xref: /openbmc/linux/drivers/scsi/advansys.c (revision 3d3337de)
1 #define DRV_NAME "advansys"
2 #define ASC_VERSION "3.4"	/* AdvanSys Driver Version */
3 
4 /*
5  * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
6  *
7  * Copyright (c) 1995-2000 Advanced System Products, Inc.
8  * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
9  * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
10  * All Rights Reserved.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  */
17 
18 /*
19  * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
20  * changed its name to ConnectCom Solutions, Inc.
21  * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
22  */
23 
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/types.h>
28 #include <linux/ioport.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/slab.h>
32 #include <linux/mm.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/blkdev.h>
36 #include <linux/isa.h>
37 #include <linux/eisa.h>
38 #include <linux/pci.h>
39 #include <linux/spinlock.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/firmware.h>
42 
43 #include <asm/io.h>
44 #include <asm/dma.h>
45 
46 #include <scsi/scsi_cmnd.h>
47 #include <scsi/scsi_device.h>
48 #include <scsi/scsi_tcq.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
51 
52 /* FIXME:
53  *
54  *  1. Although all of the necessary command mapping places have the
55  *     appropriate dma_map.. APIs, the driver still processes its internal
56  *     queue using bus_to_virt() and virt_to_bus() which are illegal under
57  *     the API.  The entire queue processing structure will need to be
58  *     altered to fix this.
59  *  2. Need to add memory mapping workaround. Test the memory mapping.
60  *     If it doesn't work revert to I/O port access. Can a test be done
61  *     safely?
62  *  3. Handle an interrupt not working. Keep an interrupt counter in
63  *     the interrupt handler. In the timeout function if the interrupt
64  *     has not occurred then print a message and run in polled mode.
65  *  4. Need to add support for target mode commands, cf. CAM XPT.
66  *  5. check DMA mapping functions for failure
67  *  6. Use scsi_transport_spi
68  *  7. advansys_info is not safe against multiple simultaneous callers
69  *  8. Add module_param to override ISA/VLB ioport array
70  */
71 #warning this driver is still not properly converted to the DMA API
72 
73 /* Enable driver /proc statistics. */
74 #define ADVANSYS_STATS
75 
76 /* Enable driver tracing. */
77 #undef ADVANSYS_DEBUG
78 
79 /*
80  * Portable Data Types
81  *
82  * Any instance where a 32-bit long or pointer type is assumed
83  * for precision or HW defined structures, the following define
84  * types must be used. In Linux the char, short, and int types
85  * are all consistent at 8, 16, and 32 bits respectively. Pointers
86  * and long types are 64 bits on Alpha and UltraSPARC.
87  */
88 #define ASC_PADDR __u32		/* Physical/Bus address data type. */
89 #define ASC_VADDR __u32		/* Virtual address data type. */
90 #define ASC_DCNT  __u32		/* Unsigned Data count type. */
91 #define ASC_SDCNT __s32		/* Signed Data count type. */
92 
93 typedef unsigned char uchar;
94 
95 #ifndef TRUE
96 #define TRUE     (1)
97 #endif
98 #ifndef FALSE
99 #define FALSE    (0)
100 #endif
101 
102 #define ERR      (-1)
103 #define UW_ERR   (uint)(0xFFFF)
104 #define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
105 
106 #define PCI_VENDOR_ID_ASP		0x10cd
107 #define PCI_DEVICE_ID_ASP_1200A		0x1100
108 #define PCI_DEVICE_ID_ASP_ABP940	0x1200
109 #define PCI_DEVICE_ID_ASP_ABP940U	0x1300
110 #define PCI_DEVICE_ID_ASP_ABP940UW	0x2300
111 #define PCI_DEVICE_ID_38C0800_REV1	0x2500
112 #define PCI_DEVICE_ID_38C1600_REV1	0x2700
113 
114 /*
115  * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists.
116  * The SRB structure will have to be changed and the ASC_SRB2SCSIQ()
117  * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the
118  * SRB structure.
119  */
120 #define CC_VERY_LONG_SG_LIST 0
121 #define ASC_SRB2SCSIQ(srb_ptr)  (srb_ptr)
122 
123 #define PortAddr                 unsigned int	/* port address size  */
124 #define inp(port)                inb(port)
125 #define outp(port, byte)         outb((byte), (port))
126 
127 #define inpw(port)               inw(port)
128 #define outpw(port, word)        outw((word), (port))
129 
130 #define ASC_MAX_SG_QUEUE    7
131 #define ASC_MAX_SG_LIST     255
132 
133 #define ASC_CS_TYPE  unsigned short
134 
135 #define ASC_IS_ISA          (0x0001)
136 #define ASC_IS_ISAPNP       (0x0081)
137 #define ASC_IS_EISA         (0x0002)
138 #define ASC_IS_PCI          (0x0004)
139 #define ASC_IS_PCI_ULTRA    (0x0104)
140 #define ASC_IS_PCMCIA       (0x0008)
141 #define ASC_IS_MCA          (0x0020)
142 #define ASC_IS_VL           (0x0040)
143 #define ASC_IS_WIDESCSI_16  (0x0100)
144 #define ASC_IS_WIDESCSI_32  (0x0200)
145 #define ASC_IS_BIG_ENDIAN   (0x8000)
146 
147 #define ASC_CHIP_MIN_VER_VL      (0x01)
148 #define ASC_CHIP_MAX_VER_VL      (0x07)
149 #define ASC_CHIP_MIN_VER_PCI     (0x09)
150 #define ASC_CHIP_MAX_VER_PCI     (0x0F)
151 #define ASC_CHIP_VER_PCI_BIT     (0x08)
152 #define ASC_CHIP_MIN_VER_ISA     (0x11)
153 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
154 #define ASC_CHIP_MAX_VER_ISA     (0x27)
155 #define ASC_CHIP_VER_ISA_BIT     (0x30)
156 #define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
157 #define ASC_CHIP_VER_ASYN_BUG    (0x21)
158 #define ASC_CHIP_VER_PCI             0x08
159 #define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
160 #define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
161 #define ASC_CHIP_MIN_VER_EISA (0x41)
162 #define ASC_CHIP_MAX_VER_EISA (0x47)
163 #define ASC_CHIP_VER_EISA_BIT (0x40)
164 #define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
165 #define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
166 #define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
167 #define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
168 
169 #define ASC_SCSI_ID_BITS  3
170 #define ASC_SCSI_TIX_TYPE     uchar
171 #define ASC_ALL_DEVICE_BIT_SET  0xFF
172 #define ASC_SCSI_BIT_ID_TYPE  uchar
173 #define ASC_MAX_TID       7
174 #define ASC_MAX_LUN       7
175 #define ASC_SCSI_WIDTH_BIT_SET  0xFF
176 #define ASC_MAX_SENSE_LEN   32
177 #define ASC_MIN_SENSE_LEN   14
178 #define ASC_SCSI_RESET_HOLD_TIME_US  60
179 
180 /*
181  * Narrow boards only support 12-byte commands, while wide boards
182  * extend to 16-byte commands.
183  */
184 #define ASC_MAX_CDB_LEN     12
185 #define ADV_MAX_CDB_LEN     16
186 
187 #define MS_SDTR_LEN    0x03
188 #define MS_WDTR_LEN    0x02
189 
190 #define ASC_SG_LIST_PER_Q   7
191 #define QS_FREE        0x00
192 #define QS_READY       0x01
193 #define QS_DISC1       0x02
194 #define QS_DISC2       0x04
195 #define QS_BUSY        0x08
196 #define QS_ABORTED     0x40
197 #define QS_DONE        0x80
198 #define QC_NO_CALLBACK   0x01
199 #define QC_SG_SWAP_QUEUE 0x02
200 #define QC_SG_HEAD       0x04
201 #define QC_DATA_IN       0x08
202 #define QC_DATA_OUT      0x10
203 #define QC_URGENT        0x20
204 #define QC_MSG_OUT       0x40
205 #define QC_REQ_SENSE     0x80
206 #define QCSG_SG_XFER_LIST  0x02
207 #define QCSG_SG_XFER_MORE  0x04
208 #define QCSG_SG_XFER_END   0x08
209 #define QD_IN_PROGRESS       0x00
210 #define QD_NO_ERROR          0x01
211 #define QD_ABORTED_BY_HOST   0x02
212 #define QD_WITH_ERROR        0x04
213 #define QD_INVALID_REQUEST   0x80
214 #define QD_INVALID_HOST_NUM  0x81
215 #define QD_INVALID_DEVICE    0x82
216 #define QD_ERR_INTERNAL      0xFF
217 #define QHSTA_NO_ERROR               0x00
218 #define QHSTA_M_SEL_TIMEOUT          0x11
219 #define QHSTA_M_DATA_OVER_RUN        0x12
220 #define QHSTA_M_DATA_UNDER_RUN       0x12
221 #define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
222 #define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
223 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
224 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
225 #define QHSTA_D_HOST_ABORT_FAILED       0x23
226 #define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
227 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
228 #define QHSTA_D_ASPI_NO_BUF_POOL        0x26
229 #define QHSTA_M_WTM_TIMEOUT         0x41
230 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
231 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
232 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
233 #define QHSTA_M_TARGET_STATUS_BUSY  0x45
234 #define QHSTA_M_BAD_TAG_CODE        0x46
235 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
236 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
237 #define QHSTA_D_LRAM_CMP_ERROR        0x81
238 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
239 #define ASC_FLAG_SCSIQ_REQ        0x01
240 #define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
241 #define ASC_FLAG_BIOS_ASYNC_IO    0x04
242 #define ASC_FLAG_SRB_LINEAR_ADDR  0x08
243 #define ASC_FLAG_WIN16            0x10
244 #define ASC_FLAG_WIN32            0x20
245 #define ASC_FLAG_ISA_OVER_16MB    0x40
246 #define ASC_FLAG_DOS_VM_CALLBACK  0x80
247 #define ASC_TAG_FLAG_EXTRA_BYTES               0x10
248 #define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
249 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
250 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
251 #define ASC_SCSIQ_CPY_BEG              4
252 #define ASC_SCSIQ_SGHD_CPY_BEG         2
253 #define ASC_SCSIQ_B_FWD                0
254 #define ASC_SCSIQ_B_BWD                1
255 #define ASC_SCSIQ_B_STATUS             2
256 #define ASC_SCSIQ_B_QNO                3
257 #define ASC_SCSIQ_B_CNTL               4
258 #define ASC_SCSIQ_B_SG_QUEUE_CNT       5
259 #define ASC_SCSIQ_D_DATA_ADDR          8
260 #define ASC_SCSIQ_D_DATA_CNT          12
261 #define ASC_SCSIQ_B_SENSE_LEN         20
262 #define ASC_SCSIQ_DONE_INFO_BEG       22
263 #define ASC_SCSIQ_D_SRBPTR            22
264 #define ASC_SCSIQ_B_TARGET_IX         26
265 #define ASC_SCSIQ_B_CDB_LEN           28
266 #define ASC_SCSIQ_B_TAG_CODE          29
267 #define ASC_SCSIQ_W_VM_ID             30
268 #define ASC_SCSIQ_DONE_STATUS         32
269 #define ASC_SCSIQ_HOST_STATUS         33
270 #define ASC_SCSIQ_SCSI_STATUS         34
271 #define ASC_SCSIQ_CDB_BEG             36
272 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
273 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
274 #define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
275 #define ASC_SCSIQ_B_SG_WK_QP          49
276 #define ASC_SCSIQ_B_SG_WK_IX          50
277 #define ASC_SCSIQ_W_ALT_DC1           52
278 #define ASC_SCSIQ_B_LIST_CNT          6
279 #define ASC_SCSIQ_B_CUR_LIST_CNT      7
280 #define ASC_SGQ_B_SG_CNTL             4
281 #define ASC_SGQ_B_SG_HEAD_QP          5
282 #define ASC_SGQ_B_SG_LIST_CNT         6
283 #define ASC_SGQ_B_SG_CUR_LIST_CNT     7
284 #define ASC_SGQ_LIST_BEG              8
285 #define ASC_DEF_SCSI1_QNG    4
286 #define ASC_MAX_SCSI1_QNG    4
287 #define ASC_DEF_SCSI2_QNG    16
288 #define ASC_MAX_SCSI2_QNG    32
289 #define ASC_TAG_CODE_MASK    0x23
290 #define ASC_STOP_REQ_RISC_STOP      0x01
291 #define ASC_STOP_ACK_RISC_STOP      0x03
292 #define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
293 #define ASC_STOP_CLEAN_UP_DISC_Q    0x20
294 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40
295 #define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
296 #define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
297 #define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
298 #define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
299 #define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
300 #define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
301 #define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
302 
303 typedef struct asc_scsiq_1 {
304 	uchar status;
305 	uchar q_no;
306 	uchar cntl;
307 	uchar sg_queue_cnt;
308 	uchar target_id;
309 	uchar target_lun;
310 	ASC_PADDR data_addr;
311 	ASC_DCNT data_cnt;
312 	ASC_PADDR sense_addr;
313 	uchar sense_len;
314 	uchar extra_bytes;
315 } ASC_SCSIQ_1;
316 
317 typedef struct asc_scsiq_2 {
318 	ASC_VADDR srb_ptr;
319 	uchar target_ix;
320 	uchar flag;
321 	uchar cdb_len;
322 	uchar tag_code;
323 	ushort vm_id;
324 } ASC_SCSIQ_2;
325 
326 typedef struct asc_scsiq_3 {
327 	uchar done_stat;
328 	uchar host_stat;
329 	uchar scsi_stat;
330 	uchar scsi_msg;
331 } ASC_SCSIQ_3;
332 
333 typedef struct asc_scsiq_4 {
334 	uchar cdb[ASC_MAX_CDB_LEN];
335 	uchar y_first_sg_list_qp;
336 	uchar y_working_sg_qp;
337 	uchar y_working_sg_ix;
338 	uchar y_res;
339 	ushort x_req_count;
340 	ushort x_reconnect_rtn;
341 	ASC_PADDR x_saved_data_addr;
342 	ASC_DCNT x_saved_data_cnt;
343 } ASC_SCSIQ_4;
344 
345 typedef struct asc_q_done_info {
346 	ASC_SCSIQ_2 d2;
347 	ASC_SCSIQ_3 d3;
348 	uchar q_status;
349 	uchar q_no;
350 	uchar cntl;
351 	uchar sense_len;
352 	uchar extra_bytes;
353 	uchar res;
354 	ASC_DCNT remain_bytes;
355 } ASC_QDONE_INFO;
356 
357 typedef struct asc_sg_list {
358 	ASC_PADDR addr;
359 	ASC_DCNT bytes;
360 } ASC_SG_LIST;
361 
362 typedef struct asc_sg_head {
363 	ushort entry_cnt;
364 	ushort queue_cnt;
365 	ushort entry_to_copy;
366 	ushort res;
367 	ASC_SG_LIST sg_list[0];
368 } ASC_SG_HEAD;
369 
370 typedef struct asc_scsi_q {
371 	ASC_SCSIQ_1 q1;
372 	ASC_SCSIQ_2 q2;
373 	uchar *cdbptr;
374 	ASC_SG_HEAD *sg_head;
375 	ushort remain_sg_entry_cnt;
376 	ushort next_sg_index;
377 } ASC_SCSI_Q;
378 
379 typedef struct asc_scsi_req_q {
380 	ASC_SCSIQ_1 r1;
381 	ASC_SCSIQ_2 r2;
382 	uchar *cdbptr;
383 	ASC_SG_HEAD *sg_head;
384 	uchar *sense_ptr;
385 	ASC_SCSIQ_3 r3;
386 	uchar cdb[ASC_MAX_CDB_LEN];
387 	uchar sense[ASC_MIN_SENSE_LEN];
388 } ASC_SCSI_REQ_Q;
389 
390 typedef struct asc_scsi_bios_req_q {
391 	ASC_SCSIQ_1 r1;
392 	ASC_SCSIQ_2 r2;
393 	uchar *cdbptr;
394 	ASC_SG_HEAD *sg_head;
395 	uchar *sense_ptr;
396 	ASC_SCSIQ_3 r3;
397 	uchar cdb[ASC_MAX_CDB_LEN];
398 	uchar sense[ASC_MIN_SENSE_LEN];
399 } ASC_SCSI_BIOS_REQ_Q;
400 
401 typedef struct asc_risc_q {
402 	uchar fwd;
403 	uchar bwd;
404 	ASC_SCSIQ_1 i1;
405 	ASC_SCSIQ_2 i2;
406 	ASC_SCSIQ_3 i3;
407 	ASC_SCSIQ_4 i4;
408 } ASC_RISC_Q;
409 
410 typedef struct asc_sg_list_q {
411 	uchar seq_no;
412 	uchar q_no;
413 	uchar cntl;
414 	uchar sg_head_qp;
415 	uchar sg_list_cnt;
416 	uchar sg_cur_list_cnt;
417 } ASC_SG_LIST_Q;
418 
419 typedef struct asc_risc_sg_list_q {
420 	uchar fwd;
421 	uchar bwd;
422 	ASC_SG_LIST_Q sg;
423 	ASC_SG_LIST sg_list[7];
424 } ASC_RISC_SG_LIST_Q;
425 
426 #define ASCQ_ERR_Q_STATUS             0x0D
427 #define ASCQ_ERR_CUR_QNG              0x17
428 #define ASCQ_ERR_SG_Q_LINKS           0x18
429 #define ASCQ_ERR_ISR_RE_ENTRY         0x1A
430 #define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
431 #define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
432 
433 /*
434  * Warning code values are set in ASC_DVC_VAR  'warn_code'.
435  */
436 #define ASC_WARN_NO_ERROR             0x0000
437 #define ASC_WARN_IO_PORT_ROTATE       0x0001
438 #define ASC_WARN_EEPROM_CHKSUM        0x0002
439 #define ASC_WARN_IRQ_MODIFIED         0x0004
440 #define ASC_WARN_AUTO_CONFIG          0x0008
441 #define ASC_WARN_CMD_QNG_CONFLICT     0x0010
442 #define ASC_WARN_EEPROM_RECOVER       0x0020
443 #define ASC_WARN_CFG_MSW_RECOVER      0x0040
444 
445 /*
446  * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
447  */
448 #define ASC_IERR_NO_CARRIER		0x0001	/* No more carrier memory */
449 #define ASC_IERR_MCODE_CHKSUM		0x0002	/* micro code check sum error */
450 #define ASC_IERR_SET_PC_ADDR		0x0004
451 #define ASC_IERR_START_STOP_CHIP	0x0008	/* start/stop chip failed */
452 #define ASC_IERR_ILLEGAL_CONNECTION	0x0010	/* Illegal cable connection */
453 #define ASC_IERR_SINGLE_END_DEVICE	0x0020	/* SE device on DIFF bus */
454 #define ASC_IERR_REVERSED_CABLE		0x0040	/* Narrow flat cable reversed */
455 #define ASC_IERR_SET_SCSI_ID		0x0080	/* set SCSI ID failed */
456 #define ASC_IERR_HVD_DEVICE		0x0100	/* HVD device on LVD port */
457 #define ASC_IERR_BAD_SIGNATURE		0x0200	/* signature not found */
458 #define ASC_IERR_NO_BUS_TYPE		0x0400
459 #define ASC_IERR_BIST_PRE_TEST		0x0800	/* BIST pre-test error */
460 #define ASC_IERR_BIST_RAM_TEST		0x1000	/* BIST RAM test error */
461 #define ASC_IERR_BAD_CHIPTYPE		0x2000	/* Invalid chip_type setting */
462 
463 #define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
464 #define ASC_MIN_TAG_Q_PER_DVC   (0x04)
465 #define ASC_MIN_FREE_Q        (0x02)
466 #define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
467 #define ASC_MAX_TOTAL_QNG 240
468 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
469 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
470 #define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
471 #define ASC_MAX_INRAM_TAG_QNG   16
472 #define ASC_IOADR_GAP   0x10
473 #define ASC_SYN_MAX_OFFSET         0x0F
474 #define ASC_DEF_SDTR_OFFSET        0x0F
475 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
476 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
477 
478 /* The narrow chip only supports a limited selection of transfer rates.
479  * These are encoded in the range 0..7 or 0..15 depending whether the chip
480  * is Ultra-capable or not.  These tables let us convert from one to the other.
481  */
482 static const unsigned char asc_syn_xfer_period[8] = {
483 	25, 30, 35, 40, 50, 60, 70, 85
484 };
485 
486 static const unsigned char asc_syn_ultra_xfer_period[16] = {
487 	12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
488 };
489 
490 typedef struct ext_msg {
491 	uchar msg_type;
492 	uchar msg_len;
493 	uchar msg_req;
494 	union {
495 		struct {
496 			uchar sdtr_xfer_period;
497 			uchar sdtr_req_ack_offset;
498 		} sdtr;
499 		struct {
500 			uchar wdtr_width;
501 		} wdtr;
502 		struct {
503 			uchar mdp_b3;
504 			uchar mdp_b2;
505 			uchar mdp_b1;
506 			uchar mdp_b0;
507 		} mdp;
508 	} u_ext_msg;
509 	uchar res;
510 } EXT_MSG;
511 
512 #define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
513 #define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
514 #define wdtr_width      u_ext_msg.wdtr.wdtr_width
515 #define mdp_b3          u_ext_msg.mdp_b3
516 #define mdp_b2          u_ext_msg.mdp_b2
517 #define mdp_b1          u_ext_msg.mdp_b1
518 #define mdp_b0          u_ext_msg.mdp_b0
519 
520 typedef struct asc_dvc_cfg {
521 	ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
522 	ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
523 	ASC_SCSI_BIT_ID_TYPE disc_enable;
524 	ASC_SCSI_BIT_ID_TYPE sdtr_enable;
525 	uchar chip_scsi_id;
526 	uchar isa_dma_speed;
527 	uchar isa_dma_channel;
528 	uchar chip_version;
529 	ushort mcode_date;
530 	ushort mcode_version;
531 	uchar max_tag_qng[ASC_MAX_TID + 1];
532 	uchar sdtr_period_offset[ASC_MAX_TID + 1];
533 	uchar adapter_info[6];
534 } ASC_DVC_CFG;
535 
536 #define ASC_DEF_DVC_CNTL       0xFFFF
537 #define ASC_DEF_CHIP_SCSI_ID   7
538 #define ASC_DEF_ISA_DMA_SPEED  4
539 #define ASC_INIT_STATE_BEG_GET_CFG   0x0001
540 #define ASC_INIT_STATE_END_GET_CFG   0x0002
541 #define ASC_INIT_STATE_BEG_SET_CFG   0x0004
542 #define ASC_INIT_STATE_END_SET_CFG   0x0008
543 #define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
544 #define ASC_INIT_STATE_END_LOAD_MC   0x0020
545 #define ASC_INIT_STATE_BEG_INQUIRY   0x0040
546 #define ASC_INIT_STATE_END_INQUIRY   0x0080
547 #define ASC_INIT_RESET_SCSI_DONE     0x0100
548 #define ASC_INIT_STATE_WITHOUT_EEP   0x8000
549 #define ASC_BUG_FIX_IF_NOT_DWB       0x0001
550 #define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
551 #define ASC_MIN_TAGGED_CMD  7
552 #define ASC_MAX_SCSI_RESET_WAIT      30
553 #define ASC_OVERRUN_BSIZE		64
554 
555 struct asc_dvc_var;		/* Forward Declaration. */
556 
557 typedef struct asc_dvc_var {
558 	PortAddr iop_base;
559 	ushort err_code;
560 	ushort dvc_cntl;
561 	ushort bug_fix_cntl;
562 	ushort bus_type;
563 	ASC_SCSI_BIT_ID_TYPE init_sdtr;
564 	ASC_SCSI_BIT_ID_TYPE sdtr_done;
565 	ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
566 	ASC_SCSI_BIT_ID_TYPE unit_not_ready;
567 	ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
568 	ASC_SCSI_BIT_ID_TYPE start_motor;
569 	uchar *overrun_buf;
570 	dma_addr_t overrun_dma;
571 	uchar scsi_reset_wait;
572 	uchar chip_no;
573 	char is_in_int;
574 	uchar max_total_qng;
575 	uchar cur_total_qng;
576 	uchar in_critical_cnt;
577 	uchar last_q_shortage;
578 	ushort init_state;
579 	uchar cur_dvc_qng[ASC_MAX_TID + 1];
580 	uchar max_dvc_qng[ASC_MAX_TID + 1];
581 	ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
582 	ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
583 	const uchar *sdtr_period_tbl;
584 	ASC_DVC_CFG *cfg;
585 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
586 	char redo_scam;
587 	ushort res2;
588 	uchar dos_int13_table[ASC_MAX_TID + 1];
589 	ASC_DCNT max_dma_count;
590 	ASC_SCSI_BIT_ID_TYPE no_scam;
591 	ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
592 	uchar min_sdtr_index;
593 	uchar max_sdtr_index;
594 	struct asc_board *drv_ptr;
595 	int ptr_map_count;
596 	void **ptr_map;
597 	ASC_DCNT uc_break;
598 } ASC_DVC_VAR;
599 
600 typedef struct asc_dvc_inq_info {
601 	uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
602 } ASC_DVC_INQ_INFO;
603 
604 typedef struct asc_cap_info {
605 	ASC_DCNT lba;
606 	ASC_DCNT blk_size;
607 } ASC_CAP_INFO;
608 
609 typedef struct asc_cap_info_array {
610 	ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
611 } ASC_CAP_INFO_ARRAY;
612 
613 #define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
614 #define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
615 #define ASC_CNTL_INITIATOR         (ushort)0x0001
616 #define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
617 #define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
618 #define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
619 #define ASC_CNTL_NO_SCAM           (ushort)0x0010
620 #define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
621 #define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
622 #define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
623 #define ASC_CNTL_RESET_SCSI        (ushort)0x0200
624 #define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
625 #define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
626 #define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
627 #define ASC_CNTL_BURST_MODE        (ushort)0x2000
628 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
629 #define ASC_EEP_DVC_CFG_BEG_VL    2
630 #define ASC_EEP_MAX_DVC_ADDR_VL   15
631 #define ASC_EEP_DVC_CFG_BEG      32
632 #define ASC_EEP_MAX_DVC_ADDR     45
633 #define ASC_EEP_MAX_RETRY        20
634 
635 /*
636  * These macros keep the chip SCSI id and ISA DMA speed
637  * bitfields in board order. C bitfields aren't portable
638  * between big and little-endian platforms so they are
639  * not used.
640  */
641 
642 #define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
643 #define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
644 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \
645    ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
646 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \
647    ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
648 
649 typedef struct asceep_config {
650 	ushort cfg_lsw;
651 	ushort cfg_msw;
652 	uchar init_sdtr;
653 	uchar disc_enable;
654 	uchar use_cmd_qng;
655 	uchar start_motor;
656 	uchar max_total_qng;
657 	uchar max_tag_qng;
658 	uchar bios_scan;
659 	uchar power_up_wait;
660 	uchar no_scam;
661 	uchar id_speed;		/* low order 4 bits is chip scsi id */
662 	/* high order 4 bits is isa dma speed */
663 	uchar dos_int13_table[ASC_MAX_TID + 1];
664 	uchar adapter_info[6];
665 	ushort cntl;
666 	ushort chksum;
667 } ASCEEP_CONFIG;
668 
669 #define ASC_EEP_CMD_READ          0x80
670 #define ASC_EEP_CMD_WRITE         0x40
671 #define ASC_EEP_CMD_WRITE_ABLE    0x30
672 #define ASC_EEP_CMD_WRITE_DISABLE 0x00
673 #define ASCV_MSGOUT_BEG         0x0000
674 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
675 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
676 #define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
677 #define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
678 #define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
679 #define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
680 #define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
681 #define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
682 #define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
683 #define ASCV_BREAK_ADDR           (ushort)0x0028
684 #define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
685 #define ASCV_BREAK_CONTROL        (ushort)0x002C
686 #define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
687 
688 #define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
689 #define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
690 #define ASCV_MCODE_SIZE_W     (ushort)0x0034
691 #define ASCV_STOP_CODE_B      (ushort)0x0036
692 #define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
693 #define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
694 #define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
695 #define ASCV_HALTCODE_W       (ushort)0x0040
696 #define ASCV_CHKSUM_W         (ushort)0x0042
697 #define ASCV_MC_DATE_W        (ushort)0x0044
698 #define ASCV_MC_VER_W         (ushort)0x0046
699 #define ASCV_NEXTRDY_B        (ushort)0x0048
700 #define ASCV_DONENEXT_B       (ushort)0x0049
701 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
702 #define ASCV_SCSIBUSY_B       (ushort)0x004B
703 #define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
704 #define ASCV_CURCDB_B         (ushort)0x004D
705 #define ASCV_RCLUN_B          (ushort)0x004E
706 #define ASCV_BUSY_QHEAD_B     (ushort)0x004F
707 #define ASCV_DISC1_QHEAD_B    (ushort)0x0050
708 #define ASCV_DISC_ENABLE_B    (ushort)0x0052
709 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
710 #define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
711 #define ASCV_MCODE_CNTL_B     (ushort)0x0056
712 #define ASCV_NULL_TARGET_B    (ushort)0x0057
713 #define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
714 #define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
715 #define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
716 #define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
717 #define ASCV_HOST_FLAG_B      (ushort)0x005D
718 #define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
719 #define ASCV_VER_SERIAL_B     (ushort)0x0065
720 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066
721 #define ASCV_WTM_FLAG_B       (ushort)0x0068
722 #define ASCV_RISC_FLAG_B      (ushort)0x006A
723 #define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
724 #define ASC_HOST_FLAG_IN_ISR        0x01
725 #define ASC_HOST_FLAG_ACK_INT       0x02
726 #define ASC_RISC_FLAG_GEN_INT      0x01
727 #define ASC_RISC_FLAG_REQ_SG_LIST  0x02
728 #define IOP_CTRL         (0x0F)
729 #define IOP_STATUS       (0x0E)
730 #define IOP_INT_ACK      IOP_STATUS
731 #define IOP_REG_IFC      (0x0D)
732 #define IOP_SYN_OFFSET    (0x0B)
733 #define IOP_EXTRA_CONTROL (0x0D)
734 #define IOP_REG_PC        (0x0C)
735 #define IOP_RAM_ADDR      (0x0A)
736 #define IOP_RAM_DATA      (0x08)
737 #define IOP_EEP_DATA      (0x06)
738 #define IOP_EEP_CMD       (0x07)
739 #define IOP_VERSION       (0x03)
740 #define IOP_CONFIG_HIGH   (0x04)
741 #define IOP_CONFIG_LOW    (0x02)
742 #define IOP_SIG_BYTE      (0x01)
743 #define IOP_SIG_WORD      (0x00)
744 #define IOP_REG_DC1      (0x0E)
745 #define IOP_REG_DC0      (0x0C)
746 #define IOP_REG_SB       (0x0B)
747 #define IOP_REG_DA1      (0x0A)
748 #define IOP_REG_DA0      (0x08)
749 #define IOP_REG_SC       (0x09)
750 #define IOP_DMA_SPEED    (0x07)
751 #define IOP_REG_FLAG     (0x07)
752 #define IOP_FIFO_H       (0x06)
753 #define IOP_FIFO_L       (0x04)
754 #define IOP_REG_ID       (0x05)
755 #define IOP_REG_QP       (0x03)
756 #define IOP_REG_IH       (0x02)
757 #define IOP_REG_IX       (0x01)
758 #define IOP_REG_AX       (0x00)
759 #define IFC_REG_LOCK      (0x00)
760 #define IFC_REG_UNLOCK    (0x09)
761 #define IFC_WR_EN_FILTER  (0x10)
762 #define IFC_RD_NO_EEPROM  (0x10)
763 #define IFC_SLEW_RATE     (0x20)
764 #define IFC_ACT_NEG       (0x40)
765 #define IFC_INP_FILTER    (0x80)
766 #define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
767 #define SC_SEL   (uchar)(0x80)
768 #define SC_BSY   (uchar)(0x40)
769 #define SC_ACK   (uchar)(0x20)
770 #define SC_REQ   (uchar)(0x10)
771 #define SC_ATN   (uchar)(0x08)
772 #define SC_IO    (uchar)(0x04)
773 #define SC_CD    (uchar)(0x02)
774 #define SC_MSG   (uchar)(0x01)
775 #define SEC_SCSI_CTL         (uchar)(0x80)
776 #define SEC_ACTIVE_NEGATE    (uchar)(0x40)
777 #define SEC_SLEW_RATE        (uchar)(0x20)
778 #define SEC_ENABLE_FILTER    (uchar)(0x10)
779 #define ASC_HALT_EXTMSG_IN     (ushort)0x8000
780 #define ASC_HALT_CHK_CONDITION (ushort)0x8100
781 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
782 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
783 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
784 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000
785 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
786 #define ASC_MAX_QNO        0xF8
787 #define ASC_DATA_SEC_BEG   (ushort)0x0080
788 #define ASC_DATA_SEC_END   (ushort)0x0080
789 #define ASC_CODE_SEC_BEG   (ushort)0x0080
790 #define ASC_CODE_SEC_END   (ushort)0x0080
791 #define ASC_QADR_BEG       (0x4000)
792 #define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
793 #define ASC_QADR_END       (ushort)0x7FFF
794 #define ASC_QLAST_ADR      (ushort)0x7FC0
795 #define ASC_QBLK_SIZE      0x40
796 #define ASC_BIOS_DATA_QBEG 0xF8
797 #define ASC_MIN_ACTIVE_QNO 0x01
798 #define ASC_QLINK_END      0xFF
799 #define ASC_EEPROM_WORDS   0x10
800 #define ASC_MAX_MGS_LEN    0x10
801 #define ASC_BIOS_ADDR_DEF  0xDC00
802 #define ASC_BIOS_SIZE      0x3800
803 #define ASC_BIOS_RAM_OFF   0x3800
804 #define ASC_BIOS_RAM_SIZE  0x800
805 #define ASC_BIOS_MIN_ADDR  0xC000
806 #define ASC_BIOS_MAX_ADDR  0xEC00
807 #define ASC_BIOS_BANK_SIZE 0x0400
808 #define ASC_MCODE_START_ADDR  0x0080
809 #define ASC_CFG0_HOST_INT_ON    0x0020
810 #define ASC_CFG0_BIOS_ON        0x0040
811 #define ASC_CFG0_VERA_BURST_ON  0x0080
812 #define ASC_CFG0_SCSI_PARITY_ON 0x0800
813 #define ASC_CFG1_SCSI_TARGET_ON 0x0080
814 #define ASC_CFG1_LRAM_8BITS_ON  0x0800
815 #define ASC_CFG_MSW_CLR_MASK    0x3080
816 #define CSW_TEST1             (ASC_CS_TYPE)0x8000
817 #define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
818 #define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
819 #define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
820 #define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
821 #define CSW_TEST2             (ASC_CS_TYPE)0x0400
822 #define CSW_TEST3             (ASC_CS_TYPE)0x0200
823 #define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
824 #define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
825 #define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
826 #define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
827 #define CSW_HALTED            (ASC_CS_TYPE)0x0010
828 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
829 #define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
830 #define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
831 #define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
832 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
833 #define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
834 #define CIW_TEST1        (ASC_CS_TYPE)0x0200
835 #define CIW_TEST2        (ASC_CS_TYPE)0x0400
836 #define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
837 #define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
838 #define CC_CHIP_RESET   (uchar)0x80
839 #define CC_SCSI_RESET   (uchar)0x40
840 #define CC_HALT         (uchar)0x20
841 #define CC_SINGLE_STEP  (uchar)0x10
842 #define CC_DMA_ABLE     (uchar)0x08
843 #define CC_TEST         (uchar)0x04
844 #define CC_BANK_ONE     (uchar)0x02
845 #define CC_DIAG         (uchar)0x01
846 #define ASC_1000_ID0W      0x04C1
847 #define ASC_1000_ID0W_FIX  0x00C1
848 #define ASC_1000_ID1B      0x25
849 #define ASC_EISA_REV_IOP_MASK  (0x0C83)
850 #define ASC_EISA_CFG_IOP_MASK  (0x0C86)
851 #define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
852 #define INS_HALTINT        (ushort)0x6281
853 #define INS_HALT           (ushort)0x6280
854 #define INS_SINT           (ushort)0x6200
855 #define INS_RFLAG_WTM      (ushort)0x7380
856 #define ASC_MC_SAVE_CODE_WSIZE  0x500
857 #define ASC_MC_SAVE_DATA_WSIZE  0x40
858 
859 typedef struct asc_mc_saved {
860 	ushort data[ASC_MC_SAVE_DATA_WSIZE];
861 	ushort code[ASC_MC_SAVE_CODE_WSIZE];
862 } ASC_MC_SAVED;
863 
864 #define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
865 #define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
866 #define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
867 #define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
868 #define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
869 #define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
870 #define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
871 #define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
872 #define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
873 #define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
874 #define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
875 #define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
876 #define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
877 #define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
878 #define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
879 #define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
880 #define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
881 #define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
882 #define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
883 #define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
884 #define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
885 #define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
886 #define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
887 #define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
888 #define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
889 #define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
890 #define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
891 #define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
892 #define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
893 #define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
894 #define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
895 #define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
896 #define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
897 #define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
898 #define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
899 #define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
900 #define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
901 #define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
902 #define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
903 #define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
904 #define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
905 #define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
906 #define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
907 #define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
908 #define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
909 #define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
910 #define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
911 #define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
912 #define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
913 #define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
914 #define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
915 #define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
916 #define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
917 #define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
918 #define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
919 #define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
920 #define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
921 #define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
922 #define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
923 #define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
924 #define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
925 #define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
926 #define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
927 #define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
928 #define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
929 #define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
930 #define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
931 
932 /*
933  * Portable Data Types
934  *
935  * Any instance where a 32-bit long or pointer type is assumed
936  * for precision or HW defined structures, the following define
937  * types must be used. In Linux the char, short, and int types
938  * are all consistent at 8, 16, and 32 bits respectively. Pointers
939  * and long types are 64 bits on Alpha and UltraSPARC.
940  */
941 #define ADV_PADDR __u32		/* Physical address data type. */
942 #define ADV_VADDR __u32		/* Virtual address data type. */
943 #define ADV_DCNT  __u32		/* Unsigned Data count type. */
944 #define ADV_SDCNT __s32		/* Signed Data count type. */
945 
946 /*
947  * These macros are used to convert a virtual address to a
948  * 32-bit value. This currently can be used on Linux Alpha
949  * which uses 64-bit virtual address but a 32-bit bus address.
950  * This is likely to break in the future, but doing this now
951  * will give us time to change the HW and FW to handle 64-bit
952  * addresses.
953  */
954 #define ADV_VADDR_TO_U32   virt_to_bus
955 #define ADV_U32_TO_VADDR   bus_to_virt
956 
957 #define AdvPortAddr  void __iomem *	/* Virtual memory address size */
958 
959 /*
960  * Define Adv Library required memory access macros.
961  */
962 #define ADV_MEM_READB(addr) readb(addr)
963 #define ADV_MEM_READW(addr) readw(addr)
964 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
965 #define ADV_MEM_WRITEW(addr, word) writew(word, addr)
966 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
967 
968 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15)
969 
970 /*
971  * Define total number of simultaneous maximum element scatter-gather
972  * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
973  * maximum number of outstanding commands per wide host adapter. Each
974  * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
975  * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
976  * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
977  * structures or 255 scatter-gather elements.
978  */
979 #define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
980 
981 /*
982  * Define maximum number of scatter-gather elements per request.
983  */
984 #define ADV_MAX_SG_LIST         255
985 #define NO_OF_SG_PER_BLOCK              15
986 
987 #define ADV_EEP_DVC_CFG_BEGIN           (0x00)
988 #define ADV_EEP_DVC_CFG_END             (0x15)
989 #define ADV_EEP_DVC_CTL_BEGIN           (0x16)	/* location of OEM name */
990 #define ADV_EEP_MAX_WORD_ADDR           (0x1E)
991 
992 #define ADV_EEP_DELAY_MS                100
993 
994 #define ADV_EEPROM_BIG_ENDIAN          0x8000	/* EEPROM Bit 15 */
995 #define ADV_EEPROM_BIOS_ENABLE         0x4000	/* EEPROM Bit 14 */
996 /*
997  * For the ASC3550 Bit 13 is Termination Polarity control bit.
998  * For later ICs Bit 13 controls whether the CIS (Card Information
999  * Service Section) is loaded from EEPROM.
1000  */
1001 #define ADV_EEPROM_TERM_POL            0x2000	/* EEPROM Bit 13 */
1002 #define ADV_EEPROM_CIS_LD              0x2000	/* EEPROM Bit 13 */
1003 /*
1004  * ASC38C1600 Bit 11
1005  *
1006  * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
1007  * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
1008  * Function 0 will specify INT B.
1009  *
1010  * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
1011  * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
1012  * Function 1 will specify INT A.
