xref: /openbmc/linux/drivers/scsi/advansys.c (revision 671841d2)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
4  *
5  * Copyright (c) 1995-2000 Advanced System Products, Inc.
6  * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
7  * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
8  * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
9  * All Rights Reserved.
10  */
11 
12 /*
13  * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
14  * changed its name to ConnectCom Solutions, Inc.
15  * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
16  */
17 
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22 #include <linux/ioport.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/proc_fs.h>
28 #include <linux/init.h>
29 #include <linux/blkdev.h>
30 #include <linux/isa.h>
31 #include <linux/eisa.h>
32 #include <linux/pci.h>
33 #include <linux/spinlock.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/firmware.h>
36 #include <linux/dmapool.h>
37 
38 #include <asm/io.h>
39 #include <asm/dma.h>
40 
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_device.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi.h>
45 #include <scsi/scsi_host.h>
46 
47 #define DRV_NAME "advansys"
48 #define ASC_VERSION "3.5"	/* AdvanSys Driver Version */
49 
50 /* FIXME:
51  *
52  *  1. Use scsi_transport_spi
53  *  2. advansys_info is not safe against multiple simultaneous callers
54  *  3. Add module_param to override ISA/VLB ioport array
55  */
56 
57 /* Enable driver /proc statistics. */
58 #define ADVANSYS_STATS
59 
60 /* Enable driver tracing. */
61 #undef ADVANSYS_DEBUG
62 
63 typedef unsigned char uchar;
64 
65 #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
66 
67 #define PCI_VENDOR_ID_ASP		0x10cd
68 #define PCI_DEVICE_ID_ASP_1200A		0x1100
69 #define PCI_DEVICE_ID_ASP_ABP940	0x1200
70 #define PCI_DEVICE_ID_ASP_ABP940U	0x1300
71 #define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
72 #define PCI_DEVICE_ID_38C0800_REV1	0x2500
73 #define PCI_DEVICE_ID_38C1600_REV1	0x2700
74 
75 #define PortAddr                 unsigned int	/* port address size  */
76 #define inp(port)                inb(port)
77 #define outp(port, byte)         outb((byte), (port))
78 
79 #define inpw(port)               inw(port)
80 #define outpw(port, word)        outw((word), (port))
81 
82 #define ASC_MAX_SG_QUEUE    7
83 #define ASC_MAX_SG_LIST     255
84 
85 #define ASC_CS_TYPE  unsigned short
86 
87 #define ASC_IS_ISA          (0x0001)
88 #define ASC_IS_ISAPNP       (0x0081)
89 #define ASC_IS_EISA         (0x0002)
90 #define ASC_IS_PCI          (0x0004)
91 #define ASC_IS_PCI_ULTRA    (0x0104)
92 #define ASC_IS_PCMCIA       (0x0008)
93 #define ASC_IS_MCA          (0x0020)
94 #define ASC_IS_VL           (0x0040)
95 #define ASC_IS_WIDESCSI_16  (0x0100)
96 #define ASC_IS_WIDESCSI_32  (0x0200)
97 #define ASC_IS_BIG_ENDIAN   (0x8000)
98 
99 #define ASC_CHIP_MIN_VER_VL      (0x01)
100 #define ASC_CHIP_MAX_VER_VL      (0x07)
101 #define ASC_CHIP_MIN_VER_PCI     (0x09)
102 #define ASC_CHIP_MAX_VER_PCI     (0x0F)
103 #define ASC_CHIP_VER_PCI_BIT     (0x08)
104 #define ASC_CHIP_MIN_VER_ISA     (0x11)
105 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
106 #define ASC_CHIP_MAX_VER_ISA     (0x27)
107 #define ASC_CHIP_VER_ISA_BIT     (0x30)
108 #define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
109 #define ASC_CHIP_VER_ASYN_BUG    (0x21)
110 #define ASC_CHIP_VER_PCI             0x08
111 #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
112 #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
113 #define ASC_CHIP_MIN_VER_EISA (0x41)
114 #define ASC_CHIP_MAX_VER_EISA (0x47)
115 #define ASC_CHIP_VER_EISA_BIT (0x40)
116 #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
117 #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
118 #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
119 #define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
120 
121 #define ASC_SCSI_ID_BITS  3
122 #define ASC_SCSI_TIX_TYPE     uchar
123 #define ASC_ALL_DEVICE_BIT_SET  0xFF
124 #define ASC_SCSI_BIT_ID_TYPE  uchar
125 #define ASC_MAX_TID       7
126 #define ASC_MAX_LUN       7
127 #define ASC_SCSI_WIDTH_BIT_SET  0xFF
128 #define ASC_MAX_SENSE_LEN   32
129 #define ASC_MIN_SENSE_LEN   14
130 #define ASC_SCSI_RESET_HOLD_TIME_US  60
131 
132 /*
133  * Narrow boards only support 12-byte commands, while wide boards
134  * extend to 16-byte commands.
135  */
136 #define ASC_MAX_CDB_LEN     12
137 #define ADV_MAX_CDB_LEN     16
138 
139 #define MS_SDTR_LEN    0x03
140 #define MS_WDTR_LEN    0x02
141 
142 #define ASC_SG_LIST_PER_Q   7
143 #define QS_FREE        0x00
144 #define QS_READY       0x01
145 #define QS_DISC1       0x02
146 #define QS_DISC2       0x04
147 #define QS_BUSY        0x08
148 #define QS_ABORTED     0x40
149 #define QS_DONE        0x80
150 #define QC_NO_CALLBACK   0x01
151 #define QC_SG_SWAP_QUEUE 0x02
152 #define QC_SG_HEAD       0x04
153 #define QC_DATA_IN       0x08
154 #define QC_DATA_OUT      0x10
155 #define QC_URGENT        0x20
156 #define QC_MSG_OUT       0x40
157 #define QC_REQ_SENSE     0x80
158 #define QCSG_SG_XFER_LIST  0x02
159 #define QCSG_SG_XFER_MORE  0x04
160 #define QCSG_SG_XFER_END   0x08
161 #define QD_IN_PROGRESS       0x00
162 #define QD_NO_ERROR          0x01
163 #define QD_ABORTED_BY_HOST   0x02
164 #define QD_WITH_ERROR        0x04
165 #define QD_INVALID_REQUEST   0x80
166 #define QD_INVALID_HOST_NUM  0x81
167 #define QD_INVALID_DEVICE    0x82
168 #define QD_ERR_INTERNAL      0xFF
169 #define QHSTA_NO_ERROR               0x00
170 #define QHSTA_M_SEL_TIMEOUT          0x11
171 #define QHSTA_M_DATA_OVER_RUN        0x12
172 #define QHSTA_M_DATA_UNDER_RUN       0x12
173 #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
174 #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
175 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
176 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
177 #define QHSTA_D_HOST_ABORT_FAILED       0x23
178 #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
179 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
180 #define QHSTA_D_ASPI_NO_BUF_POOL        0x26
181 #define QHSTA_M_WTM_TIMEOUT         0x41
182 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
183 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
184 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
185 #define QHSTA_M_TARGET_STATUS_BUSY  0x45
186 #define QHSTA_M_BAD_TAG_CODE        0x46
187 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
188 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
189 #define QHSTA_D_LRAM_CMP_ERROR        0x81
190 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
191 #define ASC_FLAG_SCSIQ_REQ        0x01
192 #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
193 #define ASC_FLAG_BIOS_ASYNC_IO    0x04
194 #define ASC_FLAG_SRB_LINEAR_ADDR  0x08
195 #define ASC_FLAG_WIN16            0x10
196 #define ASC_FLAG_WIN32            0x20
197 #define ASC_FLAG_ISA_OVER_16MB    0x40
198 #define ASC_FLAG_DOS_VM_CALLBACK  0x80
199 #define ASC_TAG_FLAG_EXTRA_BYTES               0x10
200 #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
201 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
202 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
203 #define ASC_SCSIQ_CPY_BEG              4
204 #define ASC_SCSIQ_SGHD_CPY_BEG         2
205 #define ASC_SCSIQ_B_FWD                0
206 #define ASC_SCSIQ_B_BWD                1
207 #define ASC_SCSIQ_B_STATUS             2
208 #define ASC_SCSIQ_B_QNO                3
209 #define ASC_SCSIQ_B_CNTL               4
210 #define ASC_SCSIQ_B_SG_QUEUE_CNT       5
211 #define ASC_SCSIQ_D_DATA_ADDR          8
212 #define ASC_SCSIQ_D_DATA_CNT          12
213 #define ASC_SCSIQ_B_SENSE_LEN         20
214 #define ASC_SCSIQ_DONE_INFO_BEG       22
215 #define ASC_SCSIQ_D_SRBPTR            22
216 #define ASC_SCSIQ_B_TARGET_IX         26
217 #define ASC_SCSIQ_B_CDB_LEN           28
218 #define ASC_SCSIQ_B_TAG_CODE          29
219 #define ASC_SCSIQ_W_VM_ID             30
220 #define ASC_SCSIQ_DONE_STATUS         32
221 #define ASC_SCSIQ_HOST_STATUS         33
222 #define ASC_SCSIQ_SCSI_STATUS         34
223 #define ASC_SCSIQ_CDB_BEG             36
224 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
225 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
226 #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
227 #define ASC_SCSIQ_B_SG_WK_QP          49
228 #define ASC_SCSIQ_B_SG_WK_IX          50
229 #define ASC_SCSIQ_W_ALT_DC1           52
230 #define ASC_SCSIQ_B_LIST_CNT          6
231 #define ASC_SCSIQ_B_CUR_LIST_CNT      7
232 #define ASC_SGQ_B_SG_CNTL             4
233 #define ASC_SGQ_B_SG_HEAD_QP          5
234 #define ASC_SGQ_B_SG_LIST_CNT         6
235 #define ASC_SGQ_B_SG_CUR_LIST_CNT     7
236 #define ASC_SGQ_LIST_BEG              8
237 #define ASC_DEF_SCSI1_QNG    4
238 #define ASC_MAX_SCSI1_QNG    4
239 #define ASC_DEF_SCSI2_QNG    16
240 #define ASC_MAX_SCSI2_QNG    32
241 #define ASC_TAG_CODE_MASK    0x23
242 #define ASC_STOP_REQ_RISC_STOP      0x01
243 #define ASC_STOP_ACK_RISC_STOP      0x03
244 #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
245 #define ASC_STOP_CLEAN_UP_DISC_Q    0x20
246 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
247 #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
248 #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
249 #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
250 #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
251 #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
252 #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
253 #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
254 
255 typedef struct asc_scsiq_1 {
256 	uchar status;
257 	uchar q_no;
258 	uchar cntl;
259 	uchar sg_queue_cnt;
260 	uchar target_id;
261 	uchar target_lun;
262 	__le32 data_addr;
263 	__le32 data_cnt;
264 	__le32 sense_addr;
265 	uchar sense_len;
266 	uchar extra_bytes;
267 } ASC_SCSIQ_1;
268 
269 typedef struct asc_scsiq_2 {
270 	u32 srb_tag;
271 	uchar target_ix;
272 	uchar flag;
273 	uchar cdb_len;
274 	uchar tag_code;
275 	ushort vm_id;
276 } ASC_SCSIQ_2;
277 
278 typedef struct asc_scsiq_3 {
279 	uchar done_stat;
280 	uchar host_stat;
281 	uchar scsi_stat;
282 	uchar scsi_msg;
283 } ASC_SCSIQ_3;
284 
285 typedef struct asc_scsiq_4 {
286 	uchar cdb[ASC_MAX_CDB_LEN];
287 	uchar y_first_sg_list_qp;
288 	uchar y_working_sg_qp;
289 	uchar y_working_sg_ix;
290 	uchar y_res;
291 	ushort x_req_count;
292 	ushort x_reconnect_rtn;
293 	__le32 x_saved_data_addr;
294 	__le32 x_saved_data_cnt;
295 } ASC_SCSIQ_4;
296 
297 typedef struct asc_q_done_info {
298 	ASC_SCSIQ_2 d2;
299 	ASC_SCSIQ_3 d3;
300 	uchar q_status;
301 	uchar q_no;
302 	uchar cntl;
303 	uchar sense_len;
304 	uchar extra_bytes;
305 	uchar res;
306 	u32 remain_bytes;
307 } ASC_QDONE_INFO;
308 
309 typedef struct asc_sg_list {
310 	__le32 addr;
311 	__le32 bytes;
312 } ASC_SG_LIST;
313 
314 typedef struct asc_sg_head {
315 	ushort entry_cnt;
316 	ushort queue_cnt;
317 	ushort entry_to_copy;
318 	ushort res;
319 	ASC_SG_LIST sg_list[];
320 } ASC_SG_HEAD;
321 
322 typedef struct asc_scsi_q {
323 	ASC_SCSIQ_1 q1;
324 	ASC_SCSIQ_2 q2;
325 	uchar *cdbptr;
326 	ASC_SG_HEAD *sg_head;
327 	ushort remain_sg_entry_cnt;
328 	ushort next_sg_index;
329 } ASC_SCSI_Q;
330 
331 typedef struct asc_scsi_bios_req_q {
332 	ASC_SCSIQ_1 r1;
333 	ASC_SCSIQ_2 r2;
334 	uchar *cdbptr;
335 	ASC_SG_HEAD *sg_head;
336 	uchar *sense_ptr;
337 	ASC_SCSIQ_3 r3;
338 	uchar cdb[ASC_MAX_CDB_LEN];
339 	uchar sense[ASC_MIN_SENSE_LEN];
340 } ASC_SCSI_BIOS_REQ_Q;
341 
342 typedef struct asc_risc_q {
343 	uchar fwd;
344 	uchar bwd;
345 	ASC_SCSIQ_1 i1;
346 	ASC_SCSIQ_2 i2;
347 	ASC_SCSIQ_3 i3;
348 	ASC_SCSIQ_4 i4;
349 } ASC_RISC_Q;
350 
351 typedef struct asc_sg_list_q {
352 	uchar seq_no;
353 	uchar q_no;
354 	uchar cntl;
355 	uchar sg_head_qp;
356 	uchar sg_list_cnt;
357 	uchar sg_cur_list_cnt;
358 } ASC_SG_LIST_Q;
359 
360 typedef struct asc_risc_sg_list_q {
361 	uchar fwd;
362 	uchar bwd;
363 	ASC_SG_LIST_Q sg;
364 	ASC_SG_LIST sg_list[7];
365 } ASC_RISC_SG_LIST_Q;
366 
367 #define ASCQ_ERR_Q_STATUS             0x0D
368 #define ASCQ_ERR_CUR_QNG              0x17
369 #define ASCQ_ERR_SG_Q_LINKS           0x18
370 #define ASCQ_ERR_ISR_RE_ENTRY         0x1A
371 #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
372 #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
373 
374 /*
375  * Warning code values are set in ASC_DVC_VAR  'warn_code'.
376  */
377 #define ASC_WARN_NO_ERROR             0x0000
378 #define ASC_WARN_IO_PORT_ROTATE       0x0001
379 #define ASC_WARN_EEPROM_CHKSUM        0x0002
380 #define ASC_WARN_IRQ_MODIFIED         0x0004
381 #define ASC_WARN_AUTO_CONFIG          0x0008
382 #define ASC_WARN_CMD_QNG_CONFLICT     0x0010
383 #define ASC_WARN_EEPROM_RECOVER       0x0020
384 #define ASC_WARN_CFG_MSW_RECOVER      0x0040
385 
386 /*
387  * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
388  */
389 #define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
390 #define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
391 #define ASC_IERR_SET_PC_ADDR		0x0004
392 #define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
393 #define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
394 #define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
395 #define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
396 #define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
397 #define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
398 #define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
399 #define ASC_IERR_NO_BUS_TYPE		0x0400
400 #define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
401 #define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
402 #define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
403 
404 #define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
405 #define ASC_MIN_TAG_Q_PER_DVC   (0x04)
406 #define ASC_MIN_FREE_Q        (0x02)
407 #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
408 #define ASC_MAX_TOTAL_QNG 240
409 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
410 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
411 #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
412 #define ASC_MAX_INRAM_TAG_QNG   16
413 #define ASC_IOADR_GAP   0x10
414 #define ASC_SYN_MAX_OFFSET         0x0F
415 #define ASC_DEF_SDTR_OFFSET        0x0F
416 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
417 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
418 
419 /* The narrow chip only supports a limited selection of transfer rates.
420  * These are encoded in the range 0..7 or 0..15 depending whether the chip
421  * is Ultra-capable or not.  These tables let us convert from one to the other.
422  */
423 static const unsigned char asc_syn_xfer_period[8] = {
424 	25, 30, 35, 40, 50, 60, 70, 85
425 };
426 
427 static const unsigned char asc_syn_ultra_xfer_period[16] = {
428 	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
429 };
430 
431 typedef struct ext_msg {
432 	uchar msg_type;
433 	uchar msg_len;
434 	uchar msg_req;
435 	union {
436 		struct {
437 			uchar sdtr_xfer_period;
438 			uchar sdtr_req_ack_offset;
439 		} sdtr;
440 		struct {
441 			uchar wdtr_width;
442 		} wdtr;
443 		struct {
444 			uchar mdp_b3;
445 			uchar mdp_b2;
446 			uchar mdp_b1;
447 			uchar mdp_b0;
448 		} mdp;
449 	} u_ext_msg;
450 	uchar res;
451 } EXT_MSG;
452 
453 #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
454 #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
455 #define wdtr_width      u_ext_msg.wdtr.wdtr_width
456 #define mdp_b3          u_ext_msg.mdp_b3
457 #define mdp_b2          u_ext_msg.mdp_b2
458 #define mdp_b1          u_ext_msg.mdp_b1
459 #define mdp_b0          u_ext_msg.mdp_b0
460 
461 typedef struct asc_dvc_cfg {
462 	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
463 	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
464 	ASC_SCSI_BIT_ID_TYPE disc_enable;
465 	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
466 	uchar chip_scsi_id;
467 	uchar isa_dma_speed;
468 	uchar isa_dma_channel;
469 	uchar chip_version;
470 	ushort mcode_date;
471 	ushort mcode_version;
472 	uchar max_tag_qng[ASC_MAX_TID + 1];
473 	uchar sdtr_period_offset[ASC_MAX_TID + 1];
474 	uchar adapter_info[6];
475 } ASC_DVC_CFG;
476 
477 #define ASC_DEF_DVC_CNTL       0xFFFF
478 #define ASC_DEF_CHIP_SCSI_ID   7
479 #define ASC_DEF_ISA_DMA_SPEED  4
480 #define ASC_INIT_STATE_BEG_GET_CFG   0x0001
481 #define ASC_INIT_STATE_END_GET_CFG   0x0002
482 #define ASC_INIT_STATE_BEG_SET_CFG   0x0004
483 #define ASC_INIT_STATE_END_SET_CFG   0x0008
484 #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
485 #define ASC_INIT_STATE_END_LOAD_MC   0x0020
486 #define ASC_INIT_STATE_BEG_INQUIRY   0x0040
487 #define ASC_INIT_STATE_END_INQUIRY   0x0080
488 #define ASC_INIT_RESET_SCSI_DONE     0x0100
489 #define ASC_INIT_STATE_WITHOUT_EEP   0x8000
490 #define ASC_BUG_FIX_IF_NOT_DWB       0x0001
491 #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
492 #define ASC_MIN_TAGGED_CMD  7
493 #define ASC_MAX_SCSI_RESET_WAIT      30
494 #define ASC_OVERRUN_BSIZE		64
495 
496 struct asc_dvc_var;		/* Forward Declaration. */
497 
498 typedef struct asc_dvc_var {
499 	PortAddr iop_base;
500 	ushort err_code;
501 	ushort dvc_cntl;
502 	ushort bug_fix_cntl;
503 	ushort bus_type;
504 	ASC_SCSI_BIT_ID_TYPE init_sdtr;
505 	ASC_SCSI_BIT_ID_TYPE sdtr_done;
506 	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
507 	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
508 	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
509 	ASC_SCSI_BIT_ID_TYPE start_motor;
510 	uchar *overrun_buf;
511 	dma_addr_t overrun_dma;
512 	uchar scsi_reset_wait;
513 	uchar chip_no;
514 	bool is_in_int;
515 	uchar max_total_qng;
516 	uchar cur_total_qng;
517 	uchar in_critical_cnt;
518 	uchar last_q_shortage;
519 	ushort init_state;
520 	uchar cur_dvc_qng[ASC_MAX_TID + 1];
521 	uchar max_dvc_qng[ASC_MAX_TID + 1];
522 	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
523 	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
524 	const uchar *sdtr_period_tbl;
525 	ASC_DVC_CFG *cfg;
526 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
527 	char redo_scam;
528 	ushort res2;
529 	uchar dos_int13_table[ASC_MAX_TID + 1];
530 	unsigned int max_dma_count;
531 	ASC_SCSI_BIT_ID_TYPE no_scam;
532 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
533 	uchar min_sdtr_index;
534 	uchar max_sdtr_index;
535 	struct asc_board *drv_ptr;
536 	unsigned int uc_break;
537 } ASC_DVC_VAR;
538 
539 typedef struct asc_dvc_inq_info {
540 	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
541 } ASC_DVC_INQ_INFO;
542 
543 typedef struct asc_cap_info {
544 	u32 lba;
545 	u32 blk_size;
546 } ASC_CAP_INFO;
547 
548 typedef struct asc_cap_info_array {
549 	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
550 } ASC_CAP_INFO_ARRAY;
551 
552 #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
553 #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
554 #define ASC_CNTL_INITIATOR         (ushort)0x0001
555 #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
556 #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
557 #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
558 #define ASC_CNTL_NO_SCAM           (ushort)0x0010
559 #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
560 #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
561 #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
562 #define ASC_CNTL_RESET_SCSI        (ushort)0x0200
563 #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
564 #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
565 #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
566 #define ASC_CNTL_BURST_MODE        (ushort)0x2000
567 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
568 #define ASC_EEP_DVC_CFG_BEG_VL    2
569 #define ASC_EEP_MAX_DVC_ADDR_VL   15
570 #define ASC_EEP_DVC_CFG_BEG      32
571 #define ASC_EEP_MAX_DVC_ADDR     45
572 #define ASC_EEP_MAX_RETRY        20
573 
574 /*
575  * These macros keep the chip SCSI id and ISA DMA speed
576  * bitfields in board order. C bitfields aren't portable
577  * between big and little-endian platforms so they are
578  * not used.
579  */
580 
581 #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
582 #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
583 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
584    ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
585 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
586    ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
587 
588 typedef struct asceep_config {
589 	ushort cfg_lsw;
590 	ushort cfg_msw;
591 	uchar init_sdtr;
592 	uchar disc_enable;
593 	uchar use_cmd_qng;
594 	uchar start_motor;
595 	uchar max_total_qng;
596 	uchar max_tag_qng;
597 	uchar bios_scan;
598 	uchar power_up_wait;
599 	uchar no_scam;
600 	uchar id_speed;		/* low order 4 bits is chip scsi id */
601 	/* high order 4 bits is isa dma speed */
602 	uchar dos_int13_table[ASC_MAX_TID + 1];
603 	uchar adapter_info[6];
604 	ushort cntl;
605 	ushort chksum;
606 } ASCEEP_CONFIG;
607 
608 #define ASC_EEP_CMD_READ          0x80
609 #define ASC_EEP_CMD_WRITE         0x40
610 #define ASC_EEP_CMD_WRITE_ABLE    0x30
611 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
612 #define ASCV_MSGOUT_BEG         0x0000
613 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
614 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
615 #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
616 #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
617 #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
618 #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
619 #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
620 #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
621 #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
622 #define ASCV_BREAK_ADDR           (ushort)0x0028
623 #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
624 #define ASCV_BREAK_CONTROL        (ushort)0x002C
625 #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
626 
627 #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
628 #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
629 #define ASCV_MCODE_SIZE_W     (ushort)0x0034
630 #define ASCV_STOP_CODE_B      (ushort)0x0036
631 #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
632 #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
633 #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
634 #define ASCV_HALTCODE_W       (ushort)0x0040
635 #define ASCV_CHKSUM_W         (ushort)0x0042
636 #define ASCV_MC_DATE_W        (ushort)0x0044
637 #define ASCV_MC_VER_W         (ushort)0x0046
638 #define ASCV_NEXTRDY_B        (ushort)0x0048
639 #define ASCV_DONENEXT_B       (ushort)0x0049
640 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
641 #define ASCV_SCSIBUSY_B       (ushort)0x004B
642 #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
643 #define ASCV_CURCDB_B         (ushort)0x004D
644 #define ASCV_RCLUN_B          (ushort)0x004E
645 #define ASCV_BUSY_QHEAD_B     (ushort)0x004F
646 #define ASCV_DISC1_QHEAD_B    (ushort)0x0050
647 #define ASCV_DISC_ENABLE_B    (ushort)0x0052
648 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
649 #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
650 #define ASCV_MCODE_CNTL_B     (ushort)0x0056
651 #define ASCV_NULL_TARGET_B    (ushort)0x0057
652 #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
653 #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
654 #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
655 #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
656 #define ASCV_HOST_FLAG_B      (ushort)0x005D
657 #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
658 #define ASCV_VER_SERIAL_B     (ushort)0x0065
659 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
660 #define ASCV_WTM_FLAG_B       (ushort)0x0068
661 #define ASCV_RISC_FLAG_B      (ushort)0x006A
662 #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
663 #define ASC_HOST_FLAG_IN_ISR        0x01
664 #define ASC_HOST_FLAG_ACK_INT       0x02
665 #define ASC_RISC_FLAG_GEN_INT      0x01
666 #define ASC_RISC_FLAG_REQ_SG_LIST  0x02
667 #define IOP_CTRL         (0x0F)
668 #define IOP_STATUS       (0x0E)
669 #define IOP_INT_ACK      IOP_STATUS
670 #define IOP_REG_IFC      (0x0D)
671 #define IOP_SYN_OFFSET    (0x0B)
672 #define IOP_EXTRA_CONTROL (0x0D)
673 #define IOP_REG_PC        (0x0C)
674 #define IOP_RAM_ADDR      (0x0A)
675 #define IOP_RAM_DATA      (0x08)
676 #define IOP_EEP_DATA      (0x06)
677 #define IOP_EEP_CMD       (0x07)
678 #define IOP_VERSION       (0x03)
679 #define IOP_CONFIG_HIGH   (0x04)
680 #define IOP_CONFIG_LOW    (0x02)
681 #define IOP_SIG_BYTE      (0x01)
682 #define IOP_SIG_WORD      (0x00)
683 #define IOP_REG_DC1      (0x0E)
684 #define IOP_REG_DC0      (0x0C)
685 #define IOP_REG_SB       (0x0B)
686 #define IOP_REG_DA1      (0x0A)
687 #define IOP_REG_DA0      (0x08)
688 #define IOP_REG_SC       (0x09)
689 #define IOP_DMA_SPEED    (0x07)
690 #define IOP_REG_FLAG     (0x07)
691 #define IOP_FIFO_H       (0x06)
692 #define IOP_FIFO_L       (0x04)
693 #define IOP_REG_ID       (0x05)
694 #define IOP_REG_QP       (0x03)
695 #define IOP_REG_IH       (0x02)
696 #define IOP_REG_IX       (0x01)
697 #define IOP_REG_AX       (0x00)
698 #define IFC_REG_LOCK      (0x00)
699 #define IFC_REG_UNLOCK    (0x09)
700 #define IFC_WR_EN_FILTER  (0x10)
701 #define IFC_RD_NO_EEPROM  (0x10)
702 #define IFC_SLEW_RATE     (0x20)
703 #define IFC_ACT_NEG       (0x40)
704 #define IFC_INP_FILTER    (0x80)
705 #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
706 #define SC_SEL   (uchar)(0x80)
707 #define SC_BSY   (uchar)(0x40)
708 #define SC_ACK   (uchar)(0x20)
709 #define SC_REQ   (uchar)(0x10)
710 #define SC_ATN   (uchar)(0x08)
711 #define SC_IO    (uchar)(0x04)
712 #define SC_CD    (uchar)(0x02)
713 #define SC_MSG   (uchar)(0x01)
714 #define SEC_SCSI_CTL         (uchar)(0x80)
715 #define SEC_ACTIVE_NEGATE    (uchar)(0x40)
716 #define SEC_SLEW_RATE        (uchar)(0x20)
717 #define SEC_ENABLE_FILTER    (uchar)(0x10)
718 #define ASC_HALT_EXTMSG_IN     (ushort)0x8000
719 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
720 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
721 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
722 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
723 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
724 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
725 #define ASC_MAX_QNO        0xF8
726 #define ASC_DATA_SEC_BEG   (ushort)0x0080
727 #define ASC_DATA_SEC_END   (ushort)0x0080
728 #define ASC_CODE_SEC_BEG   (ushort)0x0080
729 #define ASC_CODE_SEC_END   (ushort)0x0080
730 #define ASC_QADR_BEG       (0x4000)
731 #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
732 #define ASC_QADR_END       (ushort)0x7FFF
733 #define ASC_QLAST_ADR      (ushort)0x7FC0
734 #define ASC_QBLK_SIZE      0x40
735 #define ASC_BIOS_DATA_QBEG 0xF8
736 #define ASC_MIN_ACTIVE_QNO 0x01
737 #define ASC_QLINK_END      0xFF
738 #define ASC_EEPROM_WORDS   0x10
739 #define ASC_MAX_MGS_LEN    0x10
740 #define ASC_BIOS_ADDR_DEF  0xDC00
741 #define ASC_BIOS_SIZE      0x3800
742 #define ASC_BIOS_RAM_OFF   0x3800
743 #define ASC_BIOS_RAM_SIZE  0x800
744 #define ASC_BIOS_MIN_ADDR  0xC000
745 #define ASC_BIOS_MAX_ADDR  0xEC00
746 #define ASC_BIOS_BANK_SIZE 0x0400
747 #define ASC_MCODE_START_ADDR  0x0080
748 #define ASC_CFG0_HOST_INT_ON    0x0020
749 #define ASC_CFG0_BIOS_ON        0x0040
750 #define ASC_CFG0_VERA_BURST_ON  0x0080
751 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
752 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
753 #define ASC_CFG1_LRAM_8BITS_ON  0x0800
754 #define ASC_CFG_MSW_CLR_MASK    0x3080
755 #define CSW_TEST1             (ASC_CS_TYPE)0x8000
756 #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
757 #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
758 #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
759 #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
760 #define CSW_TEST2             (ASC_CS_TYPE)0x0400
761 #define CSW_TEST3             (ASC_CS_TYPE)0x0200
762 #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
763 #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
764 #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
765 #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
766 #define CSW_HALTED            (ASC_CS_TYPE)0x0010
767 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
768 #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
769 #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
770 #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
771 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
772 #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
773 #define CIW_TEST1        (ASC_CS_TYPE)0x0200
774 #define CIW_TEST2        (ASC_CS_TYPE)0x0400
775 #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
776 #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
777 #define CC_CHIP_RESET   (uchar)0x80
778 #define CC_SCSI_RESET   (uchar)0x40
779 #define CC_HALT         (uchar)0x20
780 #define CC_SINGLE_STEP  (uchar)0x10
781 #define CC_DMA_ABLE     (uchar)0x08
782 #define CC_TEST         (uchar)0x04
783 #define CC_BANK_ONE     (uchar)0x02
784 #define CC_DIAG         (uchar)0x01
785 #define ASC_1000_ID0W      0x04C1
786 #define ASC_1000_ID0W_FIX  0x00C1
787 #define ASC_1000_ID1B      0x25
788 #define ASC_EISA_REV_IOP_MASK  (0x0C83)
789 #define ASC_EISA_CFG_IOP_MASK  (0x0C86)
790 #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
791 #define INS_HALTINT        (ushort)0x6281
792 #define INS_HALT           (ushort)0x6280
793 #define INS_SINT           (ushort)0x6200
794 #define INS_RFLAG_WTM      (ushort)0x7380
795 #define ASC_MC_SAVE_CODE_WSIZE  0x500
796 #define ASC_MC_SAVE_DATA_WSIZE  0x40
797 
798 typedef struct asc_mc_saved {
799 	ushort data[ASC_MC_SAVE_DATA_WSIZE];
800 	ushort code[ASC_MC_SAVE_CODE_WSIZE];
801 } ASC_MC_SAVED;
802 
803 #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
804 #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
805 #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
806 #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
807 #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
808 #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
809 #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
810 #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
811 #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
812 #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
813 #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
814 #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
815 #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
816 #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
817 #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
818 #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
819 #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
820 #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
821 #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
822 #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
823 #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
824 #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
825 #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
826 #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
827 #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
828 #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
829 #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
830 #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
831 #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
832 #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
833 #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
834 #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
835 #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
836 #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
837 #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
838 #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
839 #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
840 #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
841 #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
842 #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
843 #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
844 #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
845 #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
846 #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
847 #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
848 #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
849 #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
850 #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
851 #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
852 #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
853 #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
854 #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
855 #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
856 #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
857 #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
858 #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
859 #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
860 #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
861 #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
862 #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
863 #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
864 #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
865 #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
866 #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
867 #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
868 #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
869 #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
870 
871 #define AdvPortAddr  void __iomem *	/* Virtual memory address size */
872 
873 /*
874  * Define Adv Library required memory access macros.
875  */
876 #define ADV_MEM_READB(addr) readb(addr)
877 #define ADV_MEM_READW(addr) readw(addr)
878 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
879 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
880 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
881 
882 /*
883  * Define total number of simultaneous maximum element scatter-gather
884  * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
885  * maximum number of outstanding commands per wide host adapter. Each
886  * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
887  * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
888  * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
889  * structures or 255 scatter-gather elements.
890  */
891 #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
892 
893 /*
894  * Define maximum number of scatter-gather elements per request.
895  */
896 #define ADV_MAX_SG_LIST         255
897 #define NO_OF_SG_PER_BLOCK              15
898 
899 #define ADV_EEP_DVC_CFG_BEGIN           (0x00)
900 #define ADV_EEP_DVC_CFG_END             (0x15)
901 #define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
902 #define ADV_EEP_MAX_WORD_ADDR           (0x1E)
903 
904 #define ADV_EEP_DELAY_MS                100
905 
906 #define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
907 #define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
908 /*
909  * For the ASC3550 Bit 13 is Termination Polarity control bit.
910  * For later ICs Bit 13 controls whether the CIS (Card Information
911  * Service Section) is loaded from EEPROM.
912  */
913 #define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
914 #define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
915 /*
916  * ASC38C1600 Bit 11
917  *
918  * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
919  * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
920  * Function 0 will specify INT B.
921  *
922  * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
923  * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
924  * Function 1 will specify INT A.
925  */
926 #define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
927 
928 typedef struct adveep_3550_config {
929 	/* Word Offset, Description */
930 
931 	ushort cfg_lsw;		/* 00 power up initialization */
932 	/*  bit 13 set - Term Polarity Control */
933 	/*  bit 14 set - BIOS Enable */
934 	/*  bit 15 set - Big Endian Mode */
935 	ushort cfg_msw;		/* 01 unused      */
936 	ushort disc_enable;	/* 02 disconnect enable */
937 	ushort wdtr_able;	/* 03 Wide DTR able */
938 	ushort sdtr_able;	/* 04 Synchronous DTR able */
939 	ushort start_motor;	/* 05 send start up motor */
940 	ushort tagqng_able;	/* 06 tag queuing able */
941 	ushort bios_scan;	/* 07 BIOS device control */
942 	ushort scam_tolerant;	/* 08 no scam */
943 
944 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
945 	uchar bios_boot_delay;	/*    power up wait */
946 
947 	uchar scsi_reset_delay;	/* 10 reset delay */
948 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
949 	/*    high nibble is lun */
950 	/*    low nibble is scsi id */
951 
952 	uchar termination;	/* 11 0 - automatic */
953 	/*    1 - low off / high off */
954 	/*    2 - low off / high on */
955 	/*    3 - low on  / high on */
956 	/*    There is no low on  / high off */
957 
958 	uchar reserved1;	/*    reserved byte (not used) */
959 
960 	ushort bios_ctrl;	/* 12 BIOS control bits */
961 	/*  bit 0  BIOS don't act as initiator. */
962 	/*  bit 1  BIOS > 1 GB support */
963 	/*  bit 2  BIOS > 2 Disk Support */
964 	/*  bit 3  BIOS don't support removables */
965 	/*  bit 4  BIOS support bootable CD */
966 	/*  bit 5  BIOS scan enabled */
967 	/*  bit 6  BIOS support multiple LUNs */
968 	/*  bit 7  BIOS display of message */
969 	/*  bit 8  SCAM disabled */
970 	/*  bit 9  Reset SCSI bus during init. */
971 	/*  bit 10 */
972 	/*  bit 11 No verbose initialization. */
973 	/*  bit 12 SCSI parity enabled */
974 	/*  bit 13 */
975 	/*  bit 14 */
976 	/*  bit 15 */
977 	ushort ultra_able;	/* 13 ULTRA speed able */
978 	ushort reserved2;	/* 14 reserved */
979 	uchar max_host_qng;	/* 15 maximum host queuing */
980 	uchar max_dvc_qng;	/*    maximum per device queuing */
981 	ushort dvc_cntl;	/* 16 control bit for driver */
982 	ushort bug_fix;		/* 17 control bit for bug fix */
983 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
984 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
985 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
986 	ushort check_sum;	/* 21 EEP check sum */
987 	uchar oem_name[16];	/* 22 OEM name */
988 	ushort dvc_err_code;	/* 30 last device driver error code */
989 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
990 	ushort adv_err_addr;	/* 32 last uc error address */
991 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
992 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
993 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
994 	ushort num_of_err;	/* 36 number of error */
995 } ADVEEP_3550_CONFIG;
996 
997 typedef struct adveep_38C0800_config {
998 	/* Word Offset, Description */
999 
1000 	ushort cfg_lsw;		/* 00 power up initialization */
1001 	/*  bit 13 set - Load CIS */
1002 	/*  bit 14 set - BIOS Enable */
1003 	/*  bit 15 set - Big Endian Mode */
1004 	ushort cfg_msw;		/* 01 unused      */
1005 	ushort disc_enable;	/* 02 disconnect enable */
1006 	ushort wdtr_able;	/* 03 Wide DTR able */
1007 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1008 	ushort start_motor;	/* 05 send start up motor */
1009 	ushort tagqng_able;	/* 06 tag queuing able */
1010 	ushort bios_scan;	/* 07 BIOS device control */
1011 	ushort scam_tolerant;	/* 08 no scam */
1012 
1013 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1014 	uchar bios_boot_delay;	/*    power up wait */
1015 
1016 	uchar scsi_reset_delay;	/* 10 reset delay */
1017 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1018 	/*    high nibble is lun */
1019 	/*    low nibble is scsi id */
1020 
1021 	uchar termination_se;	/* 11 0 - automatic */
1022 	/*    1 - low off / high off */
1023 	/*    2 - low off / high on */
1024 	/*    3 - low on  / high on */
1025 	/*    There is no low on  / high off */
1026 
1027 	uchar termination_lvd;	/* 11 0 - automatic */
1028 	/*    1 - low off / high off */
1029 	/*    2 - low off / high on */
1030 	/*    3 - low on  / high on */
1031 	/*    There is no low on  / high off */
1032 
1033 	ushort bios_ctrl;	/* 12 BIOS control bits */
1034 	/*  bit 0  BIOS don't act as initiator. */
1035 	/*  bit 1  BIOS > 1 GB support */
1036 	/*  bit 2  BIOS > 2 Disk Support */
1037 	/*  bit 3  BIOS don't support removables */
1038 	/*  bit 4  BIOS support bootable CD */
1039 	/*  bit 5  BIOS scan enabled */
1040 	/*  bit 6  BIOS support multiple LUNs */
1041 	/*  bit 7  BIOS display of message */
1042 	/*  bit 8  SCAM disabled */
1043 	/*  bit 9  Reset SCSI bus during init. */
1044 	/*  bit 10 */
1045 	/*  bit 11 No verbose initialization. */
1046 	/*  bit 12 SCSI parity enabled */
1047 	/*  bit 13 */
1048 	/*  bit 14 */
1049 	/*  bit 15 */
1050 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1051 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1052 	uchar max_host_qng;	/* 15 maximum host queueing */
1053 	uchar max_dvc_qng;	/*    maximum per device queuing */
1054 	ushort dvc_cntl;	/* 16 control bit for driver */
1055 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1056 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1057 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1058 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1059 	ushort check_sum;	/* 21 EEP check sum */
1060 	uchar oem_name[16];	/* 22 OEM name */
1061 	ushort dvc_err_code;	/* 30 last device driver error code */
1062 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1063 	ushort adv_err_addr;	/* 32 last uc error address */
1064 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1065 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1066 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1067 	ushort reserved36;	/* 36 reserved */
1068 	ushort reserved37;	/* 37 reserved */
1069 	ushort reserved38;	/* 38 reserved */
1070 	ushort reserved39;	/* 39 reserved */
1071 	ushort reserved40;	/* 40 reserved */
1072 	ushort reserved41;	/* 41 reserved */
1073 	ushort reserved42;	/* 42 reserved */
1074 	ushort reserved43;	/* 43 reserved */
1075 	ushort reserved44;	/* 44 reserved */
1076 	ushort reserved45;	/* 45 reserved */
1077 	ushort reserved46;	/* 46 reserved */
1078 	ushort reserved47;	/* 47 reserved */
1079 	ushort reserved48;	/* 48 reserved */
1080 	ushort reserved49;	/* 49 reserved */
1081 	ushort reserved50;	/* 50 reserved */
1082 	ushort reserved51;	/* 51 reserved */
1083 	ushort reserved52;	/* 52 reserved */
1084 	ushort reserved53;	/* 53 reserved */
1085 	ushort reserved54;	/* 54 reserved */
1086 	ushort reserved55;	/* 55 reserved */
1087 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1088 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1089 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1090 	ushort subsysid;	/* 59 SubSystem ID */
1091 	ushort reserved60;	/* 60 reserved */
1092 	ushort reserved61;	/* 61 reserved */
1093 	ushort reserved62;	/* 62 reserved */
1094 	ushort reserved63;	/* 63 reserved */
1095 } ADVEEP_38C0800_CONFIG;
1096 
1097 typedef struct adveep_38C1600_config {
1098 	/* Word Offset, Description */
1099 
1100 	ushort cfg_lsw;		/* 00 power up initialization */
1101 	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1102 	/*       clear - Func. 0 INTA, Func. 1 INTB */
1103 	/*  bit 13 set - Load CIS */
1104 	/*  bit 14 set - BIOS Enable */
1105 	/*  bit 15 set - Big Endian Mode */
1106 	ushort cfg_msw;		/* 01 unused */
1107 	ushort disc_enable;	/* 02 disconnect enable */
1108 	ushort wdtr_able;	/* 03 Wide DTR able */
1109 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1110 	ushort start_motor;	/* 05 send start up motor */
1111 	ushort tagqng_able;	/* 06 tag queuing able */
1112 	ushort bios_scan;	/* 07 BIOS device control */
1113 	ushort scam_tolerant;	/* 08 no scam */
1114 
1115 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1116 	uchar bios_boot_delay;	/*    power up wait */
1117 
1118 	uchar scsi_reset_delay;	/* 10 reset delay */
1119 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1120 	/*    high nibble is lun */
1121 	/*    low nibble is scsi id */
1122 
1123 	uchar termination_se;	/* 11 0 - automatic */
1124 	/*    1 - low off / high off */
1125 	/*    2 - low off / high on */
1126 	/*    3 - low on  / high on */
1127 	/*    There is no low on  / high off */
1128 
1129 	uchar termination_lvd;	/* 11 0 - automatic */
1130 	/*    1 - low off / high off */
1131 	/*    2 - low off / high on */
1132 	/*    3 - low on  / high on */
1133 	/*    There is no low on  / high off */
1134 
1135 	ushort bios_ctrl;	/* 12 BIOS control bits */
1136 	/*  bit 0  BIOS don't act as initiator. */
1137 	/*  bit 1  BIOS > 1 GB support */
1138 	/*  bit 2  BIOS > 2 Disk Support */
1139 	/*  bit 3  BIOS don't support removables */
1140 	/*  bit 4  BIOS support bootable CD */
1141 	/*  bit 5  BIOS scan enabled */
1142 	/*  bit 6  BIOS support multiple LUNs */
1143 	/*  bit 7  BIOS display of message */
1144 	/*  bit 8  SCAM disabled */
1145 	/*  bit 9  Reset SCSI bus during init. */
1146 	/*  bit 10 Basic Integrity Checking disabled */
1147 	/*  bit 11 No verbose initialization. */
1148 	/*  bit 12 SCSI parity enabled */
1149 	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1150 	/*  bit 14 */
1151 	/*  bit 15 */
1152 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1153 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1154 	uchar max_host_qng;	/* 15 maximum host queueing */
1155 	uchar max_dvc_qng;	/*    maximum per device queuing */
1156 	ushort dvc_cntl;	/* 16 control bit for driver */
1157 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1158 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1159 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1160 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1161 	ushort check_sum;	/* 21 EEP check sum */
1162 	uchar oem_name[16];	/* 22 OEM name */
1163 	ushort dvc_err_code;	/* 30 last device driver error code */
1164 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1165 	ushort adv_err_addr;	/* 32 last uc error address */
1166 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1167 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1168 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1169 	ushort reserved36;	/* 36 reserved */
1170 	ushort reserved37;	/* 37 reserved */
1171 	ushort reserved38;	/* 38 reserved */
1172 	ushort reserved39;	/* 39 reserved */
1173 	ushort reserved40;	/* 40 reserved */
1174 	ushort reserved41;	/* 41 reserved */
1175 	ushort reserved42;	/* 42 reserved */
1176 	ushort reserved43;	/* 43 reserved */
1177 	ushort reserved44;	/* 44 reserved */
1178 	ushort reserved45;	/* 45 reserved */
1179 	ushort reserved46;	/* 46 reserved */
1180 	ushort reserved47;	/* 47 reserved */
1181 	ushort reserved48;	/* 48 reserved */
1182 	ushort reserved49;	/* 49 reserved */
1183 	ushort reserved50;	/* 50 reserved */
1184 	ushort reserved51;	/* 51 reserved */
1185 	ushort reserved52;	/* 52 reserved */
1186 	ushort reserved53;	/* 53 reserved */
1187 	ushort reserved54;	/* 54 reserved */
1188 	ushort reserved55;	/* 55 reserved */
1189 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1190 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1191 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1192 	ushort subsysid;	/* 59 SubSystem ID */
1193 	ushort reserved60;	/* 60 reserved */
1194 	ushort reserved61;	/* 61 reserved */
1195 	ushort reserved62;	/* 62 reserved */
1196 	ushort reserved63;	/* 63 reserved */
1197 } ADVEEP_38C1600_CONFIG;
1198 
1199 /*
1200  * EEPROM Commands
1201  */
1202 #define ASC_EEP_CMD_DONE             0x0200
1203 
1204 /* bios_ctrl */
1205 #define BIOS_CTRL_BIOS               0x0001
1206 #define BIOS_CTRL_EXTENDED_XLAT      0x0002
1207 #define BIOS_CTRL_GT_2_DISK          0x0004
1208 #define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1209 #define BIOS_CTRL_BOOTABLE_CD        0x0010
1210 #define BIOS_CTRL_MULTIPLE_LUN       0x0040
1211 #define BIOS_CTRL_DISPLAY_MSG        0x0080
1212 #define BIOS_CTRL_NO_SCAM            0x0100
1213 #define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1214 #define BIOS_CTRL_INIT_VERBOSE       0x0800
1215 #define BIOS_CTRL_SCSI_PARITY        0x1000
1216 #define BIOS_CTRL_AIPP_DIS           0x2000
1217 
1218 #define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1219 
1220 #define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1221 
1222 /*
1223  * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1224  * a special 16K Adv Library and Microcode version. After the issue is
1225  * resolved, should restore 32K support.
