750 * the BIOS code segment base address. 2751 */ 2752 if (boardp->bios_signature != 0x55AA) { 2753 seq_puts(m, "Disabled or Pre-3.1\n" 2754 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n" 2755 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n"); 2756 } else { 2757 major = (boardp->bios_version >> 12) & 0xF; 2758 minor = (boardp->bios_version >> 8) & 0xF; 2759 letter = (boardp->bios_version & 0xFF); 2760 2761 seq_printf(m, "%d.%d%c\n", 2762 major, minor, 2763 letter >= 26 ? '?' : letter + 'A'); 2764 /* 2765 * Current available ROM BIOS release is 3.1I for UW 2766 * and 3.2I for U2W. This code doesn't differentiate 2767 * UW and U2W boards. 2768 */ 2769 if (major < 3 || (major <= 3 && minor < 1) || 2770 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) { 2771 seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n" 2772 "ftp://ftp.connectcom.net/pub\n"); 2773 } 2774 } 2775 } 2776 2777 /* 2778 * Add serial number to information bar if signature AAh 2779 * is found in at bit 15-9 (7 bits) of word 1. 2780 * 2781 * Serial Number consists fo 12 alpha-numeric digits. 2782 * 2783 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits) 2784 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits) 2785 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits) 2786 * 5 - Product revision (A-J) Word0: " " 2787 * 2788 * Signature Word1: 15-9 (7 bits) 2789 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit) 2790 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits) 2791 * 2792 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits) 2793 * 2794 * Note 1: Only production cards will have a serial number. 2795 * 2796 * Note 2: Signature is most significant 7 bits (0xFE). 2797 * 2798 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE. 2799 */ 2800 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp) 2801 { 2802 ushort w, num; 2803 2804 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) { 2805 return ASC_FALSE; 2806 } else { 2807 /* 2808 * First word - 6 digits. 2809 */ 2810 w = serialnum[0]; 2811 2812 /* Product type - 1st digit. */ 2813 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') { 2814 /* Product type is P=Prototype */ 2815 *cp += 0x8; 2816 } 2817 cp++; 2818 2819 /* Manufacturing location - 2nd digit. */ 2820 *cp++ = 'A' + ((w & 0x1C00) >> 10); 2821 2822 /* Product ID - 3rd, 4th digits. */ 2823 num = w & 0x3FF; 2824 *cp++ = '0' + (num / 100); 2825 num %= 100; 2826 *cp++ = '0' + (num / 10); 2827 2828 /* Product revision - 5th digit. */ 2829 *cp++ = 'A' + (num % 10); 2830 2831 /* 2832 * Second word 2833 */ 2834 w = serialnum[1]; 2835 2836 /* 2837 * Year - 6th digit. 2838 * 2839 * If bit 15 of third word is set, then the 2840 * last digit of the year is greater than 7. 2841 */ 2842 if (serialnum[2] & 0x8000) { 2843 *cp++ = '8' + ((w & 0x1C0) >> 6); 2844 } else { 2845 *cp++ = '0' + ((w & 0x1C0) >> 6); 2846 } 2847 2848 /* Week of year - 7th, 8th digits. */ 2849 num = w & 0x003F; 2850 *cp++ = '0' + num / 10; 2851 num %= 10; 2852 *cp++ = '0' + num; 2853 2854 /* 2855 * Third word 2856 */ 2857 w = serialnum[2] & 0x7FFF; 2858 2859 /* Serial number - 9th digit. */ 2860 *cp++ = 'A' + (w / 1000); 2861 2862 /* 10th, 11th, 12th digits. */ 2863 num = w % 1000; 2864 *cp++ = '0' + num / 100; 2865 num %= 100; 2866 *cp++ = '0' + num / 10; 2867 num %= 10; 2868 *cp++ = '0' + num; 2869 2870 *cp = '\0'; /* Null Terminate the string. */ 2871 return ASC_TRUE; 2872 } 2873 } 2874 2875 /* 2876 * asc_prt_asc_board_eeprom() 2877 * 2878 * Print board EEPROM configuration. 2879 */ 2880 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 2881 { 2882 struct asc_board *boardp = shost_priv(shost); 2883 ASC_DVC_VAR *asc_dvc_varp; 2884 ASCEEP_CONFIG *ep; 2885 int i; 2886 #ifdef CONFIG_ISA 2887 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 }; 2888 #endif /* CONFIG_ISA */ 2889 uchar serialstr[13]; 2890 2891 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 2892 ep = &boardp->eep_config.asc_eep; 2893 2894 seq_printf(m, 2895 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 2896 shost->host_no); 2897 2898 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr) 2899 == ASC_TRUE) 2900 seq_printf(m, " Serial Number: %s\n", serialstr); 2901 else if (ep->adapter_info[5] == 0xBB) 2902 seq_puts(m, 2903 " Default Settings Used for EEPROM-less Adapter.\n"); 2904 else 2905 seq_puts(m, " Serial Number Signature Not Present.\n"); 2906 2907 seq_printf(m, 2908 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2909 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng, 2910 ep->max_tag_qng); 2911 2912 seq_printf(m, 2913 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam); 2914 2915 seq_puts(m, " Target ID: "); 2916 for (i = 0; i <= ASC_MAX_TID; i++) 2917 seq_printf(m, " %d", i); 2918 2919 seq_puts(m, "\n Disconnects: "); 2920 for (i = 0; i <= ASC_MAX_TID; i++) 2921 seq_printf(m, " %c", 2922 (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2923 2924 seq_puts(m, "\n Command Queuing: "); 2925 for (i = 0; i <= ASC_MAX_TID; i++) 2926 seq_printf(m, " %c", 2927 (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2928 2929 seq_puts(m, "\n Start Motor: "); 2930 for (i = 0; i <= ASC_MAX_TID; i++) 2931 seq_printf(m, " %c", 2932 (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2933 2934 seq_puts(m, "\n Synchronous Transfer:"); 2935 for (i = 0; i <= ASC_MAX_TID; i++) 2936 seq_printf(m, " %c", 2937 (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 2938 seq_putc(m, '\n'); 2939 2940 #ifdef CONFIG_ISA 2941 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 2942 seq_printf(m, 2943 " Host ISA DMA speed: %d MB/S\n", 2944 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]); 2945 } 2946 #endif /* CONFIG_ISA */ 2947 } 2948 2949 /* 2950 * asc_prt_adv_board_eeprom() 2951 * 2952 * Print board EEPROM configuration. 2953 */ 2954 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost) 2955 { 2956 struct asc_board *boardp = shost_priv(shost); 2957 ADV_DVC_VAR *adv_dvc_varp; 2958 int i; 2959 char *termstr; 2960 uchar serialstr[13]; 2961 ADVEEP_3550_CONFIG *ep_3550 = NULL; 2962 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL; 2963 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL; 2964 ushort word; 2965 ushort *wordp; 2966 ushort sdtr_speed = 0; 2967 2968 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2969 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2970 ep_3550 = &boardp->eep_config.adv_3550_eep; 2971 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2972 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 2973 } else { 2974 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 2975 } 2976 2977 seq_printf(m, 2978 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 2979 shost->host_no); 2980 2981 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2982 wordp = &ep_3550->serial_number_word1; 2983 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2984 wordp = &ep_38C0800->serial_number_word1; 2985 } else { 2986 wordp = &ep_38C1600->serial_number_word1; 2987 } 2988 2989 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) 2990 seq_printf(m, " Serial Number: %s\n", serialstr); 2991 else 2992 seq_puts(m, " Serial Number Signature Not Present.\n"); 2993 2994 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 2995 seq_printf(m, 2996 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 2997 ep_3550->adapter_scsi_id, 2998 ep_3550->max_host_qng, ep_3550->max_dvc_qng); 2999 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 3000 seq_printf(m, 3001 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3002 ep_38C0800->adapter_scsi_id, 3003 ep_38C0800->max_host_qng, 3004 ep_38C0800->max_dvc_qng); 3005 else 3006 seq_printf(m, 3007 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3008 ep_38C1600->adapter_scsi_id, 3009 ep_38C1600->max_host_qng, 3010 ep_38C1600->max_dvc_qng); 3011 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3012 word = ep_3550->termination; 3013 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3014 word = ep_38C0800->termination_lvd; 3015 } else { 3016 word = ep_38C1600->termination_lvd; 3017 } 3018 switch (word) { 3019 case 1: 3020 termstr = "Low Off/High Off"; 3021 break; 3022 case 2: 3023 termstr = "Low Off/High On"; 3024 break; 3025 case 3: 3026 termstr = "Low On/High On"; 3027 break; 3028 default: 3029 case 0: 3030 termstr = "Automatic"; 3031 break; 3032 } 3033 3034 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) 3035 seq_printf(m, 3036 " termination: %u (%s), bios_ctrl: 0x%x\n", 3037 ep_3550->termination, termstr, 3038 ep_3550->bios_ctrl); 3039 else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) 3040 seq_printf(m, 3041 " termination: %u (%s), bios_ctrl: 0x%x\n", 3042 ep_38C0800->termination_lvd, termstr, 3043 ep_38C0800->bios_ctrl); 3044 else 3045 seq_printf(m, 3046 " termination: %u (%s), bios_ctrl: 0x%x\n", 3047 ep_38C1600->termination_lvd, termstr, 3048 ep_38C1600->bios_ctrl); 3049 3050 seq_puts(m, " Target ID: "); 3051 for (i = 0; i <= ADV_MAX_TID; i++) 3052 seq_printf(m, " %X", i); 3053 seq_putc(m, '\n'); 3054 3055 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3056 word = ep_3550->disc_enable; 3057 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3058 word = ep_38C0800->disc_enable; 3059 } else { 3060 word = ep_38C1600->disc_enable; 3061 } 3062 seq_puts(m, " Disconnects: "); 3063 for (i = 0; i <= ADV_MAX_TID; i++) 3064 seq_printf(m, " %c", 3065 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3066 seq_putc(m, '\n'); 3067 3068 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3069 word = ep_3550->tagqng_able; 3070 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3071 word = ep_38C0800->tagqng_able; 3072 } else { 3073 word = ep_38C1600->tagqng_able; 3074 } 3075 seq_puts(m, " Command Queuing: "); 3076 for (i = 0; i <= ADV_MAX_TID; i++) 3077 seq_printf(m, " %c", 3078 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3079 seq_putc(m, '\n'); 3080 3081 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3082 word = ep_3550->start_motor; 3083 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3084 word = ep_38C0800->start_motor; 3085 } else { 3086 word = ep_38C1600->start_motor; 3087 } 3088 seq_puts(m, " Start Motor: "); 3089 for (i = 0; i <= ADV_MAX_TID; i++) 3090 seq_printf(m, " %c", 3091 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3092 seq_putc(m, '\n'); 3093 3094 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3095 seq_puts(m, " Synchronous Transfer:"); 3096 for (i = 0; i <= ADV_MAX_TID; i++) 3097 seq_printf(m, " %c", 3098 (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 3099 'Y' : 'N'); 3100 seq_putc(m, '\n'); 3101 } 3102 3103 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3104 seq_puts(m, " Ultra Transfer: "); 3105 for (i = 0; i <= ADV_MAX_TID; i++) 3106 seq_printf(m, " %c", 3107 (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i)) 3108 ? 'Y' : 'N'); 3109 seq_putc(m, '\n'); 3110 } 3111 3112 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3113 word = ep_3550->wdtr_able; 3114 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3115 word = ep_38C0800->wdtr_able; 3116 } else { 3117 word = ep_38C1600->wdtr_able; 3118 } 3119 seq_puts(m, " Wide Transfer: "); 3120 for (i = 0; i <= ADV_MAX_TID; i++) 3121 seq_printf(m, " %c", 3122 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3123 seq_putc(m, '\n'); 3124 3125 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 || 3126 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) { 3127 seq_puts(m, " Synchronous Transfer Speed (Mhz):\n "); 3128 for (i = 0; i <= ADV_MAX_TID; i++) { 3129 char *speed_str; 3130 3131 if (i == 0) { 3132 sdtr_speed = adv_dvc_varp->sdtr_speed1; 3133 } else if (i == 4) { 3134 sdtr_speed = adv_dvc_varp->sdtr_speed2; 3135 } else if (i == 8) { 3136 sdtr_speed = adv_dvc_varp->sdtr_speed3; 3137 } else if (i == 12) { 3138 sdtr_speed = adv_dvc_varp->sdtr_speed4; 3139 } 3140 switch (sdtr_speed & ADV_MAX_TID) { 3141 case 0: 3142 speed_str = "Off"; 3143 break; 3144 case 1: 3145 speed_str = " 5"; 3146 break; 3147 case 2: 3148 speed_str = " 10"; 3149 break; 3150 case 3: 3151 speed_str = " 20"; 3152 break; 3153 case 4: 3154 speed_str = " 40"; 3155 break; 3156 case 5: 3157 speed_str = " 80"; 3158 break; 3159 default: 3160 speed_str = "Unk"; 3161 break; 3162 } 3163 seq_printf(m, "%X:%s ", i, speed_str); 3164 if (i == 7) 3165 seq_puts(m, "\n "); 3166 sdtr_speed >>= 4; 3167 } 3168 seq_putc(m, '\n'); 3169 } 3170 } 3171 3172 /* 3173 * asc_prt_driver_conf() 3174 */ 3175 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost) 3176 { 3177 struct asc_board *boardp = shost_priv(shost); 3178 int chip_scsi_id; 3179 3180 seq_printf(m, 3181 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", 3182 shost->host_no); 3183 3184 seq_printf(m, 3185 " host_busy %u, max_id %u, max_lun %llu, max_channel %u\n", 3186 atomic_read(&shost->host_busy), shost->max_id, 3187 shost->max_lun, shost->max_channel); 3188 3189 seq_printf(m, 3190 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", 3191 shost->unique_id, shost->can_queue, shost->this_id, 3192 shost->sg_tablesize, shost->cmd_per_lun); 3193 3194 seq_printf(m, 3195 " unchecked_isa_dma %d, use_clustering %d\n", 3196 shost->unchecked_isa_dma, shost->use_clustering); 3197 3198 seq_printf(m, 3199 " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n", 3200 boardp->flags, shost->last_reset, jiffies, 3201 boardp->asc_n_io_port); 3202 3203 seq_printf(m, " io_port 0x%lx\n", shost->io_port); 3204 3205 if (ASC_NARROW_BOARD(boardp)) { 3206 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 3207 } else { 3208 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 3209 } 3210 } 3211 3212 /* 3213 * asc_prt_asc_board_info() 3214 * 3215 * Print dynamic board configuration information. 3216 */ 3217 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost) 3218 { 3219 struct asc_board *boardp = shost_priv(shost); 3220 int chip_scsi_id; 3221 ASC_DVC_VAR *v; 3222 ASC_DVC_CFG *c; 3223 int i; 3224 int renegotiate = 0; 3225 3226 v = &boardp->dvc_var.asc_dvc_var; 3227 c = &boardp->dvc_cfg.asc_dvc_cfg; 3228 chip_scsi_id = c->chip_scsi_id; 3229 3230 seq_printf(m, 3231 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3232 shost->host_no); 3233 3234 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3235 "mcode_version 0x%x, err_code %u\n", 3236 c->chip_version, c->mcode_date, c->mcode_version, 3237 v->err_code); 3238 3239 /* Current number of commands waiting for the host. */ 3240 seq_printf(m, 3241 " Total Command Pending: %d\n", v->cur_total_qng); 3242 3243 seq_puts(m, " Command Queuing:"); 3244 for (i = 0; i <= ASC_MAX_TID; i++) { 3245 if ((chip_scsi_id == i) || 3246 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3247 continue; 3248 } 3249 seq_printf(m, " %X:%c", 3250 i, 3251 (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3252 } 3253 3254 /* Current number of commands waiting for a device. */ 3255 seq_puts(m, "\n Command Queue Pending:"); 3256 for (i = 0; i <= ASC_MAX_TID; i++) { 3257 if ((chip_scsi_id == i) || 3258 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3259 continue; 3260 } 3261 seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]); 3262 } 3263 3264 /* Current limit on number of commands that can be sent to a device. */ 3265 seq_puts(m, "\n Command Queue Limit:"); 3266 for (i = 0; i <= ASC_MAX_TID; i++) { 3267 if ((chip_scsi_id == i) || 3268 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3269 continue; 3270 } 3271 seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]); 3272 } 3273 3274 /* Indicate whether the device has returned queue full status. */ 3275 seq_puts(m, "\n Command Queue Full:"); 3276 for (i = 0; i <= ASC_MAX_TID; i++) { 3277 if ((chip_scsi_id == i) || 3278 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3279 continue; 3280 } 3281 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) 3282 seq_printf(m, " %X:Y-%d", 3283 i, boardp->queue_full_cnt[i]); 3284 else 3285 seq_printf(m, " %X:N", i); 3286 } 3287 3288 seq_puts(m, "\n Synchronous Transfer:"); 3289 for (i = 0; i <= ASC_MAX_TID; i++) { 3290 if ((chip_scsi_id == i) || 3291 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3292 continue; 3293 } 3294 seq_printf(m, " %X:%c", 3295 i, 3296 (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3297 } 3298 seq_putc(m, '\n'); 3299 3300 for (i = 0; i <= ASC_MAX_TID; i++) { 3301 uchar syn_period_ix; 3302 3303 if ((chip_scsi_id == i) || 3304 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3305 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) { 3306 continue; 3307 } 3308 3309 seq_printf(m, " %X:", i); 3310 3311 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) { 3312 seq_puts(m, " Asynchronous"); 3313 } else { 3314 syn_period_ix = 3315 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index - 3316 1); 3317 3318 seq_printf(m, 3319 " Transfer Period Factor: %d (%d.%d Mhz),", 3320 v->sdtr_period_tbl[syn_period_ix], 3321 250 / v->sdtr_period_tbl[syn_period_ix], 3322 ASC_TENTHS(250, 3323 v->sdtr_period_tbl[syn_period_ix])); 3324 3325 seq_printf(m, " REQ/ACK Offset: %d", 3326 boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET); 3327 } 3328 3329 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3330 seq_puts(m, "*\n"); 3331 renegotiate = 1; 3332 } else { 3333 seq_putc(m, '\n'); 3334 } 3335 } 3336 3337 if (renegotiate) { 3338 seq_puts(m, " * = Re-negotiation pending before next command.\n"); 3339 } 3340 } 3341 3342 /* 3343 * asc_prt_adv_board_info() 3344 * 3345 * Print dynamic board configuration information. 3346 */ 3347 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost) 3348 { 3349 struct asc_board *boardp = shost_priv(shost); 3350 int i; 3351 ADV_DVC_VAR *v; 3352 ADV_DVC_CFG *c; 3353 AdvPortAddr iop_base; 3354 ushort chip_scsi_id; 3355 ushort lramword; 3356 uchar lrambyte; 3357 ushort tagqng_able; 3358 ushort sdtr_able, wdtr_able; 3359 ushort wdtr_done, sdtr_done; 3360 ushort period = 0; 3361 int renegotiate = 0; 3362 3363 v = &boardp->dvc_var.adv_dvc_var; 3364 c = &boardp->dvc_cfg.adv_dvc_cfg; 3365 iop_base = v->iop_base; 3366 chip_scsi_id = v->chip_scsi_id; 3367 3368 seq_printf(m, 3369 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3370 shost->host_no); 3371 3372 seq_printf(m, 3373 " iop_base 0x%lx, cable_detect: %X, err_code %u\n", 3374 (unsigned long)v->iop_base, 3375 AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT, 3376 v->err_code); 3377 3378 seq_printf(m, " chip_version %u, mcode_date 0x%x, " 3379 "mcode_version 0x%x\n", c->chip_version, 3380 c->mcode_date, c->mcode_version); 3381 3382 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 3383 seq_puts(m, " Queuing Enabled:"); 3384 for (i = 0; i <= ADV_MAX_TID; i++) { 3385 if ((chip_scsi_id == i) || 3386 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3387 continue; 3388 } 3389 3390 seq_printf(m, " %X:%c", 3391 i, 3392 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3393 } 3394 3395 seq_puts(m, "\n Queue Limit:"); 3396 for (i = 0; i <= ADV_MAX_TID; i++) { 3397 if ((chip_scsi_id == i) || 3398 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3399 continue; 3400 } 3401 3402 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i, 3403 lrambyte); 3404 3405 seq_printf(m, " %X:%d", i, lrambyte); 3406 } 3407 3408 seq_puts(m, "\n Command Pending:"); 3409 for (i = 0; i <= ADV_MAX_TID; i++) { 3410 if ((chip_scsi_id == i) || 3411 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3412 continue; 3413 } 3414 3415 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i, 3416 lrambyte); 3417 3418 seq_printf(m, " %X:%d", i, lrambyte); 3419 } 3420 seq_putc(m, '\n'); 3421 3422 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 3423 seq_puts(m, " Wide Enabled:"); 3424 for (i = 0; i <= ADV_MAX_TID; i++) { 3425 if ((chip_scsi_id == i) || 3426 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3427 continue; 3428 } 3429 3430 seq_printf(m, " %X:%c", 3431 i, 3432 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3433 } 3434 seq_putc(m, '\n'); 3435 3436 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done); 3437 seq_puts(m, " Transfer Bit Width:"); 3438 for (i = 0; i <= ADV_MAX_TID; i++) { 3439 if ((chip_scsi_id == i) || 3440 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3441 continue; 3442 } 3443 3444 AdvReadWordLram(iop_base, 3445 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3446 lramword); 3447 3448 seq_printf(m, " %X:%d", 3449 i, (lramword & 0x8000) ? 16 : 8); 3450 3451 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) && 3452 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3453 seq_putc(m, '*'); 3454 renegotiate = 1; 3455 } 3456 } 3457 seq_putc(m, '\n'); 3458 3459 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 3460 seq_puts(m, " Synchronous Enabled:"); 3461 for (i = 0; i <= ADV_MAX_TID; i++) { 3462 if ((chip_scsi_id == i) || 3463 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3464 continue; 3465 } 3466 3467 seq_printf(m, " %X:%c", 3468 i, 3469 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3470 } 3471 seq_putc(m, '\n'); 3472 3473 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done); 3474 for (i = 0; i <= ADV_MAX_TID; i++) { 3475 3476 AdvReadWordLram(iop_base, 3477 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3478 lramword); 3479 lramword &= ~0x8000; 3480 3481 if ((chip_scsi_id == i) || 3482 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3483 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) { 3484 continue; 3485 } 3486 3487 seq_printf(m, " %X:", i); 3488 3489 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */ 3490 seq_puts(m, " Asynchronous"); 3491 } else { 3492 seq_puts(m, " Transfer Period Factor: "); 3493 3494 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */ 3495 seq_puts(m, "9 (80.0 Mhz),"); 3496 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */ 3497 seq_puts(m, "10 (40.0 Mhz),"); 3498 } else { /* 20 Mhz or below. */ 3499 3500 period = (((lramword >> 8) * 25) + 50) / 4; 3501 3502 if (period == 0) { /* Should never happen. */ 3503 seq_printf(m, "%d (? Mhz), ", period); 3504 } else { 3505 seq_printf(m, 3506 "%d (%d.%d Mhz),", 3507 period, 250 / period, 3508 ASC_TENTHS(250, period)); 3509 } 3510 } 3511 3512 seq_printf(m, " REQ/ACK Offset: %d", 3513 lramword & 0x1F); 3514 } 3515 3516 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3517 seq_puts(m, "*\n"); 3518 renegotiate = 1; 3519 } else { 3520 seq_putc(m, '\n'); 3521 } 3522 } 3523 3524 if (renegotiate) { 3525 seq_puts(m, " * = Re-negotiation pending before next command.\n"); 3526 } 3527 } 3528 3529 #ifdef ADVANSYS_STATS 3530 /* 3531 * asc_prt_board_stats() 3532 */ 3533 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost) 3534 { 3535 struct asc_board *boardp = shost_priv(shost); 3536 struct asc_stats *s = &boardp->asc_stats; 3537 3538 seq_printf(m, 3539 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", 3540 shost->host_no); 3541 3542 seq_printf(m, 3543 " queuecommand %u, reset %u, biosparam %u, interrupt %u\n", 3544 s->queuecommand, s->reset, s->biosparam, 3545 s->interrupt); 3546 3547 seq_printf(m, 3548 " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n", 3549 s->callback, s->done, s->build_error, 3550 s->adv_build_noreq, s->adv_build_nosg); 3551 3552 seq_printf(m, 3553 " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n", 3554 s->exe_noerror, s->exe_busy, s->exe_error, 3555 s->exe_unknown); 3556 3557 /* 3558 * Display data transfer statistics. 3559 */ 3560 if (s->xfer_cnt > 0) { 3561 seq_printf(m, " xfer_cnt %u, xfer_elem %u, ", 3562 s->xfer_cnt, s->xfer_elem); 3563 3564 seq_printf(m, "xfer_bytes %u.%01u kb\n", 3565 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2)); 3566 3567 /* Scatter gather transfer statistics */ 3568 seq_printf(m, " avg_num_elem %u.%01u, ", 3569 s->xfer_elem / s->xfer_cnt, 3570 ASC_TENTHS(s->xfer_elem, s->xfer_cnt)); 3571 3572 seq_printf(m, "avg_elem_size %u.%01u kb, ", 3573 (s->xfer_sect / 2) / s->xfer_elem, 3574 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem)); 3575 3576 seq_printf(m, "avg_xfer_size %u.%01u kb\n", 3577 (s->xfer_sect / 2) / s->xfer_cnt, 3578 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt)); 3579 } 3580 } 3581 #endif /* ADVANSYS_STATS */ 3582 3583 /* 3584 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...} 3585 * 3586 * m: seq_file to print into 3587 * shost: Scsi_Host 3588 * 3589 * Return the number of bytes read from or written to a 3590 * /proc/scsi/advansys/[0...] file. 3591 */ 3592 static int 3593 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost) 3594 { 3595 struct asc_board *boardp = shost_priv(shost); 3596 3597 ASC_DBG(1, "begin\n"); 3598 3599 /* 3600 * User read of /proc/scsi/advansys/[0...] file. 3601 */ 3602 3603 /* 3604 * Get board configuration information. 3605 * 3606 * advansys_info() returns the board string from its own static buffer. 3607 */ 3608 /* Copy board information. */ 3609 seq_printf(m, "%s\n", (char *)advansys_info(shost)); 3610 /* 3611 * Display Wide Board BIOS Information. 3612 */ 3613 if (!ASC_NARROW_BOARD(boardp)) 3614 asc_prt_adv_bios(m, shost); 3615 3616 /* 3617 * Display driver information for each device attached to the board. 3618 */ 3619 asc_prt_board_devices(m, shost); 3620 3621 /* 3622 * Display EEPROM configuration for the board. 3623 */ 3624 if (ASC_NARROW_BOARD(boardp)) 3625 asc_prt_asc_board_eeprom(m, shost); 3626 else 3627 asc_prt_adv_board_eeprom(m, shost); 3628 3629 /* 3630 * Display driver configuration and information for the board. 3631 */ 3632 asc_prt_driver_conf(m, shost); 3633 3634 #ifdef ADVANSYS_STATS 3635 /* 3636 * Display driver statistics for the board. 3637 */ 3638 asc_prt_board_stats(m, shost); 3639 #endif /* ADVANSYS_STATS */ 3640 3641 /* 3642 * Display Asc Library dynamic configuration information 3643 * for the board. 3644 */ 3645 if (ASC_NARROW_BOARD(boardp)) 3646 asc_prt_asc_board_info(m, shost); 3647 else 3648 asc_prt_adv_board_info(m, shost); 3649 return 0; 3650 } 3651 #endif /* CONFIG_PROC_FS */ 3652 3653 static void asc_scsi_done(struct scsi_cmnd *scp) 3654 { 3655 scsi_dma_unmap(scp); 3656 ASC_STATS(scp->device->host, done); 3657 scp->scsi_done(scp); 3658 } 3659 3660 static void AscSetBank(PortAddr iop_base, uchar bank) 3661 { 3662 uchar val; 3663 3664 val = AscGetChipControl(iop_base) & 3665 (~ 3666 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET | 3667 CC_CHIP_RESET)); 3668 if (bank == 1) { 3669 val |= CC_BANK_ONE; 3670 } else if (bank == 2) { 3671 val |= CC_DIAG | CC_BANK_ONE; 3672 } else { 3673 val &= ~CC_BANK_ONE; 3674 } 3675 AscSetChipControl(iop_base, val); 3676 } 3677 3678 static void AscSetChipIH(PortAddr iop_base, ushort ins_code) 3679 { 3680 AscSetBank(iop_base, 1); 3681 AscWriteChipIH(iop_base, ins_code); 3682 AscSetBank(iop_base, 0); 3683 } 3684 3685 static int AscStartChip(PortAddr iop_base) 3686 { 3687 AscSetChipControl(iop_base, 0); 3688 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3689 return (0); 3690 } 3691 return (1); 3692 } 3693 3694 static bool AscStopChip(PortAddr iop_base) 3695 { 3696 uchar cc_val; 3697 3698 cc_val = 3699 AscGetChipControl(iop_base) & 3700 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG)); 3701 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT)); 3702 AscSetChipIH(iop_base, INS_HALT); 3703 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3704 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) { 3705 return false; 3706 } 3707 return true; 3708 } 3709 3710 static bool AscIsChipHalted(PortAddr iop_base) 3711 { 3712 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 3713 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) { 3714 return true; 3715 } 3716 } 3717 return false; 3718 } 3719 3720 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc) 3721 { 3722 PortAddr iop_base; 3723 int i = 10; 3724 3725 iop_base = asc_dvc->iop_base; 3726 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) 3727 && (i-- > 0)) { 3728 mdelay(100); 3729 } 3730 AscStopChip(iop_base); 3731 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT); 3732 udelay(60); 3733 AscSetChipIH(iop_base, INS_RFLAG_WTM); 3734 AscSetChipIH(iop_base, INS_HALT); 3735 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT); 3736 AscSetChipControl(iop_base, CC_HALT); 3737 mdelay(200); 3738 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 3739 AscSetChipStatus(iop_base, 0); 3740 return (AscIsChipHalted(iop_base)); 3741 } 3742 3743 static int AscFindSignature(PortAddr iop_base) 3744 { 3745 ushort sig_word; 3746 3747 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n", 3748 iop_base, AscGetChipSignatureByte(iop_base)); 3749 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) { 3750 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n", 3751 iop_base, AscGetChipSignatureWord(iop_base)); 3752 sig_word = AscGetChipSignatureWord(iop_base); 3753 if ((sig_word == (ushort)ASC_1000_ID0W) || 3754 (sig_word == (ushort)ASC_1000_ID0W_FIX)) { 3755 return (1); 3756 } 3757 } 3758 return (0); 3759 } 3760 3761 static void AscEnableInterrupt(PortAddr iop_base) 3762 { 3763 ushort cfg; 3764 3765 cfg = AscGetChipCfgLsw(iop_base); 3766 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON); 3767 } 3768 3769 static void AscDisableInterrupt(PortAddr iop_base) 3770 { 3771 ushort cfg; 3772 3773 cfg = AscGetChipCfgLsw(iop_base); 3774 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON)); 3775 } 3776 3777 static uchar AscReadLramByte(PortAddr iop_base, ushort addr) 3778 { 3779 unsigned char byte_data; 3780 unsigned short word_data; 3781 3782 if (isodd_word(addr)) { 3783 AscSetChipLramAddr(iop_base, addr - 1); 3784 word_data = AscGetChipLramData(iop_base); 3785 byte_data = (word_data >> 8) & 0xFF; 3786 } else { 3787 AscSetChipLramAddr(iop_base, addr); 3788 word_data = AscGetChipLramData(iop_base); 3789 byte_data = word_data & 0xFF; 3790 } 3791 return byte_data; 3792 } 3793 3794 static ushort AscReadLramWord(PortAddr iop_base, ushort addr) 3795 { 3796 ushort word_data; 3797 3798 AscSetChipLramAddr(iop_base, addr); 3799 word_data = AscGetChipLramData(iop_base); 3800 return (word_data); 3801 } 3802 3803 static void 3804 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words) 3805 { 3806 int i; 3807 3808 AscSetChipLramAddr(iop_base, s_addr); 3809 for (i = 0; i < words; i++) { 3810 AscSetChipLramData(iop_base, set_wval); 3811 } 3812 } 3813 3814 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val) 3815 { 3816 AscSetChipLramAddr(iop_base, addr); 3817 AscSetChipLramData(iop_base, word_val); 3818 } 3819 3820 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val) 3821 { 3822 ushort word_data; 3823 3824 if (isodd_word(addr)) { 3825 addr--; 3826 word_data = AscReadLramWord(iop_base, addr); 3827 word_data &= 0x00FF; 3828 word_data |= (((ushort)byte_val << 8) & 0xFF00); 3829 } else { 3830 word_data = AscReadLramWord(iop_base, addr); 3831 word_data &= 0xFF00; 3832 word_data |= ((ushort)byte_val & 0x00FF); 3833 } 3834 AscWriteLramWord(iop_base, addr, word_data); 3835 } 3836 3837 /* 3838 * Copy 2 bytes to LRAM. 3839 * 3840 * The source data is assumed to be in little-endian order in memory 3841 * and is maintained in little-endian order when written to LRAM. 3842 */ 3843 static void 3844 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr, 3845 const uchar *s_buffer, int words) 3846 { 3847 int i; 3848 3849 AscSetChipLramAddr(iop_base, s_addr); 3850 for (i = 0; i < 2 * words; i += 2) { 3851 /* 3852 * On a little-endian system the second argument below 3853 * produces a little-endian ushort which is written to 3854 * LRAM in little-endian order. On a big-endian system 3855 * the second argument produces a big-endian ushort which 3856 * is "transparently" byte-swapped by outpw() and written 3857 * in little-endian order to LRAM. 3858 */ 3859 outpw(iop_base + IOP_RAM_DATA, 3860 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); 3861 } 3862 } 3863 3864 /* 3865 * Copy 4 bytes to LRAM. 3866 * 3867 * The source data is assumed to be in little-endian order in memory 3868 * and is maintained in little-endian order when written to LRAM. 3869 */ 3870 static void 3871 AscMemDWordCopyPtrToLram(PortAddr iop_base, 3872 ushort s_addr, uchar *s_buffer, int dwords) 3873 { 3874 int i; 3875 3876 AscSetChipLramAddr(iop_base, s_addr); 3877 for (i = 0; i < 4 * dwords; i += 4) { 3878 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */ 3879 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */ 3880 } 3881 } 3882 3883 /* 3884 * Copy 2 bytes from LRAM. 3885 * 3886 * The source data is assumed to be in little-endian order in LRAM 3887 * and is maintained in little-endian order when written to memory. 