1013  */
1014 #define ADV_EEPROM_INTAB               0x0800	/* EEPROM Bit 11 */
1015 
1016 typedef struct adveep_3550_config {
1017 	/* Word Offset, Description */
1018 
1019 	ushort cfg_lsw;		/* 00 power up initialization */
1020 	/*  bit 13 set - Term Polarity Control */
1021 	/*  bit 14 set - BIOS Enable */
1022 	/*  bit 15 set - Big Endian Mode */
1023 	ushort cfg_msw;		/* 01 unused      */
1024 	ushort disc_enable;	/* 02 disconnect enable */
1025 	ushort wdtr_able;	/* 03 Wide DTR able */
1026 	ushort sdtr_able;	/* 04 Synchronous DTR able */
1027 	ushort start_motor;	/* 05 send start up motor */
1028 	ushort tagqng_able;	/* 06 tag queuing able */
1029 	ushort bios_scan;	/* 07 BIOS device control */
1030 	ushort scam_tolerant;	/* 08 no scam */
1031 
1032 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1033 	uchar bios_boot_delay;	/*    power up wait */
1034 
1035 	uchar scsi_reset_delay;	/* 10 reset delay */
1036 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1037 	/*    high nibble is lun */
1038 	/*    low nibble is scsi id */
1039 
1040 	uchar termination;	/* 11 0 - automatic */
1041 	/*    1 - low off / high off */
1042 	/*    2 - low off / high on */
1043 	/*    3 - low on  / high on */
1044 	/*    There is no low on  / high off */
1045 
1046 	uchar reserved1;	/*    reserved byte (not used) */
1047 
1048 	ushort bios_ctrl;	/* 12 BIOS control bits */
1049 	/*  bit 0  BIOS don't act as initiator. */
1050 	/*  bit 1  BIOS > 1 GB support */
1051 	/*  bit 2  BIOS > 2 Disk Support */
1052 	/*  bit 3  BIOS don't support removables */
1053 	/*  bit 4  BIOS support bootable CD */
1054 	/*  bit 5  BIOS scan enabled */
1055 	/*  bit 6  BIOS support multiple LUNs */
1056 	/*  bit 7  BIOS display of message */
1057 	/*  bit 8  SCAM disabled */
1058 	/*  bit 9  Reset SCSI bus during init. */
1059 	/*  bit 10 */
1060 	/*  bit 11 No verbose initialization. */
1061 	/*  bit 12 SCSI parity enabled */
1062 	/*  bit 13 */
1063 	/*  bit 14 */
1064 	/*  bit 15 */
1065 	ushort ultra_able;	/* 13 ULTRA speed able */
1066 	ushort reserved2;	/* 14 reserved */
1067 	uchar max_host_qng;	/* 15 maximum host queuing */
1068 	uchar max_dvc_qng;	/*    maximum per device queuing */
1069 	ushort dvc_cntl;	/* 16 control bit for driver */
1070 	ushort bug_fix;		/* 17 control bit for bug fix */
1071 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1072 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1073 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1074 	ushort check_sum;	/* 21 EEP check sum */
1075 	uchar oem_name[16];	/* 22 OEM name */
1076 	ushort dvc_err_code;	/* 30 last device driver error code */
1077 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1078 	ushort adv_err_addr;	/* 32 last uc error address */
1079 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1080 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1081 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1082 	ushort num_of_err;	/* 36 number of error */
1083 } ADVEEP_3550_CONFIG;
1084 
1085 typedef struct adveep_38C0800_config {
1086 	/* Word Offset, Description */
1087 
1088 	ushort cfg_lsw;		/* 00 power up initialization */
1089 	/*  bit 13 set - Load CIS */
1090 	/*  bit 14 set - BIOS Enable */
1091 	/*  bit 15 set - Big Endian Mode */
1092 	ushort cfg_msw;		/* 01 unused      */
1093 	ushort disc_enable;	/* 02 disconnect enable */
1094 	ushort wdtr_able;	/* 03 Wide DTR able */
1095 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1096 	ushort start_motor;	/* 05 send start up motor */
1097 	ushort tagqng_able;	/* 06 tag queuing able */
1098 	ushort bios_scan;	/* 07 BIOS device control */
1099 	ushort scam_tolerant;	/* 08 no scam */
1100 
1101 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1102 	uchar bios_boot_delay;	/*    power up wait */
1103 
1104 	uchar scsi_reset_delay;	/* 10 reset delay */
1105 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1106 	/*    high nibble is lun */
1107 	/*    low nibble is scsi id */
1108 
1109 	uchar termination_se;	/* 11 0 - automatic */
1110 	/*    1 - low off / high off */
1111 	/*    2 - low off / high on */
1112 	/*    3 - low on  / high on */
1113 	/*    There is no low on  / high off */
1114 
1115 	uchar termination_lvd;	/* 11 0 - automatic */
1116 	/*    1 - low off / high off */
1117 	/*    2 - low off / high on */
1118 	/*    3 - low on  / high on */
1119 	/*    There is no low on  / high off */
1120 
1121 	ushort bios_ctrl;	/* 12 BIOS control bits */
1122 	/*  bit 0  BIOS don't act as initiator. */
1123 	/*  bit 1  BIOS > 1 GB support */
1124 	/*  bit 2  BIOS > 2 Disk Support */
1125 	/*  bit 3  BIOS don't support removables */
1126 	/*  bit 4  BIOS support bootable CD */
1127 	/*  bit 5  BIOS scan enabled */
1128 	/*  bit 6  BIOS support multiple LUNs */
1129 	/*  bit 7  BIOS display of message */
1130 	/*  bit 8  SCAM disabled */
1131 	/*  bit 9  Reset SCSI bus during init. */
1132 	/*  bit 10 */
1133 	/*  bit 11 No verbose initialization. */
1134 	/*  bit 12 SCSI parity enabled */
1135 	/*  bit 13 */
1136 	/*  bit 14 */
1137 	/*  bit 15 */
1138 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1139 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1140 	uchar max_host_qng;	/* 15 maximum host queueing */
1141 	uchar max_dvc_qng;	/*    maximum per device queuing */
1142 	ushort dvc_cntl;	/* 16 control bit for driver */
1143 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1144 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1145 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1146 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1147 	ushort check_sum;	/* 21 EEP check sum */
1148 	uchar oem_name[16];	/* 22 OEM name */
1149 	ushort dvc_err_code;	/* 30 last device driver error code */
1150 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1151 	ushort adv_err_addr;	/* 32 last uc error address */
1152 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1153 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1154 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1155 	ushort reserved36;	/* 36 reserved */
1156 	ushort reserved37;	/* 37 reserved */
1157 	ushort reserved38;	/* 38 reserved */
1158 	ushort reserved39;	/* 39 reserved */
1159 	ushort reserved40;	/* 40 reserved */
1160 	ushort reserved41;	/* 41 reserved */
1161 	ushort reserved42;	/* 42 reserved */
1162 	ushort reserved43;	/* 43 reserved */
1163 	ushort reserved44;	/* 44 reserved */
1164 	ushort reserved45;	/* 45 reserved */
1165 	ushort reserved46;	/* 46 reserved */
1166 	ushort reserved47;	/* 47 reserved */
1167 	ushort reserved48;	/* 48 reserved */
1168 	ushort reserved49;	/* 49 reserved */
1169 	ushort reserved50;	/* 50 reserved */
1170 	ushort reserved51;	/* 51 reserved */
1171 	ushort reserved52;	/* 52 reserved */
1172 	ushort reserved53;	/* 53 reserved */
1173 	ushort reserved54;	/* 54 reserved */
1174 	ushort reserved55;	/* 55 reserved */
1175 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1176 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1177 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1178 	ushort subsysid;	/* 59 SubSystem ID */
1179 	ushort reserved60;	/* 60 reserved */
1180 	ushort reserved61;	/* 61 reserved */
1181 	ushort reserved62;	/* 62 reserved */
1182 	ushort reserved63;	/* 63 reserved */
1183 } ADVEEP_38C0800_CONFIG;
1184 
1185 typedef struct adveep_38C1600_config {
1186 	/* Word Offset, Description */
1187 
1188 	ushort cfg_lsw;		/* 00 power up initialization */
1189 	/*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1190 	/*       clear - Func. 0 INTA, Func. 1 INTB */
1191 	/*  bit 13 set - Load CIS */
1192 	/*  bit 14 set - BIOS Enable */
1193 	/*  bit 15 set - Big Endian Mode */
1194 	ushort cfg_msw;		/* 01 unused */
1195 	ushort disc_enable;	/* 02 disconnect enable */
1196 	ushort wdtr_able;	/* 03 Wide DTR able */
1197 	ushort sdtr_speed1;	/* 04 SDTR Speed TID 0-3 */
1198 	ushort start_motor;	/* 05 send start up motor */
1199 	ushort tagqng_able;	/* 06 tag queuing able */
1200 	ushort bios_scan;	/* 07 BIOS device control */
1201 	ushort scam_tolerant;	/* 08 no scam */
1202 
1203 	uchar adapter_scsi_id;	/* 09 Host Adapter ID */
1204 	uchar bios_boot_delay;	/*    power up wait */
1205 
1206 	uchar scsi_reset_delay;	/* 10 reset delay */
1207 	uchar bios_id_lun;	/*    first boot device scsi id & lun */
1208 	/*    high nibble is lun */
1209 	/*    low nibble is scsi id */
1210 
1211 	uchar termination_se;	/* 11 0 - automatic */
1212 	/*    1 - low off / high off */
1213 	/*    2 - low off / high on */
1214 	/*    3 - low on  / high on */
1215 	/*    There is no low on  / high off */
1216 
1217 	uchar termination_lvd;	/* 11 0 - automatic */
1218 	/*    1 - low off / high off */
1219 	/*    2 - low off / high on */
1220 	/*    3 - low on  / high on */
1221 	/*    There is no low on  / high off */
1222 
1223 	ushort bios_ctrl;	/* 12 BIOS control bits */
1224 	/*  bit 0  BIOS don't act as initiator. */
1225 	/*  bit 1  BIOS > 1 GB support */
1226 	/*  bit 2  BIOS > 2 Disk Support */
1227 	/*  bit 3  BIOS don't support removables */
1228 	/*  bit 4  BIOS support bootable CD */
1229 	/*  bit 5  BIOS scan enabled */
1230 	/*  bit 6  BIOS support multiple LUNs */
1231 	/*  bit 7  BIOS display of message */
1232 	/*  bit 8  SCAM disabled */
1233 	/*  bit 9  Reset SCSI bus during init. */
1234 	/*  bit 10 Basic Integrity Checking disabled */
1235 	/*  bit 11 No verbose initialization. */
1236 	/*  bit 12 SCSI parity enabled */
1237 	/*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1238 	/*  bit 14 */
1239 	/*  bit 15 */
1240 	ushort sdtr_speed2;	/* 13 SDTR speed TID 4-7 */
1241 	ushort sdtr_speed3;	/* 14 SDTR speed TID 8-11 */
1242 	uchar max_host_qng;	/* 15 maximum host queueing */
1243 	uchar max_dvc_qng;	/*    maximum per device queuing */
1244 	ushort dvc_cntl;	/* 16 control bit for driver */
1245 	ushort sdtr_speed4;	/* 17 SDTR speed 4 TID 12-15 */
1246 	ushort serial_number_word1;	/* 18 Board serial number word 1 */
1247 	ushort serial_number_word2;	/* 19 Board serial number word 2 */
1248 	ushort serial_number_word3;	/* 20 Board serial number word 3 */
1249 	ushort check_sum;	/* 21 EEP check sum */
1250 	uchar oem_name[16];	/* 22 OEM name */
1251 	ushort dvc_err_code;	/* 30 last device driver error code */
1252 	ushort adv_err_code;	/* 31 last uc and Adv Lib error code */
1253 	ushort adv_err_addr;	/* 32 last uc error address */
1254 	ushort saved_dvc_err_code;	/* 33 saved last dev. driver error code   */
1255 	ushort saved_adv_err_code;	/* 34 saved last uc and Adv Lib error code */
1256 	ushort saved_adv_err_addr;	/* 35 saved last uc error address         */
1257 	ushort reserved36;	/* 36 reserved */
1258 	ushort reserved37;	/* 37 reserved */
1259 	ushort reserved38;	/* 38 reserved */
1260 	ushort reserved39;	/* 39 reserved */
1261 	ushort reserved40;	/* 40 reserved */
1262 	ushort reserved41;	/* 41 reserved */
1263 	ushort reserved42;	/* 42 reserved */
1264 	ushort reserved43;	/* 43 reserved */
1265 	ushort reserved44;	/* 44 reserved */
1266 	ushort reserved45;	/* 45 reserved */
1267 	ushort reserved46;	/* 46 reserved */
1268 	ushort reserved47;	/* 47 reserved */
1269 	ushort reserved48;	/* 48 reserved */
1270 	ushort reserved49;	/* 49 reserved */
1271 	ushort reserved50;	/* 50 reserved */
1272 	ushort reserved51;	/* 51 reserved */
1273 	ushort reserved52;	/* 52 reserved */
1274 	ushort reserved53;	/* 53 reserved */
1275 	ushort reserved54;	/* 54 reserved */
1276 	ushort reserved55;	/* 55 reserved */
1277 	ushort cisptr_lsw;	/* 56 CIS PTR LSW */
1278 	ushort cisprt_msw;	/* 57 CIS PTR MSW */
1279 	ushort subsysvid;	/* 58 SubSystem Vendor ID */
1280 	ushort subsysid;	/* 59 SubSystem ID */
1281 	ushort reserved60;	/* 60 reserved */
1282 	ushort reserved61;	/* 61 reserved */
1283 	ushort reserved62;	/* 62 reserved */
1284 	ushort reserved63;	/* 63 reserved */
1285 } ADVEEP_38C1600_CONFIG;
1286 
1287 /*
1288  * EEPROM Commands
1289  */
1290 #define ASC_EEP_CMD_DONE             0x0200
1291 
1292 /* bios_ctrl */
1293 #define BIOS_CTRL_BIOS               0x0001
1294 #define BIOS_CTRL_EXTENDED_XLAT      0x0002
1295 #define BIOS_CTRL_GT_2_DISK          0x0004
1296 #define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1297 #define BIOS_CTRL_BOOTABLE_CD        0x0010
1298 #define BIOS_CTRL_MULTIPLE_LUN       0x0040
1299 #define BIOS_CTRL_DISPLAY_MSG        0x0080
1300 #define BIOS_CTRL_NO_SCAM            0x0100
1301 #define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1302 #define BIOS_CTRL_INIT_VERBOSE       0x0800
1303 #define BIOS_CTRL_SCSI_PARITY        0x1000
1304 #define BIOS_CTRL_AIPP_DIS           0x2000
1305 
1306 #define ADV_3550_MEMSIZE   0x2000	/* 8 KB Internal Memory */
1307 
1308 #define ADV_38C0800_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1309 
1310 /*
1311  * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1312  * a special 16K Adv Library and Microcode version. After the issue is
1313  * resolved, should restore 32K support.
1314  *
1315  * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1316  */
1317 #define ADV_38C1600_MEMSIZE  0x4000	/* 16 KB Internal Memory */
1318 
1319 /*
1320  * Byte I/O register address from base of 'iop_base'.
1321  */
1322 #define IOPB_INTR_STATUS_REG    0x00
1323 #define IOPB_CHIP_ID_1          0x01
1324 #define IOPB_INTR_ENABLES       0x02
1325 #define IOPB_CHIP_TYPE_REV      0x03
1326 #define IOPB_RES_ADDR_4         0x04
1327 #define IOPB_RES_ADDR_5         0x05
1328 #define IOPB_RAM_DATA           0x06
1329 #define IOPB_RES_ADDR_7         0x07
1330 #define IOPB_FLAG_REG           0x08
1331 #define IOPB_RES_ADDR_9         0x09
1332 #define IOPB_RISC_CSR           0x0A
1333 #define IOPB_RES_ADDR_B         0x0B
1334 #define IOPB_RES_ADDR_C         0x0C
1335 #define IOPB_RES_ADDR_D         0x0D
1336 #define IOPB_SOFT_OVER_WR       0x0E
1337 #define IOPB_RES_ADDR_F         0x0F
1338 #define IOPB_MEM_CFG            0x10
1339 #define IOPB_RES_ADDR_11        0x11
1340 #define IOPB_GPIO_DATA          0x12
1341 #define IOPB_RES_ADDR_13        0x13
1342 #define IOPB_FLASH_PAGE         0x14
1343 #define IOPB_RES_ADDR_15        0x15
1344 #define IOPB_GPIO_CNTL          0x16
1345 #define IOPB_RES_ADDR_17        0x17
1346 #define IOPB_FLASH_DATA         0x18
1347 #define IOPB_RES_ADDR_19        0x19
1348 #define IOPB_RES_ADDR_1A        0x1A
1349 #define IOPB_RES_ADDR_1B        0x1B
1350 #define IOPB_RES_ADDR_1C        0x1C
1351 #define IOPB_RES_ADDR_1D        0x1D
1352 #define IOPB_RES_ADDR_1E        0x1E
1353 #define IOPB_RES_ADDR_1F        0x1F
1354 #define IOPB_DMA_CFG0           0x20
1355 #define IOPB_DMA_CFG1           0x21
1356 #define IOPB_TICKLE             0x22
1357 #define IOPB_DMA_REG_WR         0x23
1358 #define IOPB_SDMA_STATUS        0x24
1359 #define IOPB_SCSI_BYTE_CNT      0x25
1360 #define IOPB_HOST_BYTE_CNT      0x26
1361 #define IOPB_BYTE_LEFT_TO_XFER  0x27
1362 #define IOPB_BYTE_TO_XFER_0     0x28
1363 #define IOPB_BYTE_TO_XFER_1     0x29
1364 #define IOPB_BYTE_TO_XFER_2     0x2A
1365 #define IOPB_BYTE_TO_XFER_3     0x2B
1366 #define IOPB_ACC_GRP            0x2C
1367 #define IOPB_RES_ADDR_2D        0x2D
1368 #define IOPB_DEV_ID             0x2E
1369 #define IOPB_RES_ADDR_2F        0x2F
1370 #define IOPB_SCSI_DATA          0x30
1371 #define IOPB_RES_ADDR_31        0x31
1372 #define IOPB_RES_ADDR_32        0x32
1373 #define IOPB_SCSI_DATA_HSHK     0x33
1374 #define IOPB_SCSI_CTRL          0x34
1375 #define IOPB_RES_ADDR_35        0x35
1376 #define IOPB_RES_ADDR_36        0x36
1377 #define IOPB_RES_ADDR_37        0x37
1378 #define IOPB_RAM_BIST           0x38
1379 #define IOPB_PLL_TEST           0x39
1380 #define IOPB_PCI_INT_CFG        0x3A
1381 #define IOPB_RES_ADDR_3B        0x3B
1382 #define IOPB_RFIFO_CNT          0x3C
1383 #define IOPB_RES_ADDR_3D        0x3D
1384 #define IOPB_RES_ADDR_3E        0x3E
1385 #define IOPB_RES_ADDR_3F        0x3F
1386 
1387 /*
1388  * Word I/O register address from base of 'iop_base'.
1389  */
1390 #define IOPW_CHIP_ID_0          0x00	/* CID0  */
1391 #define IOPW_CTRL_REG           0x02	/* CC    */
1392 #define IOPW_RAM_ADDR           0x04	/* LA    */
1393 #define IOPW_RAM_DATA           0x06	/* LD    */
1394 #define IOPW_RES_ADDR_08        0x08
1395 #define IOPW_RISC_CSR           0x0A	/* CSR   */
1396 #define IOPW_SCSI_CFG0          0x0C	/* CFG0  */
1397 #define IOPW_SCSI_CFG1          0x0E	/* CFG1  */
1398 #define IOPW_RES_ADDR_10        0x10
1399 #define IOPW_SEL_MASK           0x12	/* SM    */
1400 #define IOPW_RES_ADDR_14        0x14
1401 #define IOPW_FLASH_ADDR         0x16	/* FA    */
1402 #define IOPW_RES_ADDR_18        0x18
1403 #define IOPW_EE_CMD             0x1A	/* EC    */
1404 #define IOPW_EE_DATA            0x1C	/* ED    */
1405 #define IOPW_SFIFO_CNT          0x1E	/* SFC   */
1406 #define IOPW_RES_ADDR_20        0x20
1407 #define IOPW_Q_BASE             0x22	/* QB    */
1408 #define IOPW_QP                 0x24	/* QP    */
1409 #define IOPW_IX                 0x26	/* IX    */
1410 #define IOPW_SP                 0x28	/* SP    */
1411 #define IOPW_PC                 0x2A	/* PC    */
1412 #define IOPW_RES_ADDR_2C        0x2C
1413 #define IOPW_RES_ADDR_2E        0x2E
1414 #define IOPW_SCSI_DATA          0x30	/* SD    */
1415 #define IOPW_SCSI_DATA_HSHK     0x32	/* SDH   */
1416 #define IOPW_SCSI_CTRL          0x34	/* SC    */
1417 #define IOPW_HSHK_CFG           0x36	/* HCFG  */
1418 #define IOPW_SXFR_STATUS        0x36	/* SXS   */
1419 #define IOPW_SXFR_CNTL          0x38	/* SXL   */
1420 #define IOPW_SXFR_CNTH          0x3A	/* SXH   */
1421 #define IOPW_RES_ADDR_3C        0x3C
1422 #define IOPW_RFIFO_DATA         0x3E	/* RFD   */
1423 
1424 /*
1425  * Doubleword I/O register address from base of 'iop_base'.
1426  */
1427 #define IOPDW_RES_ADDR_0         0x00
1428 #define IOPDW_RAM_DATA           0x04
1429 #define IOPDW_RES_ADDR_8         0x08
1430 #define IOPDW_RES_ADDR_C         0x0C
1431 #define IOPDW_RES_ADDR_10        0x10
1432 #define IOPDW_COMMA              0x14
1433 #define IOPDW_COMMB              0x18
1434 #define IOPDW_RES_ADDR_1C        0x1C
1435 #define IOPDW_SDMA_ADDR0         0x20
1436 #define IOPDW_SDMA_ADDR1         0x24
1437 #define IOPDW_SDMA_COUNT         0x28
1438 #define IOPDW_SDMA_ERROR         0x2C
1439 #define IOPDW_RDMA_ADDR0         0x30
1440 #define IOPDW_RDMA_ADDR1         0x34
1441 #define IOPDW_RDMA_COUNT         0x38
1442 #define IOPDW_RDMA_ERROR         0x3C
1443 
1444 #define ADV_CHIP_ID_BYTE         0x25
1445 #define ADV_CHIP_ID_WORD         0x04C1
1446 
1447 #define ADV_INTR_ENABLE_HOST_INTR                   0x01
1448 #define ADV_INTR_ENABLE_SEL_INTR                    0x02
1449 #define ADV_INTR_ENABLE_DPR_INTR                    0x04
1450 #define ADV_INTR_ENABLE_RTA_INTR                    0x08
1451 #define ADV_INTR_ENABLE_RMA_INTR                    0x10
1452 #define ADV_INTR_ENABLE_RST_INTR                    0x20
1453 #define ADV_INTR_ENABLE_DPE_INTR                    0x40
1454 #define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1455 
1456 #define ADV_INTR_STATUS_INTRA            0x01
1457 #define ADV_INTR_STATUS_INTRB            0x02
1458 #define ADV_INTR_STATUS_INTRC            0x04
1459 
1460 #define ADV_RISC_CSR_STOP           (0x0000)
1461 #define ADV_RISC_TEST_COND          (0x2000)
1462 #define ADV_RISC_CSR_RUN            (0x4000)
1463 #define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1464 
1465 #define ADV_CTRL_REG_HOST_INTR      0x0100
1466 #define ADV_CTRL_REG_SEL_INTR       0x0200
1467 #define ADV_CTRL_REG_DPR_INTR       0x0400
1468 #define ADV_CTRL_REG_RTA_INTR       0x0800
1469 #define ADV_CTRL_REG_RMA_INTR       0x1000
1470 #define ADV_CTRL_REG_RES_BIT14      0x2000
1471 #define ADV_CTRL_REG_DPE_INTR       0x4000
1472 #define ADV_CTRL_REG_POWER_DONE     0x8000
1473 #define ADV_CTRL_REG_ANY_INTR       0xFF00
1474 
1475 #define ADV_CTRL_REG_CMD_RESET             0x00C6
1476 #define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1477 #define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1478 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1479 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1480 
1481 #define ADV_TICKLE_NOP                      0x00
1482 #define ADV_TICKLE_A                        0x01
1483 #define ADV_TICKLE_B                        0x02
1484 #define ADV_TICKLE_C                        0x03
1485 
1486 #define AdvIsIntPending(port) \
1487     (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1488 
1489 /*
1490  * SCSI_CFG0 Register bit definitions
1491  */
1492 #define TIMER_MODEAB    0xC000	/* Watchdog, Second, and Select. Timer Ctrl. */
1493 #define PARITY_EN       0x2000	/* Enable SCSI Parity Error detection */
1494 #define EVEN_PARITY     0x1000	/* Select Even Parity */
1495 #define WD_LONG         0x0800	/* Watchdog Interval, 1: 57 min, 0: 13 sec */
1496 #define QUEUE_128       0x0400	/* Queue Size, 1: 128 byte, 0: 64 byte */
1497 #define PRIM_MODE       0x0100	/* Primitive SCSI mode */
1498 #define SCAM_EN         0x0080	/* Enable SCAM selection */
1499 #define SEL_TMO_LONG    0x0040	/* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1500 #define CFRM_ID         0x0020	/* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1501 #define OUR_ID_EN       0x0010	/* Enable OUR_ID bits */
1502 #define OUR_ID          0x000F	/* SCSI ID */
1503 
1504 /*
1505  * SCSI_CFG1 Register bit definitions
1506  */
1507 #define BIG_ENDIAN      0x8000	/* Enable Big Endian Mode MIO:15, EEP:15 */
1508 #define TERM_POL        0x2000	/* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1509 #define SLEW_RATE       0x1000	/* SCSI output buffer slew rate */
1510 #define FILTER_SEL      0x0C00	/* Filter Period Selection */
1511 #define  FLTR_DISABLE    0x0000	/* Input Filtering Disabled */
1512 #define  FLTR_11_TO_20NS 0x0800	/* Input Filtering 11ns to 20ns */
1513 #define  FLTR_21_TO_39NS 0x0C00	/* Input Filtering 21ns to 39ns */
1514 #define ACTIVE_DBL      0x0200	/* Disable Active Negation */
1515 #define DIFF_MODE       0x0100	/* SCSI differential Mode (Read-Only) */
1516 #define DIFF_SENSE      0x0080	/* 1: No SE cables, 0: SE cable (Read-Only) */
1517 #define TERM_CTL_SEL    0x0040	/* Enable TERM_CTL_H and TERM_CTL_L */
1518 #define TERM_CTL        0x0030	/* External SCSI Termination Bits */
1519 #define  TERM_CTL_H      0x0020	/* Enable External SCSI Upper Termination */
1520 #define  TERM_CTL_L      0x0010	/* Enable External SCSI Lower Termination */
1521 #define CABLE_DETECT    0x000F	/* External SCSI Cable Connection Status */
1522 
1523 /*
1524  * Addendum for ASC-38C0800 Chip
1525  *
1526  * The ASC-38C1600 Chip uses the same definitions except that the
1527  * bus mode override bits [12:10] have been moved to byte register
1528  * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1529  * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1530  * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1531  * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1532  * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1533  */
1534 #define DIS_TERM_DRV    0x4000	/* 1: Read c_det[3:0], 0: cannot read */
1535 #define HVD_LVD_SE      0x1C00	/* Device Detect Bits */
1536 #define  HVD             0x1000	/* HVD Device Detect */
1537 #define  LVD             0x0800	/* LVD Device Detect */
1538 #define  SE              0x0400	/* SE Device Detect */
1539 #define TERM_LVD        0x00C0	/* LVD Termination Bits */
1540 #define  TERM_LVD_HI     0x0080	/* Enable LVD Upper Termination */
1541 #define  TERM_LVD_LO     0x0040	/* Enable LVD Lower Termination */
1542 #define TERM_SE         0x0030	/* SE Termination Bits */
1543 #define  TERM_SE_HI      0x0020	/* Enable SE Upper Termination */
1544 #define  TERM_SE_LO      0x0010	/* Enable SE Lower Termination */
1545 #define C_DET_LVD       0x000C	/* LVD Cable Detect Bits */
1546 #define  C_DET3          0x0008	/* Cable Detect for LVD External Wide */
1547 #define  C_DET2          0x0004	/* Cable Detect for LVD Internal Wide */
1548 #define C_DET_SE        0x0003	/* SE Cable Detect Bits */
1549 #define  C_DET1          0x0002	/* Cable Detect for SE Internal Wide */
1550 #define  C_DET0          0x0001	/* Cable Detect for SE Internal Narrow */
1551 
1552 #define CABLE_ILLEGAL_A 0x7
1553     /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1554 
1555 #define CABLE_ILLEGAL_B 0xB
1556     /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1557 
1558 /*
1559  * MEM_CFG Register bit definitions
1560  */
1561 #define BIOS_EN         0x40	/* BIOS Enable MIO:14,EEP:14 */
1562 #define FAST_EE_CLK     0x20	/* Diagnostic Bit */
1563 #define RAM_SZ          0x1C	/* Specify size of RAM to RISC */
1564 #define  RAM_SZ_2KB      0x00	/* 2 KB */
1565 #define  RAM_SZ_4KB      0x04	/* 4 KB */
1566 #define  RAM_SZ_8KB      0x08	/* 8 KB */
1567 #define  RAM_SZ_16KB     0x0C	/* 16 KB */
1568 #define  RAM_SZ_32KB     0x10	/* 32 KB */
1569 #define  RAM_SZ_64KB     0x14	/* 64 KB */
1570 
1571 /*
1572  * DMA_CFG0 Register bit definitions
1573  *
1574  * This register is only accessible to the host.
1575  */
1576 #define BC_THRESH_ENB   0x80	/* PCI DMA Start Conditions */
1577 #define FIFO_THRESH     0x70	/* PCI DMA FIFO Threshold */
1578 #define  FIFO_THRESH_16B  0x00	/* 16 bytes */
1579 #define  FIFO_THRESH_32B  0x20	/* 32 bytes */
1580 #define  FIFO_THRESH_48B  0x30	/* 48 bytes */
1581 #define  FIFO_THRESH_64B  0x40	/* 64 bytes */
1582 #define  FIFO_THRESH_80B  0x50	/* 80 bytes (default) */
1583 #define  FIFO_THRESH_96B  0x60	/* 96 bytes */
1584 #define  FIFO_THRESH_112B 0x70	/* 112 bytes */
1585 #define START_CTL       0x0C	/* DMA start conditions */
1586 #define  START_CTL_TH    0x00	/* Wait threshold level (default) */
1587 #define  START_CTL_ID    0x04	/* Wait SDMA/SBUS idle */
1588 #define  START_CTL_THID  0x08	/* Wait threshold and SDMA/SBUS idle */
1589 #define  START_CTL_EMFU  0x0C	/* Wait SDMA FIFO empty/full */
1590 #define READ_CMD        0x03	/* Memory Read Method */
1591 #define  READ_CMD_MR     0x00	/* Memory Read */
1592 #define  READ_CMD_MRL    0x02	/* Memory Read Long */
1593 #define  READ_CMD_MRM    0x03	/* Memory Read Multiple (default) */
1594 
1595 /*
1596  * ASC-38C0800 RAM BIST Register bit definitions
1597  */
1598 #define RAM_TEST_MODE         0x80
1599 #define PRE_TEST_MODE         0x40
1600 #define NORMAL_MODE           0x00
1601 #define RAM_TEST_DONE         0x10
1602 #define RAM_TEST_STATUS       0x0F
1603 #define  RAM_TEST_HOST_ERROR   0x08
1604 #define  RAM_TEST_INTRAM_ERROR 0x04
1605 #define  RAM_TEST_RISC_ERROR   0x02
1606 #define  RAM_TEST_SCSI_ERROR   0x01
1607 #define  RAM_TEST_SUCCESS      0x00
1608 #define PRE_TEST_VALUE        0x05
1609 #define NORMAL_VALUE          0x00
1610 
1611 /*
1612  * ASC38C1600 Definitions
1613  *
1614  * IOPB_PCI_INT_CFG Bit Field Definitions
1615  */
1616 
1617 #define INTAB_LD        0x80	/* Value loaded from EEPROM Bit 11. */
1618 
1619 /*
1620  * Bit 1 can be set to change the interrupt for the Function to operate in
1621  * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1622  * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1623  * mode, otherwise the operating mode is undefined.
1624  */
1625 #define TOTEMPOLE       0x02
1626 
1627 /*
1628  * Bit 0 can be used to change the Int Pin for the Function. The value is
1629  * 0 by default for both Functions with Function 0 using INT A and Function
1630  * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1631  * INT A is used.
1632  *
1633  * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1634  * value specified in the PCI Configuration Space.
1635  */
1636 #define INTAB           0x01
1637 
1638 /*
1639  * Adv Library Status Definitions
1640  */
1641 #define ADV_TRUE        1
1642 #define ADV_FALSE       0
1643 #define ADV_SUCCESS     1
1644 #define ADV_BUSY        0
1645 #define ADV_ERROR       (-1)
1646 
1647 /*
1648  * ADV_DVC_VAR 'warn_code' values
1649  */
1650 #define ASC_WARN_BUSRESET_ERROR         0x0001	/* SCSI Bus Reset error */
1651 #define ASC_WARN_EEPROM_CHKSUM          0x0002	/* EEP check sum error */
1652 #define ASC_WARN_EEPROM_TERMINATION     0x0004	/* EEP termination bad field */
1653 #define ASC_WARN_ERROR                  0xFFFF	/* ADV_ERROR return */
1654 
1655 #define ADV_MAX_TID                     15	/* max. target identifier */
1656 #define ADV_MAX_LUN                     7	/* max. logical unit number */
1657 
1658 /*
1659  * Fixed locations of microcode operating variables.
1660  */
1661 #define ASC_MC_CODE_BEGIN_ADDR          0x0028	/* microcode start address */
1662 #define ASC_MC_CODE_END_ADDR            0x002A	/* microcode end address */
1663 #define ASC_MC_CODE_CHK_SUM             0x002C	/* microcode code checksum */
1664 #define ASC_MC_VERSION_DATE             0x0038	/* microcode version */
1665 #define ASC_MC_VERSION_NUM              0x003A	/* microcode number */
1666 #define ASC_MC_BIOSMEM                  0x0040	/* BIOS RISC Memory Start */
1667 #define ASC_MC_BIOSLEN                  0x0050	/* BIOS RISC Memory Length */
1668 #define ASC_MC_BIOS_SIGNATURE           0x0058	/* BIOS Signature 0x55AA */
1669 #define ASC_MC_BIOS_VERSION             0x005A	/* BIOS Version (2 bytes) */
1670 #define ASC_MC_SDTR_SPEED1              0x0090	/* SDTR Speed for TID 0-3 */
1671 #define ASC_MC_SDTR_SPEED2              0x0092	/* SDTR Speed for TID 4-7 */
1672 #define ASC_MC_SDTR_SPEED3              0x0094	/* SDTR Speed for TID 8-11 */
1673 #define ASC_MC_SDTR_SPEED4              0x0096	/* SDTR Speed for TID 12-15 */
1674 #define ASC_MC_CHIP_TYPE                0x009A
1675 #define ASC_MC_INTRB_CODE               0x009B
1676 #define ASC_MC_WDTR_ABLE                0x009C
1677 #define ASC_MC_SDTR_ABLE                0x009E
1678 #define ASC_MC_TAGQNG_ABLE              0x00A0
1679 #define ASC_MC_DISC_ENABLE              0x00A2
1680 #define ASC_MC_IDLE_CMD_STATUS          0x00A4
1681 #define ASC_MC_IDLE_CMD                 0x00A6
1682 #define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1683 #define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1684 #define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1685 #define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1686 #define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1687 #define ASC_MC_SDTR_DONE                0x00B6
1688 #define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1689 #define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1690 #define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1691 #define ASC_MC_CONTROL_FLAG             0x0122	/* Microcode control flag. */
1692 #define ASC_MC_WDTR_DONE                0x0124
1693 #define ASC_MC_CAM_MODE_MASK            0x015E	/* CAM mode TID bitmask. */
1694 #define ASC_MC_ICQ                      0x0160
1695 #define ASC_MC_IRQ                      0x0164
1696 #define ASC_MC_PPR_ABLE                 0x017A
1697 
1698 /*
1699  * BIOS LRAM variable absolute offsets.
1700  */
1701 #define BIOS_CODESEG    0x54
1702 #define BIOS_CODELEN    0x56
1703 #define BIOS_SIGNATURE  0x58
1704 #define BIOS_VERSION    0x5A
1705 
1706 /*
1707  * Microcode Control Flags
1708  *
1709  * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1710  * and handled by the microcode.
1711  */
1712 #define CONTROL_FLAG_IGNORE_PERR        0x0001	/* Ignore DMA Parity Errors */
1713 #define CONTROL_FLAG_ENABLE_AIPP        0x0002	/* Enabled AIPP checking. */
1714 
1715 /*
1716  * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1717  */
1718 #define HSHK_CFG_WIDE_XFR       0x8000
1719 #define HSHK_CFG_RATE           0x0F00
1720 #define HSHK_CFG_OFFSET         0x001F
1721 
1722 #define ASC_DEF_MAX_HOST_QNG    0xFD	/* Max. number of host commands (253) */
1723 #define ASC_DEF_MIN_HOST_QNG    0x10	/* Min. number of host commands (16) */
1724 #define ASC_DEF_MAX_DVC_QNG     0x3F	/* Max. number commands per device (63) */
1725 #define ASC_DEF_MIN_DVC_QNG     0x04	/* Min. number commands per device (4) */
1726 
1727 #define ASC_QC_DATA_CHECK  0x01	/* Require ASC_QC_DATA_OUT set or clear. */
1728 #define ASC_QC_DATA_OUT    0x02	/* Data out DMA transfer. */
1729 #define ASC_QC_START_MOTOR 0x04	/* Send auto-start motor before request. */
1730 #define ASC_QC_NO_OVERRUN  0x08	/* Don't report overrun. */
1731 #define ASC_QC_FREEZE_TIDQ 0x10	/* Freeze TID queue after request. XXX TBD */
1732 
1733 #define ASC_QSC_NO_DISC     0x01	/* Don't allow disconnect for request. */
1734 #define ASC_QSC_NO_TAGMSG   0x02	/* Don't allow tag queuing for request. */
1735 #define ASC_QSC_NO_SYNC     0x04	/* Don't use Synch. transfer on request. */
1736 #define ASC_QSC_NO_WIDE     0x08	/* Don't use Wide transfer on request. */
1737 #define ASC_QSC_REDO_DTR    0x10	/* Renegotiate WDTR/SDTR before request. */
1738 /*
1739  * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1740  * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1741  */
1742 #define ASC_QSC_HEAD_TAG    0x40	/* Use Head Tag Message (0x21). */
1743 #define ASC_QSC_ORDERED_TAG 0x80	/* Use Ordered Tag Message (0x22). */
1744 
1745 /*
1746  * All fields here are accessed by the board microcode and need to be
1747  * little-endian.
1748  */
1749 typedef struct adv_carr_t {
1750 	ADV_VADDR carr_va;	/* Carrier Virtual Address */
1751 	ADV_PADDR carr_pa;	/* Carrier Physical Address */
1752 	ADV_VADDR areq_vpa;	/* ASC_SCSI_REQ_Q Virtual or Physical Address */
1753 	/*
1754 	 * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1755 	 *
1756 	 * next_vpa [3:1]             Reserved Bits
1757 	 * next_vpa [0]               Done Flag set in Response Queue.
1758 	 */
1759 	ADV_VADDR next_vpa;
1760 } ADV_CARR_T;
1761 
1762 /*
1763  * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1764  */
1765 #define ASC_NEXT_VPA_MASK       0xFFFFFFF0
1766 
1767 #define ASC_RQ_DONE             0x00000001
1768 #define ASC_RQ_GOOD             0x00000002
1769 #define ASC_CQ_STOPPER          0x00000000
1770 
1771 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK)
1772 
1773 #define ADV_CARRIER_NUM_PAGE_CROSSING \
1774     (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE)
1775 
1776 #define ADV_CARRIER_BUFSIZE \
1777     ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T))
1778 
1779 /*
1780  * ASC_SCSI_REQ_Q 'a_flag' definitions
1781  *
1782  * The Adv Library should limit use to the lower nibble (4 bits) of
1783  * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag.
1784  */
1785 #define ADV_POLL_REQUEST                0x01	/* poll for request completion */
1786 #define ADV_SCSIQ_DONE                  0x02	/* request done */
1787 #define ADV_DONT_RETRY                  0x08	/* don't do retry */
1788 
1789 #define ADV_CHIP_ASC3550          0x01	/* Ultra-Wide IC */
1790 #define ADV_CHIP_ASC38C0800       0x02	/* Ultra2-Wide/LVD IC */
1791 #define ADV_CHIP_ASC38C1600       0x03	/* Ultra3-Wide/LVD2 IC */
1792 
1793 /*
1794  * Adapter temporary configuration structure
1795  *
1796  * This structure can be discarded after initialization. Don't add
1797  * fields here needed after initialization.
1798  *
1799  * Field naming convention:
1800  *
1801  *  *_enable indicates the field enables or disables a feature. The
1802  *  value of the field is never reset.
1803  */
1804 typedef struct adv_dvc_cfg {
1805 	ushort disc_enable;	/* enable disconnection */
1806 	uchar chip_version;	/* chip version */
1807 	uchar termination;	/* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1808 	ushort control_flag;	/* Microcode Control Flag */
1809 	ushort mcode_date;	/* Microcode date */
1810 	ushort mcode_version;	/* Microcode version */
1811 	ushort serial1;		/* EEPROM serial number word 1 */
1812 	ushort serial2;		/* EEPROM serial number word 2 */
1813 	ushort serial3;		/* EEPROM serial number word 3 */
1814 } ADV_DVC_CFG;
1815 
1816 struct adv_dvc_var;
1817 struct adv_scsi_req_q;
1818 
1819 typedef struct asc_sg_block {
1820 	uchar reserved1;
1821 	uchar reserved2;
1822 	uchar reserved3;
1823 	uchar sg_cnt;		/* Valid entries in block. */
1824 	ADV_PADDR sg_ptr;	/* Pointer to next sg block. */
1825 	struct {
1826 		ADV_PADDR sg_addr;	/* SG element address. */
1827 		ADV_DCNT sg_count;	/* SG element count. */
1828 	} sg_list[NO_OF_SG_PER_BLOCK];
1829 } ADV_SG_BLOCK;
1830 
1831 /*
1832  * ADV_SCSI_REQ_Q - microcode request structure
1833  *
1834  * All fields in this structure up to byte 60 are used by the microcode.
1835  * The microcode makes assumptions about the size and ordering of fields
1836  * in this structure. Do not change the structure definition here without
1837  * coordinating the change with the microcode.
1838  *
1839  * All fields accessed by microcode must be maintained in little_endian
1840  * order.
1841  */
1842 typedef struct adv_scsi_req_q {
1843 	uchar cntl;		/* Ucode flags and state (ASC_MC_QC_*). */
1844 	uchar target_cmd;
1845 	uchar target_id;	/* Device target identifier. */
1846 	uchar target_lun;	/* Device target logical unit number. */
1847 	ADV_PADDR data_addr;	/* Data buffer physical address. */
1848 	ADV_DCNT data_cnt;	/* Data count. Ucode sets to residual. */
1849 	ADV_PADDR sense_addr;
1850 	ADV_PADDR carr_pa;
1851 	uchar mflag;
1852 	uchar sense_len;
1853 	uchar cdb_len;		/* SCSI CDB length. Must <= 16 bytes. */
1854 	uchar scsi_cntl;
1855 	uchar done_status;	/* Completion status. */
1856 	uchar scsi_status;	/* SCSI status byte. */
1857 	uchar host_status;	/* Ucode host status. */
1858 	uchar sg_working_ix;
1859 	uchar cdb[12];		/* SCSI CDB bytes 0-11. */
1860 	ADV_PADDR sg_real_addr;	/* SG list physical address. */
1861 	ADV_PADDR scsiq_rptr;
1862 	uchar cdb16[4];		/* SCSI CDB bytes 12-15. */
1863 	ADV_VADDR scsiq_ptr;
1864 	ADV_VADDR carr_va;
1865 	/*
1866 	 * End of microcode structure - 60 bytes. The rest of the structure
1867 	 * is used by the Adv Library and ignored by the microcode.
1868 	 */
1869 	ADV_VADDR srb_ptr;
1870 	ADV_SG_BLOCK *sg_list_ptr;	/* SG list virtual address. */
1871 	char *vdata_addr;	/* Data buffer virtual address. */
1872 	uchar a_flag;
1873 	uchar pad[2];		/* Pad out to a word boundary. */
1874 } ADV_SCSI_REQ_Q;
1875 
1876 /*
1877  * The following two structures are used to process Wide Board requests.
1878  *
1879  * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1880  * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the
1881  * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the
1882  * Mid-Level SCSI request structure.
1883  *
1884  * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1885  * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1886  * up to 255 scatter-gather elements may be used per request or
1887  * ADV_SCSI_REQ_Q.
1888  *
1889  * Both structures must be 32 byte aligned.
1890  */
1891 typedef struct adv_sgblk {
1892 	ADV_SG_BLOCK sg_block;	/* Sgblock structure. */
1893 	uchar align[32];	/* Sgblock structure padding. */
1894 	struct adv_sgblk *next_sgblkp;	/* Next scatter-gather structure. */
1895 } adv_sgblk_t;
1896 
1897 typedef struct adv_req {
1898 	ADV_SCSI_REQ_Q scsi_req_q;	/* Adv Library request structure. */
1899 	uchar align[32];	/* Request structure padding. */
1900 	struct scsi_cmnd *cmndp;	/* Mid-Level SCSI command pointer. */
1901 	adv_sgblk_t *sgblkp;	/* Adv Library scatter-gather pointer. */
1902 	struct adv_req *next_reqp;	/* Next Request Structure. */
1903 } adv_req_t;
1904 
1905 /*
1906  * Adapter operation variable structure.
1907  *
1908  * One structure is required per host adapter.
1909  *
1910  * Field naming convention:
1911  *
1912  *  *_able indicates both whether a feature should be enabled or disabled
1913  *  and whether a device isi capable of the feature. At initialization
1914  *  this field may be set, but later if a device is found to be incapable
1915  *  of the feature, the field is cleared.
1916  */
1917 typedef struct adv_dvc_var {
1918 	AdvPortAddr iop_base;	/* I/O port address */
1919 	ushort err_code;	/* fatal error code */
1920 	ushort bios_ctrl;	/* BIOS control word, EEPROM word 12 */
1921 	ushort wdtr_able;	/* try WDTR for a device */
1922 	ushort sdtr_able;	/* try SDTR for a device */
1923 	ushort ultra_able;	/* try SDTR Ultra speed for a device */
1924 	ushort sdtr_speed1;	/* EEPROM SDTR Speed for TID 0-3   */
1925 	ushort sdtr_speed2;	/* EEPROM SDTR Speed for TID 4-7   */
1926 	ushort sdtr_speed3;	/* EEPROM SDTR Speed for TID 8-11  */
1927 	ushort sdtr_speed4;	/* EEPROM SDTR Speed for TID 12-15 */
1928 	ushort tagqng_able;	/* try tagged queuing with a device */
1929 	ushort ppr_able;	/* PPR message capable per TID bitmask. */
1930 	uchar max_dvc_qng;	/* maximum number of tagged commands per device */
1931 	ushort start_motor;	/* start motor command allowed */
1932 	uchar scsi_reset_wait;	/* delay in seconds after scsi bus reset */
1933 	uchar chip_no;		/* should be assigned by caller */
1934 	uchar max_host_qng;	/* maximum number of Q'ed command allowed */
1935 	ushort no_scam;		/* scam_tolerant of EEPROM */
1936 	struct asc_board *drv_ptr;	/* driver pointer to private structure */
1937 	uchar chip_scsi_id;	/* chip SCSI target ID */
1938 	uchar chip_type;
1939 	uchar bist_err_code;
1940 	ADV_CARR_T *carrier_buf;
1941 	ADV_CARR_T *carr_freelist;	/* Carrier free list. */
1942 	ADV_CARR_T *icq_sp;	/* Initiator command queue stopper pointer. */
1943 	ADV_CARR_T *irq_sp;	/* Initiator response queue stopper pointer. */
1944 	ushort carr_pending_cnt;	/* Count of pending carriers. */
1945 	struct adv_req *orig_reqp;	/* adv_req_t memory block. */
1946 	/*
1947 	 * Note: The following fields will not be used after initialization. The
1948 	 * driver may discard the buffer after initialization is done.