1226  *
1227  * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1228  */
1229 #define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1230 
1231 /*
1232  * Byte I/O register address from base of 'iop_base'.
1233  */
1234 #define IOPB_INTR_STATUS_REG    0x00
1235 #define IOPB_CHIP_ID_1          0x01
1236 #define IOPB_INTR_ENABLES       0x02
1237 #define IOPB_CHIP_TYPE_REV      0x03
1238 #define IOPB_RES_ADDR_4         0x04
1239 #define IOPB_RES_ADDR_5         0x05
1240 #define IOPB_RAM_DATA           0x06
1241 #define IOPB_RES_ADDR_7         0x07
1242 #define IOPB_FLAG_REG           0x08
1243 #define IOPB_RES_ADDR_9         0x09
1244 #define IOPB_RISC_CSR           0x0A
1245 #define IOPB_RES_ADDR_B         0x0B
1246 #define IOPB_RES_ADDR_C         0x0C
1247 #define IOPB_RES_ADDR_D         0x0D
1248 #define IOPB_SOFT_OVER_WR       0x0E
1249 #define IOPB_RES_ADDR_F         0x0F
1250 #define IOPB_MEM_CFG            0x10
1251 #define IOPB_RES_ADDR_11        0x11
1252 #define IOPB_GPIO_DATA          0x12
1253 #define IOPB_RES_ADDR_13        0x13
1254 #define IOPB_FLASH_PAGE         0x14
1255 #define IOPB_RES_ADDR_15        0x15
1256 #define IOPB_GPIO_CNTL          0x16
1257 #define IOPB_RES_ADDR_17        0x17
1258 #define IOPB_FLASH_DATA         0x18
1259 #define IOPB_RES_ADDR_19        0x19
1260 #define IOPB_RES_ADDR_1A        0x1A
1261 #define IOPB_RES_ADDR_1B        0x1B
1262 #define IOPB_RES_ADDR_1C        0x1C
1263 #define IOPB_RES_ADDR_1D        0x1D
1264 #define IOPB_RES_ADDR_1E        0x1E
1265 #define IOPB_RES_ADDR_1F        0x1F
1266 #define IOPB_DMA_CFG0           0x20
1267 #define IOPB_DMA_CFG1           0x21
1268 #define IOPB_TICKLE             0x22
1269 #define IOPB_DMA_REG_WR         0x23
1270 #define IOPB_SDMA_STATUS        0x24
1271 #define IOPB_SCSI_BYTE_CNT      0x25
1272 #define IOPB_HOST_BYTE_CNT      0x26
1273 #define IOPB_BYTE_LEFT_TO_XFER  0x27
1274 #define IOPB_BYTE_TO_XFER_0     0x28
1275 #define IOPB_BYTE_TO_XFER_1     0x29
1276 #define IOPB_BYTE_TO_XFER_2     0x2A
1277 #define IOPB_BYTE_TO_XFER_3     0x2B
1278 #define IOPB_ACC_GRP            0x2C
1279 #define IOPB_RES_ADDR_2D        0x2D
1280 #define IOPB_DEV_ID             0x2E
1281 #define IOPB_RES_ADDR_2F        0x2F
1282 #define IOPB_SCSI_DATA          0x30
1283 #define IOPB_RES_ADDR_31        0x31
1284 #define IOPB_RES_ADDR_32        0x32
1285 #define IOPB_SCSI_DATA_HSHK     0x33
1286 #define IOPB_SCSI_CTRL          0x34
1287 #define IOPB_RES_ADDR_35        0x35
1288 #define IOPB_RES_ADDR_36        0x36
1289 #define IOPB_RES_ADDR_37        0x37
1290 #define IOPB_RAM_BIST           0x38
1291 #define IOPB_PLL_TEST           0x39
1292 #define IOPB_PCI_INT_CFG        0x3A
1293 #define IOPB_RES_ADDR_3B        0x3B
1294 #define IOPB_RFIFO_CNT          0x3C
1295 #define IOPB_RES_ADDR_3D        0x3D
1296 #define IOPB_RES_ADDR_3E        0x3E
1297 #define IOPB_RES_ADDR_3F        0x3F
1298 
1299 /*
1300  * Word I/O register address from base of 'iop_base'.
1301  */
1302 #define IOPW_CHIP_ID_0          0x00	/* CID0  */
1303 #define IOPW_CTRL_REG           0x02	/* CC    */
1304 #define IOPW_RAM_ADDR           0x04	/* LA    */
1305 #define IOPW_RAM_DATA           0x06	/* LD    */
1306 #define IOPW_RES_ADDR_08        0x08
1307 #define IOPW_RISC_CSR           0x0A	/* CSR   */
1308 #define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1309 #define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1310 #define IOPW_RES_ADDR_10        0x10
1311 #define IOPW_SEL_MASK           0x12	/* SM    */
1312 #define IOPW_RES_ADDR_14        0x14
1313 #define IOPW_FLASH_ADDR         0x16	/* FA    */
1314 #define IOPW_RES_ADDR_18        0x18
1315 #define IOPW_EE_CMD             0x1A	/* EC    */
1316 #define IOPW_EE_DATA            0x1C	/* ED    */
1317 #define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1318 #define IOPW_RES_ADDR_20        0x20
1319 #define IOPW_Q_BASE             0x22	/* QB    */
1320 #define IOPW_QP                 0x24	/* QP    */
1321 #define IOPW_IX                 0x26	/* IX    */
1322 #define IOPW_SP                 0x28	/* SP    */
1323 #define IOPW_PC                 0x2A	/* PC    */
1324 #define IOPW_RES_ADDR_2C        0x2C
1325 #define IOPW_RES_ADDR_2E        0x2E
1326 #define IOPW_SCSI_DATA          0x30	/* SD    */
1327 #define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1328 #define IOPW_SCSI_CTRL          0x34	/* SC    */
1329 #define IOPW_HSHK_CFG           0x36	/* HCFG  */
1330 #define IOPW_SXFR_STATUS        0x36	/* SXS   */
1331 #define IOPW_SXFR_CNTL          0x38	/* SXL   */
1332 #define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1333 #define IOPW_RES_ADDR_3C        0x3C
1334 #define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1335 
1336 /*
1337  * Doubleword I/O register address from base of 'iop_base'.
1338  */
1339 #define IOPDW_RES_ADDR_0         0x00
1340 #define IOPDW_RAM_DATA           0x04
1341 #define IOPDW_RES_ADDR_8         0x08
1342 #define IOPDW_RES_ADDR_C         0x0C
1343 #define IOPDW_RES_ADDR_10        0x10
1344 #define IOPDW_COMMA              0x14
1345 #define IOPDW_COMMB              0x18
1346 #define IOPDW_RES_ADDR_1C        0x1C
1347 #define IOPDW_SDMA_ADDR0         0x20
1348 #define IOPDW_SDMA_ADDR1         0x24
1349 #define IOPDW_SDMA_COUNT         0x28
1350 #define IOPDW_SDMA_ERROR         0x2C
1351 #define IOPDW_RDMA_ADDR0         0x30
1352 #define IOPDW_RDMA_ADDR1         0x34
1353 #define IOPDW_RDMA_COUNT         0x38
1354 #define IOPDW_RDMA_ERROR         0x3C
1355 
1356 #define ADV_CHIP_ID_BYTE         0x25
1357 #define ADV_CHIP_ID_WORD         0x04C1
1358 
1359 #define ADV_INTR_ENABLE_HOST_INTR                   0x01
1360 #define ADV_INTR_ENABLE_SEL_INTR                    0x02
1361 #define ADV_INTR_ENABLE_DPR_INTR                    0x04
1362 #define ADV_INTR_ENABLE_RTA_INTR                    0x08
1363 #define ADV_INTR_ENABLE_RMA_INTR                    0x10
1364 #define ADV_INTR_ENABLE_RST_INTR                    0x20
1365 #define ADV_INTR_ENABLE_DPE_INTR                    0x40
1366 #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1367 
1368 #define ADV_INTR_STATUS_INTRA            0x01
1369 #define ADV_INTR_STATUS_INTRB            0x02
1370 #define ADV_INTR_STATUS_INTRC            0x04
1371 
1372 #define ADV_RISC_CSR_STOP           (0x0000)
1373 #define ADV_RISC_TEST_COND          (0x2000)
1374 #define ADV_RISC_CSR_RUN            (0x4000)
1375 #define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1376 
1377 #define ADV_CTRL_REG_HOST_INTR      0x0100
1378 #define ADV_CTRL_REG_SEL_INTR       0x0200
1379 #define ADV_CTRL_REG_DPR_INTR       0x0400
1380 #define ADV_CTRL_REG_RTA_INTR       0x0800
1381 #define ADV_CTRL_REG_RMA_INTR       0x1000
1382 #define ADV_CTRL_REG_RES_BIT14      0x2000
1383 #define ADV_CTRL_REG_DPE_INTR       0x4000
1384 #define ADV_CTRL_REG_POWER_DONE     0x8000
1385 #define ADV_CTRL_REG_ANY_INTR       0xFF00
1386 
1387 #define ADV_CTRL_REG_CMD_RESET             0x00C6
1388 #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1389 #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1390 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1391 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1392 
1393 #define ADV_TICKLE_NOP                      0x00
1394 #define ADV_TICKLE_A                        0x01
1395 #define ADV_TICKLE_B                        0x02
1396 #define ADV_TICKLE_C                        0x03
1397 
1398 #define AdvIsIntPending(port) \
1399     (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1400 
1401 /*
1402  * SCSI_CFG0 Register bit definitions
1403  */
1404 #define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1405 #define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1406 #define EVEN_PARITY     0x1000	/* Select Even Parity */
1407 #define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1408 #define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1409 #define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1410 #define SCAM_EN         0x0080	/* Enable SCAM selection */
1411 #define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1412 #define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1413 #define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1414 #define OUR_ID          0x000F	/* SCSI ID */
1415 
1416 /*
1417  * SCSI_CFG1 Register bit definitions
1418  */
1419 #define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1420 #define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1421 #define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1422 #define FILTER_SEL      0x0C00	/* Filter Period Selection */
1423 #define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1424 #define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1425 #define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1426 #define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1427 #define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1428 #define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1429 #define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1430 #define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1431 #define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1432 #define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1433 #define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1434 
1435 /*
1436  * Addendum for ASC-38C0800 Chip
1437  *
1438  * The ASC-38C1600 Chip uses the same definitions except that the
1439  * bus mode override bits [12:10] have been moved to byte register
1440  * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1441  * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1442  * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1443  * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1444  * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1445  */
1446 #define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1447 #define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1448 #define  HVD             0x1000	/* HVD Device Detect */
1449 #define  LVD             0x0800	/* LVD Device Detect */
1450 #define  SE              0x0400	/* SE Device Detect */
1451 #define TERM_LVD        0x00C0	/* LVD Termination Bits */
1452 #define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1453 #define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1454 #define TERM_SE         0x0030	/* SE Termination Bits */
1455 #define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1456 #define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1457 #define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1458 #define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1459 #define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1460 #define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1461 #define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1462 #define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1463 
1464 #define CABLE_ILLEGAL_A 0x7
1465     /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1466 
1467 #define CABLE_ILLEGAL_B 0xB
1468     /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1469 
1470 /*
1471  * MEM_CFG Register bit definitions
1472  */
1473 #define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1474 #define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1475 #define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1476 #define  RAM_SZ_2KB      0x00	/* 2 KB */
1477 #define  RAM_SZ_4KB      0x04	/* 4 KB */
1478 #define  RAM_SZ_8KB      0x08	/* 8 KB */
1479 #define  RAM_SZ_16KB     0x0C	/* 16 KB */
1480 #define  RAM_SZ_32KB     0x10	/* 32 KB */
1481 #define  RAM_SZ_64KB     0x14	/* 64 KB */
1482 
1483 /*
1484  * DMA_CFG0 Register bit definitions
1485  *
1486  * This register is only accessible to the host.
1487  */
1488 #define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1489 #define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1490 #define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1491 #define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1492 #define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1493 #define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1494 #define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1495 #define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1496 #define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1497 #define START_CTL       0x0C	/* DMA start conditions */
1498 #define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1499 #define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1500 #define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1501 #define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1502 #define READ_CMD        0x03	/* Memory Read Method */
1503 #define  READ_CMD_MR     0x00	/* Memory Read */
1504 #define  READ_CMD_MRL    0x02	/* Memory Read Long */
1505 #define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1506 
1507 /*
1508  * ASC-38C0800 RAM BIST Register bit definitions
1509  */
1510 #define RAM_TEST_MODE         0x80
1511 #define PRE_TEST_MODE         0x40
1512 #define NORMAL_MODE           0x00
1513 #define RAM_TEST_DONE         0x10
1514 #define RAM_TEST_STATUS       0x0F
1515 #define  RAM_TEST_HOST_ERROR   0x08
1516 #define  RAM_TEST_INTRAM_ERROR 0x04
1517 #define  RAM_TEST_RISC_ERROR   0x02
1518 #define  RAM_TEST_SCSI_ERROR   0x01
1519 #define  RAM_TEST_SUCCESS      0x00
1520 #define PRE_TEST_VALUE        0x05
1521 #define NORMAL_VALUE          0x00
1522 
1523 /*
1524  * ASC38C1600 Definitions
1525  *
1526  * IOPB_PCI_INT_CFG Bit Field Definitions
1527  */
1528 
1529 #define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1530 
1531 /*
1532  * Bit 1 can be set to change the interrupt for the Function to operate in
1533  * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1534  * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1535  * mode, otherwise the operating mode is undefined.
1536  */
1537 #define TOTEMPOLE       0x02
1538 
1539 /*
1540  * Bit 0 can be used to change the Int Pin for the Function. The value is
1541  * 0 by default for both Functions with Function 0 using INT A and Function
1542  * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1543  * INT A is used.
1544  *
1545  * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1546  * value specified in the PCI Configuration Space.
1547  */
1548 #define INTAB           0x01
1549 
1550 /*
1551  * Adv Library Status Definitions
1552  */
1553 #define ADV_TRUE        1
1554 #define ADV_FALSE       0
1555 #define ADV_SUCCESS     1
1556 #define ADV_BUSY        0
1557 #define ADV_ERROR       (-1)
1558 
1559 /*
1560  * ADV_DVC_VAR 'warn_code' values
1561  */
1562 #define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1563 #define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1564 #define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1565 #define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1566 
1567 #define ADV_MAX_TID                     15	/* max. target identifier */
1568 #define ADV_MAX_LUN                     7	/* max. logical unit number */
1569 
1570 /*
1571  * Fixed locations of microcode operating variables.
1572  */
1573 #define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1574 #define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1575 #define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1576 #define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1577 #define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1578 #define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1579 #define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1580 #define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1581 #define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1582 #define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1583 #define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1584 #define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1585 #define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1586 #define ASC_MC_CHIP_TYPE                0x009A
1587 #define ASC_MC_INTRB_CODE               0x009B
1588 #define ASC_MC_WDTR_ABLE                0x009C
1589 #define ASC_MC_SDTR_ABLE                0x009E
1590 #define ASC_MC_TAGQNG_ABLE              0x00A0
1591 #define ASC_MC_DISC_ENABLE              0x00A2
1592 #define ASC_MC_IDLE_CMD_STATUS          0x00A4
1593 #define ASC_MC_IDLE_CMD                 0x00A6
1594 #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1595 #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1596 #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1597 #define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1598 #define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1599 #define ASC_MC_SDTR_DONE                0x00B6
1600 #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1601 #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1602 #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1603 #define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1604 #define ASC_MC_WDTR_DONE                0x0124
1605 #define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1606 #define ASC_MC_ICQ                      0x0160
1607 #define ASC_MC_IRQ                      0x0164
1608 #define ASC_MC_PPR_ABLE                 0x017A
1609 
1610 /*
1611  * BIOS LRAM variable absolute offsets.
1612  */
1613 #define BIOS_CODESEG    0x54
1614 #define BIOS_CODELEN    0x56
1615 #define BIOS_SIGNATURE  0x58
1616 #define BIOS_VERSION    0x5A
1617 
1618 /*
1619  * Microcode Control Flags
1620  *
1621  * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1622  * and handled by the microcode.
1623  */
1624 #define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1625 #define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1626 
1627 /*
1628  * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1629  */
1630 #define HSHK_CFG_WIDE_XFR       0x8000
1631 #define HSHK_CFG_RATE           0x0F00
1632 #define HSHK_CFG_OFFSET         0x001F
1633 
1634 #define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1635 #define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1636 #define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1637 #define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1638 
1639 #define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1640 #define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1641 #define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1642 #define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1643 #define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1644 
1645 #define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1646 #define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1647 #define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1648 #define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1649 #define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1650 /*
1651  * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1652  * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1653  */
1654 #define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1655 #define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1656 
1657 /*
1658  * All fields here are accessed by the board microcode and need to be
1659  * little-endian.
1660  */
1661 typedef struct adv_carr_t {
1662 	__le32 carr_va;	/* Carrier Virtual Address */
1663 	__le32 carr_pa;	/* Carrier Physical Address */
1664 	__le32 areq_vpa;	/* ADV_SCSI_REQ_Q Virtual or Physical Address */
1665 	/*
1666 	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1667 	 *
1668 	 * next_vpa [3:1]             Reserved Bits
1669 	 * next_vpa [0]               Done Flag set in Response Queue.
1670 	 */
1671 	__le32 next_vpa;
1672 } ADV_CARR_T;
1673 
1674 /*
1675  * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1676  */
1677 #define ADV_NEXT_VPA_MASK       0xFFFFFFF0
1678 
1679 #define ADV_RQ_DONE             0x00000001
1680 #define ADV_RQ_GOOD             0x00000002
1681 #define ADV_CQ_STOPPER          0x00000000
1682 
1683 #define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1684 
1685 /*
1686  * Each carrier is 64 bytes, and we need three additional
1687  * carrier for icq, irq, and the termination carrier.
1688  */
1689 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1690 
1691 #define ADV_CARRIER_BUFSIZE \
1692 	(ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1693 
1694 #define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1695 #define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1696 #define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1697 
1698 /*
1699  * Adapter temporary configuration structure
1700  *
1701  * This structure can be discarded after initialization. Don't add
1702  * fields here needed after initialization.
1703  *
1704  * Field naming convention:
1705  *
1706  *  *_enable indicates the field enables or disables a feature. The
1707  *  value of the field is never reset.
1708  */
1709 typedef struct adv_dvc_cfg {
1710 	ushort disc_enable;	/* enable disconnection */
1711 	uchar chip_version;	/* chip version */
1712 	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1713 	ushort control_flag;	/* Microcode Control Flag */
1714 	ushort mcode_date;	/* Microcode date */
1715 	ushort mcode_version;	/* Microcode version */
1716 	ushort serial1;		/* EEPROM serial number word 1 */
1717 	ushort serial2;		/* EEPROM serial number word 2 */
1718 	ushort serial3;		/* EEPROM serial number word 3 */
1719 } ADV_DVC_CFG;
1720 
1721 struct adv_dvc_var;
1722 struct adv_scsi_req_q;
1723 
1724 typedef struct adv_sg_block {
1725 	uchar reserved1;
1726 	uchar reserved2;
1727 	uchar reserved3;
1728 	uchar sg_cnt;		/* Valid entries in block. */
1729 	__le32 sg_ptr;	/* Pointer to next sg block. */
1730 	struct {
1731 		__le32 sg_addr;	/* SG element address. */
1732 		__le32 sg_count;	/* SG element count. */
1733 	} sg_list[NO_OF_SG_PER_BLOCK];
1734 } ADV_SG_BLOCK;
1735 
1736 /*
1737  * ADV_SCSI_REQ_Q - microcode request structure
1738  *
1739  * All fields in this structure up to byte 60 are used by the microcode.
1740  * The microcode makes assumptions about the size and ordering of fields
1741  * in this structure. Do not change the structure definition here without
1742  * coordinating the change with the microcode.
1743  *
1744  * All fields accessed by microcode must be maintained in little_endian
1745  * order.
1746  */
1747 typedef struct adv_scsi_req_q {
1748 	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1749 	uchar target_cmd;
1750 	uchar target_id;	/* Device target identifier. */
1751 	uchar target_lun;	/* Device target logical unit number. */
1752 	__le32 data_addr;	/* Data buffer physical address. */
1753 	__le32 data_cnt;	/* Data count. Ucode sets to residual. */
1754 	__le32 sense_addr;
1755 	__le32 carr_pa;
1756 	uchar mflag;
1757 	uchar sense_len;
1758 	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1759 	uchar scsi_cntl;
1760 	uchar done_status;	/* Completion status. */
1761 	uchar scsi_status;	/* SCSI status byte. */
1762 	uchar host_status;	/* Ucode host status. */
1763 	uchar sg_working_ix;
1764 	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1765 	__le32 sg_real_addr;	/* SG list physical address. */
1766 	__le32 scsiq_rptr;
1767 	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1768 	__le32 scsiq_ptr;
1769 	__le32 carr_va;
1770 	/*
1771 	 * End of microcode structure - 60 bytes. The rest of the structure
1772 	 * is used by the Adv Library and ignored by the microcode.
1773 	 */
1774 	u32 srb_tag;
1775 	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1776 } ADV_SCSI_REQ_Q;
1777 
1778 /*
1779  * The following two structures are used to process Wide Board requests.
1780  *
1781  * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1782  * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1783  * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1784  * to the Mid-Level SCSI request structure.
1785  *
1786  * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1787  * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1788  * up to 255 scatter-gather elements may be used per request or
1789  * ADV_SCSI_REQ_Q.
1790  *
1791  * Both structures must be 32 byte aligned.
1792  */
1793 typedef struct adv_sgblk {
1794 	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1795 	dma_addr_t sg_addr;	/* Physical address */
1796 	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1797 } adv_sgblk_t;
1798 
1799 typedef struct adv_req {
1800 	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1801 	uchar align[24];	/* Request structure padding. */
1802 	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1803 	dma_addr_t req_addr;
1804 	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1805 } adv_req_t __aligned(32);
1806 
1807 /*
1808  * Adapter operation variable structure.
1809  *
1810  * One structure is required per host adapter.
1811  *
1812  * Field naming convention:
1813  *
1814  *  *_able indicates both whether a feature should be enabled or disabled
1815  *  and whether a device isi capable of the feature. At initialization
1816  *  this field may be set, but later if a device is found to be incapable
1817  *  of the feature, the field is cleared.
1818  */
1819 typedef struct adv_dvc_var {
1820 	AdvPortAddr iop_base;	/* I/O port address */
1821 	ushort err_code;	/* fatal error code */
1822 	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1823 	ushort wdtr_able;	/* try WDTR for a device */
1824 	ushort sdtr_able;	/* try SDTR for a device */
1825 	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1826 	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1827 	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1828 	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1829 	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1830 	ushort tagqng_able;	/* try tagged queuing with a device */
1831 	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1832 	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1833 	ushort start_motor;	/* start motor command allowed */
1834 	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1835 	uchar chip_no;		/* should be assigned by caller */
1836 	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1837 	ushort no_scam;		/* scam_tolerant of EEPROM */
1838 	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1839 	uchar chip_scsi_id;	/* chip SCSI target ID */
1840 	uchar chip_type;
1841 	uchar bist_err_code;
1842 	ADV_CARR_T *carrier;
1843 	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1844 	dma_addr_t carrier_addr;
1845 	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1846 	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1847 	ushort carr_pending_cnt;	/* Count of pending carriers. */
1848 	/*
1849 	 * Note: The following fields will not be used after initialization. The
1850 	 * driver may discard the buffer after initialization is done.
1851 	 */
1852 	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1853 } ADV_DVC_VAR;
1854 
1855 /*
1856  * Microcode idle loop commands
1857  */
1858 #define IDLE_CMD_COMPLETED           0
1859 #define IDLE_CMD_STOP_CHIP           0x0001
1860 #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1861 #define IDLE_CMD_SEND_INT            0x0004
1862 #define IDLE_CMD_ABORT               0x0008
1863 #define IDLE_CMD_DEVICE_RESET        0x0010
1864 #define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1865 #define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1866 #define IDLE_CMD_SCSIREQ             0x0080
1867 
1868 #define IDLE_CMD_STATUS_SUCCESS      0x0001
1869 #define IDLE_CMD_STATUS_FAILURE      0x0002
1870 
1871 /*
1872  * AdvSendIdleCmd() flag definitions.
1873  */
1874 #define ADV_NOWAIT     0x01
1875 
1876 /*
1877  * Wait loop time out values.
1878  */
1879 #define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1880 #define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1881 #define SCSI_MAX_RETRY               10	/* retry count */
1882 
1883 #define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1884 #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1885 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1886 #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1887 
1888 #define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1889 
1890 /* Read byte from a register. */
1891 #define AdvReadByteRegister(iop_base, reg_off) \
1892      (ADV_MEM_READB((iop_base) + (reg_off)))
1893 
1894 /* Write byte to a register. */
1895 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1896      (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1897 
1898 /* Read word (2 bytes) from a register. */
1899 #define AdvReadWordRegister(iop_base, reg_off) \
1900      (ADV_MEM_READW((iop_base) + (reg_off)))
1901 
1902 /* Write word (2 bytes) to a register. */
1903 #define AdvWriteWordRegister(iop_base, reg_off, word) \
1904      (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1905 
1906 /* Write dword (4 bytes) to a register. */
1907 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1908      (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1909 
1910 /* Read byte from LRAM. */
1911 #define AdvReadByteLram(iop_base, addr, byte) \
1912 do { \
1913     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1914     (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1915 } while (0)
1916 
1917 /* Write byte to LRAM. */
1918 #define AdvWriteByteLram(iop_base, addr, byte) \
1919     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1920      ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1921 
1922 /* Read word (2 bytes) from LRAM. */
1923 #define AdvReadWordLram(iop_base, addr, word) \
1924 do { \
1925     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1926     (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1927 } while (0)
1928 
1929 /* Write word (2 bytes) to LRAM. */
1930 #define AdvWriteWordLram(iop_base, addr, word) \
1931     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1932      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1933 
1934 /* Write little-endian double word (4 bytes) to LRAM */
1935 /* Because of unspecified C language ordering don't use auto-increment. */
1936 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1937     ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1938       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1939                      cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1940      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1941       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1942                      cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1943 
1944 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
1945 #define AdvReadWordAutoIncLram(iop_base) \
1946      (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1947 
1948 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
1949 #define AdvWriteWordAutoIncLram(iop_base, word) \
1950      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1951 
1952 /*
1953  * Define macro to check for Condor signature.
1954  *
1955  * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1956  * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1957  */
1958 #define AdvFindSignature(iop_base) \
1959     (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1960     ADV_CHIP_ID_BYTE) && \
1961      (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1962     ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
1963 
1964 /*
1965  * Define macro to Return the version number of the chip at 'iop_base'.
1966  *
1967  * The second parameter 'bus_type' is currently unused.
1968  */
1969 #define AdvGetChipVersion(iop_base, bus_type) \
1970     AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1971 
1972 /*
1973  * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1974  * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1975  *
1976  * If the request has not yet been sent to the device it will simply be
1977  * aborted from RISC memory. If the request is disconnected it will be
1978  * aborted on reselection by sending an Abort Message to the target ID.
1979  *
1980  * Return value:
1981  *      ADV_TRUE(1) - Queue was successfully aborted.
1982  *      ADV_FALSE(0) - Queue was not found on the active queue list.
1983  */
1984 #define AdvAbortQueue(asc_dvc, srb_tag) \
1985      AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1986 		    (ADV_DCNT) (srb_tag))
1987 
1988 /*
1989  * Send a Bus Device Reset Message to the specified target ID.
1990  *
1991  * All outstanding commands will be purged if sending the
1992  * Bus Device Reset Message is successful.
1993  *
1994  * Return Value:
1995  *      ADV_TRUE(1) - All requests on the target are purged.
1996  *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1997  *                     are not purged.
1998  */
1999 #define AdvResetDevice(asc_dvc, target_id) \
2000      AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,	\
2001 		    (ADV_DCNT) (target_id))
2002 
2003 /*
2004  * SCSI Wide Type definition.
2005  */
2006 #define ADV_SCSI_BIT_ID_TYPE   ushort
2007 
2008 /*
2009  * AdvInitScsiTarget() 'cntl_flag' options.
2010  */
2011 #define ADV_SCAN_LUN           0x01
2012 #define ADV_CAPINFO_NOLUN      0x02
2013 
2014 /*
2015  * Convert target id to target id bit mask.
2016  */
2017 #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2018 
2019 /*
2020  * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2021  */
2022 
2023 #define QD_NO_STATUS         0x00	/* Request not completed yet. */
2024 #define QD_NO_ERROR          0x01
2025 #define QD_ABORTED_BY_HOST   0x02
2026 #define QD_WITH_ERROR        0x04
2027 
2028 #define QHSTA_NO_ERROR              0x00
2029 #define QHSTA_M_SEL_TIMEOUT         0x11
2030 #define QHSTA_M_DATA_OVER_RUN       0x12
2031 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2032 #define QHSTA_M_QUEUE_ABORTED       0x15
2033 #define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2034 #define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2035 #define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2036 #define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2037 #define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2038 #define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2039 #define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2040 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2041 #define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2042 #define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2043 #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2044 #define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2045 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2046 #define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2047 #define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2048 #define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2049 #define QHSTA_M_WTM_TIMEOUT         0x41
2050 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2051 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2052 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2053 #define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2054 #define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2055 #define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2056 
2057 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2058 #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2059 
2060 /*
2061  * Total contiguous memory needed for driver SG blocks.
2062  *
2063  * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2064  * number of scatter-gather elements the driver supports in a
2065  * single request.
2066  */
2067 
2068 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2069          (sizeof(ADV_SG_BLOCK) * \
2070           ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2071 
2072 /* struct asc_board flags */
2073 #define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2074 
2075 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2076 
2077 #define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2078 
2079 #define ASC_INFO_SIZE           128	/* advansys_info() line size */
2080 
2081 /* Asc Library return codes */
2082 #define ASC_TRUE        1
2083 #define ASC_FALSE       0
2084 #define ASC_NOERROR     1
2085 #define ASC_BUSY        0
2086 #define ASC_ERROR       (-1)
2087 
2088 /* struct scsi_cmnd function return codes */
2089 #define STATUS_BYTE(byte)   (byte)
2090 #define MSG_BYTE(byte)      ((byte) << 8)
2091 #define HOST_BYTE(byte)     ((byte) << 16)
2092 #define DRIVER_BYTE(byte)   ((byte) << 24)
2093 
2094 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2095 #ifndef ADVANSYS_STATS
2096 #define ASC_STATS_ADD(shost, counter, count)
2097 #else /* ADVANSYS_STATS */
2098 #define ASC_STATS_ADD(shost, counter, count) \
2099 	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2100 #endif /* ADVANSYS_STATS */
2101 
2102 /* If the result wraps when calculating tenths, return 0. */
2103 #define ASC_TENTHS(num, den) \
2104     (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2105     0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2106 
2107 /*
2108  * Display a message to the console.
2109  */
2110 #define ASC_PRINT(s) \
2111     { \
2112         printk("advansys: "); \
2113         printk(s); \
2114     }
2115 
2116 #define ASC_PRINT1(s, a1) \
2117     { \
2118         printk("advansys: "); \
2119         printk((s), (a1)); \
2120     }
2121 
2122 #define ASC_PRINT2(s, a1, a2) \
2123     { \
2124         printk("advansys: "); \
2125         printk((s), (a1), (a2)); \
2126     }
2127 
2128 #define ASC_PRINT3(s, a1, a2, a3) \
2129     { \
2130         printk("advansys: "); \
2131         printk((s), (a1), (a2), (a3)); \
2132     }
2133 
2134 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2135     { \
2136         printk("advansys: "); \
2137         printk((s), (a1), (a2), (a3), (a4)); \
2138     }
2139 
2140 #ifndef ADVANSYS_DEBUG
2141 
2142 #define ASC_DBG(lvl, s...)
2143 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2144 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2145 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2146 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2147 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2148 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2149 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2150 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2151 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2152 
2153 #else /* ADVANSYS_DEBUG */
2154 
2155 /*
2156  * Debugging Message Levels:
2157  * 0: Errors Only
2158  * 1: High-Level Tracing
2159  * 2-N: Verbose Tracing
2160  */
2161 
2162 #define ASC_DBG(lvl, format, arg...) {					\
2163 	if (asc_dbglvl >= (lvl))					\
2164 		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2165 			__func__ , ## arg);				\
2166 }
2167 
2168 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2169     { \
2170         if (asc_dbglvl >= (lvl)) { \
2171             asc_prt_scsi_host(s); \
2172         } \
2173     }
2174 
2175 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2176     { \
2177         if (asc_dbglvl >= (lvl)) { \
2178             asc_prt_asc_scsi_q(scsiqp); \
2179         } \
2180     }
2181 
2182 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2183     { \
2184         if (asc_dbglvl >= (lvl)) { \
2185             asc_prt_asc_qdone_info(qdone); \
2186         } \
2187     }
2188 
2189 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2190     { \
2191         if (asc_dbglvl >= (lvl)) { \
2192             asc_prt_adv_scsi_req_q(scsiqp); \
2193         } \
2194     }
2195 
2196 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2197     { \
2198         if (asc_dbglvl >= (lvl)) { \
2199             asc_prt_hex((name), (start), (length)); \
2200         } \
2201     }
2202 
2203 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2204         ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2205 
2206 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2207         ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2208 
2209 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2210         ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2211 #endif /* ADVANSYS_DEBUG */
2212 
2213 #ifdef ADVANSYS_STATS
2214 
2215 /* Per board statistics structure */
2216 struct asc_stats {
2217 	/* Driver Entrypoint Statistics */
2218 	unsigned int queuecommand;	/* # calls to advansys_queuecommand() */
2219 	unsigned int reset;		/* # calls to advansys_eh_bus_reset() */
2220 	unsigned int biosparam;	/* # calls to advansys_biosparam() */
2221 	unsigned int interrupt;	/* # advansys_interrupt() calls */
2222 	unsigned int callback;	/* # calls to asc/adv_isr_callback() */
2223 	unsigned int done;		/* # calls to request's scsi_done function */
2224 	unsigned int build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2225 	unsigned int adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2226 	unsigned int adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2227 	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2228 	unsigned int exe_noerror;	/* # ASC_NOERROR returns. */
2229 	unsigned int exe_busy;	/* # ASC_BUSY returns. */
2230 	unsigned int exe_error;	/* # ASC_ERROR returns. */
2231 	unsigned int exe_unknown;	/* # unknown returns. */
2232 	/* Data Transfer Statistics */
2233 	unsigned int xfer_cnt;	/* # I/O requests received */
2234 	unsigned int xfer_elem;	/* # scatter-gather elements */
2235 	unsigned int xfer_sect;	/* # 512-byte blocks */
2236 };
2237 #endif /* ADVANSYS_STATS */
2238 
2239 /*
2240  * Structure allocated for each board.
2241  *
2242  * This structure is allocated by scsi_host_alloc() at the end
2243  * of the 'Scsi_Host' structure starting at the 'hostdata'
2244  * field. It is guaranteed to be allocated from DMA-able memory.
2245  */
2246 struct asc_board {
2247 	struct device *dev;
2248 	struct Scsi_Host *shost;
2249 	uint flags;		/* Board flags */
2250 	unsigned int irq;
2251 	union {
2252 		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2253 		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2254 	} dvc_var;
2255 	union {
2256 		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2257 		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2258 	} dvc_cfg;
2259 	ushort asc_n_io_port;	/* Number I/O ports. */
2260 	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2261 	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2262 	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2263 	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2264 	union {
2265 		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2266 		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2267 		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2268 		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2269 	} eep_config;
2270 	/* /proc/scsi/advansys/[0...] */
2271 #ifdef ADVANSYS_STATS
2272 	struct asc_stats asc_stats;	/* Board statistics */
2273 #endif				/* ADVANSYS_STATS */
2274 	/*
2275 	 * The following fields are used only for Narrow Boards.
2276 	 */
2277 	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2278 	/*
2279 	 * The following fields are used only for Wide Boards.
2280 	 */
2281 	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2282 	ushort ioport;		/* I/O Port address. */
2283 	adv_req_t *adv_reqp;	/* Request structures. */
2284 	dma_addr_t adv_reqp_addr;
2285 	size_t adv_reqp_size;
2286 	struct dma_pool *adv_sgblk_pool;	/* Scatter-gather structures. */
2287 	ushort bios_signature;	/* BIOS Signature. */
2288 	ushort bios_version;	/* BIOS Version. */
2289 	ushort bios_codeseg;	/* BIOS Code Segment. */
2290 	ushort bios_codelen;	/* BIOS Code Segment Length. */
2291 };
2292 
2293 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2294 							dvc_var.asc_dvc_var)
2295 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2296 							dvc_var.adv_dvc_var)
2297 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2298 
2299 #ifdef ADVANSYS_DEBUG
2300 static int asc_dbglvl = 3;
2301 
2302 /*
2303  * asc_prt_asc_dvc_var()
2304  */
2305 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2306 {
2307 	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2308 
2309 	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2310 	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2311 
2312 	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2313 		(unsigned)h->init_sdtr);
2314 
2315 	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2316 	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2317 	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2318 	       (unsigned)h->chip_no);
2319 
2320 	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2321 	       "%u,\n", (unsigned)h->queue_full_or_busy,
2322 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2323 
2324 	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2325 	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2326 	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2327 	       (unsigned)h->in_critical_cnt);
2328 
2329 	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2330 	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2331 	       (unsigned)h->init_state, (unsigned)h->no_scam,
2332 	       (unsigned)h->pci_fix_asyn_xfer);
2333 
2334 	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2335 }
2336 
2337 /*
2338  * asc_prt_asc_dvc_cfg()
2339  */
2340 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2341 {
2342 	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2343 
2344 	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2345 	       h->can_tagged_qng, h->cmd_qng_enabled);
2346 	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2347 	       h->disc_enable, h->sdtr_enable);
2348 
2349 	printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2350 		"chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2351 		h->isa_dma_channel, h->chip_version);
2352 
2353 	printk(" mcode_date 0x%x, mcode_version %d\n",
2354 		h->mcode_date, h->mcode_version);
2355 }
2356 
2357 /*
2358  * asc_prt_adv_dvc_var()
2359  *
2360  * Display an ADV_DVC_VAR structure.
2361  */
2362 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2363 {
2364 	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2365 
2366 	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2367 	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2368 
2369 	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2370 	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2371 
2372 	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2373 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2374 
2375 	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2376 	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2377 	       h->carr_freelist);
2378 
2379 	printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2380 
2381 	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2382 	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2383 
2384 	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2385 	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2386 }
2387 
2388 /*
2389  * asc_prt_adv_dvc_cfg()
2390  *
2391  * Display an ADV_DVC_CFG structure.
2392  */
2393 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2394 {
2395 	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2396 
2397 	printk("  disc_enable 0x%x, termination 0x%x\n",
2398 	       h->disc_enable, h->termination);
2399 
2400 	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2401 	       h->chip_version, h->mcode_date);
2402 
2403 	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2404 	       h->mcode_version, h->control_flag);
2405 }
2406 
2407 /*
2408  * asc_prt_scsi_host()
2409  */
2410 static void asc_prt_scsi_host(struct Scsi_Host *s)
2411 {
2412 	struct asc_board *boardp = shost_priv(s);
2413 
2414 	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2415 	printk(" host_busy %d, host_no %d,\n",
2416 	       scsi_host_busy(s), s->host_no);
2417 
2418 	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2419 	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2420 
2421 	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2422 	       s->dma_channel, s->this_id, s->can_queue);
2423 
2424 	printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2425 	       s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2426 
2427 	if (ASC_NARROW_BOARD(boardp)) {
2428 		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2429 		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2430 	} else {
2431 		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2432 		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2433 	}
2434 }
2435 
2436 /*
2437  * asc_prt_hex()
2438  *
2439  * Print hexadecimal output in 4 byte groupings 32 bytes
2440  * or 8 double-words per line.
2441  */
2442 static void asc_prt_hex(char *f, uchar *s, int l)
2443 {
2444 	int i;
2445 	int j;
2446 	int k;
2447 	int m;
2448 
2449 	printk("%s: (%d bytes)\n", f, l);
2450 
2451 	for (i = 0; i < l; i += 32) {
2452 
2453 		/* Display a maximum of 8 double-words per line. */
2454 		if ((k = (l - i) / 4) >= 8) {
2455 			k = 8;
2456 			m = 0;
2457 		} else {
2458 			m = (l - i) % 4;
2459 		}
2460 
2461 		for (j = 0; j < k; j++) {
2462 			printk(" %2.2X%2.2X%2.2X%2.2X",
2463 			       (unsigned)s[i + (j * 4)],
2464 			       (unsigned)s[i + (j * 4) + 1],
2465 			       (unsigned)s[i + (j * 4) + 2],
2466 			       (unsigned)s[i + (j * 4) + 3]);
2467 		}
2468 
2469 		switch (m) {
2470 		case 0:
2471 		default:
2472 			break;
2473 		case 1:
2474 			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2475 			break;
2476 		case 2:
2477 			printk(" %2.2X%2.2X",
2478 			       (unsigned)s[i + (j * 4)],
2479 			       (unsigned)s[i + (j * 4) + 1]);
2480 			break;
2481 		case 3:
2482 			printk(" %2.2X%2.2X%2.2X",
2483 			       (unsigned)s[i + (j * 4) + 1],
2484 			       (unsigned)s[i + (j * 4) + 2],
2485 			       (unsigned)s[i + (j * 4) + 3]);
2486 			break;
2487 		}
2488 
2489 		printk("\n");
2490 	}
2491 }
2492 
2493 /*
2494  * asc_prt_asc_scsi_q()
2495  */
2496 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2497 {
2498 	ASC_SG_HEAD *sgp;
2499 	int i;
2500 
2501 	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2502 
2503 	printk
2504 	    (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2505 	     q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2506 	     q->q2.tag_code);
2507 
2508 	printk
2509 	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2510 	     (ulong)le32_to_cpu(q->q1.data_addr),
2511 	     (ulong)le32_to_cpu(q->q1.data_cnt),
2512 	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2513 
2514 	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2515 	       (ulong)q->cdbptr, q->q2.cdb_len,
2516 	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2517 
2518 	if (q->sg_head) {
2519 		sgp = q->sg_head;
2520 		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2521 		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2522 		       sgp->queue_cnt);
2523 		for (i = 0; i < sgp->entry_cnt; i++) {
2524 			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2525 			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2526 			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2527 		}
2528 
2529 	}
2530 }
2531 
2532 /*
2533  * asc_prt_asc_qdone_info()
2534  */
2535 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2536 {
2537 	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2538 	printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2539 	       q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2540 	       q->d2.tag_code);
2541 	printk
2542 	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2543 	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2544 }
2545 
2546 /*
2547  * asc_prt_adv_sgblock()
2548  *
2549  * Display an ADV_SG_BLOCK structure.
2550  */
2551 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2552 {
2553 	int i;
2554 
2555 	printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2556 	       (ulong)b, sgblockno);
2557 	printk("  sg_cnt %u, sg_ptr 0x%x\n",
2558 	       b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2559 	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2560 	if (b->sg_ptr != 0)
2561 		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2562 	for (i = 0; i < b->sg_cnt; i++) {
2563 		printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2564 		       i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2565 		       (u32)le32_to_cpu(b->sg_list[i].sg_count));
2566 	}
2567 }
2568 
2569 /*
2570  * asc_prt_adv_scsi_req_q()
2571  *
2572  * Display an ADV_SCSI_REQ_Q structure.
2573  */
2574 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2575 {
2576 	int sg_blk_cnt;
2577 	struct adv_sg_block *sg_ptr;
2578 	adv_sgblk_t *sgblkp;
2579 
2580 	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2581 
2582 	printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
2583 	       q->target_id, q->target_lun, q->srb_tag);
2584 
2585 	printk("  cntl 0x%x, data_addr 0x%lx\n",
2586 	       q->cntl, (ulong)le32_to_cpu(q->data_addr));
2587 
2588 	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2589 	       (ulong)le32_to_cpu(q->data_cnt),
2590 	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2591 
2592 	printk
2593 	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2594 	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2595 
2596 	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2597 	       q->sg_working_ix, q->target_cmd);
2598 
2599 	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2600 	       (ulong)le32_to_cpu(q->scsiq_rptr),
2601 	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2602 
2603 	/* Display the request's ADV_SG_BLOCK structures. */
2604 	if (q->sg_list_ptr != NULL) {
2605 		sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2606 		sg_blk_cnt = 0;
2607 		while (sgblkp) {
2608 			sg_ptr = &sgblkp->sg_block;
2609 			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2610 			if (sg_ptr->sg_ptr == 0) {
2611 				break;
2612 			}
2613 			sgblkp = sgblkp->next_sgblkp;
2614 			sg_blk_cnt++;
2615 		}
2616 	}
2617 }
2618 #endif /* ADVANSYS_DEBUG */
2619 
2620 /*
2621  * advansys_info()
2622  *
2623  * Return suitable for printing on the console with the argument
2624  * adapter's configuration information.
2625  *
2626  * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2627  * otherwise the static 'info' array will be overrun.
2628  */
2629 static const char *advansys_info(struct Scsi_Host *shost)
2630 {
2631 	static char info[ASC_INFO_SIZE];
2632 	struct asc_board *boardp = shost_priv(shost);
2633 	ASC_DVC_VAR *asc_dvc_varp;
2634 	ADV_DVC_VAR *adv_dvc_varp;
2635 	char *busname;
2636 	char *widename = NULL;
2637 
2638 	if (ASC_NARROW_BOARD(boardp)) {
2639 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2640 		ASC_DBG(1, "begin\n");
2641 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2642 			if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2643 			    ASC_IS_ISAPNP) {
2644 				busname = "ISA PnP";
2645 			} else {
2646 				busname = "ISA";
2647 			}
2648 			sprintf(info,
2649 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2650 				ASC_VERSION, busname,
2651 				(ulong)shost->io_port,
2652 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2653 				boardp->irq, shost->dma_channel);
2654 		} else {
2655 			if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2656 				busname = "VL";
2657 			} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2658 				busname = "EISA";
2659 			} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2660 				if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2661 				    == ASC_IS_PCI_ULTRA) {
2662 					busname = "PCI Ultra";
2663 				} else {
2664 					busname = "PCI";
2665 				}
2666 			} else {
2667 				busname = "?";
2668 				shost_printk(KERN_ERR, shost, "unknown bus "
2669 					"type %d\n", asc_dvc_varp->bus_type);
2670 			}
2671 			sprintf(info,
2672 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2673 				ASC_VERSION, busname, (ulong)shost->io_port,
2674 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2675 				boardp->irq);
2676 		}
2677 	} else {
2678 		/*
2679 		 * Wide Adapter Information
2680 		 *
2681 		 * Memory-mapped I/O is used instead of I/O space to access
2682 		 * the adapter, but display the I/O Port range. The Memory
2683 		 * I/O address is displayed through the driver /proc file.