3888 */ 3889 static void 3890 AscMemWordCopyPtrFromLram(PortAddr iop_base, 3891 ushort s_addr, uchar *d_buffer, int words) 3892 { 3893 int i; 3894 ushort word; 3895 3896 AscSetChipLramAddr(iop_base, s_addr); 3897 for (i = 0; i < 2 * words; i += 2) { 3898 word = inpw(iop_base + IOP_RAM_DATA); 3899 d_buffer[i] = word & 0xff; 3900 d_buffer[i + 1] = (word >> 8) & 0xff; 3901 } 3902 } 3903 3904 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words) 3905 { 3906 u32 sum = 0; 3907 int i; 3908 3909 for (i = 0; i < words; i++, s_addr += 2) { 3910 sum += AscReadLramWord(iop_base, s_addr); 3911 } 3912 return (sum); 3913 } 3914 3915 static void AscInitLram(ASC_DVC_VAR *asc_dvc) 3916 { 3917 uchar i; 3918 ushort s_addr; 3919 PortAddr iop_base; 3920 3921 iop_base = asc_dvc->iop_base; 3922 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0, 3923 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) * 3924 64) >> 1)); 3925 i = ASC_MIN_ACTIVE_QNO; 3926 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; 3927 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3928 (uchar)(i + 1)); 3929 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3930 (uchar)(asc_dvc->max_total_qng)); 3931 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3932 (uchar)i); 3933 i++; 3934 s_addr += ASC_QBLK_SIZE; 3935 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { 3936 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3937 (uchar)(i + 1)); 3938 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3939 (uchar)(i - 1)); 3940 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3941 (uchar)i); 3942 } 3943 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 3944 (uchar)ASC_QLINK_END); 3945 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 3946 (uchar)(asc_dvc->max_total_qng - 1)); 3947 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 3948 (uchar)asc_dvc->max_total_qng); 3949 i++; 3950 s_addr += ASC_QBLK_SIZE; 3951 for (; i <= (uchar)(asc_dvc->max_total_qng + 3); 3952 i++, s_addr += ASC_QBLK_SIZE) { 3953 AscWriteLramByte(iop_base, 3954 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i); 3955 AscWriteLramByte(iop_base, 3956 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i); 3957 AscWriteLramByte(iop_base, 3958 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i); 3959 } 3960 } 3961 3962 static u32 3963 AscLoadMicroCode(PortAddr iop_base, ushort s_addr, 3964 const uchar *mcode_buf, ushort mcode_size) 3965 { 3966 u32 chksum; 3967 ushort mcode_word_size; 3968 ushort mcode_chksum; 3969 3970 /* Write the microcode buffer starting at LRAM address 0. */ 3971 mcode_word_size = (ushort)(mcode_size >> 1); 3972 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size); 3973 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size); 3974 3975 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size); 3976 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum); 3977 mcode_chksum = (ushort)AscMemSumLramWord(iop_base, 3978 (ushort)ASC_CODE_SEC_BEG, 3979 (ushort)((mcode_size - 3980 s_addr - (ushort) 3981 ASC_CODE_SEC_BEG) / 3982 2)); 3983 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum); 3984 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum); 3985 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size); 3986 return chksum; 3987 } 3988 3989 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc) 3990 { 3991 PortAddr iop_base; 3992 int i; 3993 ushort lram_addr; 3994 3995 iop_base = asc_dvc->iop_base; 3996 AscPutRiscVarFreeQHead(iop_base, 1); 3997 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng); 3998 AscPutVarFreeQHead(iop_base, 1); 3999 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng); 4000 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B, 4001 (uchar)((int)asc_dvc->max_total_qng + 1)); 4002 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B, 4003 (uchar)((int)asc_dvc->max_total_qng + 2)); 4004 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B, 4005 asc_dvc->max_total_qng); 4006 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0); 4007 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 4008 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); 4009 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0); 4010 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0); 4011 AscPutQDoneInProgress(iop_base, 0); 4012 lram_addr = ASC_QADR_BEG; 4013 for (i = 0; i < 32; i++, lram_addr += 2) { 4014 AscWriteLramWord(iop_base, lram_addr, 0); 4015 } 4016 } 4017 4018 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc) 4019 { 4020 int i; 4021 int warn_code; 4022 PortAddr iop_base; 4023 __le32 phy_addr; 4024 __le32 phy_size; 4025 struct asc_board *board = asc_dvc_to_board(asc_dvc); 4026 4027 iop_base = asc_dvc->iop_base; 4028 warn_code = 0; 4029 for (i = 0; i <= ASC_MAX_TID; i++) { 4030 AscPutMCodeInitSDTRAtID(iop_base, i, 4031 asc_dvc->cfg->sdtr_period_offset[i]); 4032 } 4033 4034 AscInitQLinkVar(asc_dvc); 4035 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, 4036 asc_dvc->cfg->disc_enable); 4037 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B, 4038 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id)); 4039 4040 /* Ensure overrun buffer is aligned on an 8 byte boundary. */ 4041 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7); 4042 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf, 4043 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4044 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) { 4045 warn_code = -ENOMEM; 4046 goto err_dma_map; 4047 } 4048 phy_addr = cpu_to_le32(asc_dvc->overrun_dma); 4049 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D, 4050 (uchar *)&phy_addr, 1); 4051 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE); 4052 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D, 4053 (uchar *)&phy_size, 1); 4054 4055 asc_dvc->cfg->mcode_date = 4056 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W); 4057 asc_dvc->cfg->mcode_version = 4058 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W); 4059 4060 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 4061 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 4062 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 4063 warn_code = -EINVAL; 4064 goto err_mcode_start; 4065 } 4066 if (AscStartChip(iop_base) != 1) { 4067 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 4068 warn_code = -EIO; 4069 goto err_mcode_start; 4070 } 4071 4072 return warn_code; 4073 4074 err_mcode_start: 4075 dma_unmap_single(board->dev, asc_dvc->overrun_dma, 4076 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4077 err_dma_map: 4078 asc_dvc->overrun_dma = 0; 4079 return warn_code; 4080 } 4081 4082 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc) 4083 { 4084 const struct firmware *fw; 4085 const char fwname[] = "advansys/mcode.bin"; 4086 int err; 4087 unsigned long chksum; 4088 int warn_code; 4089 PortAddr iop_base; 4090 4091 iop_base = asc_dvc->iop_base; 4092 warn_code = 0; 4093 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) && 4094 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) { 4095 AscResetChipAndScsiBus(asc_dvc); 4096 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4097 } 4098 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC; 4099 if (asc_dvc->err_code != 0) 4100 return ASC_ERROR; 4101 if (!AscFindSignature(asc_dvc->iop_base)) { 4102 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 4103 return warn_code; 4104 } 4105 AscDisableInterrupt(iop_base); 4106 AscInitLram(asc_dvc); 4107 4108 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4109 if (err) { 4110 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4111 fwname, err); 4112 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4113 return err; 4114 } 4115 if (fw->size < 4) { 4116 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4117 fw->size, fwname); 4118 release_firmware(fw); 4119 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4120 return -EINVAL; 4121 } 4122 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4123 (fw->data[1] << 8) | fw->data[0]; 4124 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum); 4125 if (AscLoadMicroCode(iop_base, 0, &fw->data[4], 4126 fw->size - 4) != chksum) { 4127 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4128 release_firmware(fw); 4129 return warn_code; 4130 } 4131 release_firmware(fw); 4132 warn_code |= AscInitMicroCodeVar(asc_dvc); 4133 if (!asc_dvc->overrun_dma) 4134 return warn_code; 4135 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC; 4136 AscEnableInterrupt(iop_base); 4137 return warn_code; 4138 } 4139 4140 /* 4141 * Load the Microcode 4142 * 4143 * Write the microcode image to RISC memory starting at address 0. 4144 * 4145 * The microcode is stored compressed in the following format: 4146 * 4147 * 254 word (508 byte) table indexed by byte code followed 4148 * by the following byte codes: 4149 * 4150 * 1-Byte Code: 4151 * 00: Emit word 0 in table. 4152 * 01: Emit word 1 in table. 4153 * . 4154 * FD: Emit word 253 in table. 4155 * 4156 * Multi-Byte Code: 4157 * FE WW WW: (3 byte code) Word to emit is the next word WW WW. 4158 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. 4159 * 4160 * Returns 0 or an error if the checksum doesn't match 4161 */ 4162 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf, 4163 int size, int memsize, int chksum) 4164 { 4165 int i, j, end, len = 0; 4166 u32 sum; 4167 4168 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4169 4170 for (i = 253 * 2; i < size; i++) { 4171 if (buf[i] == 0xff) { 4172 unsigned short word = (buf[i + 3] << 8) | buf[i + 2]; 4173 for (j = 0; j < buf[i + 1]; j++) { 4174 AdvWriteWordAutoIncLram(iop_base, word); 4175 len += 2; 4176 } 4177 i += 3; 4178 } else if (buf[i] == 0xfe) { 4179 unsigned short word = (buf[i + 2] << 8) | buf[i + 1]; 4180 AdvWriteWordAutoIncLram(iop_base, word); 4181 i += 2; 4182 len += 2; 4183 } else { 4184 unsigned int off = buf[i] * 2; 4185 unsigned short word = (buf[off + 1] << 8) | buf[off]; 4186 AdvWriteWordAutoIncLram(iop_base, word); 4187 len += 2; 4188 } 4189 } 4190 4191 end = len; 4192 4193 while (len < memsize) { 4194 AdvWriteWordAutoIncLram(iop_base, 0); 4195 len += 2; 4196 } 4197 4198 /* Verify the microcode checksum. */ 4199 sum = 0; 4200 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4201 4202 for (len = 0; len < end; len += 2) { 4203 sum += AdvReadWordAutoIncLram(iop_base); 4204 } 4205 4206 if (sum != chksum) 4207 return ASC_IERR_MCODE_CHKSUM; 4208 4209 return 0; 4210 } 4211 4212 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc) 4213 { 4214 off_t carr_offset = 0, next_offset; 4215 dma_addr_t carr_paddr; 4216 int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i; 4217 4218 for (i = 0; i < carr_num; i++) { 4219 carr_offset = i * sizeof(ADV_CARR_T); 4220 /* Get physical address of the carrier 'carrp'. */ 4221 carr_paddr = adv_dvc->carrier_addr + carr_offset; 4222 4223 adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr); 4224 adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset); 4225 adv_dvc->carrier[i].areq_vpa = 0; 4226 next_offset = carr_offset + sizeof(ADV_CARR_T); 4227 if (i == carr_num) 4228 next_offset = ~0; 4229 adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset); 4230 } 4231 /* 4232 * We cannot have a carrier with 'carr_va' of '0', as 4233 * a reference to this carrier would be interpreted as 4234 * list termination. 4235 * So start at carrier 1 with the freelist. 4236 */ 4237 adv_dvc->carr_freelist = &adv_dvc->carrier[1]; 4238 } 4239 4240 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset) 4241 { 4242 int index; 4243 4244 BUG_ON(offset > ADV_CARRIER_BUFSIZE); 4245 4246 index = offset / sizeof(ADV_CARR_T); 4247 return &adv_dvc->carrier[index]; 4248 } 4249 4250 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc) 4251 { 4252 ADV_CARR_T *carrp = adv_dvc->carr_freelist; 4253 u32 next_vpa = le32_to_cpu(carrp->next_vpa); 4254 4255 if (next_vpa == 0 || next_vpa == ~0) { 4256 ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa); 4257 return NULL; 4258 } 4259 4260 adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa); 4261 /* 4262 * insert stopper carrier to terminate list 4263 */ 4264 carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER); 4265 4266 return carrp; 4267 } 4268 4269 /* 4270 * 'offset' is the index in the request pointer array 4271 */ 4272 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset) 4273 { 4274 struct asc_board *boardp = adv_dvc->drv_ptr; 4275 4276 BUG_ON(offset > adv_dvc->max_host_qng); 4277 return &boardp->adv_reqp[offset]; 4278 } 4279 4280 /* 4281 * Send an idle command to the chip and wait for completion. 4282 * 4283 * Command completion is polled for once per microsecond. 4284 * 4285 * The function can be called from anywhere including an interrupt handler. 4286 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical() 4287 * functions to prevent reentrancy. 4288 * 4289 * Return Values: 4290 * ADV_TRUE - command completed successfully 4291 * ADV_FALSE - command failed 4292 * ADV_ERROR - command timed out 4293 */ 4294 static int 4295 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc, 4296 ushort idle_cmd, u32 idle_cmd_parameter) 4297 { 4298 int result, i, j; 4299 AdvPortAddr iop_base; 4300 4301 iop_base = asc_dvc->iop_base; 4302 4303 /* 4304 * Clear the idle command status which is set by the microcode 4305 * to a non-zero value to indicate when the command is completed. 4306 * The non-zero result is one of the IDLE_CMD_STATUS_* values 4307 */ 4308 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0); 4309 4310 /* 4311 * Write the idle command value after the idle command parameter 4312 * has been written to avoid a race condition. If the order is not 4313 * followed, the microcode may process the idle command before the 4314 * parameters have been written to LRAM. 4315 */ 4316 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER, 4317 cpu_to_le32(idle_cmd_parameter)); 4318 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd); 4319 4320 /* 4321 * Tickle the RISC to tell it to process the idle command. 4322 */ 4323 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B); 4324 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 4325 /* 4326 * Clear the tickle value. In the ASC-3550 the RISC flag 4327 * command 'clr_tickle_b' does not work unless the host 4328 * value is cleared. 4329 */ 4330 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); 4331 } 4332 4333 /* Wait for up to 100 millisecond for the idle command to timeout. */ 4334 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) { 4335 /* Poll once each microsecond for command completion. */ 4336 for (j = 0; j < SCSI_US_PER_MSEC; j++) { 4337 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, 4338 result); 4339 if (result != 0) 4340 return result; 4341 udelay(1); 4342 } 4343 } 4344 4345 BUG(); /* The idle command should never timeout. */ 4346 return ADV_ERROR; 4347 } 4348 4349 /* 4350 * Reset SCSI Bus and purge all outstanding requests. 4351 * 4352 * Return Value: 4353 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset. 4354 * ADV_FALSE(0) - Microcode command failed. 4355 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC 4356 * may be hung which requires driver recovery. 4357 */ 4358 static int AdvResetSB(ADV_DVC_VAR *asc_dvc) 4359 { 4360 int status; 4361 4362 /* 4363 * Send the SCSI Bus Reset idle start idle command which asserts 4364 * the SCSI Bus Reset signal. 4365 */ 4366 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L); 4367 if (status != ADV_TRUE) { 4368 return status; 4369 } 4370 4371 /* 4372 * Delay for the specified SCSI Bus Reset hold time. 4373 * 4374 * The hold time delay is done on the host because the RISC has no 4375 * microsecond accurate timer. 4376 */ 4377 udelay(ASC_SCSI_RESET_HOLD_TIME_US); 4378 4379 /* 4380 * Send the SCSI Bus Reset end idle command which de-asserts 4381 * the SCSI Bus Reset signal and purges any pending requests. 4382 */ 4383 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L); 4384 if (status != ADV_TRUE) { 4385 return status; 4386 } 4387 4388 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4389 4390 return status; 4391 } 4392 4393 /* 4394 * Initialize the ASC-3550. 4395 * 4396 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 4397 * 4398 * For a non-fatal error return a warning code. If there are no warnings 4399 * then 0 is returned. 4400 * 4401 * Needed after initialization for error recovery. 4402 */ 4403 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc) 4404 { 4405 const struct firmware *fw; 4406 const char fwname[] = "advansys/3550.bin"; 4407 AdvPortAddr iop_base; 4408 ushort warn_code; 4409 int begin_addr; 4410 int end_addr; 4411 ushort code_sum; 4412 int word; 4413 int i; 4414 int err; 4415 unsigned long chksum; 4416 ushort scsi_cfg1; 4417 uchar tid; 4418 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 4419 ushort wdtr_able = 0, sdtr_able, tagqng_able; 4420 uchar max_cmd[ADV_MAX_TID + 1]; 4421 4422 /* If there is already an error, don't continue. */ 4423 if (asc_dvc->err_code != 0) 4424 return ADV_ERROR; 4425 4426 /* 4427 * The caller must set 'chip_type' to ADV_CHIP_ASC3550. 4428 */ 4429 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) { 4430 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 4431 return ADV_ERROR; 4432 } 4433 4434 warn_code = 0; 4435 iop_base = asc_dvc->iop_base; 4436 4437 /* 4438 * Save the RISC memory BIOS region before writing the microcode. 4439 * The BIOS may already be loaded and using its RISC LRAM region 4440 * so its region must be saved and restored. 4441 * 4442 * Note: This code makes the assumption, which is currently true, 4443 * that a chip reset does not clear RISC LRAM. 4444 */ 4445 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4446 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4447 bios_mem[i]); 4448 } 4449 4450 /* 4451 * Save current per TID negotiated values. 4452 */ 4453 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { 4454 ushort bios_version, major, minor; 4455 4456 bios_version = 4457 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2]; 4458 major = (bios_version >> 12) & 0xF; 4459 minor = (bios_version >> 8) & 0xF; 4460 if (major < 3 || (major == 3 && minor == 1)) { 4461 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */ 4462 AdvReadWordLram(iop_base, 0x120, wdtr_able); 4463 } else { 4464 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4465 } 4466 } 4467 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4468 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 4469 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4470 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 4471 max_cmd[tid]); 4472 } 4473 4474 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4475 if (err) { 4476 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4477 fwname, err); 4478 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4479 return err; 4480 } 4481 if (fw->size < 4) { 4482 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4483 fw->size, fwname); 4484 release_firmware(fw); 4485 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4486 return -EINVAL; 4487 } 4488 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4489 (fw->data[1] << 8) | fw->data[0]; 4490 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 4491 fw->size - 4, ADV_3550_MEMSIZE, 4492 chksum); 4493 release_firmware(fw); 4494 if (asc_dvc->err_code) 4495 return ADV_ERROR; 4496 4497 /* 4498 * Restore the RISC memory BIOS region. 4499 */ 4500 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4501 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4502 bios_mem[i]); 4503 } 4504 4505 /* 4506 * Calculate and write the microcode code checksum to the microcode 4507 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 4508 */ 4509 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 4510 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 4511 code_sum = 0; 4512 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 4513 for (word = begin_addr; word < end_addr; word += 2) { 4514 code_sum += AdvReadWordAutoIncLram(iop_base); 4515 } 4516 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 4517 4518 /* 4519 * Read and save microcode version and date. 4520 */ 4521 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 4522 asc_dvc->cfg->mcode_date); 4523 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 4524 asc_dvc->cfg->mcode_version); 4525 4526 /* 4527 * Set the chip type to indicate the ASC3550. 4528 */ 4529 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550); 4530 4531 /* 4532 * If the PCI Configuration Command Register "Parity Error Response 4533 * Control" Bit was clear (0), then set the microcode variable 4534 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 4535 * to ignore DMA parity errors. 4536 */ 4537 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 4538 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4539 word |= CONTROL_FLAG_IGNORE_PERR; 4540 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 4541 } 4542 4543 /* 4544 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO 4545 * threshold of 128 bytes. This register is only accessible to the host. 4546 */ 4547 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 4548 START_CTL_EMFU | READ_CMD_MRM); 4549 4550 /* 4551 * Microcode operating variables for WDTR, SDTR, and command tag 4552 * queuing will be set in slave_configure() based on what a 4553 * device reports it is capable of in Inquiry byte 7. 4554 * 4555 * If SCSI Bus Resets have been disabled, then directly set 4556 * SDTR and WDTR from the EEPROM configuration. This will allow 4557 * the BIOS and warm boot to work without a SCSI bus hang on 4558 * the Inquiry caused by host and target mismatched DTR values. 4559 * Without the SCSI Bus Reset, before an Inquiry a device can't 4560 * be assumed to be in Asynchronous, Narrow mode. 4561 */ 4562 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 4563 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 4564 asc_dvc->wdtr_able); 4565 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 4566 asc_dvc->sdtr_able); 4567 } 4568 4569 /* 4570 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, 4571 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID 4572 * bitmask. These values determine the maximum SDTR speed negotiated 4573 * with a device. 4574 * 4575 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 4576 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 4577 * without determining here whether the device supports SDTR. 4578 * 4579 * 4-bit speed SDTR speed name 4580 * =========== =============== 4581 * 0000b (0x0) SDTR disabled 4582 * 0001b (0x1) 5 Mhz 4583 * 0010b (0x2) 10 Mhz 4584 * 0011b (0x3) 20 Mhz (Ultra) 4585 * 0100b (0x4) 40 Mhz (LVD/Ultra2) 4586 * 0101b (0x5) 80 Mhz (LVD2/Ultra3) 4587 * 0110b (0x6) Undefined 4588 * . 4589 * 1111b (0xF) Undefined 4590 */ 4591 word = 0; 4592 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4593 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) { 4594 /* Set Ultra speed for TID 'tid'. */ 4595 word |= (0x3 << (4 * (tid % 4))); 4596 } else { 4597 /* Set Fast speed for TID 'tid'. */ 4598 word |= (0x2 << (4 * (tid % 4))); 4599 } 4600 if (tid == 3) { /* Check if done with sdtr_speed1. */ 4601 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word); 4602 word = 0; 4603 } else if (tid == 7) { /* Check if done with sdtr_speed2. */ 4604 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word); 4605 word = 0; 4606 } else if (tid == 11) { /* Check if done with sdtr_speed3. */ 4607 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word); 4608 word = 0; 4609 } else if (tid == 15) { /* Check if done with sdtr_speed4. */ 4610 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word); 4611 /* End of loop. */ 4612 } 4613 } 4614 4615 /* 4616 * Set microcode operating variable for the disconnect per TID bitmask. 4617 */ 4618 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 4619 asc_dvc->cfg->disc_enable); 4620 4621 /* 4622 * Set SCSI_CFG0 Microcode Default Value. 4623 * 4624 * The microcode will set the SCSI_CFG0 register using this value 4625 * after it is started below. 4626 */ 4627 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 4628 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 4629 asc_dvc->chip_scsi_id); 4630 4631 /* 4632 * Determine SCSI_CFG1 Microcode Default Value. 4633 * 4634 * The microcode will set the SCSI_CFG1 register using this value 4635 * after it is started below. 4636 */ 4637 4638 /* Read current SCSI_CFG1 Register value. */ 4639 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 4640 4641 /* 4642 * If all three connectors are in use, return an error. 4643 */ 4644 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || 4645 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { 4646 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION; 4647 return ADV_ERROR; 4648 } 4649 4650 /* 4651 * If the internal narrow cable is reversed all of the SCSI_CTRL 4652 * register signals will be set. Check for and return an error if 4653 * this condition is found. 4654 */ 4655 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 4656 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 4657 return ADV_ERROR; 4658 } 4659 4660 /* 4661 * If this is a differential board and a single-ended device 4662 * is attached to one of the connectors, return an error. 4663 */ 4664 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) { 4665 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE; 4666 return ADV_ERROR; 4667 } 4668 4669 /* 4670 * If automatic termination control is enabled, then set the 4671 * termination value based on a table listed in a_condor.h. 4672 * 4673 * If manual termination was specified with an EEPROM setting 4674 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and 4675 * is ready to be 'ored' into SCSI_CFG1. 4676 */ 4677 if (asc_dvc->cfg->termination == 0) { 4678 /* 4679 * The software always controls termination by setting TERM_CTL_SEL. 4680 * If TERM_CTL_SEL were set to 0, the hardware would set termination. 4681 */ 4682 asc_dvc->cfg->termination |= TERM_CTL_SEL; 4683 4684 switch (scsi_cfg1 & CABLE_DETECT) { 4685 /* TERM_CTL_H: on, TERM_CTL_L: on */ 4686 case 0x3: 4687 case 0x7: 4688 case 0xB: 4689 case 0xD: 4690 case 0xE: 4691 case 0xF: 4692 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L); 4693 break; 4694 4695 /* TERM_CTL_H: on, TERM_CTL_L: off */ 4696 case 0x1: 4697 case 0x5: 4698 case 0x9: 4699 case 0xA: 4700 case 0xC: 4701 asc_dvc->cfg->termination |= TERM_CTL_H; 4702 break; 4703 4704 /* TERM_CTL_H: off, TERM_CTL_L: off */ 4705 case 0x2: 4706 case 0x6: 4707 break; 4708 } 4709 } 4710 4711 /* 4712 * Clear any set TERM_CTL_H and TERM_CTL_L bits. 4713 */ 4714 scsi_cfg1 &= ~TERM_CTL; 4715 4716 /* 4717 * Invert the TERM_CTL_H and TERM_CTL_L bits and then 4718 * set 'scsi_cfg1'. The TERM_POL bit does not need to be 4719 * referenced, because the hardware internally inverts 4720 * the Termination High and Low bits if TERM_POL is set. 4721 */ 4722 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL)); 4723 4724 /* 4725 * Set SCSI_CFG1 Microcode Default Value 4726 * 4727 * Set filter value and possibly modified termination control 4728 * bits in the Microcode SCSI_CFG1 Register Value. 4729 * 4730 * The microcode will set the SCSI_CFG1 register using this value 4731 * after it is started below. 4732 */ 4733 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, 4734 FLTR_DISABLE | scsi_cfg1); 4735 4736 /* 4737 * Set MEM_CFG Microcode Default Value 4738 * 4739 * The microcode will set the MEM_CFG register using this value 4740 * after it is started below. 4741 * 4742 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 4743 * are defined. 4744 * 4745 * ASC-3550 has 8KB internal memory. 4746 */ 4747 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 4748 BIOS_EN | RAM_SZ_8KB); 4749 4750 /* 4751 * Set SEL_MASK Microcode Default Value 4752 * 4753 * The microcode will set the SEL_MASK register using this value 4754 * after it is started below. 4755 */ 4756 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 4757 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 4758 4759 AdvBuildCarrierFreelist(asc_dvc); 4760 4761 /* 4762 * Set-up the Host->RISC Initiator Command Queue (ICQ). 4763 */ 4764 4765 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 4766 if (!asc_dvc->icq_sp) { 4767 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4768 return ADV_ERROR; 4769 } 4770 4771 /* 4772 * Set RISC ICQ physical address start value. 4773 */ 4774 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 4775 4776 /* 4777 * Set-up the RISC->Host Initiator Response Queue (IRQ). 4778 */ 4779 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 4780 if (!asc_dvc->irq_sp) { 4781 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 4782 return ADV_ERROR; 4783 } 4784 4785 /* 4786 * Set RISC IRQ physical address start value. 4787 */ 4788 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 4789 asc_dvc->carr_pending_cnt = 0; 4790 4791 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 4792 (ADV_INTR_ENABLE_HOST_INTR | 4793 ADV_INTR_ENABLE_GLOBAL_INTR)); 4794 4795 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 4796 AdvWriteWordRegister(iop_base, IOPW_PC, word); 4797 4798 /* finally, finally, gentlemen, start your engine */ 4799 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 4800 4801 /* 4802 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 4803 * Resets should be performed. The RISC has to be running 4804 * to issue a SCSI Bus Reset. 4805 */ 4806 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 4807 /* 4808 * If the BIOS Signature is present in memory, restore the 4809 * BIOS Handshake Configuration Table and do not perform 4810 * a SCSI Bus Reset. 4811 */ 4812 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 4813 0x55AA) { 4814 /* 4815 * Restore per TID negotiated values. 4816 */ 4817 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4818 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4819 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 4820 tagqng_able); 4821 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4822 AdvWriteByteLram(iop_base, 4823 ASC_MC_NUMBER_OF_MAX_CMD + tid, 4824 max_cmd[tid]); 4825 } 4826 } else { 4827 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 4828 warn_code = ASC_WARN_BUSRESET_ERROR; 4829 } 4830 } 4831 } 4832 4833 return warn_code; 4834 } 4835 4836 /* 4837 * Initialize the ASC-38C0800. 4838 * 4839 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 4840 * 4841 * For a non-fatal error return a warning code. If there are no warnings 4842 * then 0 is returned. 4843 * 4844 * Needed after initialization for error recovery. 4845 */ 4846 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc) 4847 { 4848 const struct firmware *fw; 4849 const char fwname[] = "advansys/38C0800.bin"; 4850 AdvPortAddr iop_base; 4851 ushort warn_code; 4852 int begin_addr; 4853 int end_addr; 4854 ushort code_sum; 4855 int word; 4856 int i; 4857 int err; 4858 unsigned long chksum; 4859 ushort scsi_cfg1; 4860 uchar byte; 4861 uchar tid; 4862 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 4863 ushort wdtr_able, sdtr_able, tagqng_able; 4864 uchar max_cmd[ADV_MAX_TID + 1]; 4865 4866 /* If there is already an error, don't continue. */ 4867 if (asc_dvc->err_code != 0) 4868 return ADV_ERROR; 4869 4870 /* 4871 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800. 4872 */ 4873 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) { 4874 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 4875 return ADV_ERROR; 4876 } 4877 4878 warn_code = 0; 4879 iop_base = asc_dvc->iop_base; 4880 4881 /* 4882 * Save the RISC memory BIOS region before writing the microcode. 4883 * The BIOS may already be loaded and using its RISC LRAM region 4884 * so its region must be saved and restored. 4885 * 4886 * Note: This code makes the assumption, which is currently true, 4887 * that a chip reset does not clear RISC LRAM. 4888 */ 4889 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 4890 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 4891 bios_mem[i]); 4892 } 4893 4894 /* 4895 * Save current per TID negotiated values. 4896 */ 4897 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 4898 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 4899 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 4900 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 4901 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 4902 max_cmd[tid]); 4903 } 4904 4905 /* 4906 * RAM BIST (RAM Built-In Self Test) 4907 * 4908 * Address : I/O base + offset 0x38h register (byte). 4909 * Function: Bit 7-6(RW) : RAM mode 4910 * Normal Mode : 0x00 4911 * Pre-test Mode : 0x40 4912 * RAM Test Mode : 0x80 4913 * Bit 5 : unused 4914 * Bit 4(RO) : Done bit 4915 * Bit 3-0(RO) : Status 4916 * Host Error : 0x08 4917 * Int_RAM Error : 0x04 4918 * RISC Error : 0x02 4919 * SCSI Error : 0x01 4920 * No Error : 0x00 4921 * 4922 * Note: RAM BIST code should be put right here, before loading the 4923 * microcode and after saving the RISC memory BIOS region. 4924 */ 4925 4926 /* 4927 * LRAM Pre-test 4928 * 4929 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 4930 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 4931 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 4932 * to NORMAL_MODE, return an error too. 4933 */ 4934 for (i = 0; i < 2; i++) { 4935 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 4936 mdelay(10); /* Wait for 10ms before reading back. */ 4937 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 4938 if ((byte & RAM_TEST_DONE) == 0 4939 || (byte & 0x0F) != PRE_TEST_VALUE) { 4940 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 4941 return ADV_ERROR; 4942 } 4943 4944 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 4945 mdelay(10); /* Wait for 10ms before reading back. */ 4946 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 4947 != NORMAL_VALUE) { 4948 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 4949 return ADV_ERROR; 4950 } 4951 } 4952 4953 /* 4954 * LRAM Test - It takes about 1.5 ms to run through the test. 4955 * 4956 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 4957 * If Done bit not set or Status not 0, save register byte, set the 4958 * err_code, and return an error. 4959 */ 4960 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 4961 mdelay(10); /* Wait for 10ms before checking status. */ 4962 4963 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 4964 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 4965 /* Get here if Done bit not set or Status not 0. */ 4966 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 4967 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 4968 return ADV_ERROR; 4969 } 4970 4971 /* We need to reset back to normal mode after LRAM test passes. */ 4972 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 4973 4974 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4975 if (err) { 4976 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4977 fwname, err); 4978 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4979 return err; 4980 } 4981 if (fw->size < 4) { 4982 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4983 fw->size, fwname); 4984 release_firmware(fw); 4985 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 4986 return -EINVAL; 4987 } 4988 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4989 (fw->data[1] << 8) | fw->data[0]; 4990 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 4991 fw->size - 4, ADV_38C0800_MEMSIZE, 4992 chksum); 4993 release_firmware(fw); 4994 if (asc_dvc->err_code) 4995 return ADV_ERROR; 4996 4997 /* 4998 * Restore the RISC memory BIOS region. 4999 */ 5000 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5001 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5002 bios_mem[i]); 5003 } 5004 5005 /* 5006 * Calculate and write the microcode code checksum to the microcode 5007 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5008 */ 5009 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5010 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5011 code_sum = 0; 5012 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5013 for (word = begin_addr; word < end_addr; word += 2) { 5014 code_sum += AdvReadWordAutoIncLram(iop_base); 5015 } 5016 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5017 5018 /* 5019 * Read microcode version and date. 5020 */ 5021 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5022 asc_dvc->cfg->mcode_date); 5023 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5024 asc_dvc->cfg->mcode_version); 5025 5026 /* 5027 * Set the chip type to indicate the ASC38C0800. 5028 */ 5029 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800); 5030 5031 /* 5032 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 5033 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 5034 * cable detection and then we are able to read C_DET[3:0]. 5035 * 5036 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 5037 * Microcode Default Value' section below. 5038 */ 5039 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5040 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 5041 scsi_cfg1 | DIS_TERM_DRV); 5042 5043 /* 5044 * If the PCI Configuration Command Register "Parity Error Response 5045 * Control" Bit was clear (0), then set the microcode variable 5046 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5047 * to ignore DMA parity errors. 5048 */ 5049 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5050 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5051 word |= CONTROL_FLAG_IGNORE_PERR; 5052 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5053 } 5054 5055 /* 5056 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2] 5057 * bits for the default FIFO threshold. 5058 * 5059 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes. 5060 * 5061 * For DMA Errata #4 set the BC_THRESH_ENB bit. 5062 */ 5063 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5064 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | 5065 READ_CMD_MRM); 5066 5067 /* 5068 * Microcode operating variables for WDTR, SDTR, and command tag 5069 * queuing will be set in slave_configure() based on what a 5070 * device reports it is capable of in Inquiry byte 7. 