1949 	 */
1950 	ADV_DVC_CFG *cfg;	/* temporary configuration structure  */
1951 } ADV_DVC_VAR;
1952 
1953 /*
1954  * Microcode idle loop commands
1955  */
1956 #define IDLE_CMD_COMPLETED           0
1957 #define IDLE_CMD_STOP_CHIP           0x0001
1958 #define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1959 #define IDLE_CMD_SEND_INT            0x0004
1960 #define IDLE_CMD_ABORT               0x0008
1961 #define IDLE_CMD_DEVICE_RESET        0x0010
1962 #define IDLE_CMD_SCSI_RESET_START    0x0020	/* Assert SCSI Bus Reset */
1963 #define IDLE_CMD_SCSI_RESET_END      0x0040	/* Deassert SCSI Bus Reset */
1964 #define IDLE_CMD_SCSIREQ             0x0080
1965 
1966 #define IDLE_CMD_STATUS_SUCCESS      0x0001
1967 #define IDLE_CMD_STATUS_FAILURE      0x0002
1968 
1969 /*
1970  * AdvSendIdleCmd() flag definitions.
1971  */
1972 #define ADV_NOWAIT     0x01
1973 
1974 /*
1975  * Wait loop time out values.
1976  */
1977 #define SCSI_WAIT_100_MSEC           100UL	/* 100 milliseconds */
1978 #define SCSI_US_PER_MSEC             1000	/* microseconds per millisecond */
1979 #define SCSI_MAX_RETRY               10	/* retry count */
1980 
1981 #define ADV_ASYNC_RDMA_FAILURE          0x01	/* Fatal RDMA failure. */
1982 #define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02	/* Detected SCSI Bus Reset. */
1983 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03	/* Carrier Ready failure. */
1984 #define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04	/* RDMAed-in data invalid. */
1985 
1986 #define ADV_HOST_SCSI_BUS_RESET      0x80	/* Host Initiated SCSI Bus Reset. */
1987 
1988 /* Read byte from a register. */
1989 #define AdvReadByteRegister(iop_base, reg_off) \
1990      (ADV_MEM_READB((iop_base) + (reg_off)))
1991 
1992 /* Write byte to a register. */
1993 #define AdvWriteByteRegister(iop_base, reg_off, byte) \
1994      (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1995 
1996 /* Read word (2 bytes) from a register. */
1997 #define AdvReadWordRegister(iop_base, reg_off) \
1998      (ADV_MEM_READW((iop_base) + (reg_off)))
1999 
2000 /* Write word (2 bytes) to a register. */
2001 #define AdvWriteWordRegister(iop_base, reg_off, word) \
2002      (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
2003 
2004 /* Write dword (4 bytes) to a register. */
2005 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \
2006      (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
2007 
2008 /* Read byte from LRAM. */
2009 #define AdvReadByteLram(iop_base, addr, byte) \
2010 do { \
2011     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2012     (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
2013 } while (0)
2014 
2015 /* Write byte to LRAM. */
2016 #define AdvWriteByteLram(iop_base, addr, byte) \
2017     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2018      ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
2019 
2020 /* Read word (2 bytes) from LRAM. */
2021 #define AdvReadWordLram(iop_base, addr, word) \
2022 do { \
2023     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
2024     (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
2025 } while (0)
2026 
2027 /* Write word (2 bytes) to LRAM. */
2028 #define AdvWriteWordLram(iop_base, addr, word) \
2029     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2030      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2031 
2032 /* Write little-endian double word (4 bytes) to LRAM */
2033 /* Because of unspecified C language ordering don't use auto-increment. */
2034 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
2035     ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
2036       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2037                      cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
2038      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
2039       ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
2040                      cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
2041 
2042 /* Read word (2 bytes) from LRAM assuming that the address is already set. */
2043 #define AdvReadWordAutoIncLram(iop_base) \
2044      (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
2045 
2046 /* Write word (2 bytes) to LRAM assuming that the address is already set. */
2047 #define AdvWriteWordAutoIncLram(iop_base, word) \
2048      (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
2049 
2050 /*
2051  * Define macro to check for Condor signature.
2052  *
2053  * Evaluate to ADV_TRUE if a Condor chip is found the specified port
2054  * address 'iop_base'. Otherwise evalue to ADV_FALSE.
2055  */
2056 #define AdvFindSignature(iop_base) \
2057     (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
2058     ADV_CHIP_ID_BYTE) && \
2059      (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
2060     ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
2061 
2062 /*
2063  * Define macro to Return the version number of the chip at 'iop_base'.
2064  *
2065  * The second parameter 'bus_type' is currently unused.
2066  */
2067 #define AdvGetChipVersion(iop_base, bus_type) \
2068     AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
2069 
2070 /*
2071  * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must
2072  * match the ASC_SCSI_REQ_Q 'srb_ptr' field.
2073  *
2074  * If the request has not yet been sent to the device it will simply be
2075  * aborted from RISC memory. If the request is disconnected it will be
2076  * aborted on reselection by sending an Abort Message to the target ID.
2077  *
2078  * Return value:
2079  *      ADV_TRUE(1) - Queue was successfully aborted.
2080  *      ADV_FALSE(0) - Queue was not found on the active queue list.
2081  */
2082 #define AdvAbortQueue(asc_dvc, scsiq) \
2083         AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
2084                        (ADV_DCNT) (scsiq))
2085 
2086 /*
2087  * Send a Bus Device Reset Message to the specified target ID.
2088  *
2089  * All outstanding commands will be purged if sending the
2090  * Bus Device Reset Message is successful.
2091  *
2092  * Return Value:
2093  *      ADV_TRUE(1) - All requests on the target are purged.
2094  *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
2095  *                     are not purged.
2096  */
2097 #define AdvResetDevice(asc_dvc, target_id) \
2098         AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \
2099                     (ADV_DCNT) (target_id))
2100 
2101 /*
2102  * SCSI Wide Type definition.
2103  */
2104 #define ADV_SCSI_BIT_ID_TYPE   ushort
2105 
2106 /*
2107  * AdvInitScsiTarget() 'cntl_flag' options.
2108  */
2109 #define ADV_SCAN_LUN           0x01
2110 #define ADV_CAPINFO_NOLUN      0x02
2111 
2112 /*
2113  * Convert target id to target id bit mask.
2114  */
2115 #define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2116 
2117 /*
2118  * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2119  */
2120 
2121 #define QD_NO_STATUS         0x00	/* Request not completed yet. */
2122 #define QD_NO_ERROR          0x01
2123 #define QD_ABORTED_BY_HOST   0x02
2124 #define QD_WITH_ERROR        0x04
2125 
2126 #define QHSTA_NO_ERROR              0x00
2127 #define QHSTA_M_SEL_TIMEOUT         0x11
2128 #define QHSTA_M_DATA_OVER_RUN       0x12
2129 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2130 #define QHSTA_M_QUEUE_ABORTED       0x15
2131 #define QHSTA_M_SXFR_SDMA_ERR       0x16	/* SXFR_STATUS SCSI DMA Error */
2132 #define QHSTA_M_SXFR_SXFR_PERR      0x17	/* SXFR_STATUS SCSI Bus Parity Error */
2133 #define QHSTA_M_RDMA_PERR           0x18	/* RISC PCI DMA parity error */
2134 #define QHSTA_M_SXFR_OFF_UFLW       0x19	/* SXFR_STATUS Offset Underflow */
2135 #define QHSTA_M_SXFR_OFF_OFLW       0x20	/* SXFR_STATUS Offset Overflow */
2136 #define QHSTA_M_SXFR_WD_TMO         0x21	/* SXFR_STATUS Watchdog Timeout */
2137 #define QHSTA_M_SXFR_DESELECTED     0x22	/* SXFR_STATUS Deselected */
2138 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2139 #define QHSTA_M_SXFR_XFR_OFLW       0x12	/* SXFR_STATUS Transfer Overflow */
2140 #define QHSTA_M_SXFR_XFR_PH_ERR     0x24	/* SXFR_STATUS Transfer Phase Error */
2141 #define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25	/* SXFR_STATUS Unknown Error */
2142 #define QHSTA_M_SCSI_BUS_RESET      0x30	/* Request aborted from SBR */
2143 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31	/* Request aborted from unsol. SBR */
2144 #define QHSTA_M_BUS_DEVICE_RESET    0x32	/* Request aborted from BDR */
2145 #define QHSTA_M_DIRECTION_ERR       0x35	/* Data Phase mismatch */
2146 #define QHSTA_M_DIRECTION_ERR_HUNG  0x36	/* Data Phase mismatch and bus hang */
2147 #define QHSTA_M_WTM_TIMEOUT         0x41
2148 #define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2149 #define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2150 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2151 #define QHSTA_M_INVALID_DEVICE      0x45	/* Bad target ID */
2152 #define QHSTA_M_FROZEN_TIDQ         0x46	/* TID Queue frozen. */
2153 #define QHSTA_M_SGBACKUP_ERROR      0x47	/* Scatter-Gather backup error */
2154 
2155 /* Return the address that is aligned at the next doubleword >= to 'addr'. */
2156 #define ADV_8BALIGN(addr)      (((ulong) (addr) + 0x7) & ~0x7)
2157 #define ADV_16BALIGN(addr)     (((ulong) (addr) + 0xF) & ~0xF)
2158 #define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2159 
2160 /*
2161  * Total contiguous memory needed for driver SG blocks.
2162  *
2163  * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2164  * number of scatter-gather elements the driver supports in a
2165  * single request.
2166  */
2167 
2168 #define ADV_SG_LIST_MAX_BYTE_SIZE \
2169          (sizeof(ADV_SG_BLOCK) * \
2170           ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2171 
2172 /* struct asc_board flags */
2173 #define ASC_IS_WIDE_BOARD       0x04	/* AdvanSys Wide Board */
2174 
2175 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2176 
2177 #define NO_ISA_DMA              0xff	/* No ISA DMA Channel Used */
2178 
2179 #define ASC_INFO_SIZE           128	/* advansys_info() line size */
2180 
2181 /* Asc Library return codes */
2182 #define ASC_TRUE        1
2183 #define ASC_FALSE       0
2184 #define ASC_NOERROR     1
2185 #define ASC_BUSY        0
2186 #define ASC_ERROR       (-1)
2187 
2188 /* struct scsi_cmnd function return codes */
2189 #define STATUS_BYTE(byte)   (byte)
2190 #define MSG_BYTE(byte)      ((byte) << 8)
2191 #define HOST_BYTE(byte)     ((byte) << 16)
2192 #define DRIVER_BYTE(byte)   ((byte) << 24)
2193 
2194 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2195 #ifndef ADVANSYS_STATS
2196 #define ASC_STATS_ADD(shost, counter, count)
2197 #else /* ADVANSYS_STATS */
2198 #define ASC_STATS_ADD(shost, counter, count) \
2199 	(((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2200 #endif /* ADVANSYS_STATS */
2201 
2202 /* If the result wraps when calculating tenths, return 0. */
2203 #define ASC_TENTHS(num, den) \
2204     (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2205     0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2206 
2207 /*
2208  * Display a message to the console.
2209  */
2210 #define ASC_PRINT(s) \
2211     { \
2212         printk("advansys: "); \
2213         printk(s); \
2214     }
2215 
2216 #define ASC_PRINT1(s, a1) \
2217     { \
2218         printk("advansys: "); \
2219         printk((s), (a1)); \
2220     }
2221 
2222 #define ASC_PRINT2(s, a1, a2) \
2223     { \
2224         printk("advansys: "); \
2225         printk((s), (a1), (a2)); \
2226     }
2227 
2228 #define ASC_PRINT3(s, a1, a2, a3) \
2229     { \
2230         printk("advansys: "); \
2231         printk((s), (a1), (a2), (a3)); \
2232     }
2233 
2234 #define ASC_PRINT4(s, a1, a2, a3, a4) \
2235     { \
2236         printk("advansys: "); \
2237         printk((s), (a1), (a2), (a3), (a4)); \
2238     }
2239 
2240 #ifndef ADVANSYS_DEBUG
2241 
2242 #define ASC_DBG(lvl, s...)
2243 #define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2244 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2245 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2246 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2247 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2248 #define ASC_DBG_PRT_HEX(lvl, name, start, length)
2249 #define ASC_DBG_PRT_CDB(lvl, cdb, len)
2250 #define ASC_DBG_PRT_SENSE(lvl, sense, len)
2251 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2252 
2253 #else /* ADVANSYS_DEBUG */
2254 
2255 /*
2256  * Debugging Message Levels:
2257  * 0: Errors Only
2258  * 1: High-Level Tracing
2259  * 2-N: Verbose Tracing
2260  */
2261 
2262 #define ASC_DBG(lvl, format, arg...) {					\
2263 	if (asc_dbglvl >= (lvl))					\
2264 		printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,		\
2265 			__func__ , ## arg);				\
2266 }
2267 
2268 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2269     { \
2270         if (asc_dbglvl >= (lvl)) { \
2271             asc_prt_scsi_host(s); \
2272         } \
2273     }
2274 
2275 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2276     { \
2277         if (asc_dbglvl >= (lvl)) { \
2278             asc_prt_asc_scsi_q(scsiqp); \
2279         } \
2280     }
2281 
2282 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2283     { \
2284         if (asc_dbglvl >= (lvl)) { \
2285             asc_prt_asc_qdone_info(qdone); \
2286         } \
2287     }
2288 
2289 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2290     { \
2291         if (asc_dbglvl >= (lvl)) { \
2292             asc_prt_adv_scsi_req_q(scsiqp); \
2293         } \
2294     }
2295 
2296 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2297     { \
2298         if (asc_dbglvl >= (lvl)) { \
2299             asc_prt_hex((name), (start), (length)); \
2300         } \
2301     }
2302 
2303 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2304         ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2305 
2306 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2307         ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2308 
2309 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2310         ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2311 #endif /* ADVANSYS_DEBUG */
2312 
2313 #ifdef ADVANSYS_STATS
2314 
2315 /* Per board statistics structure */
2316 struct asc_stats {
2317 	/* Driver Entrypoint Statistics */
2318 	ADV_DCNT queuecommand;	/* # calls to advansys_queuecommand() */
2319 	ADV_DCNT reset;		/* # calls to advansys_eh_bus_reset() */
2320 	ADV_DCNT biosparam;	/* # calls to advansys_biosparam() */
2321 	ADV_DCNT interrupt;	/* # advansys_interrupt() calls */
2322 	ADV_DCNT callback;	/* # calls to asc/adv_isr_callback() */
2323 	ADV_DCNT done;		/* # calls to request's scsi_done function */
2324 	ADV_DCNT build_error;	/* # asc/adv_build_req() ASC_ERROR returns. */
2325 	ADV_DCNT adv_build_noreq;	/* # adv_build_req() adv_req_t alloc. fail. */
2326 	ADV_DCNT adv_build_nosg;	/* # adv_build_req() adv_sgblk_t alloc. fail. */
2327 	/* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2328 	ADV_DCNT exe_noerror;	/* # ASC_NOERROR returns. */
2329 	ADV_DCNT exe_busy;	/* # ASC_BUSY returns. */
2330 	ADV_DCNT exe_error;	/* # ASC_ERROR returns. */
2331 	ADV_DCNT exe_unknown;	/* # unknown returns. */
2332 	/* Data Transfer Statistics */
2333 	ADV_DCNT xfer_cnt;	/* # I/O requests received */
2334 	ADV_DCNT xfer_elem;	/* # scatter-gather elements */
2335 	ADV_DCNT xfer_sect;	/* # 512-byte blocks */
2336 };
2337 #endif /* ADVANSYS_STATS */
2338 
2339 /*
2340  * Structure allocated for each board.
2341  *
2342  * This structure is allocated by scsi_host_alloc() at the end
2343  * of the 'Scsi_Host' structure starting at the 'hostdata'
2344  * field. It is guaranteed to be allocated from DMA-able memory.
2345  */
2346 struct asc_board {
2347 	struct device *dev;
2348 	uint flags;		/* Board flags */
2349 	unsigned int irq;
2350 	union {
2351 		ASC_DVC_VAR asc_dvc_var;	/* Narrow board */
2352 		ADV_DVC_VAR adv_dvc_var;	/* Wide board */
2353 	} dvc_var;
2354 	union {
2355 		ASC_DVC_CFG asc_dvc_cfg;	/* Narrow board */
2356 		ADV_DVC_CFG adv_dvc_cfg;	/* Wide board */
2357 	} dvc_cfg;
2358 	ushort asc_n_io_port;	/* Number I/O ports. */
2359 	ADV_SCSI_BIT_ID_TYPE init_tidmask;	/* Target init./valid mask */
2360 	ushort reqcnt[ADV_MAX_TID + 1];	/* Starvation request count */
2361 	ADV_SCSI_BIT_ID_TYPE queue_full;	/* Queue full mask */
2362 	ushort queue_full_cnt[ADV_MAX_TID + 1];	/* Queue full count */
2363 	union {
2364 		ASCEEP_CONFIG asc_eep;	/* Narrow EEPROM config. */
2365 		ADVEEP_3550_CONFIG adv_3550_eep;	/* 3550 EEPROM config. */
2366 		ADVEEP_38C0800_CONFIG adv_38C0800_eep;	/* 38C0800 EEPROM config. */
2367 		ADVEEP_38C1600_CONFIG adv_38C1600_eep;	/* 38C1600 EEPROM config. */
2368 	} eep_config;
2369 	ulong last_reset;	/* Saved last reset time */
2370 	/* /proc/scsi/advansys/[0...] */
2371 #ifdef ADVANSYS_STATS
2372 	struct asc_stats asc_stats;	/* Board statistics */
2373 #endif				/* ADVANSYS_STATS */
2374 	/*
2375 	 * The following fields are used only for Narrow Boards.
2376 	 */
2377 	uchar sdtr_data[ASC_MAX_TID + 1];	/* SDTR information */
2378 	/*
2379 	 * The following fields are used only for Wide Boards.
2380 	 */
2381 	void __iomem *ioremap_addr;	/* I/O Memory remap address. */
2382 	ushort ioport;		/* I/O Port address. */
2383 	adv_req_t *adv_reqp;	/* Request structures. */
2384 	adv_sgblk_t *adv_sgblkp;	/* Scatter-gather structures. */
2385 	ushort bios_signature;	/* BIOS Signature. */
2386 	ushort bios_version;	/* BIOS Version. */
2387 	ushort bios_codeseg;	/* BIOS Code Segment. */
2388 	ushort bios_codelen;	/* BIOS Code Segment Length. */
2389 };
2390 
2391 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2392 							dvc_var.asc_dvc_var)
2393 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2394 							dvc_var.adv_dvc_var)
2395 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2396 
2397 #ifdef ADVANSYS_DEBUG
2398 static int asc_dbglvl = 3;
2399 
2400 /*
2401  * asc_prt_asc_dvc_var()
2402  */
2403 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2404 {
2405 	printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2406 
2407 	printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2408 	       "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2409 
2410 	printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2411 		(unsigned)h->init_sdtr);
2412 
2413 	printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2414 	       "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2415 	       (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2416 	       (unsigned)h->chip_no);
2417 
2418 	printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2419 	       "%u,\n", (unsigned)h->queue_full_or_busy,
2420 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2421 
2422 	printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2423 	       "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2424 	       (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2425 	       (unsigned)h->in_critical_cnt);
2426 
2427 	printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2428 	       "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2429 	       (unsigned)h->init_state, (unsigned)h->no_scam,
2430 	       (unsigned)h->pci_fix_asyn_xfer);
2431 
2432 	printk(" cfg 0x%lx\n", (ulong)h->cfg);
2433 }
2434 
2435 /*
2436  * asc_prt_asc_dvc_cfg()
2437  */
2438 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2439 {
2440 	printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2441 
2442 	printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2443 	       h->can_tagged_qng, h->cmd_qng_enabled);
2444 	printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2445 	       h->disc_enable, h->sdtr_enable);
2446 
2447 	printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2448 		"chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2449 		h->isa_dma_channel, h->chip_version);
2450 
2451 	printk(" mcode_date 0x%x, mcode_version %d\n",
2452 		h->mcode_date, h->mcode_version);
2453 }
2454 
2455 /*
2456  * asc_prt_adv_dvc_var()
2457  *
2458  * Display an ADV_DVC_VAR structure.
2459  */
2460 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2461 {
2462 	printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2463 
2464 	printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2465 	       (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2466 
2467 	printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2468 	       (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2469 
2470 	printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2471 	       (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2472 
2473 	printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n",
2474 	       (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2475 	       (ulong)h->carr_freelist);
2476 
2477 	printk("  icq_sp 0x%lx, irq_sp 0x%lx\n",
2478 	       (ulong)h->icq_sp, (ulong)h->irq_sp);
2479 
2480 	printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2481 	       (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2482 
2483 	printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2484 	       (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2485 }
2486 
2487 /*
2488  * asc_prt_adv_dvc_cfg()
2489  *
2490  * Display an ADV_DVC_CFG structure.
2491  */
2492 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2493 {
2494 	printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2495 
2496 	printk("  disc_enable 0x%x, termination 0x%x\n",
2497 	       h->disc_enable, h->termination);
2498 
2499 	printk("  chip_version 0x%x, mcode_date 0x%x\n",
2500 	       h->chip_version, h->mcode_date);
2501 
2502 	printk("  mcode_version 0x%x, control_flag 0x%x\n",
2503 	       h->mcode_version, h->control_flag);
2504 }
2505 
2506 /*
2507  * asc_prt_scsi_host()
2508  */
2509 static void asc_prt_scsi_host(struct Scsi_Host *s)
2510 {
2511 	struct asc_board *boardp = shost_priv(s);
2512 
2513 	printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2514 	printk(" host_busy %u, host_no %d,\n",
2515 	       atomic_read(&s->host_busy), s->host_no);
2516 
2517 	printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2518 	       (ulong)s->base, (ulong)s->io_port, boardp->irq);
2519 
2520 	printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2521 	       s->dma_channel, s->this_id, s->can_queue);
2522 
2523 	printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2524 	       s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2525 
2526 	if (ASC_NARROW_BOARD(boardp)) {
2527 		asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2528 		asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2529 	} else {
2530 		asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2531 		asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2532 	}
2533 }
2534 
2535 /*
2536  * asc_prt_hex()
2537  *
2538  * Print hexadecimal output in 4 byte groupings 32 bytes
2539  * or 8 double-words per line.
2540  */
2541 static void asc_prt_hex(char *f, uchar *s, int l)
2542 {
2543 	int i;
2544 	int j;
2545 	int k;
2546 	int m;
2547 
2548 	printk("%s: (%d bytes)\n", f, l);
2549 
2550 	for (i = 0; i < l; i += 32) {
2551 
2552 		/* Display a maximum of 8 double-words per line. */
2553 		if ((k = (l - i) / 4) >= 8) {
2554 			k = 8;
2555 			m = 0;
2556 		} else {
2557 			m = (l - i) % 4;
2558 		}
2559 
2560 		for (j = 0; j < k; j++) {
2561 			printk(" %2.2X%2.2X%2.2X%2.2X",
2562 			       (unsigned)s[i + (j * 4)],
2563 			       (unsigned)s[i + (j * 4) + 1],
2564 			       (unsigned)s[i + (j * 4) + 2],
2565 			       (unsigned)s[i + (j * 4) + 3]);
2566 		}
2567 
2568 		switch (m) {
2569 		case 0:
2570 		default:
2571 			break;
2572 		case 1:
2573 			printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2574 			break;
2575 		case 2:
2576 			printk(" %2.2X%2.2X",
2577 			       (unsigned)s[i + (j * 4)],
2578 			       (unsigned)s[i + (j * 4) + 1]);
2579 			break;
2580 		case 3:
2581 			printk(" %2.2X%2.2X%2.2X",
2582 			       (unsigned)s[i + (j * 4) + 1],
2583 			       (unsigned)s[i + (j * 4) + 2],
2584 			       (unsigned)s[i + (j * 4) + 3]);
2585 			break;
2586 		}
2587 
2588 		printk("\n");
2589 	}
2590 }
2591 
2592 /*
2593  * asc_prt_asc_scsi_q()
2594  */
2595 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2596 {
2597 	ASC_SG_HEAD *sgp;
2598 	int i;
2599 
2600 	printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2601 
2602 	printk
2603 	    (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n",
2604 	     q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr,
2605 	     q->q2.tag_code);
2606 
2607 	printk
2608 	    (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2609 	     (ulong)le32_to_cpu(q->q1.data_addr),
2610 	     (ulong)le32_to_cpu(q->q1.data_cnt),
2611 	     (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2612 
2613 	printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2614 	       (ulong)q->cdbptr, q->q2.cdb_len,
2615 	       (ulong)q->sg_head, q->q1.sg_queue_cnt);
2616 
2617 	if (q->sg_head) {
2618 		sgp = q->sg_head;
2619 		printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2620 		printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2621 		       sgp->queue_cnt);
2622 		for (i = 0; i < sgp->entry_cnt; i++) {
2623 			printk(" [%u]: addr 0x%lx, bytes %lu\n",
2624 			       i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2625 			       (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2626 		}
2627 
2628 	}
2629 }
2630 
2631 /*
2632  * asc_prt_asc_qdone_info()
2633  */
2634 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2635 {
2636 	printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2637 	printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n",
2638 	       (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len,
2639 	       q->d2.tag_code);
2640 	printk
2641 	    (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2642 	     q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2643 }
2644 
2645 /*
2646  * asc_prt_adv_sgblock()
2647  *
2648  * Display an ADV_SG_BLOCK structure.
2649  */
2650 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2651 {
2652 	int i;
2653 
2654 	printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2655 	       (ulong)b, sgblockno);
2656 	printk("  sg_cnt %u, sg_ptr 0x%lx\n",
2657 	       b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr));
2658 	BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2659 	if (b->sg_ptr != 0)
2660 		BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2661 	for (i = 0; i < b->sg_cnt; i++) {
2662 		printk("  [%u]: sg_addr 0x%lx, sg_count 0x%lx\n",
2663 		       i, (ulong)b->sg_list[i].sg_addr,
2664 		       (ulong)b->sg_list[i].sg_count);
2665 	}
2666 }
2667 
2668 /*
2669  * asc_prt_adv_scsi_req_q()
2670  *
2671  * Display an ADV_SCSI_REQ_Q structure.
2672  */
2673 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2674 {
2675 	int sg_blk_cnt;
2676 	struct asc_sg_block *sg_ptr;
2677 
2678 	printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2679 
2680 	printk("  target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n",
2681 	       q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag);
2682 
2683 	printk("  cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n",
2684 	       q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr);
2685 
2686 	printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2687 	       (ulong)le32_to_cpu(q->data_cnt),
2688 	       (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2689 
2690 	printk
2691 	    ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2692 	     q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2693 
2694 	printk("  sg_working_ix 0x%x, target_cmd %u\n",
2695 	       q->sg_working_ix, q->target_cmd);
2696 
2697 	printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2698 	       (ulong)le32_to_cpu(q->scsiq_rptr),
2699 	       (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2700 
2701 	/* Display the request's ADV_SG_BLOCK structures. */
2702 	if (q->sg_list_ptr != NULL) {
2703 		sg_blk_cnt = 0;
2704 		while (1) {
2705 			/*
2706 			 * 'sg_ptr' is a physical address. Convert it to a virtual
2707 			 * address by indexing 'sg_blk_cnt' into the virtual address
2708 			 * array 'sg_list_ptr'.
2709 			 *
2710 			 * XXX - Assumes all SG physical blocks are virtually contiguous.
2711 			 */
2712 			sg_ptr =
2713 			    &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]);
2714 			asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2715 			if (sg_ptr->sg_ptr == 0) {
2716 				break;
2717 			}
2718 			sg_blk_cnt++;
2719 		}
2720 	}
2721 }
2722 #endif /* ADVANSYS_DEBUG */
2723 
2724 /*
2725  * The advansys chip/microcode contains a 32-bit identifier for each command
2726  * known as the 'srb'.  I don't know what it stands for.  The driver used
2727  * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it
2728  * with bus_to_virt.  Now the driver keeps a per-host map of integers to
2729  * pointers.  It auto-expands when full, unless it can't allocate memory.
2730  * Note that an srb of 0 is treated specially by the chip/firmware, hence
2731  * the return of i+1 in this routine, and the corresponding subtraction in
2732  * the inverse routine.
2733  */
2734 #define BAD_SRB 0
2735 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr)
2736 {
2737 	int i;
2738 	void **new_ptr;
2739 
2740 	for (i = 0; i < asc_dvc->ptr_map_count; i++) {
2741 		if (!asc_dvc->ptr_map[i])
2742 			goto out;
2743 	}
2744 
2745 	if (asc_dvc->ptr_map_count == 0)
2746 		asc_dvc->ptr_map_count = 1;
2747 	else
2748 		asc_dvc->ptr_map_count *= 2;
2749 
2750 	new_ptr = krealloc(asc_dvc->ptr_map,
2751 			asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC);
2752 	if (!new_ptr)
2753 		return BAD_SRB;
2754 	asc_dvc->ptr_map = new_ptr;
2755  out:
2756 	ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i);
2757 	asc_dvc->ptr_map[i] = ptr;
2758 	return i + 1;
2759 }
2760 
2761 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb)
2762 {
2763 	void *ptr;
2764 
2765 	srb--;
2766 	if (srb >= asc_dvc->ptr_map_count) {
2767 		printk("advansys: bad SRB %u, max %u\n", srb,
2768 							asc_dvc->ptr_map_count);
2769 		return NULL;
2770 	}
2771 	ptr = asc_dvc->ptr_map[srb];
2772 	asc_dvc->ptr_map[srb] = NULL;
2773 	ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb);
2774 	return ptr;
2775 }
2776 
2777 /*
2778  * advansys_info()
2779  *
2780  * Return suitable for printing on the console with the argument
2781  * adapter's configuration information.
2782  *
2783  * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2784  * otherwise the static 'info' array will be overrun.
2785  */
2786 static const char *advansys_info(struct Scsi_Host *shost)
2787 {
2788 	static char info[ASC_INFO_SIZE];
2789 	struct asc_board *boardp = shost_priv(shost);
2790 	ASC_DVC_VAR *asc_dvc_varp;
2791 	ADV_DVC_VAR *adv_dvc_varp;
2792 	char *busname;
2793 	char *widename = NULL;
2794 
2795 	if (ASC_NARROW_BOARD(boardp)) {
2796 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2797 		ASC_DBG(1, "begin\n");
2798 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2799 			if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2800 			    ASC_IS_ISAPNP) {
2801 				busname = "ISA PnP";
2802 			} else {
2803 				busname = "ISA";
2804 			}
2805 			sprintf(info,
2806 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2807 				ASC_VERSION, busname,
2808 				(ulong)shost->io_port,
2809 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2810 				boardp->irq, shost->dma_channel);
2811 		} else {
2812 			if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2813 				busname = "VL";
2814 			} else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2815 				busname = "EISA";
2816 			} else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2817 				if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2818 				    == ASC_IS_PCI_ULTRA) {
2819 					busname = "PCI Ultra";
2820 				} else {
2821 					busname = "PCI";
2822 				}
2823 			} else {
2824 				busname = "?";
2825 				shost_printk(KERN_ERR, shost, "unknown bus "
2826 					"type %d\n", asc_dvc_varp->bus_type);
2827 			}
2828 			sprintf(info,
2829 				"AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2830 				ASC_VERSION, busname, (ulong)shost->io_port,
2831 				(ulong)shost->io_port + ASC_IOADR_GAP - 1,
2832 				boardp->irq);
2833 		}
2834 	} else {
2835 		/*
2836 		 * Wide Adapter Information
2837 		 *
2838 		 * Memory-mapped I/O is used instead of I/O space to access
2839 		 * the adapter, but display the I/O Port range. The Memory
2840 		 * I/O address is displayed through the driver /proc file.
2841 		 */
2842 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2843 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2844 			widename = "Ultra-Wide";
2845 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2846 			widename = "Ultra2-Wide";
2847 		} else {
2848 			widename = "Ultra3-Wide";
2849 		}
2850 		sprintf(info,
2851 			"AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2852 			ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2853 			(ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2854 	}
2855 	BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2856 	ASC_DBG(1, "end\n");
2857 	return info;
2858 }
2859 
2860 #ifdef CONFIG_PROC_FS
2861 
2862 /*
2863  * asc_prt_board_devices()
2864  *
2865  * Print driver information for devices attached to the board.
2866  */
2867 static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2868 {
2869 	struct asc_board *boardp = shost_priv(shost);
2870 	int chip_scsi_id;
2871 	int i;
2872 
2873 	seq_printf(m,
2874 		   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2875 		   shost->host_no);
2876 
2877 	if (ASC_NARROW_BOARD(boardp)) {
2878 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2879 	} else {
2880 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2881 	}
2882 
2883 	seq_puts(m, "Target IDs Detected:");
2884 	for (i = 0; i <= ADV_MAX_TID; i++) {
2885 		if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2886 			seq_printf(m, " %X,", i);
2887 	}
2888 	seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2889 }
2890 
2891 /*
2892  * Display Wide Board BIOS Information.
2893  */
2894 static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2895 {
2896 	struct asc_board *boardp = shost_priv(shost);
2897 	ushort major, minor, letter;
2898 
2899 	seq_puts(m, "\nROM BIOS Version: ");
2900 
2901 	/*
2902 	 * If the BIOS saved a valid signature, then fill in
2903 	 * the BIOS code segment base address.
2904 	 */
2905 	if (boardp->bios_signature != 0x55AA) {
2906 		seq_puts(m, "Disabled or Pre-3.1\n"
2907 			"BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2908 			"can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2909 	} else {
2910 		major = (boardp->bios_version >> 12) & 0xF;
2911 		minor = (boardp->bios_version >> 8) & 0xF;
2912 		letter = (boardp->bios_version & 0xFF);
2913 
2914 		seq_printf(m, "%d.%d%c\n",
2915 				   major, minor,
2916 				   letter >= 26 ? '?' : letter + 'A');
2917 		/*
2918 		 * Current available ROM BIOS release is 3.1I for UW
2919 		 * and 3.2I for U2W. This code doesn't differentiate
2920 		 * UW and U2W boards.
2921 		 */
2922 		if (major < 3 || (major <= 3 && minor < 1) ||
2923 		    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2924 			seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2925 				"ftp://ftp.connectcom.net/pub\n");
2926 		}
2927 	}
2928 }
2929 
2930 /*
2931  * Add serial number to information bar if signature AAh
2932  * is found in at bit 15-9 (7 bits) of word 1.
2933  *
2934  * Serial Number consists fo 12 alpha-numeric digits.
2935  *
2936  *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2937  *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2938  *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2939  *       5 - Product revision (A-J)    Word0:  "         "
2940  *
2941  *           Signature                 Word1: 15-9 (7 bits)
2942  *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2943  *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2944  *
2945  *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2946  *
2947  * Note 1: Only production cards will have a serial number.
2948  *
2949  * Note 2: Signature is most significant 7 bits (0xFE).
2950  *
2951  * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2952  */
2953 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2954 {
2955 	ushort w, num;
2956 
2957 	if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2958 		return ASC_FALSE;
2959 	} else {
2960 		/*
2961 		 * First word - 6 digits.
2962 		 */
2963 		w = serialnum[0];
2964 
2965 		/* Product type - 1st digit. */
2966 		if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2967 			/* Product type is P=Prototype */
2968 			*cp += 0x8;
2969 		}
2970 		cp++;
2971 
2972 		/* Manufacturing location - 2nd digit. */
2973 		*cp++ = 'A' + ((w & 0x1C00) >> 10);
2974 
2975 		/* Product ID - 3rd, 4th digits. */
2976 		num = w & 0x3FF;
2977 		*cp++ = '0' + (num / 100);
2978 		num %= 100;
2979 		*cp++ = '0' + (num / 10);
2980 
2981 		/* Product revision - 5th digit. */
2982 		*cp++ = 'A' + (num % 10);
2983 
2984 		/*
2985 		 * Second word
2986 		 */
2987 		w = serialnum[1];
2988 
2989 		/*
2990 		 * Year - 6th digit.
2991 		 *
2992 		 * If bit 15 of third word is set, then the
2993 		 * last digit of the year is greater than 7.
2994 		 */
2995 		if (serialnum[2] & 0x8000) {
2996 			*cp++ = '8' + ((w & 0x1C0) >> 6);
2997 		} else {
2998 			*cp++ = '0' + ((w & 0x1C0) >> 6);
2999 		}
3000 
3001 		/* Week of year - 7th, 8th digits. */
3002 		num = w & 0x003F;
3003 		*cp++ = '0' + num / 10;
3004 		num %= 10;
3005 		*cp++ = '0' + num;
3006 
3007 		/*
3008 		 * Third word
3009 		 */
3010 		w = serialnum[2] & 0x7FFF;
3011 
3012 		/* Serial number - 9th digit. */
3013 		*cp++ = 'A' + (w / 1000);
3014 
3015 		/* 10th, 11th, 12th digits. */
3016 		num = w % 1000;
3017 		*cp++ = '0' + num / 100;
3018 		num %= 100;
3019 		*cp++ = '0' + num / 10;
3020 		num %= 10;
3021 		*cp++ = '0' + num;
3022 
3023 		*cp = '\0';	/* Null Terminate the string. */
3024 		return ASC_TRUE;
3025 	}
3026 }
3027 
3028 /*
3029  * asc_prt_asc_board_eeprom()
3030  *
3031  * Print board EEPROM configuration.
3032  */
3033 static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3034 {
3035 	struct asc_board *boardp = shost_priv(shost);
3036 	ASC_DVC_VAR *asc_dvc_varp;
3037 	ASCEEP_CONFIG *ep;
3038 	int i;
3039 #ifdef CONFIG_ISA
3040 	int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
3041 #endif /* CONFIG_ISA */
3042 	uchar serialstr[13];
3043 
3044 	asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
3045 	ep = &boardp->eep_config.asc_eep;
3046 
3047 	seq_printf(m,
3048 		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3049 		   shost->host_no);
3050 
3051 	if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
3052 	    == ASC_TRUE)
3053 		seq_printf(m, " Serial Number: %s\n", serialstr);
3054 	else if (ep->adapter_info[5] == 0xBB)
3055 		seq_puts(m,
3056 			 " Default Settings Used for EEPROM-less Adapter.\n");
3057 	else
3058 		seq_puts(m, " Serial Number Signature Not Present.\n");
3059 
3060 	seq_printf(m,
3061 		   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3062 		   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
3063 		   ep->max_tag_qng);
3064 
3065 	seq_printf(m,
3066 		   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
3067 
3068 	seq_puts(m, " Target ID:           ");
3069 	for (i = 0; i <= ASC_MAX_TID; i++)
3070 		seq_printf(m, " %d", i);
3071 
3072 	seq_puts(m, "\n Disconnects:         ");
3073 	for (i = 0; i <= ASC_MAX_TID; i++)
3074 		seq_printf(m, " %c",
3075 			   (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3076 
3077 	seq_puts(m, "\n Command Queuing:     ");
3078 	for (i = 0; i <= ASC_MAX_TID; i++)
3079 		seq_printf(m, " %c",
3080 			   (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3081 
3082 	seq_puts(m, "\n Start Motor:         ");
3083 	for (i = 0; i <= ASC_MAX_TID; i++)
3084 		seq_printf(m, " %c",
3085 			   (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3086 
3087 	seq_puts(m, "\n Synchronous Transfer:");
3088 	for (i = 0; i <= ASC_MAX_TID; i++)
3089 		seq_printf(m, " %c",
3090 			   (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3091 	seq_putc(m, '\n');
3092 
3093 #ifdef CONFIG_ISA
3094 	if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
3095 		seq_printf(m,
3096 			   " Host ISA DMA speed:   %d MB/S\n",
3097 			   isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
3098 	}
3099 #endif /* CONFIG_ISA */
3100 }
3101 
3102 /*
3103  * asc_prt_adv_board_eeprom()
3104  *
3105  * Print board EEPROM configuration.
3106  */
3107 static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
3108 {
3109 	struct asc_board *boardp = shost_priv(shost);
3110 	ADV_DVC_VAR *adv_dvc_varp;
3111 	int i;
3112 	char *termstr;
3113 	uchar serialstr[13];
3114 	ADVEEP_3550_CONFIG *ep_3550 = NULL;
3115 	ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
3116 	ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
3117 	ushort word;
3118 	ushort *wordp;
3119 	ushort sdtr_speed = 0;
3120 
3121 	adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
3122 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3123 		ep_3550 = &boardp->eep_config.adv_3550_eep;
3124 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3125 		ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
3126 	} else {
3127 		ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
3128 	}
3129 
3130 	seq_printf(m,
3131 		   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
3132 		   shost->host_no);
3133 
3134 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3135 		wordp = &ep_3550->serial_number_word1;
3136 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3137 		wordp = &ep_38C0800->serial_number_word1;
3138 	} else {
3139 		wordp = &ep_38C1600->serial_number_word1;
3140 	}
3141 
3142 	if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
3143 		seq_printf(m, " Serial Number: %s\n", serialstr);
3144 	else
3145 		seq_puts(m, " Serial Number Signature Not Present.\n");
3146 
3147 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3148 		seq_printf(m,
3149 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3150 			   ep_3550->adapter_scsi_id,
3151 			   ep_3550->max_host_qng, ep_3550->max_dvc_qng);
3152 	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3153 		seq_printf(m,
3154 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3155 			   ep_38C0800->adapter_scsi_id,
3156 			   ep_38C0800->max_host_qng,
3157 			   ep_38C0800->max_dvc_qng);
3158 	else
3159 		seq_printf(m,
3160 			   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3161 			   ep_38C1600->adapter_scsi_id,
3162 			   ep_38C1600->max_host_qng,
3163 			   ep_38C1600->max_dvc_qng);
3164 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3165 		word = ep_3550->termination;
3166 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3167 		word = ep_38C0800->termination_lvd;
3168 	} else {
3169 		word = ep_38C1600->termination_lvd;
3170 	}
3171 	switch (word) {
3172 	case 1:
3173 		termstr = "Low Off/High Off";
3174 		break;
3175 	case 2:
3176 		termstr = "Low Off/High On";
3177 		break;
3178 	case 3:
3179 		termstr = "Low On/High On";
3180 		break;
3181 	default:
3182 	case 0:
3183 		termstr = "Automatic";
3184 		break;
3185 	}
3186 
3187 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3188 		seq_printf(m,
3189 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3190 			   ep_3550->termination, termstr,
3191 			   ep_3550->bios_ctrl);
3192 	else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3193 		seq_printf(m,
3194 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3195 			   ep_38C0800->termination_lvd, termstr,
3196 			   ep_38C0800->bios_ctrl);
3197 	else
3198 		seq_printf(m,
3199 			   " termination: %u (%s), bios_ctrl: 0x%x\n",
3200 			   ep_38C1600->termination_lvd, termstr,
3201 			   ep_38C1600->bios_ctrl);
3202 
3203 	seq_puts(m, " Target ID:           ");
3204 	for (i = 0; i <= ADV_MAX_TID; i++)
3205 		seq_printf(m, " %X", i);
3206 	seq_putc(m, '\n');
3207 
3208 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3209 		word = ep_3550->disc_enable;
3210 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3211 		word = ep_38C0800->disc_enable;
3212 	} else {
3213 		word = ep_38C1600->disc_enable;
3214 	}
3215 	seq_puts(m, " Disconnects:         ");
3216 	for (i = 0; i <= ADV_MAX_TID; i++)
3217 		seq_printf(m, " %c",
3218 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3219 	seq_putc(m, '\n');
3220 
3221 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3222 		word = ep_3550->tagqng_able;
3223 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3224 		word = ep_38C0800->tagqng_able;
3225 	} else {
3226 		word = ep_38C1600->tagqng_able;
3227 	}
3228 	seq_puts(m, " Command Queuing:     ");
3229 	for (i = 0; i <= ADV_MAX_TID; i++)
3230 		seq_printf(m, " %c",
3231 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3232 	seq_putc(m, '\n');
3233 
3234 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3235 		word = ep_3550->start_motor;
3236 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3237 		word = ep_38C0800->start_motor;
3238 	} else {
3239 		word = ep_38C1600->start_motor;
3240 	}
3241 	seq_puts(m, " Start Motor:         ");
3242 	for (i = 0; i <= ADV_MAX_TID; i++)
3243 		seq_printf(m, " %c",
3244 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3245 	seq_putc(m, '\n');
3246 
3247 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3248 		seq_puts(m, " Synchronous Transfer:");
3249 		for (i = 0; i <= ADV_MAX_TID; i++)
3250 			seq_printf(m, " %c",
3251 				   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3252 				   'Y' : 'N');
3253 		seq_putc(m, '\n');
3254 	}
3255 
3256 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3257 		seq_puts(m, " Ultra Transfer:      ");
3258 		for (i = 0; i <= ADV_MAX_TID; i++)
3259 			seq_printf(m, " %c",
3260 				   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3261 				   ? 'Y' : 'N');
3262 		seq_putc(m, '\n');
3263 	}
3264 
3265 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3266 		word = ep_3550->wdtr_able;
3267 	} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3268 		word = ep_38C0800->wdtr_able;
3269 	} else {
3270 		word = ep_38C1600->wdtr_able;
3271 	}
3272 	seq_puts(m, " Wide Transfer:       ");
3273 	for (i = 0; i <= ADV_MAX_TID; i++)
3274 		seq_printf(m, " %c",
3275 			   (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3276 	seq_putc(m, '\n');
3277 
3278 	if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3279 	    adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3280 		seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3281 		for (i = 0; i <= ADV_MAX_TID; i++) {
3282 			char *speed_str;
3283 
3284 			if (i == 0) {
3285 				sdtr_speed = adv_dvc_varp->sdtr_speed1;
3286 			} else if (i == 4) {
3287 				sdtr_speed = adv_dvc_varp->sdtr_speed2;
3288 			} else if (i == 8) {
3289 				sdtr_speed = adv_dvc_varp->sdtr_speed3;
3290 			} else if (i == 12) {
3291 				sdtr_speed = adv_dvc_varp->sdtr_speed4;
3292 			}
3293 			switch (sdtr_speed & ADV_MAX_TID) {
3294 			case 0:
3295 				speed_str = "Off";
3296 				break;
3297 			case 1:
3298 				speed_str = "  5";
3299 				break;
3300 			case 2:
3301 				speed_str = " 10";
3302 				break;
3303 			case 3:
3304 				speed_str = " 20";
3305 				break;
3306 			case 4:
3307 				speed_str = " 40";
3308 				break;
3309 			case 5:
3310 				speed_str = " 80";
3311 				break;
3312 			default:
3313 				speed_str = "Unk";
3314 				break;
3315 			}
3316 			seq_printf(m, "%X:%s ", i, speed_str);
3317 			if (i == 7)
3318 				seq_puts(m, "\n  ");
3319 			sdtr_speed >>= 4;
3320 		}
3321 		seq_putc(m, '\n');
3322 	}
3323 }
3324 
3325 /*
3326  * asc_prt_driver_conf()
3327  */
3328 static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3329 {
3330 	struct asc_board *boardp = shost_priv(shost);
3331 	int chip_scsi_id;
3332 
3333 	seq_printf(m,
3334 		"\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3335 		shost->host_no);
3336 
3337 	seq_printf(m,
3338 		   " host_busy %u, max_id %u, max_lun %llu, max_channel %u\n",
3339 		   atomic_read(&shost->host_busy), shost->max_id,
3340 		   shost->max_lun, shost->max_channel);
3341 
3342 	seq_printf(m,
3343 		   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3344 		   shost->unique_id, shost->can_queue, shost->this_id,
3345 		   shost->sg_tablesize, shost->cmd_per_lun);
3346 
3347 	seq_printf(m,
3348 		   " unchecked_isa_dma %d, use_clustering %d\n",
3349 		   shost->unchecked_isa_dma, shost->use_clustering);
3350 
3351 	seq_printf(m,
3352 		   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3353 		   boardp->flags, boardp->last_reset, jiffies,
3354 		   boardp->asc_n_io_port);
3355 
3356 	seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3357 
3358 	if (ASC_NARROW_BOARD(boardp)) {
3359 		chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
3360 	} else {
3361 		chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
3362 	}
3363 }
3364 
3365 /*
3366  * asc_prt_asc_board_info()
3367  *
3368  * Print dynamic board configuration information.