2684 		 */
2685 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2686 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2687 			widename = "Ultra-Wide";
2688 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2689 			widename = "Ultra2-Wide";
2690 		} else {
2691 			widename = "Ultra3-Wide";
2692 		}
2693 		sprintf(info,
2694 			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2695 			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2696 			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2697 	}
2698 	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2699 	ASC_DBG(1, "end\n");
2700 	return info;
2701 }
2702 
2703 #ifdef CONFIG_PROC_FS
2704 
2705 /*
2706  * asc_prt_board_devices()
2707  *
2708  * Print driver information for devices attached to the board.
2709  */
2710 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2711 {
2712 	struct asc_board *boardp = shost_priv(shost);
2713 	int chip_scsi_id;
2714 	int i;
2715 
2716 	seq_printf(m,
2717 		   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2718 		   shost->host_no);
2719 
2720 	if (ASC_NARROW_BOARD(boardp)) {
2721 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2722 	} else {
2723 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2724 	}
2725 
2726 	seq_puts(m, "Target IDs Detected:");
2727 	for (i = 0; i <= ADV_MAX_TID; i++) {
2728 		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2729 			seq_printf(m, " %X,", i);
2730 	}
2731 	seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2732 }
2733 
2734 /*
2735  * Display Wide Board BIOS Information.
2736  */
2737 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2738 {
2739 	struct asc_board *boardp = shost_priv(shost);
2740 	ushort major, minor, letter;
2741 
2742 	seq_puts(m, "\nROM BIOS Version: ");
2743 
2744 	/*
2745 	 * If the BIOS saved a valid signature, then fill in
2746 	 * the BIOS code segment base address.
2747 	 */
2748 	if (boardp->bios_signature != 0x55AA) {
2749 		seq_puts(m, "Disabled or Pre-3.1\n"
2750 			"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2751 			"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2752 	} else {
2753 		major = (boardp->bios_version >> 12) & 0xF;
2754 		minor = (boardp->bios_version >> 8) & 0xF;
2755 		letter = (boardp->bios_version & 0xFF);
2756 
2757 		seq_printf(m, "%d.%d%c\n",
2758 				   major, minor,
2759 				   letter >= 26 ? '?' : letter + 'A');
2760 		/*
2761 		 * Current available ROM BIOS release is 3.1I for UW
2762 		 * and 3.2I for U2W. This code doesn't differentiate
2763 		 * UW and U2W boards.
2764 		 */
2765 		if (major < 3 || (major <= 3 && minor < 1) ||
2766 		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2767 			seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2768 				"ftp://ftp.connectcom.net/pub\n");
2769 		}
2770 	}
2771 }
2772 
2773 /*
2774  * Add serial number to information bar if signature AAh
2775  * is found in at bit 15-9 (7 bits) of word 1.
2776  *
2777  * Serial Number consists fo 12 alpha-numeric digits.
2778  *
2779  *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2780  *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2781  *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2782  *       5 - Product revision (A-J)    Word0:  "         "
2783  *
2784  *           Signature                 Word1: 15-9 (7 bits)
2785  *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2786  *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2787  *
2788  *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2789  *
2790  * Note 1: Only production cards will have a serial number.
2791  *
2792  * Note 2: Signature is most significant 7 bits (0xFE).
2793  *
2794  * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2795  */
2796 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2797 {
2798 	ushort w, num;
2799 
2800 	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2801 		return ASC_FALSE;
2802 	} else {
2803 		/*
2804 		 * First word - 6 digits.
2805 		 */
2806 		w = serialnum[0];
2807 
2808 		/* Product type - 1st digit. */
2809 		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2810 			/* Product type is P=Prototype */
2811 			*cp += 0x8;
2812 		}
2813 		cp++;
2814 
2815 		/* Manufacturing location - 2nd digit. */
2816 		*cp++ = 'A' + ((w & 0x1C00) >> 10);
2817 
2818 		/* Product ID - 3rd, 4th digits. */
2819 		num = w & 0x3FF;
2820 		*cp++ = '0' + (num / 100);
2821 		num %= 100;
2822 		*cp++ = '0' + (num / 10);
2823 
2824 		/* Product revision - 5th digit. */
2825 		*cp++ = 'A' + (num % 10);
2826 
2827 		/*
2828 		 * Second word
2829 		 */
2830 		w = serialnum[1];
2831 
2832 		/*
2833 		 * Year - 6th digit.
2834 		 *
2835 		 * If bit 15 of third word is set, then the
2836 		 * last digit of the year is greater than 7.
2837 		 */
2838 		if (serialnum[2] & 0x8000) {
2839 			*cp++ = '8' + ((w & 0x1C0) >> 6);
2840 		} else {
2841 			*cp++ = '0' + ((w & 0x1C0) >> 6);
2842 		}
2843 
2844 		/* Week of year - 7th, 8th digits. */
2845 		num = w & 0x003F;
2846 		*cp++ = '0' + num / 10;
2847 		num %= 10;
2848 		*cp++ = '0' + num;
2849 
2850 		/*
2851 		 * Third word
2852 		 */
2853 		w = serialnum[2] & 0x7FFF;
2854 
2855 		/* Serial number - 9th digit. */
2856 		*cp++ = 'A' + (w / 1000);
2857 
2858 		/* 10th, 11th, 12th digits. */
2859 		num = w % 1000;
2860 		*cp++ = '0' + num / 100;
2861 		num %= 100;
2862 		*cp++ = '0' + num / 10;
2863 		num %= 10;
2864 		*cp++ = '0' + num;
2865 
2866 		*cp = '\0';	/* Null Terminate the string. */
2867 		return ASC_TRUE;
2868 	}
2869 }
2870 
2871 /*
2872  * asc_prt_asc_board_eeprom()
2873  *
2874  * Print board EEPROM configuration.
2875  */
2876 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2877 {
2878 	struct asc_board *boardp = shost_priv(shost);
2879 	ASCEEP_CONFIG *ep;
2880 	int i;
2881 	uchar serialstr[13];
2882 #ifdef CONFIG_ISA
2883 	ASC_DVC_VAR *asc_dvc_varp;
2884 	int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
2885 
2886 	asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2887 #endif /* CONFIG_ISA */
2888 	ep = &boardp->eep_config.asc_eep;
2889 
2890 	seq_printf(m,
2891 		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2892 		   shost->host_no);
2893 
2894 	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2895 	    == ASC_TRUE)
2896 		seq_printf(m, " Serial Number: %s\n", serialstr);
2897 	else if (ep->adapter_info[5] == 0xBB)
2898 		seq_puts(m,
2899 			 " Default Settings Used for EEPROM-less Adapter.\n");
2900 	else
2901 		seq_puts(m, " Serial Number Signature Not Present.\n");
2902 
2903 	seq_printf(m,
2904 		   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2905 		   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2906 		   ep->max_tag_qng);
2907 
2908 	seq_printf(m,
2909 		   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2910 
2911 	seq_puts(m, " Target ID:           ");
2912 	for (i = 0; i <= ASC_MAX_TID; i++)
2913 		seq_printf(m, " %d", i);
2914 
2915 	seq_puts(m, "\n Disconnects:         ");
2916 	for (i = 0; i <= ASC_MAX_TID; i++)
2917 		seq_printf(m, " %c",
2918 			   (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2919 
2920 	seq_puts(m, "\n Command Queuing:     ");
2921 	for (i = 0; i <= ASC_MAX_TID; i++)
2922 		seq_printf(m, " %c",
2923 			   (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2924 
2925 	seq_puts(m, "\n Start Motor:         ");
2926 	for (i = 0; i <= ASC_MAX_TID; i++)
2927 		seq_printf(m, " %c",
2928 			   (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2929 
2930 	seq_puts(m, "\n Synchronous Transfer:");
2931 	for (i = 0; i <= ASC_MAX_TID; i++)
2932 		seq_printf(m, " %c",
2933 			   (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2934 	seq_putc(m, '\n');
2935 
2936 #ifdef CONFIG_ISA
2937 	if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2938 		seq_printf(m,
2939 			   " Host ISA DMA speed:   %d MB/S\n",
2940 			   isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
2941 	}
2942 #endif /* CONFIG_ISA */
2943 }
2944 
2945 /*
2946  * asc_prt_adv_board_eeprom()
2947  *
2948  * Print board EEPROM configuration.
2949  */
2950 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2951 {
2952 	struct asc_board *boardp = shost_priv(shost);
2953 	ADV_DVC_VAR *adv_dvc_varp;
2954 	int i;
2955 	char *termstr;
2956 	uchar serialstr[13];
2957 	ADVEEP_3550_CONFIG *ep_3550 = NULL;
2958 	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2959 	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2960 	ushort word;
2961 	ushort *wordp;
2962 	ushort sdtr_speed = 0;
2963 
2964 	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2965 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2966 		ep_3550 = &boardp->eep_config.adv_3550_eep;
2967 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2968 		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2969 	} else {
2970 		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2971 	}
2972 
2973 	seq_printf(m,
2974 		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2975 		   shost->host_no);
2976 
2977 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2978 		wordp = &ep_3550->serial_number_word1;
2979 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2980 		wordp = &ep_38C0800->serial_number_word1;
2981 	} else {
2982 		wordp = &ep_38C1600->serial_number_word1;
2983 	}
2984 
2985 	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2986 		seq_printf(m, " Serial Number: %s\n", serialstr);
2987 	else
2988 		seq_puts(m, " Serial Number Signature Not Present.\n");
2989 
2990 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2991 		seq_printf(m,
2992 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2993 			   ep_3550->adapter_scsi_id,
2994 			   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2995 	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2996 		seq_printf(m,
2997 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2998 			   ep_38C0800->adapter_scsi_id,
2999 			   ep_38C0800->max_host_qng,
3000 			   ep_38C0800->max_dvc_qng);
3001 	else
3002 		seq_printf(m,
3003 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3004 			   ep_38C1600->adapter_scsi_id,
3005 			   ep_38C1600->max_host_qng,
3006 			   ep_38C1600->max_dvc_qng);
3007 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3008 		word = ep_3550->termination;
3009 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3010 		word = ep_38C0800->termination_lvd;
3011 	} else {
3012 		word = ep_38C1600->termination_lvd;
3013 	}
3014 	switch (word) {
3015 	case 1:
3016 		termstr = "Low Off/High Off";
3017 		break;
3018 	case 2:
3019 		termstr = "Low Off/High On";
3020 		break;
3021 	case 3:
3022 		termstr = "Low On/High On";
3023 		break;
3024 	default:
3025 	case 0:
3026 		termstr = "Automatic";
3027 		break;
3028 	}
3029 
3030 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3031 		seq_printf(m,
3032 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3033 			   ep_3550->termination, termstr,
3034 			   ep_3550->bios_ctrl);
3035 	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3036 		seq_printf(m,
3037 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3038 			   ep_38C0800->termination_lvd, termstr,
3039 			   ep_38C0800->bios_ctrl);
3040 	else
3041 		seq_printf(m,
3042 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3043 			   ep_38C1600->termination_lvd, termstr,
3044 			   ep_38C1600->bios_ctrl);
3045 
3046 	seq_puts(m, " Target ID:           ");
3047 	for (i = 0; i <= ADV_MAX_TID; i++)
3048 		seq_printf(m, " %X", i);
3049 	seq_putc(m, '\n');
3050 
3051 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3052 		word = ep_3550->disc_enable;
3053 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3054 		word = ep_38C0800->disc_enable;
3055 	} else {
3056 		word = ep_38C1600->disc_enable;
3057 	}
3058 	seq_puts(m, " Disconnects:         ");
3059 	for (i = 0; i <= ADV_MAX_TID; i++)
3060 		seq_printf(m, " %c",
3061 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3062 	seq_putc(m, '\n');
3063 
3064 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3065 		word = ep_3550->tagqng_able;
3066 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3067 		word = ep_38C0800->tagqng_able;
3068 	} else {
3069 		word = ep_38C1600->tagqng_able;
3070 	}
3071 	seq_puts(m, " Command Queuing:     ");
3072 	for (i = 0; i <= ADV_MAX_TID; i++)
3073 		seq_printf(m, " %c",
3074 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3075 	seq_putc(m, '\n');
3076 
3077 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3078 		word = ep_3550->start_motor;
3079 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3080 		word = ep_38C0800->start_motor;
3081 	} else {
3082 		word = ep_38C1600->start_motor;
3083 	}
3084 	seq_puts(m, " Start Motor:         ");
3085 	for (i = 0; i <= ADV_MAX_TID; i++)
3086 		seq_printf(m, " %c",
3087 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3088 	seq_putc(m, '\n');
3089 
3090 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3091 		seq_puts(m, " Synchronous Transfer:");
3092 		for (i = 0; i <= ADV_MAX_TID; i++)
3093 			seq_printf(m, " %c",
3094 				   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3095 				   'Y' : 'N');
3096 		seq_putc(m, '\n');
3097 	}
3098 
3099 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3100 		seq_puts(m, " Ultra Transfer:      ");
3101 		for (i = 0; i <= ADV_MAX_TID; i++)
3102 			seq_printf(m, " %c",
3103 				   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3104 				   ? 'Y' : 'N');
3105 		seq_putc(m, '\n');
3106 	}
3107 
3108 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3109 		word = ep_3550->wdtr_able;
3110 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3111 		word = ep_38C0800->wdtr_able;
3112 	} else {
3113 		word = ep_38C1600->wdtr_able;
3114 	}
3115 	seq_puts(m, " Wide Transfer:       ");
3116 	for (i = 0; i <= ADV_MAX_TID; i++)
3117 		seq_printf(m, " %c",
3118 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3119 	seq_putc(m, '\n');
3120 
3121 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3122 	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3123 		seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3124 		for (i = 0; i <= ADV_MAX_TID; i++) {
3125 			char *speed_str;
3126 
3127 			if (i == 0) {
3128 				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3129 			} else if (i == 4) {
3130 				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3131 			} else if (i == 8) {
3132 				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3133 			} else if (i == 12) {
3134 				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3135 			}
3136 			switch (sdtr_speed & ADV_MAX_TID) {
3137 			case 0:
3138 				speed_str = "Off";
3139 				break;
3140 			case 1:
3141 				speed_str = "  5";
3142 				break;
3143 			case 2:
3144 				speed_str = " 10";
3145 				break;
3146 			case 3:
3147 				speed_str = " 20";
3148 				break;
3149 			case 4:
3150 				speed_str = " 40";
3151 				break;
3152 			case 5:
3153 				speed_str = " 80";
3154 				break;
3155 			default:
3156 				speed_str = "Unk";
3157 				break;
3158 			}
3159 			seq_printf(m, "%X:%s ", i, speed_str);
3160 			if (i == 7)
3161 				seq_puts(m, "\n  ");
3162 			sdtr_speed >>= 4;
3163 		}
3164 		seq_putc(m, '\n');
3165 	}
3166 }
3167 
3168 /*
3169  * asc_prt_driver_conf()
3170  */
3171 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3172 {
3173 	struct asc_board *boardp = shost_priv(shost);
3174 
3175 	seq_printf(m,
3176 		"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3177 		shost->host_no);
3178 
3179 	seq_printf(m,
3180 		   " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3181 		   scsi_host_busy(shost), shost->max_id,
3182 		   shost->max_lun, shost->max_channel);
3183 
3184 	seq_printf(m,
3185 		   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3186 		   shost->unique_id, shost->can_queue, shost->this_id,
3187 		   shost->sg_tablesize, shost->cmd_per_lun);
3188 
3189 	seq_printf(m,
3190 		   " unchecked_isa_dma %d\n",
3191 		   shost->unchecked_isa_dma);
3192 
3193 	seq_printf(m,
3194 		   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3195 		   boardp->flags, shost->last_reset, jiffies,
3196 		   boardp->asc_n_io_port);
3197 
3198 	seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3199 }
3200 
3201 /*
3202  * asc_prt_asc_board_info()
3203  *
3204  * Print dynamic board configuration information.
3205  */
3206 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3207 {
3208 	struct asc_board *boardp = shost_priv(shost);
3209 	int chip_scsi_id;
3210 	ASC_DVC_VAR *v;
3211 	ASC_DVC_CFG *c;
3212 	int i;
3213 	int renegotiate = 0;
3214 
3215 	v = &boardp->dvc_var.asc_dvc_var;
3216 	c = &boardp->dvc_cfg.asc_dvc_cfg;
3217 	chip_scsi_id = c->chip_scsi_id;
3218 
3219 	seq_printf(m,
3220 		   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3221 		   shost->host_no);
3222 
3223 	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3224 		   "mcode_version 0x%x, err_code %u\n",
3225 		   c->chip_version, c->mcode_date, c->mcode_version,
3226 		   v->err_code);
3227 
3228 	/* Current number of commands waiting for the host. */
3229 	seq_printf(m,
3230 		   " Total Command Pending: %d\n", v->cur_total_qng);
3231 
3232 	seq_puts(m, " Command Queuing:");
3233 	for (i = 0; i <= ASC_MAX_TID; i++) {
3234 		if ((chip_scsi_id == i) ||
3235 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3236 			continue;
3237 		}
3238 		seq_printf(m, " %X:%c",
3239 			   i,
3240 			   (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3241 	}
3242 
3243 	/* Current number of commands waiting for a device. */
3244 	seq_puts(m, "\n Command Queue Pending:");
3245 	for (i = 0; i <= ASC_MAX_TID; i++) {
3246 		if ((chip_scsi_id == i) ||
3247 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3248 			continue;
3249 		}
3250 		seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3251 	}
3252 
3253 	/* Current limit on number of commands that can be sent to a device. */
3254 	seq_puts(m, "\n Command Queue Limit:");
3255 	for (i = 0; i <= ASC_MAX_TID; i++) {
3256 		if ((chip_scsi_id == i) ||
3257 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3258 			continue;
3259 		}
3260 		seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3261 	}
3262 
3263 	/* Indicate whether the device has returned queue full status. */
3264 	seq_puts(m, "\n Command Queue Full:");
3265 	for (i = 0; i <= ASC_MAX_TID; i++) {
3266 		if ((chip_scsi_id == i) ||
3267 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3268 			continue;
3269 		}
3270 		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3271 			seq_printf(m, " %X:Y-%d",
3272 				   i, boardp->queue_full_cnt[i]);
3273 		else
3274 			seq_printf(m, " %X:N", i);
3275 	}
3276 
3277 	seq_puts(m, "\n Synchronous Transfer:");
3278 	for (i = 0; i <= ASC_MAX_TID; i++) {
3279 		if ((chip_scsi_id == i) ||
3280 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3281 			continue;
3282 		}
3283 		seq_printf(m, " %X:%c",
3284 			   i,
3285 			   (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3286 	}
3287 	seq_putc(m, '\n');
3288 
3289 	for (i = 0; i <= ASC_MAX_TID; i++) {
3290 		uchar syn_period_ix;
3291 
3292 		if ((chip_scsi_id == i) ||
3293 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3294 		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3295 			continue;
3296 		}
3297 
3298 		seq_printf(m, "  %X:", i);
3299 
3300 		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3301 			seq_puts(m, " Asynchronous");
3302 		} else {
3303 			syn_period_ix =
3304 			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3305 							   1);
3306 
3307 			seq_printf(m,
3308 				   " Transfer Period Factor: %d (%d.%d Mhz),",
3309 				   v->sdtr_period_tbl[syn_period_ix],
3310 				   250 / v->sdtr_period_tbl[syn_period_ix],
3311 				   ASC_TENTHS(250,
3312 					      v->sdtr_period_tbl[syn_period_ix]));
3313 
3314 			seq_printf(m, " REQ/ACK Offset: %d",
3315 				   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3316 		}
3317 
3318 		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3319 			seq_puts(m, "*\n");
3320 			renegotiate = 1;
3321 		} else {
3322 			seq_putc(m, '\n');
3323 		}
3324 	}
3325 
3326 	if (renegotiate) {
3327 		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3328 	}
3329 }
3330 
3331 /*
3332  * asc_prt_adv_board_info()
3333  *
3334  * Print dynamic board configuration information.
3335  */
3336 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3337 {
3338 	struct asc_board *boardp = shost_priv(shost);
3339 	int i;
3340 	ADV_DVC_VAR *v;
3341 	ADV_DVC_CFG *c;
3342 	AdvPortAddr iop_base;
3343 	ushort chip_scsi_id;
3344 	ushort lramword;
3345 	uchar lrambyte;
3346 	ushort tagqng_able;
3347 	ushort sdtr_able, wdtr_able;
3348 	ushort wdtr_done, sdtr_done;
3349 	ushort period = 0;
3350 	int renegotiate = 0;
3351 
3352 	v = &boardp->dvc_var.adv_dvc_var;
3353 	c = &boardp->dvc_cfg.adv_dvc_cfg;
3354 	iop_base = v->iop_base;
3355 	chip_scsi_id = v->chip_scsi_id;
3356 
3357 	seq_printf(m,
3358 		   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3359 		   shost->host_no);
3360 
3361 	seq_printf(m,
3362 		   " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3363 		   (unsigned long)v->iop_base,
3364 		   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3365 		   v->err_code);
3366 
3367 	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3368 		   "mcode_version 0x%x\n", c->chip_version,
3369 		   c->mcode_date, c->mcode_version);
3370 
3371 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3372 	seq_puts(m, " Queuing Enabled:");
3373 	for (i = 0; i <= ADV_MAX_TID; i++) {
3374 		if ((chip_scsi_id == i) ||
3375 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3376 			continue;
3377 		}
3378 
3379 		seq_printf(m, " %X:%c",
3380 			   i,
3381 			   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3382 	}
3383 
3384 	seq_puts(m, "\n Queue Limit:");
3385 	for (i = 0; i <= ADV_MAX_TID; i++) {
3386 		if ((chip_scsi_id == i) ||
3387 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3388 			continue;
3389 		}
3390 
3391 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3392 				lrambyte);
3393 
3394 		seq_printf(m, " %X:%d", i, lrambyte);
3395 	}
3396 
3397 	seq_puts(m, "\n Command Pending:");
3398 	for (i = 0; i <= ADV_MAX_TID; i++) {
3399 		if ((chip_scsi_id == i) ||
3400 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3401 			continue;
3402 		}
3403 
3404 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3405 				lrambyte);
3406 
3407 		seq_printf(m, " %X:%d", i, lrambyte);
3408 	}
3409 	seq_putc(m, '\n');
3410 
3411 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3412 	seq_puts(m, " Wide Enabled:");
3413 	for (i = 0; i <= ADV_MAX_TID; i++) {
3414 		if ((chip_scsi_id == i) ||
3415 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3416 			continue;
3417 		}
3418 
3419 		seq_printf(m, " %X:%c",
3420 			   i,
3421 			   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3422 	}
3423 	seq_putc(m, '\n');
3424 
3425 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3426 	seq_puts(m, " Transfer Bit Width:");
3427 	for (i = 0; i <= ADV_MAX_TID; i++) {
3428 		if ((chip_scsi_id == i) ||
3429 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3430 			continue;
3431 		}
3432 
3433 		AdvReadWordLram(iop_base,
3434 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3435 				lramword);
3436 
3437 		seq_printf(m, " %X:%d",
3438 			   i, (lramword & 0x8000) ? 16 : 8);
3439 
3440 		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3441 		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3442 			seq_putc(m, '*');
3443 			renegotiate = 1;
3444 		}
3445 	}
3446 	seq_putc(m, '\n');
3447 
3448 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3449 	seq_puts(m, " Synchronous Enabled:");
3450 	for (i = 0; i <= ADV_MAX_TID; i++) {
3451 		if ((chip_scsi_id == i) ||
3452 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3453 			continue;
3454 		}
3455 
3456 		seq_printf(m, " %X:%c",
3457 			   i,
3458 			   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3459 	}
3460 	seq_putc(m, '\n');
3461 
3462 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3463 	for (i = 0; i <= ADV_MAX_TID; i++) {
3464 
3465 		AdvReadWordLram(iop_base,
3466 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3467 				lramword);
3468 		lramword &= ~0x8000;
3469 
3470 		if ((chip_scsi_id == i) ||
3471 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3472 		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3473 			continue;
3474 		}
3475 
3476 		seq_printf(m, "  %X:", i);
3477 
3478 		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3479 			seq_puts(m, " Asynchronous");
3480 		} else {
3481 			seq_puts(m, " Transfer Period Factor: ");
3482 
3483 			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3484 				seq_puts(m, "9 (80.0 Mhz),");
3485 			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3486 				seq_puts(m, "10 (40.0 Mhz),");
3487 			} else {	/* 20 Mhz or below. */
3488 
3489 				period = (((lramword >> 8) * 25) + 50) / 4;
3490 
3491 				if (period == 0) {	/* Should never happen. */
3492 					seq_printf(m, "%d (? Mhz), ", period);
3493 				} else {
3494 					seq_printf(m,
3495 						   "%d (%d.%d Mhz),",
3496 						   period, 250 / period,
3497 						   ASC_TENTHS(250, period));
3498 				}
3499 			}
3500 
3501 			seq_printf(m, " REQ/ACK Offset: %d",
3502 				   lramword & 0x1F);
3503 		}
3504 
3505 		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3506 			seq_puts(m, "*\n");
3507 			renegotiate = 1;
3508 		} else {
3509 			seq_putc(m, '\n');
3510 		}
3511 	}
3512 
3513 	if (renegotiate) {
3514 		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3515 	}
3516 }
3517 
3518 #ifdef ADVANSYS_STATS
3519 /*
3520  * asc_prt_board_stats()
3521  */
3522 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3523 {
3524 	struct asc_board *boardp = shost_priv(shost);
3525 	struct asc_stats *s = &boardp->asc_stats;
3526 
3527 	seq_printf(m,
3528 		   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3529 		   shost->host_no);
3530 
3531 	seq_printf(m,
3532 		   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3533 		   s->queuecommand, s->reset, s->biosparam,
3534 		   s->interrupt);
3535 
3536 	seq_printf(m,
3537 		   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3538 		   s->callback, s->done, s->build_error,
3539 		   s->adv_build_noreq, s->adv_build_nosg);
3540 
3541 	seq_printf(m,
3542 		   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3543 		   s->exe_noerror, s->exe_busy, s->exe_error,
3544 		   s->exe_unknown);
3545 
3546 	/*
3547 	 * Display data transfer statistics.
3548 	 */
3549 	if (s->xfer_cnt > 0) {
3550 		seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3551 			   s->xfer_cnt, s->xfer_elem);
3552 
3553 		seq_printf(m, "xfer_bytes %u.%01u kb\n",
3554 			   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3555 
3556 		/* Scatter gather transfer statistics */
3557 		seq_printf(m, " avg_num_elem %u.%01u, ",
3558 			   s->xfer_elem / s->xfer_cnt,
3559 			   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3560 
3561 		seq_printf(m, "avg_elem_size %u.%01u kb, ",
3562 			   (s->xfer_sect / 2) / s->xfer_elem,
3563 			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3564 
3565 		seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3566 			   (s->xfer_sect / 2) / s->xfer_cnt,
3567 			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3568 	}
3569 }
3570 #endif /* ADVANSYS_STATS */
3571 
3572 /*
3573  * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3574  *
3575  * m: seq_file to print into
3576  * shost: Scsi_Host
3577  *
3578  * Return the number of bytes read from or written to a
3579  * /proc/scsi/advansys/[0...] file.
3580  */
3581 static int
3582 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3583 {
3584 	struct asc_board *boardp = shost_priv(shost);
3585 
3586 	ASC_DBG(1, "begin\n");
3587 
3588 	/*
3589 	 * User read of /proc/scsi/advansys/[0...] file.
3590 	 */
3591 
3592 	/*
3593 	 * Get board configuration information.
3594 	 *
3595 	 * advansys_info() returns the board string from its own static buffer.
3596 	 */
3597 	/* Copy board information. */
3598 	seq_printf(m, "%s\n", (char *)advansys_info(shost));
3599 	/*
3600 	 * Display Wide Board BIOS Information.
3601 	 */
3602 	if (!ASC_NARROW_BOARD(boardp))
3603 		asc_prt_adv_bios(m, shost);
3604 
3605 	/*
3606 	 * Display driver information for each device attached to the board.
3607 	 */
3608 	asc_prt_board_devices(m, shost);
3609 
3610 	/*
3611 	 * Display EEPROM configuration for the board.
3612 	 */
3613 	if (ASC_NARROW_BOARD(boardp))
3614 		asc_prt_asc_board_eeprom(m, shost);
3615 	else
3616 		asc_prt_adv_board_eeprom(m, shost);
3617 
3618 	/*
3619 	 * Display driver configuration and information for the board.
3620 	 */
3621 	asc_prt_driver_conf(m, shost);
3622 
3623 #ifdef ADVANSYS_STATS
3624 	/*
3625 	 * Display driver statistics for the board.
3626 	 */
3627 	asc_prt_board_stats(m, shost);
3628 #endif /* ADVANSYS_STATS */
3629 
3630 	/*
3631 	 * Display Asc Library dynamic configuration information
3632 	 * for the board.
3633 	 */
3634 	if (ASC_NARROW_BOARD(boardp))
3635 		asc_prt_asc_board_info(m, shost);
3636 	else
3637 		asc_prt_adv_board_info(m, shost);
3638 	return 0;
3639 }
3640 #endif /* CONFIG_PROC_FS */
3641 
3642 static void asc_scsi_done(struct scsi_cmnd *scp)
3643 {
3644 	scsi_dma_unmap(scp);
3645 	ASC_STATS(scp->device->host, done);
3646 	scp->scsi_done(scp);
3647 }
3648 
3649 static void AscSetBank(PortAddr iop_base, uchar bank)
3650 {
3651 	uchar val;
3652 
3653 	val = AscGetChipControl(iop_base) &
3654 	    (~
3655 	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3656 	      CC_CHIP_RESET));
3657 	if (bank == 1) {
3658 		val |= CC_BANK_ONE;
3659 	} else if (bank == 2) {
3660 		val |= CC_DIAG | CC_BANK_ONE;
3661 	} else {
3662 		val &= ~CC_BANK_ONE;
3663 	}
3664 	AscSetChipControl(iop_base, val);
3665 }
3666 
3667 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3668 {
3669 	AscSetBank(iop_base, 1);
3670 	AscWriteChipIH(iop_base, ins_code);
3671 	AscSetBank(iop_base, 0);
3672 }
3673 
3674 static int AscStartChip(PortAddr iop_base)
3675 {
3676 	AscSetChipControl(iop_base, 0);
3677 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3678 		return (0);
3679 	}
3680 	return (1);
3681 }
3682 
3683 static bool AscStopChip(PortAddr iop_base)
3684 {
3685 	uchar cc_val;
3686 
3687 	cc_val =
3688 	    AscGetChipControl(iop_base) &
3689 	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3690 	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3691 	AscSetChipIH(iop_base, INS_HALT);
3692 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3693 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3694 		return false;
3695 	}
3696 	return true;
3697 }
3698 
3699 static bool AscIsChipHalted(PortAddr iop_base)
3700 {
3701 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3702 		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3703 			return true;
3704 		}
3705 	}
3706 	return false;
3707 }
3708 
3709 static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3710 {
3711 	PortAddr iop_base;
3712 	int i = 10;
3713 
3714 	iop_base = asc_dvc->iop_base;
3715 	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3716 	       && (i-- > 0)) {
3717 		mdelay(100);
3718 	}
3719 	AscStopChip(iop_base);
3720 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3721 	udelay(60);
3722 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3723 	AscSetChipIH(iop_base, INS_HALT);
3724 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3725 	AscSetChipControl(iop_base, CC_HALT);
3726 	mdelay(200);
3727 	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3728 	AscSetChipStatus(iop_base, 0);
3729 	return (AscIsChipHalted(iop_base));
3730 }
3731 
3732 static int AscFindSignature(PortAddr iop_base)
3733 {
3734 	ushort sig_word;
3735 
3736 	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3737 		 iop_base, AscGetChipSignatureByte(iop_base));
3738 	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3739 		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3740 			 iop_base, AscGetChipSignatureWord(iop_base));
3741 		sig_word = AscGetChipSignatureWord(iop_base);
3742 		if ((sig_word == (ushort)ASC_1000_ID0W) ||
3743 		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3744 			return (1);
3745 		}
3746 	}
3747 	return (0);
3748 }
3749 
3750 static void AscEnableInterrupt(PortAddr iop_base)
3751 {
3752 	ushort cfg;
3753 
3754 	cfg = AscGetChipCfgLsw(iop_base);
3755 	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3756 }
3757 
3758 static void AscDisableInterrupt(PortAddr iop_base)
3759 {
3760 	ushort cfg;
3761 
3762 	cfg = AscGetChipCfgLsw(iop_base);
3763 	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3764 }
3765 
3766 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3767 {
3768 	unsigned char byte_data;
3769 	unsigned short word_data;
3770 
3771 	if (isodd_word(addr)) {
3772 		AscSetChipLramAddr(iop_base, addr - 1);
3773 		word_data = AscGetChipLramData(iop_base);
3774 		byte_data = (word_data >> 8) & 0xFF;
3775 	} else {
3776 		AscSetChipLramAddr(iop_base, addr);
3777 		word_data = AscGetChipLramData(iop_base);
3778 		byte_data = word_data & 0xFF;
3779 	}
3780 	return byte_data;
3781 }
3782 
3783 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3784 {
3785 	ushort word_data;
3786 
3787 	AscSetChipLramAddr(iop_base, addr);
3788 	word_data = AscGetChipLramData(iop_base);
3789 	return (word_data);
3790 }
3791 
3792 static void
3793 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3794 {
3795 	int i;
3796 
3797 	AscSetChipLramAddr(iop_base, s_addr);
3798 	for (i = 0; i < words; i++) {
3799 		AscSetChipLramData(iop_base, set_wval);
3800 	}
3801 }
3802 
3803 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3804 {
3805 	AscSetChipLramAddr(iop_base, addr);
3806 	AscSetChipLramData(iop_base, word_val);
3807 }
3808 
3809 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3810 {
3811 	ushort word_data;
3812 
3813 	if (isodd_word(addr)) {
3814 		addr--;
3815 		word_data = AscReadLramWord(iop_base, addr);
3816 		word_data &= 0x00FF;
3817 		word_data |= (((ushort)byte_val << 8) & 0xFF00);
3818 	} else {
3819 		word_data = AscReadLramWord(iop_base, addr);
3820 		word_data &= 0xFF00;
3821 		word_data |= ((ushort)byte_val & 0x00FF);
3822 	}
3823 	AscWriteLramWord(iop_base, addr, word_data);
3824 }
3825 
3826 /*
3827  * Copy 2 bytes to LRAM.
3828  *
3829  * The source data is assumed to be in little-endian order in memory
3830  * and is maintained in little-endian order when written to LRAM.
3831  */
3832 static void
3833 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3834 			const uchar *s_buffer, int words)
3835 {
3836 	int i;
3837 
3838 	AscSetChipLramAddr(iop_base, s_addr);
3839 	for (i = 0; i < 2 * words; i += 2) {
3840 		/*
3841 		 * On a little-endian system the second argument below
3842 		 * produces a little-endian ushort which is written to
3843 		 * LRAM in little-endian order. On a big-endian system
3844 		 * the second argument produces a big-endian ushort which
3845 		 * is "transparently" byte-swapped by outpw() and written
3846 		 * in little-endian order to LRAM.
3847 		 */
3848 		outpw(iop_base + IOP_RAM_DATA,
3849 		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3850 	}
3851 }
3852 
3853 /*
3854  * Copy 4 bytes to LRAM.
3855  *
3856  * The source data is assumed to be in little-endian order in memory
3857  * and is maintained in little-endian order when written to LRAM.
3858  */
3859 static void
3860 AscMemDWordCopyPtrToLram(PortAddr iop_base,
3861 			 ushort s_addr, uchar *s_buffer, int dwords)
3862 {
3863 	int i;
3864 
3865 	AscSetChipLramAddr(iop_base, s_addr);
3866 	for (i = 0; i < 4 * dwords; i += 4) {
3867 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
3868 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
3869 	}
3870 }
3871 
3872 /*
3873  * Copy 2 bytes from LRAM.
3874  *
3875  * The source data is assumed to be in little-endian order in LRAM
3876  * and is maintained in little-endian order when written to memory.
3877  */
3878 static void
3879 AscMemWordCopyPtrFromLram(PortAddr iop_base,
3880 			  ushort s_addr, uchar *d_buffer, int words)
3881 {
3882 	int i;
3883 	ushort word;
3884 
3885 	AscSetChipLramAddr(iop_base, s_addr);
3886 	for (i = 0; i < 2 * words; i += 2) {
3887 		word = inpw(iop_base + IOP_RAM_DATA);
3888 		d_buffer[i] = word & 0xff;
3889 		d_buffer[i + 1] = (word >> 8) & 0xff;
3890 	}
3891 }
3892 
3893 static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3894 {
3895 	u32 sum = 0;
3896 	int i;
3897 
3898 	for (i = 0; i < words; i++, s_addr += 2) {
3899 		sum += AscReadLramWord(iop_base, s_addr);
3900 	}
3901 	return (sum);
3902 }
3903 
3904 static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3905 {
3906 	uchar i;
3907 	ushort s_addr;
3908 	PortAddr iop_base;
3909 
3910 	iop_base = asc_dvc->iop_base;
3911 	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3912 			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3913 				    64) >> 1));
3914 	i = ASC_MIN_ACTIVE_QNO;
3915 	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3916 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3917 			 (uchar)(i + 1));
3918 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3919 			 (uchar)(asc_dvc->max_total_qng));
3920 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3921 			 (uchar)i);
3922 	i++;
3923 	s_addr += ASC_QBLK_SIZE;
3924 	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3925 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3926 				 (uchar)(i + 1));
3927 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3928 				 (uchar)(i - 1));
3929 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3930 				 (uchar)i);
3931 	}
3932 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3933 			 (uchar)ASC_QLINK_END);
3934 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3935 			 (uchar)(asc_dvc->max_total_qng - 1));
3936 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3937 			 (uchar)asc_dvc->max_total_qng);
3938 	i++;
3939 	s_addr += ASC_QBLK_SIZE;
3940 	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3941 	     i++, s_addr += ASC_QBLK_SIZE) {
3942 		AscWriteLramByte(iop_base,
3943 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3944 		AscWriteLramByte(iop_base,
3945 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3946 		AscWriteLramByte(iop_base,
3947 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3948 	}
3949 }
3950 
3951 static u32
3952 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3953 		 const uchar *mcode_buf, ushort mcode_size)
3954 {
3955 	u32 chksum;
3956 	ushort mcode_word_size;
3957 	ushort mcode_chksum;
3958 
3959 	/* Write the microcode buffer starting at LRAM address 0. */
3960 	mcode_word_size = (ushort)(mcode_size >> 1);
3961 	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3962 	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3963 
3964 	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3965 	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3966 	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3967 						 (ushort)ASC_CODE_SEC_BEG,
3968 						 (ushort)((mcode_size -
3969 							   s_addr - (ushort)
3970 							   ASC_CODE_SEC_BEG) /
3971 							  2));
3972 	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3973 	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3974 	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3975 	return chksum;
3976 }
3977 
3978 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3979 {
3980 	PortAddr iop_base;
3981 	int i;
3982 	ushort lram_addr;
3983 
3984 	iop_base = asc_dvc->iop_base;
3985 	AscPutRiscVarFreeQHead(iop_base, 1);
3986 	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3987 	AscPutVarFreeQHead(iop_base, 1);
3988 	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3989 	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
3990 			 (uchar)((int)asc_dvc->max_total_qng + 1));
3991 	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
3992 			 (uchar)((int)asc_dvc->max_total_qng + 2));
3993 	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
3994 			 asc_dvc->max_total_qng);
3995 	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
3996 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
3997 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
3998 	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
3999 	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4000 	AscPutQDoneInProgress(iop_base, 0);
4001 	lram_addr = ASC_QADR_BEG;
4002 	for (i = 0; i < 32; i++, lram_addr += 2) {
4003 		AscWriteLramWord(iop_base, lram_addr, 0);
4004 	}
4005 }
4006 
4007 static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4008 {
4009 	int i;
4010 	int warn_code;
4011 	PortAddr iop_base;
4012 	__le32 phy_addr;
4013 	__le32 phy_size;
4014 	struct asc_board *board = asc_dvc_to_board(asc_dvc);
4015 
4016 	iop_base = asc_dvc->iop_base;
4017 	warn_code = 0;
4018 	for (i = 0; i <= ASC_MAX_TID; i++) {
4019 		AscPutMCodeInitSDTRAtID(iop_base, i,
4020 					asc_dvc->cfg->sdtr_period_offset[i]);
4021 	}
4022 
4023 	AscInitQLinkVar(asc_dvc);
4024 	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4025 			 asc_dvc->cfg->disc_enable);
4026 	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4027 			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4028 
4029 	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
4030 	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4031 	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4032 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4033 	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4034 		warn_code = -ENOMEM;
4035 		goto err_dma_map;
4036 	}
4037 	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4038 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4039 				 (uchar *)&phy_addr, 1);
4040 	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4041 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4042 				 (uchar *)&phy_size, 1);
4043 
4044 	asc_dvc->cfg->mcode_date =
4045 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4046 	asc_dvc->cfg->mcode_version =
4047 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4048 
4049 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4050 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4051 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4052 		warn_code = -EINVAL;
4053 		goto err_mcode_start;
4054 	}
4055 	if (AscStartChip(iop_base) != 1) {
4056 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4057 		warn_code = -EIO;
4058 		goto err_mcode_start;
4059 	}
4060 
4061 	return warn_code;
4062 
4063 err_mcode_start:
4064 	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4065 			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4066 err_dma_map:
4067 	asc_dvc->overrun_dma = 0;
4068 	return warn_code;
4069 }
4070 
4071 static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4072 {
4073 	const struct firmware *fw;
4074 	const char fwname[] = "advansys/mcode.bin";
4075 	int err;
4076 	unsigned long chksum;
4077 	int warn_code;
4078 	PortAddr iop_base;
4079 
4080 	iop_base = asc_dvc->iop_base;
4081 	warn_code = 0;
4082 	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4083 	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4084 		AscResetChipAndScsiBus(asc_dvc);
4085 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4086 	}
4087 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4088 	if (asc_dvc->err_code != 0)
4089 		return ASC_ERROR;
4090 	if (!AscFindSignature(asc_dvc->iop_base)) {
4091 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4092 		return warn_code;
4093 	}
4094 	AscDisableInterrupt(iop_base);
4095 	AscInitLram(asc_dvc);
4096 
4097 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4098 	if (err) {
4099 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4100 		       fwname, err);
4101 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4102 		return err;
4103 	}
4104 	if (fw->size < 4) {
4105 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4106 		       fw->size, fwname);
4107 		release_firmware(fw);
4108 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4109 		return -EINVAL;
4110 	}
4111 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4112 		 (fw->data[1] << 8) | fw->data[0];
4113 	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4114 	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4115 			     fw->size - 4) != chksum) {
4116 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4117 		release_firmware(fw);
4118 		return warn_code;
4119 	}
4120 	release_firmware(fw);
4121 	warn_code |= AscInitMicroCodeVar(asc_dvc);
4122 	if (!asc_dvc->overrun_dma)
4123 		return warn_code;
4124 	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4125 	AscEnableInterrupt(iop_base);
4126 	return warn_code;
4127 }
4128 
4129 /*
4130  * Load the Microcode
4131  *
4132  * Write the microcode image to RISC memory starting at address 0.
4133  *
4134  * The microcode is stored compressed in the following format:
4135  *
4136  *  254 word (508 byte) table indexed by byte code followed
4137  *  by the following byte codes:
4138  *
4139  *    1-Byte Code:
4140  *      00: Emit word 0 in table.
4141  *      01: Emit word 1 in table.
4142  *      .
4143  *      FD: Emit word 253 in table.
4144  *
4145  *    Multi-Byte Code:
4146  *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4147  *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4148  *
4149  * Returns 0 or an error if the checksum doesn't match
4150  */
4151 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4152 			    int size, int memsize, int chksum)
4153 {
4154 	int i, j, end, len = 0;
4155 	u32 sum;
4156 
4157 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4158 
4159 	for (i = 253 * 2; i < size; i++) {
4160 		if (buf[i] == 0xff) {
4161 			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4162 			for (j = 0; j < buf[i + 1]; j++) {
4163 				AdvWriteWordAutoIncLram(iop_base, word);
4164 				len += 2;
4165 			}
4166 			i += 3;
4167 		} else if (buf[i] == 0xfe) {
4168 			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4169 			AdvWriteWordAutoIncLram(iop_base, word);
4170 			i += 2;
4171 			len += 2;
4172 		} else {
4173 			unsigned int off = buf[i] * 2;
4174 			unsigned short word = (buf[off + 1] << 8) | buf[off];
4175 			AdvWriteWordAutoIncLram(iop_base, word);
4176 			len += 2;
4177 		}
4178 	}
4179 
4180 	end = len;
4181 
4182 	while (len < memsize) {
4183 		AdvWriteWordAutoIncLram(iop_base, 0);
4184 		len += 2;
4185 	}
4186 
4187 	/* Verify the microcode checksum. */
4188 	sum = 0;
4189 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4190 
4191 	for (len = 0; len < end; len += 2) {
4192 		sum += AdvReadWordAutoIncLram(iop_base);
4193 	}
4194 
4195 	if (sum != chksum)
4196 		return ASC_IERR_MCODE_CHKSUM;
4197 
4198 	return 0;
4199 }
4200 
4201 static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4202 {
4203 	off_t carr_offset = 0, next_offset;
4204 	dma_addr_t carr_paddr;
4205 	int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4206 
4207 	for (i = 0; i < carr_num; i++) {
4208 		carr_offset = i * sizeof(ADV_CARR_T);
4209 		/* Get physical address of the carrier 'carrp'. */
4210 		carr_paddr = adv_dvc->carrier_addr + carr_offset;
4211 
4212 		adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4213 		adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4214 		adv_dvc->carrier[i].areq_vpa = 0;
4215 		next_offset = carr_offset + sizeof(ADV_CARR_T);
4216 		if (i == carr_num)
4217 			next_offset = ~0;
4218 		adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4219 	}
4220 	/*
4221 	 * We cannot have a carrier with 'carr_va' of '0', as
4222 	 * a reference to this carrier would be interpreted as
4223 	 * list termination.
4224 	 * So start at carrier 1 with the freelist.