5071 * 5072 * If SCSI Bus Resets have been disabled, then directly set 5073 * SDTR and WDTR from the EEPROM configuration. This will allow 5074 * the BIOS and warm boot to work without a SCSI bus hang on 5075 * the Inquiry caused by host and target mismatched DTR values. 5076 * Without the SCSI Bus Reset, before an Inquiry a device can't 5077 * be assumed to be in Asynchronous, Narrow mode. 5078 */ 5079 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5080 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5081 asc_dvc->wdtr_able); 5082 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5083 asc_dvc->sdtr_able); 5084 } 5085 5086 /* 5087 * Set microcode operating variables for DISC and SDTR_SPEED1, 5088 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5089 * configuration values. 5090 * 5091 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5092 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5093 * without determining here whether the device supports SDTR. 5094 */ 5095 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5096 asc_dvc->cfg->disc_enable); 5097 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5098 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5099 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5100 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5101 5102 /* 5103 * Set SCSI_CFG0 Microcode Default Value. 5104 * 5105 * The microcode will set the SCSI_CFG0 register using this value 5106 * after it is started below. 5107 */ 5108 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5109 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5110 asc_dvc->chip_scsi_id); 5111 5112 /* 5113 * Determine SCSI_CFG1 Microcode Default Value. 5114 * 5115 * The microcode will set the SCSI_CFG1 register using this value 5116 * after it is started below. 5117 */ 5118 5119 /* Read current SCSI_CFG1 Register value. */ 5120 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5121 5122 /* 5123 * If the internal narrow cable is reversed all of the SCSI_CTRL 5124 * register signals will be set. Check for and return an error if 5125 * this condition is found. 5126 */ 5127 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5128 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5129 return ADV_ERROR; 5130 } 5131 5132 /* 5133 * All kind of combinations of devices attached to one of four 5134 * connectors are acceptable except HVD device attached. For example, 5135 * LVD device can be attached to SE connector while SE device attached 5136 * to LVD connector. If LVD device attached to SE connector, it only 5137 * runs up to Ultra speed. 5138 * 5139 * If an HVD device is attached to one of LVD connectors, return an 5140 * error. However, there is no way to detect HVD device attached to 5141 * SE connectors. 5142 */ 5143 if (scsi_cfg1 & HVD) { 5144 asc_dvc->err_code = ASC_IERR_HVD_DEVICE; 5145 return ADV_ERROR; 5146 } 5147 5148 /* 5149 * If either SE or LVD automatic termination control is enabled, then 5150 * set the termination value based on a table listed in a_condor.h. 5151 * 5152 * If manual termination was specified with an EEPROM setting then 5153 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready 5154 * to be 'ored' into SCSI_CFG1. 5155 */ 5156 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5157 /* SE automatic termination control is enabled. */ 5158 switch (scsi_cfg1 & C_DET_SE) { 5159 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5160 case 0x1: 5161 case 0x2: 5162 case 0x3: 5163 asc_dvc->cfg->termination |= TERM_SE; 5164 break; 5165 5166 /* TERM_SE_HI: on, TERM_SE_LO: off */ 5167 case 0x0: 5168 asc_dvc->cfg->termination |= TERM_SE_HI; 5169 break; 5170 } 5171 } 5172 5173 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) { 5174 /* LVD automatic termination control is enabled. */ 5175 switch (scsi_cfg1 & C_DET_LVD) { 5176 /* TERM_LVD_HI: on, TERM_LVD_LO: on */ 5177 case 0x4: 5178 case 0x8: 5179 case 0xC: 5180 asc_dvc->cfg->termination |= TERM_LVD; 5181 break; 5182 5183 /* TERM_LVD_HI: off, TERM_LVD_LO: off */ 5184 case 0x0: 5185 break; 5186 } 5187 } 5188 5189 /* 5190 * Clear any set TERM_SE and TERM_LVD bits. 5191 */ 5192 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD); 5193 5194 /* 5195 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. 5196 */ 5197 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0); 5198 5199 /* 5200 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE 5201 * bits and set possibly modified termination control bits in the 5202 * Microcode SCSI_CFG1 Register Value. 5203 */ 5204 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE); 5205 5206 /* 5207 * Set SCSI_CFG1 Microcode Default Value 5208 * 5209 * Set possibly modified termination control and reset DIS_TERM_DRV 5210 * bits in the Microcode SCSI_CFG1 Register Value. 5211 * 5212 * The microcode will set the SCSI_CFG1 register using this value 5213 * after it is started below. 5214 */ 5215 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5216 5217 /* 5218 * Set MEM_CFG Microcode Default Value 5219 * 5220 * The microcode will set the MEM_CFG register using this value 5221 * after it is started below. 5222 * 5223 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5224 * are defined. 5225 * 5226 * ASC-38C0800 has 16KB internal memory. 5227 */ 5228 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5229 BIOS_EN | RAM_SZ_16KB); 5230 5231 /* 5232 * Set SEL_MASK Microcode Default Value 5233 * 5234 * The microcode will set the SEL_MASK register using this value 5235 * after it is started below. 5236 */ 5237 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5238 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5239 5240 AdvBuildCarrierFreelist(asc_dvc); 5241 5242 /* 5243 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5244 */ 5245 5246 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 5247 if (!asc_dvc->icq_sp) { 5248 ASC_DBG(0, "Failed to get ICQ carrier\n"); 5249 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5250 return ADV_ERROR; 5251 } 5252 5253 /* 5254 * Set RISC ICQ physical address start value. 5255 * carr_pa is LE, must be native before write 5256 */ 5257 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5258 5259 /* 5260 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5261 */ 5262 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 5263 if (!asc_dvc->irq_sp) { 5264 ASC_DBG(0, "Failed to get IRQ carrier\n"); 5265 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5266 return ADV_ERROR; 5267 } 5268 5269 /* 5270 * Set RISC IRQ physical address start value. 5271 * 5272 * carr_pa is LE, must be native before write * 5273 */ 5274 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5275 asc_dvc->carr_pending_cnt = 0; 5276 5277 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5278 (ADV_INTR_ENABLE_HOST_INTR | 5279 ADV_INTR_ENABLE_GLOBAL_INTR)); 5280 5281 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5282 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5283 5284 /* finally, finally, gentlemen, start your engine */ 5285 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5286 5287 /* 5288 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5289 * Resets should be performed. The RISC has to be running 5290 * to issue a SCSI Bus Reset. 5291 */ 5292 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5293 /* 5294 * If the BIOS Signature is present in memory, restore the 5295 * BIOS Handshake Configuration Table and do not perform 5296 * a SCSI Bus Reset. 5297 */ 5298 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5299 0x55AA) { 5300 /* 5301 * Restore per TID negotiated values. 5302 */ 5303 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5304 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5305 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5306 tagqng_able); 5307 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5308 AdvWriteByteLram(iop_base, 5309 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5310 max_cmd[tid]); 5311 } 5312 } else { 5313 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5314 warn_code = ASC_WARN_BUSRESET_ERROR; 5315 } 5316 } 5317 } 5318 5319 return warn_code; 5320 } 5321 5322 /* 5323 * Initialize the ASC-38C1600. 5324 * 5325 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 5326 * 5327 * For a non-fatal error return a warning code. If there are no warnings 5328 * then 0 is returned. 5329 * 5330 * Needed after initialization for error recovery. 5331 */ 5332 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc) 5333 { 5334 const struct firmware *fw; 5335 const char fwname[] = "advansys/38C1600.bin"; 5336 AdvPortAddr iop_base; 5337 ushort warn_code; 5338 int begin_addr; 5339 int end_addr; 5340 ushort code_sum; 5341 long word; 5342 int i; 5343 int err; 5344 unsigned long chksum; 5345 ushort scsi_cfg1; 5346 uchar byte; 5347 uchar tid; 5348 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 5349 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able; 5350 uchar max_cmd[ASC_MAX_TID + 1]; 5351 5352 /* If there is already an error, don't continue. */ 5353 if (asc_dvc->err_code != 0) { 5354 return ADV_ERROR; 5355 } 5356 5357 /* 5358 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600. 5359 */ 5360 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 5361 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 5362 return ADV_ERROR; 5363 } 5364 5365 warn_code = 0; 5366 iop_base = asc_dvc->iop_base; 5367 5368 /* 5369 * Save the RISC memory BIOS region before writing the microcode. 5370 * The BIOS may already be loaded and using its RISC LRAM region 5371 * so its region must be saved and restored. 5372 * 5373 * Note: This code makes the assumption, which is currently true, 5374 * that a chip reset does not clear RISC LRAM. 5375 */ 5376 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5377 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5378 bios_mem[i]); 5379 } 5380 5381 /* 5382 * Save current per TID negotiated values. 5383 */ 5384 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5385 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5386 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5387 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5388 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 5389 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5390 max_cmd[tid]); 5391 } 5392 5393 /* 5394 * RAM BIST (Built-In Self Test) 5395 * 5396 * Address : I/O base + offset 0x38h register (byte). 5397 * Function: Bit 7-6(RW) : RAM mode 5398 * Normal Mode : 0x00 5399 * Pre-test Mode : 0x40 5400 * RAM Test Mode : 0x80 5401 * Bit 5 : unused 5402 * Bit 4(RO) : Done bit 5403 * Bit 3-0(RO) : Status 5404 * Host Error : 0x08 5405 * Int_RAM Error : 0x04 5406 * RISC Error : 0x02 5407 * SCSI Error : 0x01 5408 * No Error : 0x00 5409 * 5410 * Note: RAM BIST code should be put right here, before loading the 5411 * microcode and after saving the RISC memory BIOS region. 5412 */ 5413 5414 /* 5415 * LRAM Pre-test 5416 * 5417 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 5418 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 5419 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 5420 * to NORMAL_MODE, return an error too. 5421 */ 5422 for (i = 0; i < 2; i++) { 5423 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 5424 mdelay(10); /* Wait for 10ms before reading back. */ 5425 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5426 if ((byte & RAM_TEST_DONE) == 0 5427 || (byte & 0x0F) != PRE_TEST_VALUE) { 5428 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5429 return ADV_ERROR; 5430 } 5431 5432 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5433 mdelay(10); /* Wait for 10ms before reading back. */ 5434 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 5435 != NORMAL_VALUE) { 5436 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5437 return ADV_ERROR; 5438 } 5439 } 5440 5441 /* 5442 * LRAM Test - It takes about 1.5 ms to run through the test. 5443 * 5444 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 5445 * If Done bit not set or Status not 0, save register byte, set the 5446 * err_code, and return an error. 5447 */ 5448 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 5449 mdelay(10); /* Wait for 10ms before checking status. */ 5450 5451 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5452 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 5453 /* Get here if Done bit not set or Status not 0. */ 5454 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 5455 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 5456 return ADV_ERROR; 5457 } 5458 5459 /* We need to reset back to normal mode after LRAM test passes. */ 5460 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5461 5462 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 5463 if (err) { 5464 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 5465 fwname, err); 5466 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5467 return err; 5468 } 5469 if (fw->size < 4) { 5470 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 5471 fw->size, fwname); 5472 release_firmware(fw); 5473 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5474 return -EINVAL; 5475 } 5476 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 5477 (fw->data[1] << 8) | fw->data[0]; 5478 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 5479 fw->size - 4, ADV_38C1600_MEMSIZE, 5480 chksum); 5481 release_firmware(fw); 5482 if (asc_dvc->err_code) 5483 return ADV_ERROR; 5484 5485 /* 5486 * Restore the RISC memory BIOS region. 5487 */ 5488 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5489 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5490 bios_mem[i]); 5491 } 5492 5493 /* 5494 * Calculate and write the microcode code checksum to the microcode 5495 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5496 */ 5497 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5498 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5499 code_sum = 0; 5500 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5501 for (word = begin_addr; word < end_addr; word += 2) { 5502 code_sum += AdvReadWordAutoIncLram(iop_base); 5503 } 5504 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5505 5506 /* 5507 * Read microcode version and date. 5508 */ 5509 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5510 asc_dvc->cfg->mcode_date); 5511 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5512 asc_dvc->cfg->mcode_version); 5513 5514 /* 5515 * Set the chip type to indicate the ASC38C1600. 5516 */ 5517 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600); 5518 5519 /* 5520 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 5521 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 5522 * cable detection and then we are able to read C_DET[3:0]. 5523 * 5524 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 5525 * Microcode Default Value' section below. 5526 */ 5527 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5528 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 5529 scsi_cfg1 | DIS_TERM_DRV); 5530 5531 /* 5532 * If the PCI Configuration Command Register "Parity Error Response 5533 * Control" Bit was clear (0), then set the microcode variable 5534 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5535 * to ignore DMA parity errors. 5536 */ 5537 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5538 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5539 word |= CONTROL_FLAG_IGNORE_PERR; 5540 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5541 } 5542 5543 /* 5544 * If the BIOS control flag AIPP (Asynchronous Information 5545 * Phase Protection) disable bit is not set, then set the firmware 5546 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable 5547 * AIPP checking and encoding. 5548 */ 5549 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) { 5550 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5551 word |= CONTROL_FLAG_ENABLE_AIPP; 5552 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5553 } 5554 5555 /* 5556 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4], 5557 * and START_CTL_TH [3:2]. 5558 */ 5559 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5560 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); 5561 5562 /* 5563 * Microcode operating variables for WDTR, SDTR, and command tag 5564 * queuing will be set in slave_configure() based on what a 5565 * device reports it is capable of in Inquiry byte 7. 5566 * 5567 * If SCSI Bus Resets have been disabled, then directly set 5568 * SDTR and WDTR from the EEPROM configuration. This will allow 5569 * the BIOS and warm boot to work without a SCSI bus hang on 5570 * the Inquiry caused by host and target mismatched DTR values. 5571 * Without the SCSI Bus Reset, before an Inquiry a device can't 5572 * be assumed to be in Asynchronous, Narrow mode. 5573 */ 5574 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5575 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5576 asc_dvc->wdtr_able); 5577 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5578 asc_dvc->sdtr_able); 5579 } 5580 5581 /* 5582 * Set microcode operating variables for DISC and SDTR_SPEED1, 5583 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5584 * configuration values. 5585 * 5586 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5587 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5588 * without determining here whether the device supports SDTR. 5589 */ 5590 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5591 asc_dvc->cfg->disc_enable); 5592 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5593 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5594 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5595 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5596 5597 /* 5598 * Set SCSI_CFG0 Microcode Default Value. 5599 * 5600 * The microcode will set the SCSI_CFG0 register using this value 5601 * after it is started below. 5602 */ 5603 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5604 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5605 asc_dvc->chip_scsi_id); 5606 5607 /* 5608 * Calculate SCSI_CFG1 Microcode Default Value. 5609 * 5610 * The microcode will set the SCSI_CFG1 register using this value 5611 * after it is started below. 5612 * 5613 * Each ASC-38C1600 function has only two cable detect bits. 5614 * The bus mode override bits are in IOPB_SOFT_OVER_WR. 5615 */ 5616 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5617 5618 /* 5619 * If the cable is reversed all of the SCSI_CTRL register signals 5620 * will be set. Check for and return an error if this condition is 5621 * found. 5622 */ 5623 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5624 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5625 return ADV_ERROR; 5626 } 5627 5628 /* 5629 * Each ASC-38C1600 function has two connectors. Only an HVD device 5630 * can not be connected to either connector. An LVD device or SE device 5631 * may be connected to either connecor. If an SE device is connected, 5632 * then at most Ultra speed (20 Mhz) can be used on both connectors. 5633 * 5634 * If an HVD device is attached, return an error. 5635 */ 5636 if (scsi_cfg1 & HVD) { 5637 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE; 5638 return ADV_ERROR; 5639 } 5640 5641 /* 5642 * Each function in the ASC-38C1600 uses only the SE cable detect and 5643 * termination because there are two connectors for each function. Each 5644 * function may use either LVD or SE mode. Corresponding the SE automatic 5645 * termination control EEPROM bits are used for each function. Each 5646 * function has its own EEPROM. If SE automatic control is enabled for 5647 * the function, then set the termination value based on a table listed 5648 * in a_condor.h. 5649 * 5650 * If manual termination is specified in the EEPROM for the function, 5651 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is 5652 * ready to be 'ored' into SCSI_CFG1. 5653 */ 5654 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5655 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 5656 /* SE automatic termination control is enabled. */ 5657 switch (scsi_cfg1 & C_DET_SE) { 5658 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5659 case 0x1: 5660 case 0x2: 5661 case 0x3: 5662 asc_dvc->cfg->termination |= TERM_SE; 5663 break; 5664 5665 case 0x0: 5666 if (PCI_FUNC(pdev->devfn) == 0) { 5667 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ 5668 } else { 5669 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ 5670 asc_dvc->cfg->termination |= TERM_SE_HI; 5671 } 5672 break; 5673 } 5674 } 5675 5676 /* 5677 * Clear any set TERM_SE bits. 5678 */ 5679 scsi_cfg1 &= ~TERM_SE; 5680 5681 /* 5682 * Invert the TERM_SE bits and then set 'scsi_cfg1'. 5683 */ 5684 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE); 5685 5686 /* 5687 * Clear Big Endian and Terminator Polarity bits and set possibly 5688 * modified termination control bits in the Microcode SCSI_CFG1 5689 * Register Value. 5690 * 5691 * Big Endian bit is not used even on big endian machines. 5692 */ 5693 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL); 5694 5695 /* 5696 * Set SCSI_CFG1 Microcode Default Value 5697 * 5698 * Set possibly modified termination control bits in the Microcode 5699 * SCSI_CFG1 Register Value. 5700 * 5701 * The microcode will set the SCSI_CFG1 register using this value 5702 * after it is started below. 5703 */ 5704 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5705 5706 /* 5707 * Set MEM_CFG Microcode Default Value 5708 * 5709 * The microcode will set the MEM_CFG register using this value 5710 * after it is started below. 5711 * 5712 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5713 * are defined. 5714 * 5715 * ASC-38C1600 has 32KB internal memory. 5716 * 5717 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come 5718 * out a special 16K Adv Library and Microcode version. After the issue 5719 * resolved, we should turn back to the 32K support. Both a_condor.h and 5720 * mcode.sas files also need to be updated. 5721 * 5722 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5723 * BIOS_EN | RAM_SZ_32KB); 5724 */ 5725 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5726 BIOS_EN | RAM_SZ_16KB); 5727 5728 /* 5729 * Set SEL_MASK Microcode Default Value 5730 * 5731 * The microcode will set the SEL_MASK register using this value 5732 * after it is started below. 5733 */ 5734 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5735 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5736 5737 AdvBuildCarrierFreelist(asc_dvc); 5738 5739 /* 5740 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5741 */ 5742 asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc); 5743 if (!asc_dvc->icq_sp) { 5744 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5745 return ADV_ERROR; 5746 } 5747 5748 /* 5749 * Set RISC ICQ physical address start value. Initialize the 5750 * COMMA register to the same value otherwise the RISC will 5751 * prematurely detect a command is available. 5752 */ 5753 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5754 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 5755 le32_to_cpu(asc_dvc->icq_sp->carr_pa)); 5756 5757 /* 5758 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5759 */ 5760 asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc); 5761 if (!asc_dvc->irq_sp) { 5762 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5763 return ADV_ERROR; 5764 } 5765 5766 /* 5767 * Set RISC IRQ physical address start value. 5768 */ 5769 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5770 asc_dvc->carr_pending_cnt = 0; 5771 5772 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5773 (ADV_INTR_ENABLE_HOST_INTR | 5774 ADV_INTR_ENABLE_GLOBAL_INTR)); 5775 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5776 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5777 5778 /* finally, finally, gentlemen, start your engine */ 5779 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5780 5781 /* 5782 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5783 * Resets should be performed. The RISC has to be running 5784 * to issue a SCSI Bus Reset. 5785 */ 5786 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5787 /* 5788 * If the BIOS Signature is present in memory, restore the 5789 * per TID microcode operating variables. 5790 */ 5791 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5792 0x55AA) { 5793 /* 5794 * Restore per TID negotiated values. 5795 */ 5796 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5797 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5798 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5799 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5800 tagqng_able); 5801 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 5802 AdvWriteByteLram(iop_base, 5803 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5804 max_cmd[tid]); 5805 } 5806 } else { 5807 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5808 warn_code = ASC_WARN_BUSRESET_ERROR; 5809 } 5810 } 5811 } 5812 5813 return warn_code; 5814 } 5815 5816 /* 5817 * Reset chip and SCSI Bus. 5818 * 5819 * Return Value: 5820 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful. 5821 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure. 5822 */ 5823 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc) 5824 { 5825 int status; 5826 ushort wdtr_able, sdtr_able, tagqng_able; 5827 ushort ppr_able = 0; 5828 uchar tid, max_cmd[ADV_MAX_TID + 1]; 5829 AdvPortAddr iop_base; 5830 ushort bios_sig; 5831 5832 iop_base = asc_dvc->iop_base; 5833 5834 /* 5835 * Save current per TID negotiated values. 5836 */ 5837 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5838 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5839 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5840 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5841 } 5842 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5843 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5844 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5845 max_cmd[tid]); 5846 } 5847 5848 /* 5849 * Force the AdvInitAsc3550/38C0800Driver() function to 5850 * perform a SCSI Bus Reset by clearing the BIOS signature word. 5851 * The initialization functions assumes a SCSI Bus Reset is not 5852 * needed if the BIOS signature word is present. 5853 */ 5854 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 5855 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0); 5856 5857 /* 5858 * Stop chip and reset it. 5859 */ 5860 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP); 5861 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); 5862 mdelay(100); 5863 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 5864 ADV_CTRL_REG_CMD_WR_IO_REG); 5865 5866 /* 5867 * Reset Adv Library error code, if any, and try 5868 * re-initializing the chip. 5869 */ 5870 asc_dvc->err_code = 0; 5871 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5872 status = AdvInitAsc38C1600Driver(asc_dvc); 5873 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 5874 status = AdvInitAsc38C0800Driver(asc_dvc); 5875 } else { 5876 status = AdvInitAsc3550Driver(asc_dvc); 5877 } 5878 5879 /* Translate initialization return value to status value. */ 5880 if (status == 0) { 5881 status = ADV_TRUE; 5882 } else { 5883 status = ADV_FALSE; 5884 } 5885 5886 /* 5887 * Restore the BIOS signature word. 5888 */ 5889 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 5890 5891 /* 5892 * Restore per TID negotiated values. 5893 */ 5894 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5895 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5896 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 5897 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 5898 } 5899 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5900 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5901 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5902 max_cmd[tid]); 5903 } 5904 5905 return status; 5906 } 5907 5908 /* 5909 * adv_async_callback() - Adv Library asynchronous event callback function. 5910 */ 5911 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code) 5912 { 5913 switch (code) { 5914 case ADV_ASYNC_SCSI_BUS_RESET_DET: 5915 /* 5916 * The firmware detected a SCSI Bus reset. 5917 */ 5918 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n"); 5919 break; 5920 5921 case ADV_ASYNC_RDMA_FAILURE: 5922 /* 5923 * Handle RDMA failure by resetting the SCSI Bus and 5924 * possibly the chip if it is unresponsive. Log the error 5925 * with a unique code. 5926 */ 5927 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n"); 5928 AdvResetChipAndSB(adv_dvc_varp); 5929 break; 5930 5931 case ADV_HOST_SCSI_BUS_RESET: 5932 /* 5933 * Host generated SCSI bus reset occurred. 5934 */ 5935 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n"); 5936 break; 5937 5938 default: 5939 ASC_DBG(0, "unknown code 0x%x\n", code); 5940 break; 5941 } 5942 } 5943 5944 /* 5945 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR(). 5946 * 5947 * Callback function for the Wide SCSI Adv Library. 5948 */ 5949 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp) 5950 { 5951 struct asc_board *boardp = adv_dvc_varp->drv_ptr; 5952 u32 srb_tag; 5953 adv_req_t *reqp; 5954 adv_sgblk_t *sgblkp; 5955 struct scsi_cmnd *scp; 5956 u32 resid_cnt; 5957 dma_addr_t sense_addr; 5958 5959 ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n", 5960 adv_dvc_varp, scsiqp); 5961 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 5962 5963 /* 5964 * Get the adv_req_t structure for the command that has been 5965 * completed. The adv_req_t structure actually contains the 5966 * completed ADV_SCSI_REQ_Q structure. 5967 */ 5968 srb_tag = le32_to_cpu(scsiqp->srb_tag); 5969 scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag); 5970 5971 ASC_DBG(1, "scp 0x%p\n", scp); 5972 if (scp == NULL) { 5973 ASC_PRINT 5974 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); 5975 return; 5976 } 5977 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 5978 5979 reqp = (adv_req_t *)scp->host_scribble; 5980 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp); 5981 if (reqp == NULL) { 5982 ASC_PRINT("adv_isr_callback: reqp is NULL\n"); 5983 return; 5984 } 5985 /* 5986 * Remove backreferences to avoid duplicate 5987 * command completions. 5988 */ 5989 scp->host_scribble = NULL; 5990 reqp->cmndp = NULL; 5991 5992 ASC_STATS(boardp->shost, callback); 5993 ASC_DBG(1, "shost 0x%p\n", boardp->shost); 5994 5995 sense_addr = le32_to_cpu(scsiqp->sense_addr); 5996 dma_unmap_single(boardp->dev, sense_addr, 5997 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 5998 5999 /* 6000 * 'done_status' contains the command's ending status. 6001 */ 6002 switch (scsiqp->done_status) { 6003 case QD_NO_ERROR: 6004 ASC_DBG(2, "QD_NO_ERROR\n"); 6005 scp->result = 0; 6006 6007 /* 6008 * Check for an underrun condition. 6009 * 6010 * If there was no error and an underrun condition, then 6011 * then return the number of underrun bytes. 6012 */ 6013 resid_cnt = le32_to_cpu(scsiqp->data_cnt); 6014 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 && 6015 resid_cnt <= scsi_bufflen(scp)) { 6016 ASC_DBG(1, "underrun condition %lu bytes\n", 6017 (ulong)resid_cnt); 6018 scsi_set_resid(scp, resid_cnt); 6019 } 6020 break; 6021 6022 case QD_WITH_ERROR: 6023 ASC_DBG(2, "QD_WITH_ERROR\n"); 6024 switch (scsiqp->host_status) { 6025 case QHSTA_NO_ERROR: 6026 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) { 6027 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 6028 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 6029 SCSI_SENSE_BUFFERSIZE); 6030 /* 6031 * Note: The 'status_byte()' macro used by 6032 * target drivers defined in scsi.h shifts the 6033 * status byte returned by host drivers right 6034 * by 1 bit. This is why target drivers also 6035 * use right shifted status byte definitions. 6036 * For instance target drivers use 6037 * CHECK_CONDITION, defined to 0x1, instead of 6038 * the SCSI defined check condition value of 6039 * 0x2. Host drivers are supposed to return 6040 * the status byte as it is defined by SCSI. 6041 */ 6042 scp->result = DRIVER_BYTE(DRIVER_SENSE) | 6043 STATUS_BYTE(scsiqp->scsi_status); 6044 } else { 6045 scp->result = STATUS_BYTE(scsiqp->scsi_status); 6046 } 6047 break; 6048 6049 default: 6050 /* Some other QHSTA error occurred. */ 6051 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status); 6052 scp->result = HOST_BYTE(DID_BAD_TARGET); 6053 break; 6054 } 6055 break; 6056 6057 case QD_ABORTED_BY_HOST: 6058 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 6059 scp->result = 6060 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status); 6061 break; 6062 6063 default: 6064 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status); 6065 scp->result = 6066 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status); 6067 break; 6068 } 6069 6070 /* 6071 * If the 'init_tidmask' bit isn't already set for the target and the 6072 * current request finished normally, then set the bit for the target 6073 * to indicate that a device is present. 6074 */ 6075 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6076 scsiqp->done_status == QD_NO_ERROR && 6077 scsiqp->host_status == QHSTA_NO_ERROR) { 6078 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6079 } 6080 6081 asc_scsi_done(scp); 6082 6083 /* 6084 * Free all 'adv_sgblk_t' structures allocated for the request. 6085 */ 6086 while ((sgblkp = reqp->sgblkp) != NULL) { 6087 /* Remove 'sgblkp' from the request list. */ 6088 reqp->sgblkp = sgblkp->next_sgblkp; 6089 6090 dma_pool_free(boardp->adv_sgblk_pool, sgblkp, 6091 sgblkp->sg_addr); 6092 } 6093 6094 ASC_DBG(1, "done\n"); 6095 } 6096 6097 /* 6098 * Adv Library Interrupt Service Routine 6099 * 6100 * This function is called by a driver's interrupt service routine. 6101 * The function disables and re-enables interrupts. 6102 * 6103 * When a microcode idle command is completed, the ADV_DVC_VAR 6104 * 'idle_cmd_done' field is set to ADV_TRUE. 6105 * 6106 * Note: AdvISR() can be called when interrupts are disabled or even 6107 * when there is no hardware interrupt condition present. It will 6108 * always check for completed idle commands and microcode requests. 6109 * This is an important feature that shouldn't be changed because it 6110 * allows commands to be completed from polling mode loops. 6111 * 6112 * Return: 6113 * ADV_TRUE(1) - interrupt was pending 6114 * ADV_FALSE(0) - no interrupt was pending 6115 */ 6116 static int AdvISR(ADV_DVC_VAR *asc_dvc) 6117 { 6118 AdvPortAddr iop_base; 6119 uchar int_stat; 6120 ushort target_bit; 6121 ADV_CARR_T *free_carrp; 6122 __le32 irq_next_vpa; 6123 ADV_SCSI_REQ_Q *scsiq; 6124 adv_req_t *reqp; 6125 6126 iop_base = asc_dvc->iop_base; 6127 6128 /* Reading the register clears the interrupt. */ 6129 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG); 6130 6131 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB | 6132 ADV_INTR_STATUS_INTRC)) == 0) { 6133 return ADV_FALSE; 6134 } 6135 6136 /* 6137 * Notify the driver of an asynchronous microcode condition by 6138 * calling the adv_async_callback function. The function 6139 * is passed the microcode ASC_MC_INTRB_CODE byte value. 