3369  */
3370 static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3371 {
3372 	struct asc_board *boardp = shost_priv(shost);
3373 	int chip_scsi_id;
3374 	ASC_DVC_VAR *v;
3375 	ASC_DVC_CFG *c;
3376 	int i;
3377 	int renegotiate = 0;
3378 
3379 	v = &boardp->dvc_var.asc_dvc_var;
3380 	c = &boardp->dvc_cfg.asc_dvc_cfg;
3381 	chip_scsi_id = c->chip_scsi_id;
3382 
3383 	seq_printf(m,
3384 		   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3385 		   shost->host_no);
3386 
3387 	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3388 		   "mcode_version 0x%x, err_code %u\n",
3389 		   c->chip_version, c->mcode_date, c->mcode_version,
3390 		   v->err_code);
3391 
3392 	/* Current number of commands waiting for the host. */
3393 	seq_printf(m,
3394 		   " Total Command Pending: %d\n", v->cur_total_qng);
3395 
3396 	seq_puts(m, " Command Queuing:");
3397 	for (i = 0; i <= ASC_MAX_TID; i++) {
3398 		if ((chip_scsi_id == i) ||
3399 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3400 			continue;
3401 		}
3402 		seq_printf(m, " %X:%c",
3403 			   i,
3404 			   (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3405 	}
3406 
3407 	/* Current number of commands waiting for a device. */
3408 	seq_puts(m, "\n Command Queue Pending:");
3409 	for (i = 0; i <= ASC_MAX_TID; i++) {
3410 		if ((chip_scsi_id == i) ||
3411 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3412 			continue;
3413 		}
3414 		seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3415 	}
3416 
3417 	/* Current limit on number of commands that can be sent to a device. */
3418 	seq_puts(m, "\n Command Queue Limit:");
3419 	for (i = 0; i <= ASC_MAX_TID; i++) {
3420 		if ((chip_scsi_id == i) ||
3421 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3422 			continue;
3423 		}
3424 		seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3425 	}
3426 
3427 	/* Indicate whether the device has returned queue full status. */
3428 	seq_puts(m, "\n Command Queue Full:");
3429 	for (i = 0; i <= ASC_MAX_TID; i++) {
3430 		if ((chip_scsi_id == i) ||
3431 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3432 			continue;
3433 		}
3434 		if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3435 			seq_printf(m, " %X:Y-%d",
3436 				   i, boardp->queue_full_cnt[i]);
3437 		else
3438 			seq_printf(m, " %X:N", i);
3439 	}
3440 
3441 	seq_puts(m, "\n Synchronous Transfer:");
3442 	for (i = 0; i <= ASC_MAX_TID; i++) {
3443 		if ((chip_scsi_id == i) ||
3444 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3445 			continue;
3446 		}
3447 		seq_printf(m, " %X:%c",
3448 			   i,
3449 			   (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3450 	}
3451 	seq_putc(m, '\n');
3452 
3453 	for (i = 0; i <= ASC_MAX_TID; i++) {
3454 		uchar syn_period_ix;
3455 
3456 		if ((chip_scsi_id == i) ||
3457 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3458 		    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3459 			continue;
3460 		}
3461 
3462 		seq_printf(m, "  %X:", i);
3463 
3464 		if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3465 			seq_puts(m, " Asynchronous");
3466 		} else {
3467 			syn_period_ix =
3468 			    (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3469 							   1);
3470 
3471 			seq_printf(m,
3472 				   " Transfer Period Factor: %d (%d.%d Mhz),",
3473 				   v->sdtr_period_tbl[syn_period_ix],
3474 				   250 / v->sdtr_period_tbl[syn_period_ix],
3475 				   ASC_TENTHS(250,
3476 					      v->sdtr_period_tbl[syn_period_ix]));
3477 
3478 			seq_printf(m, " REQ/ACK Offset: %d",
3479 				   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3480 		}
3481 
3482 		if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3483 			seq_puts(m, "*\n");
3484 			renegotiate = 1;
3485 		} else {
3486 			seq_putc(m, '\n');
3487 		}
3488 	}
3489 
3490 	if (renegotiate) {
3491 		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3492 	}
3493 }
3494 
3495 /*
3496  * asc_prt_adv_board_info()
3497  *
3498  * Print dynamic board configuration information.
3499  */
3500 static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3501 {
3502 	struct asc_board *boardp = shost_priv(shost);
3503 	int i;
3504 	ADV_DVC_VAR *v;
3505 	ADV_DVC_CFG *c;
3506 	AdvPortAddr iop_base;
3507 	ushort chip_scsi_id;
3508 	ushort lramword;
3509 	uchar lrambyte;
3510 	ushort tagqng_able;
3511 	ushort sdtr_able, wdtr_able;
3512 	ushort wdtr_done, sdtr_done;
3513 	ushort period = 0;
3514 	int renegotiate = 0;
3515 
3516 	v = &boardp->dvc_var.adv_dvc_var;
3517 	c = &boardp->dvc_cfg.adv_dvc_cfg;
3518 	iop_base = v->iop_base;
3519 	chip_scsi_id = v->chip_scsi_id;
3520 
3521 	seq_printf(m,
3522 		   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3523 		   shost->host_no);
3524 
3525 	seq_printf(m,
3526 		   " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3527 		   (unsigned long)v->iop_base,
3528 		   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3529 		   v->err_code);
3530 
3531 	seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3532 		   "mcode_version 0x%x\n", c->chip_version,
3533 		   c->mcode_date, c->mcode_version);
3534 
3535 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3536 	seq_puts(m, " Queuing Enabled:");
3537 	for (i = 0; i <= ADV_MAX_TID; i++) {
3538 		if ((chip_scsi_id == i) ||
3539 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3540 			continue;
3541 		}
3542 
3543 		seq_printf(m, " %X:%c",
3544 			   i,
3545 			   (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3546 	}
3547 
3548 	seq_puts(m, "\n Queue Limit:");
3549 	for (i = 0; i <= ADV_MAX_TID; i++) {
3550 		if ((chip_scsi_id == i) ||
3551 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3552 			continue;
3553 		}
3554 
3555 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3556 				lrambyte);
3557 
3558 		seq_printf(m, " %X:%d", i, lrambyte);
3559 	}
3560 
3561 	seq_puts(m, "\n Command Pending:");
3562 	for (i = 0; i <= ADV_MAX_TID; i++) {
3563 		if ((chip_scsi_id == i) ||
3564 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3565 			continue;
3566 		}
3567 
3568 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3569 				lrambyte);
3570 
3571 		seq_printf(m, " %X:%d", i, lrambyte);
3572 	}
3573 	seq_putc(m, '\n');
3574 
3575 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3576 	seq_puts(m, " Wide Enabled:");
3577 	for (i = 0; i <= ADV_MAX_TID; i++) {
3578 		if ((chip_scsi_id == i) ||
3579 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3580 			continue;
3581 		}
3582 
3583 		seq_printf(m, " %X:%c",
3584 			   i,
3585 			   (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3586 	}
3587 	seq_putc(m, '\n');
3588 
3589 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3590 	seq_puts(m, " Transfer Bit Width:");
3591 	for (i = 0; i <= ADV_MAX_TID; i++) {
3592 		if ((chip_scsi_id == i) ||
3593 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3594 			continue;
3595 		}
3596 
3597 		AdvReadWordLram(iop_base,
3598 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3599 				lramword);
3600 
3601 		seq_printf(m, " %X:%d",
3602 			   i, (lramword & 0x8000) ? 16 : 8);
3603 
3604 		if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3605 		    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3606 			seq_putc(m, '*');
3607 			renegotiate = 1;
3608 		}
3609 	}
3610 	seq_putc(m, '\n');
3611 
3612 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3613 	seq_puts(m, " Synchronous Enabled:");
3614 	for (i = 0; i <= ADV_MAX_TID; i++) {
3615 		if ((chip_scsi_id == i) ||
3616 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3617 			continue;
3618 		}
3619 
3620 		seq_printf(m, " %X:%c",
3621 			   i,
3622 			   (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3623 	}
3624 	seq_putc(m, '\n');
3625 
3626 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3627 	for (i = 0; i <= ADV_MAX_TID; i++) {
3628 
3629 		AdvReadWordLram(iop_base,
3630 				ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3631 				lramword);
3632 		lramword &= ~0x8000;
3633 
3634 		if ((chip_scsi_id == i) ||
3635 		    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3636 		    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3637 			continue;
3638 		}
3639 
3640 		seq_printf(m, "  %X:", i);
3641 
3642 		if ((lramword & 0x1F) == 0) {	/* Check for REQ/ACK Offset 0. */
3643 			seq_puts(m, " Asynchronous");
3644 		} else {
3645 			seq_puts(m, " Transfer Period Factor: ");
3646 
3647 			if ((lramword & 0x1F00) == 0x1100) {	/* 80 Mhz */
3648 				seq_puts(m, "9 (80.0 Mhz),");
3649 			} else if ((lramword & 0x1F00) == 0x1000) {	/* 40 Mhz */
3650 				seq_puts(m, "10 (40.0 Mhz),");
3651 			} else {	/* 20 Mhz or below. */
3652 
3653 				period = (((lramword >> 8) * 25) + 50) / 4;
3654 
3655 				if (period == 0) {	/* Should never happen. */
3656 					seq_printf(m, "%d (? Mhz), ", period);
3657 				} else {
3658 					seq_printf(m,
3659 						   "%d (%d.%d Mhz),",
3660 						   period, 250 / period,
3661 						   ASC_TENTHS(250, period));
3662 				}
3663 			}
3664 
3665 			seq_printf(m, " REQ/ACK Offset: %d",
3666 				   lramword & 0x1F);
3667 		}
3668 
3669 		if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3670 			seq_puts(m, "*\n");
3671 			renegotiate = 1;
3672 		} else {
3673 			seq_putc(m, '\n');
3674 		}
3675 	}
3676 
3677 	if (renegotiate) {
3678 		seq_puts(m, " * = Re-negotiation pending before next command.\n");
3679 	}
3680 }
3681 
3682 #ifdef ADVANSYS_STATS
3683 /*
3684  * asc_prt_board_stats()
3685  */
3686 static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3687 {
3688 	struct asc_board *boardp = shost_priv(shost);
3689 	struct asc_stats *s = &boardp->asc_stats;
3690 
3691 	seq_printf(m,
3692 		   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3693 		   shost->host_no);
3694 
3695 	seq_printf(m,
3696 		   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3697 		   s->queuecommand, s->reset, s->biosparam,
3698 		   s->interrupt);
3699 
3700 	seq_printf(m,
3701 		   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3702 		   s->callback, s->done, s->build_error,
3703 		   s->adv_build_noreq, s->adv_build_nosg);
3704 
3705 	seq_printf(m,
3706 		   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3707 		   s->exe_noerror, s->exe_busy, s->exe_error,
3708 		   s->exe_unknown);
3709 
3710 	/*
3711 	 * Display data transfer statistics.
3712 	 */
3713 	if (s->xfer_cnt > 0) {
3714 		seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3715 			   s->xfer_cnt, s->xfer_elem);
3716 
3717 		seq_printf(m, "xfer_bytes %u.%01u kb\n",
3718 			   s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3719 
3720 		/* Scatter gather transfer statistics */
3721 		seq_printf(m, " avg_num_elem %u.%01u, ",
3722 			   s->xfer_elem / s->xfer_cnt,
3723 			   ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3724 
3725 		seq_printf(m, "avg_elem_size %u.%01u kb, ",
3726 			   (s->xfer_sect / 2) / s->xfer_elem,
3727 			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3728 
3729 		seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3730 			   (s->xfer_sect / 2) / s->xfer_cnt,
3731 			   ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3732 	}
3733 }
3734 #endif /* ADVANSYS_STATS */
3735 
3736 /*
3737  * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3738  *
3739  * m: seq_file to print into
3740  * shost: Scsi_Host
3741  *
3742  * Return the number of bytes read from or written to a
3743  * /proc/scsi/advansys/[0...] file.
3744  */
3745 static int
3746 advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3747 {
3748 	struct asc_board *boardp = shost_priv(shost);
3749 
3750 	ASC_DBG(1, "begin\n");
3751 
3752 	/*
3753 	 * User read of /proc/scsi/advansys/[0...] file.
3754 	 */
3755 
3756 	/*
3757 	 * Get board configuration information.
3758 	 *
3759 	 * advansys_info() returns the board string from its own static buffer.
3760 	 */
3761 	/* Copy board information. */
3762 	seq_printf(m, "%s\n", (char *)advansys_info(shost));
3763 	/*
3764 	 * Display Wide Board BIOS Information.
3765 	 */
3766 	if (!ASC_NARROW_BOARD(boardp))
3767 		asc_prt_adv_bios(m, shost);
3768 
3769 	/*
3770 	 * Display driver information for each device attached to the board.
3771 	 */
3772 	asc_prt_board_devices(m, shost);
3773 
3774 	/*
3775 	 * Display EEPROM configuration for the board.
3776 	 */
3777 	if (ASC_NARROW_BOARD(boardp))
3778 		asc_prt_asc_board_eeprom(m, shost);
3779 	else
3780 		asc_prt_adv_board_eeprom(m, shost);
3781 
3782 	/*
3783 	 * Display driver configuration and information for the board.
3784 	 */
3785 	asc_prt_driver_conf(m, shost);
3786 
3787 #ifdef ADVANSYS_STATS
3788 	/*
3789 	 * Display driver statistics for the board.
3790 	 */
3791 	asc_prt_board_stats(m, shost);
3792 #endif /* ADVANSYS_STATS */
3793 
3794 	/*
3795 	 * Display Asc Library dynamic configuration information
3796 	 * for the board.
3797 	 */
3798 	if (ASC_NARROW_BOARD(boardp))
3799 		asc_prt_asc_board_info(m, shost);
3800 	else
3801 		asc_prt_adv_board_info(m, shost);
3802 	return 0;
3803 }
3804 #endif /* CONFIG_PROC_FS */
3805 
3806 static void asc_scsi_done(struct scsi_cmnd *scp)
3807 {
3808 	scsi_dma_unmap(scp);
3809 	ASC_STATS(scp->device->host, done);
3810 	scp->scsi_done(scp);
3811 }
3812 
3813 static void AscSetBank(PortAddr iop_base, uchar bank)
3814 {
3815 	uchar val;
3816 
3817 	val = AscGetChipControl(iop_base) &
3818 	    (~
3819 	     (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3820 	      CC_CHIP_RESET));
3821 	if (bank == 1) {
3822 		val |= CC_BANK_ONE;
3823 	} else if (bank == 2) {
3824 		val |= CC_DIAG | CC_BANK_ONE;
3825 	} else {
3826 		val &= ~CC_BANK_ONE;
3827 	}
3828 	AscSetChipControl(iop_base, val);
3829 }
3830 
3831 static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3832 {
3833 	AscSetBank(iop_base, 1);
3834 	AscWriteChipIH(iop_base, ins_code);
3835 	AscSetBank(iop_base, 0);
3836 }
3837 
3838 static int AscStartChip(PortAddr iop_base)
3839 {
3840 	AscSetChipControl(iop_base, 0);
3841 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3842 		return (0);
3843 	}
3844 	return (1);
3845 }
3846 
3847 static int AscStopChip(PortAddr iop_base)
3848 {
3849 	uchar cc_val;
3850 
3851 	cc_val =
3852 	    AscGetChipControl(iop_base) &
3853 	    (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3854 	AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3855 	AscSetChipIH(iop_base, INS_HALT);
3856 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3857 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3858 		return (0);
3859 	}
3860 	return (1);
3861 }
3862 
3863 static int AscIsChipHalted(PortAddr iop_base)
3864 {
3865 	if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3866 		if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3867 			return (1);
3868 		}
3869 	}
3870 	return (0);
3871 }
3872 
3873 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3874 {
3875 	PortAddr iop_base;
3876 	int i = 10;
3877 
3878 	iop_base = asc_dvc->iop_base;
3879 	while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3880 	       && (i-- > 0)) {
3881 		mdelay(100);
3882 	}
3883 	AscStopChip(iop_base);
3884 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3885 	udelay(60);
3886 	AscSetChipIH(iop_base, INS_RFLAG_WTM);
3887 	AscSetChipIH(iop_base, INS_HALT);
3888 	AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3889 	AscSetChipControl(iop_base, CC_HALT);
3890 	mdelay(200);
3891 	AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3892 	AscSetChipStatus(iop_base, 0);
3893 	return (AscIsChipHalted(iop_base));
3894 }
3895 
3896 static int AscFindSignature(PortAddr iop_base)
3897 {
3898 	ushort sig_word;
3899 
3900 	ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3901 		 iop_base, AscGetChipSignatureByte(iop_base));
3902 	if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3903 		ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3904 			 iop_base, AscGetChipSignatureWord(iop_base));
3905 		sig_word = AscGetChipSignatureWord(iop_base);
3906 		if ((sig_word == (ushort)ASC_1000_ID0W) ||
3907 		    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3908 			return (1);
3909 		}
3910 	}
3911 	return (0);
3912 }
3913 
3914 static void AscEnableInterrupt(PortAddr iop_base)
3915 {
3916 	ushort cfg;
3917 
3918 	cfg = AscGetChipCfgLsw(iop_base);
3919 	AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3920 }
3921 
3922 static void AscDisableInterrupt(PortAddr iop_base)
3923 {
3924 	ushort cfg;
3925 
3926 	cfg = AscGetChipCfgLsw(iop_base);
3927 	AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3928 }
3929 
3930 static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3931 {
3932 	unsigned char byte_data;
3933 	unsigned short word_data;
3934 
3935 	if (isodd_word(addr)) {
3936 		AscSetChipLramAddr(iop_base, addr - 1);
3937 		word_data = AscGetChipLramData(iop_base);
3938 		byte_data = (word_data >> 8) & 0xFF;
3939 	} else {
3940 		AscSetChipLramAddr(iop_base, addr);
3941 		word_data = AscGetChipLramData(iop_base);
3942 		byte_data = word_data & 0xFF;
3943 	}
3944 	return byte_data;
3945 }
3946 
3947 static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3948 {
3949 	ushort word_data;
3950 
3951 	AscSetChipLramAddr(iop_base, addr);
3952 	word_data = AscGetChipLramData(iop_base);
3953 	return (word_data);
3954 }
3955 
3956 #if CC_VERY_LONG_SG_LIST
3957 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr)
3958 {
3959 	ushort val_low, val_high;
3960 	ASC_DCNT dword_data;
3961 
3962 	AscSetChipLramAddr(iop_base, addr);
3963 	val_low = AscGetChipLramData(iop_base);
3964 	val_high = AscGetChipLramData(iop_base);
3965 	dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low;
3966 	return (dword_data);
3967 }
3968 #endif /* CC_VERY_LONG_SG_LIST */
3969 
3970 static void
3971 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3972 {
3973 	int i;
3974 
3975 	AscSetChipLramAddr(iop_base, s_addr);
3976 	for (i = 0; i < words; i++) {
3977 		AscSetChipLramData(iop_base, set_wval);
3978 	}
3979 }
3980 
3981 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3982 {
3983 	AscSetChipLramAddr(iop_base, addr);
3984 	AscSetChipLramData(iop_base, word_val);
3985 }
3986 
3987 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3988 {
3989 	ushort word_data;
3990 
3991 	if (isodd_word(addr)) {
3992 		addr--;
3993 		word_data = AscReadLramWord(iop_base, addr);
3994 		word_data &= 0x00FF;
3995 		word_data |= (((ushort)byte_val << 8) & 0xFF00);
3996 	} else {
3997 		word_data = AscReadLramWord(iop_base, addr);
3998 		word_data &= 0xFF00;
3999 		word_data |= ((ushort)byte_val & 0x00FF);
4000 	}
4001 	AscWriteLramWord(iop_base, addr, word_data);
4002 }
4003 
4004 /*
4005  * Copy 2 bytes to LRAM.
4006  *
4007  * The source data is assumed to be in little-endian order in memory
4008  * and is maintained in little-endian order when written to LRAM.
4009  */
4010 static void
4011 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
4012 			const uchar *s_buffer, int words)
4013 {
4014 	int i;
4015 
4016 	AscSetChipLramAddr(iop_base, s_addr);
4017 	for (i = 0; i < 2 * words; i += 2) {
4018 		/*
4019 		 * On a little-endian system the second argument below
4020 		 * produces a little-endian ushort which is written to
4021 		 * LRAM in little-endian order. On a big-endian system
4022 		 * the second argument produces a big-endian ushort which
4023 		 * is "transparently" byte-swapped by outpw() and written
4024 		 * in little-endian order to LRAM.
4025 		 */
4026 		outpw(iop_base + IOP_RAM_DATA,
4027 		      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
4028 	}
4029 }
4030 
4031 /*
4032  * Copy 4 bytes to LRAM.
4033  *
4034  * The source data is assumed to be in little-endian order in memory
4035  * and is maintained in little-endian order when written to LRAM.
4036  */
4037 static void
4038 AscMemDWordCopyPtrToLram(PortAddr iop_base,
4039 			 ushort s_addr, uchar *s_buffer, int dwords)
4040 {
4041 	int i;
4042 
4043 	AscSetChipLramAddr(iop_base, s_addr);
4044 	for (i = 0; i < 4 * dwords; i += 4) {
4045 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);	/* LSW */
4046 		outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);	/* MSW */
4047 	}
4048 }
4049 
4050 /*
4051  * Copy 2 bytes from LRAM.
4052  *
4053  * The source data is assumed to be in little-endian order in LRAM
4054  * and is maintained in little-endian order when written to memory.
4055  */
4056 static void
4057 AscMemWordCopyPtrFromLram(PortAddr iop_base,
4058 			  ushort s_addr, uchar *d_buffer, int words)
4059 {
4060 	int i;
4061 	ushort word;
4062 
4063 	AscSetChipLramAddr(iop_base, s_addr);
4064 	for (i = 0; i < 2 * words; i += 2) {
4065 		word = inpw(iop_base + IOP_RAM_DATA);
4066 		d_buffer[i] = word & 0xff;
4067 		d_buffer[i + 1] = (word >> 8) & 0xff;
4068 	}
4069 }
4070 
4071 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
4072 {
4073 	ASC_DCNT sum;
4074 	int i;
4075 
4076 	sum = 0L;
4077 	for (i = 0; i < words; i++, s_addr += 2) {
4078 		sum += AscReadLramWord(iop_base, s_addr);
4079 	}
4080 	return (sum);
4081 }
4082 
4083 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc)
4084 {
4085 	uchar i;
4086 	ushort s_addr;
4087 	PortAddr iop_base;
4088 	ushort warn_code;
4089 
4090 	iop_base = asc_dvc->iop_base;
4091 	warn_code = 0;
4092 	AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
4093 			  (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
4094 				    64) >> 1));
4095 	i = ASC_MIN_ACTIVE_QNO;
4096 	s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
4097 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4098 			 (uchar)(i + 1));
4099 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4100 			 (uchar)(asc_dvc->max_total_qng));
4101 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4102 			 (uchar)i);
4103 	i++;
4104 	s_addr += ASC_QBLK_SIZE;
4105 	for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
4106 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4107 				 (uchar)(i + 1));
4108 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4109 				 (uchar)(i - 1));
4110 		AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4111 				 (uchar)i);
4112 	}
4113 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
4114 			 (uchar)ASC_QLINK_END);
4115 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
4116 			 (uchar)(asc_dvc->max_total_qng - 1));
4117 	AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
4118 			 (uchar)asc_dvc->max_total_qng);
4119 	i++;
4120 	s_addr += ASC_QBLK_SIZE;
4121 	for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
4122 	     i++, s_addr += ASC_QBLK_SIZE) {
4123 		AscWriteLramByte(iop_base,
4124 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
4125 		AscWriteLramByte(iop_base,
4126 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
4127 		AscWriteLramByte(iop_base,
4128 				 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
4129 	}
4130 	return warn_code;
4131 }
4132 
4133 static ASC_DCNT
4134 AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
4135 		 const uchar *mcode_buf, ushort mcode_size)
4136 {
4137 	ASC_DCNT chksum;
4138 	ushort mcode_word_size;
4139 	ushort mcode_chksum;
4140 
4141 	/* Write the microcode buffer starting at LRAM address 0. */
4142 	mcode_word_size = (ushort)(mcode_size >> 1);
4143 	AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
4144 	AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
4145 
4146 	chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
4147 	ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
4148 	mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
4149 						 (ushort)ASC_CODE_SEC_BEG,
4150 						 (ushort)((mcode_size -
4151 							   s_addr - (ushort)
4152 							   ASC_CODE_SEC_BEG) /
4153 							  2));
4154 	ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
4155 	AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
4156 	AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
4157 	return chksum;
4158 }
4159 
4160 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
4161 {
4162 	PortAddr iop_base;
4163 	int i;
4164 	ushort lram_addr;
4165 
4166 	iop_base = asc_dvc->iop_base;
4167 	AscPutRiscVarFreeQHead(iop_base, 1);
4168 	AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4169 	AscPutVarFreeQHead(iop_base, 1);
4170 	AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
4171 	AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
4172 			 (uchar)((int)asc_dvc->max_total_qng + 1));
4173 	AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
4174 			 (uchar)((int)asc_dvc->max_total_qng + 2));
4175 	AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
4176 			 asc_dvc->max_total_qng);
4177 	AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
4178 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
4179 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
4180 	AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
4181 	AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4182 	AscPutQDoneInProgress(iop_base, 0);
4183 	lram_addr = ASC_QADR_BEG;
4184 	for (i = 0; i < 32; i++, lram_addr += 2) {
4185 		AscWriteLramWord(iop_base, lram_addr, 0);
4186 	}
4187 }
4188 
4189 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4190 {
4191 	int i;
4192 	ushort warn_code;
4193 	PortAddr iop_base;
4194 	ASC_PADDR phy_addr;
4195 	ASC_DCNT phy_size;
4196 	struct asc_board *board = asc_dvc_to_board(asc_dvc);
4197 
4198 	iop_base = asc_dvc->iop_base;
4199 	warn_code = 0;
4200 	for (i = 0; i <= ASC_MAX_TID; i++) {
4201 		AscPutMCodeInitSDTRAtID(iop_base, i,
4202 					asc_dvc->cfg->sdtr_period_offset[i]);
4203 	}
4204 
4205 	AscInitQLinkVar(asc_dvc);
4206 	AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4207 			 asc_dvc->cfg->disc_enable);
4208 	AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4209 			 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4210 
4211 	/* Ensure overrun buffer is aligned on an 8 byte boundary. */
4212 	BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4213 	asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4214 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4215 	if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4216 		warn_code = -ENOMEM;
4217 		goto err_dma_map;
4218 	}
4219 	phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4220 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4221 				 (uchar *)&phy_addr, 1);
4222 	phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4223 	AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4224 				 (uchar *)&phy_size, 1);
4225 
4226 	asc_dvc->cfg->mcode_date =
4227 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4228 	asc_dvc->cfg->mcode_version =
4229 	    AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4230 
4231 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4232 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4233 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4234 		warn_code = UW_ERR;
4235 		goto err_mcode_start;
4236 	}
4237 	if (AscStartChip(iop_base) != 1) {
4238 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4239 		warn_code = UW_ERR;
4240 		goto err_mcode_start;
4241 	}
4242 
4243 	return warn_code;
4244 
4245 err_mcode_start:
4246 	dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4247 			 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4248 err_dma_map:
4249 	asc_dvc->overrun_dma = 0;
4250 	return warn_code;
4251 }
4252 
4253 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4254 {
4255 	const struct firmware *fw;
4256 	const char fwname[] = "advansys/mcode.bin";
4257 	int err;
4258 	unsigned long chksum;
4259 	ushort warn_code;
4260 	PortAddr iop_base;
4261 
4262 	iop_base = asc_dvc->iop_base;
4263 	warn_code = 0;
4264 	if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4265 	    !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4266 		AscResetChipAndScsiBus(asc_dvc);
4267 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4268 	}
4269 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4270 	if (asc_dvc->err_code != 0)
4271 		return UW_ERR;
4272 	if (!AscFindSignature(asc_dvc->iop_base)) {
4273 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4274 		return warn_code;
4275 	}
4276 	AscDisableInterrupt(iop_base);
4277 	warn_code |= AscInitLram(asc_dvc);
4278 	if (asc_dvc->err_code != 0)
4279 		return UW_ERR;
4280 
4281 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4282 	if (err) {
4283 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4284 		       fwname, err);
4285 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4286 		return err;
4287 	}
4288 	if (fw->size < 4) {
4289 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4290 		       fw->size, fwname);
4291 		release_firmware(fw);
4292 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4293 		return -EINVAL;
4294 	}
4295 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4296 		 (fw->data[1] << 8) | fw->data[0];
4297 	ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4298 	if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4299 			     fw->size - 4) != chksum) {
4300 		asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4301 		release_firmware(fw);
4302 		return warn_code;
4303 	}
4304 	release_firmware(fw);
4305 	warn_code |= AscInitMicroCodeVar(asc_dvc);
4306 	if (!asc_dvc->overrun_dma)
4307 		return warn_code;
4308 	asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4309 	AscEnableInterrupt(iop_base);
4310 	return warn_code;
4311 }
4312 
4313 /*
4314  * Load the Microcode
4315  *
4316  * Write the microcode image to RISC memory starting at address 0.
4317  *
4318  * The microcode is stored compressed in the following format:
4319  *
4320  *  254 word (508 byte) table indexed by byte code followed
4321  *  by the following byte codes:
4322  *
4323  *    1-Byte Code:
4324  *      00: Emit word 0 in table.
4325  *      01: Emit word 1 in table.
4326  *      .
4327  *      FD: Emit word 253 in table.
4328  *
4329  *    Multi-Byte Code:
4330  *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4331  *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4332  *
4333  * Returns 0 or an error if the checksum doesn't match
4334  */
4335 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4336 			    int size, int memsize, int chksum)
4337 {
4338 	int i, j, end, len = 0;
4339 	ADV_DCNT sum;
4340 
4341 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4342 
4343 	for (i = 253 * 2; i < size; i++) {
4344 		if (buf[i] == 0xff) {
4345 			unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4346 			for (j = 0; j < buf[i + 1]; j++) {
4347 				AdvWriteWordAutoIncLram(iop_base, word);
4348 				len += 2;
4349 			}
4350 			i += 3;
4351 		} else if (buf[i] == 0xfe) {
4352 			unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4353 			AdvWriteWordAutoIncLram(iop_base, word);
4354 			i += 2;
4355 			len += 2;
4356 		} else {
4357 			unsigned int off = buf[i] * 2;
4358 			unsigned short word = (buf[off + 1] << 8) | buf[off];
4359 			AdvWriteWordAutoIncLram(iop_base, word);
4360 			len += 2;
4361 		}
4362 	}
4363 
4364 	end = len;
4365 
4366 	while (len < memsize) {
4367 		AdvWriteWordAutoIncLram(iop_base, 0);
4368 		len += 2;
4369 	}
4370 
4371 	/* Verify the microcode checksum. */
4372 	sum = 0;
4373 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4374 
4375 	for (len = 0; len < end; len += 2) {
4376 		sum += AdvReadWordAutoIncLram(iop_base);
4377 	}
4378 
4379 	if (sum != chksum)
4380 		return ASC_IERR_MCODE_CHKSUM;
4381 
4382 	return 0;
4383 }
4384 
4385 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc)
4386 {
4387 	ADV_CARR_T *carrp;
4388 	ADV_SDCNT buf_size;
4389 	ADV_PADDR carr_paddr;
4390 
4391 	carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf);
4392 	asc_dvc->carr_freelist = NULL;
4393 	if (carrp == asc_dvc->carrier_buf) {
4394 		buf_size = ADV_CARRIER_BUFSIZE;
4395 	} else {
4396 		buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T);
4397 	}
4398 
4399 	do {
4400 		/* Get physical address of the carrier 'carrp'. */
4401 		carr_paddr = cpu_to_le32(virt_to_bus(carrp));
4402 
4403 		buf_size -= sizeof(ADV_CARR_T);
4404 
4405 		carrp->carr_pa = carr_paddr;
4406 		carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp));
4407 
4408 		/*
4409 		 * Insert the carrier at the beginning of the freelist.
4410 		 */
4411 		carrp->next_vpa =
4412 			cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
4413 		asc_dvc->carr_freelist = carrp;
4414 
4415 		carrp++;
4416 	} while (buf_size > 0);
4417 }
4418 
4419 /*
4420  * Send an idle command to the chip and wait for completion.
4421  *
4422  * Command completion is polled for once per microsecond.
4423  *
4424  * The function can be called from anywhere including an interrupt handler.
4425  * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4426  * functions to prevent reentrancy.
4427  *
4428  * Return Values:
4429  *   ADV_TRUE - command completed successfully
4430  *   ADV_FALSE - command failed
4431  *   ADV_ERROR - command timed out
4432  */
4433 static int
4434 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4435 	       ushort idle_cmd, ADV_DCNT idle_cmd_parameter)
4436 {
4437 	int result;
4438 	ADV_DCNT i, j;
4439 	AdvPortAddr iop_base;
4440 
4441 	iop_base = asc_dvc->iop_base;
4442 
4443 	/*
4444 	 * Clear the idle command status which is set by the microcode
4445 	 * to a non-zero value to indicate when the command is completed.
4446 	 * The non-zero result is one of the IDLE_CMD_STATUS_* values
4447 	 */
4448 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4449 
4450 	/*
4451 	 * Write the idle command value after the idle command parameter
4452 	 * has been written to avoid a race condition. If the order is not
4453 	 * followed, the microcode may process the idle command before the
4454 	 * parameters have been written to LRAM.
4455 	 */
4456 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4457 				cpu_to_le32(idle_cmd_parameter));
4458 	AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4459 
4460 	/*
4461 	 * Tickle the RISC to tell it to process the idle command.
4462 	 */
4463 	AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4464 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4465 		/*
4466 		 * Clear the tickle value. In the ASC-3550 the RISC flag
4467 		 * command 'clr_tickle_b' does not work unless the host
4468 		 * value is cleared.
4469 		 */
4470 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4471 	}
4472 
4473 	/* Wait for up to 100 millisecond for the idle command to timeout. */
4474 	for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4475 		/* Poll once each microsecond for command completion. */
4476 		for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4477 			AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4478 					result);
4479 			if (result != 0)
4480 				return result;
4481 			udelay(1);
4482 		}
4483 	}
4484 
4485 	BUG();		/* The idle command should never timeout. */
4486 	return ADV_ERROR;
4487 }
4488 
4489 /*
4490  * Reset SCSI Bus and purge all outstanding requests.
4491  *
4492  * Return Value:
4493  *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4494  *      ADV_FALSE(0) -  Microcode command failed.
4495  *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4496  *                      may be hung which requires driver recovery.
4497  */
4498 static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4499 {
4500 	int status;
4501 
4502 	/*
4503 	 * Send the SCSI Bus Reset idle start idle command which asserts
4504 	 * the SCSI Bus Reset signal.
4505 	 */
4506 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4507 	if (status != ADV_TRUE) {
4508 		return status;
4509 	}
4510 
4511 	/*
4512 	 * Delay for the specified SCSI Bus Reset hold time.
4513 	 *
4514 	 * The hold time delay is done on the host because the RISC has no
4515 	 * microsecond accurate timer.
4516 	 */
4517 	udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4518 
4519 	/*
4520 	 * Send the SCSI Bus Reset end idle command which de-asserts
4521 	 * the SCSI Bus Reset signal and purges any pending requests.
4522 	 */
4523 	status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4524 	if (status != ADV_TRUE) {
4525 		return status;
4526 	}
4527 
4528 	mdelay(asc_dvc->scsi_reset_wait * 1000);	/* XXX: msleep? */
4529 
4530 	return status;
4531 }
4532 
4533 /*
4534  * Initialize the ASC-3550.
4535  *
4536  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4537  *
4538  * For a non-fatal error return a warning code. If there are no warnings
4539  * then 0 is returned.
4540  *
4541  * Needed after initialization for error recovery.
4542  */
4543 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4544 {
4545 	const struct firmware *fw;
4546 	const char fwname[] = "advansys/3550.bin";
4547 	AdvPortAddr iop_base;
4548 	ushort warn_code;
4549 	int begin_addr;
4550 	int end_addr;
4551 	ushort code_sum;
4552 	int word;
4553 	int i;
4554 	int err;
4555 	unsigned long chksum;
4556 	ushort scsi_cfg1;
4557 	uchar tid;
4558 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
4559 	ushort wdtr_able = 0, sdtr_able, tagqng_able;
4560 	uchar max_cmd[ADV_MAX_TID + 1];
4561 
4562 	/* If there is already an error, don't continue. */
4563 	if (asc_dvc->err_code != 0)
4564 		return ADV_ERROR;
4565 
4566 	/*
4567 	 * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4568 	 */
4569 	if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4570 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4571 		return ADV_ERROR;
4572 	}
4573 
4574 	warn_code = 0;
4575 	iop_base = asc_dvc->iop_base;
4576 
4577 	/*
4578 	 * Save the RISC memory BIOS region before writing the microcode.
4579 	 * The BIOS may already be loaded and using its RISC LRAM region
4580 	 * so its region must be saved and restored.
4581 	 *
4582 	 * Note: This code makes the assumption, which is currently true,
4583 	 * that a chip reset does not clear RISC LRAM.
4584 	 */
4585 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4586 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4587 				bios_mem[i]);
4588 	}
4589 
4590 	/*
4591 	 * Save current per TID negotiated values.
4592 	 */
4593 	if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4594 		ushort bios_version, major, minor;
4595 
4596 		bios_version =
4597 		    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4598 		major = (bios_version >> 12) & 0xF;
4599 		minor = (bios_version >> 8) & 0xF;
4600 		if (major < 3 || (major == 3 && minor == 1)) {
4601 			/* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4602 			AdvReadWordLram(iop_base, 0x120, wdtr_able);
4603 		} else {
4604 			AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4605 		}
4606 	}
4607 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4608 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4609 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4610 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4611 				max_cmd[tid]);
4612 	}
4613 
4614 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4615 	if (err) {
4616 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4617 		       fwname, err);
4618 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4619 		return err;
4620 	}
4621 	if (fw->size < 4) {
4622 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4623 		       fw->size, fwname);
4624 		release_firmware(fw);
4625 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4626 		return -EINVAL;
4627 	}
4628 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4629 		 (fw->data[1] << 8) | fw->data[0];
4630 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4631 					     fw->size - 4, ADV_3550_MEMSIZE,
4632 					     chksum);
4633 	release_firmware(fw);
4634 	if (asc_dvc->err_code)
4635 		return ADV_ERROR;
4636 
4637 	/*
4638 	 * Restore the RISC memory BIOS region.
4639 	 */
4640 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4641 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4642 				 bios_mem[i]);
4643 	}
4644 
4645 	/*
4646 	 * Calculate and write the microcode code checksum to the microcode
4647 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4648 	 */
4649 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4650 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4651 	code_sum = 0;
4652 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4653 	for (word = begin_addr; word < end_addr; word += 2) {
4654 		code_sum += AdvReadWordAutoIncLram(iop_base);
4655 	}
4656 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4657 
4658 	/*
4659 	 * Read and save microcode version and date.
4660 	 */
4661 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4662 			asc_dvc->cfg->mcode_date);
4663 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4664 			asc_dvc->cfg->mcode_version);
4665 
4666 	/*
4667 	 * Set the chip type to indicate the ASC3550.
4668 	 */
4669 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4670 
4671 	/*
4672 	 * If the PCI Configuration Command Register "Parity Error Response
4673 	 * Control" Bit was clear (0), then set the microcode variable
4674 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4675 	 * to ignore DMA parity errors.
4676 	 */
4677 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4678 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4679 		word |= CONTROL_FLAG_IGNORE_PERR;
4680 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4681 	}
4682 
4683 	/*
4684 	 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4685 	 * threshold of 128 bytes. This register is only accessible to the host.
4686 	 */
4687 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4688 			     START_CTL_EMFU | READ_CMD_MRM);
4689 
4690 	/*
4691 	 * Microcode operating variables for WDTR, SDTR, and command tag
4692 	 * queuing will be set in slave_configure() based on what a
4693 	 * device reports it is capable of in Inquiry byte 7.
4694 	 *
4695 	 * If SCSI Bus Resets have been disabled, then directly set
4696 	 * SDTR and WDTR from the EEPROM configuration. This will allow
4697 	 * the BIOS and warm boot to work without a SCSI bus hang on
4698 	 * the Inquiry caused by host and target mismatched DTR values.
4699 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
4700 	 * be assumed to be in Asynchronous, Narrow mode.
4701 	 */
4702 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4703 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4704 				 asc_dvc->wdtr_able);
4705 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4706 				 asc_dvc->sdtr_able);
4707 	}
4708 
4709 	/*
4710 	 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4711 	 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4712 	 * bitmask. These values determine the maximum SDTR speed negotiated
4713 	 * with a device.