4225 	 */
4226 	adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4227 }
4228 
4229 static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4230 {
4231 	int index;
4232 
4233 	BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4234 
4235 	index = offset / sizeof(ADV_CARR_T);
4236 	return &adv_dvc->carrier[index];
4237 }
4238 
4239 static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4240 {
4241 	ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4242 	u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4243 
4244 	if (next_vpa == 0 || next_vpa == ~0) {
4245 		ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4246 		return NULL;
4247 	}
4248 
4249 	adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4250 	/*
4251 	 * insert stopper carrier to terminate list
4252 	 */
4253 	carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4254 
4255 	return carrp;
4256 }
4257 
4258 /*
4259  * 'offset' is the index in the request pointer array
4260  */
4261 static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4262 {
4263 	struct asc_board *boardp = adv_dvc->drv_ptr;
4264 
4265 	BUG_ON(offset > adv_dvc->max_host_qng);
4266 	return &boardp->adv_reqp[offset];
4267 }
4268 
4269 /*
4270  * Send an idle command to the chip and wait for completion.
4271  *
4272  * Command completion is polled for once per microsecond.
4273  *
4274  * The function can be called from anywhere including an interrupt handler.
4275  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4276  * functions to prevent reentrancy.
4277  *
4278  * Return Values:
4279  *   ADV_TRUE - command completed successfully
4280  *   ADV_FALSE - command failed
4281  *   ADV_ERROR - command timed out
4282  */
4283 static int
4284 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4285 	       ushort idle_cmd, u32 idle_cmd_parameter)
4286 {
4287 	int result, i, j;
4288 	AdvPortAddr iop_base;
4289 
4290 	iop_base = asc_dvc->iop_base;
4291 
4292 	/*
4293 	 * Clear the idle command status which is set by the microcode
4294 	 * to a non-zero value to indicate when the command is completed.
4295 	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4296 	 */
4297 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4298 
4299 	/*
4300 	 * Write the idle command value after the idle command parameter
4301 	 * has been written to avoid a race condition. If the order is not
4302 	 * followed, the microcode may process the idle command before the
4303 	 * parameters have been written to LRAM.
4304 	 */
4305 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4306 				cpu_to_le32(idle_cmd_parameter));
4307 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4308 
4309 	/*
4310 	 * Tickle the RISC to tell it to process the idle command.
4311 	 */
4312 	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4313 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4314 		/*
4315 		 * Clear the tickle value. In the ASC-3550 the RISC flag
4316 		 * command 'clr_tickle_b' does not work unless the host
4317 		 * value is cleared.
4318 		 */
4319 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4320 	}
4321 
4322 	/* Wait for up to 100 millisecond for the idle command to timeout. */
4323 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4324 		/* Poll once each microsecond for command completion. */
4325 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4326 			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4327 					result);
4328 			if (result != 0)
4329 				return result;
4330 			udelay(1);
4331 		}
4332 	}
4333 
4334 	BUG();		/* The idle command should never timeout. */
4335 	return ADV_ERROR;
4336 }
4337 
4338 /*
4339  * Reset SCSI Bus and purge all outstanding requests.
4340  *
4341  * Return Value:
4342  *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4343  *      ADV_FALSE(0) -  Microcode command failed.
4344  *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4345  *                      may be hung which requires driver recovery.
4346  */
4347 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4348 {
4349 	int status;
4350 
4351 	/*
4352 	 * Send the SCSI Bus Reset idle start idle command which asserts
4353 	 * the SCSI Bus Reset signal.
4354 	 */
4355 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4356 	if (status != ADV_TRUE) {
4357 		return status;
4358 	}
4359 
4360 	/*
4361 	 * Delay for the specified SCSI Bus Reset hold time.
4362 	 *
4363 	 * The hold time delay is done on the host because the RISC has no
4364 	 * microsecond accurate timer.
4365 	 */
4366 	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4367 
4368 	/*
4369 	 * Send the SCSI Bus Reset end idle command which de-asserts
4370 	 * the SCSI Bus Reset signal and purges any pending requests.
4371 	 */
4372 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4373 	if (status != ADV_TRUE) {
4374 		return status;
4375 	}
4376 
4377 	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
4378 
4379 	return status;
4380 }
4381 
4382 /*
4383  * Initialize the ASC-3550.
4384  *
4385  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4386  *
4387  * For a non-fatal error return a warning code. If there are no warnings
4388  * then 0 is returned.
4389  *
4390  * Needed after initialization for error recovery.
4391  */
4392 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4393 {
4394 	const struct firmware *fw;
4395 	const char fwname[] = "advansys/3550.bin";
4396 	AdvPortAddr iop_base;
4397 	ushort warn_code;
4398 	int begin_addr;
4399 	int end_addr;
4400 	ushort code_sum;
4401 	int word;
4402 	int i;
4403 	int err;
4404 	unsigned long chksum;
4405 	ushort scsi_cfg1;
4406 	uchar tid;
4407 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4408 	ushort wdtr_able = 0, sdtr_able, tagqng_able;
4409 	uchar max_cmd[ADV_MAX_TID + 1];
4410 
4411 	/* If there is already an error, don't continue. */
4412 	if (asc_dvc->err_code != 0)
4413 		return ADV_ERROR;
4414 
4415 	/*
4416 	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4417 	 */
4418 	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4419 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4420 		return ADV_ERROR;
4421 	}
4422 
4423 	warn_code = 0;
4424 	iop_base = asc_dvc->iop_base;
4425 
4426 	/*
4427 	 * Save the RISC memory BIOS region before writing the microcode.
4428 	 * The BIOS may already be loaded and using its RISC LRAM region
4429 	 * so its region must be saved and restored.
4430 	 *
4431 	 * Note: This code makes the assumption, which is currently true,
4432 	 * that a chip reset does not clear RISC LRAM.
4433 	 */
4434 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4435 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4436 				bios_mem[i]);
4437 	}
4438 
4439 	/*
4440 	 * Save current per TID negotiated values.
4441 	 */
4442 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4443 		ushort bios_version, major, minor;
4444 
4445 		bios_version =
4446 		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4447 		major = (bios_version >> 12) & 0xF;
4448 		minor = (bios_version >> 8) & 0xF;
4449 		if (major < 3 || (major == 3 && minor == 1)) {
4450 			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4451 			AdvReadWordLram(iop_base, 0x120, wdtr_able);
4452 		} else {
4453 			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4454 		}
4455 	}
4456 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4457 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4458 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4459 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4460 				max_cmd[tid]);
4461 	}
4462 
4463 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4464 	if (err) {
4465 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4466 		       fwname, err);
4467 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4468 		return err;
4469 	}
4470 	if (fw->size < 4) {
4471 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4472 		       fw->size, fwname);
4473 		release_firmware(fw);
4474 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4475 		return -EINVAL;
4476 	}
4477 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4478 		 (fw->data[1] << 8) | fw->data[0];
4479 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4480 					     fw->size - 4, ADV_3550_MEMSIZE,
4481 					     chksum);
4482 	release_firmware(fw);
4483 	if (asc_dvc->err_code)
4484 		return ADV_ERROR;
4485 
4486 	/*
4487 	 * Restore the RISC memory BIOS region.
4488 	 */
4489 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4490 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4491 				 bios_mem[i]);
4492 	}
4493 
4494 	/*
4495 	 * Calculate and write the microcode code checksum to the microcode
4496 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4497 	 */
4498 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4499 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4500 	code_sum = 0;
4501 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4502 	for (word = begin_addr; word < end_addr; word += 2) {
4503 		code_sum += AdvReadWordAutoIncLram(iop_base);
4504 	}
4505 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4506 
4507 	/*
4508 	 * Read and save microcode version and date.
4509 	 */
4510 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4511 			asc_dvc->cfg->mcode_date);
4512 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4513 			asc_dvc->cfg->mcode_version);
4514 
4515 	/*
4516 	 * Set the chip type to indicate the ASC3550.
4517 	 */
4518 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4519 
4520 	/*
4521 	 * If the PCI Configuration Command Register "Parity Error Response
4522 	 * Control" Bit was clear (0), then set the microcode variable
4523 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4524 	 * to ignore DMA parity errors.
4525 	 */
4526 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4527 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4528 		word |= CONTROL_FLAG_IGNORE_PERR;
4529 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4530 	}
4531 
4532 	/*
4533 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4534 	 * threshold of 128 bytes. This register is only accessible to the host.
4535 	 */
4536 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4537 			     START_CTL_EMFU | READ_CMD_MRM);
4538 
4539 	/*
4540 	 * Microcode operating variables for WDTR, SDTR, and command tag
4541 	 * queuing will be set in slave_configure() based on what a
4542 	 * device reports it is capable of in Inquiry byte 7.
4543 	 *
4544 	 * If SCSI Bus Resets have been disabled, then directly set
4545 	 * SDTR and WDTR from the EEPROM configuration. This will allow
4546 	 * the BIOS and warm boot to work without a SCSI bus hang on
4547 	 * the Inquiry caused by host and target mismatched DTR values.
4548 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
4549 	 * be assumed to be in Asynchronous, Narrow mode.
4550 	 */
4551 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4552 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4553 				 asc_dvc->wdtr_able);
4554 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4555 				 asc_dvc->sdtr_able);
4556 	}
4557 
4558 	/*
4559 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4560 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4561 	 * bitmask. These values determine the maximum SDTR speed negotiated
4562 	 * with a device.
4563 	 *
4564 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4565 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4566 	 * without determining here whether the device supports SDTR.
4567 	 *
4568 	 * 4-bit speed  SDTR speed name
4569 	 * ===========  ===============
4570 	 * 0000b (0x0)  SDTR disabled
4571 	 * 0001b (0x1)  5 Mhz
4572 	 * 0010b (0x2)  10 Mhz
4573 	 * 0011b (0x3)  20 Mhz (Ultra)
4574 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4575 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4576 	 * 0110b (0x6)  Undefined
4577 	 * .
4578 	 * 1111b (0xF)  Undefined
4579 	 */
4580 	word = 0;
4581 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4582 		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4583 			/* Set Ultra speed for TID 'tid'. */
4584 			word |= (0x3 << (4 * (tid % 4)));
4585 		} else {
4586 			/* Set Fast speed for TID 'tid'. */
4587 			word |= (0x2 << (4 * (tid % 4)));
4588 		}
4589 		if (tid == 3) {	/* Check if done with sdtr_speed1. */
4590 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4591 			word = 0;
4592 		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
4593 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4594 			word = 0;
4595 		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
4596 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4597 			word = 0;
4598 		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
4599 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4600 			/* End of loop. */
4601 		}
4602 	}
4603 
4604 	/*
4605 	 * Set microcode operating variable for the disconnect per TID bitmask.
4606 	 */
4607 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4608 			 asc_dvc->cfg->disc_enable);
4609 
4610 	/*
4611 	 * Set SCSI_CFG0 Microcode Default Value.
4612 	 *
4613 	 * The microcode will set the SCSI_CFG0 register using this value
4614 	 * after it is started below.
4615 	 */
4616 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4617 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4618 			 asc_dvc->chip_scsi_id);
4619 
4620 	/*
4621 	 * Determine SCSI_CFG1 Microcode Default Value.
4622 	 *
4623 	 * The microcode will set the SCSI_CFG1 register using this value
4624 	 * after it is started below.
4625 	 */
4626 
4627 	/* Read current SCSI_CFG1 Register value. */
4628 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4629 
4630 	/*
4631 	 * If all three connectors are in use, return an error.
4632 	 */
4633 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4634 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4635 		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4636 		return ADV_ERROR;
4637 	}
4638 
4639 	/*
4640 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
4641 	 * register signals will be set. Check for and return an error if
4642 	 * this condition is found.
4643 	 */
4644 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4645 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4646 		return ADV_ERROR;
4647 	}
4648 
4649 	/*
4650 	 * If this is a differential board and a single-ended device
4651 	 * is attached to one of the connectors, return an error.
4652 	 */
4653 	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4654 		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4655 		return ADV_ERROR;
4656 	}
4657 
4658 	/*
4659 	 * If automatic termination control is enabled, then set the
4660 	 * termination value based on a table listed in a_condor.h.
4661 	 *
4662 	 * If manual termination was specified with an EEPROM setting
4663 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4664 	 * is ready to be 'ored' into SCSI_CFG1.
4665 	 */
4666 	if (asc_dvc->cfg->termination == 0) {
4667 		/*
4668 		 * The software always controls termination by setting TERM_CTL_SEL.
4669 		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4670 		 */
4671 		asc_dvc->cfg->termination |= TERM_CTL_SEL;
4672 
4673 		switch (scsi_cfg1 & CABLE_DETECT) {
4674 			/* TERM_CTL_H: on, TERM_CTL_L: on */
4675 		case 0x3:
4676 		case 0x7:
4677 		case 0xB:
4678 		case 0xD:
4679 		case 0xE:
4680 		case 0xF:
4681 			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4682 			break;
4683 
4684 			/* TERM_CTL_H: on, TERM_CTL_L: off */
4685 		case 0x1:
4686 		case 0x5:
4687 		case 0x9:
4688 		case 0xA:
4689 		case 0xC:
4690 			asc_dvc->cfg->termination |= TERM_CTL_H;
4691 			break;
4692 
4693 			/* TERM_CTL_H: off, TERM_CTL_L: off */
4694 		case 0x2:
4695 		case 0x6:
4696 			break;
4697 		}
4698 	}
4699 
4700 	/*
4701 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4702 	 */
4703 	scsi_cfg1 &= ~TERM_CTL;
4704 
4705 	/*
4706 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4707 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4708 	 * referenced, because the hardware internally inverts
4709 	 * the Termination High and Low bits if TERM_POL is set.
4710 	 */
4711 	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4712 
4713 	/*
4714 	 * Set SCSI_CFG1 Microcode Default Value
4715 	 *
4716 	 * Set filter value and possibly modified termination control
4717 	 * bits in the Microcode SCSI_CFG1 Register Value.
4718 	 *
4719 	 * The microcode will set the SCSI_CFG1 register using this value
4720 	 * after it is started below.
4721 	 */
4722 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4723 			 FLTR_DISABLE | scsi_cfg1);
4724 
4725 	/*
4726 	 * Set MEM_CFG Microcode Default Value
4727 	 *
4728 	 * The microcode will set the MEM_CFG register using this value
4729 	 * after it is started below.
4730 	 *
4731 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4732 	 * are defined.
4733 	 *
4734 	 * ASC-3550 has 8KB internal memory.
4735 	 */
4736 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4737 			 BIOS_EN | RAM_SZ_8KB);
4738 
4739 	/*
4740 	 * Set SEL_MASK Microcode Default Value
4741 	 *
4742 	 * The microcode will set the SEL_MASK register using this value
4743 	 * after it is started below.
4744 	 */
4745 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4746 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4747 
4748 	AdvBuildCarrierFreelist(asc_dvc);
4749 
4750 	/*
4751 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4752 	 */
4753 
4754 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4755 	if (!asc_dvc->icq_sp) {
4756 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4757 		return ADV_ERROR;
4758 	}
4759 
4760 	/*
4761 	 * Set RISC ICQ physical address start value.
4762 	 */
4763 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4764 
4765 	/*
4766 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4767 	 */
4768 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4769 	if (!asc_dvc->irq_sp) {
4770 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4771 		return ADV_ERROR;
4772 	}
4773 
4774 	/*
4775 	 * Set RISC IRQ physical address start value.
4776 	 */
4777 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4778 	asc_dvc->carr_pending_cnt = 0;
4779 
4780 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4781 			     (ADV_INTR_ENABLE_HOST_INTR |
4782 			      ADV_INTR_ENABLE_GLOBAL_INTR));
4783 
4784 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4785 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
4786 
4787 	/* finally, finally, gentlemen, start your engine */
4788 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4789 
4790 	/*
4791 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4792 	 * Resets should be performed. The RISC has to be running
4793 	 * to issue a SCSI Bus Reset.
4794 	 */
4795 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4796 		/*
4797 		 * If the BIOS Signature is present in memory, restore the
4798 		 * BIOS Handshake Configuration Table and do not perform
4799 		 * a SCSI Bus Reset.
4800 		 */
4801 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4802 		    0x55AA) {
4803 			/*
4804 			 * Restore per TID negotiated values.
4805 			 */
4806 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4807 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4808 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4809 					 tagqng_able);
4810 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4811 				AdvWriteByteLram(iop_base,
4812 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4813 						 max_cmd[tid]);
4814 			}
4815 		} else {
4816 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4817 				warn_code = ASC_WARN_BUSRESET_ERROR;
4818 			}
4819 		}
4820 	}
4821 
4822 	return warn_code;
4823 }
4824 
4825 /*
4826  * Initialize the ASC-38C0800.
4827  *
4828  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4829  *
4830  * For a non-fatal error return a warning code. If there are no warnings
4831  * then 0 is returned.
4832  *
4833  * Needed after initialization for error recovery.
4834  */
4835 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4836 {
4837 	const struct firmware *fw;
4838 	const char fwname[] = "advansys/38C0800.bin";
4839 	AdvPortAddr iop_base;
4840 	ushort warn_code;
4841 	int begin_addr;
4842 	int end_addr;
4843 	ushort code_sum;
4844 	int word;
4845 	int i;
4846 	int err;
4847 	unsigned long chksum;
4848 	ushort scsi_cfg1;
4849 	uchar byte;
4850 	uchar tid;
4851 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4852 	ushort wdtr_able, sdtr_able, tagqng_able;
4853 	uchar max_cmd[ADV_MAX_TID + 1];
4854 
4855 	/* If there is already an error, don't continue. */
4856 	if (asc_dvc->err_code != 0)
4857 		return ADV_ERROR;
4858 
4859 	/*
4860 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4861 	 */
4862 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4863 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4864 		return ADV_ERROR;
4865 	}
4866 
4867 	warn_code = 0;
4868 	iop_base = asc_dvc->iop_base;
4869 
4870 	/*
4871 	 * Save the RISC memory BIOS region before writing the microcode.
4872 	 * The BIOS may already be loaded and using its RISC LRAM region
4873 	 * so its region must be saved and restored.
4874 	 *
4875 	 * Note: This code makes the assumption, which is currently true,
4876 	 * that a chip reset does not clear RISC LRAM.
4877 	 */
4878 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4879 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4880 				bios_mem[i]);
4881 	}
4882 
4883 	/*
4884 	 * Save current per TID negotiated values.
4885 	 */
4886 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4887 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4888 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4889 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4890 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4891 				max_cmd[tid]);
4892 	}
4893 
4894 	/*
4895 	 * RAM BIST (RAM Built-In Self Test)
4896 	 *
4897 	 * Address : I/O base + offset 0x38h register (byte).
4898 	 * Function: Bit 7-6(RW) : RAM mode
4899 	 *                          Normal Mode   : 0x00
4900 	 *                          Pre-test Mode : 0x40
4901 	 *                          RAM Test Mode : 0x80
4902 	 *           Bit 5       : unused
4903 	 *           Bit 4(RO)   : Done bit
4904 	 *           Bit 3-0(RO) : Status
4905 	 *                          Host Error    : 0x08
4906 	 *                          Int_RAM Error : 0x04
4907 	 *                          RISC Error    : 0x02
4908 	 *                          SCSI Error    : 0x01
4909 	 *                          No Error      : 0x00
4910 	 *
4911 	 * Note: RAM BIST code should be put right here, before loading the
4912 	 * microcode and after saving the RISC memory BIOS region.
4913 	 */
4914 
4915 	/*
4916 	 * LRAM Pre-test
4917 	 *
4918 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4919 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4920 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4921 	 * to NORMAL_MODE, return an error too.
4922 	 */
4923 	for (i = 0; i < 2; i++) {
4924 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4925 		mdelay(10);	/* Wait for 10ms before reading back. */
4926 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4927 		if ((byte & RAM_TEST_DONE) == 0
4928 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
4929 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4930 			return ADV_ERROR;
4931 		}
4932 
4933 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4934 		mdelay(10);	/* Wait for 10ms before reading back. */
4935 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4936 		    != NORMAL_VALUE) {
4937 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4938 			return ADV_ERROR;
4939 		}
4940 	}
4941 
4942 	/*
4943 	 * LRAM Test - It takes about 1.5 ms to run through the test.
4944 	 *
4945 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4946 	 * If Done bit not set or Status not 0, save register byte, set the
4947 	 * err_code, and return an error.
4948 	 */
4949 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4950 	mdelay(10);	/* Wait for 10ms before checking status. */
4951 
4952 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4953 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4954 		/* Get here if Done bit not set or Status not 0. */
4955 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
4956 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4957 		return ADV_ERROR;
4958 	}
4959 
4960 	/* We need to reset back to normal mode after LRAM test passes. */
4961 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4962 
4963 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4964 	if (err) {
4965 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4966 		       fwname, err);
4967 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4968 		return err;
4969 	}
4970 	if (fw->size < 4) {
4971 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4972 		       fw->size, fwname);
4973 		release_firmware(fw);
4974 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4975 		return -EINVAL;
4976 	}
4977 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4978 		 (fw->data[1] << 8) | fw->data[0];
4979 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4980 					     fw->size - 4, ADV_38C0800_MEMSIZE,
4981 					     chksum);
4982 	release_firmware(fw);
4983 	if (asc_dvc->err_code)
4984 		return ADV_ERROR;
4985 
4986 	/*
4987 	 * Restore the RISC memory BIOS region.
4988 	 */
4989 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4990 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4991 				 bios_mem[i]);
4992 	}
4993 
4994 	/*
4995 	 * Calculate and write the microcode code checksum to the microcode
4996 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4997 	 */
4998 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4999 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5000 	code_sum = 0;
5001 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5002 	for (word = begin_addr; word < end_addr; word += 2) {
5003 		code_sum += AdvReadWordAutoIncLram(iop_base);
5004 	}
5005 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5006 
5007 	/*
5008 	 * Read microcode version and date.
5009 	 */
5010 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5011 			asc_dvc->cfg->mcode_date);
5012 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5013 			asc_dvc->cfg->mcode_version);
5014 
5015 	/*
5016 	 * Set the chip type to indicate the ASC38C0800.
5017 	 */
5018 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5019 
5020 	/*
5021 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5022 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5023 	 * cable detection and then we are able to read C_DET[3:0].
5024 	 *
5025 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5026 	 * Microcode Default Value' section below.
5027 	 */
5028 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5029 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5030 			     scsi_cfg1 | DIS_TERM_DRV);
5031 
5032 	/*
5033 	 * If the PCI Configuration Command Register "Parity Error Response
5034 	 * Control" Bit was clear (0), then set the microcode variable
5035 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5036 	 * to ignore DMA parity errors.
5037 	 */
5038 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5039 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5040 		word |= CONTROL_FLAG_IGNORE_PERR;
5041 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5042 	}
5043 
5044 	/*
5045 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5046 	 * bits for the default FIFO threshold.
5047 	 *
5048 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5049 	 *
5050 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5051 	 */
5052 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5053 			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5054 			     READ_CMD_MRM);
5055 
5056 	/*
5057 	 * Microcode operating variables for WDTR, SDTR, and command tag
5058 	 * queuing will be set in slave_configure() based on what a
5059 	 * device reports it is capable of in Inquiry byte 7.
5060 	 *
5061 	 * If SCSI Bus Resets have been disabled, then directly set
5062 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5063 	 * the BIOS and warm boot to work without a SCSI bus hang on
5064 	 * the Inquiry caused by host and target mismatched DTR values.
5065 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5066 	 * be assumed to be in Asynchronous, Narrow mode.
5067 	 */
5068 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5069 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5070 				 asc_dvc->wdtr_able);
5071 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5072 				 asc_dvc->sdtr_able);
5073 	}
5074 
5075 	/*
5076 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5077 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5078 	 * configuration values.
5079 	 *
5080 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5081 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5082 	 * without determining here whether the device supports SDTR.
5083 	 */
5084 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5085 			 asc_dvc->cfg->disc_enable);
5086 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5087 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5088 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5089 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5090 
5091 	/*
5092 	 * Set SCSI_CFG0 Microcode Default Value.
5093 	 *
5094 	 * The microcode will set the SCSI_CFG0 register using this value
5095 	 * after it is started below.
5096 	 */
5097 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5098 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5099 			 asc_dvc->chip_scsi_id);
5100 
5101 	/*
5102 	 * Determine SCSI_CFG1 Microcode Default Value.
5103 	 *
5104 	 * The microcode will set the SCSI_CFG1 register using this value
5105 	 * after it is started below.
5106 	 */
5107 
5108 	/* Read current SCSI_CFG1 Register value. */
5109 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5110 
5111 	/*
5112 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5113 	 * register signals will be set. Check for and return an error if
5114 	 * this condition is found.
5115 	 */
5116 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5117 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5118 		return ADV_ERROR;
5119 	}
5120 
5121 	/*
5122 	 * All kind of combinations of devices attached to one of four
5123 	 * connectors are acceptable except HVD device attached. For example,
5124 	 * LVD device can be attached to SE connector while SE device attached
5125 	 * to LVD connector.  If LVD device attached to SE connector, it only
5126 	 * runs up to Ultra speed.
5127 	 *
5128 	 * If an HVD device is attached to one of LVD connectors, return an
5129 	 * error.  However, there is no way to detect HVD device attached to
5130 	 * SE connectors.
5131 	 */
5132 	if (scsi_cfg1 & HVD) {
5133 		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5134 		return ADV_ERROR;
5135 	}
5136 
5137 	/*
5138 	 * If either SE or LVD automatic termination control is enabled, then
5139 	 * set the termination value based on a table listed in a_condor.h.
5140 	 *
5141 	 * If manual termination was specified with an EEPROM setting then
5142 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5143 	 * to be 'ored' into SCSI_CFG1.
5144 	 */
5145 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5146 		/* SE automatic termination control is enabled. */
5147 		switch (scsi_cfg1 & C_DET_SE) {
5148 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5149 		case 0x1:
5150 		case 0x2:
5151 		case 0x3:
5152 			asc_dvc->cfg->termination |= TERM_SE;
5153 			break;
5154 
5155 			/* TERM_SE_HI: on, TERM_SE_LO: off */
5156 		case 0x0:
5157 			asc_dvc->cfg->termination |= TERM_SE_HI;
5158 			break;
5159 		}
5160 	}
5161 
5162 	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5163 		/* LVD automatic termination control is enabled. */
5164 		switch (scsi_cfg1 & C_DET_LVD) {
5165 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5166 		case 0x4:
5167 		case 0x8:
5168 		case 0xC:
5169 			asc_dvc->cfg->termination |= TERM_LVD;
5170 			break;
5171 
5172 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5173 		case 0x0:
5174 			break;
5175 		}
5176 	}
5177 
5178 	/*
5179 	 * Clear any set TERM_SE and TERM_LVD bits.
5180 	 */
5181 	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5182 
5183 	/*
5184 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5185 	 */
5186 	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5187 
5188 	/*
5189 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5190 	 * bits and set possibly modified termination control bits in the
5191 	 * Microcode SCSI_CFG1 Register Value.
5192 	 */
5193 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5194 
5195 	/*
5196 	 * Set SCSI_CFG1 Microcode Default Value
5197 	 *
5198 	 * Set possibly modified termination control and reset DIS_TERM_DRV
5199 	 * bits in the Microcode SCSI_CFG1 Register Value.
5200 	 *
5201 	 * The microcode will set the SCSI_CFG1 register using this value
5202 	 * after it is started below.
5203 	 */
5204 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5205 
5206 	/*
5207 	 * Set MEM_CFG Microcode Default Value
5208 	 *
5209 	 * The microcode will set the MEM_CFG register using this value
5210 	 * after it is started below.
5211 	 *
5212 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5213 	 * are defined.
5214 	 *
5215 	 * ASC-38C0800 has 16KB internal memory.
5216 	 */
5217 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5218 			 BIOS_EN | RAM_SZ_16KB);
5219 
5220 	/*
5221 	 * Set SEL_MASK Microcode Default Value
5222 	 *
5223 	 * The microcode will set the SEL_MASK register using this value
5224 	 * after it is started below.
5225 	 */
5226 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5227 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5228 
5229 	AdvBuildCarrierFreelist(asc_dvc);
5230 
5231 	/*
5232 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5233 	 */
5234 
5235 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5236 	if (!asc_dvc->icq_sp) {
5237 		ASC_DBG(0, "Failed to get ICQ carrier\n");
5238 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5239 		return ADV_ERROR;
5240 	}
5241 
5242 	/*
5243 	 * Set RISC ICQ physical address start value.
5244 	 * carr_pa is LE, must be native before write
5245 	 */
5246 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5247 
5248 	/*
5249 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5250 	 */
5251 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5252 	if (!asc_dvc->irq_sp) {
5253 		ASC_DBG(0, "Failed to get IRQ carrier\n");
5254 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5255 		return ADV_ERROR;
5256 	}
5257 
5258 	/*
5259 	 * Set RISC IRQ physical address start value.
5260 	 *
5261 	 * carr_pa is LE, must be native before write *
5262 	 */
5263 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5264 	asc_dvc->carr_pending_cnt = 0;
5265 
5266 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5267 			     (ADV_INTR_ENABLE_HOST_INTR |
5268 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5269 
5270 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5271 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5272 
5273 	/* finally, finally, gentlemen, start your engine */
5274 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5275 
5276 	/*
5277 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5278 	 * Resets should be performed. The RISC has to be running
5279 	 * to issue a SCSI Bus Reset.
5280 	 */
5281 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5282 		/*
5283 		 * If the BIOS Signature is present in memory, restore the
5284 		 * BIOS Handshake Configuration Table and do not perform
5285 		 * a SCSI Bus Reset.
5286 		 */
5287 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5288 		    0x55AA) {
5289 			/*
5290 			 * Restore per TID negotiated values.
5291 			 */
5292 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5293 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5294 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5295 					 tagqng_able);
5296 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5297 				AdvWriteByteLram(iop_base,
5298 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5299 						 max_cmd[tid]);
5300 			}
5301 		} else {
5302 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5303 				warn_code = ASC_WARN_BUSRESET_ERROR;
5304 			}
5305 		}
5306 	}
5307 
5308 	return warn_code;
5309 }
5310 
5311 /*
5312  * Initialize the ASC-38C1600.
5313  *
5314  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5315  *
5316  * For a non-fatal error return a warning code. If there are no warnings
5317  * then 0 is returned.
5318  *
5319  * Needed after initialization for error recovery.
5320  */
5321 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5322 {
5323 	const struct firmware *fw;
5324 	const char fwname[] = "advansys/38C1600.bin";
5325 	AdvPortAddr iop_base;
5326 	ushort warn_code;
5327 	int begin_addr;
5328 	int end_addr;
5329 	ushort code_sum;
5330 	long word;
5331 	int i;
5332 	int err;
5333 	unsigned long chksum;
5334 	ushort scsi_cfg1;
5335 	uchar byte;
5336 	uchar tid;
5337 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5338 	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5339 	uchar max_cmd[ASC_MAX_TID + 1];
5340 
5341 	/* If there is already an error, don't continue. */
5342 	if (asc_dvc->err_code != 0) {
5343 		return ADV_ERROR;
5344 	}
5345 
5346 	/*
5347 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5348 	 */
5349 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5350 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5351 		return ADV_ERROR;
5352 	}
5353 
5354 	warn_code = 0;
5355 	iop_base = asc_dvc->iop_base;
5356 
5357 	/*
5358 	 * Save the RISC memory BIOS region before writing the microcode.
5359 	 * The BIOS may already be loaded and using its RISC LRAM region
5360 	 * so its region must be saved and restored.
5361 	 *
5362 	 * Note: This code makes the assumption, which is currently true,
5363 	 * that a chip reset does not clear RISC LRAM.
5364 	 */
5365 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5366 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5367 				bios_mem[i]);
5368 	}
5369 
5370 	/*
5371 	 * Save current per TID negotiated values.
5372 	 */
5373 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5374 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5375 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5376 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5377 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5378 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5379 				max_cmd[tid]);
5380 	}
5381 
5382 	/*
5383 	 * RAM BIST (Built-In Self Test)
5384 	 *
5385 	 * Address : I/O base + offset 0x38h register (byte).
5386 	 * Function: Bit 7-6(RW) : RAM mode
5387 	 *                          Normal Mode   : 0x00
5388 	 *                          Pre-test Mode : 0x40
5389 	 *                          RAM Test Mode : 0x80
5390 	 *           Bit 5       : unused
5391 	 *           Bit 4(RO)   : Done bit
5392 	 *           Bit 3-0(RO) : Status
5393 	 *                          Host Error    : 0x08
5394 	 *                          Int_RAM Error : 0x04
5395 	 *                          RISC Error    : 0x02
5396 	 *                          SCSI Error    : 0x01
5397 	 *                          No Error      : 0x00
5398 	 *
5399 	 * Note: RAM BIST code should be put right here, before loading the
5400 	 * microcode and after saving the RISC memory BIOS region.
5401 	 */
5402 
5403 	/*
5404 	 * LRAM Pre-test
5405 	 *
5406 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5407 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5408 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5409 	 * to NORMAL_MODE, return an error too.
5410 	 */
5411 	for (i = 0; i < 2; i++) {
5412 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5413 		mdelay(10);	/* Wait for 10ms before reading back. */
5414 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5415 		if ((byte & RAM_TEST_DONE) == 0
5416 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5417 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5418 			return ADV_ERROR;
5419 		}
5420 
5421 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5422 		mdelay(10);	/* Wait for 10ms before reading back. */
5423 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5424 		    != NORMAL_VALUE) {
5425 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5426 			return ADV_ERROR;
5427 		}
5428 	}
5429 
5430 	/*
5431 	 * LRAM Test - It takes about 1.5 ms to run through the test.
5432 	 *
5433 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5434 	 * If Done bit not set or Status not 0, save register byte, set the
5435 	 * err_code, and return an error.
5436 	 */
5437 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5438 	mdelay(10);	/* Wait for 10ms before checking status. */
5439 
5440 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5441 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5442 		/* Get here if Done bit not set or Status not 0. */
5443 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5444 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5445 		return ADV_ERROR;
5446 	}
5447 
5448 	/* We need to reset back to normal mode after LRAM test passes. */
5449 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5450 
5451 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5452 	if (err) {
5453 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5454 		       fwname, err);
5455 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5456 		return err;
5457 	}
5458 	if (fw->size < 4) {
5459 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5460 		       fw->size, fwname);
5461 		release_firmware(fw);
5462 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5463 		return -EINVAL;
5464 	}
5465 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5466 		 (fw->data[1] << 8) | fw->data[0];
5467 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5468 					     fw->size - 4, ADV_38C1600_MEMSIZE,
5469 					     chksum);
5470 	release_firmware(fw);
5471 	if (asc_dvc->err_code)
5472 		return ADV_ERROR;
5473 
5474 	/*
5475 	 * Restore the RISC memory BIOS region.
5476 	 */
5477 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5478 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5479 				 bios_mem[i]);
5480 	}
5481 
5482 	/*
5483 	 * Calculate and write the microcode code checksum to the microcode
5484 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5485 	 */
5486 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5487 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5488 	code_sum = 0;
5489 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5490 	for (word = begin_addr; word < end_addr; word += 2) {
5491 		code_sum += AdvReadWordAutoIncLram(iop_base);
5492 	}
5493 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5494 
5495 	/*
5496 	 * Read microcode version and date.
5497 	 */
5498 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5499 			asc_dvc->cfg->mcode_date);
5500 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5501 			asc_dvc->cfg->mcode_version);
5502 
5503 	/*
5504 	 * Set the chip type to indicate the ASC38C1600.
5505 	 */
5506 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5507 
5508 	/*
5509 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5510 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5511 	 * cable detection and then we are able to read C_DET[3:0].
5512 	 *
5513 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5514 	 * Microcode Default Value' section below.
5515 	 */
5516 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5517 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5518 			     scsi_cfg1 | DIS_TERM_DRV);
5519 
5520 	/*
5521 	 * If the PCI Configuration Command Register "Parity Error Response
5522 	 * Control" Bit was clear (0), then set the microcode variable
5523 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5524 	 * to ignore DMA parity errors.
5525 	 */
5526 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5527 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5528 		word |= CONTROL_FLAG_IGNORE_PERR;
5529 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5530 	}
5531 
5532 	/*
5533 	 * If the BIOS control flag AIPP (Asynchronous Information
5534 	 * Phase Protection) disable bit is not set, then set the firmware
5535 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5536 	 * AIPP checking and encoding.
5537 	 */
5538 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5539 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5540 		word |= CONTROL_FLAG_ENABLE_AIPP;
5541 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5542 	}
5543 
5544 	/*
5545 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5546 	 * and START_CTL_TH [3:2].
5547 	 */
5548 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5549 			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5550 
5551 	/*
5552 	 * Microcode operating variables for WDTR, SDTR, and command tag
5553 	 * queuing will be set in slave_configure() based on what a
5554 	 * device reports it is capable of in Inquiry byte 7.
5555 	 *
5556 	 * If SCSI Bus Resets have been disabled, then directly set
5557 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5558 	 * the BIOS and warm boot to work without a SCSI bus hang on
5559 	 * the Inquiry caused by host and target mismatched DTR values.
5560 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5561 	 * be assumed to be in Asynchronous, Narrow mode.
5562 	 */
5563 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5564 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5565 				 asc_dvc->wdtr_able);
5566 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5567 				 asc_dvc->sdtr_able);
5568 	}
5569 
5570 	/*
5571 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5572 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5573 	 * configuration values.
5574 	 *
5575 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5576 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5577 	 * without determining here whether the device supports SDTR.
5578 	 */
5579 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5580 			 asc_dvc->cfg->disc_enable);
5581 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5582 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5583 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5584 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5585 
5586 	/*
5587 	 * Set SCSI_CFG0 Microcode Default Value.
5588 	 *
5589 	 * The microcode will set the SCSI_CFG0 register using this value
5590 	 * after it is started below.
5591 	 */
5592 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5593 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5594 			 asc_dvc->chip_scsi_id);
5595 
5596 	/*
5597 	 * Calculate SCSI_CFG1 Microcode Default Value.
5598 	 *
5599 	 * The microcode will set the SCSI_CFG1 register using this value
5600 	 * after it is started below.
5601 	 *
5602 	 * Each ASC-38C1600 function has only two cable detect bits.
5603 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5604 	 */
5605 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5606 
5607 	/*
5608 	 * If the cable is reversed all of the SCSI_CTRL register signals
5609 	 * will be set. Check for and return an error if this condition is
5610 	 * found.
5611 	 */
5612 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5613 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5614 		return ADV_ERROR;
5615 	}
5616 
5617 	/*
5618 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
5619 	 * can not be connected to either connector. An LVD device or SE device
5620 	 * may be connected to either connecor. If an SE device is connected,
5621 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5622 	 *
5623 	 * If an HVD device is attached, return an error.
5624 	 */
5625 	if (scsi_cfg1 & HVD) {
5626 		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5627 		return ADV_ERROR;
5628 	}
5629 
5630 	/*
5631 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
5632 	 * termination because there are two connectors for each function. Each
5633 	 * function may use either LVD or SE mode. Corresponding the SE automatic
5634 	 * termination control EEPROM bits are used for each function. Each
5635 	 * function has its own EEPROM. If SE automatic control is enabled for
5636 	 * the function, then set the termination value based on a table listed
5637 	 * in a_condor.h.
5638 	 *
5639 	 * If manual termination is specified in the EEPROM for the function,
5640 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5641 	 * ready to be 'ored' into SCSI_CFG1.
5642 	 */
5643 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5644 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5645 		/* SE automatic termination control is enabled. */
5646 		switch (scsi_cfg1 & C_DET_SE) {
5647 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5648 		case 0x1:
5649 		case 0x2:
5650 		case 0x3:
5651 			asc_dvc->cfg->termination |= TERM_SE;
5652 			break;
5653 
5654 		case 0x0:
5655 			if (PCI_FUNC(pdev->devfn) == 0) {
5656 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5657 			} else {
5658 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5659 				asc_dvc->cfg->termination |= TERM_SE_HI;
5660 			}
5661 			break;
5662 		}
5663 	}
5664 
5665 	/*
5666 	 * Clear any set TERM_SE bits.
5667 	 */
5668 	scsi_cfg1 &= ~TERM_SE;
5669 
5670 	/*
5671 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5672 	 */
5673 	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5674 
5675 	/*
5676 	 * Clear Big Endian and Terminator Polarity bits and set possibly
5677 	 * modified termination control bits in the Microcode SCSI_CFG1
5678 	 * Register Value.
5679 	 *
5680 	 * Big Endian bit is not used even on big endian machines.
5681 	 */
5682 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5683 
5684 	/*
5685 	 * Set SCSI_CFG1 Microcode Default Value
5686 	 *
5687 	 * Set possibly modified termination control bits in the Microcode
5688 	 * SCSI_CFG1 Register Value.
5689 	 *
5690 	 * The microcode will set the SCSI_CFG1 register using this value
5691 	 * after it is started below.
5692 	 */
5693 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5694 
5695 	/*
5696 	 * Set MEM_CFG Microcode Default Value
5697 	 *
5698 	 * The microcode will set the MEM_CFG register using this value
5699 	 * after it is started below.
5700 	 *
5701 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5702 	 * are defined.
5703 	 *
5704 	 * ASC-38C1600 has 32KB internal memory.
5705 	 *
5706 	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5707 	 * out a special 16K Adv Library and Microcode version. After the issue
5708 	 * resolved, we should turn back to the 32K support. Both a_condor.h and
5709 	 * mcode.sas files also need to be updated.
5710 	 *
5711 	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5712 	 *  BIOS_EN | RAM_SZ_32KB);
5713 	 */
5714 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5715 			 BIOS_EN | RAM_SZ_16KB);
5716 
5717 	/*
5718 	 * Set SEL_MASK Microcode Default Value
5719 	 *
5720 	 * The microcode will set the SEL_MASK register using this value
5721 	 * after it is started below.
5722 	 */
5723 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5724 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5725 
5726 	AdvBuildCarrierFreelist(asc_dvc);
5727 
5728 	/*
5729 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5730 	 */
5731 	asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5732 	if (!asc_dvc->icq_sp) {
5733 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5734 		return ADV_ERROR;
5735 	}
5736 
5737 	/*
5738 	 * Set RISC ICQ physical address start value. Initialize the
5739 	 * COMMA register to the same value otherwise the RISC will
5740 	 * prematurely detect a command is available.
5741 	 */
5742 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5743 	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5744 			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5745 
5746 	/*
5747 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5748 	 */
5749 	asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5750 	if (!asc_dvc->irq_sp) {
5751 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5752 		return ADV_ERROR;
5753 	}
5754 
5755 	/*
5756 	 * Set RISC IRQ physical address start value.
5757 	 */
5758 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5759 	asc_dvc->carr_pending_cnt = 0;
5760 
5761 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5762 			     (ADV_INTR_ENABLE_HOST_INTR |
5763 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5764 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5765 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5766 
5767 	/* finally, finally, gentlemen, start your engine */
5768 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5769 
5770 	/*
5771 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5772 	 * Resets should be performed. The RISC has to be running
5773 	 * to issue a SCSI Bus Reset.
5774 	 */
5775 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5776 		/*
5777 		 * If the BIOS Signature is present in memory, restore the
5778 		 * per TID microcode operating variables.
5779 		 */
5780 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5781 		    0x55AA) {
5782 			/*
5783 			 * Restore per TID negotiated values.
5784 			 */
5785 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5786 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5787 			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5788 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5789 					 tagqng_able);
5790 			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5791 				AdvWriteByteLram(iop_base,
5792 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5793 						 max_cmd[tid]);
5794 			}
5795 		} else {
5796 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5797 				warn_code = ASC_WARN_BUSRESET_ERROR;
5798 			}
5799 		}
5800 	}
5801 
5802 	return warn_code;
5803 }
5804 
5805 /*
5806  * Reset chip and SCSI Bus.
5807  *
5808  * Return Value:
5809  *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
5810  *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
5811  */
5812 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5813 {
5814 	int status;
5815 	ushort wdtr_able, sdtr_able, tagqng_able;
5816 	ushort ppr_able = 0;
5817 	uchar tid, max_cmd[ADV_MAX_TID + 1];
5818 	AdvPortAddr iop_base;
5819 	ushort bios_sig;
5820 
5821 	iop_base = asc_dvc->iop_base;
5822 
5823 	/*
5824 	 * Save current per TID negotiated values.
5825 	 */
5826 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5827 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5828 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5829 		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5830 	}
5831 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5832 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5833 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5834 				max_cmd[tid]);
5835 	}
5836 
5837 	/*
5838 	 * Force the AdvInitAsc3550/38C0800Driver() function to
5839 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
5840 	 * The initialization functions assumes a SCSI Bus Reset is not
5841 	 * needed if the BIOS signature word is present.
5842 	 */
5843 	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5844 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5845 
5846 	/*
5847 	 * Stop chip and reset it.
5848 	 */
5849 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5850 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5851 	mdelay(100);
5852 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5853 			     ADV_CTRL_REG_CMD_WR_IO_REG);
5854 
5855 	/*
5856 	 * Reset Adv Library error code, if any, and try
5857 	 * re-initializing the chip.
5858 	 */
5859 	asc_dvc->err_code = 0;
5860 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5861 		status = AdvInitAsc38C1600Driver(asc_dvc);
5862 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5863 		status = AdvInitAsc38C0800Driver(asc_dvc);
5864 	} else {
5865 		status = AdvInitAsc3550Driver(asc_dvc);
5866 	}
5867 
5868 	/* Translate initialization return value to status value. */
5869 	if (status == 0) {
5870 		status = ADV_TRUE;
5871 	} else {
5872 		status = ADV_FALSE;
5873 	}
5874 
5875 	/*
5876 	 * Restore the BIOS signature word.
5877 	 */
5878 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5879 
5880 	/*
5881 	 * Restore per TID negotiated values.
5882 	 */
5883 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5884 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5885 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5886 		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5887 	}
5888 	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5889 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5890 		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5891 				 max_cmd[tid]);
5892 	}
5893 
5894 	return status;
5895 }
5896 
5897 /*
5898  * adv_async_callback() - Adv Library asynchronous event callback function.
5899  */
5900 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5901 {
5902 	switch (code) {
5903 	case ADV_ASYNC_SCSI_BUS_RESET_DET:
5904 		/*
5905 		 * The firmware detected a SCSI Bus reset.
5906 		 */
5907 		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5908 		break;
5909 
5910 	case ADV_ASYNC_RDMA_FAILURE:
5911 		/*
5912 		 * Handle RDMA failure by resetting the SCSI Bus and
5913 		 * possibly the chip if it is unresponsive. Log the error
5914 		 * with a unique code.
5915 		 */
5916 		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5917 		AdvResetChipAndSB(adv_dvc_varp);
5918 		break;
5919 
5920 	case ADV_HOST_SCSI_BUS_RESET:
5921 		/*
5922 		 * Host generated SCSI bus reset occurred.
5923 		 */
5924 		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5925 		break;
5926 
5927 	default:
5928 		ASC_DBG(0, "unknown code 0x%x\n", code);
5929 		break;
5930 	}
5931 }
5932 
5933 /*
5934  * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5935  *
5936  * Callback function for the Wide SCSI Adv Library.