6140 */ 6141 if (int_stat & ADV_INTR_STATUS_INTRB) { 6142 uchar intrb_code; 6143 6144 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code); 6145 6146 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 6147 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 6148 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE && 6149 asc_dvc->carr_pending_cnt != 0) { 6150 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 6151 ADV_TICKLE_A); 6152 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 6153 AdvWriteByteRegister(iop_base, 6154 IOPB_TICKLE, 6155 ADV_TICKLE_NOP); 6156 } 6157 } 6158 } 6159 6160 adv_async_callback(asc_dvc, intrb_code); 6161 } 6162 6163 /* 6164 * Check if the IRQ stopper carrier contains a completed request. 6165 */ 6166 while (((irq_next_vpa = 6167 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) { 6168 /* 6169 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure. 6170 * The RISC will have set 'areq_vpa' to a virtual address. 6171 * 6172 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr 6173 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion 6174 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr' 6175 * in AdvExeScsiQueue(). 6176 */ 6177 u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa); 6178 ASC_DBG(1, "irq_sp %p areq_vpa %u\n", 6179 asc_dvc->irq_sp, pa_offset); 6180 reqp = adv_get_reqp(asc_dvc, pa_offset); 6181 scsiq = &reqp->scsi_req_q; 6182 6183 /* 6184 * Request finished with good status and the queue was not 6185 * DMAed to host memory by the firmware. Set all status fields 6186 * to indicate good status. 6187 */ 6188 if ((irq_next_vpa & ADV_RQ_GOOD) != 0) { 6189 scsiq->done_status = QD_NO_ERROR; 6190 scsiq->host_status = scsiq->scsi_status = 0; 6191 scsiq->data_cnt = 0L; 6192 } 6193 6194 /* 6195 * Advance the stopper pointer to the next carrier 6196 * ignoring the lower four bits. Free the previous 6197 * stopper carrier. 6198 */ 6199 free_carrp = asc_dvc->irq_sp; 6200 asc_dvc->irq_sp = adv_get_carrier(asc_dvc, 6201 ADV_GET_CARRP(irq_next_vpa)); 6202 6203 free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va; 6204 asc_dvc->carr_freelist = free_carrp; 6205 asc_dvc->carr_pending_cnt--; 6206 6207 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id); 6208 6209 /* 6210 * Clear request microcode control flag. 6211 */ 6212 scsiq->cntl = 0; 6213 6214 /* 6215 * Notify the driver of the completed request by passing 6216 * the ADV_SCSI_REQ_Q pointer to its callback function. 6217 */ 6218 adv_isr_callback(asc_dvc, scsiq); 6219 /* 6220 * Note: After the driver callback function is called, 'scsiq' 6221 * can no longer be referenced. 6222 * 6223 * Fall through and continue processing other completed 6224 * requests... 6225 */ 6226 } 6227 return ADV_TRUE; 6228 } 6229 6230 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code) 6231 { 6232 if (asc_dvc->err_code == 0) { 6233 asc_dvc->err_code = err_code; 6234 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W, 6235 err_code); 6236 } 6237 return err_code; 6238 } 6239 6240 static void AscAckInterrupt(PortAddr iop_base) 6241 { 6242 uchar host_flag; 6243 uchar risc_flag; 6244 ushort loop; 6245 6246 loop = 0; 6247 do { 6248 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B); 6249 if (loop++ > 0x7FFF) { 6250 break; 6251 } 6252 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); 6253 host_flag = 6254 AscReadLramByte(iop_base, 6255 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); 6256 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 6257 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT)); 6258 AscSetChipStatus(iop_base, CIW_INT_ACK); 6259 loop = 0; 6260 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) { 6261 AscSetChipStatus(iop_base, CIW_INT_ACK); 6262 if (loop++ > 3) { 6263 break; 6264 } 6265 } 6266 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 6267 } 6268 6269 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time) 6270 { 6271 const uchar *period_table; 6272 int max_index; 6273 int min_index; 6274 int i; 6275 6276 period_table = asc_dvc->sdtr_period_tbl; 6277 max_index = (int)asc_dvc->max_sdtr_index; 6278 min_index = (int)asc_dvc->min_sdtr_index; 6279 if ((syn_time <= period_table[max_index])) { 6280 for (i = min_index; i < (max_index - 1); i++) { 6281 if (syn_time <= period_table[i]) { 6282 return (uchar)i; 6283 } 6284 } 6285 return (uchar)max_index; 6286 } else { 6287 return (uchar)(max_index + 1); 6288 } 6289 } 6290 6291 static uchar 6292 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset) 6293 { 6294 PortAddr iop_base = asc_dvc->iop_base; 6295 uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6296 EXT_MSG sdtr_buf = { 6297 .msg_type = EXTENDED_MESSAGE, 6298 .msg_len = MS_SDTR_LEN, 6299 .msg_req = EXTENDED_SDTR, 6300 .xfer_period = sdtr_period, 6301 .req_ack_offset = sdtr_offset, 6302 }; 6303 sdtr_offset &= ASC_SYN_MAX_OFFSET; 6304 6305 if (sdtr_period_index <= asc_dvc->max_sdtr_index) { 6306 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6307 (uchar *)&sdtr_buf, 6308 sizeof(EXT_MSG) >> 1); 6309 return ((sdtr_period_index << 4) | sdtr_offset); 6310 } else { 6311 sdtr_buf.req_ack_offset = 0; 6312 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 6313 (uchar *)&sdtr_buf, 6314 sizeof(EXT_MSG) >> 1); 6315 return 0; 6316 } 6317 } 6318 6319 static uchar 6320 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset) 6321 { 6322 uchar byte; 6323 uchar sdtr_period_ix; 6324 6325 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 6326 if (sdtr_period_ix > asc_dvc->max_sdtr_index) 6327 return 0xFF; 6328 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); 6329 return byte; 6330 } 6331 6332 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data) 6333 { 6334 ASC_SCSI_BIT_ID_TYPE org_id; 6335 int i; 6336 bool sta = true; 6337 6338 AscSetBank(iop_base, 1); 6339 org_id = AscReadChipDvcID(iop_base); 6340 for (i = 0; i <= ASC_MAX_TID; i++) { 6341 if (org_id == (0x01 << i)) 6342 break; 6343 } 6344 org_id = (ASC_SCSI_BIT_ID_TYPE) i; 6345 AscWriteChipDvcID(iop_base, id); 6346 if (AscReadChipDvcID(iop_base) == (0x01 << id)) { 6347 AscSetBank(iop_base, 0); 6348 AscSetChipSyn(iop_base, sdtr_data); 6349 if (AscGetChipSyn(iop_base) != sdtr_data) { 6350 sta = false; 6351 } 6352 } else { 6353 sta = false; 6354 } 6355 AscSetBank(iop_base, 1); 6356 AscWriteChipDvcID(iop_base, org_id); 6357 AscSetBank(iop_base, 0); 6358 return (sta); 6359 } 6360 6361 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no) 6362 { 6363 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 6364 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data); 6365 } 6366 6367 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc) 6368 { 6369 EXT_MSG ext_msg; 6370 EXT_MSG out_msg; 6371 ushort halt_q_addr; 6372 bool sdtr_accept; 6373 ushort int_halt_code; 6374 ASC_SCSI_BIT_ID_TYPE scsi_busy; 6375 ASC_SCSI_BIT_ID_TYPE target_id; 6376 PortAddr iop_base; 6377 uchar tag_code; 6378 uchar q_status; 6379 uchar halt_qp; 6380 uchar sdtr_data; 6381 uchar target_ix; 6382 uchar q_cntl, tid_no; 6383 uchar cur_dvc_qng; 6384 uchar asyn_sdtr; 6385 uchar scsi_status; 6386 struct asc_board *boardp; 6387 6388 BUG_ON(!asc_dvc->drv_ptr); 6389 boardp = asc_dvc->drv_ptr; 6390 6391 iop_base = asc_dvc->iop_base; 6392 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W); 6393 6394 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B); 6395 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); 6396 target_ix = AscReadLramByte(iop_base, 6397 (ushort)(halt_q_addr + 6398 (ushort)ASC_SCSIQ_B_TARGET_IX)); 6399 q_cntl = AscReadLramByte(iop_base, 6400 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 6401 tid_no = ASC_TIX_TO_TID(target_ix); 6402 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no); 6403 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6404 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; 6405 } else { 6406 asyn_sdtr = 0; 6407 } 6408 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { 6409 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6410 AscSetChipSDTR(iop_base, 0, tid_no); 6411 boardp->sdtr_data[tid_no] = 0; 6412 } 6413 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6414 return; 6415 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { 6416 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 6417 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6418 boardp->sdtr_data[tid_no] = asyn_sdtr; 6419 } 6420 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6421 return; 6422 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) { 6423 AscMemWordCopyPtrFromLram(iop_base, 6424 ASCV_MSGIN_BEG, 6425 (uchar *)&ext_msg, 6426 sizeof(EXT_MSG) >> 1); 6427 6428 if (ext_msg.msg_type == EXTENDED_MESSAGE && 6429 ext_msg.msg_req == EXTENDED_SDTR && 6430 ext_msg.msg_len == MS_SDTR_LEN) { 6431 sdtr_accept = true; 6432 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) { 6433 6434 sdtr_accept = false; 6435 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; 6436 } 6437 if ((ext_msg.xfer_period < 6438 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index]) 6439 || (ext_msg.xfer_period > 6440 asc_dvc->sdtr_period_tbl[asc_dvc-> 6441 max_sdtr_index])) { 6442 sdtr_accept = false; 6443 ext_msg.xfer_period = 6444 asc_dvc->sdtr_period_tbl[asc_dvc-> 6445 min_sdtr_index]; 6446 } 6447 if (sdtr_accept) { 6448 sdtr_data = 6449 AscCalSDTRData(asc_dvc, ext_msg.xfer_period, 6450 ext_msg.req_ack_offset); 6451 if ((sdtr_data == 0xFF)) { 6452 6453 q_cntl |= QC_MSG_OUT; 6454 asc_dvc->init_sdtr &= ~target_id; 6455 asc_dvc->sdtr_done &= ~target_id; 6456 AscSetChipSDTR(iop_base, asyn_sdtr, 6457 tid_no); 6458 boardp->sdtr_data[tid_no] = asyn_sdtr; 6459 } 6460 } 6461 if (ext_msg.req_ack_offset == 0) { 6462 6463 q_cntl &= ~QC_MSG_OUT; 6464 asc_dvc->init_sdtr &= ~target_id; 6465 asc_dvc->sdtr_done &= ~target_id; 6466 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6467 } else { 6468 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) { 6469 q_cntl &= ~QC_MSG_OUT; 6470 asc_dvc->sdtr_done |= target_id; 6471 asc_dvc->init_sdtr |= target_id; 6472 asc_dvc->pci_fix_asyn_xfer &= 6473 ~target_id; 6474 sdtr_data = 6475 AscCalSDTRData(asc_dvc, 6476 ext_msg.xfer_period, 6477 ext_msg. 6478 req_ack_offset); 6479 AscSetChipSDTR(iop_base, sdtr_data, 6480 tid_no); 6481 boardp->sdtr_data[tid_no] = sdtr_data; 6482 } else { 6483 q_cntl |= QC_MSG_OUT; 6484 AscMsgOutSDTR(asc_dvc, 6485 ext_msg.xfer_period, 6486 ext_msg.req_ack_offset); 6487 asc_dvc->pci_fix_asyn_xfer &= 6488 ~target_id; 6489 sdtr_data = 6490 AscCalSDTRData(asc_dvc, 6491 ext_msg.xfer_period, 6492 ext_msg. 6493 req_ack_offset); 6494 AscSetChipSDTR(iop_base, sdtr_data, 6495 tid_no); 6496 boardp->sdtr_data[tid_no] = sdtr_data; 6497 asc_dvc->sdtr_done |= target_id; 6498 asc_dvc->init_sdtr |= target_id; 6499 } 6500 } 6501 6502 AscWriteLramByte(iop_base, 6503 (ushort)(halt_q_addr + 6504 (ushort)ASC_SCSIQ_B_CNTL), 6505 q_cntl); 6506 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6507 return; 6508 } else if (ext_msg.msg_type == EXTENDED_MESSAGE && 6509 ext_msg.msg_req == EXTENDED_WDTR && 6510 ext_msg.msg_len == MS_WDTR_LEN) { 6511 6512 ext_msg.wdtr_width = 0; 6513 AscMemWordCopyPtrToLram(iop_base, 6514 ASCV_MSGOUT_BEG, 6515 (uchar *)&ext_msg, 6516 sizeof(EXT_MSG) >> 1); 6517 q_cntl |= QC_MSG_OUT; 6518 AscWriteLramByte(iop_base, 6519 (ushort)(halt_q_addr + 6520 (ushort)ASC_SCSIQ_B_CNTL), 6521 q_cntl); 6522 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6523 return; 6524 } else { 6525 6526 ext_msg.msg_type = MESSAGE_REJECT; 6527 AscMemWordCopyPtrToLram(iop_base, 6528 ASCV_MSGOUT_BEG, 6529 (uchar *)&ext_msg, 6530 sizeof(EXT_MSG) >> 1); 6531 q_cntl |= QC_MSG_OUT; 6532 AscWriteLramByte(iop_base, 6533 (ushort)(halt_q_addr + 6534 (ushort)ASC_SCSIQ_B_CNTL), 6535 q_cntl); 6536 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6537 return; 6538 } 6539 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) { 6540 6541 q_cntl |= QC_REQ_SENSE; 6542 6543 if ((asc_dvc->init_sdtr & target_id) != 0) { 6544 6545 asc_dvc->sdtr_done &= ~target_id; 6546 6547 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 6548 q_cntl |= QC_MSG_OUT; 6549 AscMsgOutSDTR(asc_dvc, 6550 asc_dvc-> 6551 sdtr_period_tbl[(sdtr_data >> 4) & 6552 (uchar)(asc_dvc-> 6553 max_sdtr_index - 6554 1)], 6555 (uchar)(sdtr_data & (uchar) 6556 ASC_SYN_MAX_OFFSET)); 6557 } 6558 6559 AscWriteLramByte(iop_base, 6560 (ushort)(halt_q_addr + 6561 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6562 6563 tag_code = AscReadLramByte(iop_base, 6564 (ushort)(halt_q_addr + (ushort) 6565 ASC_SCSIQ_B_TAG_CODE)); 6566 tag_code &= 0xDC; 6567 if ((asc_dvc->pci_fix_asyn_xfer & target_id) 6568 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id) 6569 ) { 6570 6571 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT 6572 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); 6573 6574 } 6575 AscWriteLramByte(iop_base, 6576 (ushort)(halt_q_addr + 6577 (ushort)ASC_SCSIQ_B_TAG_CODE), 6578 tag_code); 6579 6580 q_status = AscReadLramByte(iop_base, 6581 (ushort)(halt_q_addr + (ushort) 6582 ASC_SCSIQ_B_STATUS)); 6583 q_status |= (QS_READY | QS_BUSY); 6584 AscWriteLramByte(iop_base, 6585 (ushort)(halt_q_addr + 6586 (ushort)ASC_SCSIQ_B_STATUS), 6587 q_status); 6588 6589 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B); 6590 scsi_busy &= ~target_id; 6591 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6592 6593 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6594 return; 6595 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { 6596 6597 AscMemWordCopyPtrFromLram(iop_base, 6598 ASCV_MSGOUT_BEG, 6599 (uchar *)&out_msg, 6600 sizeof(EXT_MSG) >> 1); 6601 6602 if ((out_msg.msg_type == EXTENDED_MESSAGE) && 6603 (out_msg.msg_len == MS_SDTR_LEN) && 6604 (out_msg.msg_req == EXTENDED_SDTR)) { 6605 6606 asc_dvc->init_sdtr &= ~target_id; 6607 asc_dvc->sdtr_done &= ~target_id; 6608 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 6609 boardp->sdtr_data[tid_no] = asyn_sdtr; 6610 } 6611 q_cntl &= ~QC_MSG_OUT; 6612 AscWriteLramByte(iop_base, 6613 (ushort)(halt_q_addr + 6614 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 6615 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6616 return; 6617 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { 6618 6619 scsi_status = AscReadLramByte(iop_base, 6620 (ushort)((ushort)halt_q_addr + 6621 (ushort) 6622 ASC_SCSIQ_SCSI_STATUS)); 6623 cur_dvc_qng = 6624 AscReadLramByte(iop_base, 6625 (ushort)((ushort)ASC_QADR_BEG + 6626 (ushort)target_ix)); 6627 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) { 6628 6629 scsi_busy = AscReadLramByte(iop_base, 6630 (ushort)ASCV_SCSIBUSY_B); 6631 scsi_busy |= target_id; 6632 AscWriteLramByte(iop_base, 6633 (ushort)ASCV_SCSIBUSY_B, scsi_busy); 6634 asc_dvc->queue_full_or_busy |= target_id; 6635 6636 if (scsi_status == SAM_STAT_TASK_SET_FULL) { 6637 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { 6638 cur_dvc_qng -= 1; 6639 asc_dvc->max_dvc_qng[tid_no] = 6640 cur_dvc_qng; 6641 6642 AscWriteLramByte(iop_base, 6643 (ushort)((ushort) 6644 ASCV_MAX_DVC_QNG_BEG 6645 + (ushort) 6646 tid_no), 6647 cur_dvc_qng); 6648 6649 /* 6650 * Set the device queue depth to the 6651 * number of active requests when the 6652 * QUEUE FULL condition was encountered. 6653 */ 6654 boardp->queue_full |= target_id; 6655 boardp->queue_full_cnt[tid_no] = 6656 cur_dvc_qng; 6657 } 6658 } 6659 } 6660 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 6661 return; 6662 } 6663 return; 6664 } 6665 6666 /* 6667 * void 6668 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 6669 * 6670 * Calling/Exit State: 6671 * none 6672 * 6673 * Description: 6674 * Input an ASC_QDONE_INFO structure from the chip 6675 */ 6676 static void 6677 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 6678 { 6679 int i; 6680 ushort word; 6681 6682 AscSetChipLramAddr(iop_base, s_addr); 6683 for (i = 0; i < 2 * words; i += 2) { 6684 if (i == 10) { 6685 continue; 6686 } 6687 word = inpw(iop_base + IOP_RAM_DATA); 6688 inbuf[i] = word & 0xff; 6689 inbuf[i + 1] = (word >> 8) & 0xff; 6690 } 6691 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words); 6692 } 6693 6694 static uchar 6695 _AscCopyLramScsiDoneQ(PortAddr iop_base, 6696 ushort q_addr, 6697 ASC_QDONE_INFO *scsiq, unsigned int max_dma_count) 6698 { 6699 ushort _val; 6700 uchar sg_queue_cnt; 6701 6702 DvcGetQinfo(iop_base, 6703 q_addr + ASC_SCSIQ_DONE_INFO_BEG, 6704 (uchar *)scsiq, 6705 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2); 6706 6707 _val = AscReadLramWord(iop_base, 6708 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS)); 6709 scsiq->q_status = (uchar)_val; 6710 scsiq->q_no = (uchar)(_val >> 8); 6711 _val = AscReadLramWord(iop_base, 6712 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 6713 scsiq->cntl = (uchar)_val; 6714 sg_queue_cnt = (uchar)(_val >> 8); 6715 _val = AscReadLramWord(iop_base, 6716 (ushort)(q_addr + 6717 (ushort)ASC_SCSIQ_B_SENSE_LEN)); 6718 scsiq->sense_len = (uchar)_val; 6719 scsiq->extra_bytes = (uchar)(_val >> 8); 6720 6721 /* 6722 * Read high word of remain bytes from alternate location. 6723 */ 6724 scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base, 6725 (ushort)(q_addr + 6726 (ushort) 6727 ASC_SCSIQ_W_ALT_DC1))) 6728 << 16); 6729 /* 6730 * Read low word of remain bytes from original location. 6731 */ 6732 scsiq->remain_bytes += AscReadLramWord(iop_base, 6733 (ushort)(q_addr + (ushort) 6734 ASC_SCSIQ_DW_REMAIN_XFER_CNT)); 6735 6736 scsiq->remain_bytes &= max_dma_count; 6737 return sg_queue_cnt; 6738 } 6739 6740 /* 6741 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR(). 6742 * 6743 * Interrupt callback function for the Narrow SCSI Asc Library. 6744 */ 6745 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep) 6746 { 6747 struct asc_board *boardp = asc_dvc_varp->drv_ptr; 6748 u32 srb_tag; 6749 struct scsi_cmnd *scp; 6750 6751 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep); 6752 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep); 6753 6754 /* 6755 * Decrease the srb_tag by 1 to find the SCSI command 6756 */ 6757 srb_tag = qdonep->d2.srb_tag - 1; 6758 scp = scsi_host_find_tag(boardp->shost, srb_tag); 6759 if (!scp) 6760 return; 6761 6762 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 6763 6764 ASC_STATS(boardp->shost, callback); 6765 6766 dma_unmap_single(boardp->dev, scp->SCp.dma_handle, 6767 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 6768 /* 6769 * 'qdonep' contains the command's ending status. 6770 */ 6771 switch (qdonep->d3.done_stat) { 6772 case QD_NO_ERROR: 6773 ASC_DBG(2, "QD_NO_ERROR\n"); 6774 scp->result = 0; 6775 6776 /* 6777 * Check for an underrun condition. 6778 * 6779 * If there was no error and an underrun condition, then 6780 * return the number of underrun bytes. 6781 */ 6782 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 && 6783 qdonep->remain_bytes <= scsi_bufflen(scp)) { 6784 ASC_DBG(1, "underrun condition %u bytes\n", 6785 (unsigned)qdonep->remain_bytes); 6786 scsi_set_resid(scp, qdonep->remain_bytes); 6787 } 6788 break; 6789 6790 case QD_WITH_ERROR: 6791 ASC_DBG(2, "QD_WITH_ERROR\n"); 6792 switch (qdonep->d3.host_stat) { 6793 case QHSTA_NO_ERROR: 6794 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) { 6795 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 6796 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 6797 SCSI_SENSE_BUFFERSIZE); 6798 /* 6799 * Note: The 'status_byte()' macro used by 6800 * target drivers defined in scsi.h shifts the 6801 * status byte returned by host drivers right 6802 * by 1 bit. This is why target drivers also 6803 * use right shifted status byte definitions. 6804 * For instance target drivers use 6805 * CHECK_CONDITION, defined to 0x1, instead of 6806 * the SCSI defined check condition value of 6807 * 0x2. Host drivers are supposed to return 6808 * the status byte as it is defined by SCSI. 6809 */ 6810 scp->result = DRIVER_BYTE(DRIVER_SENSE) | 6811 STATUS_BYTE(qdonep->d3.scsi_stat); 6812 } else { 6813 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat); 6814 } 6815 break; 6816 6817 default: 6818 /* QHSTA error occurred */ 6819 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat); 6820 scp->result = HOST_BYTE(DID_BAD_TARGET); 6821 break; 6822 } 6823 break; 6824 6825 case QD_ABORTED_BY_HOST: 6826 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 6827 scp->result = 6828 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3. 6829 scsi_msg) | 6830 STATUS_BYTE(qdonep->d3.scsi_stat); 6831 break; 6832 6833 default: 6834 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat); 6835 scp->result = 6836 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3. 6837 scsi_msg) | 6838 STATUS_BYTE(qdonep->d3.scsi_stat); 6839 break; 6840 } 6841 6842 /* 6843 * If the 'init_tidmask' bit isn't already set for the target and the 6844 * current request finished normally, then set the bit for the target 6845 * to indicate that a device is present. 6846 */ 6847 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6848 qdonep->d3.done_stat == QD_NO_ERROR && 6849 qdonep->d3.host_stat == QHSTA_NO_ERROR) { 6850 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6851 } 6852 6853 asc_scsi_done(scp); 6854 } 6855 6856 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc) 6857 { 6858 uchar next_qp; 6859 uchar n_q_used; 6860 uchar sg_list_qp; 6861 uchar sg_queue_cnt; 6862 uchar q_cnt; 6863 uchar done_q_tail; 6864 uchar tid_no; 6865 ASC_SCSI_BIT_ID_TYPE scsi_busy; 6866 ASC_SCSI_BIT_ID_TYPE target_id; 6867 PortAddr iop_base; 6868 ushort q_addr; 6869 ushort sg_q_addr; 6870 uchar cur_target_qng; 6871 ASC_QDONE_INFO scsiq_buf; 6872 ASC_QDONE_INFO *scsiq; 6873 bool false_overrun; 6874 6875 iop_base = asc_dvc->iop_base; 6876 n_q_used = 1; 6877 scsiq = (ASC_QDONE_INFO *)&scsiq_buf; 6878 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base); 6879 q_addr = ASC_QNO_TO_QADDR(done_q_tail); 6880 next_qp = AscReadLramByte(iop_base, 6881 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD)); 6882 if (next_qp != ASC_QLINK_END) { 6883 AscPutVarDoneQTail(iop_base, next_qp); 6884 q_addr = ASC_QNO_TO_QADDR(next_qp); 6885 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, 6886 asc_dvc->max_dma_count); 6887 AscWriteLramByte(iop_base, 6888 (ushort)(q_addr + 6889 (ushort)ASC_SCSIQ_B_STATUS), 6890 (uchar)(scsiq-> 6891 q_status & (uchar)~(QS_READY | 6892 QS_ABORTED))); 6893 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); 6894 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); 6895 if ((scsiq->cntl & QC_SG_HEAD) != 0) { 6896 sg_q_addr = q_addr; 6897 sg_list_qp = next_qp; 6898 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { 6899 sg_list_qp = AscReadLramByte(iop_base, 6900 (ushort)(sg_q_addr 6901 + (ushort) 6902 ASC_SCSIQ_B_FWD)); 6903 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); 6904 if (sg_list_qp == ASC_QLINK_END) { 6905 AscSetLibErrorCode(asc_dvc, 6906 ASCQ_ERR_SG_Q_LINKS); 6907 scsiq->d3.done_stat = QD_WITH_ERROR; 6908 scsiq->d3.host_stat = 6909 QHSTA_D_QDONE_SG_LIST_CORRUPTED; 6910 goto FATAL_ERR_QDONE; 6911 } 6912 AscWriteLramByte(iop_base, 6913 (ushort)(sg_q_addr + (ushort) 6914 ASC_SCSIQ_B_STATUS), 6915 QS_FREE); 6916 } 6917 n_q_used = sg_queue_cnt + 1; 6918 AscPutVarDoneQTail(iop_base, sg_list_qp); 6919 } 6920 if (asc_dvc->queue_full_or_busy & target_id) { 6921 cur_target_qng = AscReadLramByte(iop_base, 6922 (ushort)((ushort) 6923 ASC_QADR_BEG 6924 + (ushort) 6925 scsiq->d2. 6926 target_ix)); 6927 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) { 6928 scsi_busy = AscReadLramByte(iop_base, (ushort) 6929 ASCV_SCSIBUSY_B); 6930 scsi_busy &= ~target_id; 6931 AscWriteLramByte(iop_base, 6932 (ushort)ASCV_SCSIBUSY_B, 6933 scsi_busy); 6934 asc_dvc->queue_full_or_busy &= ~target_id; 6935 } 6936 } 6937 if (asc_dvc->cur_total_qng >= n_q_used) { 6938 asc_dvc->cur_total_qng -= n_q_used; 6939 if (asc_dvc->cur_dvc_qng[tid_no] != 0) { 6940 asc_dvc->cur_dvc_qng[tid_no]--; 6941 } 6942 } else { 6943 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG); 6944 scsiq->d3.done_stat = QD_WITH_ERROR; 6945 goto FATAL_ERR_QDONE; 6946 } 6947 if ((scsiq->d2.srb_tag == 0UL) || 6948 ((scsiq->q_status & QS_ABORTED) != 0)) { 6949 return (0x11); 6950 } else if (scsiq->q_status == QS_DONE) { 6951 /* 6952 * This is also curious. 6953 * false_overrun will _always_ be set to 'false' 6954 */ 6955 false_overrun = false; 6956 if (scsiq->extra_bytes != 0) { 6957 scsiq->remain_bytes += scsiq->extra_bytes; 6958 } 6959 if (scsiq->d3.done_stat == QD_WITH_ERROR) { 6960 if (scsiq->d3.host_stat == 6961 QHSTA_M_DATA_OVER_RUN) { 6962 if ((scsiq-> 6963 cntl & (QC_DATA_IN | QC_DATA_OUT)) 6964 == 0) { 6965 scsiq->d3.done_stat = 6966 QD_NO_ERROR; 6967 scsiq->d3.host_stat = 6968 QHSTA_NO_ERROR; 6969 } else if (false_overrun) { 6970 scsiq->d3.done_stat = 6971 QD_NO_ERROR; 6972 scsiq->d3.host_stat = 6973 QHSTA_NO_ERROR; 6974 } 6975 } else if (scsiq->d3.host_stat == 6976 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { 6977 AscStopChip(iop_base); 6978 AscSetChipControl(iop_base, 6979 (uchar)(CC_SCSI_RESET 6980 | CC_HALT)); 6981 udelay(60); 6982 AscSetChipControl(iop_base, CC_HALT); 6983 AscSetChipStatus(iop_base, 6984 CIW_CLR_SCSI_RESET_INT); 6985 AscSetChipStatus(iop_base, 0); 6986 AscSetChipControl(iop_base, 0); 6987 } 6988 } 6989 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 6990 asc_isr_callback(asc_dvc, scsiq); 6991 } else { 6992 if ((AscReadLramByte(iop_base, 6993 (ushort)(q_addr + (ushort) 6994 ASC_SCSIQ_CDB_BEG)) 6995 == START_STOP)) { 6996 asc_dvc->unit_not_ready &= ~target_id; 6997 if (scsiq->d3.done_stat != QD_NO_ERROR) { 6998 asc_dvc->start_motor &= 6999 ~target_id; 7000 } 7001 } 7002 } 7003 return (1); 7004 } else { 7005 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS); 7006 FATAL_ERR_QDONE: 7007 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 7008 asc_isr_callback(asc_dvc, scsiq); 7009 } 7010 return (0x80); 7011 } 7012 } 7013 return (0); 7014 } 7015 7016 static int AscISR(ASC_DVC_VAR *asc_dvc) 7017 { 7018 ASC_CS_TYPE chipstat; 7019 PortAddr iop_base; 7020 ushort saved_ram_addr; 7021 uchar ctrl_reg; 7022 uchar saved_ctrl_reg; 7023 int int_pending; 7024 int status; 7025 uchar host_flag; 7026 7027 iop_base = asc_dvc->iop_base; 7028 int_pending = ASC_FALSE; 7029 7030 if (AscIsIntPending(iop_base) == 0) 7031 return int_pending; 7032 7033 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) { 7034 return ASC_ERROR; 7035 } 7036 if (asc_dvc->in_critical_cnt != 0) { 7037 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL); 7038 return ASC_ERROR; 7039 } 7040 if (asc_dvc->is_in_int) { 7041 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY); 7042 return ASC_ERROR; 7043 } 7044 asc_dvc->is_in_int = true; 7045 ctrl_reg = AscGetChipControl(iop_base); 7046 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET | 7047 CC_SINGLE_STEP | CC_DIAG | CC_TEST)); 7048 chipstat = AscGetChipStatus(iop_base); 7049 if (chipstat & CSW_SCSI_RESET_LATCH) { 7050 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { 7051 int i = 10; 7052 int_pending = ASC_TRUE; 7053 asc_dvc->sdtr_done = 0; 7054 saved_ctrl_reg &= (uchar)(~CC_HALT); 7055 while ((AscGetChipStatus(iop_base) & 7056 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) { 7057 mdelay(100); 7058 } 7059 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT)); 7060 AscSetChipControl(iop_base, CC_HALT); 7061 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 7062 AscSetChipStatus(iop_base, 0); 7063 chipstat = AscGetChipStatus(iop_base); 7064 } 7065 } 7066 saved_ram_addr = AscGetChipLramAddr(iop_base); 7067 host_flag = AscReadLramByte(iop_base, 7068 ASCV_HOST_FLAG_B) & 7069 (uchar)(~ASC_HOST_FLAG_IN_ISR); 7070 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 7071 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR)); 7072 if ((chipstat & CSW_INT_PENDING) || (int_pending)) { 7073 AscAckInterrupt(iop_base); 7074 int_pending = ASC_TRUE; 7075 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) { 7076 AscIsrChipHalted(asc_dvc); 7077 saved_ctrl_reg &= (uchar)(~CC_HALT); 7078 } else { 7079 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) { 7080 while (((status = 7081 AscIsrQDone(asc_dvc)) & 0x01) != 0) { 7082 } 7083 } else { 7084 do { 7085 if ((status = 7086 AscIsrQDone(asc_dvc)) == 1) { 7087 break; 7088 } 7089 } while (status == 0x11); 7090 } 7091 if ((status & 0x80) != 0) 7092 int_pending = ASC_ERROR; 7093 } 7094 } 7095 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 7096 AscSetChipLramAddr(iop_base, saved_ram_addr); 7097 AscSetChipControl(iop_base, saved_ctrl_reg); 7098 asc_dvc->is_in_int = false; 7099 return int_pending; 7100 } 7101 7102 /* 7103 * advansys_reset() 7104 * 7105 * Reset the host associated with the command 'scp'. 7106 * 7107 * This function runs its own thread. Interrupts must be blocked but 7108 * sleeping is allowed and no locking other than for host structures is 7109 * required. Returns SUCCESS or FAILED. 7110 */ 7111 static int advansys_reset(struct scsi_cmnd *scp) 7112 { 7113 struct Scsi_Host *shost = scp->device->host; 7114 struct asc_board *boardp = shost_priv(shost); 7115 unsigned long flags; 7116 int status; 7117 int ret = SUCCESS; 7118 7119 ASC_DBG(1, "0x%p\n", scp); 7120 7121 ASC_STATS(shost, reset); 7122 7123 scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n"); 7124 7125 if (ASC_NARROW_BOARD(boardp)) { 7126 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7127 7128 /* Reset the chip and SCSI bus. */ 7129 ASC_DBG(1, "before AscInitAsc1000Driver()\n"); 7130 status = AscInitAsc1000Driver(asc_dvc); 7131 7132 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */ 7133 if (asc_dvc->err_code || !asc_dvc->overrun_dma) { 7134 scmd_printk(KERN_INFO, scp, "SCSI host reset error: " 7135 "0x%x, status: 0x%x\n", asc_dvc->err_code, 7136 status); 7137 ret = FAILED; 7138 } else if (status) { 7139 scmd_printk(KERN_INFO, scp, "SCSI host reset warning: " 7140 "0x%x\n", status); 7141 } else { 7142 scmd_printk(KERN_INFO, scp, "SCSI host reset " 7143 "successful\n"); 7144 } 7145 7146 ASC_DBG(1, "after AscInitAsc1000Driver()\n"); 7147 } else { 7148 /* 7149 * If the suggest reset bus flags are set, then reset the bus. 7150 * Otherwise only reset the device. 7151 */ 7152 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 7153 7154 /* 7155 * Reset the chip and SCSI bus. 7156 */ 7157 ASC_DBG(1, "before AdvResetChipAndSB()\n"); 7158 switch (AdvResetChipAndSB(adv_dvc)) { 7159 case ASC_TRUE: 7160 scmd_printk(KERN_INFO, scp, "SCSI host reset " 7161 "successful\n"); 7162 break; 7163 case ASC_FALSE: 7164 default: 7165 scmd_printk(KERN_INFO, scp, "SCSI host reset error\n"); 7166 ret = FAILED; 7167 break; 7168 } 7169 spin_lock_irqsave(shost->host_lock, flags); 7170 AdvISR(adv_dvc); 7171 spin_unlock_irqrestore(shost->host_lock, flags); 7172 } 7173 7174 ASC_DBG(1, "ret %d\n", ret); 7175 7176 return ret; 7177 } 7178 7179 /* 7180 * advansys_biosparam() 7181 * 7182 * Translate disk drive geometry if the "BIOS greater than 1 GB" 7183 * support is enabled for a drive. 7184 * 7185 * ip (information pointer) is an int array with the following definition: 7186 * ip[0]: heads 7187 * ip[1]: sectors 7188 * ip[2]: cylinders 7189 */ 7190 static int 7191 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev, 7192 sector_t capacity, int ip[]) 7193 { 7194 struct asc_board *boardp = shost_priv(sdev->host); 7195 7196 ASC_DBG(1, "begin\n"); 7197 ASC_STATS(sdev->host, biosparam); 7198 if (ASC_NARROW_BOARD(boardp)) { 7199 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl & 7200 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) { 7201 ip[0] = 255; 7202 ip[1] = 63; 7203 } else { 7204 ip[0] = 64; 7205 ip[1] = 32; 7206 } 7207 } else { 7208 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl & 7209 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) { 7210 ip[0] = 255; 7211 ip[1] = 63; 7212 } else { 7213 ip[0] = 64; 7214 ip[1] = 32; 7215 } 7216 } 7217 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]); 7218 ASC_DBG(1, "end\n"); 7219 return 0; 7220 } 7221 7222 /* 7223 * First-level interrupt handler. 7224 * 7225 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host. 7226 */ 7227 static irqreturn_t advansys_interrupt(int irq, void *dev_id) 7228 { 7229 struct Scsi_Host *shost = dev_id; 7230 struct asc_board *boardp = shost_priv(shost); 7231 irqreturn_t result = IRQ_NONE; 7232 unsigned long flags; 7233 7234 ASC_DBG(2, "boardp 0x%p\n", boardp); 7235 spin_lock_irqsave(shost->host_lock, flags); 7236 if (ASC_NARROW_BOARD(boardp)) { 7237 if (AscIsIntPending(shost->io_port)) { 7238 result = IRQ_HANDLED; 7239 ASC_STATS(shost, interrupt); 7240 ASC_DBG(1, "before AscISR()\n"); 7241 AscISR(&boardp->dvc_var.asc_dvc_var); 7242 } 7243 } else { 7244 ASC_DBG(1, "before AdvISR()\n"); 7245 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) { 7246 result = IRQ_HANDLED; 7247 ASC_STATS(shost, interrupt); 7248 } 7249 } 7250 spin_unlock_irqrestore(shost->host_lock, flags); 7251 7252 ASC_DBG(1, "end\n"); 7253 return result; 7254 } 7255 7256 static bool AscHostReqRiscHalt(PortAddr iop_base) 7257 { 7258 int count = 0; 7259 bool sta = false; 7260 uchar saved_stop_code; 7261 7262 if (AscIsChipHalted(iop_base)) 7263 return true; 7264 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); 7265 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 7266 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP); 7267 do { 7268 if (AscIsChipHalted(iop_base)) { 7269 sta = true; 7270 break; 7271 } 7272 mdelay(100); 7273 } while (count++ < 20); 7274 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code); 7275 return sta; 7276 } 7277 7278 static bool 7279 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data) 7280 { 7281 bool sta = false; 7282 7283 if (AscHostReqRiscHalt(iop_base)) { 7284 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 7285 AscStartChip(iop_base); 7286 } 7287 return sta; 7288 } 7289 7290 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev) 7291 { 7292 char type = sdev->type; 7293 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id; 7294 7295 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN)) 7296 return; 7297 if (asc_dvc->init_sdtr & tid_bits) 7298 return; 7299 7300 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0)) 7301 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits; 7302 7303 asc_dvc->pci_fix_asyn_xfer |= tid_bits; 7304 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) || 7305 (type == TYPE_ROM) || (type == TYPE_TAPE)) 7306 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; 7307 7308 if (asc_dvc->pci_fix_asyn_xfer & tid_bits) 7309 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id, 7310 ASYN_SDTR_DATA_FIX_PCI_REV_AB); 7311 } 7312 7313 static void 7314 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc) 7315 { 7316 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id; 7317 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng; 7318 7319 if (sdev->lun == 0) { 7320 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr; 7321 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) { 7322 asc_dvc->init_sdtr |= tid_bit; 7323 } else { 7324 asc_dvc->init_sdtr &= ~tid_bit; 7325 } 7326 7327 if (orig_init_sdtr != asc_dvc->init_sdtr) 7328 AscAsyncFix(asc_dvc, sdev); 7329 } 7330 7331 if (sdev->tagged_supported) { 7332 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) { 7333 if (sdev->lun == 0) { 7334 asc_dvc->cfg->can_tagged_qng |= tid_bit; 7335 asc_dvc->use_tagged_qng |= tid_bit; 7336 } 7337 scsi_change_queue_depth(sdev, 7338 asc_dvc->max_dvc_qng[sdev->id]); 7339 } 7340 } else { 7341 if (sdev->lun == 0) { 7342 asc_dvc->cfg->can_tagged_qng &= ~tid_bit; 7343 asc_dvc->use_tagged_qng &= ~tid_bit; 7344 } 7345 } 7346 7347 if ((sdev->lun == 0) && 7348 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) { 7349 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B, 7350 asc_dvc->cfg->disc_enable); 7351 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B, 7352 asc_dvc->use_tagged_qng); 7353 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B, 7354 asc_dvc->cfg->can_tagged_qng); 7355 7356 asc_dvc->max_dvc_qng[sdev->id] = 7357 asc_dvc->cfg->max_tag_qng[sdev->id]; 7358 AscWriteLramByte(asc_dvc->iop_base, 7359 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id), 7360 asc_dvc->max_dvc_qng[sdev->id]); 7361 } 7362 } 7363 7364 /* 7365 * Wide Transfers 7366 * 7367 * If the EEPROM enabled WDTR for the device and the device supports wide 7368 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and 7369 * write the new value to the microcode. 