4714 	 *
4715 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4716 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4717 	 * without determining here whether the device supports SDTR.
4718 	 *
4719 	 * 4-bit speed  SDTR speed name
4720 	 * ===========  ===============
4721 	 * 0000b (0x0)  SDTR disabled
4722 	 * 0001b (0x1)  5 Mhz
4723 	 * 0010b (0x2)  10 Mhz
4724 	 * 0011b (0x3)  20 Mhz (Ultra)
4725 	 * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4726 	 * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4727 	 * 0110b (0x6)  Undefined
4728 	 * .
4729 	 * 1111b (0xF)  Undefined
4730 	 */
4731 	word = 0;
4732 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4733 		if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4734 			/* Set Ultra speed for TID 'tid'. */
4735 			word |= (0x3 << (4 * (tid % 4)));
4736 		} else {
4737 			/* Set Fast speed for TID 'tid'. */
4738 			word |= (0x2 << (4 * (tid % 4)));
4739 		}
4740 		if (tid == 3) {	/* Check if done with sdtr_speed1. */
4741 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4742 			word = 0;
4743 		} else if (tid == 7) {	/* Check if done with sdtr_speed2. */
4744 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4745 			word = 0;
4746 		} else if (tid == 11) {	/* Check if done with sdtr_speed3. */
4747 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4748 			word = 0;
4749 		} else if (tid == 15) {	/* Check if done with sdtr_speed4. */
4750 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4751 			/* End of loop. */
4752 		}
4753 	}
4754 
4755 	/*
4756 	 * Set microcode operating variable for the disconnect per TID bitmask.
4757 	 */
4758 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4759 			 asc_dvc->cfg->disc_enable);
4760 
4761 	/*
4762 	 * Set SCSI_CFG0 Microcode Default Value.
4763 	 *
4764 	 * The microcode will set the SCSI_CFG0 register using this value
4765 	 * after it is started below.
4766 	 */
4767 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4768 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4769 			 asc_dvc->chip_scsi_id);
4770 
4771 	/*
4772 	 * Determine SCSI_CFG1 Microcode Default Value.
4773 	 *
4774 	 * The microcode will set the SCSI_CFG1 register using this value
4775 	 * after it is started below.
4776 	 */
4777 
4778 	/* Read current SCSI_CFG1 Register value. */
4779 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4780 
4781 	/*
4782 	 * If all three connectors are in use, return an error.
4783 	 */
4784 	if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4785 	    (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4786 		asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4787 		return ADV_ERROR;
4788 	}
4789 
4790 	/*
4791 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
4792 	 * register signals will be set. Check for and return an error if
4793 	 * this condition is found.
4794 	 */
4795 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4796 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4797 		return ADV_ERROR;
4798 	}
4799 
4800 	/*
4801 	 * If this is a differential board and a single-ended device
4802 	 * is attached to one of the connectors, return an error.
4803 	 */
4804 	if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4805 		asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4806 		return ADV_ERROR;
4807 	}
4808 
4809 	/*
4810 	 * If automatic termination control is enabled, then set the
4811 	 * termination value based on a table listed in a_condor.h.
4812 	 *
4813 	 * If manual termination was specified with an EEPROM setting
4814 	 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4815 	 * is ready to be 'ored' into SCSI_CFG1.
4816 	 */
4817 	if (asc_dvc->cfg->termination == 0) {
4818 		/*
4819 		 * The software always controls termination by setting TERM_CTL_SEL.
4820 		 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4821 		 */
4822 		asc_dvc->cfg->termination |= TERM_CTL_SEL;
4823 
4824 		switch (scsi_cfg1 & CABLE_DETECT) {
4825 			/* TERM_CTL_H: on, TERM_CTL_L: on */
4826 		case 0x3:
4827 		case 0x7:
4828 		case 0xB:
4829 		case 0xD:
4830 		case 0xE:
4831 		case 0xF:
4832 			asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4833 			break;
4834 
4835 			/* TERM_CTL_H: on, TERM_CTL_L: off */
4836 		case 0x1:
4837 		case 0x5:
4838 		case 0x9:
4839 		case 0xA:
4840 		case 0xC:
4841 			asc_dvc->cfg->termination |= TERM_CTL_H;
4842 			break;
4843 
4844 			/* TERM_CTL_H: off, TERM_CTL_L: off */
4845 		case 0x2:
4846 		case 0x6:
4847 			break;
4848 		}
4849 	}
4850 
4851 	/*
4852 	 * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4853 	 */
4854 	scsi_cfg1 &= ~TERM_CTL;
4855 
4856 	/*
4857 	 * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4858 	 * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4859 	 * referenced, because the hardware internally inverts
4860 	 * the Termination High and Low bits if TERM_POL is set.
4861 	 */
4862 	scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4863 
4864 	/*
4865 	 * Set SCSI_CFG1 Microcode Default Value
4866 	 *
4867 	 * Set filter value and possibly modified termination control
4868 	 * bits in the Microcode SCSI_CFG1 Register Value.
4869 	 *
4870 	 * The microcode will set the SCSI_CFG1 register using this value
4871 	 * after it is started below.
4872 	 */
4873 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4874 			 FLTR_DISABLE | scsi_cfg1);
4875 
4876 	/*
4877 	 * Set MEM_CFG Microcode Default Value
4878 	 *
4879 	 * The microcode will set the MEM_CFG register using this value
4880 	 * after it is started below.
4881 	 *
4882 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4883 	 * are defined.
4884 	 *
4885 	 * ASC-3550 has 8KB internal memory.
4886 	 */
4887 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4888 			 BIOS_EN | RAM_SZ_8KB);
4889 
4890 	/*
4891 	 * Set SEL_MASK Microcode Default Value
4892 	 *
4893 	 * The microcode will set the SEL_MASK register using this value
4894 	 * after it is started below.
4895 	 */
4896 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4897 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4898 
4899 	AdvBuildCarrierFreelist(asc_dvc);
4900 
4901 	/*
4902 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
4903 	 */
4904 
4905 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
4906 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4907 		return ADV_ERROR;
4908 	}
4909 	asc_dvc->carr_freelist = (ADV_CARR_T *)
4910 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
4911 
4912 	/*
4913 	 * The first command issued will be placed in the stopper carrier.
4914 	 */
4915 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4916 
4917 	/*
4918 	 * Set RISC ICQ physical address start value.
4919 	 */
4920 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4921 
4922 	/*
4923 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
4924 	 */
4925 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
4926 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4927 		return ADV_ERROR;
4928 	}
4929 	asc_dvc->carr_freelist = (ADV_CARR_T *)
4930 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
4931 
4932 	/*
4933 	 * The first command completed by the RISC will be placed in
4934 	 * the stopper.
4935 	 *
4936 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
4937 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
4938 	 */
4939 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
4940 
4941 	/*
4942 	 * Set RISC IRQ physical address start value.
4943 	 */
4944 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4945 	asc_dvc->carr_pending_cnt = 0;
4946 
4947 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4948 			     (ADV_INTR_ENABLE_HOST_INTR |
4949 			      ADV_INTR_ENABLE_GLOBAL_INTR));
4950 
4951 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4952 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
4953 
4954 	/* finally, finally, gentlemen, start your engine */
4955 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4956 
4957 	/*
4958 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4959 	 * Resets should be performed. The RISC has to be running
4960 	 * to issue a SCSI Bus Reset.
4961 	 */
4962 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4963 		/*
4964 		 * If the BIOS Signature is present in memory, restore the
4965 		 * BIOS Handshake Configuration Table and do not perform
4966 		 * a SCSI Bus Reset.
4967 		 */
4968 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4969 		    0x55AA) {
4970 			/*
4971 			 * Restore per TID negotiated values.
4972 			 */
4973 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4974 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4975 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4976 					 tagqng_able);
4977 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4978 				AdvWriteByteLram(iop_base,
4979 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4980 						 max_cmd[tid]);
4981 			}
4982 		} else {
4983 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4984 				warn_code = ASC_WARN_BUSRESET_ERROR;
4985 			}
4986 		}
4987 	}
4988 
4989 	return warn_code;
4990 }
4991 
4992 /*
4993  * Initialize the ASC-38C0800.
4994  *
4995  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4996  *
4997  * For a non-fatal error return a warning code. If there are no warnings
4998  * then 0 is returned.
4999  *
5000  * Needed after initialization for error recovery.
5001  */
5002 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
5003 {
5004 	const struct firmware *fw;
5005 	const char fwname[] = "advansys/38C0800.bin";
5006 	AdvPortAddr iop_base;
5007 	ushort warn_code;
5008 	int begin_addr;
5009 	int end_addr;
5010 	ushort code_sum;
5011 	int word;
5012 	int i;
5013 	int err;
5014 	unsigned long chksum;
5015 	ushort scsi_cfg1;
5016 	uchar byte;
5017 	uchar tid;
5018 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5019 	ushort wdtr_able, sdtr_able, tagqng_able;
5020 	uchar max_cmd[ADV_MAX_TID + 1];
5021 
5022 	/* If there is already an error, don't continue. */
5023 	if (asc_dvc->err_code != 0)
5024 		return ADV_ERROR;
5025 
5026 	/*
5027 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
5028 	 */
5029 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
5030 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5031 		return ADV_ERROR;
5032 	}
5033 
5034 	warn_code = 0;
5035 	iop_base = asc_dvc->iop_base;
5036 
5037 	/*
5038 	 * Save the RISC memory BIOS region before writing the microcode.
5039 	 * The BIOS may already be loaded and using its RISC LRAM region
5040 	 * so its region must be saved and restored.
5041 	 *
5042 	 * Note: This code makes the assumption, which is currently true,
5043 	 * that a chip reset does not clear RISC LRAM.
5044 	 */
5045 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5046 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5047 				bios_mem[i]);
5048 	}
5049 
5050 	/*
5051 	 * Save current per TID negotiated values.
5052 	 */
5053 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5054 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5055 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5056 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5057 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5058 				max_cmd[tid]);
5059 	}
5060 
5061 	/*
5062 	 * RAM BIST (RAM Built-In Self Test)
5063 	 *
5064 	 * Address : I/O base + offset 0x38h register (byte).
5065 	 * Function: Bit 7-6(RW) : RAM mode
5066 	 *                          Normal Mode   : 0x00
5067 	 *                          Pre-test Mode : 0x40
5068 	 *                          RAM Test Mode : 0x80
5069 	 *           Bit 5       : unused
5070 	 *           Bit 4(RO)   : Done bit
5071 	 *           Bit 3-0(RO) : Status
5072 	 *                          Host Error    : 0x08
5073 	 *                          Int_RAM Error : 0x04
5074 	 *                          RISC Error    : 0x02
5075 	 *                          SCSI Error    : 0x01
5076 	 *                          No Error      : 0x00
5077 	 *
5078 	 * Note: RAM BIST code should be put right here, before loading the
5079 	 * microcode and after saving the RISC memory BIOS region.
5080 	 */
5081 
5082 	/*
5083 	 * LRAM Pre-test
5084 	 *
5085 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5086 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5087 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5088 	 * to NORMAL_MODE, return an error too.
5089 	 */
5090 	for (i = 0; i < 2; i++) {
5091 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5092 		mdelay(10);	/* Wait for 10ms before reading back. */
5093 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5094 		if ((byte & RAM_TEST_DONE) == 0
5095 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5096 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5097 			return ADV_ERROR;
5098 		}
5099 
5100 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5101 		mdelay(10);	/* Wait for 10ms before reading back. */
5102 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5103 		    != NORMAL_VALUE) {
5104 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5105 			return ADV_ERROR;
5106 		}
5107 	}
5108 
5109 	/*
5110 	 * LRAM Test - It takes about 1.5 ms to run through the test.
5111 	 *
5112 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5113 	 * If Done bit not set or Status not 0, save register byte, set the
5114 	 * err_code, and return an error.
5115 	 */
5116 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5117 	mdelay(10);	/* Wait for 10ms before checking status. */
5118 
5119 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5120 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5121 		/* Get here if Done bit not set or Status not 0. */
5122 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5123 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5124 		return ADV_ERROR;
5125 	}
5126 
5127 	/* We need to reset back to normal mode after LRAM test passes. */
5128 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5129 
5130 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5131 	if (err) {
5132 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5133 		       fwname, err);
5134 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5135 		return err;
5136 	}
5137 	if (fw->size < 4) {
5138 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5139 		       fw->size, fwname);
5140 		release_firmware(fw);
5141 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5142 		return -EINVAL;
5143 	}
5144 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5145 		 (fw->data[1] << 8) | fw->data[0];
5146 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5147 					     fw->size - 4, ADV_38C0800_MEMSIZE,
5148 					     chksum);
5149 	release_firmware(fw);
5150 	if (asc_dvc->err_code)
5151 		return ADV_ERROR;
5152 
5153 	/*
5154 	 * Restore the RISC memory BIOS region.
5155 	 */
5156 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5157 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5158 				 bios_mem[i]);
5159 	}
5160 
5161 	/*
5162 	 * Calculate and write the microcode code checksum to the microcode
5163 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5164 	 */
5165 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5166 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5167 	code_sum = 0;
5168 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5169 	for (word = begin_addr; word < end_addr; word += 2) {
5170 		code_sum += AdvReadWordAutoIncLram(iop_base);
5171 	}
5172 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5173 
5174 	/*
5175 	 * Read microcode version and date.
5176 	 */
5177 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5178 			asc_dvc->cfg->mcode_date);
5179 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5180 			asc_dvc->cfg->mcode_version);
5181 
5182 	/*
5183 	 * Set the chip type to indicate the ASC38C0800.
5184 	 */
5185 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5186 
5187 	/*
5188 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5189 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5190 	 * cable detection and then we are able to read C_DET[3:0].
5191 	 *
5192 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5193 	 * Microcode Default Value' section below.
5194 	 */
5195 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5196 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5197 			     scsi_cfg1 | DIS_TERM_DRV);
5198 
5199 	/*
5200 	 * If the PCI Configuration Command Register "Parity Error Response
5201 	 * Control" Bit was clear (0), then set the microcode variable
5202 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5203 	 * to ignore DMA parity errors.
5204 	 */
5205 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5206 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5207 		word |= CONTROL_FLAG_IGNORE_PERR;
5208 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5209 	}
5210 
5211 	/*
5212 	 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5213 	 * bits for the default FIFO threshold.
5214 	 *
5215 	 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5216 	 *
5217 	 * For DMA Errata #4 set the BC_THRESH_ENB bit.
5218 	 */
5219 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5220 			     BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5221 			     READ_CMD_MRM);
5222 
5223 	/*
5224 	 * Microcode operating variables for WDTR, SDTR, and command tag
5225 	 * queuing will be set in slave_configure() based on what a
5226 	 * device reports it is capable of in Inquiry byte 7.
5227 	 *
5228 	 * If SCSI Bus Resets have been disabled, then directly set
5229 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5230 	 * the BIOS and warm boot to work without a SCSI bus hang on
5231 	 * the Inquiry caused by host and target mismatched DTR values.
5232 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5233 	 * be assumed to be in Asynchronous, Narrow mode.
5234 	 */
5235 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5236 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5237 				 asc_dvc->wdtr_able);
5238 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5239 				 asc_dvc->sdtr_able);
5240 	}
5241 
5242 	/*
5243 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5244 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5245 	 * configuration values.
5246 	 *
5247 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5248 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5249 	 * without determining here whether the device supports SDTR.
5250 	 */
5251 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5252 			 asc_dvc->cfg->disc_enable);
5253 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5254 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5255 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5256 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5257 
5258 	/*
5259 	 * Set SCSI_CFG0 Microcode Default Value.
5260 	 *
5261 	 * The microcode will set the SCSI_CFG0 register using this value
5262 	 * after it is started below.
5263 	 */
5264 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5265 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5266 			 asc_dvc->chip_scsi_id);
5267 
5268 	/*
5269 	 * Determine SCSI_CFG1 Microcode Default Value.
5270 	 *
5271 	 * The microcode will set the SCSI_CFG1 register using this value
5272 	 * after it is started below.
5273 	 */
5274 
5275 	/* Read current SCSI_CFG1 Register value. */
5276 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5277 
5278 	/*
5279 	 * If the internal narrow cable is reversed all of the SCSI_CTRL
5280 	 * register signals will be set. Check for and return an error if
5281 	 * this condition is found.
5282 	 */
5283 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5284 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5285 		return ADV_ERROR;
5286 	}
5287 
5288 	/*
5289 	 * All kind of combinations of devices attached to one of four
5290 	 * connectors are acceptable except HVD device attached. For example,
5291 	 * LVD device can be attached to SE connector while SE device attached
5292 	 * to LVD connector.  If LVD device attached to SE connector, it only
5293 	 * runs up to Ultra speed.
5294 	 *
5295 	 * If an HVD device is attached to one of LVD connectors, return an
5296 	 * error.  However, there is no way to detect HVD device attached to
5297 	 * SE connectors.
5298 	 */
5299 	if (scsi_cfg1 & HVD) {
5300 		asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5301 		return ADV_ERROR;
5302 	}
5303 
5304 	/*
5305 	 * If either SE or LVD automatic termination control is enabled, then
5306 	 * set the termination value based on a table listed in a_condor.h.
5307 	 *
5308 	 * If manual termination was specified with an EEPROM setting then
5309 	 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5310 	 * to be 'ored' into SCSI_CFG1.
5311 	 */
5312 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5313 		/* SE automatic termination control is enabled. */
5314 		switch (scsi_cfg1 & C_DET_SE) {
5315 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5316 		case 0x1:
5317 		case 0x2:
5318 		case 0x3:
5319 			asc_dvc->cfg->termination |= TERM_SE;
5320 			break;
5321 
5322 			/* TERM_SE_HI: on, TERM_SE_LO: off */
5323 		case 0x0:
5324 			asc_dvc->cfg->termination |= TERM_SE_HI;
5325 			break;
5326 		}
5327 	}
5328 
5329 	if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5330 		/* LVD automatic termination control is enabled. */
5331 		switch (scsi_cfg1 & C_DET_LVD) {
5332 			/* TERM_LVD_HI: on, TERM_LVD_LO: on */
5333 		case 0x4:
5334 		case 0x8:
5335 		case 0xC:
5336 			asc_dvc->cfg->termination |= TERM_LVD;
5337 			break;
5338 
5339 			/* TERM_LVD_HI: off, TERM_LVD_LO: off */
5340 		case 0x0:
5341 			break;
5342 		}
5343 	}
5344 
5345 	/*
5346 	 * Clear any set TERM_SE and TERM_LVD bits.
5347 	 */
5348 	scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5349 
5350 	/*
5351 	 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5352 	 */
5353 	scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5354 
5355 	/*
5356 	 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5357 	 * bits and set possibly modified termination control bits in the
5358 	 * Microcode SCSI_CFG1 Register Value.
5359 	 */
5360 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5361 
5362 	/*
5363 	 * Set SCSI_CFG1 Microcode Default Value
5364 	 *
5365 	 * Set possibly modified termination control and reset DIS_TERM_DRV
5366 	 * bits in the Microcode SCSI_CFG1 Register Value.
5367 	 *
5368 	 * The microcode will set the SCSI_CFG1 register using this value
5369 	 * after it is started below.
5370 	 */
5371 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5372 
5373 	/*
5374 	 * Set MEM_CFG Microcode Default Value
5375 	 *
5376 	 * The microcode will set the MEM_CFG register using this value
5377 	 * after it is started below.
5378 	 *
5379 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5380 	 * are defined.
5381 	 *
5382 	 * ASC-38C0800 has 16KB internal memory.
5383 	 */
5384 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5385 			 BIOS_EN | RAM_SZ_16KB);
5386 
5387 	/*
5388 	 * Set SEL_MASK Microcode Default Value
5389 	 *
5390 	 * The microcode will set the SEL_MASK register using this value
5391 	 * after it is started below.
5392 	 */
5393 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5394 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5395 
5396 	AdvBuildCarrierFreelist(asc_dvc);
5397 
5398 	/*
5399 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5400 	 */
5401 
5402 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5403 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5404 		return ADV_ERROR;
5405 	}
5406 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5407 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5408 
5409 	/*
5410 	 * The first command issued will be placed in the stopper carrier.
5411 	 */
5412 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5413 
5414 	/*
5415 	 * Set RISC ICQ physical address start value.
5416 	 * carr_pa is LE, must be native before write
5417 	 */
5418 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5419 
5420 	/*
5421 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5422 	 */
5423 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5424 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5425 		return ADV_ERROR;
5426 	}
5427 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5428 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5429 
5430 	/*
5431 	 * The first command completed by the RISC will be placed in
5432 	 * the stopper.
5433 	 *
5434 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5435 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
5436 	 */
5437 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5438 
5439 	/*
5440 	 * Set RISC IRQ physical address start value.
5441 	 *
5442 	 * carr_pa is LE, must be native before write *
5443 	 */
5444 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5445 	asc_dvc->carr_pending_cnt = 0;
5446 
5447 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5448 			     (ADV_INTR_ENABLE_HOST_INTR |
5449 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5450 
5451 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5452 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5453 
5454 	/* finally, finally, gentlemen, start your engine */
5455 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5456 
5457 	/*
5458 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5459 	 * Resets should be performed. The RISC has to be running
5460 	 * to issue a SCSI Bus Reset.
5461 	 */
5462 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5463 		/*
5464 		 * If the BIOS Signature is present in memory, restore the
5465 		 * BIOS Handshake Configuration Table and do not perform
5466 		 * a SCSI Bus Reset.
5467 		 */
5468 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5469 		    0x55AA) {
5470 			/*
5471 			 * Restore per TID negotiated values.
5472 			 */
5473 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5474 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5475 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5476 					 tagqng_able);
5477 			for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5478 				AdvWriteByteLram(iop_base,
5479 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5480 						 max_cmd[tid]);
5481 			}
5482 		} else {
5483 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5484 				warn_code = ASC_WARN_BUSRESET_ERROR;
5485 			}
5486 		}
5487 	}
5488 
5489 	return warn_code;
5490 }
5491 
5492 /*
5493  * Initialize the ASC-38C1600.
5494  *
5495  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5496  *
5497  * For a non-fatal error return a warning code. If there are no warnings
5498  * then 0 is returned.
5499  *
5500  * Needed after initialization for error recovery.
5501  */
5502 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5503 {
5504 	const struct firmware *fw;
5505 	const char fwname[] = "advansys/38C1600.bin";
5506 	AdvPortAddr iop_base;
5507 	ushort warn_code;
5508 	int begin_addr;
5509 	int end_addr;
5510 	ushort code_sum;
5511 	long word;
5512 	int i;
5513 	int err;
5514 	unsigned long chksum;
5515 	ushort scsi_cfg1;
5516 	uchar byte;
5517 	uchar tid;
5518 	ushort bios_mem[ASC_MC_BIOSLEN / 2];	/* BIOS RISC Memory 0x40-0x8F. */
5519 	ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5520 	uchar max_cmd[ASC_MAX_TID + 1];
5521 
5522 	/* If there is already an error, don't continue. */
5523 	if (asc_dvc->err_code != 0) {
5524 		return ADV_ERROR;
5525 	}
5526 
5527 	/*
5528 	 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5529 	 */
5530 	if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5531 		asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5532 		return ADV_ERROR;
5533 	}
5534 
5535 	warn_code = 0;
5536 	iop_base = asc_dvc->iop_base;
5537 
5538 	/*
5539 	 * Save the RISC memory BIOS region before writing the microcode.
5540 	 * The BIOS may already be loaded and using its RISC LRAM region
5541 	 * so its region must be saved and restored.
5542 	 *
5543 	 * Note: This code makes the assumption, which is currently true,
5544 	 * that a chip reset does not clear RISC LRAM.
5545 	 */
5546 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5547 		AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5548 				bios_mem[i]);
5549 	}
5550 
5551 	/*
5552 	 * Save current per TID negotiated values.
5553 	 */
5554 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5555 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5556 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5557 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5558 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5559 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5560 				max_cmd[tid]);
5561 	}
5562 
5563 	/*
5564 	 * RAM BIST (Built-In Self Test)
5565 	 *
5566 	 * Address : I/O base + offset 0x38h register (byte).
5567 	 * Function: Bit 7-6(RW) : RAM mode
5568 	 *                          Normal Mode   : 0x00
5569 	 *                          Pre-test Mode : 0x40
5570 	 *                          RAM Test Mode : 0x80
5571 	 *           Bit 5       : unused
5572 	 *           Bit 4(RO)   : Done bit
5573 	 *           Bit 3-0(RO) : Status
5574 	 *                          Host Error    : 0x08
5575 	 *                          Int_RAM Error : 0x04
5576 	 *                          RISC Error    : 0x02
5577 	 *                          SCSI Error    : 0x01
5578 	 *                          No Error      : 0x00
5579 	 *
5580 	 * Note: RAM BIST code should be put right here, before loading the
5581 	 * microcode and after saving the RISC memory BIOS region.
5582 	 */
5583 
5584 	/*
5585 	 * LRAM Pre-test
5586 	 *
5587 	 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5588 	 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5589 	 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5590 	 * to NORMAL_MODE, return an error too.
5591 	 */
5592 	for (i = 0; i < 2; i++) {
5593 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5594 		mdelay(10);	/* Wait for 10ms before reading back. */
5595 		byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5596 		if ((byte & RAM_TEST_DONE) == 0
5597 		    || (byte & 0x0F) != PRE_TEST_VALUE) {
5598 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5599 			return ADV_ERROR;
5600 		}
5601 
5602 		AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5603 		mdelay(10);	/* Wait for 10ms before reading back. */
5604 		if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5605 		    != NORMAL_VALUE) {
5606 			asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5607 			return ADV_ERROR;
5608 		}
5609 	}
5610 
5611 	/*
5612 	 * LRAM Test - It takes about 1.5 ms to run through the test.
5613 	 *
5614 	 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5615 	 * If Done bit not set or Status not 0, save register byte, set the
5616 	 * err_code, and return an error.
5617 	 */
5618 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5619 	mdelay(10);	/* Wait for 10ms before checking status. */
5620 
5621 	byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5622 	if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5623 		/* Get here if Done bit not set or Status not 0. */
5624 		asc_dvc->bist_err_code = byte;	/* for BIOS display message */
5625 		asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5626 		return ADV_ERROR;
5627 	}
5628 
5629 	/* We need to reset back to normal mode after LRAM test passes. */
5630 	AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5631 
5632 	err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5633 	if (err) {
5634 		printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5635 		       fwname, err);
5636 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5637 		return err;
5638 	}
5639 	if (fw->size < 4) {
5640 		printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5641 		       fw->size, fwname);
5642 		release_firmware(fw);
5643 		asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5644 		return -EINVAL;
5645 	}
5646 	chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5647 		 (fw->data[1] << 8) | fw->data[0];
5648 	asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5649 					     fw->size - 4, ADV_38C1600_MEMSIZE,
5650 					     chksum);
5651 	release_firmware(fw);
5652 	if (asc_dvc->err_code)
5653 		return ADV_ERROR;
5654 
5655 	/*
5656 	 * Restore the RISC memory BIOS region.
5657 	 */
5658 	for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5659 		AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5660 				 bios_mem[i]);
5661 	}
5662 
5663 	/*
5664 	 * Calculate and write the microcode code checksum to the microcode
5665 	 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5666 	 */
5667 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5668 	AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5669 	code_sum = 0;
5670 	AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5671 	for (word = begin_addr; word < end_addr; word += 2) {
5672 		code_sum += AdvReadWordAutoIncLram(iop_base);
5673 	}
5674 	AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5675 
5676 	/*
5677 	 * Read microcode version and date.
5678 	 */
5679 	AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5680 			asc_dvc->cfg->mcode_date);
5681 	AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5682 			asc_dvc->cfg->mcode_version);
5683 
5684 	/*
5685 	 * Set the chip type to indicate the ASC38C1600.
5686 	 */
5687 	AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5688 
5689 	/*
5690 	 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5691 	 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5692 	 * cable detection and then we are able to read C_DET[3:0].
5693 	 *
5694 	 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5695 	 * Microcode Default Value' section below.
5696 	 */
5697 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5698 	AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5699 			     scsi_cfg1 | DIS_TERM_DRV);
5700 
5701 	/*
5702 	 * If the PCI Configuration Command Register "Parity Error Response
5703 	 * Control" Bit was clear (0), then set the microcode variable
5704 	 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5705 	 * to ignore DMA parity errors.
5706 	 */
5707 	if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5708 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5709 		word |= CONTROL_FLAG_IGNORE_PERR;
5710 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5711 	}
5712 
5713 	/*
5714 	 * If the BIOS control flag AIPP (Asynchronous Information
5715 	 * Phase Protection) disable bit is not set, then set the firmware
5716 	 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5717 	 * AIPP checking and encoding.
5718 	 */
5719 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5720 		AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5721 		word |= CONTROL_FLAG_ENABLE_AIPP;
5722 		AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5723 	}
5724 
5725 	/*
5726 	 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5727 	 * and START_CTL_TH [3:2].
5728 	 */
5729 	AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5730 			     FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5731 
5732 	/*
5733 	 * Microcode operating variables for WDTR, SDTR, and command tag
5734 	 * queuing will be set in slave_configure() based on what a
5735 	 * device reports it is capable of in Inquiry byte 7.
5736 	 *
5737 	 * If SCSI Bus Resets have been disabled, then directly set
5738 	 * SDTR and WDTR from the EEPROM configuration. This will allow
5739 	 * the BIOS and warm boot to work without a SCSI bus hang on
5740 	 * the Inquiry caused by host and target mismatched DTR values.
5741 	 * Without the SCSI Bus Reset, before an Inquiry a device can't
5742 	 * be assumed to be in Asynchronous, Narrow mode.
5743 	 */
5744 	if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5745 		AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5746 				 asc_dvc->wdtr_able);
5747 		AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5748 				 asc_dvc->sdtr_able);
5749 	}
5750 
5751 	/*
5752 	 * Set microcode operating variables for DISC and SDTR_SPEED1,
5753 	 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5754 	 * configuration values.
5755 	 *
5756 	 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5757 	 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5758 	 * without determining here whether the device supports SDTR.
5759 	 */
5760 	AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5761 			 asc_dvc->cfg->disc_enable);
5762 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5763 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5764 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5765 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5766 
5767 	/*
5768 	 * Set SCSI_CFG0 Microcode Default Value.
5769 	 *
5770 	 * The microcode will set the SCSI_CFG0 register using this value
5771 	 * after it is started below.
5772 	 */
5773 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5774 			 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5775 			 asc_dvc->chip_scsi_id);
5776 
5777 	/*
5778 	 * Calculate SCSI_CFG1 Microcode Default Value.
5779 	 *
5780 	 * The microcode will set the SCSI_CFG1 register using this value
5781 	 * after it is started below.
5782 	 *
5783 	 * Each ASC-38C1600 function has only two cable detect bits.
5784 	 * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5785 	 */
5786 	scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5787 
5788 	/*
5789 	 * If the cable is reversed all of the SCSI_CTRL register signals
5790 	 * will be set. Check for and return an error if this condition is
5791 	 * found.
5792 	 */
5793 	if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5794 		asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5795 		return ADV_ERROR;
5796 	}
5797 
5798 	/*
5799 	 * Each ASC-38C1600 function has two connectors. Only an HVD device
5800 	 * can not be connected to either connector. An LVD device or SE device
5801 	 * may be connected to either connecor. If an SE device is connected,
5802 	 * then at most Ultra speed (20 Mhz) can be used on both connectors.
5803 	 *
5804 	 * If an HVD device is attached, return an error.
5805 	 */
5806 	if (scsi_cfg1 & HVD) {
5807 		asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5808 		return ADV_ERROR;
5809 	}
5810 
5811 	/*
5812 	 * Each function in the ASC-38C1600 uses only the SE cable detect and
5813 	 * termination because there are two connectors for each function. Each
5814 	 * function may use either LVD or SE mode. Corresponding the SE automatic
5815 	 * termination control EEPROM bits are used for each function. Each
5816 	 * function has its own EEPROM. If SE automatic control is enabled for
5817 	 * the function, then set the termination value based on a table listed
5818 	 * in a_condor.h.
5819 	 *
5820 	 * If manual termination is specified in the EEPROM for the function,
5821 	 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5822 	 * ready to be 'ored' into SCSI_CFG1.
5823 	 */
5824 	if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5825 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5826 		/* SE automatic termination control is enabled. */
5827 		switch (scsi_cfg1 & C_DET_SE) {
5828 			/* TERM_SE_HI: on, TERM_SE_LO: on */
5829 		case 0x1:
5830 		case 0x2:
5831 		case 0x3:
5832 			asc_dvc->cfg->termination |= TERM_SE;
5833 			break;
5834 
5835 		case 0x0:
5836 			if (PCI_FUNC(pdev->devfn) == 0) {
5837 				/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5838 			} else {
5839 				/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5840 				asc_dvc->cfg->termination |= TERM_SE_HI;
5841 			}
5842 			break;
5843 		}
5844 	}
5845 
5846 	/*
5847 	 * Clear any set TERM_SE bits.
5848 	 */
5849 	scsi_cfg1 &= ~TERM_SE;
5850 
5851 	/*
5852 	 * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5853 	 */
5854 	scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5855 
5856 	/*
5857 	 * Clear Big Endian and Terminator Polarity bits and set possibly
5858 	 * modified termination control bits in the Microcode SCSI_CFG1
5859 	 * Register Value.
5860 	 *
5861 	 * Big Endian bit is not used even on big endian machines.
5862 	 */
5863 	scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5864 
5865 	/*
5866 	 * Set SCSI_CFG1 Microcode Default Value
5867 	 *
5868 	 * Set possibly modified termination control bits in the Microcode
5869 	 * SCSI_CFG1 Register Value.
5870 	 *
5871 	 * The microcode will set the SCSI_CFG1 register using this value
5872 	 * after it is started below.
5873 	 */
5874 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5875 
5876 	/*
5877 	 * Set MEM_CFG Microcode Default Value
5878 	 *
5879 	 * The microcode will set the MEM_CFG register using this value
5880 	 * after it is started below.
5881 	 *
5882 	 * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5883 	 * are defined.
5884 	 *
5885 	 * ASC-38C1600 has 32KB internal memory.
5886 	 *
5887 	 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5888 	 * out a special 16K Adv Library and Microcode version. After the issue
5889 	 * resolved, we should turn back to the 32K support. Both a_condor.h and
5890 	 * mcode.sas files also need to be updated.
5891 	 *
5892 	 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5893 	 *  BIOS_EN | RAM_SZ_32KB);
5894 	 */
5895 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5896 			 BIOS_EN | RAM_SZ_16KB);
5897 
5898 	/*
5899 	 * Set SEL_MASK Microcode Default Value
5900 	 *
5901 	 * The microcode will set the SEL_MASK register using this value
5902 	 * after it is started below.
5903 	 */
5904 	AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5905 			 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5906 
5907 	AdvBuildCarrierFreelist(asc_dvc);
5908 
5909 	/*
5910 	 * Set-up the Host->RISC Initiator Command Queue (ICQ).
5911 	 */
5912 	if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) {
5913 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5914 		return ADV_ERROR;
5915 	}
5916 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5917 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa));
5918 
5919 	/*
5920 	 * The first command issued will be placed in the stopper carrier.
5921 	 */
5922 	asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5923 
5924 	/*
5925 	 * Set RISC ICQ physical address start value. Initialize the
5926 	 * COMMA register to the same value otherwise the RISC will
5927 	 * prematurely detect a command is available.
5928 	 */
5929 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5930 	AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5931 			      le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5932 
5933 	/*
5934 	 * Set-up the RISC->Host Initiator Response Queue (IRQ).
5935 	 */
5936 	if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) {
5937 		asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5938 		return ADV_ERROR;
5939 	}
5940 	asc_dvc->carr_freelist = (ADV_CARR_T *)
5941 	    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa));
5942 
5943 	/*
5944 	 * The first command completed by the RISC will be placed in
5945 	 * the stopper.
5946 	 *
5947 	 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is
5948 	 * completed the RISC will set the ASC_RQ_STOPPER bit.
5949 	 */
5950 	asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
5951 
5952 	/*
5953 	 * Set RISC IRQ physical address start value.
5954 	 */
5955 	AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5956 	asc_dvc->carr_pending_cnt = 0;
5957 
5958 	AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5959 			     (ADV_INTR_ENABLE_HOST_INTR |
5960 			      ADV_INTR_ENABLE_GLOBAL_INTR));
5961 	AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5962 	AdvWriteWordRegister(iop_base, IOPW_PC, word);
5963 
5964 	/* finally, finally, gentlemen, start your engine */
5965 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5966 
5967 	/*
5968 	 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5969 	 * Resets should be performed. The RISC has to be running
5970 	 * to issue a SCSI Bus Reset.
5971 	 */
5972 	if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5973 		/*
5974 		 * If the BIOS Signature is present in memory, restore the
5975 		 * per TID microcode operating variables.
5976 		 */
5977 		if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5978 		    0x55AA) {
5979 			/*
5980 			 * Restore per TID negotiated values.
5981 			 */
5982 			AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5983 			AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5984 			AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5985 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5986 					 tagqng_able);
5987 			for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5988 				AdvWriteByteLram(iop_base,
5989 						 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5990 						 max_cmd[tid]);
5991 			}
5992 		} else {
5993 			if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5994 				warn_code = ASC_WARN_BUSRESET_ERROR;
5995 			}
5996 		}
5997 	}
5998 
5999 	return warn_code;
6000 }
6001 
6002 /*
6003  * Reset chip and SCSI Bus.
6004  *
6005  * Return Value:
6006  *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
6007  *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
6008  */
6009 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
6010 {
6011 	int status;
6012 	ushort wdtr_able, sdtr_able, tagqng_able;
6013 	ushort ppr_able = 0;
6014 	uchar tid, max_cmd[ADV_MAX_TID + 1];
6015 	AdvPortAddr iop_base;
6016 	ushort bios_sig;
6017 
6018 	iop_base = asc_dvc->iop_base;
6019 
6020 	/*
6021 	 * Save current per TID negotiated values.
6022 	 */
6023 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6024 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6025 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6026 		AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6027 	}
6028 	AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6029 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6030 		AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6031 				max_cmd[tid]);
6032 	}
6033 
6034 	/*
6035 	 * Force the AdvInitAsc3550/38C0800Driver() function to
6036 	 * perform a SCSI Bus Reset by clearing the BIOS signature word.
6037 	 * The initialization functions assumes a SCSI Bus Reset is not
6038 	 * needed if the BIOS signature word is present.
6039 	 */
6040 	AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6041 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
6042 
6043 	/*
6044 	 * Stop chip and reset it.
6045 	 */
6046 	AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
6047 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
6048 	mdelay(100);
6049 	AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
6050 			     ADV_CTRL_REG_CMD_WR_IO_REG);
6051 
6052 	/*
6053 	 * Reset Adv Library error code, if any, and try
6054 	 * re-initializing the chip.
6055 	 */
6056 	asc_dvc->err_code = 0;
6057 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6058 		status = AdvInitAsc38C1600Driver(asc_dvc);
6059 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6060 		status = AdvInitAsc38C0800Driver(asc_dvc);
6061 	} else {
6062 		status = AdvInitAsc3550Driver(asc_dvc);
6063 	}
6064 
6065 	/* Translate initialization return value to status value. */
6066 	if (status == 0) {
6067 		status = ADV_TRUE;
6068 	} else {
6069 		status = ADV_FALSE;
6070 	}
6071 
6072 	/*
6073 	 * Restore the BIOS signature word.
6074 	 */
6075 	AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
6076 
6077 	/*
6078 	 * Restore per TID negotiated values.
6079 	 */
6080 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
6081 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
6082 	if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
6083 		AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
6084 	}
6085 	AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
6086 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
6087 		AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
6088 				 max_cmd[tid]);
6089 	}
6090 
6091 	return status;
6092 }
6093 
6094 /*
6095  * adv_async_callback() - Adv Library asynchronous event callback function.
6096  */
6097 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
6098 {
6099 	switch (code) {
6100 	case ADV_ASYNC_SCSI_BUS_RESET_DET:
6101 		/*
6102 		 * The firmware detected a SCSI Bus reset.
6103 		 */
6104 		ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
6105 		break;
6106 
6107 	case ADV_ASYNC_RDMA_FAILURE:
6108 		/*
6109 		 * Handle RDMA failure by resetting the SCSI Bus and
6110 		 * possibly the chip if it is unresponsive. Log the error
6111 		 * with a unique code.
6112 		 */
6113 		ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
6114 		AdvResetChipAndSB(adv_dvc_varp);
6115 		break;
6116 
6117 	case ADV_HOST_SCSI_BUS_RESET:
6118 		/*
6119 		 * Host generated SCSI bus reset occurred.
6120 		 */
6121 		ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
6122 		break;
6123 
6124 	default:
6125 		ASC_DBG(0, "unknown code 0x%x\n", code);
6126 		break;
6127 	}
6128 }
6129 
6130 /*
6131  * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
6132  *
6133  * Callback function for the Wide SCSI Adv Library.
6134  */
6135 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
6136 {
6137 	struct asc_board *boardp;
6138 	adv_req_t *reqp;
6139 	adv_sgblk_t *sgblkp;
6140 	struct scsi_cmnd *scp;
6141 	struct Scsi_Host *shost;
6142 	ADV_DCNT resid_cnt;
6143 
6144 	ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n",
6145 		 (ulong)adv_dvc_varp, (ulong)scsiqp);
6146 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
6147 
6148 	/*
6149 	 * Get the adv_req_t structure for the command that has been
6150 	 * completed. The adv_req_t structure actually contains the
6151 	 * completed ADV_SCSI_REQ_Q structure.
6152 	 */
6153 	reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr);
6154 	ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
6155 	if (reqp == NULL) {
6156 		ASC_PRINT("adv_isr_callback: reqp is NULL\n");
6157 		return;
6158 	}
6159 
6160 	/*
6161 	 * Get the struct scsi_cmnd structure and Scsi_Host structure for the
6162 	 * command that has been completed.
6163 	 *
6164 	 * Note: The adv_req_t request structure and adv_sgblk_t structure,
6165 	 * if any, are dropped, because a board structure pointer can not be
6166 	 * determined.
6167 	 */
6168 	scp = reqp->cmndp;
6169 	ASC_DBG(1, "scp 0x%p\n", scp);
6170 	if (scp == NULL) {
6171 		ASC_PRINT
6172 		    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
6173 		return;
6174 	}
6175 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6176 
6177 	shost = scp->device->host;
6178 	ASC_STATS(shost, callback);
6179 	ASC_DBG(1, "shost 0x%p\n", shost);
6180 
6181 	boardp = shost_priv(shost);
6182 	BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var);
6183 
6184 	/*
6185 	 * 'done_status' contains the command's ending status.
6186 	 */
6187 	switch (scsiqp->done_status) {
6188 	case QD_NO_ERROR:
6189 		ASC_DBG(2, "QD_NO_ERROR\n");
6190 		scp->result = 0;
6191 
6192 		/*
6193 		 * Check for an underrun condition.
6194 		 *
6195 		 * If there was no error and an underrun condition, then
6196 		 * then return the number of underrun bytes.
6197 		 */
6198 		resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6199 		if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6200 		    resid_cnt <= scsi_bufflen(scp)) {
6201 			ASC_DBG(1, "underrun condition %lu bytes\n",
6202 				 (ulong)resid_cnt);
6203 			scsi_set_resid(scp, resid_cnt);
6204 		}
6205 		break;
6206 
6207 	case QD_WITH_ERROR:
6208 		ASC_DBG(2, "QD_WITH_ERROR\n");
6209 		switch (scsiqp->host_status) {
6210 		case QHSTA_NO_ERROR:
6211 			if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6212 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6213 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6214 						  SCSI_SENSE_BUFFERSIZE);
6215 				/*
6216 				 * Note: The 'status_byte()' macro used by
6217 				 * target drivers defined in scsi.h shifts the
6218 				 * status byte returned by host drivers right
6219 				 * by 1 bit.  This is why target drivers also
6220 				 * use right shifted status byte definitions.
6221 				 * For instance target drivers use
6222 				 * CHECK_CONDITION, defined to 0x1, instead of
6223 				 * the SCSI defined check condition value of
6224 				 * 0x2. Host drivers are supposed to return
6225 				 * the status byte as it is defined by SCSI.
6226 				 */
6227 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6228 				    STATUS_BYTE(scsiqp->scsi_status);
6229 			} else {
6230 				scp->result = STATUS_BYTE(scsiqp->scsi_status);
6231 			}
6232 			break;
6233 
6234 		default:
6235 			/* Some other QHSTA error occurred. */
6236 			ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6237 			scp->result = HOST_BYTE(DID_BAD_TARGET);
6238 			break;
6239 		}
6240 		break;
6241 
6242 	case QD_ABORTED_BY_HOST:
6243 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6244 		scp->result =
6245 		    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6246 		break;
6247 
6248 	default:
6249 		ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6250 		scp->result =
6251 		    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6252 		break;
6253 	}
6254 
6255 	/*
6256 	 * If the 'init_tidmask' bit isn't already set for the target and the
6257 	 * current request finished normally, then set the bit for the target
6258 	 * to indicate that a device is present.