5937  */
5938 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5939 {
5940 	struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5941 	adv_req_t *reqp;
5942 	adv_sgblk_t *sgblkp;
5943 	struct scsi_cmnd *scp;
5944 	u32 resid_cnt;
5945 	dma_addr_t sense_addr;
5946 
5947 	ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5948 		adv_dvc_varp, scsiqp);
5949 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5950 
5951 	/*
5952 	 * Get the adv_req_t structure for the command that has been
5953 	 * completed. The adv_req_t structure actually contains the
5954 	 * completed ADV_SCSI_REQ_Q structure.
5955 	 */
5956 	scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5957 
5958 	ASC_DBG(1, "scp 0x%p\n", scp);
5959 	if (scp == NULL) {
5960 		ASC_PRINT
5961 		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5962 		return;
5963 	}
5964 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5965 
5966 	reqp = (adv_req_t *)scp->host_scribble;
5967 	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5968 	if (reqp == NULL) {
5969 		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5970 		return;
5971 	}
5972 	/*
5973 	 * Remove backreferences to avoid duplicate
5974 	 * command completions.
5975 	 */
5976 	scp->host_scribble = NULL;
5977 	reqp->cmndp = NULL;
5978 
5979 	ASC_STATS(boardp->shost, callback);
5980 	ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5981 
5982 	sense_addr = le32_to_cpu(scsiqp->sense_addr);
5983 	dma_unmap_single(boardp->dev, sense_addr,
5984 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5985 
5986 	/*
5987 	 * 'done_status' contains the command's ending status.
5988 	 */
5989 	switch (scsiqp->done_status) {
5990 	case QD_NO_ERROR:
5991 		ASC_DBG(2, "QD_NO_ERROR\n");
5992 		scp->result = 0;
5993 
5994 		/*
5995 		 * Check for an underrun condition.
5996 		 *
5997 		 * If there was no error and an underrun condition, then
5998 		 * then return the number of underrun bytes.
5999 		 */
6000 		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6001 		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6002 		    resid_cnt <= scsi_bufflen(scp)) {
6003 			ASC_DBG(1, "underrun condition %lu bytes\n",
6004 				 (ulong)resid_cnt);
6005 			scsi_set_resid(scp, resid_cnt);
6006 		}
6007 		break;
6008 
6009 	case QD_WITH_ERROR:
6010 		ASC_DBG(2, "QD_WITH_ERROR\n");
6011 		switch (scsiqp->host_status) {
6012 		case QHSTA_NO_ERROR:
6013 			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6014 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6015 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6016 						  SCSI_SENSE_BUFFERSIZE);
6017 				/*
6018 				 * Note: The 'status_byte()' macro used by
6019 				 * target drivers defined in scsi.h shifts the
6020 				 * status byte returned by host drivers right
6021 				 * by 1 bit.  This is why target drivers also
6022 				 * use right shifted status byte definitions.
6023 				 * For instance target drivers use
6024 				 * CHECK_CONDITION, defined to 0x1, instead of
6025 				 * the SCSI defined check condition value of
6026 				 * 0x2. Host drivers are supposed to return
6027 				 * the status byte as it is defined by SCSI.
6028 				 */
6029 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6030 				    STATUS_BYTE(scsiqp->scsi_status);
6031 			} else {
6032 				scp->result = STATUS_BYTE(scsiqp->scsi_status);
6033 			}
6034 			break;
6035 
6036 		default:
6037 			/* Some other QHSTA error occurred. */
6038 			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6039 			scp->result = HOST_BYTE(DID_BAD_TARGET);
6040 			break;
6041 		}
6042 		break;
6043 
6044 	case QD_ABORTED_BY_HOST:
6045 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6046 		scp->result =
6047 		    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6048 		break;
6049 
6050 	default:
6051 		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6052 		scp->result =
6053 		    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6054 		break;
6055 	}
6056 
6057 	/*
6058 	 * If the 'init_tidmask' bit isn't already set for the target and the
6059 	 * current request finished normally, then set the bit for the target
6060 	 * to indicate that a device is present.
6061 	 */
6062 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6063 	    scsiqp->done_status == QD_NO_ERROR &&
6064 	    scsiqp->host_status == QHSTA_NO_ERROR) {
6065 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6066 	}
6067 
6068 	asc_scsi_done(scp);
6069 
6070 	/*
6071 	 * Free all 'adv_sgblk_t' structures allocated for the request.
6072 	 */
6073 	while ((sgblkp = reqp->sgblkp) != NULL) {
6074 		/* Remove 'sgblkp' from the request list. */
6075 		reqp->sgblkp = sgblkp->next_sgblkp;
6076 
6077 		dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6078 			      sgblkp->sg_addr);
6079 	}
6080 
6081 	ASC_DBG(1, "done\n");
6082 }
6083 
6084 /*
6085  * Adv Library Interrupt Service Routine
6086  *
6087  *  This function is called by a driver's interrupt service routine.
6088  *  The function disables and re-enables interrupts.
6089  *
6090  *  When a microcode idle command is completed, the ADV_DVC_VAR
6091  *  'idle_cmd_done' field is set to ADV_TRUE.
6092  *
6093  *  Note: AdvISR() can be called when interrupts are disabled or even
6094  *  when there is no hardware interrupt condition present. It will
6095  *  always check for completed idle commands and microcode requests.
6096  *  This is an important feature that shouldn't be changed because it
6097  *  allows commands to be completed from polling mode loops.
6098  *
6099  * Return:
6100  *   ADV_TRUE(1) - interrupt was pending
6101  *   ADV_FALSE(0) - no interrupt was pending
6102  */
6103 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6104 {
6105 	AdvPortAddr iop_base;
6106 	uchar int_stat;
6107 	ADV_CARR_T *free_carrp;
6108 	__le32 irq_next_vpa;
6109 	ADV_SCSI_REQ_Q *scsiq;
6110 	adv_req_t *reqp;
6111 
6112 	iop_base = asc_dvc->iop_base;
6113 
6114 	/* Reading the register clears the interrupt. */
6115 	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6116 
6117 	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6118 			 ADV_INTR_STATUS_INTRC)) == 0) {
6119 		return ADV_FALSE;
6120 	}
6121 
6122 	/*
6123 	 * Notify the driver of an asynchronous microcode condition by
6124 	 * calling the adv_async_callback function. The function
6125 	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6126 	 */
6127 	if (int_stat & ADV_INTR_STATUS_INTRB) {
6128 		uchar intrb_code;
6129 
6130 		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6131 
6132 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6133 		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6134 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6135 			    asc_dvc->carr_pending_cnt != 0) {
6136 				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6137 						     ADV_TICKLE_A);
6138 				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6139 					AdvWriteByteRegister(iop_base,
6140 							     IOPB_TICKLE,
6141 							     ADV_TICKLE_NOP);
6142 				}
6143 			}
6144 		}
6145 
6146 		adv_async_callback(asc_dvc, intrb_code);
6147 	}
6148 
6149 	/*
6150 	 * Check if the IRQ stopper carrier contains a completed request.
6151 	 */
6152 	while (((irq_next_vpa =
6153 		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6154 		/*
6155 		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6156 		 * The RISC will have set 'areq_vpa' to a virtual address.
6157 		 *
6158 		 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6159 		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6160 		 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6161 		 * in AdvExeScsiQueue().
6162 		 */
6163 		u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6164 		ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6165 			asc_dvc->irq_sp, pa_offset);
6166 		reqp = adv_get_reqp(asc_dvc, pa_offset);
6167 		scsiq = &reqp->scsi_req_q;
6168 
6169 		/*
6170 		 * Request finished with good status and the queue was not
6171 		 * DMAed to host memory by the firmware. Set all status fields
6172 		 * to indicate good status.
6173 		 */
6174 		if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6175 			scsiq->done_status = QD_NO_ERROR;
6176 			scsiq->host_status = scsiq->scsi_status = 0;
6177 			scsiq->data_cnt = 0L;
6178 		}
6179 
6180 		/*
6181 		 * Advance the stopper pointer to the next carrier
6182 		 * ignoring the lower four bits. Free the previous
6183 		 * stopper carrier.
6184 		 */
6185 		free_carrp = asc_dvc->irq_sp;
6186 		asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6187 						  ADV_GET_CARRP(irq_next_vpa));
6188 
6189 		free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6190 		asc_dvc->carr_freelist = free_carrp;
6191 		asc_dvc->carr_pending_cnt--;
6192 
6193 		/*
6194 		 * Clear request microcode control flag.
6195 		 */
6196 		scsiq->cntl = 0;
6197 
6198 		/*
6199 		 * Notify the driver of the completed request by passing
6200 		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6201 		 */
6202 		adv_isr_callback(asc_dvc, scsiq);
6203 		/*
6204 		 * Note: After the driver callback function is called, 'scsiq'
6205 		 * can no longer be referenced.
6206 		 *
6207 		 * Fall through and continue processing other completed
6208 		 * requests...
6209 		 */
6210 	}
6211 	return ADV_TRUE;
6212 }
6213 
6214 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6215 {
6216 	if (asc_dvc->err_code == 0) {
6217 		asc_dvc->err_code = err_code;
6218 		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6219 				 err_code);
6220 	}
6221 	return err_code;
6222 }
6223 
6224 static void AscAckInterrupt(PortAddr iop_base)
6225 {
6226 	uchar host_flag;
6227 	uchar risc_flag;
6228 	ushort loop;
6229 
6230 	loop = 0;
6231 	do {
6232 		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6233 		if (loop++ > 0x7FFF) {
6234 			break;
6235 		}
6236 	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6237 	host_flag =
6238 	    AscReadLramByte(iop_base,
6239 			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6240 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6241 			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6242 	AscSetChipStatus(iop_base, CIW_INT_ACK);
6243 	loop = 0;
6244 	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6245 		AscSetChipStatus(iop_base, CIW_INT_ACK);
6246 		if (loop++ > 3) {
6247 			break;
6248 		}
6249 	}
6250 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6251 }
6252 
6253 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6254 {
6255 	const uchar *period_table;
6256 	int max_index;
6257 	int min_index;
6258 	int i;
6259 
6260 	period_table = asc_dvc->sdtr_period_tbl;
6261 	max_index = (int)asc_dvc->max_sdtr_index;
6262 	min_index = (int)asc_dvc->min_sdtr_index;
6263 	if ((syn_time <= period_table[max_index])) {
6264 		for (i = min_index; i < (max_index - 1); i++) {
6265 			if (syn_time <= period_table[i]) {
6266 				return (uchar)i;
6267 			}
6268 		}
6269 		return (uchar)max_index;
6270 	} else {
6271 		return (uchar)(max_index + 1);
6272 	}
6273 }
6274 
6275 static uchar
6276 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6277 {
6278 	PortAddr iop_base = asc_dvc->iop_base;
6279 	uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6280 	EXT_MSG sdtr_buf = {
6281 		.msg_type = EXTENDED_MESSAGE,
6282 		.msg_len = MS_SDTR_LEN,
6283 		.msg_req = EXTENDED_SDTR,
6284 		.xfer_period = sdtr_period,
6285 		.req_ack_offset = sdtr_offset,
6286 	};
6287 	sdtr_offset &= ASC_SYN_MAX_OFFSET;
6288 
6289 	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6290 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6291 					(uchar *)&sdtr_buf,
6292 					sizeof(EXT_MSG) >> 1);
6293 		return ((sdtr_period_index << 4) | sdtr_offset);
6294 	} else {
6295 		sdtr_buf.req_ack_offset = 0;
6296 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6297 					(uchar *)&sdtr_buf,
6298 					sizeof(EXT_MSG) >> 1);
6299 		return 0;
6300 	}
6301 }
6302 
6303 static uchar
6304 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6305 {
6306 	uchar byte;
6307 	uchar sdtr_period_ix;
6308 
6309 	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6310 	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6311 		return 0xFF;
6312 	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6313 	return byte;
6314 }
6315 
6316 static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6317 {
6318 	ASC_SCSI_BIT_ID_TYPE org_id;
6319 	int i;
6320 	bool sta = true;
6321 
6322 	AscSetBank(iop_base, 1);
6323 	org_id = AscReadChipDvcID(iop_base);
6324 	for (i = 0; i <= ASC_MAX_TID; i++) {
6325 		if (org_id == (0x01 << i))
6326 			break;
6327 	}
6328 	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6329 	AscWriteChipDvcID(iop_base, id);
6330 	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6331 		AscSetBank(iop_base, 0);
6332 		AscSetChipSyn(iop_base, sdtr_data);
6333 		if (AscGetChipSyn(iop_base) != sdtr_data) {
6334 			sta = false;
6335 		}
6336 	} else {
6337 		sta = false;
6338 	}
6339 	AscSetBank(iop_base, 1);
6340 	AscWriteChipDvcID(iop_base, org_id);
6341 	AscSetBank(iop_base, 0);
6342 	return (sta);
6343 }
6344 
6345 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6346 {
6347 	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6348 	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6349 }
6350 
6351 static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6352 {
6353 	EXT_MSG ext_msg;
6354 	EXT_MSG out_msg;
6355 	ushort halt_q_addr;
6356 	bool sdtr_accept;
6357 	ushort int_halt_code;
6358 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6359 	ASC_SCSI_BIT_ID_TYPE target_id;
6360 	PortAddr iop_base;
6361 	uchar tag_code;
6362 	uchar q_status;
6363 	uchar halt_qp;
6364 	uchar sdtr_data;
6365 	uchar target_ix;
6366 	uchar q_cntl, tid_no;
6367 	uchar cur_dvc_qng;
6368 	uchar asyn_sdtr;
6369 	uchar scsi_status;
6370 	struct asc_board *boardp;
6371 
6372 	BUG_ON(!asc_dvc->drv_ptr);
6373 	boardp = asc_dvc->drv_ptr;
6374 
6375 	iop_base = asc_dvc->iop_base;
6376 	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6377 
6378 	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6379 	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6380 	target_ix = AscReadLramByte(iop_base,
6381 				    (ushort)(halt_q_addr +
6382 					     (ushort)ASC_SCSIQ_B_TARGET_IX));
6383 	q_cntl = AscReadLramByte(iop_base,
6384 			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6385 	tid_no = ASC_TIX_TO_TID(target_ix);
6386 	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6387 	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6388 		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6389 	} else {
6390 		asyn_sdtr = 0;
6391 	}
6392 	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6393 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6394 			AscSetChipSDTR(iop_base, 0, tid_no);
6395 			boardp->sdtr_data[tid_no] = 0;
6396 		}
6397 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6398 		return;
6399 	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6400 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6401 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6402 			boardp->sdtr_data[tid_no] = asyn_sdtr;
6403 		}
6404 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6405 		return;
6406 	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6407 		AscMemWordCopyPtrFromLram(iop_base,
6408 					  ASCV_MSGIN_BEG,
6409 					  (uchar *)&ext_msg,
6410 					  sizeof(EXT_MSG) >> 1);
6411 
6412 		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6413 		    ext_msg.msg_req == EXTENDED_SDTR &&
6414 		    ext_msg.msg_len == MS_SDTR_LEN) {
6415 			sdtr_accept = true;
6416 			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6417 
6418 				sdtr_accept = false;
6419 				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6420 			}
6421 			if ((ext_msg.xfer_period <
6422 			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6423 			    || (ext_msg.xfer_period >
6424 				asc_dvc->sdtr_period_tbl[asc_dvc->
6425 							 max_sdtr_index])) {
6426 				sdtr_accept = false;
6427 				ext_msg.xfer_period =
6428 				    asc_dvc->sdtr_period_tbl[asc_dvc->
6429 							     min_sdtr_index];
6430 			}
6431 			if (sdtr_accept) {
6432 				sdtr_data =
6433 				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6434 						   ext_msg.req_ack_offset);
6435 				if (sdtr_data == 0xFF) {
6436 
6437 					q_cntl |= QC_MSG_OUT;
6438 					asc_dvc->init_sdtr &= ~target_id;
6439 					asc_dvc->sdtr_done &= ~target_id;
6440 					AscSetChipSDTR(iop_base, asyn_sdtr,
6441 						       tid_no);
6442 					boardp->sdtr_data[tid_no] = asyn_sdtr;
6443 				}
6444 			}
6445 			if (ext_msg.req_ack_offset == 0) {
6446 
6447 				q_cntl &= ~QC_MSG_OUT;
6448 				asc_dvc->init_sdtr &= ~target_id;
6449 				asc_dvc->sdtr_done &= ~target_id;
6450 				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6451 			} else {
6452 				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6453 					q_cntl &= ~QC_MSG_OUT;
6454 					asc_dvc->sdtr_done |= target_id;
6455 					asc_dvc->init_sdtr |= target_id;
6456 					asc_dvc->pci_fix_asyn_xfer &=
6457 					    ~target_id;
6458 					sdtr_data =
6459 					    AscCalSDTRData(asc_dvc,
6460 							   ext_msg.xfer_period,
6461 							   ext_msg.
6462 							   req_ack_offset);
6463 					AscSetChipSDTR(iop_base, sdtr_data,
6464 						       tid_no);
6465 					boardp->sdtr_data[tid_no] = sdtr_data;
6466 				} else {
6467 					q_cntl |= QC_MSG_OUT;
6468 					AscMsgOutSDTR(asc_dvc,
6469 						      ext_msg.xfer_period,
6470 						      ext_msg.req_ack_offset);
6471 					asc_dvc->pci_fix_asyn_xfer &=
6472 					    ~target_id;
6473 					sdtr_data =
6474 					    AscCalSDTRData(asc_dvc,
6475 							   ext_msg.xfer_period,
6476 							   ext_msg.
6477 							   req_ack_offset);
6478 					AscSetChipSDTR(iop_base, sdtr_data,
6479 						       tid_no);
6480 					boardp->sdtr_data[tid_no] = sdtr_data;
6481 					asc_dvc->sdtr_done |= target_id;
6482 					asc_dvc->init_sdtr |= target_id;
6483 				}
6484 			}
6485 
6486 			AscWriteLramByte(iop_base,
6487 					 (ushort)(halt_q_addr +
6488 						  (ushort)ASC_SCSIQ_B_CNTL),
6489 					 q_cntl);
6490 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6491 			return;
6492 		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6493 			   ext_msg.msg_req == EXTENDED_WDTR &&
6494 			   ext_msg.msg_len == MS_WDTR_LEN) {
6495 
6496 			ext_msg.wdtr_width = 0;
6497 			AscMemWordCopyPtrToLram(iop_base,
6498 						ASCV_MSGOUT_BEG,
6499 						(uchar *)&ext_msg,
6500 						sizeof(EXT_MSG) >> 1);
6501 			q_cntl |= QC_MSG_OUT;
6502 			AscWriteLramByte(iop_base,
6503 					 (ushort)(halt_q_addr +
6504 						  (ushort)ASC_SCSIQ_B_CNTL),
6505 					 q_cntl);
6506 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6507 			return;
6508 		} else {
6509 
6510 			ext_msg.msg_type = MESSAGE_REJECT;
6511 			AscMemWordCopyPtrToLram(iop_base,
6512 						ASCV_MSGOUT_BEG,
6513 						(uchar *)&ext_msg,
6514 						sizeof(EXT_MSG) >> 1);
6515 			q_cntl |= QC_MSG_OUT;
6516 			AscWriteLramByte(iop_base,
6517 					 (ushort)(halt_q_addr +
6518 						  (ushort)ASC_SCSIQ_B_CNTL),
6519 					 q_cntl);
6520 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6521 			return;
6522 		}
6523 	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6524 
6525 		q_cntl |= QC_REQ_SENSE;
6526 
6527 		if ((asc_dvc->init_sdtr & target_id) != 0) {
6528 
6529 			asc_dvc->sdtr_done &= ~target_id;
6530 
6531 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6532 			q_cntl |= QC_MSG_OUT;
6533 			AscMsgOutSDTR(asc_dvc,
6534 				      asc_dvc->
6535 				      sdtr_period_tbl[(sdtr_data >> 4) &
6536 						      (uchar)(asc_dvc->
6537 							      max_sdtr_index -
6538 							      1)],
6539 				      (uchar)(sdtr_data & (uchar)
6540 					      ASC_SYN_MAX_OFFSET));
6541 		}
6542 
6543 		AscWriteLramByte(iop_base,
6544 				 (ushort)(halt_q_addr +
6545 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6546 
6547 		tag_code = AscReadLramByte(iop_base,
6548 					   (ushort)(halt_q_addr + (ushort)
6549 						    ASC_SCSIQ_B_TAG_CODE));
6550 		tag_code &= 0xDC;
6551 		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6552 		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6553 		    ) {
6554 
6555 			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6556 				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6557 
6558 		}
6559 		AscWriteLramByte(iop_base,
6560 				 (ushort)(halt_q_addr +
6561 					  (ushort)ASC_SCSIQ_B_TAG_CODE),
6562 				 tag_code);
6563 
6564 		q_status = AscReadLramByte(iop_base,
6565 					   (ushort)(halt_q_addr + (ushort)
6566 						    ASC_SCSIQ_B_STATUS));
6567 		q_status |= (QS_READY | QS_BUSY);
6568 		AscWriteLramByte(iop_base,
6569 				 (ushort)(halt_q_addr +
6570 					  (ushort)ASC_SCSIQ_B_STATUS),
6571 				 q_status);
6572 
6573 		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6574 		scsi_busy &= ~target_id;
6575 		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6576 
6577 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6578 		return;
6579 	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6580 
6581 		AscMemWordCopyPtrFromLram(iop_base,
6582 					  ASCV_MSGOUT_BEG,
6583 					  (uchar *)&out_msg,
6584 					  sizeof(EXT_MSG) >> 1);
6585 
6586 		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6587 		    (out_msg.msg_len == MS_SDTR_LEN) &&
6588 		    (out_msg.msg_req == EXTENDED_SDTR)) {
6589 
6590 			asc_dvc->init_sdtr &= ~target_id;
6591 			asc_dvc->sdtr_done &= ~target_id;
6592 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6593 			boardp->sdtr_data[tid_no] = asyn_sdtr;
6594 		}
6595 		q_cntl &= ~QC_MSG_OUT;
6596 		AscWriteLramByte(iop_base,
6597 				 (ushort)(halt_q_addr +
6598 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6599 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6600 		return;
6601 	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6602 
6603 		scsi_status = AscReadLramByte(iop_base,
6604 					      (ushort)((ushort)halt_q_addr +
6605 						       (ushort)
6606 						       ASC_SCSIQ_SCSI_STATUS));
6607 		cur_dvc_qng =
6608 		    AscReadLramByte(iop_base,
6609 				    (ushort)((ushort)ASC_QADR_BEG +
6610 					     (ushort)target_ix));
6611 		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6612 
6613 			scsi_busy = AscReadLramByte(iop_base,
6614 						    (ushort)ASCV_SCSIBUSY_B);
6615 			scsi_busy |= target_id;
6616 			AscWriteLramByte(iop_base,
6617 					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6618 			asc_dvc->queue_full_or_busy |= target_id;
6619 
6620 			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6621 				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6622 					cur_dvc_qng -= 1;
6623 					asc_dvc->max_dvc_qng[tid_no] =
6624 					    cur_dvc_qng;
6625 
6626 					AscWriteLramByte(iop_base,
6627 							 (ushort)((ushort)
6628 								  ASCV_MAX_DVC_QNG_BEG
6629 								  + (ushort)
6630 								  tid_no),
6631 							 cur_dvc_qng);
6632 
6633 					/*
6634 					 * Set the device queue depth to the
6635 					 * number of active requests when the
6636 					 * QUEUE FULL condition was encountered.
6637 					 */
6638 					boardp->queue_full |= target_id;
6639 					boardp->queue_full_cnt[tid_no] =
6640 					    cur_dvc_qng;
6641 				}
6642 			}
6643 		}
6644 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6645 		return;
6646 	}
6647 	return;
6648 }
6649 
6650 /*
6651  * void
6652  * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6653  *
6654  * Calling/Exit State:
6655  *    none
6656  *
6657  * Description:
6658  *     Input an ASC_QDONE_INFO structure from the chip
6659  */
6660 static void
6661 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6662 {
6663 	int i;
6664 	ushort word;
6665 
6666 	AscSetChipLramAddr(iop_base, s_addr);
6667 	for (i = 0; i < 2 * words; i += 2) {
6668 		if (i == 10) {
6669 			continue;
6670 		}
6671 		word = inpw(iop_base + IOP_RAM_DATA);
6672 		inbuf[i] = word & 0xff;
6673 		inbuf[i + 1] = (word >> 8) & 0xff;
6674 	}
6675 	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6676 }
6677 
6678 static uchar
6679 _AscCopyLramScsiDoneQ(PortAddr iop_base,
6680 		      ushort q_addr,
6681 		      ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6682 {
6683 	ushort _val;
6684 	uchar sg_queue_cnt;
6685 
6686 	DvcGetQinfo(iop_base,
6687 		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6688 		    (uchar *)scsiq,
6689 		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6690 
6691 	_val = AscReadLramWord(iop_base,
6692 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6693 	scsiq->q_status = (uchar)_val;
6694 	scsiq->q_no = (uchar)(_val >> 8);
6695 	_val = AscReadLramWord(iop_base,
6696 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6697 	scsiq->cntl = (uchar)_val;
6698 	sg_queue_cnt = (uchar)(_val >> 8);
6699 	_val = AscReadLramWord(iop_base,
6700 			       (ushort)(q_addr +
6701 					(ushort)ASC_SCSIQ_B_SENSE_LEN));
6702 	scsiq->sense_len = (uchar)_val;
6703 	scsiq->extra_bytes = (uchar)(_val >> 8);
6704 
6705 	/*
6706 	 * Read high word of remain bytes from alternate location.
6707 	 */
6708 	scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6709 						     (ushort)(q_addr +
6710 							      (ushort)
6711 							      ASC_SCSIQ_W_ALT_DC1)))
6712 			       << 16);
6713 	/*
6714 	 * Read low word of remain bytes from original location.
6715 	 */
6716 	scsiq->remain_bytes += AscReadLramWord(iop_base,
6717 					       (ushort)(q_addr + (ushort)
6718 							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6719 
6720 	scsiq->remain_bytes &= max_dma_count;
6721 	return sg_queue_cnt;
6722 }
6723 
6724 /*
6725  * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6726  *
6727  * Interrupt callback function for the Narrow SCSI Asc Library.
6728  */
6729 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6730 {
6731 	struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6732 	u32 srb_tag;
6733 	struct scsi_cmnd *scp;
6734 
6735 	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6736 	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6737 
6738 	/*
6739 	 * Decrease the srb_tag by 1 to find the SCSI command
6740 	 */
6741 	srb_tag = qdonep->d2.srb_tag - 1;
6742 	scp = scsi_host_find_tag(boardp->shost, srb_tag);
6743 	if (!scp)
6744 		return;
6745 
6746 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6747 
6748 	ASC_STATS(boardp->shost, callback);
6749 
6750 	dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
6751 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6752 	/*
6753 	 * 'qdonep' contains the command's ending status.
6754 	 */
6755 	switch (qdonep->d3.done_stat) {
6756 	case QD_NO_ERROR:
6757 		ASC_DBG(2, "QD_NO_ERROR\n");
6758 		scp->result = 0;
6759 
6760 		/*
6761 		 * Check for an underrun condition.
6762 		 *
6763 		 * If there was no error and an underrun condition, then
6764 		 * return the number of underrun bytes.
6765 		 */
6766 		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6767 		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
6768 			ASC_DBG(1, "underrun condition %u bytes\n",
6769 				 (unsigned)qdonep->remain_bytes);
6770 			scsi_set_resid(scp, qdonep->remain_bytes);
6771 		}
6772 		break;
6773 
6774 	case QD_WITH_ERROR:
6775 		ASC_DBG(2, "QD_WITH_ERROR\n");
6776 		switch (qdonep->d3.host_stat) {
6777 		case QHSTA_NO_ERROR:
6778 			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6779 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6780 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6781 						  SCSI_SENSE_BUFFERSIZE);
6782 				/*
6783 				 * Note: The 'status_byte()' macro used by
6784 				 * target drivers defined in scsi.h shifts the
6785 				 * status byte returned by host drivers right
6786 				 * by 1 bit.  This is why target drivers also
6787 				 * use right shifted status byte definitions.
6788 				 * For instance target drivers use
6789 				 * CHECK_CONDITION, defined to 0x1, instead of
6790 				 * the SCSI defined check condition value of
6791 				 * 0x2. Host drivers are supposed to return
6792 				 * the status byte as it is defined by SCSI.
6793 				 */
6794 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6795 				    STATUS_BYTE(qdonep->d3.scsi_stat);
6796 			} else {
6797 				scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
6798 			}
6799 			break;
6800 
6801 		default:
6802 			/* QHSTA error occurred */
6803 			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6804 			scp->result = HOST_BYTE(DID_BAD_TARGET);
6805 			break;
6806 		}
6807 		break;
6808 
6809 	case QD_ABORTED_BY_HOST:
6810 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6811 		scp->result =
6812 		    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
6813 						    scsi_msg) |
6814 		    STATUS_BYTE(qdonep->d3.scsi_stat);
6815 		break;
6816 
6817 	default:
6818 		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6819 		scp->result =
6820 		    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
6821 						    scsi_msg) |
6822 		    STATUS_BYTE(qdonep->d3.scsi_stat);
6823 		break;
6824 	}
6825 
6826 	/*
6827 	 * If the 'init_tidmask' bit isn't already set for the target and the
6828 	 * current request finished normally, then set the bit for the target
6829 	 * to indicate that a device is present.
6830 	 */
6831 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6832 	    qdonep->d3.done_stat == QD_NO_ERROR &&
6833 	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6834 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6835 	}
6836 
6837 	asc_scsi_done(scp);
6838 }
6839 
6840 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6841 {
6842 	uchar next_qp;
6843 	uchar n_q_used;
6844 	uchar sg_list_qp;
6845 	uchar sg_queue_cnt;
6846 	uchar q_cnt;
6847 	uchar done_q_tail;
6848 	uchar tid_no;
6849 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6850 	ASC_SCSI_BIT_ID_TYPE target_id;
6851 	PortAddr iop_base;
6852 	ushort q_addr;
6853 	ushort sg_q_addr;
6854 	uchar cur_target_qng;
6855 	ASC_QDONE_INFO scsiq_buf;
6856 	ASC_QDONE_INFO *scsiq;
6857 	bool false_overrun;
6858 
6859 	iop_base = asc_dvc->iop_base;
6860 	n_q_used = 1;
6861 	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6862 	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6863 	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6864 	next_qp = AscReadLramByte(iop_base,
6865 				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6866 	if (next_qp != ASC_QLINK_END) {
6867 		AscPutVarDoneQTail(iop_base, next_qp);
6868 		q_addr = ASC_QNO_TO_QADDR(next_qp);
6869 		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6870 						     asc_dvc->max_dma_count);
6871 		AscWriteLramByte(iop_base,
6872 				 (ushort)(q_addr +
6873 					  (ushort)ASC_SCSIQ_B_STATUS),
6874 				 (uchar)(scsiq->
6875 					 q_status & (uchar)~(QS_READY |
6876 							     QS_ABORTED)));
6877 		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6878 		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6879 		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6880 			sg_q_addr = q_addr;
6881 			sg_list_qp = next_qp;
6882 			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6883 				sg_list_qp = AscReadLramByte(iop_base,
6884 							     (ushort)(sg_q_addr
6885 								      + (ushort)
6886 								      ASC_SCSIQ_B_FWD));
6887 				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6888 				if (sg_list_qp == ASC_QLINK_END) {
6889 					AscSetLibErrorCode(asc_dvc,
6890 							   ASCQ_ERR_SG_Q_LINKS);
6891 					scsiq->d3.done_stat = QD_WITH_ERROR;
6892 					scsiq->d3.host_stat =
6893 					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6894 					goto FATAL_ERR_QDONE;
6895 				}
6896 				AscWriteLramByte(iop_base,
6897 						 (ushort)(sg_q_addr + (ushort)
6898 							  ASC_SCSIQ_B_STATUS),
6899 						 QS_FREE);
6900 			}
6901 			n_q_used = sg_queue_cnt + 1;
6902 			AscPutVarDoneQTail(iop_base, sg_list_qp);
6903 		}
6904 		if (asc_dvc->queue_full_or_busy & target_id) {
6905 			cur_target_qng = AscReadLramByte(iop_base,
6906 							 (ushort)((ushort)
6907 								  ASC_QADR_BEG
6908 								  + (ushort)
6909 								  scsiq->d2.
6910 								  target_ix));
6911 			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6912 				scsi_busy = AscReadLramByte(iop_base, (ushort)
6913 							    ASCV_SCSIBUSY_B);
6914 				scsi_busy &= ~target_id;
6915 				AscWriteLramByte(iop_base,
6916 						 (ushort)ASCV_SCSIBUSY_B,
6917 						 scsi_busy);
6918 				asc_dvc->queue_full_or_busy &= ~target_id;
6919 			}
6920 		}
6921 		if (asc_dvc->cur_total_qng >= n_q_used) {
6922 			asc_dvc->cur_total_qng -= n_q_used;
6923 			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6924 				asc_dvc->cur_dvc_qng[tid_no]--;
6925 			}
6926 		} else {
6927 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6928 			scsiq->d3.done_stat = QD_WITH_ERROR;
6929 			goto FATAL_ERR_QDONE;
6930 		}
6931 		if ((scsiq->d2.srb_tag == 0UL) ||
6932 		    ((scsiq->q_status & QS_ABORTED) != 0)) {
6933 			return (0x11);
6934 		} else if (scsiq->q_status == QS_DONE) {
6935 			/*
6936 			 * This is also curious.
6937 			 * false_overrun will _always_ be set to 'false'
6938 			 */
6939 			false_overrun = false;
6940 			if (scsiq->extra_bytes != 0) {
6941 				scsiq->remain_bytes += scsiq->extra_bytes;
6942 			}
6943 			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6944 				if (scsiq->d3.host_stat ==
6945 				    QHSTA_M_DATA_OVER_RUN) {
6946 					if ((scsiq->
6947 					     cntl & (QC_DATA_IN | QC_DATA_OUT))
6948 					    == 0) {
6949 						scsiq->d3.done_stat =
6950 						    QD_NO_ERROR;
6951 						scsiq->d3.host_stat =
6952 						    QHSTA_NO_ERROR;
6953 					} else if (false_overrun) {
6954 						scsiq->d3.done_stat =
6955 						    QD_NO_ERROR;
6956 						scsiq->d3.host_stat =
6957 						    QHSTA_NO_ERROR;
6958 					}
6959 				} else if (scsiq->d3.host_stat ==
6960 					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6961 					AscStopChip(iop_base);
6962 					AscSetChipControl(iop_base,
6963 							  (uchar)(CC_SCSI_RESET
6964 								  | CC_HALT));
6965 					udelay(60);
6966 					AscSetChipControl(iop_base, CC_HALT);
6967 					AscSetChipStatus(iop_base,
6968 							 CIW_CLR_SCSI_RESET_INT);
6969 					AscSetChipStatus(iop_base, 0);
6970 					AscSetChipControl(iop_base, 0);
6971 				}
6972 			}
6973 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6974 				asc_isr_callback(asc_dvc, scsiq);
6975 			} else {
6976 				if ((AscReadLramByte(iop_base,
6977 						     (ushort)(q_addr + (ushort)
6978 							      ASC_SCSIQ_CDB_BEG))
6979 				     == START_STOP)) {
6980 					asc_dvc->unit_not_ready &= ~target_id;
6981 					if (scsiq->d3.done_stat != QD_NO_ERROR) {
6982 						asc_dvc->start_motor &=
6983 						    ~target_id;
6984 					}
6985 				}
6986 			}
6987 			return (1);
6988 		} else {
6989 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
6990  FATAL_ERR_QDONE:
6991 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6992 				asc_isr_callback(asc_dvc, scsiq);
6993 			}
6994 			return (0x80);
6995 		}
6996 	}
6997 	return (0);
6998 }
6999 
7000 static int AscISR(ASC_DVC_VAR *asc_dvc)
7001 {
7002 	ASC_CS_TYPE chipstat;
7003 	PortAddr iop_base;
7004 	ushort saved_ram_addr;
7005 	uchar ctrl_reg;
7006 	uchar saved_ctrl_reg;
7007 	int int_pending;
7008 	int status;
7009 	uchar host_flag;
7010 
7011 	iop_base = asc_dvc->iop_base;
7012 	int_pending = ASC_FALSE;
7013 
7014 	if (AscIsIntPending(iop_base) == 0)
7015 		return int_pending;
7016 
7017 	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7018 		return ASC_ERROR;
7019 	}
7020 	if (asc_dvc->in_critical_cnt != 0) {
7021 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7022 		return ASC_ERROR;
7023 	}
7024 	if (asc_dvc->is_in_int) {
7025 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7026 		return ASC_ERROR;
7027 	}
7028 	asc_dvc->is_in_int = true;
7029 	ctrl_reg = AscGetChipControl(iop_base);
7030 	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7031 				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7032 	chipstat = AscGetChipStatus(iop_base);
7033 	if (chipstat & CSW_SCSI_RESET_LATCH) {
7034 		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7035 			int i = 10;
7036 			int_pending = ASC_TRUE;
7037 			asc_dvc->sdtr_done = 0;
7038 			saved_ctrl_reg &= (uchar)(~CC_HALT);
7039 			while ((AscGetChipStatus(iop_base) &
7040 				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7041 				mdelay(100);
7042 			}
7043 			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7044 			AscSetChipControl(iop_base, CC_HALT);
7045 			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7046 			AscSetChipStatus(iop_base, 0);
7047 			chipstat = AscGetChipStatus(iop_base);
7048 		}
7049 	}
7050 	saved_ram_addr = AscGetChipLramAddr(iop_base);
7051 	host_flag = AscReadLramByte(iop_base,
7052 				    ASCV_HOST_FLAG_B) &
7053 	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
7054 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7055 			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7056 	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7057 		AscAckInterrupt(iop_base);
7058 		int_pending = ASC_TRUE;
7059 		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7060 			AscIsrChipHalted(asc_dvc);
7061 			saved_ctrl_reg &= (uchar)(~CC_HALT);
7062 		} else {
7063 			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7064 				while (((status =
7065 					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7066 				}
7067 			} else {
7068 				do {
7069 					if ((status =
7070 					     AscIsrQDone(asc_dvc)) == 1) {
7071 						break;
7072 					}
7073 				} while (status == 0x11);
7074 			}
7075 			if ((status & 0x80) != 0)
7076 				int_pending = ASC_ERROR;
7077 		}
7078 	}
7079 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7080 	AscSetChipLramAddr(iop_base, saved_ram_addr);
7081 	AscSetChipControl(iop_base, saved_ctrl_reg);
7082 	asc_dvc->is_in_int = false;
7083 	return int_pending;
7084 }
7085 
7086 /*
7087  * advansys_reset()
7088  *
7089  * Reset the host associated with the command 'scp'.
7090  *
7091  * This function runs its own thread. Interrupts must be blocked but
7092  * sleeping is allowed and no locking other than for host structures is
7093  * required. Returns SUCCESS or FAILED.
7094  */
7095 static int advansys_reset(struct scsi_cmnd *scp)
7096 {
7097 	struct Scsi_Host *shost = scp->device->host;
7098 	struct asc_board *boardp = shost_priv(shost);
7099 	unsigned long flags;
7100 	int status;
7101 	int ret = SUCCESS;
7102 
7103 	ASC_DBG(1, "0x%p\n", scp);
7104 
7105 	ASC_STATS(shost, reset);
7106 
7107 	scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7108 
7109 	if (ASC_NARROW_BOARD(boardp)) {
7110 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7111 
7112 		/* Reset the chip and SCSI bus. */
7113 		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7114 		status = AscInitAsc1000Driver(asc_dvc);
7115 
7116 		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7117 		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7118 			scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7119 				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7120 				    status);
7121 			ret = FAILED;
7122 		} else if (status) {
7123 			scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7124 				    "0x%x\n", status);
7125 		} else {
7126 			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7127 				    "successful\n");
7128 		}
7129 
7130 		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7131 	} else {
7132 		/*
7133 		 * If the suggest reset bus flags are set, then reset the bus.
7134 		 * Otherwise only reset the device.
7135 		 */
7136 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7137 
7138 		/*
7139 		 * Reset the chip and SCSI bus.
7140 		 */
7141 		ASC_DBG(1, "before AdvResetChipAndSB()\n");
7142 		switch (AdvResetChipAndSB(adv_dvc)) {
7143 		case ASC_TRUE:
7144 			scmd_printk(KERN_INFO, scp, "SCSI host reset "
7145 				    "successful\n");
7146 			break;
7147 		case ASC_FALSE:
7148 		default:
7149 			scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7150 			ret = FAILED;
7151 			break;
7152 		}
7153 		spin_lock_irqsave(shost->host_lock, flags);
7154 		AdvISR(adv_dvc);
7155 		spin_unlock_irqrestore(shost->host_lock, flags);
7156 	}
7157 
7158 	ASC_DBG(1, "ret %d\n", ret);
7159 
7160 	return ret;
7161 }
7162 
7163 /*
7164  * advansys_biosparam()
7165  *
7166  * Translate disk drive geometry if the "BIOS greater than 1 GB"
7167  * support is enabled for a drive.
7168  *
7169  * ip (information pointer) is an int array with the following definition:
7170  * ip[0]: heads
7171  * ip[1]: sectors
7172  * ip[2]: cylinders
7173  */
7174 static int
7175 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7176 		   sector_t capacity, int ip[])
7177 {
7178 	struct asc_board *boardp = shost_priv(sdev->host);
7179 
7180 	ASC_DBG(1, "begin\n");
7181 	ASC_STATS(sdev->host, biosparam);
7182 	if (ASC_NARROW_BOARD(boardp)) {
7183 		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7184 		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7185 			ip[0] = 255;
7186 			ip[1] = 63;
7187 		} else {
7188 			ip[0] = 64;
7189 			ip[1] = 32;
7190 		}
7191 	} else {
7192 		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7193 		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7194 			ip[0] = 255;
7195 			ip[1] = 63;
7196 		} else {
7197 			ip[0] = 64;
7198 			ip[1] = 32;
7199 		}
7200 	}
7201 	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7202 	ASC_DBG(1, "end\n");
7203 	return 0;
7204 }
7205 
7206 /*
7207  * First-level interrupt handler.
7208  *
7209  * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7210  */
7211 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7212 {
7213 	struct Scsi_Host *shost = dev_id;
7214 	struct asc_board *boardp = shost_priv(shost);
7215 	irqreturn_t result = IRQ_NONE;
7216 	unsigned long flags;
7217 
7218 	ASC_DBG(2, "boardp 0x%p\n", boardp);
7219 	spin_lock_irqsave(shost->host_lock, flags);
7220 	if (ASC_NARROW_BOARD(boardp)) {
7221 		if (AscIsIntPending(shost->io_port)) {
7222 			result = IRQ_HANDLED;
7223 			ASC_STATS(shost, interrupt);
7224 			ASC_DBG(1, "before AscISR()\n");
7225 			AscISR(&boardp->dvc_var.asc_dvc_var);
7226 		}
7227 	} else {
7228 		ASC_DBG(1, "before AdvISR()\n");
7229 		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7230 			result = IRQ_HANDLED;
7231 			ASC_STATS(shost, interrupt);
7232 		}
7233 	}
7234 	spin_unlock_irqrestore(shost->host_lock, flags);
7235 
7236 	ASC_DBG(1, "end\n");
7237 	return result;
7238 }
7239 
7240 static bool AscHostReqRiscHalt(PortAddr iop_base)
7241 {
7242 	int count = 0;
7243 	bool sta = false;
7244 	uchar saved_stop_code;
7245 
7246 	if (AscIsChipHalted(iop_base))
7247 		return true;
7248 	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7249 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7250 			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7251 	do {
7252 		if (AscIsChipHalted(iop_base)) {
7253 			sta = true;
7254 			break;
7255 		}
7256 		mdelay(100);
7257 	} while (count++ < 20);
7258 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7259 	return sta;
7260 }
7261 
7262 static bool
7263 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7264 {
7265 	bool sta = false;
7266 
7267 	if (AscHostReqRiscHalt(iop_base)) {
7268 		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7269 		AscStartChip(iop_base);
7270 	}
7271 	return sta;
7272 }
7273 
7274 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7275 {
7276 	char type = sdev->type;
7277 	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7278 
7279 	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7280 		return;
7281 	if (asc_dvc->init_sdtr & tid_bits)
7282 		return;
7283 
7284 	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7285 		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7286 
7287 	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7288 	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7289 	    (type == TYPE_ROM) || (type == TYPE_TAPE))
7290 		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7291 
7292 	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7293 		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7294 					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7295 }
7296 
7297 static void
7298 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7299 {
7300 	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7301 	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7302 
7303 	if (sdev->lun == 0) {
7304 		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7305 		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7306 			asc_dvc->init_sdtr |= tid_bit;
7307 		} else {
7308 			asc_dvc->init_sdtr &= ~tid_bit;
7309 		}
7310 
7311 		if (orig_init_sdtr != asc_dvc->init_sdtr)
7312 			AscAsyncFix(asc_dvc, sdev);
7313 	}
7314 
7315 	if (sdev->tagged_supported) {
7316 		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7317 			if (sdev->lun == 0) {
7318 				asc_dvc->cfg->can_tagged_qng |= tid_bit;
7319 				asc_dvc->use_tagged_qng |= tid_bit;
7320 			}
7321 			scsi_change_queue_depth(sdev,
7322 						asc_dvc->max_dvc_qng[sdev->id]);
7323 		}
7324 	} else {
7325 		if (sdev->lun == 0) {
7326 			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7327 			asc_dvc->use_tagged_qng &= ~tid_bit;
7328 		}
7329 	}
7330 
7331 	if ((sdev->lun == 0) &&
7332 	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7333 		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7334 				 asc_dvc->cfg->disc_enable);
7335 		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7336 				 asc_dvc->use_tagged_qng);
7337 		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7338 				 asc_dvc->cfg->can_tagged_qng);
7339 
7340 		asc_dvc->max_dvc_qng[sdev->id] =
7341 					asc_dvc->cfg->max_tag_qng[sdev->id];
7342 		AscWriteLramByte(asc_dvc->iop_base,
7343 				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7344 				 asc_dvc->max_dvc_qng[sdev->id]);
7345 	}
7346 }
7347 
7348 /*
7349  * Wide Transfers
7350  *
7351  * If the EEPROM enabled WDTR for the device and the device supports wide
7352  * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7353  * write the new value to the microcode.
7354  */
7355 static void
7356 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7357 {
7358 	unsigned short cfg_word;
7359 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7360 	if ((cfg_word & tidmask) != 0)
7361 		return;
7362 
7363 	cfg_word |= tidmask;
7364 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7365 
7366 	/*
7367 	 * Clear the microcode SDTR and WDTR negotiation done indicators for
7368 	 * the target to cause it to negotiate with the new setting set above.
7369 	 * WDTR when accepted causes the target to enter asynchronous mode, so
7370 	 * SDTR must be negotiated.
7371 	 */
7372 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7373 	cfg_word &= ~tidmask;
7374 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7375 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7376 	cfg_word &= ~tidmask;
7377 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7378 }
7379 
7380 /*
7381  * Synchronous Transfers
7382  *
7383  * If the EEPROM enabled SDTR for the device and the device
7384  * supports synchronous transfers, then turn on the device's
7385  * 'sdtr_able' bit. Write the new value to the microcode.