7370 */ 7371 static void 7372 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask) 7373 { 7374 unsigned short cfg_word; 7375 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7376 if ((cfg_word & tidmask) != 0) 7377 return; 7378 7379 cfg_word |= tidmask; 7380 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 7381 7382 /* 7383 * Clear the microcode SDTR and WDTR negotiation done indicators for 7384 * the target to cause it to negotiate with the new setting set above. 7385 * WDTR when accepted causes the target to enter asynchronous mode, so 7386 * SDTR must be negotiated. 7387 */ 7388 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7389 cfg_word &= ~tidmask; 7390 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7391 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7392 cfg_word &= ~tidmask; 7393 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 7394 } 7395 7396 /* 7397 * Synchronous Transfers 7398 * 7399 * If the EEPROM enabled SDTR for the device and the device 7400 * supports synchronous transfers, then turn on the device's 7401 * 'sdtr_able' bit. Write the new value to the microcode. 7402 */ 7403 static void 7404 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask) 7405 { 7406 unsigned short cfg_word; 7407 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7408 if ((cfg_word & tidmask) != 0) 7409 return; 7410 7411 cfg_word |= tidmask; 7412 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 7413 7414 /* 7415 * Clear the microcode "SDTR negotiation" done indicator for the 7416 * target to cause it to negotiate with the new setting set above. 7417 */ 7418 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7419 cfg_word &= ~tidmask; 7420 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 7421 } 7422 7423 /* 7424 * PPR (Parallel Protocol Request) Capable 7425 * 7426 * If the device supports DT mode, then it must be PPR capable. 7427 * The PPR message will be used in place of the SDTR and WDTR 7428 * messages to negotiate synchronous speed and offset, transfer 7429 * width, and protocol options. 7430 */ 7431 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc, 7432 AdvPortAddr iop_base, unsigned short tidmask) 7433 { 7434 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7435 adv_dvc->ppr_able |= tidmask; 7436 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 7437 } 7438 7439 static void 7440 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc) 7441 { 7442 AdvPortAddr iop_base = adv_dvc->iop_base; 7443 unsigned short tidmask = 1 << sdev->id; 7444 7445 if (sdev->lun == 0) { 7446 /* 7447 * Handle WDTR, SDTR, and Tag Queuing. If the feature 7448 * is enabled in the EEPROM and the device supports the 7449 * feature, then enable it in the microcode. 7450 */ 7451 7452 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr) 7453 advansys_wide_enable_wdtr(iop_base, tidmask); 7454 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr) 7455 advansys_wide_enable_sdtr(iop_base, tidmask); 7456 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr) 7457 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask); 7458 7459 /* 7460 * Tag Queuing is disabled for the BIOS which runs in polled 7461 * mode and would see no benefit from Tag Queuing. Also by 7462 * disabling Tag Queuing in the BIOS devices with Tag Queuing 7463 * bugs will at least work with the BIOS. 7464 */ 7465 if ((adv_dvc->tagqng_able & tidmask) && 7466 sdev->tagged_supported) { 7467 unsigned short cfg_word; 7468 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); 7469 cfg_word |= tidmask; 7470 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 7471 cfg_word); 7472 AdvWriteByteLram(iop_base, 7473 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id, 7474 adv_dvc->max_dvc_qng); 7475 } 7476 } 7477 7478 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) 7479 scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng); 7480 } 7481 7482 /* 7483 * Set the number of commands to queue per device for the 7484 * specified host adapter. 7485 */ 7486 static int advansys_slave_configure(struct scsi_device *sdev) 7487 { 7488 struct asc_board *boardp = shost_priv(sdev->host); 7489 7490 if (ASC_NARROW_BOARD(boardp)) 7491 advansys_narrow_slave_configure(sdev, 7492 &boardp->dvc_var.asc_dvc_var); 7493 else 7494 advansys_wide_slave_configure(sdev, 7495 &boardp->dvc_var.adv_dvc_var); 7496 7497 return 0; 7498 } 7499 7500 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp) 7501 { 7502 struct asc_board *board = shost_priv(scp->device->host); 7503 7504 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer, 7505 SCSI_SENSE_BUFFERSIZE, 7506 DMA_FROM_DEVICE); 7507 if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) { 7508 ASC_DBG(1, "failed to map sense buffer\n"); 7509 return 0; 7510 } 7511 return cpu_to_le32(scp->SCp.dma_handle); 7512 } 7513 7514 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 7515 struct asc_scsi_q *asc_scsi_q) 7516 { 7517 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7518 int use_sg; 7519 u32 srb_tag; 7520 7521 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q)); 7522 7523 /* 7524 * Set the srb_tag to the command tag + 1, as 7525 * srb_tag '0' is used internally by the chip. 7526 */ 7527 srb_tag = scp->request->tag + 1; 7528 asc_scsi_q->q2.srb_tag = srb_tag; 7529 7530 /* 7531 * Build the ASC_SCSI_Q request. 7532 */ 7533 asc_scsi_q->cdbptr = &scp->cmnd[0]; 7534 asc_scsi_q->q2.cdb_len = scp->cmd_len; 7535 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id); 7536 asc_scsi_q->q1.target_lun = scp->device->lun; 7537 asc_scsi_q->q2.target_ix = 7538 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun); 7539 asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp); 7540 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE; 7541 if (!asc_scsi_q->q1.sense_addr) 7542 return ASC_BUSY; 7543 7544 /* 7545 * If there are any outstanding requests for the current target, 7546 * then every 255th request send an ORDERED request. This heuristic 7547 * tries to retain the benefit of request sorting while preventing 7548 * request starvation. 255 is the max number of tags or pending commands 7549 * a device may have outstanding. 7550 * 7551 * The request count is incremented below for every successfully 7552 * started request. 7553 * 7554 */ 7555 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) && 7556 (boardp->reqcnt[scp->device->id] % 255) == 0) { 7557 asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG; 7558 } else { 7559 asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG; 7560 } 7561 7562 /* Build ASC_SCSI_Q */ 7563 use_sg = scsi_dma_map(scp); 7564 if (use_sg < 0) { 7565 ASC_DBG(1, "failed to map sglist\n"); 7566 return ASC_BUSY; 7567 } else if (use_sg > 0) { 7568 int sgcnt; 7569 struct scatterlist *slp; 7570 struct asc_sg_head *asc_sg_head; 7571 7572 if (use_sg > scp->device->host->sg_tablesize) { 7573 scmd_printk(KERN_ERR, scp, "use_sg %d > " 7574 "sg_tablesize %d\n", use_sg, 7575 scp->device->host->sg_tablesize); 7576 scsi_dma_unmap(scp); 7577 scp->result = HOST_BYTE(DID_ERROR); 7578 return ASC_ERROR; 7579 } 7580 7581 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) + 7582 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC); 7583 if (!asc_sg_head) { 7584 scsi_dma_unmap(scp); 7585 scp->result = HOST_BYTE(DID_SOFT_ERROR); 7586 return ASC_ERROR; 7587 } 7588 7589 asc_scsi_q->q1.cntl |= QC_SG_HEAD; 7590 asc_scsi_q->sg_head = asc_sg_head; 7591 asc_scsi_q->q1.data_cnt = 0; 7592 asc_scsi_q->q1.data_addr = 0; 7593 /* This is a byte value, otherwise it would need to be swapped. */ 7594 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg; 7595 ASC_STATS_ADD(scp->device->host, xfer_elem, 7596 asc_sg_head->entry_cnt); 7597 7598 /* 7599 * Convert scatter-gather list into ASC_SG_HEAD list. 7600 */ 7601 scsi_for_each_sg(scp, slp, use_sg, sgcnt) { 7602 asc_sg_head->sg_list[sgcnt].addr = 7603 cpu_to_le32(sg_dma_address(slp)); 7604 asc_sg_head->sg_list[sgcnt].bytes = 7605 cpu_to_le32(sg_dma_len(slp)); 7606 ASC_STATS_ADD(scp->device->host, xfer_sect, 7607 DIV_ROUND_UP(sg_dma_len(slp), 512)); 7608 } 7609 } 7610 7611 ASC_STATS(scp->device->host, xfer_cnt); 7612 7613 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q); 7614 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 7615 7616 return ASC_NOERROR; 7617 } 7618 7619 /* 7620 * Build scatter-gather list for Adv Library (Wide Board). 7621 * 7622 * Additional ADV_SG_BLOCK structures will need to be allocated 7623 * if the total number of scatter-gather elements exceeds 7624 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are 7625 * assumed to be physically contiguous. 7626 * 7627 * Return: 7628 * ADV_SUCCESS(1) - SG List successfully created 7629 * ADV_ERROR(-1) - SG List creation failed 7630 */ 7631 static int 7632 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, 7633 ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg) 7634 { 7635 adv_sgblk_t *sgblkp, *prev_sgblkp; 7636 struct scatterlist *slp; 7637 int sg_elem_cnt; 7638 ADV_SG_BLOCK *sg_block, *prev_sg_block; 7639 dma_addr_t sgblk_paddr; 7640 int i; 7641 7642 slp = scsi_sglist(scp); 7643 sg_elem_cnt = use_sg; 7644 prev_sgblkp = NULL; 7645 prev_sg_block = NULL; 7646 reqp->sgblkp = NULL; 7647 7648 for (;;) { 7649 /* 7650 * Allocate a 'adv_sgblk_t' structure from the board free 7651 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK 7652 * (15) scatter-gather elements. 7653 */ 7654 sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC, 7655 &sgblk_paddr); 7656 if (!sgblkp) { 7657 ASC_DBG(1, "no free adv_sgblk_t\n"); 7658 ASC_STATS(scp->device->host, adv_build_nosg); 7659 7660 /* 7661 * Allocation failed. Free 'adv_sgblk_t' structures 7662 * already allocated for the request. 7663 */ 7664 while ((sgblkp = reqp->sgblkp) != NULL) { 7665 /* Remove 'sgblkp' from the request list. */ 7666 reqp->sgblkp = sgblkp->next_sgblkp; 7667 sgblkp->next_sgblkp = NULL; 7668 dma_pool_free(boardp->adv_sgblk_pool, sgblkp, 7669 sgblkp->sg_addr); 7670 } 7671 return ASC_BUSY; 7672 } 7673 /* Complete 'adv_sgblk_t' board allocation. */ 7674 sgblkp->sg_addr = sgblk_paddr; 7675 sgblkp->next_sgblkp = NULL; 7676 sg_block = &sgblkp->sg_block; 7677 7678 /* 7679 * Check if this is the first 'adv_sgblk_t' for the 7680 * request. 7681 */ 7682 if (reqp->sgblkp == NULL) { 7683 /* Request's first scatter-gather block. */ 7684 reqp->sgblkp = sgblkp; 7685 7686 /* 7687 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical 7688 * address pointers. 7689 */ 7690 scsiqp->sg_list_ptr = sg_block; 7691 scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr); 7692 } else { 7693 /* Request's second or later scatter-gather block. */ 7694 prev_sgblkp->next_sgblkp = sgblkp; 7695 7696 /* 7697 * Point the previous ADV_SG_BLOCK structure to 7698 * the newly allocated ADV_SG_BLOCK structure. 7699 */ 7700 prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr); 7701 } 7702 7703 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { 7704 sg_block->sg_list[i].sg_addr = 7705 cpu_to_le32(sg_dma_address(slp)); 7706 sg_block->sg_list[i].sg_count = 7707 cpu_to_le32(sg_dma_len(slp)); 7708 ASC_STATS_ADD(scp->device->host, xfer_sect, 7709 DIV_ROUND_UP(sg_dma_len(slp), 512)); 7710 7711 if (--sg_elem_cnt == 0) { 7712 /* 7713 * Last ADV_SG_BLOCK and scatter-gather entry. 7714 */ 7715 sg_block->sg_cnt = i + 1; 7716 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */ 7717 return ADV_SUCCESS; 7718 } 7719 slp++; 7720 } 7721 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK; 7722 prev_sg_block = sg_block; 7723 prev_sgblkp = sgblkp; 7724 } 7725 } 7726 7727 /* 7728 * Build a request structure for the Adv Library (Wide Board). 7729 * 7730 * If an adv_req_t can not be allocated to issue the request, 7731 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR. 7732 * 7733 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the 7734 * microcode for DMA addresses or math operations are byte swapped 7735 * to little-endian order. 7736 */ 7737 static int 7738 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 7739 adv_req_t **adv_reqpp) 7740 { 7741 u32 srb_tag = scp->request->tag; 7742 adv_req_t *reqp; 7743 ADV_SCSI_REQ_Q *scsiqp; 7744 int ret; 7745 int use_sg; 7746 dma_addr_t sense_addr; 7747 7748 /* 7749 * Allocate an adv_req_t structure from the board to execute 7750 * the command. 7751 */ 7752 reqp = &boardp->adv_reqp[srb_tag]; 7753 if (reqp->cmndp && reqp->cmndp != scp ) { 7754 ASC_DBG(1, "no free adv_req_t\n"); 7755 ASC_STATS(scp->device->host, adv_build_noreq); 7756 return ASC_BUSY; 7757 } 7758 7759 reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t)); 7760 7761 scsiqp = &reqp->scsi_req_q; 7762 7763 /* 7764 * Initialize the structure. 7765 */ 7766 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0; 7767 7768 /* 7769 * Set the srb_tag to the command tag. 7770 */ 7771 scsiqp->srb_tag = srb_tag; 7772 7773 /* 7774 * Set 'host_scribble' to point to the adv_req_t structure. 7775 */ 7776 reqp->cmndp = scp; 7777 scp->host_scribble = (void *)reqp; 7778 7779 /* 7780 * Build the ADV_SCSI_REQ_Q request. 7781 */ 7782 7783 /* Set CDB length and copy it to the request structure. */ 7784 scsiqp->cdb_len = scp->cmd_len; 7785 /* Copy first 12 CDB bytes to cdb[]. */ 7786 memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12); 7787 /* Copy last 4 CDB bytes, if present, to cdb16[]. */ 7788 if (scp->cmd_len > 12) { 7789 int cdb16_len = scp->cmd_len - 12; 7790 7791 memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len); 7792 } 7793 7794 scsiqp->target_id = scp->device->id; 7795 scsiqp->target_lun = scp->device->lun; 7796 7797 sense_addr = dma_map_single(boardp->dev, scp->sense_buffer, 7798 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 7799 if (dma_mapping_error(boardp->dev, sense_addr)) { 7800 ASC_DBG(1, "failed to map sense buffer\n"); 7801 ASC_STATS(scp->device->host, adv_build_noreq); 7802 return ASC_BUSY; 7803 } 7804 scsiqp->sense_addr = cpu_to_le32(sense_addr); 7805 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE; 7806 7807 /* Build ADV_SCSI_REQ_Q */ 7808 7809 use_sg = scsi_dma_map(scp); 7810 if (use_sg < 0) { 7811 ASC_DBG(1, "failed to map SG list\n"); 7812 ASC_STATS(scp->device->host, adv_build_noreq); 7813 return ASC_BUSY; 7814 } else if (use_sg == 0) { 7815 /* Zero-length transfer */ 7816 reqp->sgblkp = NULL; 7817 scsiqp->data_cnt = 0; 7818 7819 scsiqp->data_addr = 0; 7820 scsiqp->sg_list_ptr = NULL; 7821 scsiqp->sg_real_addr = 0; 7822 } else { 7823 if (use_sg > ADV_MAX_SG_LIST) { 7824 scmd_printk(KERN_ERR, scp, "use_sg %d > " 7825 "ADV_MAX_SG_LIST %d\n", use_sg, 7826 scp->device->host->sg_tablesize); 7827 scsi_dma_unmap(scp); 7828 scp->result = HOST_BYTE(DID_ERROR); 7829 reqp->cmndp = NULL; 7830 scp->host_scribble = NULL; 7831 7832 return ASC_ERROR; 7833 } 7834 7835 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp)); 7836 7837 ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg); 7838 if (ret != ADV_SUCCESS) { 7839 scsi_dma_unmap(scp); 7840 scp->result = HOST_BYTE(DID_ERROR); 7841 reqp->cmndp = NULL; 7842 scp->host_scribble = NULL; 7843 7844 return ret; 7845 } 7846 7847 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg); 7848 } 7849 7850 ASC_STATS(scp->device->host, xfer_cnt); 7851 7852 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 7853 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 7854 7855 *adv_reqpp = reqp; 7856 7857 return ASC_NOERROR; 7858 } 7859 7860 static int AscSgListToQueue(int sg_list) 7861 { 7862 int n_sg_list_qs; 7863 7864 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); 7865 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) 7866 n_sg_list_qs++; 7867 return n_sg_list_qs + 1; 7868 } 7869 7870 static uint 7871 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs) 7872 { 7873 uint cur_used_qs; 7874 uint cur_free_qs; 7875 ASC_SCSI_BIT_ID_TYPE target_id; 7876 uchar tid_no; 7877 7878 target_id = ASC_TIX_TO_TARGET_ID(target_ix); 7879 tid_no = ASC_TIX_TO_TID(target_ix); 7880 if ((asc_dvc->unit_not_ready & target_id) || 7881 (asc_dvc->queue_full_or_busy & target_id)) { 7882 return 0; 7883 } 7884 if (n_qs == 1) { 7885 cur_used_qs = (uint) asc_dvc->cur_total_qng + 7886 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q; 7887 } else { 7888 cur_used_qs = (uint) asc_dvc->cur_total_qng + 7889 (uint) ASC_MIN_FREE_Q; 7890 } 7891 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) { 7892 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs; 7893 if (asc_dvc->cur_dvc_qng[tid_no] >= 7894 asc_dvc->max_dvc_qng[tid_no]) { 7895 return 0; 7896 } 7897 return cur_free_qs; 7898 } 7899 if (n_qs > 1) { 7900 if ((n_qs > asc_dvc->last_q_shortage) 7901 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) { 7902 asc_dvc->last_q_shortage = n_qs; 7903 } 7904 } 7905 return 0; 7906 } 7907 7908 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head) 7909 { 7910 ushort q_addr; 7911 uchar next_qp; 7912 uchar q_status; 7913 7914 q_addr = ASC_QNO_TO_QADDR(free_q_head); 7915 q_status = (uchar)AscReadLramByte(iop_base, 7916 (ushort)(q_addr + 7917 ASC_SCSIQ_B_STATUS)); 7918 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); 7919 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END)) 7920 return next_qp; 7921 return ASC_QLINK_END; 7922 } 7923 7924 static uchar 7925 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q) 7926 { 7927 uchar i; 7928 7929 for (i = 0; i < n_free_q; i++) { 7930 free_q_head = AscAllocFreeQueue(iop_base, free_q_head); 7931 if (free_q_head == ASC_QLINK_END) 7932 break; 7933 } 7934 return free_q_head; 7935 } 7936 7937 /* 7938 * void 7939 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 7940 * 7941 * Calling/Exit State: 7942 * none 7943 * 7944 * Description: 7945 * Output an ASC_SCSI_Q structure to the chip 7946 */ 7947 static void 7948 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 7949 { 7950 int i; 7951 7952 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words); 7953 AscSetChipLramAddr(iop_base, s_addr); 7954 for (i = 0; i < 2 * words; i += 2) { 7955 if (i == 4 || i == 20) { 7956 continue; 7957 } 7958 outpw(iop_base + IOP_RAM_DATA, 7959 ((ushort)outbuf[i + 1] << 8) | outbuf[i]); 7960 } 7961 } 7962 7963 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 7964 { 7965 ushort q_addr; 7966 uchar tid_no; 7967 uchar sdtr_data; 7968 uchar syn_period_ix; 7969 uchar syn_offset; 7970 PortAddr iop_base; 7971 7972 iop_base = asc_dvc->iop_base; 7973 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) && 7974 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) { 7975 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); 7976 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 7977 syn_period_ix = 7978 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1); 7979 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; 7980 AscMsgOutSDTR(asc_dvc, 7981 asc_dvc->sdtr_period_tbl[syn_period_ix], 7982 syn_offset); 7983 scsiq->q1.cntl |= QC_MSG_OUT; 7984 } 7985 q_addr = ASC_QNO_TO_QADDR(q_no); 7986 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) { 7987 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; 7988 } 7989 scsiq->q1.status = QS_FREE; 7990 AscMemWordCopyPtrToLram(iop_base, 7991 q_addr + ASC_SCSIQ_CDB_BEG, 7992 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1); 7993 7994 DvcPutScsiQ(iop_base, 7995 q_addr + ASC_SCSIQ_CPY_BEG, 7996 (uchar *)&scsiq->q1.cntl, 7997 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1); 7998 AscWriteLramWord(iop_base, 7999 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS), 8000 (ushort)(((ushort)scsiq->q1. 8001 q_no << 8) | (ushort)QS_READY)); 8002 return 1; 8003 } 8004 8005 static int 8006 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 8007 { 8008 int sta; 8009 int i; 8010 ASC_SG_HEAD *sg_head; 8011 ASC_SG_LIST_Q scsi_sg_q; 8012 __le32 saved_data_addr; 8013 __le32 saved_data_cnt; 8014 PortAddr iop_base; 8015 ushort sg_list_dwords; 8016 ushort sg_index; 8017 ushort sg_entry_cnt; 8018 ushort q_addr; 8019 uchar next_qp; 8020 8021 iop_base = asc_dvc->iop_base; 8022 sg_head = scsiq->sg_head; 8023 saved_data_addr = scsiq->q1.data_addr; 8024 saved_data_cnt = scsiq->q1.data_cnt; 8025 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); 8026 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); 8027 /* 8028 * Set sg_entry_cnt to be the number of SG elements that 8029 * will fit in the allocated SG queues. It is minus 1, because 8030 * the first SG element is handled above. 8031 */ 8032 sg_entry_cnt = sg_head->entry_cnt - 1; 8033 8034 if (sg_entry_cnt != 0) { 8035 scsiq->q1.cntl |= QC_SG_HEAD; 8036 q_addr = ASC_QNO_TO_QADDR(q_no); 8037 sg_index = 1; 8038 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; 8039 scsi_sg_q.sg_head_qp = q_no; 8040 scsi_sg_q.cntl = QCSG_SG_XFER_LIST; 8041 for (i = 0; i < sg_head->queue_cnt; i++) { 8042 scsi_sg_q.seq_no = i + 1; 8043 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { 8044 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); 8045 sg_entry_cnt -= ASC_SG_LIST_PER_Q; 8046 if (i == 0) { 8047 scsi_sg_q.sg_list_cnt = 8048 ASC_SG_LIST_PER_Q; 8049 scsi_sg_q.sg_cur_list_cnt = 8050 ASC_SG_LIST_PER_Q; 8051 } else { 8052 scsi_sg_q.sg_list_cnt = 8053 ASC_SG_LIST_PER_Q - 1; 8054 scsi_sg_q.sg_cur_list_cnt = 8055 ASC_SG_LIST_PER_Q - 1; 8056 } 8057 } else { 8058 scsi_sg_q.cntl |= QCSG_SG_XFER_END; 8059 sg_list_dwords = sg_entry_cnt << 1; 8060 if (i == 0) { 8061 scsi_sg_q.sg_list_cnt = sg_entry_cnt; 8062 scsi_sg_q.sg_cur_list_cnt = 8063 sg_entry_cnt; 8064 } else { 8065 scsi_sg_q.sg_list_cnt = 8066 sg_entry_cnt - 1; 8067 scsi_sg_q.sg_cur_list_cnt = 8068 sg_entry_cnt - 1; 8069 } 8070 sg_entry_cnt = 0; 8071 } 8072 next_qp = AscReadLramByte(iop_base, 8073 (ushort)(q_addr + 8074 ASC_SCSIQ_B_FWD)); 8075 scsi_sg_q.q_no = next_qp; 8076 q_addr = ASC_QNO_TO_QADDR(next_qp); 8077 AscMemWordCopyPtrToLram(iop_base, 8078 q_addr + ASC_SCSIQ_SGHD_CPY_BEG, 8079 (uchar *)&scsi_sg_q, 8080 sizeof(ASC_SG_LIST_Q) >> 1); 8081 AscMemDWordCopyPtrToLram(iop_base, 8082 q_addr + ASC_SGQ_LIST_BEG, 8083 (uchar *)&sg_head-> 8084 sg_list[sg_index], 8085 sg_list_dwords); 8086 sg_index += ASC_SG_LIST_PER_Q; 8087 scsiq->next_sg_index = sg_index; 8088 } 8089 } else { 8090 scsiq->q1.cntl &= ~QC_SG_HEAD; 8091 } 8092 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no); 8093 scsiq->q1.data_addr = saved_data_addr; 8094 scsiq->q1.data_cnt = saved_data_cnt; 8095 return (sta); 8096 } 8097 8098 static int 8099 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required) 8100 { 8101 PortAddr iop_base; 8102 uchar free_q_head; 8103 uchar next_qp; 8104 uchar tid_no; 8105 uchar target_ix; 8106 int sta; 8107 8108 iop_base = asc_dvc->iop_base; 8109 target_ix = scsiq->q2.target_ix; 8110 tid_no = ASC_TIX_TO_TID(target_ix); 8111 sta = 0; 8112 free_q_head = (uchar)AscGetVarFreeQHead(iop_base); 8113 if (n_q_required > 1) { 8114 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head, 8115 (uchar)n_q_required); 8116 if (next_qp != ASC_QLINK_END) { 8117 asc_dvc->last_q_shortage = 0; 8118 scsiq->sg_head->queue_cnt = n_q_required - 1; 8119 scsiq->q1.q_no = free_q_head; 8120 sta = AscPutReadySgListQueue(asc_dvc, scsiq, 8121 free_q_head); 8122 } 8123 } else if (n_q_required == 1) { 8124 next_qp = AscAllocFreeQueue(iop_base, free_q_head); 8125 if (next_qp != ASC_QLINK_END) { 8126 scsiq->q1.q_no = free_q_head; 8127 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head); 8128 } 8129 } 8130 if (sta == 1) { 8131 AscPutVarFreeQHead(iop_base, next_qp); 8132 asc_dvc->cur_total_qng += n_q_required; 8133 asc_dvc->cur_dvc_qng[tid_no]++; 8134 } 8135 return sta; 8136 } 8137 8138 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16 8139 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = { 8140 INQUIRY, 8141 REQUEST_SENSE, 8142 READ_CAPACITY, 8143 READ_TOC, 8144 MODE_SELECT, 8145 MODE_SENSE, 8146 MODE_SELECT_10, 8147 MODE_SENSE_10, 8148 0xFF, 8149 0xFF, 8150 0xFF, 8151 0xFF, 8152 0xFF, 8153 0xFF, 8154 0xFF, 8155 0xFF 8156 }; 8157 8158 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq) 8159 { 8160 PortAddr iop_base; 8161 int sta; 8162 int n_q_required; 8163 bool disable_syn_offset_one_fix; 8164 int i; 8165 u32 addr; 8166 ushort sg_entry_cnt = 0; 8167 ushort sg_entry_cnt_minus_one = 0; 8168 uchar target_ix; 8169 uchar tid_no; 8170 uchar sdtr_data; 8171 uchar extra_bytes; 8172 uchar scsi_cmd; 8173 uchar disable_cmd; 8174 ASC_SG_HEAD *sg_head; 8175 unsigned long data_cnt; 8176 8177 iop_base = asc_dvc->iop_base; 8178 sg_head = scsiq->sg_head; 8179 if (asc_dvc->err_code != 0) 8180 return ASC_ERROR; 8181 scsiq->q1.q_no = 0; 8182 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) { 8183 scsiq->q1.extra_bytes = 0; 8184 } 8185 sta = 0; 8186 target_ix = scsiq->q2.target_ix; 8187 tid_no = ASC_TIX_TO_TID(target_ix); 8188 n_q_required = 1; 8189 if (scsiq->cdbptr[0] == REQUEST_SENSE) { 8190 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) { 8191 asc_dvc->sdtr_done &= ~scsiq->q1.target_id; 8192 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 8193 AscMsgOutSDTR(asc_dvc, 8194 asc_dvc-> 8195 sdtr_period_tbl[(sdtr_data >> 4) & 8196 (uchar)(asc_dvc-> 8197 max_sdtr_index - 8198 1)], 8199 (uchar)(sdtr_data & (uchar) 8200 ASC_SYN_MAX_OFFSET)); 8201 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT); 8202 } 8203 } 8204 if (asc_dvc->in_critical_cnt != 0) { 8205 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY); 8206 return ASC_ERROR; 8207 } 8208 asc_dvc->in_critical_cnt++; 8209 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8210 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) { 8211 asc_dvc->in_critical_cnt--; 8212 return ASC_ERROR; 8213 } 8214 if (sg_entry_cnt > ASC_MAX_SG_LIST) { 8215 asc_dvc->in_critical_cnt--; 8216 return ASC_ERROR; 8217 } 8218 if (sg_entry_cnt == 1) { 8219 scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr); 8220 scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes); 8221 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE); 8222 } 8223 sg_entry_cnt_minus_one = sg_entry_cnt - 1; 8224 } 8225 scsi_cmd = scsiq->cdbptr[0]; 8226 disable_syn_offset_one_fix = false; 8227 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) && 8228 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { 8229 if (scsiq->q1.cntl & QC_SG_HEAD) { 8230 data_cnt = 0; 8231 for (i = 0; i < sg_entry_cnt; i++) { 8232 data_cnt += le32_to_cpu(sg_head->sg_list[i]. 8233 bytes); 8234 } 8235 } else { 8236 data_cnt = le32_to_cpu(scsiq->q1.data_cnt); 8237 } 8238 if (data_cnt != 0UL) { 8239 if (data_cnt < 512UL) { 8240 disable_syn_offset_one_fix = true; 8241 } else { 8242 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST; 8243 i++) { 8244 disable_cmd = 8245 _syn_offset_one_disable_cmd[i]; 8246 if (disable_cmd == 0xFF) { 8247 break; 8248 } 8249 if (scsi_cmd == disable_cmd) { 8250 disable_syn_offset_one_fix = 8251 true; 8252 break; 8253 } 8254 } 8255 } 8256 } 8257 } 8258 if (disable_syn_offset_one_fix) { 8259 scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG; 8260 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | 8261 ASC_TAG_FLAG_DISABLE_DISCONNECT); 8262 } else { 8263 scsiq->q2.tag_code &= 0x27; 8264 } 8265 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 8266 if (asc_dvc->bug_fix_cntl) { 8267 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8268 if ((scsi_cmd == READ_6) || 8269 (scsi_cmd == READ_10)) { 8270 addr = le32_to_cpu(sg_head-> 8271 sg_list 8272 [sg_entry_cnt_minus_one]. 8273 addr) + 8274 le32_to_cpu(sg_head-> 8275 sg_list 8276 [sg_entry_cnt_minus_one]. 8277 bytes); 8278 extra_bytes = 8279 (uchar)((ushort)addr & 0x0003); 8280 if ((extra_bytes != 0) 8281 && 8282 ((scsiq->q2. 8283 tag_code & 8284 ASC_TAG_FLAG_EXTRA_BYTES) 8285 == 0)) { 8286 scsiq->q2.tag_code |= 8287 ASC_TAG_FLAG_EXTRA_BYTES; 8288 scsiq->q1.extra_bytes = 8289 extra_bytes; 8290 data_cnt = 8291 le32_to_cpu(sg_head-> 8292 sg_list 8293 [sg_entry_cnt_minus_one]. 8294 bytes); 8295 data_cnt -= extra_bytes; 8296 sg_head-> 8297 sg_list 8298 [sg_entry_cnt_minus_one]. 8299 bytes = 8300 cpu_to_le32(data_cnt); 8301 } 8302 } 8303 } 8304 } 8305 sg_head->entry_to_copy = sg_head->entry_cnt; 8306 n_q_required = AscSgListToQueue(sg_entry_cnt); 8307 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >= 8308 (uint) n_q_required) 8309 || ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8310 if ((sta = 8311 AscSendScsiQueue(asc_dvc, scsiq, 8312 n_q_required)) == 1) { 8313 asc_dvc->in_critical_cnt--; 8314 return (sta); 8315 } 8316 } 8317 } else { 8318 if (asc_dvc->bug_fix_cntl) { 8319 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 8320 if ((scsi_cmd == READ_6) || 8321 (scsi_cmd == READ_10)) { 8322 addr = 8323 le32_to_cpu(scsiq->q1.data_addr) + 8324 le32_to_cpu(scsiq->q1.data_cnt); 8325 extra_bytes = 8326 (uchar)((ushort)addr & 0x0003); 8327 if ((extra_bytes != 0) 8328 && 8329 ((scsiq->q2. 8330 tag_code & 8331 ASC_TAG_FLAG_EXTRA_BYTES) 8332 == 0)) { 8333 data_cnt = 8334 le32_to_cpu(scsiq->q1. 8335 data_cnt); 8336 if (((ushort)data_cnt & 0x01FF) 8337 == 0) { 8338 scsiq->q2.tag_code |= 8339 ASC_TAG_FLAG_EXTRA_BYTES; 8340 data_cnt -= extra_bytes; 8341 scsiq->q1.data_cnt = 8342 cpu_to_le32 8343 (data_cnt); 8344 scsiq->q1.extra_bytes = 8345 extra_bytes; 8346 } 8347 } 8348 } 8349 } 8350 } 8351 n_q_required = 1; 8352 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) || 8353 ((scsiq->q1.cntl & QC_URGENT) != 0)) { 8354 if ((sta = AscSendScsiQueue(asc_dvc, scsiq, 8355 n_q_required)) == 1) { 8356 asc_dvc->in_critical_cnt--; 8357 return (sta); 8358 } 8359 } 8360 } 8361 asc_dvc->in_critical_cnt--; 8362 return (sta); 8363 } 8364 8365 /* 8366 * AdvExeScsiQueue() - Send a request to the RISC microcode program. 8367 * 8368 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q, 8369 * add the carrier to the ICQ (Initiator Command Queue), and tickle the 8370 * RISC to notify it a new command is ready to be executed. 8371 * 8372 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be 8373 * set to SCSI_MAX_RETRY. 8374 * 8375 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode 8376 * for DMA addresses or math operations are byte swapped to little-endian 8377 * order. 8378 * 8379 * Return: 8380 * ADV_SUCCESS(1) - The request was successfully queued. 8381 * ADV_BUSY(0) - Resource unavailable; Retry again after pending 8382 * request completes. 8383 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure 8384 * host IC error. 8385 */ 8386 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp) 8387 { 8388 AdvPortAddr iop_base; 8389 ADV_CARR_T *new_carrp; 8390 ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q; 8391 8392 /* 8393 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID. 8394 */ 8395 if (scsiq->target_id > ADV_MAX_TID) { 8396 scsiq->host_status = QHSTA_M_INVALID_DEVICE; 8397 scsiq->done_status = QD_WITH_ERROR; 8398 return ADV_ERROR; 8399 } 8400 8401 iop_base = asc_dvc->iop_base; 8402 8403 /* 8404 * Allocate a carrier ensuring at least one carrier always 8405 * remains on the freelist and initialize fields. 8406 */ 8407 new_carrp = adv_get_next_carrier(asc_dvc); 8408 if (!new_carrp) { 8409 ASC_DBG(1, "No free carriers\n"); 8410 return ADV_BUSY; 8411 } 8412 8413 asc_dvc->carr_pending_cnt++; 8414 8415 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */ 8416 scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag); 8417 scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr); 8418 8419 scsiq->carr_va = asc_dvc->icq_sp->carr_va; 8420 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa; 8421 8422 /* 8423 * Use the current stopper to send the ADV_SCSI_REQ_Q command to 8424 * the microcode. The newly allocated stopper will become the new 8425 * stopper. 8426 */ 8427 asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr; 8428 8429 /* 8430 * Set the 'next_vpa' pointer for the old stopper to be the 8431 * physical address of the new stopper. The RISC can only 8432 * follow physical addresses. 8433 */ 8434 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa; 8435 8436 /* 8437 * Set the host adapter stopper pointer to point to the new carrier. 8438 */ 8439 asc_dvc->icq_sp = new_carrp; 8440 8441 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 8442 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 8443 /* 8444 * Tickle the RISC to tell it to read its Command Queue Head pointer. 8445 */ 8446 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A); 8447 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 8448 /* 8449 * Clear the tickle value. In the ASC-3550 the RISC flag 8450 * command 'clr_tickle_a' does not work unless the host 8451 * value is cleared. 8452 */ 8453 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 8454 ADV_TICKLE_NOP); 8455 } 8456 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 8457 /* 8458 * Notify the RISC a carrier is ready by writing the physical 8459 * address of the new carrier stopper to the COMMA register. 8460 */ 8461 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 8462 le32_to_cpu(new_carrp->carr_pa)); 8463 } 8464 8465 return ADV_SUCCESS; 8466 } 8467 8468 /* 8469 * Execute a single 'Scsi_Cmnd'. 8470 */ 8471 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp) 8472 { 8473 int ret, err_code; 8474 struct asc_board *boardp = shost_priv(scp->device->host); 8475 8476 ASC_DBG(1, "scp 0x%p\n", scp); 8477 8478 if (ASC_NARROW_BOARD(boardp)) { 8479 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 8480 struct asc_scsi_q asc_scsi_q; 8481 8482 ret = asc_build_req(boardp, scp, &asc_scsi_q); 8483 if (ret != ASC_NOERROR) { 8484 ASC_STATS(scp->device->host, build_error); 8485 return ret; 8486 } 8487 8488 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q); 8489 kfree(asc_scsi_q.sg_head); 8490 err_code = asc_dvc->err_code; 8491 } else { 8492 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 8493 adv_req_t *adv_reqp; 8494 8495 switch (adv_build_req(boardp, scp, &adv_reqp)) { 8496 case ASC_NOERROR: 8497 ASC_DBG(3, "adv_build_req ASC_NOERROR\n"); 8498 break; 8499 case ASC_BUSY: 8500 ASC_DBG(1, "adv_build_req ASC_BUSY\n"); 8501 /* 8502 * The asc_stats fields 'adv_build_noreq' and 8503 * 'adv_build_nosg' count wide board busy conditions. 8504 * They are updated in adv_build_req and 8505 * adv_get_sglist, respectively. 8506 */ 8507 return ASC_BUSY; 8508 case ASC_ERROR: 8509 default: 8510 ASC_DBG(1, "adv_build_req ASC_ERROR\n"); 8511 ASC_STATS(scp->device->host, build_error); 8512 return ASC_ERROR; 8513 } 8514 8515 ret = AdvExeScsiQueue(adv_dvc, adv_reqp); 8516 err_code = adv_dvc->err_code; 8517 } 8518 8519 switch (ret) { 8520 case ASC_NOERROR: 8521 ASC_STATS(scp->device->host, exe_noerror); 8522 /* 8523 * Increment monotonically increasing per device 8524 * successful request counter. Wrapping doesn't matter. 