6259 	 */
6260 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6261 	    scsiqp->done_status == QD_NO_ERROR &&
6262 	    scsiqp->host_status == QHSTA_NO_ERROR) {
6263 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6264 	}
6265 
6266 	asc_scsi_done(scp);
6267 
6268 	/*
6269 	 * Free all 'adv_sgblk_t' structures allocated for the request.
6270 	 */
6271 	while ((sgblkp = reqp->sgblkp) != NULL) {
6272 		/* Remove 'sgblkp' from the request list. */
6273 		reqp->sgblkp = sgblkp->next_sgblkp;
6274 
6275 		/* Add 'sgblkp' to the board free list. */
6276 		sgblkp->next_sgblkp = boardp->adv_sgblkp;
6277 		boardp->adv_sgblkp = sgblkp;
6278 	}
6279 
6280 	/*
6281 	 * Free the adv_req_t structure used with the command by adding
6282 	 * it back to the board free list.
6283 	 */
6284 	reqp->next_reqp = boardp->adv_reqp;
6285 	boardp->adv_reqp = reqp;
6286 
6287 	ASC_DBG(1, "done\n");
6288 }
6289 
6290 /*
6291  * Adv Library Interrupt Service Routine
6292  *
6293  *  This function is called by a driver's interrupt service routine.
6294  *  The function disables and re-enables interrupts.
6295  *
6296  *  When a microcode idle command is completed, the ADV_DVC_VAR
6297  *  'idle_cmd_done' field is set to ADV_TRUE.
6298  *
6299  *  Note: AdvISR() can be called when interrupts are disabled or even
6300  *  when there is no hardware interrupt condition present. It will
6301  *  always check for completed idle commands and microcode requests.
6302  *  This is an important feature that shouldn't be changed because it
6303  *  allows commands to be completed from polling mode loops.
6304  *
6305  * Return:
6306  *   ADV_TRUE(1) - interrupt was pending
6307  *   ADV_FALSE(0) - no interrupt was pending
6308  */
6309 static int AdvISR(ADV_DVC_VAR *asc_dvc)
6310 {
6311 	AdvPortAddr iop_base;
6312 	uchar int_stat;
6313 	ushort target_bit;
6314 	ADV_CARR_T *free_carrp;
6315 	ADV_VADDR irq_next_vpa;
6316 	ADV_SCSI_REQ_Q *scsiq;
6317 
6318 	iop_base = asc_dvc->iop_base;
6319 
6320 	/* Reading the register clears the interrupt. */
6321 	int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6322 
6323 	if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6324 			 ADV_INTR_STATUS_INTRC)) == 0) {
6325 		return ADV_FALSE;
6326 	}
6327 
6328 	/*
6329 	 * Notify the driver of an asynchronous microcode condition by
6330 	 * calling the adv_async_callback function. The function
6331 	 * is passed the microcode ASC_MC_INTRB_CODE byte value.
6332 	 */
6333 	if (int_stat & ADV_INTR_STATUS_INTRB) {
6334 		uchar intrb_code;
6335 
6336 		AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6337 
6338 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6339 		    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6340 			if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6341 			    asc_dvc->carr_pending_cnt != 0) {
6342 				AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6343 						     ADV_TICKLE_A);
6344 				if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6345 					AdvWriteByteRegister(iop_base,
6346 							     IOPB_TICKLE,
6347 							     ADV_TICKLE_NOP);
6348 				}
6349 			}
6350 		}
6351 
6352 		adv_async_callback(asc_dvc, intrb_code);
6353 	}
6354 
6355 	/*
6356 	 * Check if the IRQ stopper carrier contains a completed request.
6357 	 */
6358 	while (((irq_next_vpa =
6359 		 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) {
6360 		/*
6361 		 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6362 		 * The RISC will have set 'areq_vpa' to a virtual address.
6363 		 *
6364 		 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr
6365 		 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6366 		 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr'
6367 		 * in AdvExeScsiQueue().
6368 		 */
6369 		scsiq = (ADV_SCSI_REQ_Q *)
6370 		    ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa));
6371 
6372 		/*
6373 		 * Request finished with good status and the queue was not
6374 		 * DMAed to host memory by the firmware. Set all status fields
6375 		 * to indicate good status.
6376 		 */
6377 		if ((irq_next_vpa & ASC_RQ_GOOD) != 0) {
6378 			scsiq->done_status = QD_NO_ERROR;
6379 			scsiq->host_status = scsiq->scsi_status = 0;
6380 			scsiq->data_cnt = 0L;
6381 		}
6382 
6383 		/*
6384 		 * Advance the stopper pointer to the next carrier
6385 		 * ignoring the lower four bits. Free the previous
6386 		 * stopper carrier.
6387 		 */
6388 		free_carrp = asc_dvc->irq_sp;
6389 		asc_dvc->irq_sp = (ADV_CARR_T *)
6390 		    ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa));
6391 
6392 		free_carrp->next_vpa =
6393 		    cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist));
6394 		asc_dvc->carr_freelist = free_carrp;
6395 		asc_dvc->carr_pending_cnt--;
6396 
6397 		target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id);
6398 
6399 		/*
6400 		 * Clear request microcode control flag.
6401 		 */
6402 		scsiq->cntl = 0;
6403 
6404 		/*
6405 		 * Notify the driver of the completed request by passing
6406 		 * the ADV_SCSI_REQ_Q pointer to its callback function.
6407 		 */
6408 		scsiq->a_flag |= ADV_SCSIQ_DONE;
6409 		adv_isr_callback(asc_dvc, scsiq);
6410 		/*
6411 		 * Note: After the driver callback function is called, 'scsiq'
6412 		 * can no longer be referenced.
6413 		 *
6414 		 * Fall through and continue processing other completed
6415 		 * requests...
6416 		 */
6417 	}
6418 	return ADV_TRUE;
6419 }
6420 
6421 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6422 {
6423 	if (asc_dvc->err_code == 0) {
6424 		asc_dvc->err_code = err_code;
6425 		AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6426 				 err_code);
6427 	}
6428 	return err_code;
6429 }
6430 
6431 static void AscAckInterrupt(PortAddr iop_base)
6432 {
6433 	uchar host_flag;
6434 	uchar risc_flag;
6435 	ushort loop;
6436 
6437 	loop = 0;
6438 	do {
6439 		risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6440 		if (loop++ > 0x7FFF) {
6441 			break;
6442 		}
6443 	} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6444 	host_flag =
6445 	    AscReadLramByte(iop_base,
6446 			    ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6447 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6448 			 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6449 	AscSetChipStatus(iop_base, CIW_INT_ACK);
6450 	loop = 0;
6451 	while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6452 		AscSetChipStatus(iop_base, CIW_INT_ACK);
6453 		if (loop++ > 3) {
6454 			break;
6455 		}
6456 	}
6457 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6458 }
6459 
6460 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6461 {
6462 	const uchar *period_table;
6463 	int max_index;
6464 	int min_index;
6465 	int i;
6466 
6467 	period_table = asc_dvc->sdtr_period_tbl;
6468 	max_index = (int)asc_dvc->max_sdtr_index;
6469 	min_index = (int)asc_dvc->min_sdtr_index;
6470 	if ((syn_time <= period_table[max_index])) {
6471 		for (i = min_index; i < (max_index - 1); i++) {
6472 			if (syn_time <= period_table[i]) {
6473 				return (uchar)i;
6474 			}
6475 		}
6476 		return (uchar)max_index;
6477 	} else {
6478 		return (uchar)(max_index + 1);
6479 	}
6480 }
6481 
6482 static uchar
6483 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6484 {
6485 	EXT_MSG sdtr_buf;
6486 	uchar sdtr_period_index;
6487 	PortAddr iop_base;
6488 
6489 	iop_base = asc_dvc->iop_base;
6490 	sdtr_buf.msg_type = EXTENDED_MESSAGE;
6491 	sdtr_buf.msg_len = MS_SDTR_LEN;
6492 	sdtr_buf.msg_req = EXTENDED_SDTR;
6493 	sdtr_buf.xfer_period = sdtr_period;
6494 	sdtr_offset &= ASC_SYN_MAX_OFFSET;
6495 	sdtr_buf.req_ack_offset = sdtr_offset;
6496 	sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6497 	if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6498 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6499 					(uchar *)&sdtr_buf,
6500 					sizeof(EXT_MSG) >> 1);
6501 		return ((sdtr_period_index << 4) | sdtr_offset);
6502 	} else {
6503 		sdtr_buf.req_ack_offset = 0;
6504 		AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6505 					(uchar *)&sdtr_buf,
6506 					sizeof(EXT_MSG) >> 1);
6507 		return 0;
6508 	}
6509 }
6510 
6511 static uchar
6512 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6513 {
6514 	uchar byte;
6515 	uchar sdtr_period_ix;
6516 
6517 	sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6518 	if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6519 		return 0xFF;
6520 	byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6521 	return byte;
6522 }
6523 
6524 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6525 {
6526 	ASC_SCSI_BIT_ID_TYPE org_id;
6527 	int i;
6528 	int sta = TRUE;
6529 
6530 	AscSetBank(iop_base, 1);
6531 	org_id = AscReadChipDvcID(iop_base);
6532 	for (i = 0; i <= ASC_MAX_TID; i++) {
6533 		if (org_id == (0x01 << i))
6534 			break;
6535 	}
6536 	org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6537 	AscWriteChipDvcID(iop_base, id);
6538 	if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6539 		AscSetBank(iop_base, 0);
6540 		AscSetChipSyn(iop_base, sdtr_data);
6541 		if (AscGetChipSyn(iop_base) != sdtr_data) {
6542 			sta = FALSE;
6543 		}
6544 	} else {
6545 		sta = FALSE;
6546 	}
6547 	AscSetBank(iop_base, 1);
6548 	AscWriteChipDvcID(iop_base, org_id);
6549 	AscSetBank(iop_base, 0);
6550 	return (sta);
6551 }
6552 
6553 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6554 {
6555 	AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6556 	AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6557 }
6558 
6559 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6560 {
6561 	EXT_MSG ext_msg;
6562 	EXT_MSG out_msg;
6563 	ushort halt_q_addr;
6564 	int sdtr_accept;
6565 	ushort int_halt_code;
6566 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
6567 	ASC_SCSI_BIT_ID_TYPE target_id;
6568 	PortAddr iop_base;
6569 	uchar tag_code;
6570 	uchar q_status;
6571 	uchar halt_qp;
6572 	uchar sdtr_data;
6573 	uchar target_ix;
6574 	uchar q_cntl, tid_no;
6575 	uchar cur_dvc_qng;
6576 	uchar asyn_sdtr;
6577 	uchar scsi_status;
6578 	struct asc_board *boardp;
6579 
6580 	BUG_ON(!asc_dvc->drv_ptr);
6581 	boardp = asc_dvc->drv_ptr;
6582 
6583 	iop_base = asc_dvc->iop_base;
6584 	int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6585 
6586 	halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6587 	halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6588 	target_ix = AscReadLramByte(iop_base,
6589 				    (ushort)(halt_q_addr +
6590 					     (ushort)ASC_SCSIQ_B_TARGET_IX));
6591 	q_cntl = AscReadLramByte(iop_base,
6592 			    (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6593 	tid_no = ASC_TIX_TO_TID(target_ix);
6594 	target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6595 	if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6596 		asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6597 	} else {
6598 		asyn_sdtr = 0;
6599 	}
6600 	if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6601 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6602 			AscSetChipSDTR(iop_base, 0, tid_no);
6603 			boardp->sdtr_data[tid_no] = 0;
6604 		}
6605 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6606 		return (0);
6607 	} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6608 		if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6609 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6610 			boardp->sdtr_data[tid_no] = asyn_sdtr;
6611 		}
6612 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6613 		return (0);
6614 	} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6615 		AscMemWordCopyPtrFromLram(iop_base,
6616 					  ASCV_MSGIN_BEG,
6617 					  (uchar *)&ext_msg,
6618 					  sizeof(EXT_MSG) >> 1);
6619 
6620 		if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6621 		    ext_msg.msg_req == EXTENDED_SDTR &&
6622 		    ext_msg.msg_len == MS_SDTR_LEN) {
6623 			sdtr_accept = TRUE;
6624 			if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6625 
6626 				sdtr_accept = FALSE;
6627 				ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6628 			}
6629 			if ((ext_msg.xfer_period <
6630 			     asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6631 			    || (ext_msg.xfer_period >
6632 				asc_dvc->sdtr_period_tbl[asc_dvc->
6633 							 max_sdtr_index])) {
6634 				sdtr_accept = FALSE;
6635 				ext_msg.xfer_period =
6636 				    asc_dvc->sdtr_period_tbl[asc_dvc->
6637 							     min_sdtr_index];
6638 			}
6639 			if (sdtr_accept) {
6640 				sdtr_data =
6641 				    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6642 						   ext_msg.req_ack_offset);
6643 				if ((sdtr_data == 0xFF)) {
6644 
6645 					q_cntl |= QC_MSG_OUT;
6646 					asc_dvc->init_sdtr &= ~target_id;
6647 					asc_dvc->sdtr_done &= ~target_id;
6648 					AscSetChipSDTR(iop_base, asyn_sdtr,
6649 						       tid_no);
6650 					boardp->sdtr_data[tid_no] = asyn_sdtr;
6651 				}
6652 			}
6653 			if (ext_msg.req_ack_offset == 0) {
6654 
6655 				q_cntl &= ~QC_MSG_OUT;
6656 				asc_dvc->init_sdtr &= ~target_id;
6657 				asc_dvc->sdtr_done &= ~target_id;
6658 				AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6659 			} else {
6660 				if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6661 					q_cntl &= ~QC_MSG_OUT;
6662 					asc_dvc->sdtr_done |= target_id;
6663 					asc_dvc->init_sdtr |= target_id;
6664 					asc_dvc->pci_fix_asyn_xfer &=
6665 					    ~target_id;
6666 					sdtr_data =
6667 					    AscCalSDTRData(asc_dvc,
6668 							   ext_msg.xfer_period,
6669 							   ext_msg.
6670 							   req_ack_offset);
6671 					AscSetChipSDTR(iop_base, sdtr_data,
6672 						       tid_no);
6673 					boardp->sdtr_data[tid_no] = sdtr_data;
6674 				} else {
6675 					q_cntl |= QC_MSG_OUT;
6676 					AscMsgOutSDTR(asc_dvc,
6677 						      ext_msg.xfer_period,
6678 						      ext_msg.req_ack_offset);
6679 					asc_dvc->pci_fix_asyn_xfer &=
6680 					    ~target_id;
6681 					sdtr_data =
6682 					    AscCalSDTRData(asc_dvc,
6683 							   ext_msg.xfer_period,
6684 							   ext_msg.
6685 							   req_ack_offset);
6686 					AscSetChipSDTR(iop_base, sdtr_data,
6687 						       tid_no);
6688 					boardp->sdtr_data[tid_no] = sdtr_data;
6689 					asc_dvc->sdtr_done |= target_id;
6690 					asc_dvc->init_sdtr |= target_id;
6691 				}
6692 			}
6693 
6694 			AscWriteLramByte(iop_base,
6695 					 (ushort)(halt_q_addr +
6696 						  (ushort)ASC_SCSIQ_B_CNTL),
6697 					 q_cntl);
6698 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6699 			return (0);
6700 		} else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6701 			   ext_msg.msg_req == EXTENDED_WDTR &&
6702 			   ext_msg.msg_len == MS_WDTR_LEN) {
6703 
6704 			ext_msg.wdtr_width = 0;
6705 			AscMemWordCopyPtrToLram(iop_base,
6706 						ASCV_MSGOUT_BEG,
6707 						(uchar *)&ext_msg,
6708 						sizeof(EXT_MSG) >> 1);
6709 			q_cntl |= QC_MSG_OUT;
6710 			AscWriteLramByte(iop_base,
6711 					 (ushort)(halt_q_addr +
6712 						  (ushort)ASC_SCSIQ_B_CNTL),
6713 					 q_cntl);
6714 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6715 			return (0);
6716 		} else {
6717 
6718 			ext_msg.msg_type = MESSAGE_REJECT;
6719 			AscMemWordCopyPtrToLram(iop_base,
6720 						ASCV_MSGOUT_BEG,
6721 						(uchar *)&ext_msg,
6722 						sizeof(EXT_MSG) >> 1);
6723 			q_cntl |= QC_MSG_OUT;
6724 			AscWriteLramByte(iop_base,
6725 					 (ushort)(halt_q_addr +
6726 						  (ushort)ASC_SCSIQ_B_CNTL),
6727 					 q_cntl);
6728 			AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6729 			return (0);
6730 		}
6731 	} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6732 
6733 		q_cntl |= QC_REQ_SENSE;
6734 
6735 		if ((asc_dvc->init_sdtr & target_id) != 0) {
6736 
6737 			asc_dvc->sdtr_done &= ~target_id;
6738 
6739 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6740 			q_cntl |= QC_MSG_OUT;
6741 			AscMsgOutSDTR(asc_dvc,
6742 				      asc_dvc->
6743 				      sdtr_period_tbl[(sdtr_data >> 4) &
6744 						      (uchar)(asc_dvc->
6745 							      max_sdtr_index -
6746 							      1)],
6747 				      (uchar)(sdtr_data & (uchar)
6748 					      ASC_SYN_MAX_OFFSET));
6749 		}
6750 
6751 		AscWriteLramByte(iop_base,
6752 				 (ushort)(halt_q_addr +
6753 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6754 
6755 		tag_code = AscReadLramByte(iop_base,
6756 					   (ushort)(halt_q_addr + (ushort)
6757 						    ASC_SCSIQ_B_TAG_CODE));
6758 		tag_code &= 0xDC;
6759 		if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6760 		    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6761 		    ) {
6762 
6763 			tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6764 				     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6765 
6766 		}
6767 		AscWriteLramByte(iop_base,
6768 				 (ushort)(halt_q_addr +
6769 					  (ushort)ASC_SCSIQ_B_TAG_CODE),
6770 				 tag_code);
6771 
6772 		q_status = AscReadLramByte(iop_base,
6773 					   (ushort)(halt_q_addr + (ushort)
6774 						    ASC_SCSIQ_B_STATUS));
6775 		q_status |= (QS_READY | QS_BUSY);
6776 		AscWriteLramByte(iop_base,
6777 				 (ushort)(halt_q_addr +
6778 					  (ushort)ASC_SCSIQ_B_STATUS),
6779 				 q_status);
6780 
6781 		scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6782 		scsi_busy &= ~target_id;
6783 		AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6784 
6785 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6786 		return (0);
6787 	} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6788 
6789 		AscMemWordCopyPtrFromLram(iop_base,
6790 					  ASCV_MSGOUT_BEG,
6791 					  (uchar *)&out_msg,
6792 					  sizeof(EXT_MSG) >> 1);
6793 
6794 		if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6795 		    (out_msg.msg_len == MS_SDTR_LEN) &&
6796 		    (out_msg.msg_req == EXTENDED_SDTR)) {
6797 
6798 			asc_dvc->init_sdtr &= ~target_id;
6799 			asc_dvc->sdtr_done &= ~target_id;
6800 			AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6801 			boardp->sdtr_data[tid_no] = asyn_sdtr;
6802 		}
6803 		q_cntl &= ~QC_MSG_OUT;
6804 		AscWriteLramByte(iop_base,
6805 				 (ushort)(halt_q_addr +
6806 					  (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6807 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6808 		return (0);
6809 	} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6810 
6811 		scsi_status = AscReadLramByte(iop_base,
6812 					      (ushort)((ushort)halt_q_addr +
6813 						       (ushort)
6814 						       ASC_SCSIQ_SCSI_STATUS));
6815 		cur_dvc_qng =
6816 		    AscReadLramByte(iop_base,
6817 				    (ushort)((ushort)ASC_QADR_BEG +
6818 					     (ushort)target_ix));
6819 		if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6820 
6821 			scsi_busy = AscReadLramByte(iop_base,
6822 						    (ushort)ASCV_SCSIBUSY_B);
6823 			scsi_busy |= target_id;
6824 			AscWriteLramByte(iop_base,
6825 					 (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6826 			asc_dvc->queue_full_or_busy |= target_id;
6827 
6828 			if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6829 				if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6830 					cur_dvc_qng -= 1;
6831 					asc_dvc->max_dvc_qng[tid_no] =
6832 					    cur_dvc_qng;
6833 
6834 					AscWriteLramByte(iop_base,
6835 							 (ushort)((ushort)
6836 								  ASCV_MAX_DVC_QNG_BEG
6837 								  + (ushort)
6838 								  tid_no),
6839 							 cur_dvc_qng);
6840 
6841 					/*
6842 					 * Set the device queue depth to the
6843 					 * number of active requests when the
6844 					 * QUEUE FULL condition was encountered.
6845 					 */
6846 					boardp->queue_full |= target_id;
6847 					boardp->queue_full_cnt[tid_no] =
6848 					    cur_dvc_qng;
6849 				}
6850 			}
6851 		}
6852 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6853 		return (0);
6854 	}
6855 #if CC_VERY_LONG_SG_LIST
6856 	else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) {
6857 		uchar q_no;
6858 		ushort q_addr;
6859 		uchar sg_wk_q_no;
6860 		uchar first_sg_wk_q_no;
6861 		ASC_SCSI_Q *scsiq;	/* Ptr to driver request. */
6862 		ASC_SG_HEAD *sg_head;	/* Ptr to driver SG request. */
6863 		ASC_SG_LIST_Q scsi_sg_q;	/* Structure written to queue. */
6864 		ushort sg_list_dwords;
6865 		ushort sg_entry_cnt;
6866 		uchar next_qp;
6867 		int i;
6868 
6869 		q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP);
6870 		if (q_no == ASC_QLINK_END)
6871 			return 0;
6872 
6873 		q_addr = ASC_QNO_TO_QADDR(q_no);
6874 
6875 		/*
6876 		 * Convert the request's SRB pointer to a host ASC_SCSI_REQ
6877 		 * structure pointer using a macro provided by the driver.
6878 		 * The ASC_SCSI_REQ pointer provides a pointer to the
6879 		 * host ASC_SG_HEAD structure.
6880 		 */
6881 		/* Read request's SRB pointer. */
6882 		scsiq = (ASC_SCSI_Q *)
6883 		    ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base,
6884 								    (ushort)
6885 								    (q_addr +
6886 								     ASC_SCSIQ_D_SRBPTR))));
6887 
6888 		/*
6889 		 * Get request's first and working SG queue.
6890 		 */
6891 		sg_wk_q_no = AscReadLramByte(iop_base,
6892 					     (ushort)(q_addr +
6893 						      ASC_SCSIQ_B_SG_WK_QP));
6894 
6895 		first_sg_wk_q_no = AscReadLramByte(iop_base,
6896 						   (ushort)(q_addr +
6897 							    ASC_SCSIQ_B_FIRST_SG_WK_QP));
6898 
6899 		/*
6900 		 * Reset request's working SG queue back to the
6901 		 * first SG queue.
6902 		 */
6903 		AscWriteLramByte(iop_base,
6904 				 (ushort)(q_addr +
6905 					  (ushort)ASC_SCSIQ_B_SG_WK_QP),
6906 				 first_sg_wk_q_no);
6907 
6908 		sg_head = scsiq->sg_head;
6909 
6910 		/*
6911 		 * Set sg_entry_cnt to the number of SG elements
6912 		 * that will be completed on this interrupt.
6913 		 *
6914 		 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1
6915 		 * SG elements. The data_cnt and data_addr fields which
6916 		 * add 1 to the SG element capacity are not used when
6917 		 * restarting SG handling after a halt.
6918 		 */
6919 		if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) {
6920 			sg_entry_cnt = ASC_MAX_SG_LIST - 1;
6921 
6922 			/*
6923 			 * Keep track of remaining number of SG elements that
6924 			 * will need to be handled on the next interrupt.
6925 			 */
6926 			scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1);
6927 		} else {
6928 			sg_entry_cnt = scsiq->remain_sg_entry_cnt;
6929 			scsiq->remain_sg_entry_cnt = 0;
6930 		}
6931 
6932 		/*
6933 		 * Copy SG elements into the list of allocated SG queues.
6934 		 *
6935 		 * Last index completed is saved in scsiq->next_sg_index.
6936 		 */
6937 		next_qp = first_sg_wk_q_no;
6938 		q_addr = ASC_QNO_TO_QADDR(next_qp);
6939 		scsi_sg_q.sg_head_qp = q_no;
6940 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
6941 		for (i = 0; i < sg_head->queue_cnt; i++) {
6942 			scsi_sg_q.seq_no = i + 1;
6943 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
6944 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
6945 				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
6946 				/*
6947 				 * After very first SG queue RISC FW uses next
6948 				 * SG queue first element then checks sg_list_cnt
6949 				 * against zero and then decrements, so set
6950 				 * sg_list_cnt 1 less than number of SG elements
6951 				 * in each SG queue.
6952 				 */
6953 				scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
6954 				scsi_sg_q.sg_cur_list_cnt =
6955 				    ASC_SG_LIST_PER_Q - 1;
6956 			} else {
6957 				/*
6958 				 * This is the last SG queue in the list of
6959 				 * allocated SG queues. If there are more
6960 				 * SG elements than will fit in the allocated
6961 				 * queues, then set the QCSG_SG_XFER_MORE flag.
6962 				 */
6963 				if (scsiq->remain_sg_entry_cnt != 0) {
6964 					scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
6965 				} else {
6966 					scsi_sg_q.cntl |= QCSG_SG_XFER_END;
6967 				}
6968 				/* equals sg_entry_cnt * 2 */
6969 				sg_list_dwords = sg_entry_cnt << 1;
6970 				scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
6971 				scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
6972 				sg_entry_cnt = 0;
6973 			}
6974 
6975 			scsi_sg_q.q_no = next_qp;
6976 			AscMemWordCopyPtrToLram(iop_base,
6977 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
6978 						(uchar *)&scsi_sg_q,
6979 						sizeof(ASC_SG_LIST_Q) >> 1);
6980 
6981 			AscMemDWordCopyPtrToLram(iop_base,
6982 						 q_addr + ASC_SGQ_LIST_BEG,
6983 						 (uchar *)&sg_head->
6984 						 sg_list[scsiq->next_sg_index],
6985 						 sg_list_dwords);
6986 
6987 			scsiq->next_sg_index += ASC_SG_LIST_PER_Q;
6988 
6989 			/*
6990 			 * If the just completed SG queue contained the
6991 			 * last SG element, then no more SG queues need
6992 			 * to be written.
6993 			 */
6994 			if (scsi_sg_q.cntl & QCSG_SG_XFER_END) {
6995 				break;
6996 			}
6997 
6998 			next_qp = AscReadLramByte(iop_base,
6999 						  (ushort)(q_addr +
7000 							   ASC_SCSIQ_B_FWD));
7001 			q_addr = ASC_QNO_TO_QADDR(next_qp);
7002 		}
7003 
7004 		/*
7005 		 * Clear the halt condition so the RISC will be restarted
7006 		 * after the return.
7007 		 */
7008 		AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
7009 		return (0);
7010 	}
7011 #endif /* CC_VERY_LONG_SG_LIST */
7012 	return (0);
7013 }
7014 
7015 /*
7016  * void
7017  * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7018  *
7019  * Calling/Exit State:
7020  *    none
7021  *
7022  * Description:
7023  *     Input an ASC_QDONE_INFO structure from the chip
7024  */
7025 static void
7026 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
7027 {
7028 	int i;
7029 	ushort word;
7030 
7031 	AscSetChipLramAddr(iop_base, s_addr);
7032 	for (i = 0; i < 2 * words; i += 2) {
7033 		if (i == 10) {
7034 			continue;
7035 		}
7036 		word = inpw(iop_base + IOP_RAM_DATA);
7037 		inbuf[i] = word & 0xff;
7038 		inbuf[i + 1] = (word >> 8) & 0xff;
7039 	}
7040 	ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
7041 }
7042 
7043 static uchar
7044 _AscCopyLramScsiDoneQ(PortAddr iop_base,
7045 		      ushort q_addr,
7046 		      ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count)
7047 {
7048 	ushort _val;
7049 	uchar sg_queue_cnt;
7050 
7051 	DvcGetQinfo(iop_base,
7052 		    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
7053 		    (uchar *)scsiq,
7054 		    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
7055 
7056 	_val = AscReadLramWord(iop_base,
7057 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
7058 	scsiq->q_status = (uchar)_val;
7059 	scsiq->q_no = (uchar)(_val >> 8);
7060 	_val = AscReadLramWord(iop_base,
7061 			       (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
7062 	scsiq->cntl = (uchar)_val;
7063 	sg_queue_cnt = (uchar)(_val >> 8);
7064 	_val = AscReadLramWord(iop_base,
7065 			       (ushort)(q_addr +
7066 					(ushort)ASC_SCSIQ_B_SENSE_LEN));
7067 	scsiq->sense_len = (uchar)_val;
7068 	scsiq->extra_bytes = (uchar)(_val >> 8);
7069 
7070 	/*
7071 	 * Read high word of remain bytes from alternate location.
7072 	 */
7073 	scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base,
7074 							  (ushort)(q_addr +
7075 								   (ushort)
7076 								   ASC_SCSIQ_W_ALT_DC1)))
7077 			       << 16);
7078 	/*
7079 	 * Read low word of remain bytes from original location.
7080 	 */
7081 	scsiq->remain_bytes += AscReadLramWord(iop_base,
7082 					       (ushort)(q_addr + (ushort)
7083 							ASC_SCSIQ_DW_REMAIN_XFER_CNT));
7084 
7085 	scsiq->remain_bytes &= max_dma_count;
7086 	return sg_queue_cnt;
7087 }
7088 
7089 /*
7090  * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
7091  *
7092  * Interrupt callback function for the Narrow SCSI Asc Library.
7093  */
7094 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
7095 {
7096 	struct asc_board *boardp;
7097 	struct scsi_cmnd *scp;
7098 	struct Scsi_Host *shost;
7099 
7100 	ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
7101 	ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
7102 
7103 	scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr);
7104 	if (!scp)
7105 		return;
7106 
7107 	ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
7108 
7109 	shost = scp->device->host;
7110 	ASC_STATS(shost, callback);
7111 	ASC_DBG(1, "shost 0x%p\n", shost);
7112 
7113 	boardp = shost_priv(shost);
7114 	BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var);
7115 
7116 	dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
7117 			 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7118 	/*
7119 	 * 'qdonep' contains the command's ending status.
7120 	 */
7121 	switch (qdonep->d3.done_stat) {
7122 	case QD_NO_ERROR:
7123 		ASC_DBG(2, "QD_NO_ERROR\n");
7124 		scp->result = 0;
7125 
7126 		/*
7127 		 * Check for an underrun condition.
7128 		 *
7129 		 * If there was no error and an underrun condition, then
7130 		 * return the number of underrun bytes.
7131 		 */
7132 		if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
7133 		    qdonep->remain_bytes <= scsi_bufflen(scp)) {
7134 			ASC_DBG(1, "underrun condition %u bytes\n",
7135 				 (unsigned)qdonep->remain_bytes);
7136 			scsi_set_resid(scp, qdonep->remain_bytes);
7137 		}
7138 		break;
7139 
7140 	case QD_WITH_ERROR:
7141 		ASC_DBG(2, "QD_WITH_ERROR\n");
7142 		switch (qdonep->d3.host_stat) {
7143 		case QHSTA_NO_ERROR:
7144 			if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
7145 				ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
7146 				ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
7147 						  SCSI_SENSE_BUFFERSIZE);
7148 				/*
7149 				 * Note: The 'status_byte()' macro used by
7150 				 * target drivers defined in scsi.h shifts the
7151 				 * status byte returned by host drivers right
7152 				 * by 1 bit.  This is why target drivers also
7153 				 * use right shifted status byte definitions.
7154 				 * For instance target drivers use
7155 				 * CHECK_CONDITION, defined to 0x1, instead of
7156 				 * the SCSI defined check condition value of
7157 				 * 0x2. Host drivers are supposed to return
7158 				 * the status byte as it is defined by SCSI.
7159 				 */
7160 				scp->result = DRIVER_BYTE(DRIVER_SENSE) |
7161 				    STATUS_BYTE(qdonep->d3.scsi_stat);
7162 			} else {
7163 				scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
7164 			}
7165 			break;
7166 
7167 		default:
7168 			/* QHSTA error occurred */
7169 			ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
7170 			scp->result = HOST_BYTE(DID_BAD_TARGET);
7171 			break;
7172 		}
7173 		break;
7174 
7175 	case QD_ABORTED_BY_HOST:
7176 		ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
7177 		scp->result =
7178 		    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
7179 						    scsi_msg) |
7180 		    STATUS_BYTE(qdonep->d3.scsi_stat);
7181 		break;
7182 
7183 	default:
7184 		ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
7185 		scp->result =
7186 		    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
7187 						    scsi_msg) |
7188 		    STATUS_BYTE(qdonep->d3.scsi_stat);
7189 		break;
7190 	}
7191 
7192 	/*
7193 	 * If the 'init_tidmask' bit isn't already set for the target and the
7194 	 * current request finished normally, then set the bit for the target
7195 	 * to indicate that a device is present.
7196 	 */
7197 	if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
7198 	    qdonep->d3.done_stat == QD_NO_ERROR &&
7199 	    qdonep->d3.host_stat == QHSTA_NO_ERROR) {
7200 		boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
7201 	}
7202 
7203 	asc_scsi_done(scp);
7204 }
7205 
7206 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
7207 {
7208 	uchar next_qp;
7209 	uchar n_q_used;
7210 	uchar sg_list_qp;
7211 	uchar sg_queue_cnt;
7212 	uchar q_cnt;
7213 	uchar done_q_tail;
7214 	uchar tid_no;
7215 	ASC_SCSI_BIT_ID_TYPE scsi_busy;
7216 	ASC_SCSI_BIT_ID_TYPE target_id;
7217 	PortAddr iop_base;
7218 	ushort q_addr;
7219 	ushort sg_q_addr;
7220 	uchar cur_target_qng;
7221 	ASC_QDONE_INFO scsiq_buf;
7222 	ASC_QDONE_INFO *scsiq;
7223 	int false_overrun;
7224 
7225 	iop_base = asc_dvc->iop_base;
7226 	n_q_used = 1;
7227 	scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
7228 	done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
7229 	q_addr = ASC_QNO_TO_QADDR(done_q_tail);
7230 	next_qp = AscReadLramByte(iop_base,
7231 				  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
7232 	if (next_qp != ASC_QLINK_END) {
7233 		AscPutVarDoneQTail(iop_base, next_qp);
7234 		q_addr = ASC_QNO_TO_QADDR(next_qp);
7235 		sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
7236 						     asc_dvc->max_dma_count);
7237 		AscWriteLramByte(iop_base,
7238 				 (ushort)(q_addr +
7239 					  (ushort)ASC_SCSIQ_B_STATUS),
7240 				 (uchar)(scsiq->
7241 					 q_status & (uchar)~(QS_READY |
7242 							     QS_ABORTED)));
7243 		tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
7244 		target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
7245 		if ((scsiq->cntl & QC_SG_HEAD) != 0) {
7246 			sg_q_addr = q_addr;
7247 			sg_list_qp = next_qp;
7248 			for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
7249 				sg_list_qp = AscReadLramByte(iop_base,
7250 							     (ushort)(sg_q_addr
7251 								      + (ushort)
7252 								      ASC_SCSIQ_B_FWD));
7253 				sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
7254 				if (sg_list_qp == ASC_QLINK_END) {
7255 					AscSetLibErrorCode(asc_dvc,
7256 							   ASCQ_ERR_SG_Q_LINKS);
7257 					scsiq->d3.done_stat = QD_WITH_ERROR;
7258 					scsiq->d3.host_stat =
7259 					    QHSTA_D_QDONE_SG_LIST_CORRUPTED;
7260 					goto FATAL_ERR_QDONE;
7261 				}
7262 				AscWriteLramByte(iop_base,
7263 						 (ushort)(sg_q_addr + (ushort)
7264 							  ASC_SCSIQ_B_STATUS),
7265 						 QS_FREE);
7266 			}
7267 			n_q_used = sg_queue_cnt + 1;
7268 			AscPutVarDoneQTail(iop_base, sg_list_qp);
7269 		}
7270 		if (asc_dvc->queue_full_or_busy & target_id) {
7271 			cur_target_qng = AscReadLramByte(iop_base,
7272 							 (ushort)((ushort)
7273 								  ASC_QADR_BEG
7274 								  + (ushort)
7275 								  scsiq->d2.
7276 								  target_ix));
7277 			if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
7278 				scsi_busy = AscReadLramByte(iop_base, (ushort)
7279 							    ASCV_SCSIBUSY_B);
7280 				scsi_busy &= ~target_id;
7281 				AscWriteLramByte(iop_base,
7282 						 (ushort)ASCV_SCSIBUSY_B,
7283 						 scsi_busy);
7284 				asc_dvc->queue_full_or_busy &= ~target_id;
7285 			}
7286 		}
7287 		if (asc_dvc->cur_total_qng >= n_q_used) {
7288 			asc_dvc->cur_total_qng -= n_q_used;
7289 			if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
7290 				asc_dvc->cur_dvc_qng[tid_no]--;
7291 			}
7292 		} else {
7293 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
7294 			scsiq->d3.done_stat = QD_WITH_ERROR;
7295 			goto FATAL_ERR_QDONE;
7296 		}
7297 		if ((scsiq->d2.srb_ptr == 0UL) ||
7298 		    ((scsiq->q_status & QS_ABORTED) != 0)) {
7299 			return (0x11);
7300 		} else if (scsiq->q_status == QS_DONE) {
7301 			false_overrun = FALSE;
7302 			if (scsiq->extra_bytes != 0) {
7303 				scsiq->remain_bytes +=
7304 				    (ADV_DCNT)scsiq->extra_bytes;
7305 			}
7306 			if (scsiq->d3.done_stat == QD_WITH_ERROR) {
7307 				if (scsiq->d3.host_stat ==
7308 				    QHSTA_M_DATA_OVER_RUN) {
7309 					if ((scsiq->
7310 					     cntl & (QC_DATA_IN | QC_DATA_OUT))
7311 					    == 0) {
7312 						scsiq->d3.done_stat =
7313 						    QD_NO_ERROR;
7314 						scsiq->d3.host_stat =
7315 						    QHSTA_NO_ERROR;
7316 					} else if (false_overrun) {
7317 						scsiq->d3.done_stat =
7318 						    QD_NO_ERROR;
7319 						scsiq->d3.host_stat =
7320 						    QHSTA_NO_ERROR;
7321 					}
7322 				} else if (scsiq->d3.host_stat ==
7323 					   QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
7324 					AscStopChip(iop_base);
7325 					AscSetChipControl(iop_base,
7326 							  (uchar)(CC_SCSI_RESET
7327 								  | CC_HALT));
7328 					udelay(60);
7329 					AscSetChipControl(iop_base, CC_HALT);
7330 					AscSetChipStatus(iop_base,
7331 							 CIW_CLR_SCSI_RESET_INT);
7332 					AscSetChipStatus(iop_base, 0);
7333 					AscSetChipControl(iop_base, 0);
7334 				}
7335 			}
7336 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7337 				asc_isr_callback(asc_dvc, scsiq);
7338 			} else {
7339 				if ((AscReadLramByte(iop_base,
7340 						     (ushort)(q_addr + (ushort)
7341 							      ASC_SCSIQ_CDB_BEG))
7342 				     == START_STOP)) {
7343 					asc_dvc->unit_not_ready &= ~target_id;
7344 					if (scsiq->d3.done_stat != QD_NO_ERROR) {
7345 						asc_dvc->start_motor &=
7346 						    ~target_id;
7347 					}
7348 				}
7349 			}
7350 			return (1);
7351 		} else {
7352 			AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
7353  FATAL_ERR_QDONE:
7354 			if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
7355 				asc_isr_callback(asc_dvc, scsiq);
7356 			}
7357 			return (0x80);
7358 		}
7359 	}
7360 	return (0);
7361 }
7362 
7363 static int AscISR(ASC_DVC_VAR *asc_dvc)
7364 {
7365 	ASC_CS_TYPE chipstat;
7366 	PortAddr iop_base;
7367 	ushort saved_ram_addr;
7368 	uchar ctrl_reg;
7369 	uchar saved_ctrl_reg;
7370 	int int_pending;
7371 	int status;
7372 	uchar host_flag;
7373 
7374 	iop_base = asc_dvc->iop_base;
7375 	int_pending = FALSE;
7376 
7377 	if (AscIsIntPending(iop_base) == 0)
7378 		return int_pending;
7379 
7380 	if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7381 		return ERR;
7382 	}
7383 	if (asc_dvc->in_critical_cnt != 0) {
7384 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7385 		return ERR;
7386 	}
7387 	if (asc_dvc->is_in_int) {
7388 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7389 		return ERR;
7390 	}
7391 	asc_dvc->is_in_int = TRUE;
7392 	ctrl_reg = AscGetChipControl(iop_base);
7393 	saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7394 				       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7395 	chipstat = AscGetChipStatus(iop_base);
7396 	if (chipstat & CSW_SCSI_RESET_LATCH) {
7397 		if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7398 			int i = 10;
7399 			int_pending = TRUE;
7400 			asc_dvc->sdtr_done = 0;
7401 			saved_ctrl_reg &= (uchar)(~CC_HALT);
7402 			while ((AscGetChipStatus(iop_base) &
7403 				CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7404 				mdelay(100);
7405 			}
7406 			AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7407 			AscSetChipControl(iop_base, CC_HALT);
7408 			AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7409 			AscSetChipStatus(iop_base, 0);
7410 			chipstat = AscGetChipStatus(iop_base);
7411 		}
7412 	}
7413 	saved_ram_addr = AscGetChipLramAddr(iop_base);
7414 	host_flag = AscReadLramByte(iop_base,
7415 				    ASCV_HOST_FLAG_B) &
7416 	    (uchar)(~ASC_HOST_FLAG_IN_ISR);
7417 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7418 			 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7419 	if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7420 		AscAckInterrupt(iop_base);
7421 		int_pending = TRUE;
7422 		if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7423 			if (AscIsrChipHalted(asc_dvc) == ERR) {
7424 				goto ISR_REPORT_QDONE_FATAL_ERROR;
7425 			} else {
7426 				saved_ctrl_reg &= (uchar)(~CC_HALT);
7427 			}
7428 		} else {
7429  ISR_REPORT_QDONE_FATAL_ERROR:
7430 			if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7431 				while (((status =
7432 					 AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7433 				}
7434 			} else {
7435 				do {
7436 					if ((status =
7437 					     AscIsrQDone(asc_dvc)) == 1) {
7438 						break;
7439 					}
7440 				} while (status == 0x11);
7441 			}
7442 			if ((status & 0x80) != 0)
7443 				int_pending = ERR;
7444 		}
7445 	}
7446 	AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7447 	AscSetChipLramAddr(iop_base, saved_ram_addr);
7448 	AscSetChipControl(iop_base, saved_ctrl_reg);
7449 	asc_dvc->is_in_int = FALSE;
7450 	return int_pending;
7451 }
7452 
7453 /*
7454  * advansys_reset()
7455  *
7456  * Reset the bus associated with the command 'scp'.
7457  *
7458  * This function runs its own thread. Interrupts must be blocked but
7459  * sleeping is allowed and no locking other than for host structures is
7460  * required. Returns SUCCESS or FAILED.
7461  */
7462 static int advansys_reset(struct scsi_cmnd *scp)
7463 {
7464 	struct Scsi_Host *shost = scp->device->host;
7465 	struct asc_board *boardp = shost_priv(shost);
7466 	unsigned long flags;
7467 	int status;
7468 	int ret = SUCCESS;
7469 
7470 	ASC_DBG(1, "0x%p\n", scp);
7471 
7472 	ASC_STATS(shost, reset);
7473 
7474 	scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n");
7475 
7476 	if (ASC_NARROW_BOARD(boardp)) {
7477 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7478 
7479 		/* Reset the chip and SCSI bus. */
7480 		ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7481 		status = AscInitAsc1000Driver(asc_dvc);
7482 
7483 		/* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7484 		if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7485 			scmd_printk(KERN_INFO, scp, "SCSI bus reset error: "
7486 				    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7487 				    status);
7488 			ret = FAILED;
7489 		} else if (status) {
7490 			scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: "
7491 				    "0x%x\n", status);
7492 		} else {
7493 			scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7494 				    "successful\n");
7495 		}
7496 
7497 		ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7498 		spin_lock_irqsave(shost->host_lock, flags);
7499 	} else {
7500 		/*
7501 		 * If the suggest reset bus flags are set, then reset the bus.