7386  */
7387 static void
7388 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7389 {
7390 	unsigned short cfg_word;
7391 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7392 	if ((cfg_word & tidmask) != 0)
7393 		return;
7394 
7395 	cfg_word |= tidmask;
7396 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7397 
7398 	/*
7399 	 * Clear the microcode "SDTR negotiation" done indicator for the
7400 	 * target to cause it to negotiate with the new setting set above.
7401 	 */
7402 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7403 	cfg_word &= ~tidmask;
7404 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7405 }
7406 
7407 /*
7408  * PPR (Parallel Protocol Request) Capable
7409  *
7410  * If the device supports DT mode, then it must be PPR capable.
7411  * The PPR message will be used in place of the SDTR and WDTR
7412  * messages to negotiate synchronous speed and offset, transfer
7413  * width, and protocol options.
7414  */
7415 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7416 				AdvPortAddr iop_base, unsigned short tidmask)
7417 {
7418 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7419 	adv_dvc->ppr_able |= tidmask;
7420 	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7421 }
7422 
7423 static void
7424 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7425 {
7426 	AdvPortAddr iop_base = adv_dvc->iop_base;
7427 	unsigned short tidmask = 1 << sdev->id;
7428 
7429 	if (sdev->lun == 0) {
7430 		/*
7431 		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7432 		 * is enabled in the EEPROM and the device supports the
7433 		 * feature, then enable it in the microcode.
7434 		 */
7435 
7436 		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7437 			advansys_wide_enable_wdtr(iop_base, tidmask);
7438 		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7439 			advansys_wide_enable_sdtr(iop_base, tidmask);
7440 		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7441 			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7442 
7443 		/*
7444 		 * Tag Queuing is disabled for the BIOS which runs in polled
7445 		 * mode and would see no benefit from Tag Queuing. Also by
7446 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7447 		 * bugs will at least work with the BIOS.
7448 		 */
7449 		if ((adv_dvc->tagqng_able & tidmask) &&
7450 		    sdev->tagged_supported) {
7451 			unsigned short cfg_word;
7452 			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7453 			cfg_word |= tidmask;
7454 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7455 					 cfg_word);
7456 			AdvWriteByteLram(iop_base,
7457 					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7458 					 adv_dvc->max_dvc_qng);
7459 		}
7460 	}
7461 
7462 	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7463 		scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7464 }
7465 
7466 /*
7467  * Set the number of commands to queue per device for the
7468  * specified host adapter.
7469  */
7470 static int advansys_slave_configure(struct scsi_device *sdev)
7471 {
7472 	struct asc_board *boardp = shost_priv(sdev->host);
7473 
7474 	if (ASC_NARROW_BOARD(boardp))
7475 		advansys_narrow_slave_configure(sdev,
7476 						&boardp->dvc_var.asc_dvc_var);
7477 	else
7478 		advansys_wide_slave_configure(sdev,
7479 						&boardp->dvc_var.adv_dvc_var);
7480 
7481 	return 0;
7482 }
7483 
7484 static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7485 {
7486 	struct asc_board *board = shost_priv(scp->device->host);
7487 
7488 	scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7489 					     SCSI_SENSE_BUFFERSIZE,
7490 					     DMA_FROM_DEVICE);
7491 	if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) {
7492 		ASC_DBG(1, "failed to map sense buffer\n");
7493 		return 0;
7494 	}
7495 	return cpu_to_le32(scp->SCp.dma_handle);
7496 }
7497 
7498 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7499 			struct asc_scsi_q *asc_scsi_q)
7500 {
7501 	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7502 	int use_sg;
7503 	u32 srb_tag;
7504 
7505 	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7506 
7507 	/*
7508 	 * Set the srb_tag to the command tag + 1, as
7509 	 * srb_tag '0' is used internally by the chip.
7510 	 */
7511 	srb_tag = scp->request->tag + 1;
7512 	asc_scsi_q->q2.srb_tag = srb_tag;
7513 
7514 	/*
7515 	 * Build the ASC_SCSI_Q request.
7516 	 */
7517 	asc_scsi_q->cdbptr = &scp->cmnd[0];
7518 	asc_scsi_q->q2.cdb_len = scp->cmd_len;
7519 	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7520 	asc_scsi_q->q1.target_lun = scp->device->lun;
7521 	asc_scsi_q->q2.target_ix =
7522 	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7523 	asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7524 	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7525 	if (!asc_scsi_q->q1.sense_addr)
7526 		return ASC_BUSY;
7527 
7528 	/*
7529 	 * If there are any outstanding requests for the current target,
7530 	 * then every 255th request send an ORDERED request. This heuristic
7531 	 * tries to retain the benefit of request sorting while preventing
7532 	 * request starvation. 255 is the max number of tags or pending commands
7533 	 * a device may have outstanding.
7534 	 *
7535 	 * The request count is incremented below for every successfully
7536 	 * started request.
7537 	 *
7538 	 */
7539 	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7540 	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
7541 		asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7542 	} else {
7543 		asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7544 	}
7545 
7546 	/* Build ASC_SCSI_Q */
7547 	use_sg = scsi_dma_map(scp);
7548 	if (use_sg < 0) {
7549 		ASC_DBG(1, "failed to map sglist\n");
7550 		return ASC_BUSY;
7551 	} else if (use_sg > 0) {
7552 		int sgcnt;
7553 		struct scatterlist *slp;
7554 		struct asc_sg_head *asc_sg_head;
7555 
7556 		if (use_sg > scp->device->host->sg_tablesize) {
7557 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7558 				"sg_tablesize %d\n", use_sg,
7559 				scp->device->host->sg_tablesize);
7560 			scsi_dma_unmap(scp);
7561 			scp->result = HOST_BYTE(DID_ERROR);
7562 			return ASC_ERROR;
7563 		}
7564 
7565 		asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7566 			use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7567 		if (!asc_sg_head) {
7568 			scsi_dma_unmap(scp);
7569 			scp->result = HOST_BYTE(DID_SOFT_ERROR);
7570 			return ASC_ERROR;
7571 		}
7572 
7573 		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7574 		asc_scsi_q->sg_head = asc_sg_head;
7575 		asc_scsi_q->q1.data_cnt = 0;
7576 		asc_scsi_q->q1.data_addr = 0;
7577 		/* This is a byte value, otherwise it would need to be swapped. */
7578 		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7579 		ASC_STATS_ADD(scp->device->host, xfer_elem,
7580 			      asc_sg_head->entry_cnt);
7581 
7582 		/*
7583 		 * Convert scatter-gather list into ASC_SG_HEAD list.
7584 		 */
7585 		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7586 			asc_sg_head->sg_list[sgcnt].addr =
7587 			    cpu_to_le32(sg_dma_address(slp));
7588 			asc_sg_head->sg_list[sgcnt].bytes =
7589 			    cpu_to_le32(sg_dma_len(slp));
7590 			ASC_STATS_ADD(scp->device->host, xfer_sect,
7591 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7592 		}
7593 	}
7594 
7595 	ASC_STATS(scp->device->host, xfer_cnt);
7596 
7597 	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7598 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7599 
7600 	return ASC_NOERROR;
7601 }
7602 
7603 /*
7604  * Build scatter-gather list for Adv Library (Wide Board).
7605  *
7606  * Additional ADV_SG_BLOCK structures will need to be allocated
7607  * if the total number of scatter-gather elements exceeds
7608  * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7609  * assumed to be physically contiguous.
7610  *
7611  * Return:
7612  *      ADV_SUCCESS(1) - SG List successfully created
7613  *      ADV_ERROR(-1) - SG List creation failed
7614  */
7615 static int
7616 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7617 	       ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7618 {
7619 	adv_sgblk_t *sgblkp, *prev_sgblkp;
7620 	struct scatterlist *slp;
7621 	int sg_elem_cnt;
7622 	ADV_SG_BLOCK *sg_block, *prev_sg_block;
7623 	dma_addr_t sgblk_paddr;
7624 	int i;
7625 
7626 	slp = scsi_sglist(scp);
7627 	sg_elem_cnt = use_sg;
7628 	prev_sgblkp = NULL;
7629 	prev_sg_block = NULL;
7630 	reqp->sgblkp = NULL;
7631 
7632 	for (;;) {
7633 		/*
7634 		 * Allocate a 'adv_sgblk_t' structure from the board free
7635 		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7636 		 * (15) scatter-gather elements.
7637 		 */
7638 		sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7639 					&sgblk_paddr);
7640 		if (!sgblkp) {
7641 			ASC_DBG(1, "no free adv_sgblk_t\n");
7642 			ASC_STATS(scp->device->host, adv_build_nosg);
7643 
7644 			/*
7645 			 * Allocation failed. Free 'adv_sgblk_t' structures
7646 			 * already allocated for the request.
7647 			 */
7648 			while ((sgblkp = reqp->sgblkp) != NULL) {
7649 				/* Remove 'sgblkp' from the request list. */
7650 				reqp->sgblkp = sgblkp->next_sgblkp;
7651 				sgblkp->next_sgblkp = NULL;
7652 				dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7653 					      sgblkp->sg_addr);
7654 			}
7655 			return ASC_BUSY;
7656 		}
7657 		/* Complete 'adv_sgblk_t' board allocation. */
7658 		sgblkp->sg_addr = sgblk_paddr;
7659 		sgblkp->next_sgblkp = NULL;
7660 		sg_block = &sgblkp->sg_block;
7661 
7662 		/*
7663 		 * Check if this is the first 'adv_sgblk_t' for the
7664 		 * request.
7665 		 */
7666 		if (reqp->sgblkp == NULL) {
7667 			/* Request's first scatter-gather block. */
7668 			reqp->sgblkp = sgblkp;
7669 
7670 			/*
7671 			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7672 			 * address pointers.
7673 			 */
7674 			scsiqp->sg_list_ptr = sg_block;
7675 			scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7676 		} else {
7677 			/* Request's second or later scatter-gather block. */
7678 			prev_sgblkp->next_sgblkp = sgblkp;
7679 
7680 			/*
7681 			 * Point the previous ADV_SG_BLOCK structure to
7682 			 * the newly allocated ADV_SG_BLOCK structure.
7683 			 */
7684 			prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7685 		}
7686 
7687 		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7688 			sg_block->sg_list[i].sg_addr =
7689 					cpu_to_le32(sg_dma_address(slp));
7690 			sg_block->sg_list[i].sg_count =
7691 					cpu_to_le32(sg_dma_len(slp));
7692 			ASC_STATS_ADD(scp->device->host, xfer_sect,
7693 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7694 
7695 			if (--sg_elem_cnt == 0) {
7696 				/*
7697 				 * Last ADV_SG_BLOCK and scatter-gather entry.
7698 				 */
7699 				sg_block->sg_cnt = i + 1;
7700 				sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7701 				return ADV_SUCCESS;
7702 			}
7703 			slp = sg_next(slp);
7704 		}
7705 		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7706 		prev_sg_block = sg_block;
7707 		prev_sgblkp = sgblkp;
7708 	}
7709 }
7710 
7711 /*
7712  * Build a request structure for the Adv Library (Wide Board).
7713  *
7714  * If an adv_req_t can not be allocated to issue the request,
7715  * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7716  *
7717  * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7718  * microcode for DMA addresses or math operations are byte swapped
7719  * to little-endian order.
7720  */
7721 static int
7722 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7723 	      adv_req_t **adv_reqpp)
7724 {
7725 	u32 srb_tag = scp->request->tag;
7726 	adv_req_t *reqp;
7727 	ADV_SCSI_REQ_Q *scsiqp;
7728 	int ret;
7729 	int use_sg;
7730 	dma_addr_t sense_addr;
7731 
7732 	/*
7733 	 * Allocate an adv_req_t structure from the board to execute
7734 	 * the command.
7735 	 */
7736 	reqp = &boardp->adv_reqp[srb_tag];
7737 	if (reqp->cmndp && reqp->cmndp != scp ) {
7738 		ASC_DBG(1, "no free adv_req_t\n");
7739 		ASC_STATS(scp->device->host, adv_build_noreq);
7740 		return ASC_BUSY;
7741 	}
7742 
7743 	reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7744 
7745 	scsiqp = &reqp->scsi_req_q;
7746 
7747 	/*
7748 	 * Initialize the structure.
7749 	 */
7750 	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7751 
7752 	/*
7753 	 * Set the srb_tag to the command tag.
7754 	 */
7755 	scsiqp->srb_tag = srb_tag;
7756 
7757 	/*
7758 	 * Set 'host_scribble' to point to the adv_req_t structure.
7759 	 */
7760 	reqp->cmndp = scp;
7761 	scp->host_scribble = (void *)reqp;
7762 
7763 	/*
7764 	 * Build the ADV_SCSI_REQ_Q request.
7765 	 */
7766 
7767 	/* Set CDB length and copy it to the request structure.  */
7768 	scsiqp->cdb_len = scp->cmd_len;
7769 	/* Copy first 12 CDB bytes to cdb[]. */
7770 	memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7771 	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
7772 	if (scp->cmd_len > 12) {
7773 		int cdb16_len = scp->cmd_len - 12;
7774 
7775 		memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7776 	}
7777 
7778 	scsiqp->target_id = scp->device->id;
7779 	scsiqp->target_lun = scp->device->lun;
7780 
7781 	sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7782 				    SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7783 	if (dma_mapping_error(boardp->dev, sense_addr)) {
7784 		ASC_DBG(1, "failed to map sense buffer\n");
7785 		ASC_STATS(scp->device->host, adv_build_noreq);
7786 		return ASC_BUSY;
7787 	}
7788 	scsiqp->sense_addr = cpu_to_le32(sense_addr);
7789 	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7790 
7791 	/* Build ADV_SCSI_REQ_Q */
7792 
7793 	use_sg = scsi_dma_map(scp);
7794 	if (use_sg < 0) {
7795 		ASC_DBG(1, "failed to map SG list\n");
7796 		ASC_STATS(scp->device->host, adv_build_noreq);
7797 		return ASC_BUSY;
7798 	} else if (use_sg == 0) {
7799 		/* Zero-length transfer */
7800 		reqp->sgblkp = NULL;
7801 		scsiqp->data_cnt = 0;
7802 
7803 		scsiqp->data_addr = 0;
7804 		scsiqp->sg_list_ptr = NULL;
7805 		scsiqp->sg_real_addr = 0;
7806 	} else {
7807 		if (use_sg > ADV_MAX_SG_LIST) {
7808 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7809 				   "ADV_MAX_SG_LIST %d\n", use_sg,
7810 				   scp->device->host->sg_tablesize);
7811 			scsi_dma_unmap(scp);
7812 			scp->result = HOST_BYTE(DID_ERROR);
7813 			reqp->cmndp = NULL;
7814 			scp->host_scribble = NULL;
7815 
7816 			return ASC_ERROR;
7817 		}
7818 
7819 		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7820 
7821 		ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7822 		if (ret != ADV_SUCCESS) {
7823 			scsi_dma_unmap(scp);
7824 			scp->result = HOST_BYTE(DID_ERROR);
7825 			reqp->cmndp = NULL;
7826 			scp->host_scribble = NULL;
7827 
7828 			return ret;
7829 		}
7830 
7831 		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7832 	}
7833 
7834 	ASC_STATS(scp->device->host, xfer_cnt);
7835 
7836 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7837 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7838 
7839 	*adv_reqpp = reqp;
7840 
7841 	return ASC_NOERROR;
7842 }
7843 
7844 static int AscSgListToQueue(int sg_list)
7845 {
7846 	int n_sg_list_qs;
7847 
7848 	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7849 	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7850 		n_sg_list_qs++;
7851 	return n_sg_list_qs + 1;
7852 }
7853 
7854 static uint
7855 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7856 {
7857 	uint cur_used_qs;
7858 	uint cur_free_qs;
7859 	ASC_SCSI_BIT_ID_TYPE target_id;
7860 	uchar tid_no;
7861 
7862 	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7863 	tid_no = ASC_TIX_TO_TID(target_ix);
7864 	if ((asc_dvc->unit_not_ready & target_id) ||
7865 	    (asc_dvc->queue_full_or_busy & target_id)) {
7866 		return 0;
7867 	}
7868 	if (n_qs == 1) {
7869 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7870 		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7871 	} else {
7872 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
7873 		    (uint) ASC_MIN_FREE_Q;
7874 	}
7875 	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7876 		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7877 		if (asc_dvc->cur_dvc_qng[tid_no] >=
7878 		    asc_dvc->max_dvc_qng[tid_no]) {
7879 			return 0;
7880 		}
7881 		return cur_free_qs;
7882 	}
7883 	if (n_qs > 1) {
7884 		if ((n_qs > asc_dvc->last_q_shortage)
7885 		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7886 			asc_dvc->last_q_shortage = n_qs;
7887 		}
7888 	}
7889 	return 0;
7890 }
7891 
7892 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7893 {
7894 	ushort q_addr;
7895 	uchar next_qp;
7896 	uchar q_status;
7897 
7898 	q_addr = ASC_QNO_TO_QADDR(free_q_head);
7899 	q_status = (uchar)AscReadLramByte(iop_base,
7900 					  (ushort)(q_addr +
7901 						   ASC_SCSIQ_B_STATUS));
7902 	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7903 	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7904 		return next_qp;
7905 	return ASC_QLINK_END;
7906 }
7907 
7908 static uchar
7909 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7910 {
7911 	uchar i;
7912 
7913 	for (i = 0; i < n_free_q; i++) {
7914 		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7915 		if (free_q_head == ASC_QLINK_END)
7916 			break;
7917 	}
7918 	return free_q_head;
7919 }
7920 
7921 /*
7922  * void
7923  * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7924  *
7925  * Calling/Exit State:
7926  *    none
7927  *
7928  * Description:
7929  *     Output an ASC_SCSI_Q structure to the chip
7930  */
7931 static void
7932 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7933 {
7934 	int i;
7935 
7936 	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7937 	AscSetChipLramAddr(iop_base, s_addr);
7938 	for (i = 0; i < 2 * words; i += 2) {
7939 		if (i == 4 || i == 20) {
7940 			continue;
7941 		}
7942 		outpw(iop_base + IOP_RAM_DATA,
7943 		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7944 	}
7945 }
7946 
7947 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7948 {
7949 	ushort q_addr;
7950 	uchar tid_no;
7951 	uchar sdtr_data;
7952 	uchar syn_period_ix;
7953 	uchar syn_offset;
7954 	PortAddr iop_base;
7955 
7956 	iop_base = asc_dvc->iop_base;
7957 	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7958 	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7959 		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7960 		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7961 		syn_period_ix =
7962 		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7963 		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7964 		AscMsgOutSDTR(asc_dvc,
7965 			      asc_dvc->sdtr_period_tbl[syn_period_ix],
7966 			      syn_offset);
7967 		scsiq->q1.cntl |= QC_MSG_OUT;
7968 	}
7969 	q_addr = ASC_QNO_TO_QADDR(q_no);
7970 	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7971 		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7972 	}
7973 	scsiq->q1.status = QS_FREE;
7974 	AscMemWordCopyPtrToLram(iop_base,
7975 				q_addr + ASC_SCSIQ_CDB_BEG,
7976 				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7977 
7978 	DvcPutScsiQ(iop_base,
7979 		    q_addr + ASC_SCSIQ_CPY_BEG,
7980 		    (uchar *)&scsiq->q1.cntl,
7981 		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7982 	AscWriteLramWord(iop_base,
7983 			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
7984 			 (ushort)(((ushort)scsiq->q1.
7985 				   q_no << 8) | (ushort)QS_READY));
7986 	return 1;
7987 }
7988 
7989 static int
7990 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7991 {
7992 	int sta;
7993 	int i;
7994 	ASC_SG_HEAD *sg_head;
7995 	ASC_SG_LIST_Q scsi_sg_q;
7996 	__le32 saved_data_addr;
7997 	__le32 saved_data_cnt;
7998 	PortAddr iop_base;
7999 	ushort sg_list_dwords;
8000 	ushort sg_index;
8001 	ushort sg_entry_cnt;
8002 	ushort q_addr;
8003 	uchar next_qp;
8004 
8005 	iop_base = asc_dvc->iop_base;
8006 	sg_head = scsiq->sg_head;
8007 	saved_data_addr = scsiq->q1.data_addr;
8008 	saved_data_cnt = scsiq->q1.data_cnt;
8009 	scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8010 	scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8011 	/*
8012 	 * Set sg_entry_cnt to be the number of SG elements that
8013 	 * will fit in the allocated SG queues. It is minus 1, because
8014 	 * the first SG element is handled above.
8015 	 */
8016 	sg_entry_cnt = sg_head->entry_cnt - 1;
8017 
8018 	if (sg_entry_cnt != 0) {
8019 		scsiq->q1.cntl |= QC_SG_HEAD;
8020 		q_addr = ASC_QNO_TO_QADDR(q_no);
8021 		sg_index = 1;
8022 		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8023 		scsi_sg_q.sg_head_qp = q_no;
8024 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8025 		for (i = 0; i < sg_head->queue_cnt; i++) {
8026 			scsi_sg_q.seq_no = i + 1;
8027 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8028 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8029 				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8030 				if (i == 0) {
8031 					scsi_sg_q.sg_list_cnt =
8032 					    ASC_SG_LIST_PER_Q;
8033 					scsi_sg_q.sg_cur_list_cnt =
8034 					    ASC_SG_LIST_PER_Q;
8035 				} else {
8036 					scsi_sg_q.sg_list_cnt =
8037 					    ASC_SG_LIST_PER_Q - 1;
8038 					scsi_sg_q.sg_cur_list_cnt =
8039 					    ASC_SG_LIST_PER_Q - 1;
8040 				}
8041 			} else {
8042 				scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8043 				sg_list_dwords = sg_entry_cnt << 1;
8044 				if (i == 0) {
8045 					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8046 					scsi_sg_q.sg_cur_list_cnt =
8047 					    sg_entry_cnt;
8048 				} else {
8049 					scsi_sg_q.sg_list_cnt =
8050 					    sg_entry_cnt - 1;
8051 					scsi_sg_q.sg_cur_list_cnt =
8052 					    sg_entry_cnt - 1;
8053 				}
8054 				sg_entry_cnt = 0;
8055 			}
8056 			next_qp = AscReadLramByte(iop_base,
8057 						  (ushort)(q_addr +
8058 							   ASC_SCSIQ_B_FWD));
8059 			scsi_sg_q.q_no = next_qp;
8060 			q_addr = ASC_QNO_TO_QADDR(next_qp);
8061 			AscMemWordCopyPtrToLram(iop_base,
8062 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8063 						(uchar *)&scsi_sg_q,
8064 						sizeof(ASC_SG_LIST_Q) >> 1);
8065 			AscMemDWordCopyPtrToLram(iop_base,
8066 						 q_addr + ASC_SGQ_LIST_BEG,
8067 						 (uchar *)&sg_head->
8068 						 sg_list[sg_index],
8069 						 sg_list_dwords);
8070 			sg_index += ASC_SG_LIST_PER_Q;
8071 			scsiq->next_sg_index = sg_index;
8072 		}
8073 	} else {
8074 		scsiq->q1.cntl &= ~QC_SG_HEAD;
8075 	}
8076 	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8077 	scsiq->q1.data_addr = saved_data_addr;
8078 	scsiq->q1.data_cnt = saved_data_cnt;
8079 	return (sta);
8080 }
8081 
8082 static int
8083 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8084 {
8085 	PortAddr iop_base;
8086 	uchar free_q_head;
8087 	uchar next_qp;
8088 	uchar tid_no;
8089 	uchar target_ix;
8090 	int sta;
8091 
8092 	iop_base = asc_dvc->iop_base;
8093 	target_ix = scsiq->q2.target_ix;
8094 	tid_no = ASC_TIX_TO_TID(target_ix);
8095 	sta = 0;
8096 	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8097 	if (n_q_required > 1) {
8098 		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8099 						    (uchar)n_q_required);
8100 		if (next_qp != ASC_QLINK_END) {
8101 			asc_dvc->last_q_shortage = 0;
8102 			scsiq->sg_head->queue_cnt = n_q_required - 1;
8103 			scsiq->q1.q_no = free_q_head;
8104 			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8105 						     free_q_head);
8106 		}
8107 	} else if (n_q_required == 1) {
8108 		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8109 		if (next_qp != ASC_QLINK_END) {
8110 			scsiq->q1.q_no = free_q_head;
8111 			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8112 		}
8113 	}
8114 	if (sta == 1) {
8115 		AscPutVarFreeQHead(iop_base, next_qp);
8116 		asc_dvc->cur_total_qng += n_q_required;
8117 		asc_dvc->cur_dvc_qng[tid_no]++;
8118 	}
8119 	return sta;
8120 }
8121 
8122 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8123 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8124 	INQUIRY,
8125 	REQUEST_SENSE,
8126 	READ_CAPACITY,
8127 	READ_TOC,
8128 	MODE_SELECT,
8129 	MODE_SENSE,
8130 	MODE_SELECT_10,
8131 	MODE_SENSE_10,
8132 	0xFF,
8133 	0xFF,
8134 	0xFF,
8135 	0xFF,
8136 	0xFF,
8137 	0xFF,
8138 	0xFF,
8139 	0xFF
8140 };
8141 
8142 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8143 {
8144 	PortAddr iop_base;
8145 	int sta;
8146 	int n_q_required;
8147 	bool disable_syn_offset_one_fix;
8148 	int i;
8149 	u32 addr;
8150 	ushort sg_entry_cnt = 0;
8151 	ushort sg_entry_cnt_minus_one = 0;
8152 	uchar target_ix;
8153 	uchar tid_no;
8154 	uchar sdtr_data;
8155 	uchar extra_bytes;
8156 	uchar scsi_cmd;
8157 	uchar disable_cmd;
8158 	ASC_SG_HEAD *sg_head;
8159 	unsigned long data_cnt;
8160 
8161 	iop_base = asc_dvc->iop_base;
8162 	sg_head = scsiq->sg_head;
8163 	if (asc_dvc->err_code != 0)
8164 		return ASC_ERROR;
8165 	scsiq->q1.q_no = 0;
8166 	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8167 		scsiq->q1.extra_bytes = 0;
8168 	}
8169 	sta = 0;
8170 	target_ix = scsiq->q2.target_ix;
8171 	tid_no = ASC_TIX_TO_TID(target_ix);
8172 	n_q_required = 1;
8173 	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8174 		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8175 			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8176 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8177 			AscMsgOutSDTR(asc_dvc,
8178 				      asc_dvc->
8179 				      sdtr_period_tbl[(sdtr_data >> 4) &
8180 						      (uchar)(asc_dvc->
8181 							      max_sdtr_index -
8182 							      1)],
8183 				      (uchar)(sdtr_data & (uchar)
8184 					      ASC_SYN_MAX_OFFSET));
8185 			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8186 		}
8187 	}
8188 	if (asc_dvc->in_critical_cnt != 0) {
8189 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8190 		return ASC_ERROR;
8191 	}
8192 	asc_dvc->in_critical_cnt++;
8193 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8194 		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8195 			asc_dvc->in_critical_cnt--;
8196 			return ASC_ERROR;
8197 		}
8198 		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8199 			asc_dvc->in_critical_cnt--;
8200 			return ASC_ERROR;
8201 		}
8202 		if (sg_entry_cnt == 1) {
8203 			scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8204 			scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8205 			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8206 		}
8207 		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8208 	}
8209 	scsi_cmd = scsiq->cdbptr[0];
8210 	disable_syn_offset_one_fix = false;
8211 	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8212 	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8213 		if (scsiq->q1.cntl & QC_SG_HEAD) {
8214 			data_cnt = 0;
8215 			for (i = 0; i < sg_entry_cnt; i++) {
8216 				data_cnt += le32_to_cpu(sg_head->sg_list[i].
8217 							bytes);
8218 			}
8219 		} else {
8220 			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8221 		}
8222 		if (data_cnt != 0UL) {
8223 			if (data_cnt < 512UL) {
8224 				disable_syn_offset_one_fix = true;
8225 			} else {
8226 				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8227 				     i++) {
8228 					disable_cmd =
8229 					    _syn_offset_one_disable_cmd[i];
8230 					if (disable_cmd == 0xFF) {
8231 						break;
8232 					}
8233 					if (scsi_cmd == disable_cmd) {
8234 						disable_syn_offset_one_fix =
8235 						    true;
8236 						break;
8237 					}
8238 				}
8239 			}
8240 		}
8241 	}
8242 	if (disable_syn_offset_one_fix) {
8243 		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8244 		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8245 				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8246 	} else {
8247 		scsiq->q2.tag_code &= 0x27;
8248 	}
8249 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8250 		if (asc_dvc->bug_fix_cntl) {
8251 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8252 				if ((scsi_cmd == READ_6) ||
8253 				    (scsi_cmd == READ_10)) {
8254 					addr = le32_to_cpu(sg_head->
8255 								   sg_list
8256 								   [sg_entry_cnt_minus_one].
8257 								   addr) +
8258 						le32_to_cpu(sg_head->
8259 								  sg_list
8260 								  [sg_entry_cnt_minus_one].
8261 								  bytes);
8262 					extra_bytes =
8263 					    (uchar)((ushort)addr & 0x0003);
8264 					if ((extra_bytes != 0)
8265 					    &&
8266 					    ((scsiq->q2.
8267 					      tag_code &
8268 					      ASC_TAG_FLAG_EXTRA_BYTES)
8269 					     == 0)) {
8270 						scsiq->q2.tag_code |=
8271 						    ASC_TAG_FLAG_EXTRA_BYTES;
8272 						scsiq->q1.extra_bytes =
8273 						    extra_bytes;
8274 						data_cnt =
8275 						    le32_to_cpu(sg_head->
8276 								sg_list
8277 								[sg_entry_cnt_minus_one].
8278 								bytes);
8279 						data_cnt -= extra_bytes;
8280 						sg_head->
8281 						    sg_list
8282 						    [sg_entry_cnt_minus_one].
8283 						    bytes =
8284 						    cpu_to_le32(data_cnt);
8285 					}
8286 				}
8287 			}
8288 		}
8289 		sg_head->entry_to_copy = sg_head->entry_cnt;
8290 		n_q_required = AscSgListToQueue(sg_entry_cnt);
8291 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8292 		     (uint) n_q_required)
8293 		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8294 			if ((sta =
8295 			     AscSendScsiQueue(asc_dvc, scsiq,
8296 					      n_q_required)) == 1) {
8297 				asc_dvc->in_critical_cnt--;
8298 				return (sta);
8299 			}
8300 		}
8301 	} else {
8302 		if (asc_dvc->bug_fix_cntl) {
8303 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8304 				if ((scsi_cmd == READ_6) ||
8305 				    (scsi_cmd == READ_10)) {
8306 					addr =
8307 					    le32_to_cpu(scsiq->q1.data_addr) +
8308 					    le32_to_cpu(scsiq->q1.data_cnt);
8309 					extra_bytes =
8310 					    (uchar)((ushort)addr & 0x0003);
8311 					if ((extra_bytes != 0)
8312 					    &&
8313 					    ((scsiq->q2.
8314 					      tag_code &
8315 					      ASC_TAG_FLAG_EXTRA_BYTES)
8316 					     == 0)) {
8317 						data_cnt =
8318 						    le32_to_cpu(scsiq->q1.
8319 								data_cnt);
8320 						if (((ushort)data_cnt & 0x01FF)
8321 						    == 0) {
8322 							scsiq->q2.tag_code |=
8323 							    ASC_TAG_FLAG_EXTRA_BYTES;
8324 							data_cnt -= extra_bytes;
8325 							scsiq->q1.data_cnt =
8326 							    cpu_to_le32
8327 							    (data_cnt);
8328 							scsiq->q1.extra_bytes =
8329 							    extra_bytes;
8330 						}
8331 					}
8332 				}
8333 			}
8334 		}
8335 		n_q_required = 1;
8336 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8337 		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8338 			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8339 						    n_q_required)) == 1) {
8340 				asc_dvc->in_critical_cnt--;
8341 				return (sta);
8342 			}
8343 		}
8344 	}
8345 	asc_dvc->in_critical_cnt--;
8346 	return (sta);
8347 }
8348 
8349 /*
8350  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8351  *
8352  *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8353  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8354  *   RISC to notify it a new command is ready to be executed.
8355  *
8356  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8357  * set to SCSI_MAX_RETRY.
8358  *
8359  * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8360  * for DMA addresses or math operations are byte swapped to little-endian
8361  * order.
8362  *
8363  * Return:
8364  *      ADV_SUCCESS(1) - The request was successfully queued.
8365  *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8366  *                       request completes.
8367  *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8368  *                       host IC error.
8369  */
8370 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8371 {
8372 	AdvPortAddr iop_base;
8373 	ADV_CARR_T *new_carrp;
8374 	ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8375 
8376 	/*
8377 	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8378 	 */
8379 	if (scsiq->target_id > ADV_MAX_TID) {
8380 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8381 		scsiq->done_status = QD_WITH_ERROR;
8382 		return ADV_ERROR;
8383 	}
8384 
8385 	iop_base = asc_dvc->iop_base;
8386 
8387 	/*
8388 	 * Allocate a carrier ensuring at least one carrier always
8389 	 * remains on the freelist and initialize fields.
8390 	 */
8391 	new_carrp = adv_get_next_carrier(asc_dvc);
8392 	if (!new_carrp) {
8393 		ASC_DBG(1, "No free carriers\n");
8394 		return ADV_BUSY;
8395 	}
8396 
8397 	asc_dvc->carr_pending_cnt++;
8398 
8399 	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8400 	scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8401 	scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8402 
8403 	scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8404 	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8405 
8406 	/*
8407 	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8408 	 * the microcode. The newly allocated stopper will become the new
8409 	 * stopper.
8410 	 */
8411 	asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8412 
8413 	/*
8414 	 * Set the 'next_vpa' pointer for the old stopper to be the
8415 	 * physical address of the new stopper. The RISC can only
8416 	 * follow physical addresses.
8417 	 */
8418 	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8419 
8420 	/*
8421 	 * Set the host adapter stopper pointer to point to the new carrier.
8422 	 */
8423 	asc_dvc->icq_sp = new_carrp;
8424 
8425 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8426 	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8427 		/*
8428 		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8429 		 */
8430 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8431 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8432 			/*
8433 			 * Clear the tickle value. In the ASC-3550 the RISC flag
8434 			 * command 'clr_tickle_a' does not work unless the host
8435 			 * value is cleared.
8436 			 */
8437 			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8438 					     ADV_TICKLE_NOP);
8439 		}
8440 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8441 		/*
8442 		 * Notify the RISC a carrier is ready by writing the physical
8443 		 * address of the new carrier stopper to the COMMA register.
8444 		 */
8445 		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8446 				      le32_to_cpu(new_carrp->carr_pa));
8447 	}
8448 
8449 	return ADV_SUCCESS;
8450 }
8451 
8452 /*
8453  * Execute a single 'struct scsi_cmnd'.
8454  */
8455 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8456 {
8457 	int ret, err_code;
8458 	struct asc_board *boardp = shost_priv(scp->device->host);
8459 
8460 	ASC_DBG(1, "scp 0x%p\n", scp);
8461 
8462 	if (ASC_NARROW_BOARD(boardp)) {
8463 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8464 		struct asc_scsi_q asc_scsi_q;
8465 
8466 		ret = asc_build_req(boardp, scp, &asc_scsi_q);
8467 		if (ret != ASC_NOERROR) {
8468 			ASC_STATS(scp->device->host, build_error);
8469 			return ret;
8470 		}
8471 
8472 		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8473 		kfree(asc_scsi_q.sg_head);
8474 		err_code = asc_dvc->err_code;
8475 	} else {
8476 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8477 		adv_req_t *adv_reqp;
8478 
8479 		switch (adv_build_req(boardp, scp, &adv_reqp)) {
8480 		case ASC_NOERROR:
8481 			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8482 			break;
8483 		case ASC_BUSY:
8484 			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8485 			/*
8486 			 * The asc_stats fields 'adv_build_noreq' and
8487 			 * 'adv_build_nosg' count wide board busy conditions.
8488 			 * They are updated in adv_build_req and
8489 			 * adv_get_sglist, respectively.
8490 			 */
8491 			return ASC_BUSY;
8492 		case ASC_ERROR:
8493 		default:
8494 			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8495 			ASC_STATS(scp->device->host, build_error);
8496 			return ASC_ERROR;
8497 		}
8498 
8499 		ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8500 		err_code = adv_dvc->err_code;
8501 	}
8502 
8503 	switch (ret) {
8504 	case ASC_NOERROR:
8505 		ASC_STATS(scp->device->host, exe_noerror);
8506 		/*
8507 		 * Increment monotonically increasing per device
8508 		 * successful request counter. Wrapping doesn't matter.
8509 		 */
8510 		boardp->reqcnt[scp->device->id]++;
8511 		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8512 		break;
8513 	case ASC_BUSY:
8514 		ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8515 		ASC_STATS(scp->device->host, exe_busy);
8516 		break;
8517 	case ASC_ERROR:
8518 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8519 			"err_code 0x%x\n", err_code);
8520 		ASC_STATS(scp->device->host, exe_error);
8521 		scp->result = HOST_BYTE(DID_ERROR);
8522 		break;
8523 	default:
8524 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8525 			"err_code 0x%x\n", err_code);
8526 		ASC_STATS(scp->device->host, exe_unknown);
8527 		scp->result = HOST_BYTE(DID_ERROR);
8528 		break;
8529 	}
8530 
8531 	ASC_DBG(1, "end\n");
8532 	return ret;
8533 }
8534 
8535 /*
8536  * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8537  *
8538  * This function always returns 0. Command return status is saved
8539  * in the 'scp' result field.
8540  */
8541 static int
8542 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8543 {
8544 	struct Scsi_Host *shost = scp->device->host;
8545 	int asc_res, result = 0;
8546 
8547 	ASC_STATS(shost, queuecommand);
8548 	scp->scsi_done = done;
8549 
8550 	asc_res = asc_execute_scsi_cmnd(scp);
8551 
8552 	switch (asc_res) {
8553 	case ASC_NOERROR:
8554 		break;
8555 	case ASC_BUSY:
8556 		result = SCSI_MLQUEUE_HOST_BUSY;
8557 		break;
8558 	case ASC_ERROR:
8559 	default:
8560 		asc_scsi_done(scp);
8561 		break;
8562 	}
8563 
8564 	return result;
8565 }
8566 
8567 static DEF_SCSI_QCMD(advansys_queuecommand)
8568 
8569 static ushort AscGetEisaChipCfg(PortAddr iop_base)
8570 {
8571 	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8572 	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8573 	return inpw(eisa_cfg_iop);
8574 }
8575 
8576 /*
8577  * Return the BIOS address of the adapter at the specified
8578  * I/O port and with the specified bus type.
8579  */
8580 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8581 					    unsigned short bus_type)
8582 {
8583 	unsigned short cfg_lsw;
8584 	unsigned short bios_addr;
8585 
8586 	/*
8587 	 * The PCI BIOS is re-located by the motherboard BIOS. Because
8588 	 * of this the driver can not determine where a PCI BIOS is
8589 	 * loaded and executes.
8590 	 */
8591 	if (bus_type & ASC_IS_PCI)
8592 		return 0;
8593 
8594 	if ((bus_type & ASC_IS_EISA) != 0) {
8595 		cfg_lsw = AscGetEisaChipCfg(iop_base);
8596 		cfg_lsw &= 0x000F;
8597 		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8598 		return bios_addr;
8599 	}
8600 
8601 	cfg_lsw = AscGetChipCfgLsw(iop_base);
8602 
8603 	/*
8604 	 *  ISA PnP uses the top bit as the 32K BIOS flag
8605 	 */
8606 	if (bus_type == ASC_IS_ISAPNP)
8607 		cfg_lsw &= 0x7FFF;
8608 	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8609 	return bios_addr;
8610 }
8611 
8612 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8613 {
8614 	ushort cfg_lsw;
8615 
8616 	if (AscGetChipScsiID(iop_base) == new_host_id) {
8617 		return (new_host_id);
8618 	}
8619 	cfg_lsw = AscGetChipCfgLsw(iop_base);
8620 	cfg_lsw &= 0xF8FF;
8621 	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8622 	AscSetChipCfgLsw(iop_base, cfg_lsw);
8623 	return (AscGetChipScsiID(iop_base));
8624 }
8625 
8626 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8627 {
8628 	unsigned char sc;
8629 
8630 	AscSetBank(iop_base, 1);
8631 	sc = inp(iop_base + IOP_REG_SC);
8632 	AscSetBank(iop_base, 0);
8633 	return sc;
8634 }
8635 
8636 static unsigned char AscGetChipVersion(PortAddr iop_base,
8637 				       unsigned short bus_type)
8638 {
8639 	if (bus_type & ASC_IS_EISA) {
8640 		PortAddr eisa_iop;
8641 		unsigned char revision;
8642 		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8643 		    (PortAddr) ASC_EISA_REV_IOP_MASK;
8644 		revision = inp(eisa_iop);
8645 		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8646 	}
8647 	return AscGetChipVerNo(iop_base);
8648 }
8649 
8650 #ifdef CONFIG_ISA
8651 static void AscEnableIsaDma(uchar dma_channel)
8652 {
8653 	if (dma_channel < 4) {
8654 		outp(0x000B, (ushort)(0xC0 | dma_channel));
8655 		outp(0x000A, dma_channel);
8656 	} else if (dma_channel < 8) {
8657 		outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
8658 		outp(0x00D4, (ushort)(dma_channel - 4));
8659 	}
8660 }
8661 #endif /* CONFIG_ISA */
8662 
8663 static int AscStopQueueExe(PortAddr iop_base)
8664 {
8665 	int count = 0;
8666 
8667 	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8668 		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8669 				 ASC_STOP_REQ_RISC_STOP);
8670 		do {
8671 			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8672 			    ASC_STOP_ACK_RISC_STOP) {
8673 				return (1);
8674 			}
8675 			mdelay(100);
8676 		} while (count++ < 20);
8677 	}
8678 	return (0);
8679 }
8680 
8681 static unsigned int AscGetMaxDmaCount(ushort bus_type)
8682 {
8683 	if (bus_type & ASC_IS_ISA)
8684 		return ASC_MAX_ISA_DMA_COUNT;
8685 	else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8686 		return ASC_MAX_VL_DMA_COUNT;
8687 	return ASC_MAX_PCI_DMA_COUNT;
8688 }
8689 
8690 #ifdef CONFIG_ISA
8691 static ushort AscGetIsaDmaChannel(PortAddr iop_base)
8692 {
8693 	ushort channel;
8694 
8695 	channel = AscGetChipCfgLsw(iop_base) & 0x0003;
8696 	if (channel == 0x03)
8697 		return (0);
8698 	else if (channel == 0x00)
8699 		return (7);
8700 	return (channel + 4);
8701 }
8702 
8703 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
8704 {
8705 	ushort cfg_lsw;
8706 	uchar value;
8707 
8708 	if ((dma_channel >= 5) && (dma_channel <= 7)) {
8709 		if (dma_channel == 7)
8710 			value = 0x00;
8711 		else
8712 			value = dma_channel - 4;
8713 		cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
8714 		cfg_lsw |= value;
8715 		AscSetChipCfgLsw(iop_base, cfg_lsw);
8716 		return (AscGetIsaDmaChannel(iop_base));
8717 	}
8718 	return 0;
8719 }
8720 
8721 static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
8722 {
8723 	uchar speed_value;
8724 
8725 	AscSetBank(iop_base, 1);
8726 	speed_value = AscReadChipDmaSpeed(iop_base);
8727 	speed_value &= 0x07;
8728 	AscSetBank(iop_base, 0);
8729 	return speed_value;
8730 }
8731 
8732 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
8733 {
8734 	speed_value &= 0x07;
8735 	AscSetBank(iop_base, 1);
8736 	AscWriteChipDmaSpeed(iop_base, speed_value);
8737 	AscSetBank(iop_base, 0);
8738 	return AscGetIsaDmaSpeed(iop_base);
8739 }
8740 #endif /* CONFIG_ISA */
8741 
8742 static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8743 {
8744 	int i;
8745 	PortAddr iop_base;
8746 	uchar chip_version;
8747 
8748 	iop_base = asc_dvc->iop_base;
8749 	asc_dvc->err_code = 0;
8750 	if ((asc_dvc->bus_type &
8751 	     (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8752 		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8753 	}
8754 	AscSetChipControl(iop_base, CC_HALT);
8755 	AscSetChipStatus(iop_base, 0);
8756 	asc_dvc->bug_fix_cntl = 0;
8757 	asc_dvc->pci_fix_asyn_xfer = 0;
8758 	asc_dvc->pci_fix_asyn_xfer_always = 0;
8759 	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
8760 	asc_dvc->sdtr_done = 0;
8761 	asc_dvc->cur_total_qng = 0;
8762 	asc_dvc->is_in_int = false;
8763 	asc_dvc->in_critical_cnt = 0;
8764 	asc_dvc->last_q_shortage = 0;
8765 	asc_dvc->use_tagged_qng = 0;
8766 	asc_dvc->no_scam = 0;
8767 	asc_dvc->unit_not_ready = 0;
8768 	asc_dvc->queue_full_or_busy = 0;
8769 	asc_dvc->redo_scam = 0;
8770 	asc_dvc->res2 = 0;
8771 	asc_dvc->min_sdtr_index = 0;
8772 	asc_dvc->cfg->can_tagged_qng = 0;
8773 	asc_dvc->cfg->cmd_qng_enabled = 0;
8774 	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8775 	asc_dvc->init_sdtr = 0;
8776 	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8777 	asc_dvc->scsi_reset_wait = 3;
8778 	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8779 	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8780 	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8781 	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8782 	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8783 	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8784 	asc_dvc->cfg->chip_version = chip_version;
8785 	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8786 	asc_dvc->max_sdtr_index = 7;
8787 	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8788 	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8789 		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8790 		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8791 		asc_dvc->max_sdtr_index = 15;
8792 		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8793 			AscSetExtraControl(iop_base,
8794 					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8795 		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8796 			AscSetExtraControl(iop_base,
8797 					   (SEC_ACTIVE_NEGATE |
8798 					    SEC_ENABLE_FILTER));
8799 		}
8800 	}
8801 	if (asc_dvc->bus_type == ASC_IS_PCI) {
8802 		AscSetExtraControl(iop_base,
8803 				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8804 	}
8805 
8806 	asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
8807 #ifdef CONFIG_ISA
8808 	if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
8809 		if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
8810 			AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
8811 			asc_dvc->bus_type = ASC_IS_ISAPNP;
8812 		}
8813 		asc_dvc->cfg->isa_dma_channel =
8814 		    (uchar)AscGetIsaDmaChannel(iop_base);
8815 	}
8816 #endif /* CONFIG_ISA */
8817 	for (i = 0; i <= ASC_MAX_TID; i++) {
8818 		asc_dvc->cur_dvc_qng[i] = 0;
8819 		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8820 		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8821 		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8822 		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8823 	}
8824 }
8825 
8826 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8827 {
8828 	int retry;
8829 
8830 	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8831 		unsigned char read_back;
8832 		AscSetChipEEPCmd(iop_base, cmd_reg);
8833 		mdelay(1);
8834 		read_back = AscGetChipEEPCmd(iop_base);
8835 		if (read_back == cmd_reg)
8836 			return 1;
8837 	}
8838 	return 0;
8839 }
8840 
8841 static void AscWaitEEPRead(void)
8842 {
8843 	mdelay(1);
8844 }
8845 
8846 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8847 {
8848 	ushort read_wval;
8849 	uchar cmd_reg;
8850 
8851 	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8852 	AscWaitEEPRead();
8853 	cmd_reg = addr | ASC_EEP_CMD_READ;
8854 	AscWriteEEPCmdReg(iop_base, cmd_reg);
8855 	AscWaitEEPRead();
8856 	read_wval = AscGetChipEEPData(iop_base);
8857 	AscWaitEEPRead();
8858 	return read_wval;
8859 }
8860 
8861 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8862 			      ushort bus_type)
8863 {
8864 	ushort wval;
8865 	ushort sum;
8866 	ushort *wbuf;
8867 	int cfg_beg;
8868 	int cfg_end;
8869 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8870 	int s_addr;
8871 
8872 	wbuf = (ushort *)cfg_buf;
8873 	sum = 0;
8874 	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8875 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8876 		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8877 		sum += *wbuf;
8878 	}
8879 	if (bus_type & ASC_IS_VL) {
8880 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8881 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8882 	} else {
8883 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
8884 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
8885 	}
8886 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8887 		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8888 		if (s_addr <= uchar_end_in_config) {
8889 			/*
8890 			 * Swap all char fields - must unswap bytes already swapped
8891 			 * by AscReadEEPWord().