8525 */ 8526 boardp->reqcnt[scp->device->id]++; 8527 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n"); 8528 break; 8529 case ASC_BUSY: 8530 ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n"); 8531 ASC_STATS(scp->device->host, exe_busy); 8532 break; 8533 case ASC_ERROR: 8534 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, " 8535 "err_code 0x%x\n", err_code); 8536 ASC_STATS(scp->device->host, exe_error); 8537 scp->result = HOST_BYTE(DID_ERROR); 8538 break; 8539 default: 8540 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, " 8541 "err_code 0x%x\n", err_code); 8542 ASC_STATS(scp->device->host, exe_unknown); 8543 scp->result = HOST_BYTE(DID_ERROR); 8544 break; 8545 } 8546 8547 ASC_DBG(1, "end\n"); 8548 return ret; 8549 } 8550 8551 /* 8552 * advansys_queuecommand() - interrupt-driven I/O entrypoint. 8553 * 8554 * This function always returns 0. Command return status is saved 8555 * in the 'scp' result field. 8556 */ 8557 static int 8558 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *)) 8559 { 8560 struct Scsi_Host *shost = scp->device->host; 8561 int asc_res, result = 0; 8562 8563 ASC_STATS(shost, queuecommand); 8564 scp->scsi_done = done; 8565 8566 asc_res = asc_execute_scsi_cmnd(scp); 8567 8568 switch (asc_res) { 8569 case ASC_NOERROR: 8570 break; 8571 case ASC_BUSY: 8572 result = SCSI_MLQUEUE_HOST_BUSY; 8573 break; 8574 case ASC_ERROR: 8575 default: 8576 asc_scsi_done(scp); 8577 break; 8578 } 8579 8580 return result; 8581 } 8582 8583 static DEF_SCSI_QCMD(advansys_queuecommand) 8584 8585 static ushort AscGetEisaChipCfg(PortAddr iop_base) 8586 { 8587 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 8588 (PortAddr) (ASC_EISA_CFG_IOP_MASK); 8589 return inpw(eisa_cfg_iop); 8590 } 8591 8592 /* 8593 * Return the BIOS address of the adapter at the specified 8594 * I/O port and with the specified bus type. 8595 */ 8596 static unsigned short AscGetChipBiosAddress(PortAddr iop_base, 8597 unsigned short bus_type) 8598 { 8599 unsigned short cfg_lsw; 8600 unsigned short bios_addr; 8601 8602 /* 8603 * The PCI BIOS is re-located by the motherboard BIOS. Because 8604 * of this the driver can not determine where a PCI BIOS is 8605 * loaded and executes. 8606 */ 8607 if (bus_type & ASC_IS_PCI) 8608 return 0; 8609 8610 if ((bus_type & ASC_IS_EISA) != 0) { 8611 cfg_lsw = AscGetEisaChipCfg(iop_base); 8612 cfg_lsw &= 0x000F; 8613 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE; 8614 return bios_addr; 8615 } 8616 8617 cfg_lsw = AscGetChipCfgLsw(iop_base); 8618 8619 /* 8620 * ISA PnP uses the top bit as the 32K BIOS flag 8621 */ 8622 if (bus_type == ASC_IS_ISAPNP) 8623 cfg_lsw &= 0x7FFF; 8624 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE; 8625 return bios_addr; 8626 } 8627 8628 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id) 8629 { 8630 ushort cfg_lsw; 8631 8632 if (AscGetChipScsiID(iop_base) == new_host_id) { 8633 return (new_host_id); 8634 } 8635 cfg_lsw = AscGetChipCfgLsw(iop_base); 8636 cfg_lsw &= 0xF8FF; 8637 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8); 8638 AscSetChipCfgLsw(iop_base, cfg_lsw); 8639 return (AscGetChipScsiID(iop_base)); 8640 } 8641 8642 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base) 8643 { 8644 unsigned char sc; 8645 8646 AscSetBank(iop_base, 1); 8647 sc = inp(iop_base + IOP_REG_SC); 8648 AscSetBank(iop_base, 0); 8649 return sc; 8650 } 8651 8652 static unsigned char AscGetChipVersion(PortAddr iop_base, 8653 unsigned short bus_type) 8654 { 8655 if (bus_type & ASC_IS_EISA) { 8656 PortAddr eisa_iop; 8657 unsigned char revision; 8658 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 8659 (PortAddr) ASC_EISA_REV_IOP_MASK; 8660 revision = inp(eisa_iop); 8661 return ASC_CHIP_MIN_VER_EISA - 1 + revision; 8662 } 8663 return AscGetChipVerNo(iop_base); 8664 } 8665 8666 #ifdef CONFIG_ISA 8667 static void AscEnableIsaDma(uchar dma_channel) 8668 { 8669 if (dma_channel < 4) { 8670 outp(0x000B, (ushort)(0xC0 | dma_channel)); 8671 outp(0x000A, dma_channel); 8672 } else if (dma_channel < 8) { 8673 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4))); 8674 outp(0x00D4, (ushort)(dma_channel - 4)); 8675 } 8676 } 8677 #endif /* CONFIG_ISA */ 8678 8679 static int AscStopQueueExe(PortAddr iop_base) 8680 { 8681 int count = 0; 8682 8683 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) { 8684 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 8685 ASC_STOP_REQ_RISC_STOP); 8686 do { 8687 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) & 8688 ASC_STOP_ACK_RISC_STOP) { 8689 return (1); 8690 } 8691 mdelay(100); 8692 } while (count++ < 20); 8693 } 8694 return (0); 8695 } 8696 8697 static unsigned int AscGetMaxDmaCount(ushort bus_type) 8698 { 8699 if (bus_type & ASC_IS_ISA) 8700 return ASC_MAX_ISA_DMA_COUNT; 8701 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) 8702 return ASC_MAX_VL_DMA_COUNT; 8703 return ASC_MAX_PCI_DMA_COUNT; 8704 } 8705 8706 #ifdef CONFIG_ISA 8707 static ushort AscGetIsaDmaChannel(PortAddr iop_base) 8708 { 8709 ushort channel; 8710 8711 channel = AscGetChipCfgLsw(iop_base) & 0x0003; 8712 if (channel == 0x03) 8713 return (0); 8714 else if (channel == 0x00) 8715 return (7); 8716 return (channel + 4); 8717 } 8718 8719 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel) 8720 { 8721 ushort cfg_lsw; 8722 uchar value; 8723 8724 if ((dma_channel >= 5) && (dma_channel <= 7)) { 8725 if (dma_channel == 7) 8726 value = 0x00; 8727 else 8728 value = dma_channel - 4; 8729 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC; 8730 cfg_lsw |= value; 8731 AscSetChipCfgLsw(iop_base, cfg_lsw); 8732 return (AscGetIsaDmaChannel(iop_base)); 8733 } 8734 return 0; 8735 } 8736 8737 static uchar AscGetIsaDmaSpeed(PortAddr iop_base) 8738 { 8739 uchar speed_value; 8740 8741 AscSetBank(iop_base, 1); 8742 speed_value = AscReadChipDmaSpeed(iop_base); 8743 speed_value &= 0x07; 8744 AscSetBank(iop_base, 0); 8745 return speed_value; 8746 } 8747 8748 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value) 8749 { 8750 speed_value &= 0x07; 8751 AscSetBank(iop_base, 1); 8752 AscWriteChipDmaSpeed(iop_base, speed_value); 8753 AscSetBank(iop_base, 0); 8754 return AscGetIsaDmaSpeed(iop_base); 8755 } 8756 #endif /* CONFIG_ISA */ 8757 8758 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc) 8759 { 8760 int i; 8761 PortAddr iop_base; 8762 uchar chip_version; 8763 8764 iop_base = asc_dvc->iop_base; 8765 asc_dvc->err_code = 0; 8766 if ((asc_dvc->bus_type & 8767 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) { 8768 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE; 8769 } 8770 AscSetChipControl(iop_base, CC_HALT); 8771 AscSetChipStatus(iop_base, 0); 8772 asc_dvc->bug_fix_cntl = 0; 8773 asc_dvc->pci_fix_asyn_xfer = 0; 8774 asc_dvc->pci_fix_asyn_xfer_always = 0; 8775 /* asc_dvc->init_state initialized in AscInitGetConfig(). */ 8776 asc_dvc->sdtr_done = 0; 8777 asc_dvc->cur_total_qng = 0; 8778 asc_dvc->is_in_int = false; 8779 asc_dvc->in_critical_cnt = 0; 8780 asc_dvc->last_q_shortage = 0; 8781 asc_dvc->use_tagged_qng = 0; 8782 asc_dvc->no_scam = 0; 8783 asc_dvc->unit_not_ready = 0; 8784 asc_dvc->queue_full_or_busy = 0; 8785 asc_dvc->redo_scam = 0; 8786 asc_dvc->res2 = 0; 8787 asc_dvc->min_sdtr_index = 0; 8788 asc_dvc->cfg->can_tagged_qng = 0; 8789 asc_dvc->cfg->cmd_qng_enabled = 0; 8790 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL; 8791 asc_dvc->init_sdtr = 0; 8792 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; 8793 asc_dvc->scsi_reset_wait = 3; 8794 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET; 8795 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type); 8796 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET; 8797 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET; 8798 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; 8799 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type); 8800 asc_dvc->cfg->chip_version = chip_version; 8801 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period; 8802 asc_dvc->max_sdtr_index = 7; 8803 if ((asc_dvc->bus_type & ASC_IS_PCI) && 8804 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { 8805 asc_dvc->bus_type = ASC_IS_PCI_ULTRA; 8806 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period; 8807 asc_dvc->max_sdtr_index = 15; 8808 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) { 8809 AscSetExtraControl(iop_base, 8810 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 8811 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) { 8812 AscSetExtraControl(iop_base, 8813 (SEC_ACTIVE_NEGATE | 8814 SEC_ENABLE_FILTER)); 8815 } 8816 } 8817 if (asc_dvc->bus_type == ASC_IS_PCI) { 8818 AscSetExtraControl(iop_base, 8819 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 8820 } 8821 8822 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED; 8823 #ifdef CONFIG_ISA 8824 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) { 8825 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) { 8826 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT); 8827 asc_dvc->bus_type = ASC_IS_ISAPNP; 8828 } 8829 asc_dvc->cfg->isa_dma_channel = 8830 (uchar)AscGetIsaDmaChannel(iop_base); 8831 } 8832 #endif /* CONFIG_ISA */ 8833 for (i = 0; i <= ASC_MAX_TID; i++) { 8834 asc_dvc->cur_dvc_qng[i] = 0; 8835 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; 8836 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L; 8837 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L; 8838 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; 8839 } 8840 } 8841 8842 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg) 8843 { 8844 int retry; 8845 8846 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) { 8847 unsigned char read_back; 8848 AscSetChipEEPCmd(iop_base, cmd_reg); 8849 mdelay(1); 8850 read_back = AscGetChipEEPCmd(iop_base); 8851 if (read_back == cmd_reg) 8852 return 1; 8853 } 8854 return 0; 8855 } 8856 8857 static void AscWaitEEPRead(void) 8858 { 8859 mdelay(1); 8860 } 8861 8862 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr) 8863 { 8864 ushort read_wval; 8865 uchar cmd_reg; 8866 8867 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 8868 AscWaitEEPRead(); 8869 cmd_reg = addr | ASC_EEP_CMD_READ; 8870 AscWriteEEPCmdReg(iop_base, cmd_reg); 8871 AscWaitEEPRead(); 8872 read_wval = AscGetChipEEPData(iop_base); 8873 AscWaitEEPRead(); 8874 return read_wval; 8875 } 8876 8877 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8878 ushort bus_type) 8879 { 8880 ushort wval; 8881 ushort sum; 8882 ushort *wbuf; 8883 int cfg_beg; 8884 int cfg_end; 8885 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 8886 int s_addr; 8887 8888 wbuf = (ushort *)cfg_buf; 8889 sum = 0; 8890 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */ 8891 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 8892 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 8893 sum += *wbuf; 8894 } 8895 if (bus_type & ASC_IS_VL) { 8896 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 8897 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 8898 } else { 8899 cfg_beg = ASC_EEP_DVC_CFG_BEG; 8900 cfg_end = ASC_EEP_MAX_DVC_ADDR; 8901 } 8902 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 8903 wval = AscReadEEPWord(iop_base, (uchar)s_addr); 8904 if (s_addr <= uchar_end_in_config) { 8905 /* 8906 * Swap all char fields - must unswap bytes already swapped 8907 * by AscReadEEPWord(). 8908 */ 8909 *wbuf = le16_to_cpu(wval); 8910 } else { 8911 /* Don't swap word field at the end - cntl field. */ 8912 *wbuf = wval; 8913 } 8914 sum += wval; /* Checksum treats all EEPROM data as words. */ 8915 } 8916 /* 8917 * Read the checksum word which will be compared against 'sum' 8918 * by the caller. Word field already swapped. 8919 */ 8920 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 8921 return sum; 8922 } 8923 8924 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc) 8925 { 8926 PortAddr iop_base; 8927 ushort q_addr; 8928 ushort saved_word; 8929 int sta; 8930 8931 iop_base = asc_dvc->iop_base; 8932 sta = 0; 8933 q_addr = ASC_QNO_TO_QADDR(241); 8934 saved_word = AscReadLramWord(iop_base, q_addr); 8935 AscSetChipLramAddr(iop_base, q_addr); 8936 AscSetChipLramData(iop_base, 0x55AA); 8937 mdelay(10); 8938 AscSetChipLramAddr(iop_base, q_addr); 8939 if (AscGetChipLramData(iop_base) == 0x55AA) { 8940 sta = 1; 8941 AscWriteLramWord(iop_base, q_addr, saved_word); 8942 } 8943 return (sta); 8944 } 8945 8946 static void AscWaitEEPWrite(void) 8947 { 8948 mdelay(20); 8949 } 8950 8951 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg) 8952 { 8953 ushort read_back; 8954 int retry; 8955 8956 retry = 0; 8957 while (true) { 8958 AscSetChipEEPData(iop_base, data_reg); 8959 mdelay(1); 8960 read_back = AscGetChipEEPData(iop_base); 8961 if (read_back == data_reg) { 8962 return (1); 8963 } 8964 if (retry++ > ASC_EEP_MAX_RETRY) { 8965 return (0); 8966 } 8967 } 8968 } 8969 8970 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val) 8971 { 8972 ushort read_wval; 8973 8974 read_wval = AscReadEEPWord(iop_base, addr); 8975 if (read_wval != word_val) { 8976 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE); 8977 AscWaitEEPRead(); 8978 AscWriteEEPDataReg(iop_base, word_val); 8979 AscWaitEEPRead(); 8980 AscWriteEEPCmdReg(iop_base, 8981 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr)); 8982 AscWaitEEPWrite(); 8983 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 8984 AscWaitEEPRead(); 8985 return (AscReadEEPWord(iop_base, addr)); 8986 } 8987 return (read_wval); 8988 } 8989 8990 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 8991 ushort bus_type) 8992 { 8993 int n_error; 8994 ushort *wbuf; 8995 ushort word; 8996 ushort sum; 8997 int s_addr; 8998 int cfg_beg; 8999 int cfg_end; 9000 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 9001 9002 wbuf = (ushort *)cfg_buf; 9003 n_error = 0; 9004 sum = 0; 9005 /* Write two config words; AscWriteEEPWord() will swap bytes. */ 9006 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9007 sum += *wbuf; 9008 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 9009 n_error++; 9010 } 9011 } 9012 if (bus_type & ASC_IS_VL) { 9013 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 9014 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 9015 } else { 9016 cfg_beg = ASC_EEP_DVC_CFG_BEG; 9017 cfg_end = ASC_EEP_MAX_DVC_ADDR; 9018 } 9019 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 9020 if (s_addr <= uchar_end_in_config) { 9021 /* 9022 * This is a char field. Swap char fields before they are 9023 * swapped again by AscWriteEEPWord(). 9024 */ 9025 word = cpu_to_le16(*wbuf); 9026 if (word != 9027 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) { 9028 n_error++; 9029 } 9030 } else { 9031 /* Don't swap word field at the end - cntl field. */ 9032 if (*wbuf != 9033 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 9034 n_error++; 9035 } 9036 } 9037 sum += *wbuf; /* Checksum calculated from word values. */ 9038 } 9039 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */ 9040 *wbuf = sum; 9041 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) { 9042 n_error++; 9043 } 9044 9045 /* Read EEPROM back again. */ 9046 wbuf = (ushort *)cfg_buf; 9047 /* 9048 * Read two config words; Byte-swapping done by AscReadEEPWord(). 9049 */ 9050 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9051 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) { 9052 n_error++; 9053 } 9054 } 9055 if (bus_type & ASC_IS_VL) { 9056 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 9057 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 9058 } else { 9059 cfg_beg = ASC_EEP_DVC_CFG_BEG; 9060 cfg_end = ASC_EEP_MAX_DVC_ADDR; 9061 } 9062 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 9063 if (s_addr <= uchar_end_in_config) { 9064 /* 9065 * Swap all char fields. Must unswap bytes already swapped 9066 * by AscReadEEPWord(). 9067 */ 9068 word = 9069 le16_to_cpu(AscReadEEPWord 9070 (iop_base, (uchar)s_addr)); 9071 } else { 9072 /* Don't swap word field at the end - cntl field. */ 9073 word = AscReadEEPWord(iop_base, (uchar)s_addr); 9074 } 9075 if (*wbuf != word) { 9076 n_error++; 9077 } 9078 } 9079 /* Read checksum; Byte swapping not needed. */ 9080 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) { 9081 n_error++; 9082 } 9083 return n_error; 9084 } 9085 9086 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, 9087 ushort bus_type) 9088 { 9089 int retry; 9090 int n_error; 9091 9092 retry = 0; 9093 while (true) { 9094 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, 9095 bus_type)) == 0) { 9096 break; 9097 } 9098 if (++retry > ASC_EEP_MAX_RETRY) { 9099 break; 9100 } 9101 } 9102 return n_error; 9103 } 9104 9105 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc) 9106 { 9107 ASCEEP_CONFIG eep_config_buf; 9108 ASCEEP_CONFIG *eep_config; 9109 PortAddr iop_base; 9110 ushort chksum; 9111 ushort warn_code; 9112 ushort cfg_msw, cfg_lsw; 9113 int i; 9114 int write_eep = 0; 9115 9116 iop_base = asc_dvc->iop_base; 9117 warn_code = 0; 9118 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE); 9119 AscStopQueueExe(iop_base); 9120 if ((AscStopChip(iop_base)) || 9121 (AscGetChipScsiCtrl(iop_base) != 0)) { 9122 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE; 9123 AscResetChipAndScsiBus(asc_dvc); 9124 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 9125 } 9126 if (!AscIsChipHalted(iop_base)) { 9127 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 9128 return (warn_code); 9129 } 9130 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 9131 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 9132 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 9133 return (warn_code); 9134 } 9135 eep_config = (ASCEEP_CONFIG *)&eep_config_buf; 9136 cfg_msw = AscGetChipCfgMsw(iop_base); 9137 cfg_lsw = AscGetChipCfgLsw(iop_base); 9138 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 9139 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9140 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 9141 AscSetChipCfgMsw(iop_base, cfg_msw); 9142 } 9143 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); 9144 ASC_DBG(1, "chksum 0x%x\n", chksum); 9145 if (chksum == 0) { 9146 chksum = 0xaa55; 9147 } 9148 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 9149 warn_code |= ASC_WARN_AUTO_CONFIG; 9150 if (asc_dvc->cfg->chip_version == 3) { 9151 if (eep_config->cfg_lsw != cfg_lsw) { 9152 warn_code |= ASC_WARN_EEPROM_RECOVER; 9153 eep_config->cfg_lsw = 9154 AscGetChipCfgLsw(iop_base); 9155 } 9156 if (eep_config->cfg_msw != cfg_msw) { 9157 warn_code |= ASC_WARN_EEPROM_RECOVER; 9158 eep_config->cfg_msw = 9159 AscGetChipCfgMsw(iop_base); 9160 } 9161 } 9162 } 9163 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9164 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; 9165 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum); 9166 if (chksum != eep_config->chksum) { 9167 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == 9168 ASC_CHIP_VER_PCI_ULTRA_3050) { 9169 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n"); 9170 eep_config->init_sdtr = 0xFF; 9171 eep_config->disc_enable = 0xFF; 9172 eep_config->start_motor = 0xFF; 9173 eep_config->use_cmd_qng = 0; 9174 eep_config->max_total_qng = 0xF0; 9175 eep_config->max_tag_qng = 0x20; 9176 eep_config->cntl = 0xBFFF; 9177 ASC_EEP_SET_CHIP_ID(eep_config, 7); 9178 eep_config->no_scam = 0; 9179 eep_config->adapter_info[0] = 0; 9180 eep_config->adapter_info[1] = 0; 9181 eep_config->adapter_info[2] = 0; 9182 eep_config->adapter_info[3] = 0; 9183 eep_config->adapter_info[4] = 0; 9184 /* Indicate EEPROM-less board. */ 9185 eep_config->adapter_info[5] = 0xBB; 9186 } else { 9187 ASC_PRINT 9188 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n"); 9189 write_eep = 1; 9190 warn_code |= ASC_WARN_EEPROM_CHKSUM; 9191 } 9192 } 9193 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr; 9194 asc_dvc->cfg->disc_enable = eep_config->disc_enable; 9195 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng; 9196 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config); 9197 asc_dvc->start_motor = eep_config->start_motor; 9198 asc_dvc->dvc_cntl = eep_config->cntl; 9199 asc_dvc->no_scam = eep_config->no_scam; 9200 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0]; 9201 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1]; 9202 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2]; 9203 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3]; 9204 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4]; 9205 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5]; 9206 if (!AscTestExternalLram(asc_dvc)) { 9207 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == 9208 ASC_IS_PCI_ULTRA)) { 9209 eep_config->max_total_qng = 9210 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; 9211 eep_config->max_tag_qng = 9212 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; 9213 } else { 9214 eep_config->cfg_msw |= 0x0800; 9215 cfg_msw |= 0x0800; 9216 AscSetChipCfgMsw(iop_base, cfg_msw); 9217 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; 9218 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; 9219 } 9220 } else { 9221 } 9222 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) { 9223 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; 9224 } 9225 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) { 9226 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; 9227 } 9228 if (eep_config->max_tag_qng > eep_config->max_total_qng) { 9229 eep_config->max_tag_qng = eep_config->max_total_qng; 9230 } 9231 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) { 9232 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; 9233 } 9234 asc_dvc->max_total_qng = eep_config->max_total_qng; 9235 if ((eep_config->use_cmd_qng & eep_config->disc_enable) != 9236 eep_config->use_cmd_qng) { 9237 eep_config->disc_enable = eep_config->use_cmd_qng; 9238 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9239 } 9240 ASC_EEP_SET_CHIP_ID(eep_config, 9241 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID); 9242 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config); 9243 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && 9244 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { 9245 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; 9246 } 9247 9248 for (i = 0; i <= ASC_MAX_TID; i++) { 9249 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; 9250 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng; 9251 asc_dvc->cfg->sdtr_period_offset[i] = 9252 (uchar)(ASC_DEF_SDTR_OFFSET | 9253 (asc_dvc->min_sdtr_index << 4)); 9254 } 9255 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); 9256 if (write_eep) { 9257 if ((i = AscSetEEPConfig(iop_base, eep_config, 9258 asc_dvc->bus_type)) != 0) { 9259 ASC_PRINT1 9260 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n", 9261 i); 9262 } else { 9263 ASC_PRINT 9264 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n"); 9265 } 9266 } 9267 return (warn_code); 9268 } 9269 9270 static int AscInitGetConfig(struct Scsi_Host *shost) 9271 { 9272 struct asc_board *board = shost_priv(shost); 9273 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9274 unsigned short warn_code = 0; 9275 9276 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG; 9277 if (asc_dvc->err_code != 0) 9278 return asc_dvc->err_code; 9279 9280 if (AscFindSignature(asc_dvc->iop_base)) { 9281 AscInitAscDvcVar(asc_dvc); 9282 warn_code = AscInitFromEEP(asc_dvc); 9283 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG; 9284 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) 9285 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; 9286 } else { 9287 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9288 } 9289 9290 switch (warn_code) { 9291 case 0: /* No error */ 9292 break; 9293 case ASC_WARN_IO_PORT_ROTATE: 9294 shost_printk(KERN_WARNING, shost, "I/O port address " 9295 "modified\n"); 9296 break; 9297 case ASC_WARN_AUTO_CONFIG: 9298 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9299 "enabled\n"); 9300 break; 9301 case ASC_WARN_EEPROM_CHKSUM: 9302 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9303 break; 9304 case ASC_WARN_IRQ_MODIFIED: 9305 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9306 break; 9307 case ASC_WARN_CMD_QNG_CONFLICT: 9308 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o " 9309 "disconnects\n"); 9310 break; 9311 default: 9312 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9313 warn_code); 9314 break; 9315 } 9316 9317 if (asc_dvc->err_code != 0) 9318 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9319 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9320 9321 return asc_dvc->err_code; 9322 } 9323 9324 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 9325 { 9326 struct asc_board *board = shost_priv(shost); 9327 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 9328 PortAddr iop_base = asc_dvc->iop_base; 9329 unsigned short cfg_msw; 9330 unsigned short warn_code = 0; 9331 9332 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG; 9333 if (asc_dvc->err_code != 0) 9334 return asc_dvc->err_code; 9335 if (!AscFindSignature(asc_dvc->iop_base)) { 9336 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 9337 return asc_dvc->err_code; 9338 } 9339 9340 cfg_msw = AscGetChipCfgMsw(iop_base); 9341 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 9342 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 9343 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 9344 AscSetChipCfgMsw(iop_base, cfg_msw); 9345 } 9346 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) != 9347 asc_dvc->cfg->cmd_qng_enabled) { 9348 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled; 9349 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 9350 } 9351 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 9352 warn_code |= ASC_WARN_AUTO_CONFIG; 9353 } 9354 #ifdef CONFIG_PCI 9355 if (asc_dvc->bus_type & ASC_IS_PCI) { 9356 cfg_msw &= 0xFFC0; 9357 AscSetChipCfgMsw(iop_base, cfg_msw); 9358 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { 9359 } else { 9360 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 9361 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 9362 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; 9363 asc_dvc->bug_fix_cntl |= 9364 ASC_BUG_FIX_ASYN_USE_SYN; 9365 } 9366 } 9367 } else 9368 #endif /* CONFIG_PCI */ 9369 if (asc_dvc->bus_type == ASC_IS_ISAPNP) { 9370 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) 9371 == ASC_CHIP_VER_ASYN_BUG) { 9372 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; 9373 } 9374 } 9375 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) != 9376 asc_dvc->cfg->chip_scsi_id) { 9377 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID; 9378 } 9379 #ifdef CONFIG_ISA 9380 if (asc_dvc->bus_type & ASC_IS_ISA) { 9381 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel); 9382 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed); 9383 } 9384 #endif /* CONFIG_ISA */ 9385 9386 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG; 9387 9388 switch (warn_code) { 9389 case 0: /* No error. */ 9390 break; 9391 case ASC_WARN_IO_PORT_ROTATE: 9392 shost_printk(KERN_WARNING, shost, "I/O port address " 9393 "modified\n"); 9394 break; 9395 case ASC_WARN_AUTO_CONFIG: 9396 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 9397 "enabled\n"); 9398 break; 9399 case ASC_WARN_EEPROM_CHKSUM: 9400 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 9401 break; 9402 case ASC_WARN_IRQ_MODIFIED: 9403 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 9404 break; 9405 case ASC_WARN_CMD_QNG_CONFLICT: 9406 shost_printk(KERN_WARNING, shost, "tag queuing w/o " 9407 "disconnects\n"); 9408 break; 9409 default: 9410 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 9411 warn_code); 9412 break; 9413 } 9414 9415 if (asc_dvc->err_code != 0) 9416 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 9417 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 9418 9419 return asc_dvc->err_code; 9420 } 9421 9422 /* 9423 * EEPROM Configuration. 9424 * 9425 * All drivers should use this structure to set the default EEPROM 9426 * configuration. The BIOS now uses this structure when it is built. 9427 * Additional structure information can be found in a_condor.h where 9428 * the structure is defined. 9429 * 9430 * The *_Field_IsChar structs are needed to correct for endianness. 9431 * These values are read from the board 16 bits at a time directly 9432 * into the structs. Because some fields are char, the values will be 9433 * in the wrong order. The *_Field_IsChar tells when to flip the 9434 * bytes. Data read and written to PCI memory is automatically swapped 9435 * on big-endian platforms so char fields read as words are actually being 9436 * unswapped on big-endian platforms. 9437 */ 9438 #ifdef CONFIG_PCI 9439 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = { 9440 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */ 9441 0x0000, /* cfg_msw */ 9442 0xFFFF, /* disc_enable */ 9443 0xFFFF, /* wdtr_able */ 9444 0xFFFF, /* sdtr_able */ 9445 0xFFFF, /* start_motor */ 9446 0xFFFF, /* tagqng_able */ 9447 0xFFFF, /* bios_scan */ 9448 0, /* scam_tolerant */ 9449 7, /* adapter_scsi_id */ 9450 0, /* bios_boot_delay */ 9451 3, /* scsi_reset_delay */ 9452 0, /* bios_id_lun */ 9453 0, /* termination */ 9454 0, /* reserved1 */ 9455 0xFFE7, /* bios_ctrl */ 9456 0xFFFF, /* ultra_able */ 9457 0, /* reserved2 */ 9458 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */ 9459 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9460 0, /* dvc_cntl */ 9461 0, /* bug_fix */ 9462 0, /* serial_number_word1 */ 9463 0, /* serial_number_word2 */ 9464 0, /* serial_number_word3 */ 9465 0, /* check_sum */ 9466 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9467 , /* oem_name[16] */ 9468 0, /* dvc_err_code */ 9469 0, /* adv_err_code */ 9470 0, /* adv_err_addr */ 9471 0, /* saved_dvc_err_code */ 9472 0, /* saved_adv_err_code */ 9473 0, /* saved_adv_err_addr */ 9474 0 /* num_of_err */ 9475 }; 9476 9477 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = { 9478 0, /* cfg_lsw */ 9479 0, /* cfg_msw */ 9480 0, /* -disc_enable */ 9481 0, /* wdtr_able */ 9482 0, /* sdtr_able */ 9483 0, /* start_motor */ 9484 0, /* tagqng_able */ 9485 0, /* bios_scan */ 9486 0, /* scam_tolerant */ 9487 1, /* adapter_scsi_id */ 9488 1, /* bios_boot_delay */ 9489 1, /* scsi_reset_delay */ 9490 1, /* bios_id_lun */ 9491 1, /* termination */ 9492 1, /* reserved1 */ 9493 0, /* bios_ctrl */ 9494 0, /* ultra_able */ 9495 0, /* reserved2 */ 9496 1, /* max_host_qng */ 9497 1, /* max_dvc_qng */ 9498 0, /* dvc_cntl */ 9499 0, /* bug_fix */ 9500 0, /* serial_number_word1 */ 9501 0, /* serial_number_word2 */ 9502 0, /* serial_number_word3 */ 9503 0, /* check_sum */ 9504 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9505 , /* oem_name[16] */ 9506 0, /* dvc_err_code */ 9507 0, /* adv_err_code */ 9508 0, /* adv_err_addr */ 9509 0, /* saved_dvc_err_code */ 9510 0, /* saved_adv_err_code */ 9511 0, /* saved_adv_err_addr */ 9512 0 /* num_of_err */ 9513 }; 9514 9515 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = { 9516 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 9517 0x0000, /* 01 cfg_msw */ 9518 0xFFFF, /* 02 disc_enable */ 9519 0xFFFF, /* 03 wdtr_able */ 9520 0x4444, /* 04 sdtr_speed1 */ 9521 0xFFFF, /* 05 start_motor */ 9522 0xFFFF, /* 06 tagqng_able */ 9523 0xFFFF, /* 07 bios_scan */ 9524 0, /* 08 scam_tolerant */ 9525 7, /* 09 adapter_scsi_id */ 9526 0, /* bios_boot_delay */ 9527 3, /* 10 scsi_reset_delay */ 9528 0, /* bios_id_lun */ 9529 0, /* 11 termination_se */ 9530 0, /* termination_lvd */ 9531 0xFFE7, /* 12 bios_ctrl */ 9532 0x4444, /* 13 sdtr_speed2 */ 9533 0x4444, /* 14 sdtr_speed3 */ 9534 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 9535 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9536 0, /* 16 dvc_cntl */ 9537 0x4444, /* 17 sdtr_speed4 */ 9538 0, /* 18 serial_number_word1 */ 9539 0, /* 19 serial_number_word2 */ 9540 0, /* 20 serial_number_word3 */ 9541 0, /* 21 check_sum */ 9542 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9543 , /* 22-29 oem_name[16] */ 9544 0, /* 30 dvc_err_code */ 9545 0, /* 31 adv_err_code */ 9546 0, /* 32 adv_err_addr */ 9547 0, /* 33 saved_dvc_err_code */ 9548 0, /* 34 saved_adv_err_code */ 9549 0, /* 35 saved_adv_err_addr */ 9550 0, /* 36 reserved */ 9551 0, /* 37 reserved */ 9552 0, /* 38 reserved */ 9553 0, /* 39 reserved */ 9554 0, /* 40 reserved */ 9555 0, /* 41 reserved */ 9556 0, /* 42 reserved */ 9557 0, /* 43 reserved */ 9558 0, /* 44 reserved */ 9559 0, /* 45 reserved */ 9560 0, /* 46 reserved */ 9561 0, /* 47 reserved */ 9562 0, /* 48 reserved */ 9563 0, /* 49 reserved */ 9564 0, /* 50 reserved */ 9565 0, /* 51 reserved */ 9566 0, /* 52 reserved */ 9567 0, /* 53 reserved */ 9568 0, /* 54 reserved */ 9569 0, /* 55 reserved */ 9570 0, /* 56 cisptr_lsw */ 9571 0, /* 57 cisprt_msw */ 9572 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 9573 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */ 9574 0, /* 60 reserved */ 9575 0, /* 61 reserved */ 9576 0, /* 62 reserved */ 9577 0 /* 63 reserved */ 9578 }; 9579 9580 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = { 9581 0, /* 00 cfg_lsw */ 9582 0, /* 01 cfg_msw */ 9583 0, /* 02 disc_enable */ 9584 0, /* 03 wdtr_able */ 9585 0, /* 04 sdtr_speed1 */ 9586 0, /* 05 start_motor */ 9587 0, /* 06 tagqng_able */ 9588 0, /* 07 bios_scan */ 9589 0, /* 08 scam_tolerant */ 9590 1, /* 09 adapter_scsi_id */ 9591 1, /* bios_boot_delay */ 9592 1, /* 10 scsi_reset_delay */ 9593 1, /* bios_id_lun */ 9594 1, /* 11 termination_se */ 9595 1, /* termination_lvd */ 9596 0, /* 12 bios_ctrl */ 9597 0, /* 13 sdtr_speed2 */ 9598 0, /* 14 sdtr_speed3 */ 9599 1, /* 15 max_host_qng */ 9600 1, /* max_dvc_qng */ 9601 0, /* 16 dvc_cntl */ 9602 0, /* 17 sdtr_speed4 */ 9603 0, /* 18 serial_number_word1 */ 9604 0, /* 19 serial_number_word2 */ 9605 0, /* 20 serial_number_word3 */ 9606 0, /* 21 check_sum */ 9607 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9608 , /* 22-29 oem_name[16] */ 9609 0, /* 30 dvc_err_code */ 9610 0, /* 31 adv_err_code */ 9611 0, /* 32 adv_err_addr */ 9612 0, /* 33 saved_dvc_err_code */ 9613 0, /* 34 saved_adv_err_code */ 9614 0, /* 35 saved_adv_err_addr */ 9615 0, /* 36 reserved */ 9616 0, /* 37 reserved */ 9617 0, /* 38 reserved */ 9618 0, /* 39 reserved */ 9619 0, /* 40 reserved */ 9620 0, /* 41 reserved */ 9621 0, /* 42 reserved */ 9622 0, /* 43 reserved */ 9623 0, /* 44 reserved */ 9624 0, /* 45 reserved */ 9625 0, /* 46 reserved */ 9626 0, /* 47 reserved */ 9627 0, /* 48 reserved */ 9628 0, /* 49 reserved */ 9629 0, /* 50 reserved */ 9630 0, /* 51 reserved */ 9631 0, /* 52 reserved */ 9632 0, /* 53 reserved */ 9633 0, /* 54 reserved */ 9634 0, /* 55 reserved */ 9635 0, /* 56 cisptr_lsw */ 9636 0, /* 57 cisprt_msw */ 9637 0, /* 58 subsysvid */ 9638 0, /* 59 subsysid */ 9639 0, /* 60 reserved */ 9640 0, /* 61 reserved */ 9641 0, /* 62 reserved */ 9642 0 /* 63 reserved */ 9643 }; 9644 9645 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = { 9646 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 9647 0x0000, /* 01 cfg_msw */ 9648 0xFFFF, /* 02 disc_enable */ 9649 0xFFFF, /* 03 wdtr_able */ 9650 0x5555, /* 04 sdtr_speed1 */ 9651 0xFFFF, /* 05 start_motor */ 9652 0xFFFF, /* 06 tagqng_able */ 9653 0xFFFF, /* 07 bios_scan */ 9654 0, /* 08 scam_tolerant */ 9655 7, /* 09 adapter_scsi_id */ 9656 0, /* bios_boot_delay */ 9657 3, /* 10 scsi_reset_delay */ 9658 0, /* bios_id_lun */ 9659 0, /* 11 termination_se */ 9660 0, /* termination_lvd */ 9661 0xFFE7, /* 12 bios_ctrl */ 9662 0x5555, /* 13 sdtr_speed2 */ 9663 0x5555, /* 14 sdtr_speed3 */ 9664 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 9665 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 9666 0, /* 16 dvc_cntl */ 9667 0x5555, /* 17 sdtr_speed4 */ 9668 0, /* 18 serial_number_word1 */ 9669 0, /* 19 serial_number_word2 */ 9670 0, /* 20 serial_number_word3 */ 9671 0, /* 21 check_sum */ 9672 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 9673 , /* 22-29 oem_name[16] */ 9674 0, /* 30 dvc_err_code */ 9675 0, /* 31 adv_err_code */ 9676 0, /* 32 adv_err_addr */ 9677 0, /* 33 saved_dvc_err_code */ 9678 0, /* 34 saved_adv_err_code */ 9679 0, /* 35 saved_adv_err_addr */ 9680 0, /* 36 reserved */ 9681 0, /* 37 reserved */ 9682 0, /* 38 reserved */ 9683 0, /* 39 reserved */ 9684 0, /* 40 reserved */ 9685 0, /* 41 reserved */ 9686 0, /* 42 reserved */ 9687 0, /* 43 reserved */ 9688 0, /* 44 reserved */ 9689 0, /* 45 reserved */ 9690 0, /* 46 reserved */ 9691 0, /* 47 reserved */ 9692 0, /* 48 reserved */ 9693 0, /* 49 reserved */ 9694 0, /* 50 reserved */ 9695 0, /* 51 reserved */ 9696 0, /* 52 reserved */ 9697 0, /* 53 reserved */ 9698 0, /* 54 reserved */ 9699 0, /* 55 reserved */ 9700 0, /* 56 cisptr_lsw */ 9701 0, /* 57 cisprt_msw */ 9702 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 9703 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */ 9704 0, /* 60 reserved */ 9705 0, /* 61 reserved */ 9706 0, /* 62 reserved */ 9707 0 /* 63 reserved */ 9708 }; 9709 9710 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = { 9711 0, /* 00 cfg_lsw */ 9712 0, /* 01 cfg_msw */ 9713 0, /* 02 disc_enable */ 9714 0, /* 03 wdtr_able */ 9715 0, /* 04 sdtr_speed1 */ 9716 0, /* 05 start_motor */ 9717 0, /* 06 tagqng_able */ 9718 0, /* 07 bios_scan */ 9719 0, /* 08 scam_tolerant */ 9720 1, /* 09 adapter_scsi_id */ 9721 1, /* bios_boot_delay */ 9722 1, /* 10 scsi_reset_delay */ 9723 1, /* bios_id_lun */ 9724 1, /* 11 termination_se */ 9725 1, /* termination_lvd */ 9726 0, /* 12 bios_ctrl */ 9727 0, /* 13 sdtr_speed2 */ 9728 0, /* 14 sdtr_speed3 */ 9729 1, /* 15 max_host_qng */ 9730 1, /* max_dvc_qng */ 9731 0, /* 16 dvc_cntl */ 9732 0, /* 17 sdtr_speed4 */ 9733 0, /* 18 serial_number_word1 */ 9734 0, /* 19 serial_number_word2 */ 9735 0, /* 20 serial_number_word3 */ 9736 0, /* 21 check_sum */ 9737 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 9738 , /* 22-29 oem_name[16] */ 9739 0, /* 30 dvc_err_code */ 9740 0, /* 31 adv_err_code */ 9741 0, /* 32 adv_err_addr */ 9742 0, /* 33 saved_dvc_err_code */ 9743 0, /* 34 saved_adv_err_code */ 9744 0, /* 35 saved_adv_err_addr */ 9745 0, /* 36 reserved */ 9746 0, /* 37 reserved */ 9747 0, /* 38 reserved */ 9748 0, /* 39 reserved */ 9749 0, /* 40 reserved */ 9750 0, /* 41 reserved */ 9751 0, /* 42 reserved */ 9752 0, /* 43 reserved */ 9753 0, /* 44 reserved */ 9754 0, /* 45 reserved */ 9755 0, /* 46 reserved */ 9756 0, /* 47 reserved */ 9757 0, /* 48 reserved */ 9758 0, /* 49 reserved */ 9759 0, /* 50 reserved */ 9760 0, /* 51 reserved */ 9761 0, /* 52 reserved */ 9762 0, /* 53 reserved */ 9763 0, /* 54 reserved */ 9764 0, /* 55 reserved */ 9765 0, /* 56 cisptr_lsw */ 9766 0, /* 57 cisprt_msw */ 9767 0, /* 58 subsysvid */ 9768 0, /* 59 subsysid */ 9769 0, /* 60 reserved */ 9770 0, /* 61 reserved */ 9771 0, /* 62 reserved */ 9772 0 /* 63 reserved */ 9773 }; 9774 9775 /* 9776 * Wait for EEPROM command to complete 9777 */ 9778 static void AdvWaitEEPCmd(AdvPortAddr iop_base) 9779 { 9780 int eep_delay_ms; 9781 9782 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) { 9783 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) & 9784 ASC_EEP_CMD_DONE) { 9785 break; 9786 } 9787 mdelay(1); 9788 } 9789 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) == 9790 0) 9791 BUG(); 9792 } 9793 9794 /* 9795 * Read the EEPROM from specified location 9796 */ 9797 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr) 9798 { 9799 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9800 ASC_EEP_CMD_READ | eep_word_addr); 9801 AdvWaitEEPCmd(iop_base); 9802 return AdvReadWordRegister(iop_base, IOPW_EE_DATA); 9803 } 9804 9805 /* 9806 * Write the EEPROM from 'cfg_buf'. 