7502 		 * Otherwise only reset the device.
7503 		 */
7504 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7505 
7506 		/*
7507 		 * Reset the target's SCSI bus.
7508 		 */
7509 		ASC_DBG(1, "before AdvResetChipAndSB()\n");
7510 		switch (AdvResetChipAndSB(adv_dvc)) {
7511 		case ASC_TRUE:
7512 			scmd_printk(KERN_INFO, scp, "SCSI bus reset "
7513 				    "successful\n");
7514 			break;
7515 		case ASC_FALSE:
7516 		default:
7517 			scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n");
7518 			ret = FAILED;
7519 			break;
7520 		}
7521 		spin_lock_irqsave(shost->host_lock, flags);
7522 		AdvISR(adv_dvc);
7523 	}
7524 
7525 	/* Save the time of the most recently completed reset. */
7526 	boardp->last_reset = jiffies;
7527 	spin_unlock_irqrestore(shost->host_lock, flags);
7528 
7529 	ASC_DBG(1, "ret %d\n", ret);
7530 
7531 	return ret;
7532 }
7533 
7534 /*
7535  * advansys_biosparam()
7536  *
7537  * Translate disk drive geometry if the "BIOS greater than 1 GB"
7538  * support is enabled for a drive.
7539  *
7540  * ip (information pointer) is an int array with the following definition:
7541  * ip[0]: heads
7542  * ip[1]: sectors
7543  * ip[2]: cylinders
7544  */
7545 static int
7546 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7547 		   sector_t capacity, int ip[])
7548 {
7549 	struct asc_board *boardp = shost_priv(sdev->host);
7550 
7551 	ASC_DBG(1, "begin\n");
7552 	ASC_STATS(sdev->host, biosparam);
7553 	if (ASC_NARROW_BOARD(boardp)) {
7554 		if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7555 		     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7556 			ip[0] = 255;
7557 			ip[1] = 63;
7558 		} else {
7559 			ip[0] = 64;
7560 			ip[1] = 32;
7561 		}
7562 	} else {
7563 		if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7564 		     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7565 			ip[0] = 255;
7566 			ip[1] = 63;
7567 		} else {
7568 			ip[0] = 64;
7569 			ip[1] = 32;
7570 		}
7571 	}
7572 	ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7573 	ASC_DBG(1, "end\n");
7574 	return 0;
7575 }
7576 
7577 /*
7578  * First-level interrupt handler.
7579  *
7580  * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7581  */
7582 static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7583 {
7584 	struct Scsi_Host *shost = dev_id;
7585 	struct asc_board *boardp = shost_priv(shost);
7586 	irqreturn_t result = IRQ_NONE;
7587 
7588 	ASC_DBG(2, "boardp 0x%p\n", boardp);
7589 	spin_lock(shost->host_lock);
7590 	if (ASC_NARROW_BOARD(boardp)) {
7591 		if (AscIsIntPending(shost->io_port)) {
7592 			result = IRQ_HANDLED;
7593 			ASC_STATS(shost, interrupt);
7594 			ASC_DBG(1, "before AscISR()\n");
7595 			AscISR(&boardp->dvc_var.asc_dvc_var);
7596 		}
7597 	} else {
7598 		ASC_DBG(1, "before AdvISR()\n");
7599 		if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7600 			result = IRQ_HANDLED;
7601 			ASC_STATS(shost, interrupt);
7602 		}
7603 	}
7604 	spin_unlock(shost->host_lock);
7605 
7606 	ASC_DBG(1, "end\n");
7607 	return result;
7608 }
7609 
7610 static int AscHostReqRiscHalt(PortAddr iop_base)
7611 {
7612 	int count = 0;
7613 	int sta = 0;
7614 	uchar saved_stop_code;
7615 
7616 	if (AscIsChipHalted(iop_base))
7617 		return (1);
7618 	saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7619 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7620 			 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7621 	do {
7622 		if (AscIsChipHalted(iop_base)) {
7623 			sta = 1;
7624 			break;
7625 		}
7626 		mdelay(100);
7627 	} while (count++ < 20);
7628 	AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7629 	return (sta);
7630 }
7631 
7632 static int
7633 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7634 {
7635 	int sta = FALSE;
7636 
7637 	if (AscHostReqRiscHalt(iop_base)) {
7638 		sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7639 		AscStartChip(iop_base);
7640 	}
7641 	return sta;
7642 }
7643 
7644 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7645 {
7646 	char type = sdev->type;
7647 	ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7648 
7649 	if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7650 		return;
7651 	if (asc_dvc->init_sdtr & tid_bits)
7652 		return;
7653 
7654 	if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7655 		asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7656 
7657 	asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7658 	if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7659 	    (type == TYPE_ROM) || (type == TYPE_TAPE))
7660 		asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7661 
7662 	if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7663 		AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7664 					ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7665 }
7666 
7667 static void
7668 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7669 {
7670 	ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7671 	ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7672 
7673 	if (sdev->lun == 0) {
7674 		ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7675 		if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7676 			asc_dvc->init_sdtr |= tid_bit;
7677 		} else {
7678 			asc_dvc->init_sdtr &= ~tid_bit;
7679 		}
7680 
7681 		if (orig_init_sdtr != asc_dvc->init_sdtr)
7682 			AscAsyncFix(asc_dvc, sdev);
7683 	}
7684 
7685 	if (sdev->tagged_supported) {
7686 		if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7687 			if (sdev->lun == 0) {
7688 				asc_dvc->cfg->can_tagged_qng |= tid_bit;
7689 				asc_dvc->use_tagged_qng |= tid_bit;
7690 			}
7691 			scsi_change_queue_depth(sdev,
7692 						asc_dvc->max_dvc_qng[sdev->id]);
7693 		}
7694 	} else {
7695 		if (sdev->lun == 0) {
7696 			asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7697 			asc_dvc->use_tagged_qng &= ~tid_bit;
7698 		}
7699 	}
7700 
7701 	if ((sdev->lun == 0) &&
7702 	    (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7703 		AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7704 				 asc_dvc->cfg->disc_enable);
7705 		AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7706 				 asc_dvc->use_tagged_qng);
7707 		AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7708 				 asc_dvc->cfg->can_tagged_qng);
7709 
7710 		asc_dvc->max_dvc_qng[sdev->id] =
7711 					asc_dvc->cfg->max_tag_qng[sdev->id];
7712 		AscWriteLramByte(asc_dvc->iop_base,
7713 				 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7714 				 asc_dvc->max_dvc_qng[sdev->id]);
7715 	}
7716 }
7717 
7718 /*
7719  * Wide Transfers
7720  *
7721  * If the EEPROM enabled WDTR for the device and the device supports wide
7722  * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7723  * write the new value to the microcode.
7724  */
7725 static void
7726 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7727 {
7728 	unsigned short cfg_word;
7729 	AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7730 	if ((cfg_word & tidmask) != 0)
7731 		return;
7732 
7733 	cfg_word |= tidmask;
7734 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7735 
7736 	/*
7737 	 * Clear the microcode SDTR and WDTR negotiation done indicators for
7738 	 * the target to cause it to negotiate with the new setting set above.
7739 	 * WDTR when accepted causes the target to enter asynchronous mode, so
7740 	 * SDTR must be negotiated.
7741 	 */
7742 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7743 	cfg_word &= ~tidmask;
7744 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7745 	AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7746 	cfg_word &= ~tidmask;
7747 	AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7748 }
7749 
7750 /*
7751  * Synchronous Transfers
7752  *
7753  * If the EEPROM enabled SDTR for the device and the device
7754  * supports synchronous transfers, then turn on the device's
7755  * 'sdtr_able' bit. Write the new value to the microcode.
7756  */
7757 static void
7758 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7759 {
7760 	unsigned short cfg_word;
7761 	AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7762 	if ((cfg_word & tidmask) != 0)
7763 		return;
7764 
7765 	cfg_word |= tidmask;
7766 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7767 
7768 	/*
7769 	 * Clear the microcode "SDTR negotiation" done indicator for the
7770 	 * target to cause it to negotiate with the new setting set above.
7771 	 */
7772 	AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7773 	cfg_word &= ~tidmask;
7774 	AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7775 }
7776 
7777 /*
7778  * PPR (Parallel Protocol Request) Capable
7779  *
7780  * If the device supports DT mode, then it must be PPR capable.
7781  * The PPR message will be used in place of the SDTR and WDTR
7782  * messages to negotiate synchronous speed and offset, transfer
7783  * width, and protocol options.
7784  */
7785 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7786 				AdvPortAddr iop_base, unsigned short tidmask)
7787 {
7788 	AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7789 	adv_dvc->ppr_able |= tidmask;
7790 	AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7791 }
7792 
7793 static void
7794 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7795 {
7796 	AdvPortAddr iop_base = adv_dvc->iop_base;
7797 	unsigned short tidmask = 1 << sdev->id;
7798 
7799 	if (sdev->lun == 0) {
7800 		/*
7801 		 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7802 		 * is enabled in the EEPROM and the device supports the
7803 		 * feature, then enable it in the microcode.
7804 		 */
7805 
7806 		if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7807 			advansys_wide_enable_wdtr(iop_base, tidmask);
7808 		if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7809 			advansys_wide_enable_sdtr(iop_base, tidmask);
7810 		if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7811 			advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7812 
7813 		/*
7814 		 * Tag Queuing is disabled for the BIOS which runs in polled
7815 		 * mode and would see no benefit from Tag Queuing. Also by
7816 		 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7817 		 * bugs will at least work with the BIOS.
7818 		 */
7819 		if ((adv_dvc->tagqng_able & tidmask) &&
7820 		    sdev->tagged_supported) {
7821 			unsigned short cfg_word;
7822 			AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7823 			cfg_word |= tidmask;
7824 			AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7825 					 cfg_word);
7826 			AdvWriteByteLram(iop_base,
7827 					 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7828 					 adv_dvc->max_dvc_qng);
7829 		}
7830 	}
7831 
7832 	if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7833 		scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7834 }
7835 
7836 /*
7837  * Set the number of commands to queue per device for the
7838  * specified host adapter.
7839  */
7840 static int advansys_slave_configure(struct scsi_device *sdev)
7841 {
7842 	struct asc_board *boardp = shost_priv(sdev->host);
7843 
7844 	if (ASC_NARROW_BOARD(boardp))
7845 		advansys_narrow_slave_configure(sdev,
7846 						&boardp->dvc_var.asc_dvc_var);
7847 	else
7848 		advansys_wide_slave_configure(sdev,
7849 						&boardp->dvc_var.adv_dvc_var);
7850 
7851 	return 0;
7852 }
7853 
7854 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp)
7855 {
7856 	struct asc_board *board = shost_priv(scp->device->host);
7857 	scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7858 					     SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7859 	dma_cache_sync(board->dev, scp->sense_buffer,
7860 		       SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7861 	return cpu_to_le32(scp->SCp.dma_handle);
7862 }
7863 
7864 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7865 			struct asc_scsi_q *asc_scsi_q)
7866 {
7867 	struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7868 	int use_sg;
7869 
7870 	memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7871 
7872 	/*
7873 	 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'.
7874 	 */
7875 	asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp);
7876 	if (asc_scsi_q->q2.srb_ptr == BAD_SRB) {
7877 		scp->result = HOST_BYTE(DID_SOFT_ERROR);
7878 		return ASC_ERROR;
7879 	}
7880 
7881 	/*
7882 	 * Build the ASC_SCSI_Q request.
7883 	 */
7884 	asc_scsi_q->cdbptr = &scp->cmnd[0];
7885 	asc_scsi_q->q2.cdb_len = scp->cmd_len;
7886 	asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7887 	asc_scsi_q->q1.target_lun = scp->device->lun;
7888 	asc_scsi_q->q2.target_ix =
7889 	    ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7890 	asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp);
7891 	asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7892 
7893 	/*
7894 	 * If there are any outstanding requests for the current target,
7895 	 * then every 255th request send an ORDERED request. This heuristic
7896 	 * tries to retain the benefit of request sorting while preventing
7897 	 * request starvation. 255 is the max number of tags or pending commands
7898 	 * a device may have outstanding.
7899 	 *
7900 	 * The request count is incremented below for every successfully
7901 	 * started request.
7902 	 *
7903 	 */
7904 	if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7905 	    (boardp->reqcnt[scp->device->id] % 255) == 0) {
7906 		asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7907 	} else {
7908 		asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7909 	}
7910 
7911 	/* Build ASC_SCSI_Q */
7912 	use_sg = scsi_dma_map(scp);
7913 	if (use_sg != 0) {
7914 		int sgcnt;
7915 		struct scatterlist *slp;
7916 		struct asc_sg_head *asc_sg_head;
7917 
7918 		if (use_sg > scp->device->host->sg_tablesize) {
7919 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
7920 				"sg_tablesize %d\n", use_sg,
7921 				scp->device->host->sg_tablesize);
7922 			scsi_dma_unmap(scp);
7923 			scp->result = HOST_BYTE(DID_ERROR);
7924 			return ASC_ERROR;
7925 		}
7926 
7927 		asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7928 			use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7929 		if (!asc_sg_head) {
7930 			scsi_dma_unmap(scp);
7931 			scp->result = HOST_BYTE(DID_SOFT_ERROR);
7932 			return ASC_ERROR;
7933 		}
7934 
7935 		asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7936 		asc_scsi_q->sg_head = asc_sg_head;
7937 		asc_scsi_q->q1.data_cnt = 0;
7938 		asc_scsi_q->q1.data_addr = 0;
7939 		/* This is a byte value, otherwise it would need to be swapped. */
7940 		asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7941 		ASC_STATS_ADD(scp->device->host, xfer_elem,
7942 			      asc_sg_head->entry_cnt);
7943 
7944 		/*
7945 		 * Convert scatter-gather list into ASC_SG_HEAD list.
7946 		 */
7947 		scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7948 			asc_sg_head->sg_list[sgcnt].addr =
7949 			    cpu_to_le32(sg_dma_address(slp));
7950 			asc_sg_head->sg_list[sgcnt].bytes =
7951 			    cpu_to_le32(sg_dma_len(slp));
7952 			ASC_STATS_ADD(scp->device->host, xfer_sect,
7953 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
7954 		}
7955 	}
7956 
7957 	ASC_STATS(scp->device->host, xfer_cnt);
7958 
7959 	ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7960 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7961 
7962 	return ASC_NOERROR;
7963 }
7964 
7965 /*
7966  * Build scatter-gather list for Adv Library (Wide Board).
7967  *
7968  * Additional ADV_SG_BLOCK structures will need to be allocated
7969  * if the total number of scatter-gather elements exceeds
7970  * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7971  * assumed to be physically contiguous.
7972  *
7973  * Return:
7974  *      ADV_SUCCESS(1) - SG List successfully created
7975  *      ADV_ERROR(-1) - SG List creation failed
7976  */
7977 static int
7978 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp,
7979 	       int use_sg)
7980 {
7981 	adv_sgblk_t *sgblkp;
7982 	ADV_SCSI_REQ_Q *scsiqp;
7983 	struct scatterlist *slp;
7984 	int sg_elem_cnt;
7985 	ADV_SG_BLOCK *sg_block, *prev_sg_block;
7986 	ADV_PADDR sg_block_paddr;
7987 	int i;
7988 
7989 	scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
7990 	slp = scsi_sglist(scp);
7991 	sg_elem_cnt = use_sg;
7992 	prev_sg_block = NULL;
7993 	reqp->sgblkp = NULL;
7994 
7995 	for (;;) {
7996 		/*
7997 		 * Allocate a 'adv_sgblk_t' structure from the board free
7998 		 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7999 		 * (15) scatter-gather elements.
8000 		 */
8001 		if ((sgblkp = boardp->adv_sgblkp) == NULL) {
8002 			ASC_DBG(1, "no free adv_sgblk_t\n");
8003 			ASC_STATS(scp->device->host, adv_build_nosg);
8004 
8005 			/*
8006 			 * Allocation failed. Free 'adv_sgblk_t' structures
8007 			 * already allocated for the request.
8008 			 */
8009 			while ((sgblkp = reqp->sgblkp) != NULL) {
8010 				/* Remove 'sgblkp' from the request list. */
8011 				reqp->sgblkp = sgblkp->next_sgblkp;
8012 
8013 				/* Add 'sgblkp' to the board free list. */
8014 				sgblkp->next_sgblkp = boardp->adv_sgblkp;
8015 				boardp->adv_sgblkp = sgblkp;
8016 			}
8017 			return ASC_BUSY;
8018 		}
8019 
8020 		/* Complete 'adv_sgblk_t' board allocation. */
8021 		boardp->adv_sgblkp = sgblkp->next_sgblkp;
8022 		sgblkp->next_sgblkp = NULL;
8023 
8024 		/*
8025 		 * Get 8 byte aligned virtual and physical addresses
8026 		 * for the allocated ADV_SG_BLOCK structure.
8027 		 */
8028 		sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block);
8029 		sg_block_paddr = virt_to_bus(sg_block);
8030 
8031 		/*
8032 		 * Check if this is the first 'adv_sgblk_t' for the
8033 		 * request.
8034 		 */
8035 		if (reqp->sgblkp == NULL) {
8036 			/* Request's first scatter-gather block. */
8037 			reqp->sgblkp = sgblkp;
8038 
8039 			/*
8040 			 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
8041 			 * address pointers.
8042 			 */
8043 			scsiqp->sg_list_ptr = sg_block;
8044 			scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr);
8045 		} else {
8046 			/* Request's second or later scatter-gather block. */
8047 			sgblkp->next_sgblkp = reqp->sgblkp;
8048 			reqp->sgblkp = sgblkp;
8049 
8050 			/*
8051 			 * Point the previous ADV_SG_BLOCK structure to
8052 			 * the newly allocated ADV_SG_BLOCK structure.
8053 			 */
8054 			prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr);
8055 		}
8056 
8057 		for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
8058 			sg_block->sg_list[i].sg_addr =
8059 					cpu_to_le32(sg_dma_address(slp));
8060 			sg_block->sg_list[i].sg_count =
8061 					cpu_to_le32(sg_dma_len(slp));
8062 			ASC_STATS_ADD(scp->device->host, xfer_sect,
8063 				      DIV_ROUND_UP(sg_dma_len(slp), 512));
8064 
8065 			if (--sg_elem_cnt == 0) {	/* Last ADV_SG_BLOCK and scatter-gather entry. */
8066 				sg_block->sg_cnt = i + 1;
8067 				sg_block->sg_ptr = 0L;	/* Last ADV_SG_BLOCK in list. */
8068 				return ADV_SUCCESS;
8069 			}
8070 			slp++;
8071 		}
8072 		sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
8073 		prev_sg_block = sg_block;
8074 	}
8075 }
8076 
8077 /*
8078  * Build a request structure for the Adv Library (Wide Board).
8079  *
8080  * If an adv_req_t can not be allocated to issue the request,
8081  * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
8082  *
8083  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the
8084  * microcode for DMA addresses or math operations are byte swapped
8085  * to little-endian order.
8086  */
8087 static int
8088 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
8089 	      ADV_SCSI_REQ_Q **adv_scsiqpp)
8090 {
8091 	adv_req_t *reqp;
8092 	ADV_SCSI_REQ_Q *scsiqp;
8093 	int i;
8094 	int ret;
8095 	int use_sg;
8096 
8097 	/*
8098 	 * Allocate an adv_req_t structure from the board to execute
8099 	 * the command.
8100 	 */
8101 	if (boardp->adv_reqp == NULL) {
8102 		ASC_DBG(1, "no free adv_req_t\n");
8103 		ASC_STATS(scp->device->host, adv_build_noreq);
8104 		return ASC_BUSY;
8105 	} else {
8106 		reqp = boardp->adv_reqp;
8107 		boardp->adv_reqp = reqp->next_reqp;
8108 		reqp->next_reqp = NULL;
8109 	}
8110 
8111 	/*
8112 	 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers.
8113 	 */
8114 	scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q);
8115 
8116 	/*
8117 	 * Initialize the structure.
8118 	 */
8119 	scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
8120 
8121 	/*
8122 	 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure.
8123 	 */
8124 	scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp);
8125 
8126 	/*
8127 	 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure.
8128 	 */
8129 	reqp->cmndp = scp;
8130 
8131 	/*
8132 	 * Build the ADV_SCSI_REQ_Q request.
8133 	 */
8134 
8135 	/* Set CDB length and copy it to the request structure.  */
8136 	scsiqp->cdb_len = scp->cmd_len;
8137 	/* Copy first 12 CDB bytes to cdb[]. */
8138 	for (i = 0; i < scp->cmd_len && i < 12; i++) {
8139 		scsiqp->cdb[i] = scp->cmnd[i];
8140 	}
8141 	/* Copy last 4 CDB bytes, if present, to cdb16[]. */
8142 	for (; i < scp->cmd_len; i++) {
8143 		scsiqp->cdb16[i - 12] = scp->cmnd[i];
8144 	}
8145 
8146 	scsiqp->target_id = scp->device->id;
8147 	scsiqp->target_lun = scp->device->lun;
8148 
8149 	scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0]));
8150 	scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
8151 
8152 	/* Build ADV_SCSI_REQ_Q */
8153 
8154 	use_sg = scsi_dma_map(scp);
8155 	if (use_sg == 0) {
8156 		/* Zero-length transfer */
8157 		reqp->sgblkp = NULL;
8158 		scsiqp->data_cnt = 0;
8159 		scsiqp->vdata_addr = NULL;
8160 
8161 		scsiqp->data_addr = 0;
8162 		scsiqp->sg_list_ptr = NULL;
8163 		scsiqp->sg_real_addr = 0;
8164 	} else {
8165 		if (use_sg > ADV_MAX_SG_LIST) {
8166 			scmd_printk(KERN_ERR, scp, "use_sg %d > "
8167 				   "ADV_MAX_SG_LIST %d\n", use_sg,
8168 				   scp->device->host->sg_tablesize);
8169 			scsi_dma_unmap(scp);
8170 			scp->result = HOST_BYTE(DID_ERROR);
8171 
8172 			/*
8173 			 * Free the 'adv_req_t' structure by adding it back
8174 			 * to the board free list.
8175 			 */
8176 			reqp->next_reqp = boardp->adv_reqp;
8177 			boardp->adv_reqp = reqp;
8178 
8179 			return ASC_ERROR;
8180 		}
8181 
8182 		scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
8183 
8184 		ret = adv_get_sglist(boardp, reqp, scp, use_sg);
8185 		if (ret != ADV_SUCCESS) {
8186 			/*
8187 			 * Free the adv_req_t structure by adding it back to
8188 			 * the board free list.
8189 			 */
8190 			reqp->next_reqp = boardp->adv_reqp;
8191 			boardp->adv_reqp = reqp;
8192 
8193 			return ret;
8194 		}
8195 
8196 		ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
8197 	}
8198 
8199 	ASC_STATS(scp->device->host, xfer_cnt);
8200 
8201 	ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
8202 	ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
8203 
8204 	*adv_scsiqpp = scsiqp;
8205 
8206 	return ASC_NOERROR;
8207 }
8208 
8209 static int AscSgListToQueue(int sg_list)
8210 {
8211 	int n_sg_list_qs;
8212 
8213 	n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
8214 	if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
8215 		n_sg_list_qs++;
8216 	return n_sg_list_qs + 1;
8217 }
8218 
8219 static uint
8220 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
8221 {
8222 	uint cur_used_qs;
8223 	uint cur_free_qs;
8224 	ASC_SCSI_BIT_ID_TYPE target_id;
8225 	uchar tid_no;
8226 
8227 	target_id = ASC_TIX_TO_TARGET_ID(target_ix);
8228 	tid_no = ASC_TIX_TO_TID(target_ix);
8229 	if ((asc_dvc->unit_not_ready & target_id) ||
8230 	    (asc_dvc->queue_full_or_busy & target_id)) {
8231 		return 0;
8232 	}
8233 	if (n_qs == 1) {
8234 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
8235 		    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
8236 	} else {
8237 		cur_used_qs = (uint) asc_dvc->cur_total_qng +
8238 		    (uint) ASC_MIN_FREE_Q;
8239 	}
8240 	if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
8241 		cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
8242 		if (asc_dvc->cur_dvc_qng[tid_no] >=
8243 		    asc_dvc->max_dvc_qng[tid_no]) {
8244 			return 0;
8245 		}
8246 		return cur_free_qs;
8247 	}
8248 	if (n_qs > 1) {
8249 		if ((n_qs > asc_dvc->last_q_shortage)
8250 		    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
8251 			asc_dvc->last_q_shortage = n_qs;
8252 		}
8253 	}
8254 	return 0;
8255 }
8256 
8257 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
8258 {
8259 	ushort q_addr;
8260 	uchar next_qp;
8261 	uchar q_status;
8262 
8263 	q_addr = ASC_QNO_TO_QADDR(free_q_head);
8264 	q_status = (uchar)AscReadLramByte(iop_base,
8265 					  (ushort)(q_addr +
8266 						   ASC_SCSIQ_B_STATUS));
8267 	next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
8268 	if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
8269 		return next_qp;
8270 	return ASC_QLINK_END;
8271 }
8272 
8273 static uchar
8274 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
8275 {
8276 	uchar i;
8277 
8278 	for (i = 0; i < n_free_q; i++) {
8279 		free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
8280 		if (free_q_head == ASC_QLINK_END)
8281 			break;
8282 	}
8283 	return free_q_head;
8284 }
8285 
8286 /*
8287  * void
8288  * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8289  *
8290  * Calling/Exit State:
8291  *    none
8292  *
8293  * Description:
8294  *     Output an ASC_SCSI_Q structure to the chip
8295  */
8296 static void
8297 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
8298 {
8299 	int i;
8300 
8301 	ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
8302 	AscSetChipLramAddr(iop_base, s_addr);
8303 	for (i = 0; i < 2 * words; i += 2) {
8304 		if (i == 4 || i == 20) {
8305 			continue;
8306 		}
8307 		outpw(iop_base + IOP_RAM_DATA,
8308 		      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
8309 	}
8310 }
8311 
8312 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8313 {
8314 	ushort q_addr;
8315 	uchar tid_no;
8316 	uchar sdtr_data;
8317 	uchar syn_period_ix;
8318 	uchar syn_offset;
8319 	PortAddr iop_base;
8320 
8321 	iop_base = asc_dvc->iop_base;
8322 	if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
8323 	    ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
8324 		tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
8325 		sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8326 		syn_period_ix =
8327 		    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
8328 		syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
8329 		AscMsgOutSDTR(asc_dvc,
8330 			      asc_dvc->sdtr_period_tbl[syn_period_ix],
8331 			      syn_offset);
8332 		scsiq->q1.cntl |= QC_MSG_OUT;
8333 	}
8334 	q_addr = ASC_QNO_TO_QADDR(q_no);
8335 	if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
8336 		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8337 	}
8338 	scsiq->q1.status = QS_FREE;
8339 	AscMemWordCopyPtrToLram(iop_base,
8340 				q_addr + ASC_SCSIQ_CDB_BEG,
8341 				(uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
8342 
8343 	DvcPutScsiQ(iop_base,
8344 		    q_addr + ASC_SCSIQ_CPY_BEG,
8345 		    (uchar *)&scsiq->q1.cntl,
8346 		    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
8347 	AscWriteLramWord(iop_base,
8348 			 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
8349 			 (ushort)(((ushort)scsiq->q1.
8350 				   q_no << 8) | (ushort)QS_READY));
8351 	return 1;
8352 }
8353 
8354 static int
8355 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
8356 {
8357 	int sta;
8358 	int i;
8359 	ASC_SG_HEAD *sg_head;
8360 	ASC_SG_LIST_Q scsi_sg_q;
8361 	ASC_DCNT saved_data_addr;
8362 	ASC_DCNT saved_data_cnt;
8363 	PortAddr iop_base;
8364 	ushort sg_list_dwords;
8365 	ushort sg_index;
8366 	ushort sg_entry_cnt;
8367 	ushort q_addr;
8368 	uchar next_qp;
8369 
8370 	iop_base = asc_dvc->iop_base;
8371 	sg_head = scsiq->sg_head;
8372 	saved_data_addr = scsiq->q1.data_addr;
8373 	saved_data_cnt = scsiq->q1.data_cnt;
8374 	scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr;
8375 	scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes;
8376 #if CC_VERY_LONG_SG_LIST
8377 	/*
8378 	 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST
8379 	 * then not all SG elements will fit in the allocated queues.
8380 	 * The rest of the SG elements will be copied when the RISC
8381 	 * completes the SG elements that fit and halts.
8382 	 */
8383 	if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8384 		/*
8385 		 * Set sg_entry_cnt to be the number of SG elements that
8386 		 * will fit in the allocated SG queues. It is minus 1, because
8387 		 * the first SG element is handled above. ASC_MAX_SG_LIST is
8388 		 * already inflated by 1 to account for this. For example it
8389 		 * may be 50 which is 1 + 7 queues * 7 SG elements.
8390 		 */
8391 		sg_entry_cnt = ASC_MAX_SG_LIST - 1;
8392 
8393 		/*
8394 		 * Keep track of remaining number of SG elements that will
8395 		 * need to be handled from a_isr.c.
8396 		 */
8397 		scsiq->remain_sg_entry_cnt =
8398 		    sg_head->entry_cnt - ASC_MAX_SG_LIST;
8399 	} else {
8400 #endif /* CC_VERY_LONG_SG_LIST */
8401 		/*
8402 		 * Set sg_entry_cnt to be the number of SG elements that
8403 		 * will fit in the allocated SG queues. It is minus 1, because
8404 		 * the first SG element is handled above.
8405 		 */
8406 		sg_entry_cnt = sg_head->entry_cnt - 1;
8407 #if CC_VERY_LONG_SG_LIST
8408 	}
8409 #endif /* CC_VERY_LONG_SG_LIST */
8410 	if (sg_entry_cnt != 0) {
8411 		scsiq->q1.cntl |= QC_SG_HEAD;
8412 		q_addr = ASC_QNO_TO_QADDR(q_no);
8413 		sg_index = 1;
8414 		scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8415 		scsi_sg_q.sg_head_qp = q_no;
8416 		scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8417 		for (i = 0; i < sg_head->queue_cnt; i++) {
8418 			scsi_sg_q.seq_no = i + 1;
8419 			if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8420 				sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8421 				sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8422 				if (i == 0) {
8423 					scsi_sg_q.sg_list_cnt =
8424 					    ASC_SG_LIST_PER_Q;
8425 					scsi_sg_q.sg_cur_list_cnt =
8426 					    ASC_SG_LIST_PER_Q;
8427 				} else {
8428 					scsi_sg_q.sg_list_cnt =
8429 					    ASC_SG_LIST_PER_Q - 1;
8430 					scsi_sg_q.sg_cur_list_cnt =
8431 					    ASC_SG_LIST_PER_Q - 1;
8432 				}
8433 			} else {
8434 #if CC_VERY_LONG_SG_LIST
8435 				/*
8436 				 * This is the last SG queue in the list of
8437 				 * allocated SG queues. If there are more
8438 				 * SG elements than will fit in the allocated
8439 				 * queues, then set the QCSG_SG_XFER_MORE flag.
8440 				 */
8441 				if (sg_head->entry_cnt > ASC_MAX_SG_LIST) {
8442 					scsi_sg_q.cntl |= QCSG_SG_XFER_MORE;
8443 				} else {
8444 #endif /* CC_VERY_LONG_SG_LIST */
8445 					scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8446 #if CC_VERY_LONG_SG_LIST
8447 				}
8448 #endif /* CC_VERY_LONG_SG_LIST */
8449 				sg_list_dwords = sg_entry_cnt << 1;
8450 				if (i == 0) {
8451 					scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8452 					scsi_sg_q.sg_cur_list_cnt =
8453 					    sg_entry_cnt;
8454 				} else {
8455 					scsi_sg_q.sg_list_cnt =
8456 					    sg_entry_cnt - 1;
8457 					scsi_sg_q.sg_cur_list_cnt =
8458 					    sg_entry_cnt - 1;
8459 				}
8460 				sg_entry_cnt = 0;
8461 			}
8462 			next_qp = AscReadLramByte(iop_base,
8463 						  (ushort)(q_addr +
8464 							   ASC_SCSIQ_B_FWD));
8465 			scsi_sg_q.q_no = next_qp;
8466 			q_addr = ASC_QNO_TO_QADDR(next_qp);
8467 			AscMemWordCopyPtrToLram(iop_base,
8468 						q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8469 						(uchar *)&scsi_sg_q,
8470 						sizeof(ASC_SG_LIST_Q) >> 1);
8471 			AscMemDWordCopyPtrToLram(iop_base,
8472 						 q_addr + ASC_SGQ_LIST_BEG,
8473 						 (uchar *)&sg_head->
8474 						 sg_list[sg_index],
8475 						 sg_list_dwords);
8476 			sg_index += ASC_SG_LIST_PER_Q;
8477 			scsiq->next_sg_index = sg_index;
8478 		}
8479 	} else {
8480 		scsiq->q1.cntl &= ~QC_SG_HEAD;
8481 	}
8482 	sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8483 	scsiq->q1.data_addr = saved_data_addr;
8484 	scsiq->q1.data_cnt = saved_data_cnt;
8485 	return (sta);
8486 }
8487 
8488 static int
8489 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8490 {
8491 	PortAddr iop_base;
8492 	uchar free_q_head;
8493 	uchar next_qp;
8494 	uchar tid_no;
8495 	uchar target_ix;
8496 	int sta;
8497 
8498 	iop_base = asc_dvc->iop_base;
8499 	target_ix = scsiq->q2.target_ix;
8500 	tid_no = ASC_TIX_TO_TID(target_ix);
8501 	sta = 0;
8502 	free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8503 	if (n_q_required > 1) {
8504 		next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8505 						    (uchar)n_q_required);
8506 		if (next_qp != ASC_QLINK_END) {
8507 			asc_dvc->last_q_shortage = 0;
8508 			scsiq->sg_head->queue_cnt = n_q_required - 1;
8509 			scsiq->q1.q_no = free_q_head;
8510 			sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8511 						     free_q_head);
8512 		}
8513 	} else if (n_q_required == 1) {
8514 		next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8515 		if (next_qp != ASC_QLINK_END) {
8516 			scsiq->q1.q_no = free_q_head;
8517 			sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8518 		}
8519 	}
8520 	if (sta == 1) {
8521 		AscPutVarFreeQHead(iop_base, next_qp);
8522 		asc_dvc->cur_total_qng += n_q_required;
8523 		asc_dvc->cur_dvc_qng[tid_no]++;
8524 	}
8525 	return sta;
8526 }
8527 
8528 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8529 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8530 	INQUIRY,
8531 	REQUEST_SENSE,
8532 	READ_CAPACITY,
8533 	READ_TOC,
8534 	MODE_SELECT,
8535 	MODE_SENSE,
8536 	MODE_SELECT_10,
8537 	MODE_SENSE_10,
8538 	0xFF,
8539 	0xFF,
8540 	0xFF,
8541 	0xFF,
8542 	0xFF,
8543 	0xFF,
8544 	0xFF,
8545 	0xFF
8546 };
8547 
8548 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8549 {
8550 	PortAddr iop_base;
8551 	int sta;
8552 	int n_q_required;
8553 	int disable_syn_offset_one_fix;
8554 	int i;
8555 	ASC_PADDR addr;
8556 	ushort sg_entry_cnt = 0;
8557 	ushort sg_entry_cnt_minus_one = 0;
8558 	uchar target_ix;
8559 	uchar tid_no;
8560 	uchar sdtr_data;
8561 	uchar extra_bytes;
8562 	uchar scsi_cmd;
8563 	uchar disable_cmd;
8564 	ASC_SG_HEAD *sg_head;
8565 	ASC_DCNT data_cnt;
8566 
8567 	iop_base = asc_dvc->iop_base;
8568 	sg_head = scsiq->sg_head;
8569 	if (asc_dvc->err_code != 0)
8570 		return (ERR);
8571 	scsiq->q1.q_no = 0;
8572 	if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8573 		scsiq->q1.extra_bytes = 0;
8574 	}
8575 	sta = 0;
8576 	target_ix = scsiq->q2.target_ix;
8577 	tid_no = ASC_TIX_TO_TID(target_ix);
8578 	n_q_required = 1;
8579 	if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8580 		if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8581 			asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8582 			sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8583 			AscMsgOutSDTR(asc_dvc,
8584 				      asc_dvc->
8585 				      sdtr_period_tbl[(sdtr_data >> 4) &
8586 						      (uchar)(asc_dvc->
8587 							      max_sdtr_index -
8588 							      1)],
8589 				      (uchar)(sdtr_data & (uchar)
8590 					      ASC_SYN_MAX_OFFSET));
8591 			scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8592 		}
8593 	}
8594 	if (asc_dvc->in_critical_cnt != 0) {
8595 		AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8596 		return (ERR);
8597 	}
8598 	asc_dvc->in_critical_cnt++;
8599 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8600 		if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8601 			asc_dvc->in_critical_cnt--;
8602 			return (ERR);
8603 		}
8604 #if !CC_VERY_LONG_SG_LIST
8605 		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8606 			asc_dvc->in_critical_cnt--;
8607 			return (ERR);
8608 		}
8609 #endif /* !CC_VERY_LONG_SG_LIST */
8610 		if (sg_entry_cnt == 1) {
8611 			scsiq->q1.data_addr =
8612 			    (ADV_PADDR)sg_head->sg_list[0].addr;
8613 			scsiq->q1.data_cnt =
8614 			    (ADV_DCNT)sg_head->sg_list[0].bytes;
8615 			scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8616 		}
8617 		sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8618 	}
8619 	scsi_cmd = scsiq->cdbptr[0];
8620 	disable_syn_offset_one_fix = FALSE;
8621 	if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8622 	    !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8623 		if (scsiq->q1.cntl & QC_SG_HEAD) {
8624 			data_cnt = 0;
8625 			for (i = 0; i < sg_entry_cnt; i++) {
8626 				data_cnt +=
8627 				    (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i].
8628 							  bytes);
8629 			}
8630 		} else {
8631 			data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8632 		}
8633 		if (data_cnt != 0UL) {
8634 			if (data_cnt < 512UL) {
8635 				disable_syn_offset_one_fix = TRUE;
8636 			} else {
8637 				for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8638 				     i++) {
8639 					disable_cmd =
8640 					    _syn_offset_one_disable_cmd[i];
8641 					if (disable_cmd == 0xFF) {
8642 						break;
8643 					}
8644 					if (scsi_cmd == disable_cmd) {
8645 						disable_syn_offset_one_fix =
8646 						    TRUE;
8647 						break;
8648 					}
8649 				}
8650 			}
8651 		}
8652 	}
8653 	if (disable_syn_offset_one_fix) {
8654 		scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8655 		scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8656 				       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8657 	} else {
8658 		scsiq->q2.tag_code &= 0x27;
8659 	}
8660 	if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8661 		if (asc_dvc->bug_fix_cntl) {
8662 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8663 				if ((scsi_cmd == READ_6) ||
8664 				    (scsi_cmd == READ_10)) {
8665 					addr =
8666 					    (ADV_PADDR)le32_to_cpu(sg_head->
8667 								   sg_list
8668 								   [sg_entry_cnt_minus_one].
8669 								   addr) +
8670 					    (ADV_DCNT)le32_to_cpu(sg_head->
8671 								  sg_list
8672 								  [sg_entry_cnt_minus_one].
8673 								  bytes);
8674 					extra_bytes =
8675 					    (uchar)((ushort)addr & 0x0003);
8676 					if ((extra_bytes != 0)
8677 					    &&
8678 					    ((scsiq->q2.
8679 					      tag_code &
8680 					      ASC_TAG_FLAG_EXTRA_BYTES)
8681 					     == 0)) {
8682 						scsiq->q2.tag_code |=
8683 						    ASC_TAG_FLAG_EXTRA_BYTES;
8684 						scsiq->q1.extra_bytes =
8685 						    extra_bytes;
8686 						data_cnt =
8687 						    le32_to_cpu(sg_head->
8688 								sg_list
8689 								[sg_entry_cnt_minus_one].
8690 								bytes);
8691 						data_cnt -=
8692 						    (ASC_DCNT) extra_bytes;
8693 						sg_head->
8694 						    sg_list
8695 						    [sg_entry_cnt_minus_one].
8696 						    bytes =
8697 						    cpu_to_le32(data_cnt);
8698 					}
8699 				}
8700 			}
8701 		}
8702 		sg_head->entry_to_copy = sg_head->entry_cnt;
8703 #if CC_VERY_LONG_SG_LIST
8704 		/*
8705 		 * Set the sg_entry_cnt to the maximum possible. The rest of
8706 		 * the SG elements will be copied when the RISC completes the
8707 		 * SG elements that fit and halts.
8708 		 */
8709 		if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8710 			sg_entry_cnt = ASC_MAX_SG_LIST;
8711 		}
8712 #endif /* CC_VERY_LONG_SG_LIST */
8713 		n_q_required = AscSgListToQueue(sg_entry_cnt);
8714 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8715 		     (uint) n_q_required)
8716 		    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8717 			if ((sta =
8718 			     AscSendScsiQueue(asc_dvc, scsiq,
8719 					      n_q_required)) == 1) {
8720 				asc_dvc->in_critical_cnt--;
8721 				return (sta);
8722 			}
8723 		}
8724 	} else {
8725 		if (asc_dvc->bug_fix_cntl) {
8726 			if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8727 				if ((scsi_cmd == READ_6) ||
8728 				    (scsi_cmd == READ_10)) {
8729 					addr =
8730 					    le32_to_cpu(scsiq->q1.data_addr) +
8731 					    le32_to_cpu(scsiq->q1.data_cnt);
8732 					extra_bytes =
8733 					    (uchar)((ushort)addr & 0x0003);
8734 					if ((extra_bytes != 0)
8735 					    &&
8736 					    ((scsiq->q2.
8737 					      tag_code &
8738 					      ASC_TAG_FLAG_EXTRA_BYTES)
8739 					     == 0)) {
8740 						data_cnt =
8741 						    le32_to_cpu(scsiq->q1.
8742 								data_cnt);
8743 						if (((ushort)data_cnt & 0x01FF)
8744 						    == 0) {
8745 							scsiq->q2.tag_code |=
8746 							    ASC_TAG_FLAG_EXTRA_BYTES;
8747 							data_cnt -= (ASC_DCNT)
8748 							    extra_bytes;
8749 							scsiq->q1.data_cnt =
8750 							    cpu_to_le32
8751 							    (data_cnt);
8752 							scsiq->q1.extra_bytes =
8753 							    extra_bytes;
8754 						}
8755 					}
8756 				}
8757 			}
8758 		}
8759 		n_q_required = 1;
8760 		if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8761 		    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8762 			if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8763 						    n_q_required)) == 1) {
8764 				asc_dvc->in_critical_cnt--;
8765 				return (sta);
8766 			}
8767 		}
8768 	}
8769 	asc_dvc->in_critical_cnt--;
8770 	return (sta);
8771 }
8772 
8773 /*
8774  * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8775  *
8776  *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8777  *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8778  *   RISC to notify it a new command is ready to be executed.
8779  *
8780  * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8781  * set to SCSI_MAX_RETRY.
8782  *
8783  * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode
8784  * for DMA addresses or math operations are byte swapped to little-endian
8785  * order.
8786  *
8787  * Return:
8788  *      ADV_SUCCESS(1) - The request was successfully queued.
8789  *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8790  *                       request completes.
8791  *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8792  *                       host IC error.
8793  */
8794 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq)
8795 {
8796 	AdvPortAddr iop_base;
8797 	ADV_PADDR req_paddr;
8798 	ADV_CARR_T *new_carrp;
8799 
8800 	/*
8801 	 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8802 	 */
8803 	if (scsiq->target_id > ADV_MAX_TID) {
8804 		scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8805 		scsiq->done_status = QD_WITH_ERROR;
8806 		return ADV_ERROR;
8807 	}
8808 
8809 	iop_base = asc_dvc->iop_base;
8810 
8811 	/*
8812 	 * Allocate a carrier ensuring at least one carrier always
8813 	 * remains on the freelist and initialize fields.
8814 	 */
8815 	if ((new_carrp = asc_dvc->carr_freelist) == NULL) {
8816 		return ADV_BUSY;
8817 	}
8818 	asc_dvc->carr_freelist = (ADV_CARR_T *)
8819 	    ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa));
8820 	asc_dvc->carr_pending_cnt++;
8821 
8822 	/*
8823 	 * Set the carrier to be a stopper by setting 'next_vpa'
8824 	 * to the stopper value. The current stopper will be changed
8825 	 * below to point to the new stopper.