8892 			 */
8893 			*wbuf = le16_to_cpu(wval);
8894 		} else {
8895 			/* Don't swap word field at the end - cntl field. */
8896 			*wbuf = wval;
8897 		}
8898 		sum += wval;	/* Checksum treats all EEPROM data as words. */
8899 	}
8900 	/*
8901 	 * Read the checksum word which will be compared against 'sum'
8902 	 * by the caller. Word field already swapped.
8903 	 */
8904 	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8905 	return sum;
8906 }
8907 
8908 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8909 {
8910 	PortAddr iop_base;
8911 	ushort q_addr;
8912 	ushort saved_word;
8913 	int sta;
8914 
8915 	iop_base = asc_dvc->iop_base;
8916 	sta = 0;
8917 	q_addr = ASC_QNO_TO_QADDR(241);
8918 	saved_word = AscReadLramWord(iop_base, q_addr);
8919 	AscSetChipLramAddr(iop_base, q_addr);
8920 	AscSetChipLramData(iop_base, 0x55AA);
8921 	mdelay(10);
8922 	AscSetChipLramAddr(iop_base, q_addr);
8923 	if (AscGetChipLramData(iop_base) == 0x55AA) {
8924 		sta = 1;
8925 		AscWriteLramWord(iop_base, q_addr, saved_word);
8926 	}
8927 	return (sta);
8928 }
8929 
8930 static void AscWaitEEPWrite(void)
8931 {
8932 	mdelay(20);
8933 }
8934 
8935 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8936 {
8937 	ushort read_back;
8938 	int retry;
8939 
8940 	retry = 0;
8941 	while (true) {
8942 		AscSetChipEEPData(iop_base, data_reg);
8943 		mdelay(1);
8944 		read_back = AscGetChipEEPData(iop_base);
8945 		if (read_back == data_reg) {
8946 			return (1);
8947 		}
8948 		if (retry++ > ASC_EEP_MAX_RETRY) {
8949 			return (0);
8950 		}
8951 	}
8952 }
8953 
8954 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8955 {
8956 	ushort read_wval;
8957 
8958 	read_wval = AscReadEEPWord(iop_base, addr);
8959 	if (read_wval != word_val) {
8960 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8961 		AscWaitEEPRead();
8962 		AscWriteEEPDataReg(iop_base, word_val);
8963 		AscWaitEEPRead();
8964 		AscWriteEEPCmdReg(iop_base,
8965 				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8966 		AscWaitEEPWrite();
8967 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8968 		AscWaitEEPRead();
8969 		return (AscReadEEPWord(iop_base, addr));
8970 	}
8971 	return (read_wval);
8972 }
8973 
8974 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8975 			       ushort bus_type)
8976 {
8977 	int n_error;
8978 	ushort *wbuf;
8979 	ushort word;
8980 	ushort sum;
8981 	int s_addr;
8982 	int cfg_beg;
8983 	int cfg_end;
8984 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8985 
8986 	wbuf = (ushort *)cfg_buf;
8987 	n_error = 0;
8988 	sum = 0;
8989 	/* Write two config words; AscWriteEEPWord() will swap bytes. */
8990 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8991 		sum += *wbuf;
8992 		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8993 			n_error++;
8994 		}
8995 	}
8996 	if (bus_type & ASC_IS_VL) {
8997 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8998 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8999 	} else {
9000 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9001 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9002 	}
9003 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9004 		if (s_addr <= uchar_end_in_config) {
9005 			/*
9006 			 * This is a char field. Swap char fields before they are
9007 			 * swapped again by AscWriteEEPWord().
9008 			 */
9009 			word = cpu_to_le16(*wbuf);
9010 			if (word !=
9011 			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9012 				n_error++;
9013 			}
9014 		} else {
9015 			/* Don't swap word field at the end - cntl field. */
9016 			if (*wbuf !=
9017 			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9018 				n_error++;
9019 			}
9020 		}
9021 		sum += *wbuf;	/* Checksum calculated from word values. */
9022 	}
9023 	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9024 	*wbuf = sum;
9025 	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9026 		n_error++;
9027 	}
9028 
9029 	/* Read EEPROM back again. */
9030 	wbuf = (ushort *)cfg_buf;
9031 	/*
9032 	 * Read two config words; Byte-swapping done by AscReadEEPWord().
9033 	 */
9034 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9035 		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9036 			n_error++;
9037 		}
9038 	}
9039 	if (bus_type & ASC_IS_VL) {
9040 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9041 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9042 	} else {
9043 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9044 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9045 	}
9046 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9047 		if (s_addr <= uchar_end_in_config) {
9048 			/*
9049 			 * Swap all char fields. Must unswap bytes already swapped
9050 			 * by AscReadEEPWord().
9051 			 */
9052 			word =
9053 			    le16_to_cpu(AscReadEEPWord
9054 					(iop_base, (uchar)s_addr));
9055 		} else {
9056 			/* Don't swap word field at the end - cntl field. */
9057 			word = AscReadEEPWord(iop_base, (uchar)s_addr);
9058 		}
9059 		if (*wbuf != word) {
9060 			n_error++;
9061 		}
9062 	}
9063 	/* Read checksum; Byte swapping not needed. */
9064 	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9065 		n_error++;
9066 	}
9067 	return n_error;
9068 }
9069 
9070 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9071 			   ushort bus_type)
9072 {
9073 	int retry;
9074 	int n_error;
9075 
9076 	retry = 0;
9077 	while (true) {
9078 		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9079 						   bus_type)) == 0) {
9080 			break;
9081 		}
9082 		if (++retry > ASC_EEP_MAX_RETRY) {
9083 			break;
9084 		}
9085 	}
9086 	return n_error;
9087 }
9088 
9089 static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9090 {
9091 	ASCEEP_CONFIG eep_config_buf;
9092 	ASCEEP_CONFIG *eep_config;
9093 	PortAddr iop_base;
9094 	ushort chksum;
9095 	ushort warn_code;
9096 	ushort cfg_msw, cfg_lsw;
9097 	int i;
9098 	int write_eep = 0;
9099 
9100 	iop_base = asc_dvc->iop_base;
9101 	warn_code = 0;
9102 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9103 	AscStopQueueExe(iop_base);
9104 	if ((AscStopChip(iop_base)) ||
9105 	    (AscGetChipScsiCtrl(iop_base) != 0)) {
9106 		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9107 		AscResetChipAndScsiBus(asc_dvc);
9108 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9109 	}
9110 	if (!AscIsChipHalted(iop_base)) {
9111 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9112 		return (warn_code);
9113 	}
9114 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9115 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9116 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9117 		return (warn_code);
9118 	}
9119 	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9120 	cfg_msw = AscGetChipCfgMsw(iop_base);
9121 	cfg_lsw = AscGetChipCfgLsw(iop_base);
9122 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9123 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9124 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9125 		AscSetChipCfgMsw(iop_base, cfg_msw);
9126 	}
9127 	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9128 	ASC_DBG(1, "chksum 0x%x\n", chksum);
9129 	if (chksum == 0) {
9130 		chksum = 0xaa55;
9131 	}
9132 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9133 		warn_code |= ASC_WARN_AUTO_CONFIG;
9134 		if (asc_dvc->cfg->chip_version == 3) {
9135 			if (eep_config->cfg_lsw != cfg_lsw) {
9136 				warn_code |= ASC_WARN_EEPROM_RECOVER;
9137 				eep_config->cfg_lsw =
9138 				    AscGetChipCfgLsw(iop_base);
9139 			}
9140 			if (eep_config->cfg_msw != cfg_msw) {
9141 				warn_code |= ASC_WARN_EEPROM_RECOVER;
9142 				eep_config->cfg_msw =
9143 				    AscGetChipCfgMsw(iop_base);
9144 			}
9145 		}
9146 	}
9147 	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9148 	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9149 	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9150 	if (chksum != eep_config->chksum) {
9151 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9152 		    ASC_CHIP_VER_PCI_ULTRA_3050) {
9153 			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9154 			eep_config->init_sdtr = 0xFF;
9155 			eep_config->disc_enable = 0xFF;
9156 			eep_config->start_motor = 0xFF;
9157 			eep_config->use_cmd_qng = 0;
9158 			eep_config->max_total_qng = 0xF0;
9159 			eep_config->max_tag_qng = 0x20;
9160 			eep_config->cntl = 0xBFFF;
9161 			ASC_EEP_SET_CHIP_ID(eep_config, 7);
9162 			eep_config->no_scam = 0;
9163 			eep_config->adapter_info[0] = 0;
9164 			eep_config->adapter_info[1] = 0;
9165 			eep_config->adapter_info[2] = 0;
9166 			eep_config->adapter_info[3] = 0;
9167 			eep_config->adapter_info[4] = 0;
9168 			/* Indicate EEPROM-less board. */
9169 			eep_config->adapter_info[5] = 0xBB;
9170 		} else {
9171 			ASC_PRINT
9172 			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9173 			write_eep = 1;
9174 			warn_code |= ASC_WARN_EEPROM_CHKSUM;
9175 		}
9176 	}
9177 	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9178 	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9179 	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9180 	asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9181 	asc_dvc->start_motor = eep_config->start_motor;
9182 	asc_dvc->dvc_cntl = eep_config->cntl;
9183 	asc_dvc->no_scam = eep_config->no_scam;
9184 	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9185 	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9186 	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9187 	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9188 	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9189 	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9190 	if (!AscTestExternalLram(asc_dvc)) {
9191 		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9192 		     ASC_IS_PCI_ULTRA)) {
9193 			eep_config->max_total_qng =
9194 			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9195 			eep_config->max_tag_qng =
9196 			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9197 		} else {
9198 			eep_config->cfg_msw |= 0x0800;
9199 			cfg_msw |= 0x0800;
9200 			AscSetChipCfgMsw(iop_base, cfg_msw);
9201 			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9202 			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9203 		}
9204 	} else {
9205 	}
9206 	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9207 		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9208 	}
9209 	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9210 		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9211 	}
9212 	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9213 		eep_config->max_tag_qng = eep_config->max_total_qng;
9214 	}
9215 	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9216 		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9217 	}
9218 	asc_dvc->max_total_qng = eep_config->max_total_qng;
9219 	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9220 	    eep_config->use_cmd_qng) {
9221 		eep_config->disc_enable = eep_config->use_cmd_qng;
9222 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9223 	}
9224 	ASC_EEP_SET_CHIP_ID(eep_config,
9225 			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9226 	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9227 	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9228 	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9229 		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9230 	}
9231 
9232 	for (i = 0; i <= ASC_MAX_TID; i++) {
9233 		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9234 		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9235 		asc_dvc->cfg->sdtr_period_offset[i] =
9236 		    (uchar)(ASC_DEF_SDTR_OFFSET |
9237 			    (asc_dvc->min_sdtr_index << 4));
9238 	}
9239 	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9240 	if (write_eep) {
9241 		if ((i = AscSetEEPConfig(iop_base, eep_config,
9242 				     asc_dvc->bus_type)) != 0) {
9243 			ASC_PRINT1
9244 			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9245 			     i);
9246 		} else {
9247 			ASC_PRINT
9248 			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9249 		}
9250 	}
9251 	return (warn_code);
9252 }
9253 
9254 static int AscInitGetConfig(struct Scsi_Host *shost)
9255 {
9256 	struct asc_board *board = shost_priv(shost);
9257 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9258 	unsigned short warn_code = 0;
9259 
9260 	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9261 	if (asc_dvc->err_code != 0)
9262 		return asc_dvc->err_code;
9263 
9264 	if (AscFindSignature(asc_dvc->iop_base)) {
9265 		AscInitAscDvcVar(asc_dvc);
9266 		warn_code = AscInitFromEEP(asc_dvc);
9267 		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9268 		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9269 			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9270 	} else {
9271 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9272 	}
9273 
9274 	switch (warn_code) {
9275 	case 0:	/* No error */
9276 		break;
9277 	case ASC_WARN_IO_PORT_ROTATE:
9278 		shost_printk(KERN_WARNING, shost, "I/O port address "
9279 				"modified\n");
9280 		break;
9281 	case ASC_WARN_AUTO_CONFIG:
9282 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9283 				"enabled\n");
9284 		break;
9285 	case ASC_WARN_EEPROM_CHKSUM:
9286 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9287 		break;
9288 	case ASC_WARN_IRQ_MODIFIED:
9289 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9290 		break;
9291 	case ASC_WARN_CMD_QNG_CONFLICT:
9292 		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9293 				"disconnects\n");
9294 		break;
9295 	default:
9296 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9297 				warn_code);
9298 		break;
9299 	}
9300 
9301 	if (asc_dvc->err_code != 0)
9302 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9303 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9304 
9305 	return asc_dvc->err_code;
9306 }
9307 
9308 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9309 {
9310 	struct asc_board *board = shost_priv(shost);
9311 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9312 	PortAddr iop_base = asc_dvc->iop_base;
9313 	unsigned short cfg_msw;
9314 	unsigned short warn_code = 0;
9315 
9316 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9317 	if (asc_dvc->err_code != 0)
9318 		return asc_dvc->err_code;
9319 	if (!AscFindSignature(asc_dvc->iop_base)) {
9320 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9321 		return asc_dvc->err_code;
9322 	}
9323 
9324 	cfg_msw = AscGetChipCfgMsw(iop_base);
9325 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9326 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9327 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9328 		AscSetChipCfgMsw(iop_base, cfg_msw);
9329 	}
9330 	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9331 	    asc_dvc->cfg->cmd_qng_enabled) {
9332 		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9333 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9334 	}
9335 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9336 		warn_code |= ASC_WARN_AUTO_CONFIG;
9337 	}
9338 #ifdef CONFIG_PCI
9339 	if (asc_dvc->bus_type & ASC_IS_PCI) {
9340 		cfg_msw &= 0xFFC0;
9341 		AscSetChipCfgMsw(iop_base, cfg_msw);
9342 		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9343 		} else {
9344 			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9345 			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9346 				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9347 				asc_dvc->bug_fix_cntl |=
9348 				    ASC_BUG_FIX_ASYN_USE_SYN;
9349 			}
9350 		}
9351 	} else
9352 #endif /* CONFIG_PCI */
9353 	if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9354 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9355 		    == ASC_CHIP_VER_ASYN_BUG) {
9356 			asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9357 		}
9358 	}
9359 	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9360 	    asc_dvc->cfg->chip_scsi_id) {
9361 		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9362 	}
9363 #ifdef CONFIG_ISA
9364 	if (asc_dvc->bus_type & ASC_IS_ISA) {
9365 		AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9366 		AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9367 	}
9368 #endif /* CONFIG_ISA */
9369 
9370 	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9371 
9372 	switch (warn_code) {
9373 	case 0:	/* No error. */
9374 		break;
9375 	case ASC_WARN_IO_PORT_ROTATE:
9376 		shost_printk(KERN_WARNING, shost, "I/O port address "
9377 				"modified\n");
9378 		break;
9379 	case ASC_WARN_AUTO_CONFIG:
9380 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9381 				"enabled\n");
9382 		break;
9383 	case ASC_WARN_EEPROM_CHKSUM:
9384 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9385 		break;
9386 	case ASC_WARN_IRQ_MODIFIED:
9387 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9388 		break;
9389 	case ASC_WARN_CMD_QNG_CONFLICT:
9390 		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9391 				"disconnects\n");
9392 		break;
9393 	default:
9394 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9395 				warn_code);
9396 		break;
9397 	}
9398 
9399 	if (asc_dvc->err_code != 0)
9400 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9401 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9402 
9403 	return asc_dvc->err_code;
9404 }
9405 
9406 /*
9407  * EEPROM Configuration.
9408  *
9409  * All drivers should use this structure to set the default EEPROM
9410  * configuration. The BIOS now uses this structure when it is built.
9411  * Additional structure information can be found in a_condor.h where
9412  * the structure is defined.
9413  *
9414  * The *_Field_IsChar structs are needed to correct for endianness.
9415  * These values are read from the board 16 bits at a time directly
9416  * into the structs. Because some fields are char, the values will be
9417  * in the wrong order. The *_Field_IsChar tells when to flip the
9418  * bytes. Data read and written to PCI memory is automatically swapped
9419  * on big-endian platforms so char fields read as words are actually being
9420  * unswapped on big-endian platforms.
9421  */
9422 #ifdef CONFIG_PCI
9423 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9424 	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
9425 	0x0000,			/* cfg_msw */
9426 	0xFFFF,			/* disc_enable */
9427 	0xFFFF,			/* wdtr_able */
9428 	0xFFFF,			/* sdtr_able */
9429 	0xFFFF,			/* start_motor */
9430 	0xFFFF,			/* tagqng_able */
9431 	0xFFFF,			/* bios_scan */
9432 	0,			/* scam_tolerant */
9433 	7,			/* adapter_scsi_id */
9434 	0,			/* bios_boot_delay */
9435 	3,			/* scsi_reset_delay */
9436 	0,			/* bios_id_lun */
9437 	0,			/* termination */
9438 	0,			/* reserved1 */
9439 	0xFFE7,			/* bios_ctrl */
9440 	0xFFFF,			/* ultra_able */
9441 	0,			/* reserved2 */
9442 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
9443 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
9444 	0,			/* dvc_cntl */
9445 	0,			/* bug_fix */
9446 	0,			/* serial_number_word1 */
9447 	0,			/* serial_number_word2 */
9448 	0,			/* serial_number_word3 */
9449 	0,			/* check_sum */
9450 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9451 	,			/* oem_name[16] */
9452 	0,			/* dvc_err_code */
9453 	0,			/* adv_err_code */
9454 	0,			/* adv_err_addr */
9455 	0,			/* saved_dvc_err_code */
9456 	0,			/* saved_adv_err_code */
9457 	0,			/* saved_adv_err_addr */
9458 	0			/* num_of_err */
9459 };
9460 
9461 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9462 	0,			/* cfg_lsw */
9463 	0,			/* cfg_msw */
9464 	0,			/* -disc_enable */
9465 	0,			/* wdtr_able */
9466 	0,			/* sdtr_able */
9467 	0,			/* start_motor */
9468 	0,			/* tagqng_able */
9469 	0,			/* bios_scan */
9470 	0,			/* scam_tolerant */
9471 	1,			/* adapter_scsi_id */
9472 	1,			/* bios_boot_delay */
9473 	1,			/* scsi_reset_delay */
9474 	1,			/* bios_id_lun */
9475 	1,			/* termination */
9476 	1,			/* reserved1 */
9477 	0,			/* bios_ctrl */
9478 	0,			/* ultra_able */
9479 	0,			/* reserved2 */
9480 	1,			/* max_host_qng */
9481 	1,			/* max_dvc_qng */
9482 	0,			/* dvc_cntl */
9483 	0,			/* bug_fix */
9484 	0,			/* serial_number_word1 */
9485 	0,			/* serial_number_word2 */
9486 	0,			/* serial_number_word3 */
9487 	0,			/* check_sum */
9488 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9489 	,			/* oem_name[16] */
9490 	0,			/* dvc_err_code */
9491 	0,			/* adv_err_code */
9492 	0,			/* adv_err_addr */
9493 	0,			/* saved_dvc_err_code */
9494 	0,			/* saved_adv_err_code */
9495 	0,			/* saved_adv_err_addr */
9496 	0			/* num_of_err */
9497 };
9498 
9499 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9500 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9501 	0x0000,			/* 01 cfg_msw */
9502 	0xFFFF,			/* 02 disc_enable */
9503 	0xFFFF,			/* 03 wdtr_able */
9504 	0x4444,			/* 04 sdtr_speed1 */
9505 	0xFFFF,			/* 05 start_motor */
9506 	0xFFFF,			/* 06 tagqng_able */
9507 	0xFFFF,			/* 07 bios_scan */
9508 	0,			/* 08 scam_tolerant */
9509 	7,			/* 09 adapter_scsi_id */
9510 	0,			/*    bios_boot_delay */
9511 	3,			/* 10 scsi_reset_delay */
9512 	0,			/*    bios_id_lun */
9513 	0,			/* 11 termination_se */
9514 	0,			/*    termination_lvd */
9515 	0xFFE7,			/* 12 bios_ctrl */
9516 	0x4444,			/* 13 sdtr_speed2 */
9517 	0x4444,			/* 14 sdtr_speed3 */
9518 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9519 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9520 	0,			/* 16 dvc_cntl */
9521 	0x4444,			/* 17 sdtr_speed4 */
9522 	0,			/* 18 serial_number_word1 */
9523 	0,			/* 19 serial_number_word2 */
9524 	0,			/* 20 serial_number_word3 */
9525 	0,			/* 21 check_sum */
9526 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9527 	,			/* 22-29 oem_name[16] */
9528 	0,			/* 30 dvc_err_code */
9529 	0,			/* 31 adv_err_code */
9530 	0,			/* 32 adv_err_addr */
9531 	0,			/* 33 saved_dvc_err_code */
9532 	0,			/* 34 saved_adv_err_code */
9533 	0,			/* 35 saved_adv_err_addr */
9534 	0,			/* 36 reserved */
9535 	0,			/* 37 reserved */
9536 	0,			/* 38 reserved */
9537 	0,			/* 39 reserved */
9538 	0,			/* 40 reserved */
9539 	0,			/* 41 reserved */
9540 	0,			/* 42 reserved */
9541 	0,			/* 43 reserved */
9542 	0,			/* 44 reserved */
9543 	0,			/* 45 reserved */
9544 	0,			/* 46 reserved */
9545 	0,			/* 47 reserved */
9546 	0,			/* 48 reserved */
9547 	0,			/* 49 reserved */
9548 	0,			/* 50 reserved */
9549 	0,			/* 51 reserved */
9550 	0,			/* 52 reserved */
9551 	0,			/* 53 reserved */
9552 	0,			/* 54 reserved */
9553 	0,			/* 55 reserved */
9554 	0,			/* 56 cisptr_lsw */
9555 	0,			/* 57 cisprt_msw */
9556 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9557 	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
9558 	0,			/* 60 reserved */
9559 	0,			/* 61 reserved */
9560 	0,			/* 62 reserved */
9561 	0			/* 63 reserved */
9562 };
9563 
9564 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9565 	0,			/* 00 cfg_lsw */
9566 	0,			/* 01 cfg_msw */
9567 	0,			/* 02 disc_enable */
9568 	0,			/* 03 wdtr_able */
9569 	0,			/* 04 sdtr_speed1 */
9570 	0,			/* 05 start_motor */
9571 	0,			/* 06 tagqng_able */
9572 	0,			/* 07 bios_scan */
9573 	0,			/* 08 scam_tolerant */
9574 	1,			/* 09 adapter_scsi_id */
9575 	1,			/*    bios_boot_delay */
9576 	1,			/* 10 scsi_reset_delay */
9577 	1,			/*    bios_id_lun */
9578 	1,			/* 11 termination_se */
9579 	1,			/*    termination_lvd */
9580 	0,			/* 12 bios_ctrl */
9581 	0,			/* 13 sdtr_speed2 */
9582 	0,			/* 14 sdtr_speed3 */
9583 	1,			/* 15 max_host_qng */
9584 	1,			/*    max_dvc_qng */
9585 	0,			/* 16 dvc_cntl */
9586 	0,			/* 17 sdtr_speed4 */
9587 	0,			/* 18 serial_number_word1 */
9588 	0,			/* 19 serial_number_word2 */
9589 	0,			/* 20 serial_number_word3 */
9590 	0,			/* 21 check_sum */
9591 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9592 	,			/* 22-29 oem_name[16] */
9593 	0,			/* 30 dvc_err_code */
9594 	0,			/* 31 adv_err_code */
9595 	0,			/* 32 adv_err_addr */
9596 	0,			/* 33 saved_dvc_err_code */
9597 	0,			/* 34 saved_adv_err_code */
9598 	0,			/* 35 saved_adv_err_addr */
9599 	0,			/* 36 reserved */
9600 	0,			/* 37 reserved */
9601 	0,			/* 38 reserved */
9602 	0,			/* 39 reserved */
9603 	0,			/* 40 reserved */
9604 	0,			/* 41 reserved */
9605 	0,			/* 42 reserved */
9606 	0,			/* 43 reserved */
9607 	0,			/* 44 reserved */
9608 	0,			/* 45 reserved */
9609 	0,			/* 46 reserved */
9610 	0,			/* 47 reserved */
9611 	0,			/* 48 reserved */
9612 	0,			/* 49 reserved */
9613 	0,			/* 50 reserved */
9614 	0,			/* 51 reserved */
9615 	0,			/* 52 reserved */
9616 	0,			/* 53 reserved */
9617 	0,			/* 54 reserved */
9618 	0,			/* 55 reserved */
9619 	0,			/* 56 cisptr_lsw */
9620 	0,			/* 57 cisprt_msw */
9621 	0,			/* 58 subsysvid */
9622 	0,			/* 59 subsysid */
9623 	0,			/* 60 reserved */
9624 	0,			/* 61 reserved */
9625 	0,			/* 62 reserved */
9626 	0			/* 63 reserved */
9627 };
9628 
9629 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9630 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9631 	0x0000,			/* 01 cfg_msw */
9632 	0xFFFF,			/* 02 disc_enable */
9633 	0xFFFF,			/* 03 wdtr_able */
9634 	0x5555,			/* 04 sdtr_speed1 */
9635 	0xFFFF,			/* 05 start_motor */
9636 	0xFFFF,			/* 06 tagqng_able */
9637 	0xFFFF,			/* 07 bios_scan */
9638 	0,			/* 08 scam_tolerant */
9639 	7,			/* 09 adapter_scsi_id */
9640 	0,			/*    bios_boot_delay */
9641 	3,			/* 10 scsi_reset_delay */
9642 	0,			/*    bios_id_lun */
9643 	0,			/* 11 termination_se */
9644 	0,			/*    termination_lvd */
9645 	0xFFE7,			/* 12 bios_ctrl */
9646 	0x5555,			/* 13 sdtr_speed2 */
9647 	0x5555,			/* 14 sdtr_speed3 */
9648 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9649 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9650 	0,			/* 16 dvc_cntl */
9651 	0x5555,			/* 17 sdtr_speed4 */
9652 	0,			/* 18 serial_number_word1 */
9653 	0,			/* 19 serial_number_word2 */
9654 	0,			/* 20 serial_number_word3 */
9655 	0,			/* 21 check_sum */
9656 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9657 	,			/* 22-29 oem_name[16] */
9658 	0,			/* 30 dvc_err_code */
9659 	0,			/* 31 adv_err_code */
9660 	0,			/* 32 adv_err_addr */
9661 	0,			/* 33 saved_dvc_err_code */
9662 	0,			/* 34 saved_adv_err_code */
9663 	0,			/* 35 saved_adv_err_addr */
9664 	0,			/* 36 reserved */
9665 	0,			/* 37 reserved */
9666 	0,			/* 38 reserved */
9667 	0,			/* 39 reserved */
9668 	0,			/* 40 reserved */
9669 	0,			/* 41 reserved */
9670 	0,			/* 42 reserved */
9671 	0,			/* 43 reserved */
9672 	0,			/* 44 reserved */
9673 	0,			/* 45 reserved */
9674 	0,			/* 46 reserved */
9675 	0,			/* 47 reserved */
9676 	0,			/* 48 reserved */
9677 	0,			/* 49 reserved */
9678 	0,			/* 50 reserved */
9679 	0,			/* 51 reserved */
9680 	0,			/* 52 reserved */
9681 	0,			/* 53 reserved */
9682 	0,			/* 54 reserved */
9683 	0,			/* 55 reserved */
9684 	0,			/* 56 cisptr_lsw */
9685 	0,			/* 57 cisprt_msw */
9686 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
9687 	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
9688 	0,			/* 60 reserved */
9689 	0,			/* 61 reserved */
9690 	0,			/* 62 reserved */
9691 	0			/* 63 reserved */
9692 };
9693 
9694 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9695 	0,			/* 00 cfg_lsw */
9696 	0,			/* 01 cfg_msw */
9697 	0,			/* 02 disc_enable */
9698 	0,			/* 03 wdtr_able */
9699 	0,			/* 04 sdtr_speed1 */
9700 	0,			/* 05 start_motor */
9701 	0,			/* 06 tagqng_able */
9702 	0,			/* 07 bios_scan */
9703 	0,			/* 08 scam_tolerant */
9704 	1,			/* 09 adapter_scsi_id */
9705 	1,			/*    bios_boot_delay */
9706 	1,			/* 10 scsi_reset_delay */
9707 	1,			/*    bios_id_lun */
9708 	1,			/* 11 termination_se */
9709 	1,			/*    termination_lvd */
9710 	0,			/* 12 bios_ctrl */
9711 	0,			/* 13 sdtr_speed2 */
9712 	0,			/* 14 sdtr_speed3 */
9713 	1,			/* 15 max_host_qng */
9714 	1,			/*    max_dvc_qng */
9715 	0,			/* 16 dvc_cntl */
9716 	0,			/* 17 sdtr_speed4 */
9717 	0,			/* 18 serial_number_word1 */
9718 	0,			/* 19 serial_number_word2 */
9719 	0,			/* 20 serial_number_word3 */
9720 	0,			/* 21 check_sum */
9721 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9722 	,			/* 22-29 oem_name[16] */
9723 	0,			/* 30 dvc_err_code */
9724 	0,			/* 31 adv_err_code */
9725 	0,			/* 32 adv_err_addr */
9726 	0,			/* 33 saved_dvc_err_code */
9727 	0,			/* 34 saved_adv_err_code */
9728 	0,			/* 35 saved_adv_err_addr */
9729 	0,			/* 36 reserved */
9730 	0,			/* 37 reserved */
9731 	0,			/* 38 reserved */
9732 	0,			/* 39 reserved */
9733 	0,			/* 40 reserved */
9734 	0,			/* 41 reserved */
9735 	0,			/* 42 reserved */
9736 	0,			/* 43 reserved */
9737 	0,			/* 44 reserved */
9738 	0,			/* 45 reserved */
9739 	0,			/* 46 reserved */
9740 	0,			/* 47 reserved */
9741 	0,			/* 48 reserved */
9742 	0,			/* 49 reserved */
9743 	0,			/* 50 reserved */
9744 	0,			/* 51 reserved */
9745 	0,			/* 52 reserved */
9746 	0,			/* 53 reserved */
9747 	0,			/* 54 reserved */
9748 	0,			/* 55 reserved */
9749 	0,			/* 56 cisptr_lsw */
9750 	0,			/* 57 cisprt_msw */
9751 	0,			/* 58 subsysvid */
9752 	0,			/* 59 subsysid */
9753 	0,			/* 60 reserved */
9754 	0,			/* 61 reserved */
9755 	0,			/* 62 reserved */
9756 	0			/* 63 reserved */
9757 };
9758 
9759 /*
9760  * Wait for EEPROM command to complete
9761  */
9762 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9763 {
9764 	int eep_delay_ms;
9765 
9766 	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9767 		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9768 		    ASC_EEP_CMD_DONE) {
9769 			break;
9770 		}
9771 		mdelay(1);
9772 	}
9773 	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9774 	    0)
9775 		BUG();
9776 }
9777 
9778 /*
9779  * Read the EEPROM from specified location
9780  */
9781 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9782 {
9783 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9784 			     ASC_EEP_CMD_READ | eep_word_addr);
9785 	AdvWaitEEPCmd(iop_base);
9786 	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9787 }
9788 
9789 /*
9790  * Write the EEPROM from 'cfg_buf'.
9791  */
9792 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9793 				ADVEEP_3550_CONFIG *cfg_buf)
9794 {
9795 	ushort *wbuf;
9796 	ushort addr, chksum;
9797 	ushort *charfields;
9798 
9799 	wbuf = (ushort *)cfg_buf;
9800 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9801 	chksum = 0;
9802 
9803 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9804 	AdvWaitEEPCmd(iop_base);
9805 
9806 	/*
9807 	 * Write EEPROM from word 0 to word 20.
9808 	 */
9809 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9810 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9811 		ushort word;
9812 
9813 		if (*charfields++) {
9814 			word = cpu_to_le16(*wbuf);
9815 		} else {
9816 			word = *wbuf;
9817 		}
9818 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9819 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9820 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9821 				     ASC_EEP_CMD_WRITE | addr);
9822 		AdvWaitEEPCmd(iop_base);
9823 		mdelay(ADV_EEP_DELAY_MS);
9824 	}
9825 
9826 	/*
9827 	 * Write EEPROM checksum at word 21.
9828 	 */
9829 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9830 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9831 	AdvWaitEEPCmd(iop_base);
9832 	wbuf++;
9833 	charfields++;
9834 
9835 	/*
9836 	 * Write EEPROM OEM name at words 22 to 29.
9837 	 */
9838 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9839 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9840 		ushort word;
9841 
9842 		if (*charfields++) {
9843 			word = cpu_to_le16(*wbuf);
9844 		} else {
9845 			word = *wbuf;
9846 		}
9847 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9848 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9849 				     ASC_EEP_CMD_WRITE | addr);
9850 		AdvWaitEEPCmd(iop_base);
9851 	}
9852 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9853 	AdvWaitEEPCmd(iop_base);
9854 }
9855 
9856 /*
9857  * Write the EEPROM from 'cfg_buf'.
9858  */
9859 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9860 				   ADVEEP_38C0800_CONFIG *cfg_buf)
9861 {
9862 	ushort *wbuf;
9863 	ushort *charfields;
9864 	ushort addr, chksum;
9865 
9866 	wbuf = (ushort *)cfg_buf;
9867 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9868 	chksum = 0;
9869 
9870 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9871 	AdvWaitEEPCmd(iop_base);
9872 
9873 	/*
9874 	 * Write EEPROM from word 0 to word 20.
9875 	 */
9876 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9877 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9878 		ushort word;
9879 
9880 		if (*charfields++) {
9881 			word = cpu_to_le16(*wbuf);
9882 		} else {
9883 			word = *wbuf;
9884 		}
9885 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9886 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9887 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9888 				     ASC_EEP_CMD_WRITE | addr);
9889 		AdvWaitEEPCmd(iop_base);
9890 		mdelay(ADV_EEP_DELAY_MS);
9891 	}
9892 
9893 	/*
9894 	 * Write EEPROM checksum at word 21.
9895 	 */
9896 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9897 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9898 	AdvWaitEEPCmd(iop_base);
9899 	wbuf++;
9900 	charfields++;
9901 
9902 	/*
9903 	 * Write EEPROM OEM name at words 22 to 29.
9904 	 */
9905 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9906 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9907 		ushort word;
9908 
9909 		if (*charfields++) {
9910 			word = cpu_to_le16(*wbuf);
9911 		} else {
9912 			word = *wbuf;
9913 		}
9914 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9915 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9916 				     ASC_EEP_CMD_WRITE | addr);
9917 		AdvWaitEEPCmd(iop_base);
9918 	}
9919 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9920 	AdvWaitEEPCmd(iop_base);
9921 }
9922 
9923 /*
9924  * Write the EEPROM from 'cfg_buf'.
9925  */
9926 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9927 				   ADVEEP_38C1600_CONFIG *cfg_buf)
9928 {
9929 	ushort *wbuf;
9930 	ushort *charfields;
9931 	ushort addr, chksum;
9932 
9933 	wbuf = (ushort *)cfg_buf;
9934 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9935 	chksum = 0;
9936 
9937 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9938 	AdvWaitEEPCmd(iop_base);
9939 
9940 	/*
9941 	 * Write EEPROM from word 0 to word 20.
9942 	 */
9943 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
9944 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9945 		ushort word;
9946 
9947 		if (*charfields++) {
9948 			word = cpu_to_le16(*wbuf);
9949 		} else {
9950 			word = *wbuf;
9951 		}
9952 		chksum += *wbuf;	/* Checksum is calculated from word values. */
9953 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9954 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9955 				     ASC_EEP_CMD_WRITE | addr);
9956 		AdvWaitEEPCmd(iop_base);
9957 		mdelay(ADV_EEP_DELAY_MS);
9958 	}
9959 
9960 	/*
9961 	 * Write EEPROM checksum at word 21.
9962 	 */
9963 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9964 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9965 	AdvWaitEEPCmd(iop_base);
9966 	wbuf++;
9967 	charfields++;
9968 
9969 	/*
9970 	 * Write EEPROM OEM name at words 22 to 29.
9971 	 */
9972 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
9973 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9974 		ushort word;
9975 
9976 		if (*charfields++) {
9977 			word = cpu_to_le16(*wbuf);
9978 		} else {
9979 			word = *wbuf;
9980 		}
9981 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9982 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9983 				     ASC_EEP_CMD_WRITE | addr);
9984 		AdvWaitEEPCmd(iop_base);
9985 	}
9986 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9987 	AdvWaitEEPCmd(iop_base);
9988 }
9989 
9990 /*
9991  * Read EEPROM configuration into the specified buffer.
9992  *
9993  * Return a checksum based on the EEPROM configuration read.
9994  */
9995 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
9996 				  ADVEEP_3550_CONFIG *cfg_buf)
9997 {
9998 	ushort wval, chksum;
9999 	ushort *wbuf;
10000 	int eep_addr;
10001 	ushort *charfields;
10002 
10003 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10004 	wbuf = (ushort *)cfg_buf;
10005 	chksum = 0;
10006 
10007 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10008 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10009 		wval = AdvReadEEPWord(iop_base, eep_addr);
10010 		chksum += wval;	/* Checksum is calculated from word values. */
10011 		if (*charfields++) {
10012 			*wbuf = le16_to_cpu(wval);
10013 		} else {
10014 			*wbuf = wval;
10015 		}
10016 	}
10017 	/* Read checksum word. */
10018 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10019 	wbuf++;
10020 	charfields++;
10021 
10022 	/* Read rest of EEPROM not covered by the checksum. */
10023 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10024 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10025 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10026 		if (*charfields++) {
10027 			*wbuf = le16_to_cpu(*wbuf);
10028 		}
10029 	}
10030 	return chksum;
10031 }
10032 
10033 /*
10034  * Read EEPROM configuration into the specified buffer.
10035  *
10036  * Return a checksum based on the EEPROM configuration read.
10037  */
10038 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10039 				     ADVEEP_38C0800_CONFIG *cfg_buf)
10040 {
10041 	ushort wval, chksum;
10042 	ushort *wbuf;
10043 	int eep_addr;
10044 	ushort *charfields;
10045 
10046 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10047 	wbuf = (ushort *)cfg_buf;
10048 	chksum = 0;
10049 
10050 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10051 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10052 		wval = AdvReadEEPWord(iop_base, eep_addr);
10053 		chksum += wval;	/* Checksum is calculated from word values. */
10054 		if (*charfields++) {
10055 			*wbuf = le16_to_cpu(wval);
10056 		} else {
10057 			*wbuf = wval;
10058 		}
10059 	}
10060 	/* Read checksum word. */
10061 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10062 	wbuf++;
10063 	charfields++;
10064 
10065 	/* Read rest of EEPROM not covered by the checksum. */
10066 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10067 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10068 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10069 		if (*charfields++) {
10070 			*wbuf = le16_to_cpu(*wbuf);
10071 		}
10072 	}
10073 	return chksum;
10074 }
10075 
10076 /*
10077  * Read EEPROM configuration into the specified buffer.
10078  *
10079  * Return a checksum based on the EEPROM configuration read.
10080  */
10081 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10082 				     ADVEEP_38C1600_CONFIG *cfg_buf)
10083 {
10084 	ushort wval, chksum;
10085 	ushort *wbuf;
10086 	int eep_addr;
10087 	ushort *charfields;
10088 
10089 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10090 	wbuf = (ushort *)cfg_buf;
10091 	chksum = 0;
10092 
10093 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10094 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10095 		wval = AdvReadEEPWord(iop_base, eep_addr);
10096 		chksum += wval;	/* Checksum is calculated from word values. */
10097 		if (*charfields++) {
10098 			*wbuf = le16_to_cpu(wval);
10099 		} else {
10100 			*wbuf = wval;
10101 		}
10102 	}
10103 	/* Read checksum word. */
10104 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10105 	wbuf++;
10106 	charfields++;
10107 
10108 	/* Read rest of EEPROM not covered by the checksum. */
10109 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10110 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10111 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10112 		if (*charfields++) {
10113 			*wbuf = le16_to_cpu(*wbuf);
10114 		}
10115 	}
10116 	return chksum;
10117 }
10118 
10119 /*
10120  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10121  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10122  * all of this is done.
10123  *
10124  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10125  *
10126  * For a non-fatal error return a warning code. If there are no warnings
10127  * then 0 is returned.
10128  *
10129  * Note: Chip is stopped on entry.
10130  */
10131 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10132 {
10133 	AdvPortAddr iop_base;
10134 	ushort warn_code;
10135 	ADVEEP_3550_CONFIG eep_config;
10136 
10137 	iop_base = asc_dvc->iop_base;
10138 
10139 	warn_code = 0;
10140 
10141 	/*
10142 	 * Read the board's EEPROM configuration.
10143 	 *
10144 	 * Set default values if a bad checksum is found.
10145 	 */
10146 	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10147 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10148 
10149 		/*
10150 		 * Set EEPROM default values.
10151 		 */
10152 		memcpy(&eep_config, &Default_3550_EEPROM_Config,
10153 			sizeof(ADVEEP_3550_CONFIG));
10154 
10155 		/*
10156 		 * Assume the 6 byte board serial number that was read from
10157 		 * EEPROM is correct even if the EEPROM checksum failed.
10158 		 */
10159 		eep_config.serial_number_word3 =
10160 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10161 
10162 		eep_config.serial_number_word2 =
10163 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10164 
10165 		eep_config.serial_number_word1 =
10166 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10167 
10168 		AdvSet3550EEPConfig(iop_base, &eep_config);
10169 	}
10170 	/*
10171 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10172 	 * EEPROM configuration that was read.
10173 	 *
10174 	 * This is the mapping of EEPROM fields to Adv Library fields.
10175 	 */
10176 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10177 	asc_dvc->sdtr_able = eep_config.sdtr_able;
10178 	asc_dvc->ultra_able = eep_config.ultra_able;
10179 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10180 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10181 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10182 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10183 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10184 	asc_dvc->start_motor = eep_config.start_motor;
10185 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10186 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10187 	asc_dvc->no_scam = eep_config.scam_tolerant;
10188 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10189 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10190 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10191 
10192 	/*
10193 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10194 	 * maximum queuing (max. 63, min. 4).
10195 	 */
10196 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10197 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10198 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10199 		/* If the value is zero, assume it is uninitialized. */
10200 		if (eep_config.max_host_qng == 0) {
10201 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10202 		} else {
10203 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10204 		}
10205 	}
10206 
10207 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10208 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10209 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10210 		/* If the value is zero, assume it is uninitialized. */
10211 		if (eep_config.max_dvc_qng == 0) {
10212 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10213 		} else {
10214 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10215 		}
10216 	}
10217 
10218 	/*
10219 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10220 	 * set 'max_dvc_qng' to 'max_host_qng'.
10221 	 */
10222 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10223 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10224 	}
10225 
10226 	/*
10227 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10228 	 * values based on possibly adjusted EEPROM values.
10229 	 */
10230 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10231 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10232 
10233 	/*
10234 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10235 	 * the ADV_DVC_CFG 'termination' field to automatic also.
10236 	 *
10237 	 * If the termination is specified with a non-zero 'termination'
10238 	 * value check that a legal value is set and set the ADV_DVC_CFG
10239 	 * 'termination' field appropriately.
10240 	 */
10241 	if (eep_config.termination == 0) {
10242 		asc_dvc->cfg->termination = 0;	/* auto termination */
10243 	} else {
10244 		/* Enable manual control with low off / high off. */
10245 		if (eep_config.termination == 1) {
10246 			asc_dvc->cfg->termination = TERM_CTL_SEL;
10247 
10248 			/* Enable manual control with low off / high on. */
10249 		} else if (eep_config.termination == 2) {
10250 			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10251 
10252 			/* Enable manual control with low on / high on. */
10253 		} else if (eep_config.termination == 3) {
10254 			asc_dvc->cfg->termination =
10255 			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10256 		} else {
10257 			/*
10258 			 * The EEPROM 'termination' field contains a bad value. Use
10259 			 * automatic termination instead.
10260 			 */
10261 			asc_dvc->cfg->termination = 0;
10262 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10263 		}
10264 	}
10265 
10266 	return warn_code;
10267 }
10268 
10269 /*
10270  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10271  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10272  * all of this is done.
10273  *
10274  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10275  *
10276  * For a non-fatal error return a warning code. If there are no warnings
10277  * then 0 is returned.
10278  *
10279  * Note: Chip is stopped on entry.
10280  */
10281 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10282 {
10283 	AdvPortAddr iop_base;
10284 	ushort warn_code;
10285 	ADVEEP_38C0800_CONFIG eep_config;
10286 	uchar tid, termination;
10287 	ushort sdtr_speed = 0;
10288 
10289 	iop_base = asc_dvc->iop_base;
10290 
10291 	warn_code = 0;
10292 
10293 	/*
10294 	 * Read the board's EEPROM configuration.
10295 	 *
10296 	 * Set default values if a bad checksum is found.
10297 	 */
10298 	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10299 	    eep_config.check_sum) {
10300 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10301 
10302 		/*
10303 		 * Set EEPROM default values.
10304 		 */
10305 		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10306 			sizeof(ADVEEP_38C0800_CONFIG));
10307 
10308 		/*
10309 		 * Assume the 6 byte board serial number that was read from
10310 		 * EEPROM is correct even if the EEPROM checksum failed.