9807 */ 9808 static void AdvSet3550EEPConfig(AdvPortAddr iop_base, 9809 ADVEEP_3550_CONFIG *cfg_buf) 9810 { 9811 ushort *wbuf; 9812 ushort addr, chksum; 9813 ushort *charfields; 9814 9815 wbuf = (ushort *)cfg_buf; 9816 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 9817 chksum = 0; 9818 9819 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9820 AdvWaitEEPCmd(iop_base); 9821 9822 /* 9823 * Write EEPROM from word 0 to word 20. 9824 */ 9825 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9826 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9827 ushort word; 9828 9829 if (*charfields++) { 9830 word = cpu_to_le16(*wbuf); 9831 } else { 9832 word = *wbuf; 9833 } 9834 chksum += *wbuf; /* Checksum is calculated from word values. */ 9835 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9836 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9837 ASC_EEP_CMD_WRITE | addr); 9838 AdvWaitEEPCmd(iop_base); 9839 mdelay(ADV_EEP_DELAY_MS); 9840 } 9841 9842 /* 9843 * Write EEPROM checksum at word 21. 9844 */ 9845 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9846 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9847 AdvWaitEEPCmd(iop_base); 9848 wbuf++; 9849 charfields++; 9850 9851 /* 9852 * Write EEPROM OEM name at words 22 to 29. 9853 */ 9854 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9855 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9856 ushort word; 9857 9858 if (*charfields++) { 9859 word = cpu_to_le16(*wbuf); 9860 } else { 9861 word = *wbuf; 9862 } 9863 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9864 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9865 ASC_EEP_CMD_WRITE | addr); 9866 AdvWaitEEPCmd(iop_base); 9867 } 9868 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9869 AdvWaitEEPCmd(iop_base); 9870 } 9871 9872 /* 9873 * Write the EEPROM from 'cfg_buf'. 9874 */ 9875 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base, 9876 ADVEEP_38C0800_CONFIG *cfg_buf) 9877 { 9878 ushort *wbuf; 9879 ushort *charfields; 9880 ushort addr, chksum; 9881 9882 wbuf = (ushort *)cfg_buf; 9883 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 9884 chksum = 0; 9885 9886 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9887 AdvWaitEEPCmd(iop_base); 9888 9889 /* 9890 * Write EEPROM from word 0 to word 20. 9891 */ 9892 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9893 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9894 ushort word; 9895 9896 if (*charfields++) { 9897 word = cpu_to_le16(*wbuf); 9898 } else { 9899 word = *wbuf; 9900 } 9901 chksum += *wbuf; /* Checksum is calculated from word values. */ 9902 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9903 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9904 ASC_EEP_CMD_WRITE | addr); 9905 AdvWaitEEPCmd(iop_base); 9906 mdelay(ADV_EEP_DELAY_MS); 9907 } 9908 9909 /* 9910 * Write EEPROM checksum at word 21. 9911 */ 9912 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9913 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9914 AdvWaitEEPCmd(iop_base); 9915 wbuf++; 9916 charfields++; 9917 9918 /* 9919 * Write EEPROM OEM name at words 22 to 29. 9920 */ 9921 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9922 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9923 ushort word; 9924 9925 if (*charfields++) { 9926 word = cpu_to_le16(*wbuf); 9927 } else { 9928 word = *wbuf; 9929 } 9930 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9931 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9932 ASC_EEP_CMD_WRITE | addr); 9933 AdvWaitEEPCmd(iop_base); 9934 } 9935 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 9936 AdvWaitEEPCmd(iop_base); 9937 } 9938 9939 /* 9940 * Write the EEPROM from 'cfg_buf'. 9941 */ 9942 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base, 9943 ADVEEP_38C1600_CONFIG *cfg_buf) 9944 { 9945 ushort *wbuf; 9946 ushort *charfields; 9947 ushort addr, chksum; 9948 9949 wbuf = (ushort *)cfg_buf; 9950 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 9951 chksum = 0; 9952 9953 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 9954 AdvWaitEEPCmd(iop_base); 9955 9956 /* 9957 * Write EEPROM from word 0 to word 20. 9958 */ 9959 for (addr = ADV_EEP_DVC_CFG_BEGIN; 9960 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 9961 ushort word; 9962 9963 if (*charfields++) { 9964 word = cpu_to_le16(*wbuf); 9965 } else { 9966 word = *wbuf; 9967 } 9968 chksum += *wbuf; /* Checksum is calculated from word values. */ 9969 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9970 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9971 ASC_EEP_CMD_WRITE | addr); 9972 AdvWaitEEPCmd(iop_base); 9973 mdelay(ADV_EEP_DELAY_MS); 9974 } 9975 9976 /* 9977 * Write EEPROM checksum at word 21. 9978 */ 9979 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 9980 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 9981 AdvWaitEEPCmd(iop_base); 9982 wbuf++; 9983 charfields++; 9984 9985 /* 9986 * Write EEPROM OEM name at words 22 to 29. 9987 */ 9988 for (addr = ADV_EEP_DVC_CTL_BEGIN; 9989 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 9990 ushort word; 9991 9992 if (*charfields++) { 9993 word = cpu_to_le16(*wbuf); 9994 } else { 9995 word = *wbuf; 9996 } 9997 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 9998 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 9999 ASC_EEP_CMD_WRITE | addr); 10000 AdvWaitEEPCmd(iop_base); 10001 } 10002 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 10003 AdvWaitEEPCmd(iop_base); 10004 } 10005 10006 /* 10007 * Read EEPROM configuration into the specified buffer. 10008 * 10009 * Return a checksum based on the EEPROM configuration read. 10010 */ 10011 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base, 10012 ADVEEP_3550_CONFIG *cfg_buf) 10013 { 10014 ushort wval, chksum; 10015 ushort *wbuf; 10016 int eep_addr; 10017 ushort *charfields; 10018 10019 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 10020 wbuf = (ushort *)cfg_buf; 10021 chksum = 0; 10022 10023 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10024 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10025 wval = AdvReadEEPWord(iop_base, eep_addr); 10026 chksum += wval; /* Checksum is calculated from word values. */ 10027 if (*charfields++) { 10028 *wbuf = le16_to_cpu(wval); 10029 } else { 10030 *wbuf = wval; 10031 } 10032 } 10033 /* Read checksum word. */ 10034 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10035 wbuf++; 10036 charfields++; 10037 10038 /* Read rest of EEPROM not covered by the checksum. */ 10039 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10040 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10041 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10042 if (*charfields++) { 10043 *wbuf = le16_to_cpu(*wbuf); 10044 } 10045 } 10046 return chksum; 10047 } 10048 10049 /* 10050 * Read EEPROM configuration into the specified buffer. 10051 * 10052 * Return a checksum based on the EEPROM configuration read. 10053 */ 10054 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base, 10055 ADVEEP_38C0800_CONFIG *cfg_buf) 10056 { 10057 ushort wval, chksum; 10058 ushort *wbuf; 10059 int eep_addr; 10060 ushort *charfields; 10061 10062 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 10063 wbuf = (ushort *)cfg_buf; 10064 chksum = 0; 10065 10066 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10067 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10068 wval = AdvReadEEPWord(iop_base, eep_addr); 10069 chksum += wval; /* Checksum is calculated from word values. */ 10070 if (*charfields++) { 10071 *wbuf = le16_to_cpu(wval); 10072 } else { 10073 *wbuf = wval; 10074 } 10075 } 10076 /* Read checksum word. */ 10077 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10078 wbuf++; 10079 charfields++; 10080 10081 /* Read rest of EEPROM not covered by the checksum. */ 10082 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10083 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10084 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10085 if (*charfields++) { 10086 *wbuf = le16_to_cpu(*wbuf); 10087 } 10088 } 10089 return chksum; 10090 } 10091 10092 /* 10093 * Read EEPROM configuration into the specified buffer. 10094 * 10095 * Return a checksum based on the EEPROM configuration read. 10096 */ 10097 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base, 10098 ADVEEP_38C1600_CONFIG *cfg_buf) 10099 { 10100 ushort wval, chksum; 10101 ushort *wbuf; 10102 int eep_addr; 10103 ushort *charfields; 10104 10105 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 10106 wbuf = (ushort *)cfg_buf; 10107 chksum = 0; 10108 10109 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10110 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10111 wval = AdvReadEEPWord(iop_base, eep_addr); 10112 chksum += wval; /* Checksum is calculated from word values. */ 10113 if (*charfields++) { 10114 *wbuf = le16_to_cpu(wval); 10115 } else { 10116 *wbuf = wval; 10117 } 10118 } 10119 /* Read checksum word. */ 10120 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10121 wbuf++; 10122 charfields++; 10123 10124 /* Read rest of EEPROM not covered by the checksum. */ 10125 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10126 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10127 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10128 if (*charfields++) { 10129 *wbuf = le16_to_cpu(*wbuf); 10130 } 10131 } 10132 return chksum; 10133 } 10134 10135 /* 10136 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 10137 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 10138 * all of this is done. 10139 * 10140 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10141 * 10142 * For a non-fatal error return a warning code. If there are no warnings 10143 * then 0 is returned. 10144 * 10145 * Note: Chip is stopped on entry. 10146 */ 10147 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc) 10148 { 10149 AdvPortAddr iop_base; 10150 ushort warn_code; 10151 ADVEEP_3550_CONFIG eep_config; 10152 10153 iop_base = asc_dvc->iop_base; 10154 10155 warn_code = 0; 10156 10157 /* 10158 * Read the board's EEPROM configuration. 10159 * 10160 * Set default values if a bad checksum is found. 10161 */ 10162 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { 10163 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10164 10165 /* 10166 * Set EEPROM default values. 10167 */ 10168 memcpy(&eep_config, &Default_3550_EEPROM_Config, 10169 sizeof(ADVEEP_3550_CONFIG)); 10170 10171 /* 10172 * Assume the 6 byte board serial number that was read from 10173 * EEPROM is correct even if the EEPROM checksum failed. 10174 */ 10175 eep_config.serial_number_word3 = 10176 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10177 10178 eep_config.serial_number_word2 = 10179 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10180 10181 eep_config.serial_number_word1 = 10182 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10183 10184 AdvSet3550EEPConfig(iop_base, &eep_config); 10185 } 10186 /* 10187 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 10188 * EEPROM configuration that was read. 10189 * 10190 * This is the mapping of EEPROM fields to Adv Library fields. 10191 */ 10192 asc_dvc->wdtr_able = eep_config.wdtr_able; 10193 asc_dvc->sdtr_able = eep_config.sdtr_able; 10194 asc_dvc->ultra_able = eep_config.ultra_able; 10195 asc_dvc->tagqng_able = eep_config.tagqng_able; 10196 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10197 asc_dvc->max_host_qng = eep_config.max_host_qng; 10198 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10199 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10200 asc_dvc->start_motor = eep_config.start_motor; 10201 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10202 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10203 asc_dvc->no_scam = eep_config.scam_tolerant; 10204 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10205 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10206 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10207 10208 /* 10209 * Set the host maximum queuing (max. 253, min. 16) and the per device 10210 * maximum queuing (max. 63, min. 4). 10211 */ 10212 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10213 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10214 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10215 /* If the value is zero, assume it is uninitialized. */ 10216 if (eep_config.max_host_qng == 0) { 10217 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10218 } else { 10219 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10220 } 10221 } 10222 10223 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10224 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10225 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10226 /* If the value is zero, assume it is uninitialized. */ 10227 if (eep_config.max_dvc_qng == 0) { 10228 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10229 } else { 10230 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10231 } 10232 } 10233 10234 /* 10235 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10236 * set 'max_dvc_qng' to 'max_host_qng'. 10237 */ 10238 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10239 eep_config.max_dvc_qng = eep_config.max_host_qng; 10240 } 10241 10242 /* 10243 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10244 * values based on possibly adjusted EEPROM values. 10245 */ 10246 asc_dvc->max_host_qng = eep_config.max_host_qng; 10247 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10248 10249 /* 10250 * If the EEPROM 'termination' field is set to automatic (0), then set 10251 * the ADV_DVC_CFG 'termination' field to automatic also. 10252 * 10253 * If the termination is specified with a non-zero 'termination' 10254 * value check that a legal value is set and set the ADV_DVC_CFG 10255 * 'termination' field appropriately. 10256 */ 10257 if (eep_config.termination == 0) { 10258 asc_dvc->cfg->termination = 0; /* auto termination */ 10259 } else { 10260 /* Enable manual control with low off / high off. */ 10261 if (eep_config.termination == 1) { 10262 asc_dvc->cfg->termination = TERM_CTL_SEL; 10263 10264 /* Enable manual control with low off / high on. */ 10265 } else if (eep_config.termination == 2) { 10266 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H; 10267 10268 /* Enable manual control with low on / high on. */ 10269 } else if (eep_config.termination == 3) { 10270 asc_dvc->cfg->termination = 10271 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L; 10272 } else { 10273 /* 10274 * The EEPROM 'termination' field contains a bad value. Use 10275 * automatic termination instead. 10276 */ 10277 asc_dvc->cfg->termination = 0; 10278 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10279 } 10280 } 10281 10282 return warn_code; 10283 } 10284 10285 /* 10286 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 10287 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 10288 * all of this is done. 10289 * 10290 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10291 * 10292 * For a non-fatal error return a warning code. If there are no warnings 10293 * then 0 is returned. 10294 * 10295 * Note: Chip is stopped on entry. 10296 */ 10297 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc) 10298 { 10299 AdvPortAddr iop_base; 10300 ushort warn_code; 10301 ADVEEP_38C0800_CONFIG eep_config; 10302 uchar tid, termination; 10303 ushort sdtr_speed = 0; 10304 10305 iop_base = asc_dvc->iop_base; 10306 10307 warn_code = 0; 10308 10309 /* 10310 * Read the board's EEPROM configuration. 10311 * 10312 * Set default values if a bad checksum is found. 10313 */ 10314 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) != 10315 eep_config.check_sum) { 10316 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10317 10318 /* 10319 * Set EEPROM default values. 10320 */ 10321 memcpy(&eep_config, &Default_38C0800_EEPROM_Config, 10322 sizeof(ADVEEP_38C0800_CONFIG)); 10323 10324 /* 10325 * Assume the 6 byte board serial number that was read from 10326 * EEPROM is correct even if the EEPROM checksum failed. 10327 */ 10328 eep_config.serial_number_word3 = 10329 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10330 10331 eep_config.serial_number_word2 = 10332 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10333 10334 eep_config.serial_number_word1 = 10335 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10336 10337 AdvSet38C0800EEPConfig(iop_base, &eep_config); 10338 } 10339 /* 10340 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the 10341 * EEPROM configuration that was read. 10342 * 10343 * This is the mapping of EEPROM fields to Adv Library fields. 10344 */ 10345 asc_dvc->wdtr_able = eep_config.wdtr_able; 10346 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 10347 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 10348 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 10349 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 10350 asc_dvc->tagqng_able = eep_config.tagqng_able; 10351 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10352 asc_dvc->max_host_qng = eep_config.max_host_qng; 10353 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10354 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 10355 asc_dvc->start_motor = eep_config.start_motor; 10356 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10357 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10358 asc_dvc->no_scam = eep_config.scam_tolerant; 10359 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 10360 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 10361 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 10362 10363 /* 10364 * For every Target ID if any of its 'sdtr_speed[1234]' bits 10365 * are set, then set an 'sdtr_able' bit for it. 10366 */ 10367 asc_dvc->sdtr_able = 0; 10368 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 10369 if (tid == 0) { 10370 sdtr_speed = asc_dvc->sdtr_speed1; 10371 } else if (tid == 4) { 10372 sdtr_speed = asc_dvc->sdtr_speed2; 10373 } else if (tid == 8) { 10374 sdtr_speed = asc_dvc->sdtr_speed3; 10375 } else if (tid == 12) { 10376 sdtr_speed = asc_dvc->sdtr_speed4; 10377 } 10378 if (sdtr_speed & ADV_MAX_TID) { 10379 asc_dvc->sdtr_able |= (1 << tid); 10380 } 10381 sdtr_speed >>= 4; 10382 } 10383 10384 /* 10385 * Set the host maximum queuing (max. 253, min. 16) and the per device 10386 * maximum queuing (max. 63, min. 4). 10387 */ 10388 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10389 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10390 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10391 /* If the value is zero, assume it is uninitialized. */ 10392 if (eep_config.max_host_qng == 0) { 10393 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10394 } else { 10395 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10396 } 10397 } 10398 10399 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10400 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10401 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10402 /* If the value is zero, assume it is uninitialized. */ 10403 if (eep_config.max_dvc_qng == 0) { 10404 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10405 } else { 10406 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10407 } 10408 } 10409 10410 /* 10411 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10412 * set 'max_dvc_qng' to 'max_host_qng'. 10413 */ 10414 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10415 eep_config.max_dvc_qng = eep_config.max_host_qng; 10416 } 10417 10418 /* 10419 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 10420 * values based on possibly adjusted EEPROM values. 10421 */ 10422 asc_dvc->max_host_qng = eep_config.max_host_qng; 10423 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10424 10425 /* 10426 * If the EEPROM 'termination' field is set to automatic (0), then set 10427 * the ADV_DVC_CFG 'termination' field to automatic also. 10428 * 10429 * If the termination is specified with a non-zero 'termination' 10430 * value check that a legal value is set and set the ADV_DVC_CFG 10431 * 'termination' field appropriately. 10432 */ 10433 if (eep_config.termination_se == 0) { 10434 termination = 0; /* auto termination for SE */ 10435 } else { 10436 /* Enable manual control with low off / high off. */ 10437 if (eep_config.termination_se == 1) { 10438 termination = 0; 10439 10440 /* Enable manual control with low off / high on. */ 10441 } else if (eep_config.termination_se == 2) { 10442 termination = TERM_SE_HI; 10443 10444 /* Enable manual control with low on / high on. */ 10445 } else if (eep_config.termination_se == 3) { 10446 termination = TERM_SE; 10447 } else { 10448 /* 10449 * The EEPROM 'termination_se' field contains a bad value. 10450 * Use automatic termination instead. 10451 */ 10452 termination = 0; 10453 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10454 } 10455 } 10456 10457 if (eep_config.termination_lvd == 0) { 10458 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 10459 } else { 10460 /* Enable manual control with low off / high off. */ 10461 if (eep_config.termination_lvd == 1) { 10462 asc_dvc->cfg->termination = termination; 10463 10464 /* Enable manual control with low off / high on. */ 10465 } else if (eep_config.termination_lvd == 2) { 10466 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 10467 10468 /* Enable manual control with low on / high on. */ 10469 } else if (eep_config.termination_lvd == 3) { 10470 asc_dvc->cfg->termination = termination | TERM_LVD; 10471 } else { 10472 /* 10473 * The EEPROM 'termination_lvd' field contains a bad value. 10474 * Use automatic termination instead. 10475 */ 10476 asc_dvc->cfg->termination = termination; 10477 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10478 } 10479 } 10480 10481 return warn_code; 10482 } 10483 10484 /* 10485 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and 10486 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while 10487 * all of this is done. 10488 * 10489 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 10490 * 10491 * For a non-fatal error return a warning code. If there are no warnings 10492 * then 0 is returned. 10493 * 10494 * Note: Chip is stopped on entry. 10495 */ 10496 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc) 10497 { 10498 AdvPortAddr iop_base; 10499 ushort warn_code; 10500 ADVEEP_38C1600_CONFIG eep_config; 10501 uchar tid, termination; 10502 ushort sdtr_speed = 0; 10503 10504 iop_base = asc_dvc->iop_base; 10505 10506 warn_code = 0; 10507 10508 /* 10509 * Read the board's EEPROM configuration. 10510 * 10511 * Set default values if a bad checksum is found. 10512 */ 10513 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) != 10514 eep_config.check_sum) { 10515 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 10516 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10517 10518 /* 10519 * Set EEPROM default values. 10520 */ 10521 memcpy(&eep_config, &Default_38C1600_EEPROM_Config, 10522 sizeof(ADVEEP_38C1600_CONFIG)); 10523 10524 if (PCI_FUNC(pdev->devfn) != 0) { 10525 u8 ints; 10526 /* 10527 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 10528 * and old Mac system booting problem. The Expansion 10529 * ROM must be disabled in Function 1 for these systems 10530 */ 10531 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE; 10532 /* 10533 * Clear the INTAB (bit 11) if the GPIO 0 input 10534 * indicates the Function 1 interrupt line is wired 10535 * to INTB. 10536 * 10537 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input: 10538 * 1 - Function 1 interrupt line wired to INT A. 10539 * 0 - Function 1 interrupt line wired to INT B. 10540 * 10541 * Note: Function 0 is always wired to INTA. 10542 * Put all 5 GPIO bits in input mode and then read 10543 * their input values. 10544 */ 10545 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0); 10546 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA); 10547 if ((ints & 0x01) == 0) 10548 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB; 10549 } 10550 10551 /* 10552 * Assume the 6 byte board serial number that was read from 10553 * EEPROM is correct even if the EEPROM checksum failed. 10554 */ 10555 eep_config.serial_number_word3 = 10556 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 10557 eep_config.serial_number_word2 = 10558 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 10559 eep_config.serial_number_word1 = 10560 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 10561 10562 AdvSet38C1600EEPConfig(iop_base, &eep_config); 10563 } 10564 10565 /* 10566 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 10567 * EEPROM configuration that was read. 10568 * 10569 * This is the mapping of EEPROM fields to Adv Library fields. 10570 */ 10571 asc_dvc->wdtr_able = eep_config.wdtr_able; 10572 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 10573 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 10574 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 10575 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 10576 asc_dvc->ppr_able = 0; 10577 asc_dvc->tagqng_able = eep_config.tagqng_able; 10578 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 10579 asc_dvc->max_host_qng = eep_config.max_host_qng; 10580 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10581 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID); 10582 asc_dvc->start_motor = eep_config.start_motor; 10583 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 10584 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 10585 asc_dvc->no_scam = eep_config.scam_tolerant; 10586 10587 /* 10588 * For every Target ID if any of its 'sdtr_speed[1234]' bits 10589 * are set, then set an 'sdtr_able' bit for it. 10590 */ 10591 asc_dvc->sdtr_able = 0; 10592 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 10593 if (tid == 0) { 10594 sdtr_speed = asc_dvc->sdtr_speed1; 10595 } else if (tid == 4) { 10596 sdtr_speed = asc_dvc->sdtr_speed2; 10597 } else if (tid == 8) { 10598 sdtr_speed = asc_dvc->sdtr_speed3; 10599 } else if (tid == 12) { 10600 sdtr_speed = asc_dvc->sdtr_speed4; 10601 } 10602 if (sdtr_speed & ASC_MAX_TID) { 10603 asc_dvc->sdtr_able |= (1 << tid); 10604 } 10605 sdtr_speed >>= 4; 10606 } 10607 10608 /* 10609 * Set the host maximum queuing (max. 253, min. 16) and the per device 10610 * maximum queuing (max. 63, min. 4). 10611 */ 10612 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 10613 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10614 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 10615 /* If the value is zero, assume it is uninitialized. */ 10616 if (eep_config.max_host_qng == 0) { 10617 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 10618 } else { 10619 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 10620 } 10621 } 10622 10623 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 10624 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10625 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 10626 /* If the value is zero, assume it is uninitialized. */ 10627 if (eep_config.max_dvc_qng == 0) { 10628 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 10629 } else { 10630 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 10631 } 10632 } 10633 10634 /* 10635 * If 'max_dvc_qng' is greater than 'max_host_qng', then 10636 * set 'max_dvc_qng' to 'max_host_qng'. 10637 */ 10638 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 10639 eep_config.max_dvc_qng = eep_config.max_host_qng; 10640 } 10641 10642 /* 10643 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng' 10644 * values based on possibly adjusted EEPROM values. 10645 */ 10646 asc_dvc->max_host_qng = eep_config.max_host_qng; 10647 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 10648 10649 /* 10650 * If the EEPROM 'termination' field is set to automatic (0), then set 10651 * the ASC_DVC_CFG 'termination' field to automatic also. 10652 * 10653 * If the termination is specified with a non-zero 'termination' 10654 * value check that a legal value is set and set the ASC_DVC_CFG 10655 * 'termination' field appropriately. 10656 */ 10657 if (eep_config.termination_se == 0) { 10658 termination = 0; /* auto termination for SE */ 10659 } else { 10660 /* Enable manual control with low off / high off. */ 10661 if (eep_config.termination_se == 1) { 10662 termination = 0; 10663 10664 /* Enable manual control with low off / high on. */ 10665 } else if (eep_config.termination_se == 2) { 10666 termination = TERM_SE_HI; 10667 10668 /* Enable manual control with low on / high on. */ 10669 } else if (eep_config.termination_se == 3) { 10670 termination = TERM_SE; 10671 } else { 10672 /* 10673 * The EEPROM 'termination_se' field contains a bad value. 10674 * Use automatic termination instead. 10675 */ 10676 termination = 0; 10677 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10678 } 10679 } 10680 10681 if (eep_config.termination_lvd == 0) { 10682 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 10683 } else { 10684 /* Enable manual control with low off / high off. */ 10685 if (eep_config.termination_lvd == 1) { 10686 asc_dvc->cfg->termination = termination; 10687 10688 /* Enable manual control with low off / high on. */ 10689 } else if (eep_config.termination_lvd == 2) { 10690 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 10691 10692 /* Enable manual control with low on / high on. */ 10693 } else if (eep_config.termination_lvd == 3) { 10694 asc_dvc->cfg->termination = termination | TERM_LVD; 10695 } else { 10696 /* 10697 * The EEPROM 'termination_lvd' field contains a bad value. 10698 * Use automatic termination instead. 10699 */ 10700 asc_dvc->cfg->termination = termination; 10701 warn_code |= ASC_WARN_EEPROM_TERMINATION; 10702 } 10703 } 10704 10705 return warn_code; 10706 } 10707 10708 /* 10709 * Initialize the ADV_DVC_VAR structure. 10710 * 10711 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 10712 * 10713 * For a non-fatal error return a warning code. If there are no warnings 10714 * then 0 is returned. 10715 */ 10716 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 10717 { 10718 struct asc_board *board = shost_priv(shost); 10719 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var; 10720 unsigned short warn_code = 0; 10721 AdvPortAddr iop_base = asc_dvc->iop_base; 10722 u16 cmd; 10723 int status; 10724 10725 asc_dvc->err_code = 0; 10726 10727 /* 10728 * Save the state of the PCI Configuration Command Register 10729 * "Parity Error Response Control" Bit. If the bit is clear (0), 10730 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore 10731 * DMA parity errors. 10732 */ 10733 asc_dvc->cfg->control_flag = 0; 10734 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 10735 if ((cmd & PCI_COMMAND_PARITY) == 0) 10736 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR; 10737 10738 asc_dvc->cfg->chip_version = 10739 AdvGetChipVersion(iop_base, asc_dvc->bus_type); 10740 10741 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n", 10742 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1), 10743 (ushort)ADV_CHIP_ID_BYTE); 10744 10745 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n", 10746 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0), 10747 (ushort)ADV_CHIP_ID_WORD); 10748 10749 /* 10750 * Reset the chip to start and allow register writes. 10751 */ 10752 if (AdvFindSignature(iop_base) == 0) { 10753 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 10754 return ADV_ERROR; 10755 } else { 10756 /* 10757 * The caller must set 'chip_type' to a valid setting. 10758 */ 10759 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 && 10760 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 && 10761 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 10762 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE; 10763 return ADV_ERROR; 10764 } 10765 10766 /* 10767 * Reset Chip. 10768 */ 10769 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 10770 ADV_CTRL_REG_CMD_RESET); 10771 mdelay(100); 10772 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 10773 ADV_CTRL_REG_CMD_WR_IO_REG); 10774 10775 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 10776 status = AdvInitFrom38C1600EEP(asc_dvc); 10777 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 10778 status = AdvInitFrom38C0800EEP(asc_dvc); 10779 } else { 10780 status = AdvInitFrom3550EEP(asc_dvc); 10781 } 10782 warn_code |= status; 10783 } 10784 10785 if (warn_code != 0) 10786 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code); 10787 10788 if (asc_dvc->err_code) 10789 shost_printk(KERN_ERR, shost, "error code 0x%x\n", 10790 asc_dvc->err_code); 10791 10792 return asc_dvc->err_code; 10793 } 10794 #endif 10795 10796 static struct scsi_host_template advansys_template = { 10797 .proc_name = DRV_NAME, 10798 #ifdef CONFIG_PROC_FS 10799 .show_info = advansys_show_info, 10800 #endif 10801 .name = DRV_NAME, 10802 .info = advansys_info, 10803 .queuecommand = advansys_queuecommand, 10804 .eh_host_reset_handler = advansys_reset, 10805 .bios_param = advansys_biosparam, 10806 .slave_configure = advansys_slave_configure, 10807 /* 10808 * Because the driver may control an ISA adapter 'unchecked_isa_dma' 10809 * must be set. The flag will be cleared in advansys_board_found 10810 * for non-ISA adapters. 10811 */ 10812 .unchecked_isa_dma = true, 10813 /* 10814 * All adapters controlled by this driver are capable of large 10815 * scatter-gather lists. According to the mid-level SCSI documentation 10816 * this obviates any performance gain provided by setting 10817 * 'use_clustering'. But empirically while CPU utilization is increased 10818 * by enabling clustering, I/O throughput increases as well. 10819 */ 10820 .use_clustering = ENABLE_CLUSTERING, 10821 }; 10822 10823 static int advansys_wide_init_chip(struct Scsi_Host *shost) 10824 { 10825 struct asc_board *board = shost_priv(shost); 10826 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 10827 size_t sgblk_pool_size; 10828 int warn_code, err_code; 10829 10830 /* 10831 * Allocate buffer carrier structures. The total size 10832 * is about 8 KB, so allocate all at once. 10833 */ 10834 adv_dvc->carrier = dma_alloc_coherent(board->dev, 10835 ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL); 10836 ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier); 10837 10838 if (!adv_dvc->carrier) 10839 goto kmalloc_failed; 10840 10841 /* 10842 * Allocate up to 'max_host_qng' request structures for the Wide 10843 * board. The total size is about 16 KB, so allocate all at once. 10844 * If the allocation fails decrement and try again. 10845 */ 10846 board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t); 10847 if (board->adv_reqp_size & 0x1f) { 10848 ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t)); 10849 board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size); 10850 } 10851 board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size, 10852 &board->adv_reqp_addr, GFP_KERNEL); 10853 10854 if (!board->adv_reqp) 10855 goto kmalloc_failed; 10856 10857 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp, 10858 adv_dvc->max_host_qng, board->adv_reqp_size); 10859 10860 /* 10861 * Allocate up to ADV_TOT_SG_BLOCK request structures for 10862 * the Wide board. Each structure is about 136 bytes. 10863 */ 10864 sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK; 10865 board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev, 10866 sgblk_pool_size, 32, 0); 10867 10868 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK, 10869 sizeof(adv_sgblk_t), sgblk_pool_size); 10870 10871 if (!board->adv_sgblk_pool) 10872 goto kmalloc_failed; 10873 10874 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) { 10875 ASC_DBG(2, "AdvInitAsc3550Driver()\n"); 10876 warn_code = AdvInitAsc3550Driver(adv_dvc); 10877 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) { 10878 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n"); 10879 warn_code = AdvInitAsc38C0800Driver(adv_dvc); 10880 } else { 10881 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n"); 10882 warn_code = AdvInitAsc38C1600Driver(adv_dvc); 10883 } 10884 err_code = adv_dvc->err_code; 10885 10886 if (warn_code || err_code) { 10887 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error " 10888 "0x%x\n", warn_code, err_code); 10889 } 10890 10891 goto exit; 10892 10893 kmalloc_failed: 10894 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n"); 10895 err_code = ADV_ERROR; 10896 exit: 10897 return err_code; 10898 } 10899 10900 static void advansys_wide_free_mem(struct asc_board *board) 10901 { 10902 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 10903 10904 if (adv_dvc->carrier) { 10905 dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE, 10906 adv_dvc->carrier, adv_dvc->carrier_addr); 10907 adv_dvc->carrier = NULL; 10908 } 10909 if (board->adv_reqp) { 10910 dma_free_coherent(board->dev, board->adv_reqp_size, 10911 board->adv_reqp, board->adv_reqp_addr); 10912 board->adv_reqp = NULL; 10913 } 10914 if (board->adv_sgblk_pool) { 10915 dma_pool_destroy(board->adv_sgblk_pool); 10916 board->adv_sgblk_pool = NULL; 10917 } 10918 } 10919 10920 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop, 10921 int bus_type) 10922 { 10923 struct pci_dev *pdev; 10924 struct asc_board *boardp = shost_priv(shost); 10925 ASC_DVC_VAR *asc_dvc_varp = NULL; 10926 ADV_DVC_VAR *adv_dvc_varp = NULL; 10927 int share_irq, warn_code, ret; 10928 10929 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL; 10930 10931 if (ASC_NARROW_BOARD(boardp)) { 10932 ASC_DBG(1, "narrow board\n"); 10933 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 10934 asc_dvc_varp->bus_type = bus_type; 10935 asc_dvc_varp->drv_ptr = boardp; 10936 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg; 10937 asc_dvc_varp->iop_base = iop; 10938 } else { 10939 #ifdef CONFIG_PCI 10940 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 10941 adv_dvc_varp->drv_ptr = boardp; 10942 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg; 10943 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) { 10944 ASC_DBG(1, "wide board ASC-3550\n"); 10945 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550; 10946 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) { 10947 ASC_DBG(1, "wide board ASC-38C0800\n"); 10948 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800; 10949 } else { 10950 ASC_DBG(1, "wide board ASC-38C1600\n"); 10951 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600; 10952 } 10953 10954 boardp->asc_n_io_port = pci_resource_len(pdev, 1); 10955 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1); 10956 if (!boardp->ioremap_addr) { 10957 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) " 10958 "returned NULL\n", 10959 (long)pci_resource_start(pdev, 1), 10960 boardp->asc_n_io_port); 10961 ret = -ENODEV; 10962 goto err_shost; 10963 } 10964 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr; 10965 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base); 10966 10967 /* 10968 * Even though it isn't used to access wide boards, other 10969 * than for the debug line below, save I/O Port address so 10970 * that it can be reported. 10971 */ 10972 boardp->ioport = iop; 10973 10974 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n", 10975 (ushort)inp(iop + 1), (ushort)inpw(iop)); 10976 #endif /* CONFIG_PCI */ 10977 } 10978 10979 if (ASC_NARROW_BOARD(boardp)) { 10980 /* 10981 * Set the board bus type and PCI IRQ before 10982 * calling AscInitGetConfig(). 10983 */ 10984 switch (asc_dvc_varp->bus_type) { 10985 #ifdef CONFIG_ISA 10986 case ASC_IS_ISA: 10987 shost->unchecked_isa_dma = true; 10988 share_irq = 0; 10989 break; 10990 case ASC_IS_VL: 10991 shost->unchecked_isa_dma = false; 10992 share_irq = 0; 10993 break; 10994 case ASC_IS_EISA: 10995 shost->unchecked_isa_dma = false; 10996 share_irq = IRQF_SHARED; 10997 break; 10998 #endif /* CONFIG_ISA */ 10999 #ifdef CONFIG_PCI 11000 case ASC_IS_PCI: 11001 shost->unchecked_isa_dma = false; 11002 share_irq = IRQF_SHARED; 11003 break; 11004 #endif /* CONFIG_PCI */ 11005 default: 11006 shost_printk(KERN_ERR, shost, "unknown adapter type: " 11007 "%d\n", asc_dvc_varp->bus_type); 11008 shost->unchecked_isa_dma = false; 11009 share_irq = 0; 11010 break; 11011 } 11012 11013 /* 11014 * NOTE: AscInitGetConfig() may change the board's 11015 * bus_type value. The bus_type value should no 11016 * longer be used. If the bus_type field must be 11017 * referenced only use the bit-wise AND operator "&". 11018 */ 11019 ASC_DBG(2, "AscInitGetConfig()\n"); 11020 ret = AscInitGetConfig(shost) ? -ENODEV : 0; 11021 } else { 11022 #ifdef CONFIG_PCI 11023 /* 11024 * For Wide boards set PCI information before calling 11025 * AdvInitGetConfig(). 11026 */ 11027 shost->unchecked_isa_dma = false; 11028 share_irq = IRQF_SHARED; 11029 ASC_DBG(2, "AdvInitGetConfig()\n"); 11030 11031 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0; 11032 #else 11033 share_irq = 0; 11034 ret = -ENODEV; 11035 #endif /* CONFIG_PCI */ 11036 } 11037 11038 if (ret) 11039 goto err_unmap; 11040 11041 /* 11042 * Save the EEPROM configuration so that it can be displayed 11043 * from /proc/scsi/advansys/[0...]. 11044 */ 11045 if (ASC_NARROW_BOARD(boardp)) { 11046 11047 ASCEEP_CONFIG *ep; 11048 11049 /* 11050 * Set the adapter's target id bit in the 'init_tidmask' field. 11051 */ 11052 boardp->init_tidmask |= 11053 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id); 11054 11055 /* 11056 * Save EEPROM settings for the board. 11057 */ 11058 ep = &boardp->eep_config.asc_eep; 11059 11060 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable; 11061 ep->disc_enable = asc_dvc_varp->cfg->disc_enable; 11062 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled; 11063 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed); 11064 ep->start_motor = asc_dvc_varp->start_motor; 11065 ep->cntl = asc_dvc_varp->dvc_cntl; 11066 ep->no_scam = asc_dvc_varp->no_scam; 11067 ep->max_total_qng = asc_dvc_varp->max_total_qng; 11068 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id); 11069 /* 'max_tag_qng' is set to the same value for every device. */ 11070 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0]; 11071 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0]; 11072 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1]; 11073 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2]; 11074 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3]; 11075 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4]; 11076 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5]; 11077 11078 /* 11079 * Modify board configuration. 11080 */ 11081 ASC_DBG(2, "AscInitSetConfig()\n"); 11082 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0; 11083 if (ret) 11084 goto err_unmap; 11085 } else { 11086 ADVEEP_3550_CONFIG *ep_3550; 11087 ADVEEP_38C0800_CONFIG *ep_38C0800; 11088 ADVEEP_38C1600_CONFIG *ep_38C1600; 11089 11090 /* 11091 * Save Wide EEP Configuration Information. 11092 */ 11093 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 11094 ep_3550 = &boardp->eep_config.adv_3550_eep; 11095 11096 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; 11097 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng; 11098 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11099 ep_3550->termination = adv_dvc_varp->cfg->termination; 11100 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable; 11101 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl; 11102 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able; 11103 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able; 11104 ep_3550->ultra_able = adv_dvc_varp->ultra_able; 11105 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able; 11106 ep_3550->start_motor = adv_dvc_varp->start_motor; 11107 ep_3550->scsi_reset_delay = 11108 adv_dvc_varp->scsi_reset_wait; 11109 ep_3550->serial_number_word1 = 11110 adv_dvc_varp->cfg->serial1; 11111 ep_3550->serial_number_word2 = 11112 adv_dvc_varp->cfg->serial2; 11113 ep_3550->serial_number_word3 = 11114 adv_dvc_varp->cfg->serial3; 11115 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 11116 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 11117 11118 ep_38C0800->adapter_scsi_id = 11119 adv_dvc_varp->chip_scsi_id; 11120 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng; 11121 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11122 ep_38C0800->termination_lvd = 11123 adv_dvc_varp->cfg->termination; 11124 ep_38C0800->disc_enable = 11125 adv_dvc_varp->cfg->disc_enable; 11126 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl; 11127 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able; 11128 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 11129 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 11130 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 11131 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 11132 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 11133 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 11134 ep_38C0800->start_motor = adv_dvc_varp->start_motor; 11135 ep_38C0800->scsi_reset_delay = 11136 adv_dvc_varp->scsi_reset_wait; 11137 ep_38C0800->serial_number_word1 = 11138 adv_dvc_varp->cfg->serial1; 11139 ep_38C0800->serial_number_word2 = 11140 adv_dvc_varp->cfg->serial2; 11141 ep_38C0800->serial_number_word3 = 11142 adv_dvc_varp->cfg->serial3; 11143 } else { 11144 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 11145 11146 ep_38C1600->adapter_scsi_id = 11147 adv_dvc_varp->chip_scsi_id; 11148 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng; 11149 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 11150 ep_38C1600->termination_lvd = 11151 adv_dvc_varp->cfg->termination; 11152 ep_38C1600->disc_enable = 11153 adv_dvc_varp->cfg->disc_enable; 11154 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl; 11155 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able; 11156 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 11157 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 11158 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 11159 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 11160 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 11161 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 11162 ep_38C1600->start_motor = adv_dvc_varp->start_motor; 11163 ep_38C1600->scsi_reset_delay = 11164 adv_dvc_varp->scsi_reset_wait; 11165 ep_38C1600->serial_number_word1 = 11166 adv_dvc_varp->cfg->serial1; 11167 ep_38C1600->serial_number_word2 = 11168 adv_dvc_varp->cfg->serial2; 11169 ep_38C1600->serial_number_word3 = 11170 adv_dvc_varp->cfg->serial3; 11171 } 11172 11173 /* 11174 * Set the adapter's target id bit in the 'init_tidmask' field. 11175 */ 11176 boardp->init_tidmask |= 11177 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id); 11178 } 11179 11180 /* 11181 * Channels are numbered beginning with 0. For AdvanSys one host 11182 * structure supports one channel. Multi-channel boards have a 11183 * separate host structure for each channel. 11184 */ 11185 shost->max_channel = 0; 11186 if (ASC_NARROW_BOARD(boardp)) { 11187 shost->max_id = ASC_MAX_TID + 1; 11188 shost->max_lun = ASC_MAX_LUN + 1; 11189 shost->max_cmd_len = ASC_MAX_CDB_LEN; 11190 11191 shost->io_port = asc_dvc_varp->iop_base; 11192 boardp->asc_n_io_port = ASC_IOADR_GAP; 11193 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id; 11194 11195 /* Set maximum number of queues the adapter can handle. */ 11196 shost->can_queue = asc_dvc_varp->max_total_qng; 11197 } else { 11198 shost->max_id = ADV_MAX_TID + 1; 11199 shost->max_lun = ADV_MAX_LUN + 1; 11200 shost->max_cmd_len = ADV_MAX_CDB_LEN; 11201 11202 /* 11203 * Save the I/O Port address and length even though 11204 * I/O ports are not used to access Wide boards. 11205 * Instead the Wide boards are accessed with 11206 * PCI Memory Mapped I/O. 11207 */ 11208 shost->io_port = iop; 11209 11210 shost->this_id = adv_dvc_varp->chip_scsi_id; 11211 11212 /* Set maximum number of queues the adapter can handle. */ 11213 shost->can_queue = adv_dvc_varp->max_host_qng; 11214 } 11215 11216 /* 11217 * Set the maximum number of scatter-gather elements the 11218 * adapter can handle. 11219 */ 11220 if (ASC_NARROW_BOARD(boardp)) { 11221 /* 11222 * Allow two commands with 'sg_tablesize' scatter-gather 11223 * elements to be executed simultaneously. This value is 11224 * the theoretical hardware limit. It may be decreased 11225 * below. 11226 */ 11227 shost->sg_tablesize = 11228 (((asc_dvc_varp->max_total_qng - 2) / 2) * 11229 ASC_SG_LIST_PER_Q) + 1; 11230 } else { 11231 shost->sg_tablesize = ADV_MAX_SG_LIST; 11232 } 11233 11234 /* 11235 * The value of 'sg_tablesize' can not exceed the SCSI 11236 * mid-level driver definition of SG_ALL. SG_ALL also 11237 * must not be exceeded, because it is used to define the 11238 * size of the scatter-gather table in 'struct asc_sg_head'. 11239 */ 11240 if (shost->sg_tablesize > SG_ALL) { 11241 shost->sg_tablesize = SG_ALL; 11242 } 11243 11244 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize); 11245 11246 /* BIOS start address. */ 11247 if (ASC_NARROW_BOARD(boardp)) { 11248 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base, 11249 asc_dvc_varp->bus_type); 11250 } else { 11251 /* 11252 * Fill-in BIOS board variables. The Wide BIOS saves 11253 * information in LRAM that is used by the driver. 11254 */ 11255 AdvReadWordLram(adv_dvc_varp->iop_base, 11256 BIOS_SIGNATURE, boardp->bios_signature); 11257 AdvReadWordLram(adv_dvc_varp->iop_base, 11258 BIOS_VERSION, boardp->bios_version); 11259 AdvReadWordLram(adv_dvc_varp->iop_base, 11260 BIOS_CODESEG, boardp->bios_codeseg); 11261 AdvReadWordLram(adv_dvc_varp->iop_base, 11262 BIOS_CODELEN, boardp->bios_codelen); 11263 11264 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n", 11265 boardp->bios_signature, boardp->bios_version); 11266 11267 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n", 11268 boardp->bios_codeseg, boardp->bios_codelen); 11269 11270 /* 11271 * If the BIOS saved a valid signature, then fill in 11272 * the BIOS code segment base address. 11273 */ 11274 if (boardp->bios_signature == 0x55AA) { 11275 /* 11276 * Convert x86 realmode code segment to a linear 11277 * address by shifting left 4. 11278 */ 11279 shost->base = ((ulong)boardp->bios_codeseg << 4); 11280 } else { 11281 shost->base = 0; 11282 } 11283 } 11284 11285 /* 11286 * Register Board Resources - I/O Port, DMA, IRQ 11287 */ 11288 11289 /* Register DMA Channel for Narrow boards. */ 11290 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */ 11291 #ifdef CONFIG_ISA 11292 if (ASC_NARROW_BOARD(boardp)) { 11293 /* Register DMA channel for ISA bus. */ 11294 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 11295 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel; 11296 ret = request_dma(shost->dma_channel, DRV_NAME); 11297 if (ret) { 11298 shost_printk(KERN_ERR, shost, "request_dma() " 11299 "%d failed %d\n", 11300 shost->dma_channel, ret); 11301 goto err_unmap; 11302 } 11303 AscEnableIsaDma(shost->dma_channel); 11304 } 11305 } 11306 #endif /* CONFIG_ISA */ 11307 11308 /* Register IRQ Number. */ 11309 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost); 11310 11311 ret = request_irq(boardp->irq, advansys_interrupt, share_irq, 11312 DRV_NAME, shost); 11313 11314 if (ret) { 11315 if (ret == -EBUSY) { 11316 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11317 "already in use\n", boardp->irq); 11318 } else if (ret == -EINVAL) { 11319 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11320 "not valid\n", boardp->irq); 11321 } else { 11322 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 11323 "failed with %d\n", boardp->irq, ret); 11324 } 11325 goto err_free_dma; 11326 } 11327 11328 /* 11329 * Initialize board RISC chip and enable interrupts. 11330 */ 11331 if (ASC_NARROW_BOARD(boardp)) { 11332 ASC_DBG(2, "AscInitAsc1000Driver()\n"); 11333 11334 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL); 11335 if (!asc_dvc_varp->overrun_buf) { 11336 ret = -ENOMEM; 11337 goto err_free_irq; 11338 } 11339 warn_code = AscInitAsc1000Driver(asc_dvc_varp); 11340 11341 if (warn_code || asc_dvc_varp->err_code) { 11342 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, " 11343 "warn 0x%x, error 0x%x\n", 11344 asc_dvc_varp->init_state, warn_code, 11345 asc_dvc_varp->err_code); 11346 if (!asc_dvc_varp->overrun_dma) { 11347 ret = -ENODEV; 11348 goto err_free_mem; 11349 } 11350 } 11351 } else { 11352 if (advansys_wide_init_chip(shost)) { 11353 ret = -ENODEV; 11354 goto err_free_mem; 11355 } 11356 } 11357 11358 ASC_DBG_PRT_SCSI_HOST(2, shost); 11359 11360 ret = scsi_add_host(shost, boardp->dev); 11361 if (ret) 11362 goto err_free_mem; 11363 11364 scsi_scan_host(shost); 11365 return 0; 11366 11367 err_free_mem: 11368 if (ASC_NARROW_BOARD(boardp)) { 11369 if (asc_dvc_varp->overrun_dma) 11370 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma, 11371 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11372 kfree(asc_dvc_varp->overrun_buf); 11373 } else 11374 advansys_wide_free_mem(boardp); 11375 err_free_irq: 11376 free_irq(boardp->irq, shost); 11377 err_free_dma: 11378 #ifdef CONFIG_ISA 11379 if (shost->dma_channel != NO_ISA_DMA) 11380 free_dma(shost->dma_channel); 11381 #endif 11382 err_unmap: 11383 if (boardp->ioremap_addr) 11384 iounmap(boardp->ioremap_addr); 11385 #ifdef CONFIG_PCI 11386 err_shost: 11387 #endif 11388 return ret; 11389 } 11390 11391 /* 11392 * advansys_release() 11393 * 11394 * Release resources allocated for a single AdvanSys adapter. 11395 */ 11396 static int advansys_release(struct Scsi_Host *shost) 11397 { 11398 struct asc_board *board = shost_priv(shost); 11399 ASC_DBG(1, "begin\n"); 11400 scsi_remove_host(shost); 11401 free_irq(board->irq, shost); 11402 #ifdef CONFIG_ISA 11403 if (shost->dma_channel != NO_ISA_DMA) { 11404 ASC_DBG(1, "free_dma()\n"); 11405 free_dma(shost->dma_channel); 11406 } 11407 #endif 11408 if (ASC_NARROW_BOARD(board)) { 11409 dma_unmap_single(board->dev, 11410 board->dvc_var.asc_dvc_var.overrun_dma, 11411 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 11412 kfree(board->dvc_var.asc_dvc_var.overrun_buf); 11413 } else { 11414 iounmap(board->ioremap_addr); 11415 advansys_wide_free_mem(board); 11416 } 11417 scsi_host_put(shost); 11418 ASC_DBG(1, "end\n"); 11419 return 0; 11420 } 11421 11422 #define ASC_IOADR_TABLE_MAX_IX 11 11423 11424 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = { 11425 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190, 11426 0x0210, 0x0230, 0x0250, 0x0330 11427 }; 11428 11429 /* 11430 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as: 11431 * 00: 10 11432 * 01: 11 11433 * 10: 12 11434 * 11: 15 11435 */ 11436 static unsigned int advansys_isa_irq_no(PortAddr iop_base) 11437 { 11438 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 11439 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10; 11440 if (chip_irq == 13) 11441 chip_irq = 15; 11442 return chip_irq; 11443 } 11444 11445 static int advansys_isa_probe(struct device *dev, unsigned int id) 11446 { 11447 int err = -ENODEV; 11448 PortAddr iop_base = _asc_def_iop_base[id]; 11449 struct Scsi_Host *shost; 11450 struct asc_board *board; 11451 11452 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 11453 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 11454 return -ENODEV; 11455 } 11456 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 11457 if (!AscFindSignature(iop_base)) 11458 goto release_region; 11459 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT)) 11460 goto release_region; 11461 11462 err = -ENOMEM; 11463 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11464 if (!shost) 11465 goto release_region; 11466 11467 board = shost_priv(shost); 11468 board->irq = advansys_isa_irq_no(iop_base); 11469 board->dev = dev; 11470 board->shost = shost; 11471 11472 err = advansys_board_found(shost, iop_base, ASC_IS_ISA); 11473 if (err) 11474 goto free_host; 11475 11476 dev_set_drvdata(dev, shost); 11477 return 0; 11478 11479 free_host: 11480 scsi_host_put(shost); 11481 release_region: 11482 release_region(iop_base, ASC_IOADR_GAP); 11483 return err; 11484 } 11485 11486 static int advansys_isa_remove(struct device *dev, unsigned int id) 11487 { 11488 int ioport = _asc_def_iop_base[id]; 11489 advansys_release(dev_get_drvdata(dev)); 11490 release_region(ioport, ASC_IOADR_GAP); 11491 return 0; 11492 } 11493 11494 static struct isa_driver advansys_isa_driver = { 11495 .probe = advansys_isa_probe, 11496 .remove = advansys_isa_remove, 11497 .driver = { 11498 .owner = THIS_MODULE, 11499 .name = DRV_NAME, 11500 }, 11501 }; 11502 11503 /* 11504 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as: 11505 * 000: invalid 11506 * 001: 10 11507 * 010: 11 11508 * 011: 12 11509 * 100: invalid 11510 * 101: 14 11511 * 110: 15 11512 * 111: invalid 11513 */ 11514 static unsigned int advansys_vlb_irq_no(PortAddr iop_base) 11515 { 11516 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 11517 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9; 11518 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15)) 11519 return 0; 11520 return chip_irq; 11521 } 11522 11523 static int advansys_vlb_probe(struct device *dev, unsigned int id) 11524 { 11525 int err = -ENODEV; 11526 PortAddr iop_base = _asc_def_iop_base[id]; 11527 struct Scsi_Host *shost; 11528 struct asc_board *board; 11529 11530 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 11531 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 11532 return -ENODEV; 11533 } 11534 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 11535 if (!AscFindSignature(iop_base)) 11536 goto release_region; 11537 /* 11538 * I don't think this condition can actually happen, but the old 11539 * driver did it, and the chances of finding a VLB setup in 2007 11540 * to do testing with is slight to none. 11541 */ 11542 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL) 11543 goto release_region; 11544 11545 err = -ENOMEM; 11546 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11547 if (!shost) 11548 goto release_region; 11549 11550 board = shost_priv(shost); 11551 board->irq = advansys_vlb_irq_no(iop_base); 11552 board->dev = dev; 11553 board->shost = shost; 11554 11555 err = advansys_board_found(shost, iop_base, ASC_IS_VL); 11556 if (err) 11557 goto free_host; 11558 11559 dev_set_drvdata(dev, shost); 11560 return 0; 11561 11562 free_host: 11563 scsi_host_put(shost); 11564 release_region: 11565 release_region(iop_base, ASC_IOADR_GAP); 11566 return -ENODEV; 11567 } 11568 11569 static struct isa_driver advansys_vlb_driver = { 11570 .probe = advansys_vlb_probe, 11571 .remove = advansys_isa_remove, 11572 .driver = { 11573 .owner = THIS_MODULE, 11574 .name = "advansys_vlb", 11575 }, 11576 }; 11577 11578 static struct eisa_device_id advansys_eisa_table[] = { 11579 { "ABP7401" }, 11580 { "ABP7501" }, 11581 { "" } 11582 }; 11583 11584 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table); 11585 11586 /* 11587 * EISA is a little more tricky than PCI; each EISA device may have two 11588 * channels, and this driver is written to make each channel its own Scsi_Host 11589 */ 11590 struct eisa_scsi_data { 11591 struct Scsi_Host *host[2]; 11592 }; 11593 11594 /* 11595 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as: 11596 * 000: 10 11597 * 001: 11 11598 * 010: 12 11599 * 011: invalid 11600 * 100: 14 11601 * 101: 15 11602 * 110: invalid 11603 * 111: invalid 11604 */ 11605 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev) 11606 { 11607 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86); 11608 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10; 11609 if ((chip_irq == 13) || (chip_irq > 15)) 11610 return 0; 11611 return chip_irq; 11612 } 11613 11614 static int advansys_eisa_probe(struct device *dev) 11615 { 11616 int i, ioport, irq = 0; 11617 int err; 11618 struct eisa_device *edev = to_eisa_device(dev); 11619 struct eisa_scsi_data *data; 11620 11621 err = -ENOMEM; 11622 data = kzalloc(sizeof(*data), GFP_KERNEL); 11623 if (!data) 11624 goto fail; 11625 ioport = edev->base_addr + 0xc30; 11626 11627 err = -ENODEV; 11628 for (i = 0; i < 2; i++, ioport += 0x20) { 11629 struct asc_board *board; 11630 struct Scsi_Host *shost; 11631 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) { 11632 printk(KERN_WARNING "Region %x-%x busy\n", ioport, 11633 ioport + ASC_IOADR_GAP - 1); 11634 continue; 11635 } 11636 if (!AscFindSignature(ioport)) { 11637 release_region(ioport, ASC_IOADR_GAP); 11638 continue; 11639 } 11640 11641 /* 11642 * I don't know why we need to do this for EISA chips, but 11643 * not for any others. It looks to be equivalent to 11644 * AscGetChipCfgMsw, but I may have overlooked something, 11645 * so I'm not converting it until I get an EISA board to 11646 * test with. 11647 */ 11648 inw(ioport + 4); 11649 11650 if (!irq) 11651 irq = advansys_eisa_irq_no(edev); 11652 11653 err = -ENOMEM; 11654 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11655 if (!shost) 11656 goto release_region; 11657 11658 board = shost_priv(shost); 11659 board->irq = irq; 11660 board->dev = dev; 11661 board->shost = shost; 11662 11663 err = advansys_board_found(shost, ioport, ASC_IS_EISA); 11664 if (!err) { 11665 data->host[i] = shost; 11666 continue; 11667 } 11668 11669 scsi_host_put(shost); 11670 release_region: 11671 release_region(ioport, ASC_IOADR_GAP); 11672 break; 11673 } 11674 11675 if (err) 11676 goto free_data; 11677 dev_set_drvdata(dev, data); 11678 return 0; 11679 11680 free_data: 11681 kfree(data->host[0]); 11682 kfree(data->host[1]); 11683 kfree(data); 11684 fail: 11685 return err; 11686 } 11687 11688 static int advansys_eisa_remove(struct device *dev) 11689 { 11690 int i; 11691 struct eisa_scsi_data *data = dev_get_drvdata(dev); 11692 11693 for (i = 0; i < 2; i++) { 11694 int ioport; 11695 struct Scsi_Host *shost = data->host[i]; 11696 if (!shost) 11697 continue; 11698 ioport = shost->io_port; 11699 advansys_release(shost); 11700 release_region(ioport, ASC_IOADR_GAP); 11701 } 11702 11703 kfree(data); 11704 return 0; 11705 } 11706 11707 static struct eisa_driver advansys_eisa_driver = { 11708 .id_table = advansys_eisa_table, 11709 .driver = { 11710 .name = DRV_NAME, 11711 .probe = advansys_eisa_probe, 11712 .remove = advansys_eisa_remove, 11713 } 11714 }; 11715 11716 /* PCI Devices supported by this driver */ 11717 static struct pci_device_id advansys_pci_tbl[] = { 11718 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A, 11719 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11720 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940, 11721 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11722 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U, 11723 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11724 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW, 11725 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11726 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1, 11727 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11728 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1, 11729 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 11730 {} 11731 }; 11732 11733 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl); 11734 11735 static void advansys_set_latency(struct pci_dev *pdev) 11736 { 11737 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 11738 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 11739 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0); 11740 } else { 11741 u8 latency; 11742 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency); 11743 if (latency < 0x20) 11744 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20); 11745 } 11746 } 11747 11748 static int advansys_pci_probe(struct pci_dev *pdev, 11749 const struct pci_device_id *ent) 11750 { 11751 int err, ioport; 11752 struct Scsi_Host *shost; 11753 struct asc_board *board; 11754 11755 err = pci_enable_device(pdev); 11756 if (err) 11757 goto fail; 11758 err = pci_request_regions(pdev, DRV_NAME); 11759 if (err) 11760 goto disable_device; 11761 pci_set_master(pdev); 11762 advansys_set_latency(pdev); 11763 11764 err = -ENODEV; 11765 if (pci_resource_len(pdev, 0) == 0) 11766 goto release_region; 11767 11768 ioport = pci_resource_start(pdev, 0); 11769 11770 err = -ENOMEM; 11771 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 11772 if (!shost) 11773 goto release_region; 11774 11775 board = shost_priv(shost); 11776 board->irq = pdev->irq; 11777 board->dev = &pdev->dev; 11778 board->shost = shost; 11779 11780 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW || 11781 pdev->device == PCI_DEVICE_ID_38C0800_REV1 || 11782 pdev->device == PCI_DEVICE_ID_38C1600_REV1) { 11783 board->flags |= ASC_IS_WIDE_BOARD; 11784 } 11785 11786 err = advansys_board_found(shost, ioport, ASC_IS_PCI); 11787 if (err) 11788 goto free_host; 11789 11790 pci_set_drvdata(pdev, shost); 11791 return 0; 11792 11793 free_host: 11794 scsi_host_put(shost); 11795 release_region: 11796 pci_release_regions(pdev); 11797 disable_device: 11798 pci_disable_device(pdev); 11799 fail: 11800 return err; 11801 } 11802 11803 static void advansys_pci_remove(struct pci_dev *pdev) 11804 { 11805 advansys_release(pci_get_drvdata(pdev)); 11806 pci_release_regions(pdev); 11807 pci_disable_device(pdev); 11808 } 11809 11810 static struct pci_driver advansys_pci_driver = { 11811 .name = DRV_NAME, 11812 .id_table = advansys_pci_tbl, 11813 .probe = advansys_pci_probe, 11814 .remove = advansys_pci_remove, 11815 }; 11816 11817 static int __init advansys_init(void) 11818 { 11819 int error; 11820 11821 error = isa_register_driver(&advansys_isa_driver, 11822 ASC_IOADR_TABLE_MAX_IX); 11823 if (error) 11824 goto fail; 11825 11826 error = isa_register_driver(&advansys_vlb_driver, 11827 ASC_IOADR_TABLE_MAX_IX); 11828 if (error) 11829 goto unregister_isa; 11830 11831 error = eisa_driver_register(&advansys_eisa_driver); 11832 if (error) 11833 goto unregister_vlb; 11834 11835 error = pci_register_driver(&advansys_pci_driver); 11836 if (error) 11837 goto unregister_eisa; 11838 11839 return 0; 11840 11841 unregister_eisa: 11842 eisa_driver_unregister(&advansys_eisa_driver); 11843 unregister_vlb: 11844 isa_unregister_driver(&advansys_vlb_driver); 11845 unregister_isa: 11846 isa_unregister_driver(&advansys_isa_driver); 11847 fail: 11848 return error; 11849 } 11850 11851 static void __exit advansys_exit(void) 11852 { 11853 pci_unregister_driver(&advansys_pci_driver); 11854 eisa_driver_unregister(&advansys_eisa_driver); 11855 isa_unregister_driver(&advansys_vlb_driver); 11856 isa_unregister_driver(&advansys_isa_driver); 11857 } 11858 11859 module_init(advansys_init); 11860 module_exit(advansys_exit); 11861 11862 MODULE_LICENSE("GPL"); 11863 MODULE_FIRMWARE("advansys/mcode.bin"); 11864 MODULE_FIRMWARE("advansys/3550.bin"); 11865 MODULE_FIRMWARE("advansys/38C0800.bin"); 11866 MODULE_FIRMWARE("advansys/38C1600.bin"); 11867