10311 		 */
10312 		eep_config.serial_number_word3 =
10313 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10314 
10315 		eep_config.serial_number_word2 =
10316 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10317 
10318 		eep_config.serial_number_word1 =
10319 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10320 
10321 		AdvSet38C0800EEPConfig(iop_base, &eep_config);
10322 	}
10323 	/*
10324 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10325 	 * EEPROM configuration that was read.
10326 	 *
10327 	 * This is the mapping of EEPROM fields to Adv Library fields.
10328 	 */
10329 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10330 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10331 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10332 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10333 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10334 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10335 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10336 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10337 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10338 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10339 	asc_dvc->start_motor = eep_config.start_motor;
10340 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10341 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10342 	asc_dvc->no_scam = eep_config.scam_tolerant;
10343 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10344 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10345 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10346 
10347 	/*
10348 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10349 	 * are set, then set an 'sdtr_able' bit for it.
10350 	 */
10351 	asc_dvc->sdtr_able = 0;
10352 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10353 		if (tid == 0) {
10354 			sdtr_speed = asc_dvc->sdtr_speed1;
10355 		} else if (tid == 4) {
10356 			sdtr_speed = asc_dvc->sdtr_speed2;
10357 		} else if (tid == 8) {
10358 			sdtr_speed = asc_dvc->sdtr_speed3;
10359 		} else if (tid == 12) {
10360 			sdtr_speed = asc_dvc->sdtr_speed4;
10361 		}
10362 		if (sdtr_speed & ADV_MAX_TID) {
10363 			asc_dvc->sdtr_able |= (1 << tid);
10364 		}
10365 		sdtr_speed >>= 4;
10366 	}
10367 
10368 	/*
10369 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10370 	 * maximum queuing (max. 63, min. 4).
10371 	 */
10372 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10373 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10374 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10375 		/* If the value is zero, assume it is uninitialized. */
10376 		if (eep_config.max_host_qng == 0) {
10377 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10378 		} else {
10379 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10380 		}
10381 	}
10382 
10383 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10384 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10385 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10386 		/* If the value is zero, assume it is uninitialized. */
10387 		if (eep_config.max_dvc_qng == 0) {
10388 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10389 		} else {
10390 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10391 		}
10392 	}
10393 
10394 	/*
10395 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10396 	 * set 'max_dvc_qng' to 'max_host_qng'.
10397 	 */
10398 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10399 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10400 	}
10401 
10402 	/*
10403 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10404 	 * values based on possibly adjusted EEPROM values.
10405 	 */
10406 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10407 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10408 
10409 	/*
10410 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10411 	 * the ADV_DVC_CFG 'termination' field to automatic also.
10412 	 *
10413 	 * If the termination is specified with a non-zero 'termination'
10414 	 * value check that a legal value is set and set the ADV_DVC_CFG
10415 	 * 'termination' field appropriately.
10416 	 */
10417 	if (eep_config.termination_se == 0) {
10418 		termination = 0;	/* auto termination for SE */
10419 	} else {
10420 		/* Enable manual control with low off / high off. */
10421 		if (eep_config.termination_se == 1) {
10422 			termination = 0;
10423 
10424 			/* Enable manual control with low off / high on. */
10425 		} else if (eep_config.termination_se == 2) {
10426 			termination = TERM_SE_HI;
10427 
10428 			/* Enable manual control with low on / high on. */
10429 		} else if (eep_config.termination_se == 3) {
10430 			termination = TERM_SE;
10431 		} else {
10432 			/*
10433 			 * The EEPROM 'termination_se' field contains a bad value.
10434 			 * Use automatic termination instead.
10435 			 */
10436 			termination = 0;
10437 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10438 		}
10439 	}
10440 
10441 	if (eep_config.termination_lvd == 0) {
10442 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10443 	} else {
10444 		/* Enable manual control with low off / high off. */
10445 		if (eep_config.termination_lvd == 1) {
10446 			asc_dvc->cfg->termination = termination;
10447 
10448 			/* Enable manual control with low off / high on. */
10449 		} else if (eep_config.termination_lvd == 2) {
10450 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10451 
10452 			/* Enable manual control with low on / high on. */
10453 		} else if (eep_config.termination_lvd == 3) {
10454 			asc_dvc->cfg->termination = termination | TERM_LVD;
10455 		} else {
10456 			/*
10457 			 * The EEPROM 'termination_lvd' field contains a bad value.
10458 			 * Use automatic termination instead.
10459 			 */
10460 			asc_dvc->cfg->termination = termination;
10461 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10462 		}
10463 	}
10464 
10465 	return warn_code;
10466 }
10467 
10468 /*
10469  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10470  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10471  * all of this is done.
10472  *
10473  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10474  *
10475  * For a non-fatal error return a warning code. If there are no warnings
10476  * then 0 is returned.
10477  *
10478  * Note: Chip is stopped on entry.
10479  */
10480 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10481 {
10482 	AdvPortAddr iop_base;
10483 	ushort warn_code;
10484 	ADVEEP_38C1600_CONFIG eep_config;
10485 	uchar tid, termination;
10486 	ushort sdtr_speed = 0;
10487 
10488 	iop_base = asc_dvc->iop_base;
10489 
10490 	warn_code = 0;
10491 
10492 	/*
10493 	 * Read the board's EEPROM configuration.
10494 	 *
10495 	 * Set default values if a bad checksum is found.
10496 	 */
10497 	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10498 	    eep_config.check_sum) {
10499 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10500 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10501 
10502 		/*
10503 		 * Set EEPROM default values.
10504 		 */
10505 		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10506 			sizeof(ADVEEP_38C1600_CONFIG));
10507 
10508 		if (PCI_FUNC(pdev->devfn) != 0) {
10509 			u8 ints;
10510 			/*
10511 			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10512 			 * and old Mac system booting problem. The Expansion
10513 			 * ROM must be disabled in Function 1 for these systems
10514 			 */
10515 			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10516 			/*
10517 			 * Clear the INTAB (bit 11) if the GPIO 0 input
10518 			 * indicates the Function 1 interrupt line is wired
10519 			 * to INTB.
10520 			 *
10521 			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10522 			 *   1 - Function 1 interrupt line wired to INT A.
10523 			 *   0 - Function 1 interrupt line wired to INT B.
10524 			 *
10525 			 * Note: Function 0 is always wired to INTA.
10526 			 * Put all 5 GPIO bits in input mode and then read
10527 			 * their input values.
10528 			 */
10529 			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10530 			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10531 			if ((ints & 0x01) == 0)
10532 				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10533 		}
10534 
10535 		/*
10536 		 * Assume the 6 byte board serial number that was read from
10537 		 * EEPROM is correct even if the EEPROM checksum failed.
10538 		 */
10539 		eep_config.serial_number_word3 =
10540 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10541 		eep_config.serial_number_word2 =
10542 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10543 		eep_config.serial_number_word1 =
10544 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10545 
10546 		AdvSet38C1600EEPConfig(iop_base, &eep_config);
10547 	}
10548 
10549 	/*
10550 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10551 	 * EEPROM configuration that was read.
10552 	 *
10553 	 * This is the mapping of EEPROM fields to Adv Library fields.
10554 	 */
10555 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10556 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10557 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10558 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10559 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10560 	asc_dvc->ppr_able = 0;
10561 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10562 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10563 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10564 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10565 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10566 	asc_dvc->start_motor = eep_config.start_motor;
10567 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10568 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10569 	asc_dvc->no_scam = eep_config.scam_tolerant;
10570 
10571 	/*
10572 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10573 	 * are set, then set an 'sdtr_able' bit for it.
10574 	 */
10575 	asc_dvc->sdtr_able = 0;
10576 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10577 		if (tid == 0) {
10578 			sdtr_speed = asc_dvc->sdtr_speed1;
10579 		} else if (tid == 4) {
10580 			sdtr_speed = asc_dvc->sdtr_speed2;
10581 		} else if (tid == 8) {
10582 			sdtr_speed = asc_dvc->sdtr_speed3;
10583 		} else if (tid == 12) {
10584 			sdtr_speed = asc_dvc->sdtr_speed4;
10585 		}
10586 		if (sdtr_speed & ASC_MAX_TID) {
10587 			asc_dvc->sdtr_able |= (1 << tid);
10588 		}
10589 		sdtr_speed >>= 4;
10590 	}
10591 
10592 	/*
10593 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10594 	 * maximum queuing (max. 63, min. 4).
10595 	 */
10596 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10597 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10598 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10599 		/* If the value is zero, assume it is uninitialized. */
10600 		if (eep_config.max_host_qng == 0) {
10601 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10602 		} else {
10603 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10604 		}
10605 	}
10606 
10607 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10608 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10609 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10610 		/* If the value is zero, assume it is uninitialized. */
10611 		if (eep_config.max_dvc_qng == 0) {
10612 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10613 		} else {
10614 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10615 		}
10616 	}
10617 
10618 	/*
10619 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10620 	 * set 'max_dvc_qng' to 'max_host_qng'.
10621 	 */
10622 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10623 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10624 	}
10625 
10626 	/*
10627 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10628 	 * values based on possibly adjusted EEPROM values.
10629 	 */
10630 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10631 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10632 
10633 	/*
10634 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10635 	 * the ASC_DVC_CFG 'termination' field to automatic also.
10636 	 *
10637 	 * If the termination is specified with a non-zero 'termination'
10638 	 * value check that a legal value is set and set the ASC_DVC_CFG
10639 	 * 'termination' field appropriately.
10640 	 */
10641 	if (eep_config.termination_se == 0) {
10642 		termination = 0;	/* auto termination for SE */
10643 	} else {
10644 		/* Enable manual control with low off / high off. */
10645 		if (eep_config.termination_se == 1) {
10646 			termination = 0;
10647 
10648 			/* Enable manual control with low off / high on. */
10649 		} else if (eep_config.termination_se == 2) {
10650 			termination = TERM_SE_HI;
10651 
10652 			/* Enable manual control with low on / high on. */
10653 		} else if (eep_config.termination_se == 3) {
10654 			termination = TERM_SE;
10655 		} else {
10656 			/*
10657 			 * The EEPROM 'termination_se' field contains a bad value.
10658 			 * Use automatic termination instead.
10659 			 */
10660 			termination = 0;
10661 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10662 		}
10663 	}
10664 
10665 	if (eep_config.termination_lvd == 0) {
10666 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10667 	} else {
10668 		/* Enable manual control with low off / high off. */
10669 		if (eep_config.termination_lvd == 1) {
10670 			asc_dvc->cfg->termination = termination;
10671 
10672 			/* Enable manual control with low off / high on. */
10673 		} else if (eep_config.termination_lvd == 2) {
10674 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10675 
10676 			/* Enable manual control with low on / high on. */
10677 		} else if (eep_config.termination_lvd == 3) {
10678 			asc_dvc->cfg->termination = termination | TERM_LVD;
10679 		} else {
10680 			/*
10681 			 * The EEPROM 'termination_lvd' field contains a bad value.
10682 			 * Use automatic termination instead.
10683 			 */
10684 			asc_dvc->cfg->termination = termination;
10685 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10686 		}
10687 	}
10688 
10689 	return warn_code;
10690 }
10691 
10692 /*
10693  * Initialize the ADV_DVC_VAR structure.
10694  *
10695  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10696  *
10697  * For a non-fatal error return a warning code. If there are no warnings
10698  * then 0 is returned.
10699  */
10700 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10701 {
10702 	struct asc_board *board = shost_priv(shost);
10703 	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10704 	unsigned short warn_code = 0;
10705 	AdvPortAddr iop_base = asc_dvc->iop_base;
10706 	u16 cmd;
10707 	int status;
10708 
10709 	asc_dvc->err_code = 0;
10710 
10711 	/*
10712 	 * Save the state of the PCI Configuration Command Register
10713 	 * "Parity Error Response Control" Bit. If the bit is clear (0),
10714 	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10715 	 * DMA parity errors.
10716 	 */
10717 	asc_dvc->cfg->control_flag = 0;
10718 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10719 	if ((cmd & PCI_COMMAND_PARITY) == 0)
10720 		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10721 
10722 	asc_dvc->cfg->chip_version =
10723 	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10724 
10725 	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10726 		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10727 		 (ushort)ADV_CHIP_ID_BYTE);
10728 
10729 	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10730 		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10731 		 (ushort)ADV_CHIP_ID_WORD);
10732 
10733 	/*
10734 	 * Reset the chip to start and allow register writes.
10735 	 */
10736 	if (AdvFindSignature(iop_base) == 0) {
10737 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10738 		return ADV_ERROR;
10739 	} else {
10740 		/*
10741 		 * The caller must set 'chip_type' to a valid setting.
10742 		 */
10743 		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10744 		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10745 		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10746 			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10747 			return ADV_ERROR;
10748 		}
10749 
10750 		/*
10751 		 * Reset Chip.
10752 		 */
10753 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10754 				     ADV_CTRL_REG_CMD_RESET);
10755 		mdelay(100);
10756 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10757 				     ADV_CTRL_REG_CMD_WR_IO_REG);
10758 
10759 		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10760 			status = AdvInitFrom38C1600EEP(asc_dvc);
10761 		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10762 			status = AdvInitFrom38C0800EEP(asc_dvc);
10763 		} else {
10764 			status = AdvInitFrom3550EEP(asc_dvc);
10765 		}
10766 		warn_code |= status;
10767 	}
10768 
10769 	if (warn_code != 0)
10770 		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10771 
10772 	if (asc_dvc->err_code)
10773 		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10774 				asc_dvc->err_code);
10775 
10776 	return asc_dvc->err_code;
10777 }
10778 #endif
10779 
10780 static struct scsi_host_template advansys_template = {
10781 	.proc_name = DRV_NAME,
10782 #ifdef CONFIG_PROC_FS
10783 	.show_info = advansys_show_info,
10784 #endif
10785 	.name = DRV_NAME,
10786 	.info = advansys_info,
10787 	.queuecommand = advansys_queuecommand,
10788 	.eh_host_reset_handler = advansys_reset,
10789 	.bios_param = advansys_biosparam,
10790 	.slave_configure = advansys_slave_configure,
10791 	/*
10792 	 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
10793 	 * must be set. The flag will be cleared in advansys_board_found
10794 	 * for non-ISA adapters.
10795 	 */
10796 	.unchecked_isa_dma = true,
10797 };
10798 
10799 static int advansys_wide_init_chip(struct Scsi_Host *shost)
10800 {
10801 	struct asc_board *board = shost_priv(shost);
10802 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10803 	size_t sgblk_pool_size;
10804 	int warn_code, err_code;
10805 
10806 	/*
10807 	 * Allocate buffer carrier structures. The total size
10808 	 * is about 8 KB, so allocate all at once.
10809 	 */
10810 	adv_dvc->carrier = dma_alloc_coherent(board->dev,
10811 		ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10812 	ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10813 
10814 	if (!adv_dvc->carrier)
10815 		goto kmalloc_failed;
10816 
10817 	/*
10818 	 * Allocate up to 'max_host_qng' request structures for the Wide
10819 	 * board. The total size is about 16 KB, so allocate all at once.
10820 	 * If the allocation fails decrement and try again.
10821 	 */
10822 	board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10823 	if (board->adv_reqp_size & 0x1f) {
10824 		ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10825 		board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10826 	}
10827 	board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10828 		&board->adv_reqp_addr, GFP_KERNEL);
10829 
10830 	if (!board->adv_reqp)
10831 		goto kmalloc_failed;
10832 
10833 	ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10834 		adv_dvc->max_host_qng, board->adv_reqp_size);
10835 
10836 	/*
10837 	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
10838 	 * the Wide board. Each structure is about 136 bytes.
10839 	 */
10840 	sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10841 	board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10842 						sgblk_pool_size, 32, 0);
10843 
10844 	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10845 		sizeof(adv_sgblk_t), sgblk_pool_size);
10846 
10847 	if (!board->adv_sgblk_pool)
10848 		goto kmalloc_failed;
10849 
10850 	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10851 		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10852 		warn_code = AdvInitAsc3550Driver(adv_dvc);
10853 	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10854 		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10855 		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10856 	} else {
10857 		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10858 		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10859 	}
10860 	err_code = adv_dvc->err_code;
10861 
10862 	if (warn_code || err_code) {
10863 		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10864 			"0x%x\n", warn_code, err_code);
10865 	}
10866 
10867 	goto exit;
10868 
10869  kmalloc_failed:
10870 	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10871 	err_code = ADV_ERROR;
10872  exit:
10873 	return err_code;
10874 }
10875 
10876 static void advansys_wide_free_mem(struct asc_board *board)
10877 {
10878 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10879 
10880 	if (adv_dvc->carrier) {
10881 		dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10882 				  adv_dvc->carrier, adv_dvc->carrier_addr);
10883 		adv_dvc->carrier = NULL;
10884 	}
10885 	if (board->adv_reqp) {
10886 		dma_free_coherent(board->dev, board->adv_reqp_size,
10887 				  board->adv_reqp, board->adv_reqp_addr);
10888 		board->adv_reqp = NULL;
10889 	}
10890 	if (board->adv_sgblk_pool) {
10891 		dma_pool_destroy(board->adv_sgblk_pool);
10892 		board->adv_sgblk_pool = NULL;
10893 	}
10894 }
10895 
10896 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10897 				int bus_type)
10898 {
10899 	struct pci_dev *pdev;
10900 	struct asc_board *boardp = shost_priv(shost);
10901 	ASC_DVC_VAR *asc_dvc_varp = NULL;
10902 	ADV_DVC_VAR *adv_dvc_varp = NULL;
10903 	int share_irq, warn_code, ret;
10904 
10905 	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10906 
10907 	if (ASC_NARROW_BOARD(boardp)) {
10908 		ASC_DBG(1, "narrow board\n");
10909 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10910 		asc_dvc_varp->bus_type = bus_type;
10911 		asc_dvc_varp->drv_ptr = boardp;
10912 		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10913 		asc_dvc_varp->iop_base = iop;
10914 	} else {
10915 #ifdef CONFIG_PCI
10916 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10917 		adv_dvc_varp->drv_ptr = boardp;
10918 		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10919 		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10920 			ASC_DBG(1, "wide board ASC-3550\n");
10921 			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10922 		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10923 			ASC_DBG(1, "wide board ASC-38C0800\n");
10924 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10925 		} else {
10926 			ASC_DBG(1, "wide board ASC-38C1600\n");
10927 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10928 		}
10929 
10930 		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10931 		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10932 		if (!boardp->ioremap_addr) {
10933 			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10934 					"returned NULL\n",
10935 					(long)pci_resource_start(pdev, 1),
10936 					boardp->asc_n_io_port);
10937 			ret = -ENODEV;
10938 			goto err_shost;
10939 		}
10940 		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10941 		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10942 
10943 		/*
10944 		 * Even though it isn't used to access wide boards, other
10945 		 * than for the debug line below, save I/O Port address so
10946 		 * that it can be reported.
10947 		 */
10948 		boardp->ioport = iop;
10949 
10950 		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10951 				(ushort)inp(iop + 1), (ushort)inpw(iop));
10952 #endif /* CONFIG_PCI */
10953 	}
10954 
10955 	if (ASC_NARROW_BOARD(boardp)) {
10956 		/*
10957 		 * Set the board bus type and PCI IRQ before
10958 		 * calling AscInitGetConfig().
10959 		 */
10960 		switch (asc_dvc_varp->bus_type) {
10961 #ifdef CONFIG_ISA
10962 		case ASC_IS_ISA:
10963 			shost->unchecked_isa_dma = true;
10964 			share_irq = 0;
10965 			break;
10966 		case ASC_IS_VL:
10967 			shost->unchecked_isa_dma = false;
10968 			share_irq = 0;
10969 			break;
10970 		case ASC_IS_EISA:
10971 			shost->unchecked_isa_dma = false;
10972 			share_irq = IRQF_SHARED;
10973 			break;
10974 #endif /* CONFIG_ISA */
10975 #ifdef CONFIG_PCI
10976 		case ASC_IS_PCI:
10977 			shost->unchecked_isa_dma = false;
10978 			share_irq = IRQF_SHARED;
10979 			break;
10980 #endif /* CONFIG_PCI */
10981 		default:
10982 			shost_printk(KERN_ERR, shost, "unknown adapter type: "
10983 					"%d\n", asc_dvc_varp->bus_type);
10984 			shost->unchecked_isa_dma = false;
10985 			share_irq = 0;
10986 			break;
10987 		}
10988 
10989 		/*
10990 		 * NOTE: AscInitGetConfig() may change the board's
10991 		 * bus_type value. The bus_type value should no
10992 		 * longer be used. If the bus_type field must be
10993 		 * referenced only use the bit-wise AND operator "&".
10994 		 */
10995 		ASC_DBG(2, "AscInitGetConfig()\n");
10996 		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
10997 	} else {
10998 #ifdef CONFIG_PCI
10999 		/*
11000 		 * For Wide boards set PCI information before calling
11001 		 * AdvInitGetConfig().
11002 		 */
11003 		shost->unchecked_isa_dma = false;
11004 		share_irq = IRQF_SHARED;
11005 		ASC_DBG(2, "AdvInitGetConfig()\n");
11006 
11007 		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11008 #else
11009 		share_irq = 0;
11010 		ret = -ENODEV;
11011 #endif /* CONFIG_PCI */
11012 	}
11013 
11014 	if (ret)
11015 		goto err_unmap;
11016 
11017 	/*
11018 	 * Save the EEPROM configuration so that it can be displayed
11019 	 * from /proc/scsi/advansys/[0...].
11020 	 */
11021 	if (ASC_NARROW_BOARD(boardp)) {
11022 
11023 		ASCEEP_CONFIG *ep;
11024 
11025 		/*
11026 		 * Set the adapter's target id bit in the 'init_tidmask' field.
11027 		 */
11028 		boardp->init_tidmask |=
11029 		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11030 
11031 		/*
11032 		 * Save EEPROM settings for the board.
11033 		 */
11034 		ep = &boardp->eep_config.asc_eep;
11035 
11036 		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11037 		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11038 		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11039 		ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11040 		ep->start_motor = asc_dvc_varp->start_motor;
11041 		ep->cntl = asc_dvc_varp->dvc_cntl;
11042 		ep->no_scam = asc_dvc_varp->no_scam;
11043 		ep->max_total_qng = asc_dvc_varp->max_total_qng;
11044 		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11045 		/* 'max_tag_qng' is set to the same value for every device. */
11046 		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11047 		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11048 		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11049 		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11050 		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11051 		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11052 		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11053 
11054 		/*
11055 		 * Modify board configuration.
11056 		 */
11057 		ASC_DBG(2, "AscInitSetConfig()\n");
11058 		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11059 		if (ret)
11060 			goto err_unmap;
11061 	} else {
11062 		ADVEEP_3550_CONFIG *ep_3550;
11063 		ADVEEP_38C0800_CONFIG *ep_38C0800;
11064 		ADVEEP_38C1600_CONFIG *ep_38C1600;
11065 
11066 		/*
11067 		 * Save Wide EEP Configuration Information.
11068 		 */
11069 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11070 			ep_3550 = &boardp->eep_config.adv_3550_eep;
11071 
11072 			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11073 			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11074 			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11075 			ep_3550->termination = adv_dvc_varp->cfg->termination;
11076 			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11077 			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11078 			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11079 			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11080 			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11081 			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11082 			ep_3550->start_motor = adv_dvc_varp->start_motor;
11083 			ep_3550->scsi_reset_delay =
11084 			    adv_dvc_varp->scsi_reset_wait;
11085 			ep_3550->serial_number_word1 =
11086 			    adv_dvc_varp->cfg->serial1;
11087 			ep_3550->serial_number_word2 =
11088 			    adv_dvc_varp->cfg->serial2;
11089 			ep_3550->serial_number_word3 =
11090 			    adv_dvc_varp->cfg->serial3;
11091 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11092 			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11093 
11094 			ep_38C0800->adapter_scsi_id =
11095 			    adv_dvc_varp->chip_scsi_id;
11096 			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11097 			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11098 			ep_38C0800->termination_lvd =
11099 			    adv_dvc_varp->cfg->termination;
11100 			ep_38C0800->disc_enable =
11101 			    adv_dvc_varp->cfg->disc_enable;
11102 			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11103 			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11104 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11105 			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11106 			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11107 			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11108 			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11109 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11110 			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11111 			ep_38C0800->scsi_reset_delay =
11112 			    adv_dvc_varp->scsi_reset_wait;
11113 			ep_38C0800->serial_number_word1 =
11114 			    adv_dvc_varp->cfg->serial1;
11115 			ep_38C0800->serial_number_word2 =
11116 			    adv_dvc_varp->cfg->serial2;
11117 			ep_38C0800->serial_number_word3 =
11118 			    adv_dvc_varp->cfg->serial3;
11119 		} else {
11120 			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11121 
11122 			ep_38C1600->adapter_scsi_id =
11123 			    adv_dvc_varp->chip_scsi_id;
11124 			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11125 			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11126 			ep_38C1600->termination_lvd =
11127 			    adv_dvc_varp->cfg->termination;
11128 			ep_38C1600->disc_enable =
11129 			    adv_dvc_varp->cfg->disc_enable;
11130 			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11131 			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11132 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11133 			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11134 			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11135 			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11136 			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11137 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11138 			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11139 			ep_38C1600->scsi_reset_delay =
11140 			    adv_dvc_varp->scsi_reset_wait;
11141 			ep_38C1600->serial_number_word1 =
11142 			    adv_dvc_varp->cfg->serial1;
11143 			ep_38C1600->serial_number_word2 =
11144 			    adv_dvc_varp->cfg->serial2;
11145 			ep_38C1600->serial_number_word3 =
11146 			    adv_dvc_varp->cfg->serial3;
11147 		}
11148 
11149 		/*
11150 		 * Set the adapter's target id bit in the 'init_tidmask' field.
11151 		 */
11152 		boardp->init_tidmask |=
11153 		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11154 	}
11155 
11156 	/*
11157 	 * Channels are numbered beginning with 0. For AdvanSys one host
11158 	 * structure supports one channel. Multi-channel boards have a
11159 	 * separate host structure for each channel.
11160 	 */
11161 	shost->max_channel = 0;
11162 	if (ASC_NARROW_BOARD(boardp)) {
11163 		shost->max_id = ASC_MAX_TID + 1;
11164 		shost->max_lun = ASC_MAX_LUN + 1;
11165 		shost->max_cmd_len = ASC_MAX_CDB_LEN;
11166 
11167 		shost->io_port = asc_dvc_varp->iop_base;
11168 		boardp->asc_n_io_port = ASC_IOADR_GAP;
11169 		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11170 
11171 		/* Set maximum number of queues the adapter can handle. */
11172 		shost->can_queue = asc_dvc_varp->max_total_qng;
11173 	} else {
11174 		shost->max_id = ADV_MAX_TID + 1;
11175 		shost->max_lun = ADV_MAX_LUN + 1;
11176 		shost->max_cmd_len = ADV_MAX_CDB_LEN;
11177 
11178 		/*
11179 		 * Save the I/O Port address and length even though
11180 		 * I/O ports are not used to access Wide boards.
11181 		 * Instead the Wide boards are accessed with
11182 		 * PCI Memory Mapped I/O.
11183 		 */
11184 		shost->io_port = iop;
11185 
11186 		shost->this_id = adv_dvc_varp->chip_scsi_id;
11187 
11188 		/* Set maximum number of queues the adapter can handle. */
11189 		shost->can_queue = adv_dvc_varp->max_host_qng;
11190 	}
11191 
11192 	/*
11193 	 * Set the maximum number of scatter-gather elements the
11194 	 * adapter can handle.
11195 	 */
11196 	if (ASC_NARROW_BOARD(boardp)) {
11197 		/*
11198 		 * Allow two commands with 'sg_tablesize' scatter-gather
11199 		 * elements to be executed simultaneously. This value is
11200 		 * the theoretical hardware limit. It may be decreased
11201 		 * below.
11202 		 */
11203 		shost->sg_tablesize =
11204 		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11205 		     ASC_SG_LIST_PER_Q) + 1;
11206 	} else {
11207 		shost->sg_tablesize = ADV_MAX_SG_LIST;
11208 	}
11209 
11210 	/*
11211 	 * The value of 'sg_tablesize' can not exceed the SCSI
11212 	 * mid-level driver definition of SG_ALL. SG_ALL also
11213 	 * must not be exceeded, because it is used to define the
11214 	 * size of the scatter-gather table in 'struct asc_sg_head'.
11215 	 */
11216 	if (shost->sg_tablesize > SG_ALL) {
11217 		shost->sg_tablesize = SG_ALL;
11218 	}
11219 
11220 	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11221 
11222 	/* BIOS start address. */
11223 	if (ASC_NARROW_BOARD(boardp)) {
11224 		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11225 						    asc_dvc_varp->bus_type);
11226 	} else {
11227 		/*
11228 		 * Fill-in BIOS board variables. The Wide BIOS saves
11229 		 * information in LRAM that is used by the driver.
11230 		 */
11231 		AdvReadWordLram(adv_dvc_varp->iop_base,
11232 				BIOS_SIGNATURE, boardp->bios_signature);
11233 		AdvReadWordLram(adv_dvc_varp->iop_base,
11234 				BIOS_VERSION, boardp->bios_version);
11235 		AdvReadWordLram(adv_dvc_varp->iop_base,
11236 				BIOS_CODESEG, boardp->bios_codeseg);
11237 		AdvReadWordLram(adv_dvc_varp->iop_base,
11238 				BIOS_CODELEN, boardp->bios_codelen);
11239 
11240 		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11241 			 boardp->bios_signature, boardp->bios_version);
11242 
11243 		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11244 			 boardp->bios_codeseg, boardp->bios_codelen);
11245 
11246 		/*
11247 		 * If the BIOS saved a valid signature, then fill in
11248 		 * the BIOS code segment base address.
11249 		 */
11250 		if (boardp->bios_signature == 0x55AA) {
11251 			/*
11252 			 * Convert x86 realmode code segment to a linear
11253 			 * address by shifting left 4.
11254 			 */
11255 			shost->base = ((ulong)boardp->bios_codeseg << 4);
11256 		} else {
11257 			shost->base = 0;
11258 		}
11259 	}
11260 
11261 	/*
11262 	 * Register Board Resources - I/O Port, DMA, IRQ
11263 	 */
11264 
11265 	/* Register DMA Channel for Narrow boards. */
11266 	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
11267 #ifdef CONFIG_ISA
11268 	if (ASC_NARROW_BOARD(boardp)) {
11269 		/* Register DMA channel for ISA bus. */
11270 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11271 			shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11272 			ret = request_dma(shost->dma_channel, DRV_NAME);
11273 			if (ret) {
11274 				shost_printk(KERN_ERR, shost, "request_dma() "
11275 						"%d failed %d\n",
11276 						shost->dma_channel, ret);
11277 				goto err_unmap;
11278 			}
11279 			AscEnableIsaDma(shost->dma_channel);
11280 		}
11281 	}
11282 #endif /* CONFIG_ISA */
11283 
11284 	/* Register IRQ Number. */
11285 	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11286 
11287 	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11288 			  DRV_NAME, shost);
11289 
11290 	if (ret) {
11291 		if (ret == -EBUSY) {
11292 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11293 					"already in use\n", boardp->irq);
11294 		} else if (ret == -EINVAL) {
11295 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11296 					"not valid\n", boardp->irq);
11297 		} else {
11298 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11299 					"failed with %d\n", boardp->irq, ret);
11300 		}
11301 		goto err_free_dma;
11302 	}
11303 
11304 	/*
11305 	 * Initialize board RISC chip and enable interrupts.
11306 	 */
11307 	if (ASC_NARROW_BOARD(boardp)) {
11308 		ASC_DBG(2, "AscInitAsc1000Driver()\n");
11309 
11310 		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11311 		if (!asc_dvc_varp->overrun_buf) {
11312 			ret = -ENOMEM;
11313 			goto err_free_irq;
11314 		}
11315 		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11316 
11317 		if (warn_code || asc_dvc_varp->err_code) {
11318 			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11319 					"warn 0x%x, error 0x%x\n",
11320 					asc_dvc_varp->init_state, warn_code,
11321 					asc_dvc_varp->err_code);
11322 			if (!asc_dvc_varp->overrun_dma) {
11323 				ret = -ENODEV;
11324 				goto err_free_mem;
11325 			}
11326 		}
11327 	} else {
11328 		if (advansys_wide_init_chip(shost)) {
11329 			ret = -ENODEV;
11330 			goto err_free_mem;
11331 		}
11332 	}
11333 
11334 	ASC_DBG_PRT_SCSI_HOST(2, shost);
11335 
11336 	ret = scsi_add_host(shost, boardp->dev);
11337 	if (ret)
11338 		goto err_free_mem;
11339 
11340 	scsi_scan_host(shost);
11341 	return 0;
11342 
11343  err_free_mem:
11344 	if (ASC_NARROW_BOARD(boardp)) {
11345 		if (asc_dvc_varp->overrun_dma)
11346 			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11347 					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11348 		kfree(asc_dvc_varp->overrun_buf);
11349 	} else
11350 		advansys_wide_free_mem(boardp);
11351  err_free_irq:
11352 	free_irq(boardp->irq, shost);
11353  err_free_dma:
11354 #ifdef CONFIG_ISA
11355 	if (shost->dma_channel != NO_ISA_DMA)
11356 		free_dma(shost->dma_channel);
11357 #endif
11358  err_unmap:
11359 	if (boardp->ioremap_addr)
11360 		iounmap(boardp->ioremap_addr);
11361 #ifdef CONFIG_PCI
11362  err_shost:
11363 #endif
11364 	return ret;
11365 }
11366 
11367 /*
11368  * advansys_release()
11369  *
11370  * Release resources allocated for a single AdvanSys adapter.
11371  */
11372 static int advansys_release(struct Scsi_Host *shost)
11373 {
11374 	struct asc_board *board = shost_priv(shost);
11375 	ASC_DBG(1, "begin\n");
11376 	scsi_remove_host(shost);
11377 	free_irq(board->irq, shost);
11378 #ifdef CONFIG_ISA
11379 	if (shost->dma_channel != NO_ISA_DMA) {
11380 		ASC_DBG(1, "free_dma()\n");
11381 		free_dma(shost->dma_channel);
11382 	}
11383 #endif
11384 	if (ASC_NARROW_BOARD(board)) {
11385 		dma_unmap_single(board->dev,
11386 					board->dvc_var.asc_dvc_var.overrun_dma,
11387 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11388 		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11389 	} else {
11390 		iounmap(board->ioremap_addr);
11391 		advansys_wide_free_mem(board);
11392 	}
11393 	scsi_host_put(shost);
11394 	ASC_DBG(1, "end\n");
11395 	return 0;
11396 }
11397 
11398 #define ASC_IOADR_TABLE_MAX_IX  11
11399 
11400 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11401 	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11402 	0x0210, 0x0230, 0x0250, 0x0330
11403 };
11404 
11405 /*
11406  * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
11407  * 00: 10
11408  * 01: 11
11409  * 10: 12
11410  * 11: 15
11411  */
11412 static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11413 {
11414 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11415 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11416 	if (chip_irq == 13)
11417 		chip_irq = 15;
11418 	return chip_irq;
11419 }
11420 
11421 static int advansys_isa_probe(struct device *dev, unsigned int id)
11422 {
11423 	int err = -ENODEV;
11424 	PortAddr iop_base = _asc_def_iop_base[id];
11425 	struct Scsi_Host *shost;
11426 	struct asc_board *board;
11427 
11428 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11429 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11430 		return -ENODEV;
11431 	}
11432 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11433 	if (!AscFindSignature(iop_base))
11434 		goto release_region;
11435 	if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11436 		goto release_region;
11437 
11438 	err = -ENOMEM;
11439 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11440 	if (!shost)
11441 		goto release_region;
11442 
11443 	board = shost_priv(shost);
11444 	board->irq = advansys_isa_irq_no(iop_base);
11445 	board->dev = dev;
11446 	board->shost = shost;
11447 
11448 	err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11449 	if (err)
11450 		goto free_host;
11451 
11452 	dev_set_drvdata(dev, shost);
11453 	return 0;
11454 
11455  free_host:
11456 	scsi_host_put(shost);
11457  release_region:
11458 	release_region(iop_base, ASC_IOADR_GAP);
11459 	return err;
11460 }
11461 
11462 static int advansys_isa_remove(struct device *dev, unsigned int id)
11463 {
11464 	int ioport = _asc_def_iop_base[id];
11465 	advansys_release(dev_get_drvdata(dev));
11466 	release_region(ioport, ASC_IOADR_GAP);
11467 	return 0;
11468 }
11469 
11470 static struct isa_driver advansys_isa_driver = {
11471 	.probe		= advansys_isa_probe,
11472 	.remove		= advansys_isa_remove,
11473 	.driver = {
11474 		.owner	= THIS_MODULE,
11475 		.name	= DRV_NAME,
11476 	},
11477 };
11478 
11479 /*
11480  * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11481  * 000: invalid
11482  * 001: 10
11483  * 010: 11
11484  * 011: 12
11485  * 100: invalid
11486  * 101: 14
11487  * 110: 15
11488  * 111: invalid
11489  */
11490 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11491 {
11492 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11493 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11494 	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11495 		return 0;
11496 	return chip_irq;
11497 }
11498 
11499 static int advansys_vlb_probe(struct device *dev, unsigned int id)
11500 {
11501 	int err = -ENODEV;
11502 	PortAddr iop_base = _asc_def_iop_base[id];
11503 	struct Scsi_Host *shost;
11504 	struct asc_board *board;
11505 
11506 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11507 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11508 		return -ENODEV;
11509 	}
11510 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11511 	if (!AscFindSignature(iop_base))
11512 		goto release_region;
11513 	/*
11514 	 * I don't think this condition can actually happen, but the old
11515 	 * driver did it, and the chances of finding a VLB setup in 2007
11516 	 * to do testing with is slight to none.
11517 	 */
11518 	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11519 		goto release_region;
11520 
11521 	err = -ENOMEM;
11522 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11523 	if (!shost)
11524 		goto release_region;
11525 
11526 	board = shost_priv(shost);
11527 	board->irq = advansys_vlb_irq_no(iop_base);
11528 	board->dev = dev;
11529 	board->shost = shost;
11530 
11531 	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11532 	if (err)
11533 		goto free_host;
11534 
11535 	dev_set_drvdata(dev, shost);
11536 	return 0;
11537 
11538  free_host:
11539 	scsi_host_put(shost);
11540  release_region:
11541 	release_region(iop_base, ASC_IOADR_GAP);
11542 	return -ENODEV;
11543 }
11544 
11545 static struct isa_driver advansys_vlb_driver = {
11546 	.probe		= advansys_vlb_probe,
11547 	.remove		= advansys_isa_remove,
11548 	.driver = {
11549 		.owner	= THIS_MODULE,
11550 		.name	= "advansys_vlb",
11551 	},
11552 };
11553 
11554 static struct eisa_device_id advansys_eisa_table[] = {
11555 	{ "ABP7401" },
11556 	{ "ABP7501" },
11557 	{ "" }
11558 };
11559 
11560 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11561 
11562 /*
11563  * EISA is a little more tricky than PCI; each EISA device may have two
11564  * channels, and this driver is written to make each channel its own Scsi_Host
11565  */
11566 struct eisa_scsi_data {
11567 	struct Scsi_Host *host[2];
11568 };
11569 
11570 /*
11571  * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
11572  * 000: 10
11573  * 001: 11
11574  * 010: 12
11575  * 011: invalid
11576  * 100: 14
11577  * 101: 15
11578  * 110: invalid
11579  * 111: invalid
11580  */
11581 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11582 {
11583 	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11584 	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11585 	if ((chip_irq == 13) || (chip_irq > 15))
11586 		return 0;
11587 	return chip_irq;
11588 }
11589 
11590 static int advansys_eisa_probe(struct device *dev)
11591 {
11592 	int i, ioport, irq = 0;
11593 	int err;
11594 	struct eisa_device *edev = to_eisa_device(dev);
11595 	struct eisa_scsi_data *data;
11596 
11597 	err = -ENOMEM;
11598 	data = kzalloc(sizeof(*data), GFP_KERNEL);
11599 	if (!data)
11600 		goto fail;
11601 	ioport = edev->base_addr + 0xc30;
11602 
11603 	err = -ENODEV;
11604 	for (i = 0; i < 2; i++, ioport += 0x20) {
11605 		struct asc_board *board;
11606 		struct Scsi_Host *shost;
11607 		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11608 			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11609 			       ioport + ASC_IOADR_GAP - 1);
11610 			continue;
11611 		}
11612 		if (!AscFindSignature(ioport)) {
11613 			release_region(ioport, ASC_IOADR_GAP);
11614 			continue;
11615 		}
11616 
11617 		/*
11618 		 * I don't know why we need to do this for EISA chips, but
11619 		 * not for any others.  It looks to be equivalent to
11620 		 * AscGetChipCfgMsw, but I may have overlooked something,
11621 		 * so I'm not converting it until I get an EISA board to
11622 		 * test with.
11623 		 */
11624 		inw(ioport + 4);
11625 
11626 		if (!irq)
11627 			irq = advansys_eisa_irq_no(edev);
11628 
11629 		err = -ENOMEM;
11630 		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11631 		if (!shost)
11632 			goto release_region;
11633 
11634 		board = shost_priv(shost);
11635 		board->irq = irq;
11636 		board->dev = dev;
11637 		board->shost = shost;
11638 
11639 		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11640 		if (!err) {
11641 			data->host[i] = shost;
11642 			continue;
11643 		}
11644 
11645 		scsi_host_put(shost);
11646  release_region:
11647 		release_region(ioport, ASC_IOADR_GAP);
11648 		break;
11649 	}
11650 
11651 	if (err)
11652 		goto free_data;
11653 	dev_set_drvdata(dev, data);
11654 	return 0;
11655 
11656  free_data:
11657 	kfree(data->host[0]);
11658 	kfree(data->host[1]);
11659 	kfree(data);
11660  fail:
11661 	return err;
11662 }
11663 
11664 static int advansys_eisa_remove(struct device *dev)
11665 {
11666 	int i;
11667 	struct eisa_scsi_data *data = dev_get_drvdata(dev);
11668 
11669 	for (i = 0; i < 2; i++) {
11670 		int ioport;
11671 		struct Scsi_Host *shost = data->host[i];
11672 		if (!shost)
11673 			continue;
11674 		ioport = shost->io_port;
11675 		advansys_release(shost);
11676 		release_region(ioport, ASC_IOADR_GAP);
11677 	}
11678 
11679 	kfree(data);
11680 	return 0;
11681 }
11682 
11683 static struct eisa_driver advansys_eisa_driver = {
11684 	.id_table =		advansys_eisa_table,
11685 	.driver = {
11686 		.name =		DRV_NAME,
11687 		.probe =	advansys_eisa_probe,
11688 		.remove =	advansys_eisa_remove,
11689 	}
11690 };
11691 
11692 /* PCI Devices supported by this driver */
11693 static struct pci_device_id advansys_pci_tbl[] = {
11694 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11695 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11696 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11697 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11698 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11699 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11700 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11701 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11702 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11703 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11704 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11705 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11706 	{}
11707 };
11708 
11709 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11710 
11711 static void advansys_set_latency(struct pci_dev *pdev)
11712 {
11713 	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11714 	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11715 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11716 	} else {
11717 		u8 latency;
11718 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11719 		if (latency < 0x20)
11720 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11721 	}
11722 }
11723 
11724 static int advansys_pci_probe(struct pci_dev *pdev,
11725 			      const struct pci_device_id *ent)
11726 {
11727 	int err, ioport;
11728 	struct Scsi_Host *shost;
11729 	struct asc_board *board;
11730 
11731 	err = pci_enable_device(pdev);
11732 	if (err)
11733 		goto fail;
11734 	err = pci_request_regions(pdev, DRV_NAME);
11735 	if (err)
11736 		goto disable_device;
11737 	pci_set_master(pdev);
11738 	advansys_set_latency(pdev);
11739 
11740 	err = -ENODEV;
11741 	if (pci_resource_len(pdev, 0) == 0)
11742 		goto release_region;
11743 
11744 	ioport = pci_resource_start(pdev, 0);
11745 
11746 	err = -ENOMEM;
11747 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11748 	if (!shost)
11749 		goto release_region;
11750 
11751 	board = shost_priv(shost);
11752 	board->irq = pdev->irq;
11753 	board->dev = &pdev->dev;
11754 	board->shost = shost;
11755 
11756 	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11757 	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11758 	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11759 		board->flags |= ASC_IS_WIDE_BOARD;
11760 	}
11761 
11762 	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11763 	if (err)
11764 		goto free_host;
11765 
11766 	pci_set_drvdata(pdev, shost);
11767 	return 0;
11768 
11769  free_host:
11770 	scsi_host_put(shost);
11771  release_region:
11772 	pci_release_regions(pdev);
11773  disable_device:
11774 	pci_disable_device(pdev);
11775  fail:
11776 	return err;
11777 }
11778 
11779 static void advansys_pci_remove(struct pci_dev *pdev)
11780 {
11781 	advansys_release(pci_get_drvdata(pdev));
11782 	pci_release_regions(pdev);
11783 	pci_disable_device(pdev);
11784 }
11785 
11786 static struct pci_driver advansys_pci_driver = {
11787 	.name =		DRV_NAME,
11788 	.id_table =	advansys_pci_tbl,
11789 	.probe =	advansys_pci_probe,
11790 	.remove =	advansys_pci_remove,
11791 };
11792 
11793 static int __init advansys_init(void)
11794 {
11795 	int error;
11796 
11797 	error = isa_register_driver(&advansys_isa_driver,
11798 				    ASC_IOADR_TABLE_MAX_IX);
11799 	if (error)
11800 		goto fail;
11801 
11802 	error = isa_register_driver(&advansys_vlb_driver,
11803 				    ASC_IOADR_TABLE_MAX_IX);
11804 	if (error)
11805 		goto unregister_isa;
11806 
11807 	error = eisa_driver_register(&advansys_eisa_driver);
11808 	if (error)
11809 		goto unregister_vlb;
11810 
11811 	error = pci_register_driver(&advansys_pci_driver);
11812 	if (error)
11813 		goto unregister_eisa;
11814 
11815 	return 0;
11816 
11817  unregister_eisa:
11818 	eisa_driver_unregister(&advansys_eisa_driver);
11819  unregister_vlb:
11820 	isa_unregister_driver(&advansys_vlb_driver);
11821  unregister_isa:
11822 	isa_unregister_driver(&advansys_isa_driver);
11823  fail:
11824 	return error;
11825 }
11826 
11827 static void __exit advansys_exit(void)
11828 {
11829 	pci_unregister_driver(&advansys_pci_driver);
11830 	eisa_driver_unregister(&advansys_eisa_driver);
11831 	isa_unregister_driver(&advansys_vlb_driver);
11832 	isa_unregister_driver(&advansys_isa_driver);
11833 }
11834 
11835 module_init(advansys_init);
11836 module_exit(advansys_exit);
11837 
11838 MODULE_LICENSE("GPL");
11839 MODULE_FIRMWARE("advansys/mcode.bin");
11840 MODULE_FIRMWARE("advansys/3550.bin");
11841 MODULE_FIRMWARE("advansys/38C0800.bin");
11842 MODULE_FIRMWARE("advansys/38C1600.bin");
11843