8826 	 */
8827 	new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER);
8828 
8829 	/*
8830 	 * Clear the ADV_SCSI_REQ_Q done flag.
8831 	 */
8832 	scsiq->a_flag &= ~ADV_SCSIQ_DONE;
8833 
8834 	req_paddr = virt_to_bus(scsiq);
8835 	BUG_ON(req_paddr & 31);
8836 	/* Wait for assertion before making little-endian */
8837 	req_paddr = cpu_to_le32(req_paddr);
8838 
8839 	/* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8840 	scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq));
8841 	scsiq->scsiq_rptr = req_paddr;
8842 
8843 	scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp));
8844 	/*
8845 	 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian
8846 	 * order during initialization.
8847 	 */
8848 	scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8849 
8850 	/*
8851 	 * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8852 	 * the microcode. The newly allocated stopper will become the new
8853 	 * stopper.
8854 	 */
8855 	asc_dvc->icq_sp->areq_vpa = req_paddr;
8856 
8857 	/*
8858 	 * Set the 'next_vpa' pointer for the old stopper to be the
8859 	 * physical address of the new stopper. The RISC can only
8860 	 * follow physical addresses.
8861 	 */
8862 	asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8863 
8864 	/*
8865 	 * Set the host adapter stopper pointer to point to the new carrier.
8866 	 */
8867 	asc_dvc->icq_sp = new_carrp;
8868 
8869 	if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8870 	    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8871 		/*
8872 		 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8873 		 */
8874 		AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8875 		if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8876 			/*
8877 			 * Clear the tickle value. In the ASC-3550 the RISC flag
8878 			 * command 'clr_tickle_a' does not work unless the host
8879 			 * value is cleared.
8880 			 */
8881 			AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8882 					     ADV_TICKLE_NOP);
8883 		}
8884 	} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8885 		/*
8886 		 * Notify the RISC a carrier is ready by writing the physical
8887 		 * address of the new carrier stopper to the COMMA register.
8888 		 */
8889 		AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8890 				      le32_to_cpu(new_carrp->carr_pa));
8891 	}
8892 
8893 	return ADV_SUCCESS;
8894 }
8895 
8896 /*
8897  * Execute a single 'Scsi_Cmnd'.
8898  */
8899 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8900 {
8901 	int ret, err_code;
8902 	struct asc_board *boardp = shost_priv(scp->device->host);
8903 
8904 	ASC_DBG(1, "scp 0x%p\n", scp);
8905 
8906 	if (ASC_NARROW_BOARD(boardp)) {
8907 		ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8908 		struct asc_scsi_q asc_scsi_q;
8909 
8910 		/* asc_build_req() can not return ASC_BUSY. */
8911 		ret = asc_build_req(boardp, scp, &asc_scsi_q);
8912 		if (ret == ASC_ERROR) {
8913 			ASC_STATS(scp->device->host, build_error);
8914 			return ASC_ERROR;
8915 		}
8916 
8917 		ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8918 		kfree(asc_scsi_q.sg_head);
8919 		err_code = asc_dvc->err_code;
8920 	} else {
8921 		ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8922 		ADV_SCSI_REQ_Q *adv_scsiqp;
8923 
8924 		switch (adv_build_req(boardp, scp, &adv_scsiqp)) {
8925 		case ASC_NOERROR:
8926 			ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8927 			break;
8928 		case ASC_BUSY:
8929 			ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8930 			/*
8931 			 * The asc_stats fields 'adv_build_noreq' and
8932 			 * 'adv_build_nosg' count wide board busy conditions.
8933 			 * They are updated in adv_build_req and
8934 			 * adv_get_sglist, respectively.
8935 			 */
8936 			return ASC_BUSY;
8937 		case ASC_ERROR:
8938 		default:
8939 			ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8940 			ASC_STATS(scp->device->host, build_error);
8941 			return ASC_ERROR;
8942 		}
8943 
8944 		ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp);
8945 		err_code = adv_dvc->err_code;
8946 	}
8947 
8948 	switch (ret) {
8949 	case ASC_NOERROR:
8950 		ASC_STATS(scp->device->host, exe_noerror);
8951 		/*
8952 		 * Increment monotonically increasing per device
8953 		 * successful request counter. Wrapping doesn't matter.
8954 		 */
8955 		boardp->reqcnt[scp->device->id]++;
8956 		ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8957 		break;
8958 	case ASC_BUSY:
8959 		ASC_STATS(scp->device->host, exe_busy);
8960 		break;
8961 	case ASC_ERROR:
8962 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8963 			"err_code 0x%x\n", err_code);
8964 		ASC_STATS(scp->device->host, exe_error);
8965 		scp->result = HOST_BYTE(DID_ERROR);
8966 		break;
8967 	default:
8968 		scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8969 			"err_code 0x%x\n", err_code);
8970 		ASC_STATS(scp->device->host, exe_unknown);
8971 		scp->result = HOST_BYTE(DID_ERROR);
8972 		break;
8973 	}
8974 
8975 	ASC_DBG(1, "end\n");
8976 	return ret;
8977 }
8978 
8979 /*
8980  * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8981  *
8982  * This function always returns 0. Command return status is saved
8983  * in the 'scp' result field.
8984  */
8985 static int
8986 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8987 {
8988 	struct Scsi_Host *shost = scp->device->host;
8989 	int asc_res, result = 0;
8990 
8991 	ASC_STATS(shost, queuecommand);
8992 	scp->scsi_done = done;
8993 
8994 	asc_res = asc_execute_scsi_cmnd(scp);
8995 
8996 	switch (asc_res) {
8997 	case ASC_NOERROR:
8998 		break;
8999 	case ASC_BUSY:
9000 		result = SCSI_MLQUEUE_HOST_BUSY;
9001 		break;
9002 	case ASC_ERROR:
9003 	default:
9004 		asc_scsi_done(scp);
9005 		break;
9006 	}
9007 
9008 	return result;
9009 }
9010 
9011 static DEF_SCSI_QCMD(advansys_queuecommand)
9012 
9013 static ushort AscGetEisaChipCfg(PortAddr iop_base)
9014 {
9015 	PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9016 	    (PortAddr) (ASC_EISA_CFG_IOP_MASK);
9017 	return inpw(eisa_cfg_iop);
9018 }
9019 
9020 /*
9021  * Return the BIOS address of the adapter at the specified
9022  * I/O port and with the specified bus type.
9023  */
9024 static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
9025 					    unsigned short bus_type)
9026 {
9027 	unsigned short cfg_lsw;
9028 	unsigned short bios_addr;
9029 
9030 	/*
9031 	 * The PCI BIOS is re-located by the motherboard BIOS. Because
9032 	 * of this the driver can not determine where a PCI BIOS is
9033 	 * loaded and executes.
9034 	 */
9035 	if (bus_type & ASC_IS_PCI)
9036 		return 0;
9037 
9038 	if ((bus_type & ASC_IS_EISA) != 0) {
9039 		cfg_lsw = AscGetEisaChipCfg(iop_base);
9040 		cfg_lsw &= 0x000F;
9041 		bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
9042 		return bios_addr;
9043 	}
9044 
9045 	cfg_lsw = AscGetChipCfgLsw(iop_base);
9046 
9047 	/*
9048 	 *  ISA PnP uses the top bit as the 32K BIOS flag
9049 	 */
9050 	if (bus_type == ASC_IS_ISAPNP)
9051 		cfg_lsw &= 0x7FFF;
9052 	bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
9053 	return bios_addr;
9054 }
9055 
9056 static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
9057 {
9058 	ushort cfg_lsw;
9059 
9060 	if (AscGetChipScsiID(iop_base) == new_host_id) {
9061 		return (new_host_id);
9062 	}
9063 	cfg_lsw = AscGetChipCfgLsw(iop_base);
9064 	cfg_lsw &= 0xF8FF;
9065 	cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
9066 	AscSetChipCfgLsw(iop_base, cfg_lsw);
9067 	return (AscGetChipScsiID(iop_base));
9068 }
9069 
9070 static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
9071 {
9072 	unsigned char sc;
9073 
9074 	AscSetBank(iop_base, 1);
9075 	sc = inp(iop_base + IOP_REG_SC);
9076 	AscSetBank(iop_base, 0);
9077 	return sc;
9078 }
9079 
9080 static unsigned char AscGetChipVersion(PortAddr iop_base,
9081 				       unsigned short bus_type)
9082 {
9083 	if (bus_type & ASC_IS_EISA) {
9084 		PortAddr eisa_iop;
9085 		unsigned char revision;
9086 		eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
9087 		    (PortAddr) ASC_EISA_REV_IOP_MASK;
9088 		revision = inp(eisa_iop);
9089 		return ASC_CHIP_MIN_VER_EISA - 1 + revision;
9090 	}
9091 	return AscGetChipVerNo(iop_base);
9092 }
9093 
9094 #ifdef CONFIG_ISA
9095 static void AscEnableIsaDma(uchar dma_channel)
9096 {
9097 	if (dma_channel < 4) {
9098 		outp(0x000B, (ushort)(0xC0 | dma_channel));
9099 		outp(0x000A, dma_channel);
9100 	} else if (dma_channel < 8) {
9101 		outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
9102 		outp(0x00D4, (ushort)(dma_channel - 4));
9103 	}
9104 }
9105 #endif /* CONFIG_ISA */
9106 
9107 static int AscStopQueueExe(PortAddr iop_base)
9108 {
9109 	int count = 0;
9110 
9111 	if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
9112 		AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
9113 				 ASC_STOP_REQ_RISC_STOP);
9114 		do {
9115 			if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
9116 			    ASC_STOP_ACK_RISC_STOP) {
9117 				return (1);
9118 			}
9119 			mdelay(100);
9120 		} while (count++ < 20);
9121 	}
9122 	return (0);
9123 }
9124 
9125 static ASC_DCNT AscGetMaxDmaCount(ushort bus_type)
9126 {
9127 	if (bus_type & ASC_IS_ISA)
9128 		return ASC_MAX_ISA_DMA_COUNT;
9129 	else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
9130 		return ASC_MAX_VL_DMA_COUNT;
9131 	return ASC_MAX_PCI_DMA_COUNT;
9132 }
9133 
9134 #ifdef CONFIG_ISA
9135 static ushort AscGetIsaDmaChannel(PortAddr iop_base)
9136 {
9137 	ushort channel;
9138 
9139 	channel = AscGetChipCfgLsw(iop_base) & 0x0003;
9140 	if (channel == 0x03)
9141 		return (0);
9142 	else if (channel == 0x00)
9143 		return (7);
9144 	return (channel + 4);
9145 }
9146 
9147 static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
9148 {
9149 	ushort cfg_lsw;
9150 	uchar value;
9151 
9152 	if ((dma_channel >= 5) && (dma_channel <= 7)) {
9153 		if (dma_channel == 7)
9154 			value = 0x00;
9155 		else
9156 			value = dma_channel - 4;
9157 		cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
9158 		cfg_lsw |= value;
9159 		AscSetChipCfgLsw(iop_base, cfg_lsw);
9160 		return (AscGetIsaDmaChannel(iop_base));
9161 	}
9162 	return 0;
9163 }
9164 
9165 static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
9166 {
9167 	uchar speed_value;
9168 
9169 	AscSetBank(iop_base, 1);
9170 	speed_value = AscReadChipDmaSpeed(iop_base);
9171 	speed_value &= 0x07;
9172 	AscSetBank(iop_base, 0);
9173 	return speed_value;
9174 }
9175 
9176 static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
9177 {
9178 	speed_value &= 0x07;
9179 	AscSetBank(iop_base, 1);
9180 	AscWriteChipDmaSpeed(iop_base, speed_value);
9181 	AscSetBank(iop_base, 0);
9182 	return AscGetIsaDmaSpeed(iop_base);
9183 }
9184 #endif /* CONFIG_ISA */
9185 
9186 static ushort AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
9187 {
9188 	int i;
9189 	PortAddr iop_base;
9190 	ushort warn_code;
9191 	uchar chip_version;
9192 
9193 	iop_base = asc_dvc->iop_base;
9194 	warn_code = 0;
9195 	asc_dvc->err_code = 0;
9196 	if ((asc_dvc->bus_type &
9197 	     (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
9198 		asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
9199 	}
9200 	AscSetChipControl(iop_base, CC_HALT);
9201 	AscSetChipStatus(iop_base, 0);
9202 	asc_dvc->bug_fix_cntl = 0;
9203 	asc_dvc->pci_fix_asyn_xfer = 0;
9204 	asc_dvc->pci_fix_asyn_xfer_always = 0;
9205 	/* asc_dvc->init_state initialized in AscInitGetConfig(). */
9206 	asc_dvc->sdtr_done = 0;
9207 	asc_dvc->cur_total_qng = 0;
9208 	asc_dvc->is_in_int = 0;
9209 	asc_dvc->in_critical_cnt = 0;
9210 	asc_dvc->last_q_shortage = 0;
9211 	asc_dvc->use_tagged_qng = 0;
9212 	asc_dvc->no_scam = 0;
9213 	asc_dvc->unit_not_ready = 0;
9214 	asc_dvc->queue_full_or_busy = 0;
9215 	asc_dvc->redo_scam = 0;
9216 	asc_dvc->res2 = 0;
9217 	asc_dvc->min_sdtr_index = 0;
9218 	asc_dvc->cfg->can_tagged_qng = 0;
9219 	asc_dvc->cfg->cmd_qng_enabled = 0;
9220 	asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
9221 	asc_dvc->init_sdtr = 0;
9222 	asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
9223 	asc_dvc->scsi_reset_wait = 3;
9224 	asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
9225 	asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
9226 	asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
9227 	asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
9228 	asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
9229 	chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
9230 	asc_dvc->cfg->chip_version = chip_version;
9231 	asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
9232 	asc_dvc->max_sdtr_index = 7;
9233 	if ((asc_dvc->bus_type & ASC_IS_PCI) &&
9234 	    (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
9235 		asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
9236 		asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
9237 		asc_dvc->max_sdtr_index = 15;
9238 		if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
9239 			AscSetExtraControl(iop_base,
9240 					   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9241 		} else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
9242 			AscSetExtraControl(iop_base,
9243 					   (SEC_ACTIVE_NEGATE |
9244 					    SEC_ENABLE_FILTER));
9245 		}
9246 	}
9247 	if (asc_dvc->bus_type == ASC_IS_PCI) {
9248 		AscSetExtraControl(iop_base,
9249 				   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
9250 	}
9251 
9252 	asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
9253 #ifdef CONFIG_ISA
9254 	if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
9255 		if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
9256 			AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
9257 			asc_dvc->bus_type = ASC_IS_ISAPNP;
9258 		}
9259 		asc_dvc->cfg->isa_dma_channel =
9260 		    (uchar)AscGetIsaDmaChannel(iop_base);
9261 	}
9262 #endif /* CONFIG_ISA */
9263 	for (i = 0; i <= ASC_MAX_TID; i++) {
9264 		asc_dvc->cur_dvc_qng[i] = 0;
9265 		asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
9266 		asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
9267 		asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
9268 		asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
9269 	}
9270 	return warn_code;
9271 }
9272 
9273 static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
9274 {
9275 	int retry;
9276 
9277 	for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
9278 		unsigned char read_back;
9279 		AscSetChipEEPCmd(iop_base, cmd_reg);
9280 		mdelay(1);
9281 		read_back = AscGetChipEEPCmd(iop_base);
9282 		if (read_back == cmd_reg)
9283 			return 1;
9284 	}
9285 	return 0;
9286 }
9287 
9288 static void AscWaitEEPRead(void)
9289 {
9290 	mdelay(1);
9291 }
9292 
9293 static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
9294 {
9295 	ushort read_wval;
9296 	uchar cmd_reg;
9297 
9298 	AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9299 	AscWaitEEPRead();
9300 	cmd_reg = addr | ASC_EEP_CMD_READ;
9301 	AscWriteEEPCmdReg(iop_base, cmd_reg);
9302 	AscWaitEEPRead();
9303 	read_wval = AscGetChipEEPData(iop_base);
9304 	AscWaitEEPRead();
9305 	return read_wval;
9306 }
9307 
9308 static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9309 			      ushort bus_type)
9310 {
9311 	ushort wval;
9312 	ushort sum;
9313 	ushort *wbuf;
9314 	int cfg_beg;
9315 	int cfg_end;
9316 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9317 	int s_addr;
9318 
9319 	wbuf = (ushort *)cfg_buf;
9320 	sum = 0;
9321 	/* Read two config words; Byte-swapping done by AscReadEEPWord(). */
9322 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9323 		*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9324 		sum += *wbuf;
9325 	}
9326 	if (bus_type & ASC_IS_VL) {
9327 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9328 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9329 	} else {
9330 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9331 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9332 	}
9333 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9334 		wval = AscReadEEPWord(iop_base, (uchar)s_addr);
9335 		if (s_addr <= uchar_end_in_config) {
9336 			/*
9337 			 * Swap all char fields - must unswap bytes already swapped
9338 			 * by AscReadEEPWord().
9339 			 */
9340 			*wbuf = le16_to_cpu(wval);
9341 		} else {
9342 			/* Don't swap word field at the end - cntl field. */
9343 			*wbuf = wval;
9344 		}
9345 		sum += wval;	/* Checksum treats all EEPROM data as words. */
9346 	}
9347 	/*
9348 	 * Read the checksum word which will be compared against 'sum'
9349 	 * by the caller. Word field already swapped.
9350 	 */
9351 	*wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
9352 	return sum;
9353 }
9354 
9355 static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
9356 {
9357 	PortAddr iop_base;
9358 	ushort q_addr;
9359 	ushort saved_word;
9360 	int sta;
9361 
9362 	iop_base = asc_dvc->iop_base;
9363 	sta = 0;
9364 	q_addr = ASC_QNO_TO_QADDR(241);
9365 	saved_word = AscReadLramWord(iop_base, q_addr);
9366 	AscSetChipLramAddr(iop_base, q_addr);
9367 	AscSetChipLramData(iop_base, 0x55AA);
9368 	mdelay(10);
9369 	AscSetChipLramAddr(iop_base, q_addr);
9370 	if (AscGetChipLramData(iop_base) == 0x55AA) {
9371 		sta = 1;
9372 		AscWriteLramWord(iop_base, q_addr, saved_word);
9373 	}
9374 	return (sta);
9375 }
9376 
9377 static void AscWaitEEPWrite(void)
9378 {
9379 	mdelay(20);
9380 }
9381 
9382 static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
9383 {
9384 	ushort read_back;
9385 	int retry;
9386 
9387 	retry = 0;
9388 	while (TRUE) {
9389 		AscSetChipEEPData(iop_base, data_reg);
9390 		mdelay(1);
9391 		read_back = AscGetChipEEPData(iop_base);
9392 		if (read_back == data_reg) {
9393 			return (1);
9394 		}
9395 		if (retry++ > ASC_EEP_MAX_RETRY) {
9396 			return (0);
9397 		}
9398 	}
9399 }
9400 
9401 static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
9402 {
9403 	ushort read_wval;
9404 
9405 	read_wval = AscReadEEPWord(iop_base, addr);
9406 	if (read_wval != word_val) {
9407 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
9408 		AscWaitEEPRead();
9409 		AscWriteEEPDataReg(iop_base, word_val);
9410 		AscWaitEEPRead();
9411 		AscWriteEEPCmdReg(iop_base,
9412 				  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
9413 		AscWaitEEPWrite();
9414 		AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
9415 		AscWaitEEPRead();
9416 		return (AscReadEEPWord(iop_base, addr));
9417 	}
9418 	return (read_wval);
9419 }
9420 
9421 static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9422 			       ushort bus_type)
9423 {
9424 	int n_error;
9425 	ushort *wbuf;
9426 	ushort word;
9427 	ushort sum;
9428 	int s_addr;
9429 	int cfg_beg;
9430 	int cfg_end;
9431 	int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
9432 
9433 	wbuf = (ushort *)cfg_buf;
9434 	n_error = 0;
9435 	sum = 0;
9436 	/* Write two config words; AscWriteEEPWord() will swap bytes. */
9437 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9438 		sum += *wbuf;
9439 		if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9440 			n_error++;
9441 		}
9442 	}
9443 	if (bus_type & ASC_IS_VL) {
9444 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9445 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9446 	} else {
9447 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9448 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9449 	}
9450 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9451 		if (s_addr <= uchar_end_in_config) {
9452 			/*
9453 			 * This is a char field. Swap char fields before they are
9454 			 * swapped again by AscWriteEEPWord().
9455 			 */
9456 			word = cpu_to_le16(*wbuf);
9457 			if (word !=
9458 			    AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9459 				n_error++;
9460 			}
9461 		} else {
9462 			/* Don't swap word field at the end - cntl field. */
9463 			if (*wbuf !=
9464 			    AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9465 				n_error++;
9466 			}
9467 		}
9468 		sum += *wbuf;	/* Checksum calculated from word values. */
9469 	}
9470 	/* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9471 	*wbuf = sum;
9472 	if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9473 		n_error++;
9474 	}
9475 
9476 	/* Read EEPROM back again. */
9477 	wbuf = (ushort *)cfg_buf;
9478 	/*
9479 	 * Read two config words; Byte-swapping done by AscReadEEPWord().
9480 	 */
9481 	for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9482 		if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9483 			n_error++;
9484 		}
9485 	}
9486 	if (bus_type & ASC_IS_VL) {
9487 		cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9488 		cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9489 	} else {
9490 		cfg_beg = ASC_EEP_DVC_CFG_BEG;
9491 		cfg_end = ASC_EEP_MAX_DVC_ADDR;
9492 	}
9493 	for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9494 		if (s_addr <= uchar_end_in_config) {
9495 			/*
9496 			 * Swap all char fields. Must unswap bytes already swapped
9497 			 * by AscReadEEPWord().
9498 			 */
9499 			word =
9500 			    le16_to_cpu(AscReadEEPWord
9501 					(iop_base, (uchar)s_addr));
9502 		} else {
9503 			/* Don't swap word field at the end - cntl field. */
9504 			word = AscReadEEPWord(iop_base, (uchar)s_addr);
9505 		}
9506 		if (*wbuf != word) {
9507 			n_error++;
9508 		}
9509 	}
9510 	/* Read checksum; Byte swapping not needed. */
9511 	if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9512 		n_error++;
9513 	}
9514 	return n_error;
9515 }
9516 
9517 static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9518 			   ushort bus_type)
9519 {
9520 	int retry;
9521 	int n_error;
9522 
9523 	retry = 0;
9524 	while (TRUE) {
9525 		if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9526 						   bus_type)) == 0) {
9527 			break;
9528 		}
9529 		if (++retry > ASC_EEP_MAX_RETRY) {
9530 			break;
9531 		}
9532 	}
9533 	return n_error;
9534 }
9535 
9536 static ushort AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9537 {
9538 	ASCEEP_CONFIG eep_config_buf;
9539 	ASCEEP_CONFIG *eep_config;
9540 	PortAddr iop_base;
9541 	ushort chksum;
9542 	ushort warn_code;
9543 	ushort cfg_msw, cfg_lsw;
9544 	int i;
9545 	int write_eep = 0;
9546 
9547 	iop_base = asc_dvc->iop_base;
9548 	warn_code = 0;
9549 	AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9550 	AscStopQueueExe(iop_base);
9551 	if ((AscStopChip(iop_base) == FALSE) ||
9552 	    (AscGetChipScsiCtrl(iop_base) != 0)) {
9553 		asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9554 		AscResetChipAndScsiBus(asc_dvc);
9555 		mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9556 	}
9557 	if (AscIsChipHalted(iop_base) == FALSE) {
9558 		asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9559 		return (warn_code);
9560 	}
9561 	AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9562 	if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9563 		asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9564 		return (warn_code);
9565 	}
9566 	eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9567 	cfg_msw = AscGetChipCfgMsw(iop_base);
9568 	cfg_lsw = AscGetChipCfgLsw(iop_base);
9569 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9570 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9571 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9572 		AscSetChipCfgMsw(iop_base, cfg_msw);
9573 	}
9574 	chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9575 	ASC_DBG(1, "chksum 0x%x\n", chksum);
9576 	if (chksum == 0) {
9577 		chksum = 0xaa55;
9578 	}
9579 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9580 		warn_code |= ASC_WARN_AUTO_CONFIG;
9581 		if (asc_dvc->cfg->chip_version == 3) {
9582 			if (eep_config->cfg_lsw != cfg_lsw) {
9583 				warn_code |= ASC_WARN_EEPROM_RECOVER;
9584 				eep_config->cfg_lsw =
9585 				    AscGetChipCfgLsw(iop_base);
9586 			}
9587 			if (eep_config->cfg_msw != cfg_msw) {
9588 				warn_code |= ASC_WARN_EEPROM_RECOVER;
9589 				eep_config->cfg_msw =
9590 				    AscGetChipCfgMsw(iop_base);
9591 			}
9592 		}
9593 	}
9594 	eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9595 	eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9596 	ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9597 	if (chksum != eep_config->chksum) {
9598 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9599 		    ASC_CHIP_VER_PCI_ULTRA_3050) {
9600 			ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9601 			eep_config->init_sdtr = 0xFF;
9602 			eep_config->disc_enable = 0xFF;
9603 			eep_config->start_motor = 0xFF;
9604 			eep_config->use_cmd_qng = 0;
9605 			eep_config->max_total_qng = 0xF0;
9606 			eep_config->max_tag_qng = 0x20;
9607 			eep_config->cntl = 0xBFFF;
9608 			ASC_EEP_SET_CHIP_ID(eep_config, 7);
9609 			eep_config->no_scam = 0;
9610 			eep_config->adapter_info[0] = 0;
9611 			eep_config->adapter_info[1] = 0;
9612 			eep_config->adapter_info[2] = 0;
9613 			eep_config->adapter_info[3] = 0;
9614 			eep_config->adapter_info[4] = 0;
9615 			/* Indicate EEPROM-less board. */
9616 			eep_config->adapter_info[5] = 0xBB;
9617 		} else {
9618 			ASC_PRINT
9619 			    ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9620 			write_eep = 1;
9621 			warn_code |= ASC_WARN_EEPROM_CHKSUM;
9622 		}
9623 	}
9624 	asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9625 	asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9626 	asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9627 	asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9628 	asc_dvc->start_motor = eep_config->start_motor;
9629 	asc_dvc->dvc_cntl = eep_config->cntl;
9630 	asc_dvc->no_scam = eep_config->no_scam;
9631 	asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9632 	asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9633 	asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9634 	asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9635 	asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9636 	asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9637 	if (!AscTestExternalLram(asc_dvc)) {
9638 		if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9639 		     ASC_IS_PCI_ULTRA)) {
9640 			eep_config->max_total_qng =
9641 			    ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9642 			eep_config->max_tag_qng =
9643 			    ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9644 		} else {
9645 			eep_config->cfg_msw |= 0x0800;
9646 			cfg_msw |= 0x0800;
9647 			AscSetChipCfgMsw(iop_base, cfg_msw);
9648 			eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9649 			eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9650 		}
9651 	} else {
9652 	}
9653 	if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9654 		eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9655 	}
9656 	if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9657 		eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9658 	}
9659 	if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9660 		eep_config->max_tag_qng = eep_config->max_total_qng;
9661 	}
9662 	if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9663 		eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9664 	}
9665 	asc_dvc->max_total_qng = eep_config->max_total_qng;
9666 	if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9667 	    eep_config->use_cmd_qng) {
9668 		eep_config->disc_enable = eep_config->use_cmd_qng;
9669 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9670 	}
9671 	ASC_EEP_SET_CHIP_ID(eep_config,
9672 			    ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9673 	asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9674 	if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9675 	    !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9676 		asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9677 	}
9678 
9679 	for (i = 0; i <= ASC_MAX_TID; i++) {
9680 		asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9681 		asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9682 		asc_dvc->cfg->sdtr_period_offset[i] =
9683 		    (uchar)(ASC_DEF_SDTR_OFFSET |
9684 			    (asc_dvc->min_sdtr_index << 4));
9685 	}
9686 	eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9687 	if (write_eep) {
9688 		if ((i = AscSetEEPConfig(iop_base, eep_config,
9689 				     asc_dvc->bus_type)) != 0) {
9690 			ASC_PRINT1
9691 			    ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9692 			     i);
9693 		} else {
9694 			ASC_PRINT
9695 			    ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9696 		}
9697 	}
9698 	return (warn_code);
9699 }
9700 
9701 static int AscInitGetConfig(struct Scsi_Host *shost)
9702 {
9703 	struct asc_board *board = shost_priv(shost);
9704 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9705 	unsigned short warn_code = 0;
9706 
9707 	asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9708 	if (asc_dvc->err_code != 0)
9709 		return asc_dvc->err_code;
9710 
9711 	if (AscFindSignature(asc_dvc->iop_base)) {
9712 		warn_code |= AscInitAscDvcVar(asc_dvc);
9713 		warn_code |= AscInitFromEEP(asc_dvc);
9714 		asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9715 		if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9716 			asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9717 	} else {
9718 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9719 	}
9720 
9721 	switch (warn_code) {
9722 	case 0:	/* No error */
9723 		break;
9724 	case ASC_WARN_IO_PORT_ROTATE:
9725 		shost_printk(KERN_WARNING, shost, "I/O port address "
9726 				"modified\n");
9727 		break;
9728 	case ASC_WARN_AUTO_CONFIG:
9729 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9730 				"enabled\n");
9731 		break;
9732 	case ASC_WARN_EEPROM_CHKSUM:
9733 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9734 		break;
9735 	case ASC_WARN_IRQ_MODIFIED:
9736 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9737 		break;
9738 	case ASC_WARN_CMD_QNG_CONFLICT:
9739 		shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9740 				"disconnects\n");
9741 		break;
9742 	default:
9743 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9744 				warn_code);
9745 		break;
9746 	}
9747 
9748 	if (asc_dvc->err_code != 0)
9749 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9750 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9751 
9752 	return asc_dvc->err_code;
9753 }
9754 
9755 static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9756 {
9757 	struct asc_board *board = shost_priv(shost);
9758 	ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9759 	PortAddr iop_base = asc_dvc->iop_base;
9760 	unsigned short cfg_msw;
9761 	unsigned short warn_code = 0;
9762 
9763 	asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9764 	if (asc_dvc->err_code != 0)
9765 		return asc_dvc->err_code;
9766 	if (!AscFindSignature(asc_dvc->iop_base)) {
9767 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9768 		return asc_dvc->err_code;
9769 	}
9770 
9771 	cfg_msw = AscGetChipCfgMsw(iop_base);
9772 	if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9773 		cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9774 		warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9775 		AscSetChipCfgMsw(iop_base, cfg_msw);
9776 	}
9777 	if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9778 	    asc_dvc->cfg->cmd_qng_enabled) {
9779 		asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9780 		warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9781 	}
9782 	if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9783 		warn_code |= ASC_WARN_AUTO_CONFIG;
9784 	}
9785 #ifdef CONFIG_PCI
9786 	if (asc_dvc->bus_type & ASC_IS_PCI) {
9787 		cfg_msw &= 0xFFC0;
9788 		AscSetChipCfgMsw(iop_base, cfg_msw);
9789 		if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9790 		} else {
9791 			if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9792 			    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9793 				asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9794 				asc_dvc->bug_fix_cntl |=
9795 				    ASC_BUG_FIX_ASYN_USE_SYN;
9796 			}
9797 		}
9798 	} else
9799 #endif /* CONFIG_PCI */
9800 	if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9801 		if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9802 		    == ASC_CHIP_VER_ASYN_BUG) {
9803 			asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9804 		}
9805 	}
9806 	if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9807 	    asc_dvc->cfg->chip_scsi_id) {
9808 		asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9809 	}
9810 #ifdef CONFIG_ISA
9811 	if (asc_dvc->bus_type & ASC_IS_ISA) {
9812 		AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9813 		AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9814 	}
9815 #endif /* CONFIG_ISA */
9816 
9817 	asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9818 
9819 	switch (warn_code) {
9820 	case 0:	/* No error. */
9821 		break;
9822 	case ASC_WARN_IO_PORT_ROTATE:
9823 		shost_printk(KERN_WARNING, shost, "I/O port address "
9824 				"modified\n");
9825 		break;
9826 	case ASC_WARN_AUTO_CONFIG:
9827 		shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9828 				"enabled\n");
9829 		break;
9830 	case ASC_WARN_EEPROM_CHKSUM:
9831 		shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9832 		break;
9833 	case ASC_WARN_IRQ_MODIFIED:
9834 		shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9835 		break;
9836 	case ASC_WARN_CMD_QNG_CONFLICT:
9837 		shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9838 				"disconnects\n");
9839 		break;
9840 	default:
9841 		shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9842 				warn_code);
9843 		break;
9844 	}
9845 
9846 	if (asc_dvc->err_code != 0)
9847 		shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9848 			"0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9849 
9850 	return asc_dvc->err_code;
9851 }
9852 
9853 /*
9854  * EEPROM Configuration.
9855  *
9856  * All drivers should use this structure to set the default EEPROM
9857  * configuration. The BIOS now uses this structure when it is built.
9858  * Additional structure information can be found in a_condor.h where
9859  * the structure is defined.
9860  *
9861  * The *_Field_IsChar structs are needed to correct for endianness.
9862  * These values are read from the board 16 bits at a time directly
9863  * into the structs. Because some fields are char, the values will be
9864  * in the wrong order. The *_Field_IsChar tells when to flip the
9865  * bytes. Data read and written to PCI memory is automatically swapped
9866  * on big-endian platforms so char fields read as words are actually being
9867  * unswapped on big-endian platforms.
9868  */
9869 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9870 	ADV_EEPROM_BIOS_ENABLE,	/* cfg_lsw */
9871 	0x0000,			/* cfg_msw */
9872 	0xFFFF,			/* disc_enable */
9873 	0xFFFF,			/* wdtr_able */
9874 	0xFFFF,			/* sdtr_able */
9875 	0xFFFF,			/* start_motor */
9876 	0xFFFF,			/* tagqng_able */
9877 	0xFFFF,			/* bios_scan */
9878 	0,			/* scam_tolerant */
9879 	7,			/* adapter_scsi_id */
9880 	0,			/* bios_boot_delay */
9881 	3,			/* scsi_reset_delay */
9882 	0,			/* bios_id_lun */
9883 	0,			/* termination */
9884 	0,			/* reserved1 */
9885 	0xFFE7,			/* bios_ctrl */
9886 	0xFFFF,			/* ultra_able */
9887 	0,			/* reserved2 */
9888 	ASC_DEF_MAX_HOST_QNG,	/* max_host_qng */
9889 	ASC_DEF_MAX_DVC_QNG,	/* max_dvc_qng */
9890 	0,			/* dvc_cntl */
9891 	0,			/* bug_fix */
9892 	0,			/* serial_number_word1 */
9893 	0,			/* serial_number_word2 */
9894 	0,			/* serial_number_word3 */
9895 	0,			/* check_sum */
9896 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9897 	,			/* oem_name[16] */
9898 	0,			/* dvc_err_code */
9899 	0,			/* adv_err_code */
9900 	0,			/* adv_err_addr */
9901 	0,			/* saved_dvc_err_code */
9902 	0,			/* saved_adv_err_code */
9903 	0,			/* saved_adv_err_addr */
9904 	0			/* num_of_err */
9905 };
9906 
9907 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9908 	0,			/* cfg_lsw */
9909 	0,			/* cfg_msw */
9910 	0,			/* -disc_enable */
9911 	0,			/* wdtr_able */
9912 	0,			/* sdtr_able */
9913 	0,			/* start_motor */
9914 	0,			/* tagqng_able */
9915 	0,			/* bios_scan */
9916 	0,			/* scam_tolerant */
9917 	1,			/* adapter_scsi_id */
9918 	1,			/* bios_boot_delay */
9919 	1,			/* scsi_reset_delay */
9920 	1,			/* bios_id_lun */
9921 	1,			/* termination */
9922 	1,			/* reserved1 */
9923 	0,			/* bios_ctrl */
9924 	0,			/* ultra_able */
9925 	0,			/* reserved2 */
9926 	1,			/* max_host_qng */
9927 	1,			/* max_dvc_qng */
9928 	0,			/* dvc_cntl */
9929 	0,			/* bug_fix */
9930 	0,			/* serial_number_word1 */
9931 	0,			/* serial_number_word2 */
9932 	0,			/* serial_number_word3 */
9933 	0,			/* check_sum */
9934 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9935 	,			/* oem_name[16] */
9936 	0,			/* dvc_err_code */
9937 	0,			/* adv_err_code */
9938 	0,			/* adv_err_addr */
9939 	0,			/* saved_dvc_err_code */
9940 	0,			/* saved_adv_err_code */
9941 	0,			/* saved_adv_err_addr */
9942 	0			/* num_of_err */
9943 };
9944 
9945 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9946 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
9947 	0x0000,			/* 01 cfg_msw */
9948 	0xFFFF,			/* 02 disc_enable */
9949 	0xFFFF,			/* 03 wdtr_able */
9950 	0x4444,			/* 04 sdtr_speed1 */
9951 	0xFFFF,			/* 05 start_motor */
9952 	0xFFFF,			/* 06 tagqng_able */
9953 	0xFFFF,			/* 07 bios_scan */
9954 	0,			/* 08 scam_tolerant */
9955 	7,			/* 09 adapter_scsi_id */
9956 	0,			/*    bios_boot_delay */
9957 	3,			/* 10 scsi_reset_delay */
9958 	0,			/*    bios_id_lun */
9959 	0,			/* 11 termination_se */
9960 	0,			/*    termination_lvd */
9961 	0xFFE7,			/* 12 bios_ctrl */
9962 	0x4444,			/* 13 sdtr_speed2 */
9963 	0x4444,			/* 14 sdtr_speed3 */
9964 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
9965 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
9966 	0,			/* 16 dvc_cntl */
9967 	0x4444,			/* 17 sdtr_speed4 */
9968 	0,			/* 18 serial_number_word1 */
9969 	0,			/* 19 serial_number_word2 */
9970 	0,			/* 20 serial_number_word3 */
9971 	0,			/* 21 check_sum */
9972 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9973 	,			/* 22-29 oem_name[16] */
9974 	0,			/* 30 dvc_err_code */
9975 	0,			/* 31 adv_err_code */
9976 	0,			/* 32 adv_err_addr */
9977 	0,			/* 33 saved_dvc_err_code */
9978 	0,			/* 34 saved_adv_err_code */
9979 	0,			/* 35 saved_adv_err_addr */
9980 	0,			/* 36 reserved */
9981 	0,			/* 37 reserved */
9982 	0,			/* 38 reserved */
9983 	0,			/* 39 reserved */
9984 	0,			/* 40 reserved */
9985 	0,			/* 41 reserved */
9986 	0,			/* 42 reserved */
9987 	0,			/* 43 reserved */
9988 	0,			/* 44 reserved */
9989 	0,			/* 45 reserved */
9990 	0,			/* 46 reserved */
9991 	0,			/* 47 reserved */
9992 	0,			/* 48 reserved */
9993 	0,			/* 49 reserved */
9994 	0,			/* 50 reserved */
9995 	0,			/* 51 reserved */
9996 	0,			/* 52 reserved */
9997 	0,			/* 53 reserved */
9998 	0,			/* 54 reserved */
9999 	0,			/* 55 reserved */
10000 	0,			/* 56 cisptr_lsw */
10001 	0,			/* 57 cisprt_msw */
10002 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
10003 	PCI_DEVICE_ID_38C0800_REV1,	/* 59 subsysid */
10004 	0,			/* 60 reserved */
10005 	0,			/* 61 reserved */
10006 	0,			/* 62 reserved */
10007 	0			/* 63 reserved */
10008 };
10009 
10010 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
10011 	0,			/* 00 cfg_lsw */
10012 	0,			/* 01 cfg_msw */
10013 	0,			/* 02 disc_enable */
10014 	0,			/* 03 wdtr_able */
10015 	0,			/* 04 sdtr_speed1 */
10016 	0,			/* 05 start_motor */
10017 	0,			/* 06 tagqng_able */
10018 	0,			/* 07 bios_scan */
10019 	0,			/* 08 scam_tolerant */
10020 	1,			/* 09 adapter_scsi_id */
10021 	1,			/*    bios_boot_delay */
10022 	1,			/* 10 scsi_reset_delay */
10023 	1,			/*    bios_id_lun */
10024 	1,			/* 11 termination_se */
10025 	1,			/*    termination_lvd */
10026 	0,			/* 12 bios_ctrl */
10027 	0,			/* 13 sdtr_speed2 */
10028 	0,			/* 14 sdtr_speed3 */
10029 	1,			/* 15 max_host_qng */
10030 	1,			/*    max_dvc_qng */
10031 	0,			/* 16 dvc_cntl */
10032 	0,			/* 17 sdtr_speed4 */
10033 	0,			/* 18 serial_number_word1 */
10034 	0,			/* 19 serial_number_word2 */
10035 	0,			/* 20 serial_number_word3 */
10036 	0,			/* 21 check_sum */
10037 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10038 	,			/* 22-29 oem_name[16] */
10039 	0,			/* 30 dvc_err_code */
10040 	0,			/* 31 adv_err_code */
10041 	0,			/* 32 adv_err_addr */
10042 	0,			/* 33 saved_dvc_err_code */
10043 	0,			/* 34 saved_adv_err_code */
10044 	0,			/* 35 saved_adv_err_addr */
10045 	0,			/* 36 reserved */
10046 	0,			/* 37 reserved */
10047 	0,			/* 38 reserved */
10048 	0,			/* 39 reserved */
10049 	0,			/* 40 reserved */
10050 	0,			/* 41 reserved */
10051 	0,			/* 42 reserved */
10052 	0,			/* 43 reserved */
10053 	0,			/* 44 reserved */
10054 	0,			/* 45 reserved */
10055 	0,			/* 46 reserved */
10056 	0,			/* 47 reserved */
10057 	0,			/* 48 reserved */
10058 	0,			/* 49 reserved */
10059 	0,			/* 50 reserved */
10060 	0,			/* 51 reserved */
10061 	0,			/* 52 reserved */
10062 	0,			/* 53 reserved */
10063 	0,			/* 54 reserved */
10064 	0,			/* 55 reserved */
10065 	0,			/* 56 cisptr_lsw */
10066 	0,			/* 57 cisprt_msw */
10067 	0,			/* 58 subsysvid */
10068 	0,			/* 59 subsysid */
10069 	0,			/* 60 reserved */
10070 	0,			/* 61 reserved */
10071 	0,			/* 62 reserved */
10072 	0			/* 63 reserved */
10073 };
10074 
10075 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
10076 	ADV_EEPROM_BIOS_ENABLE,	/* 00 cfg_lsw */
10077 	0x0000,			/* 01 cfg_msw */
10078 	0xFFFF,			/* 02 disc_enable */
10079 	0xFFFF,			/* 03 wdtr_able */
10080 	0x5555,			/* 04 sdtr_speed1 */
10081 	0xFFFF,			/* 05 start_motor */
10082 	0xFFFF,			/* 06 tagqng_able */
10083 	0xFFFF,			/* 07 bios_scan */
10084 	0,			/* 08 scam_tolerant */
10085 	7,			/* 09 adapter_scsi_id */
10086 	0,			/*    bios_boot_delay */
10087 	3,			/* 10 scsi_reset_delay */
10088 	0,			/*    bios_id_lun */
10089 	0,			/* 11 termination_se */
10090 	0,			/*    termination_lvd */
10091 	0xFFE7,			/* 12 bios_ctrl */
10092 	0x5555,			/* 13 sdtr_speed2 */
10093 	0x5555,			/* 14 sdtr_speed3 */
10094 	ASC_DEF_MAX_HOST_QNG,	/* 15 max_host_qng */
10095 	ASC_DEF_MAX_DVC_QNG,	/*    max_dvc_qng */
10096 	0,			/* 16 dvc_cntl */
10097 	0x5555,			/* 17 sdtr_speed4 */
10098 	0,			/* 18 serial_number_word1 */
10099 	0,			/* 19 serial_number_word2 */
10100 	0,			/* 20 serial_number_word3 */
10101 	0,			/* 21 check_sum */
10102 	{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
10103 	,			/* 22-29 oem_name[16] */
10104 	0,			/* 30 dvc_err_code */
10105 	0,			/* 31 adv_err_code */
10106 	0,			/* 32 adv_err_addr */
10107 	0,			/* 33 saved_dvc_err_code */
10108 	0,			/* 34 saved_adv_err_code */
10109 	0,			/* 35 saved_adv_err_addr */
10110 	0,			/* 36 reserved */
10111 	0,			/* 37 reserved */
10112 	0,			/* 38 reserved */
10113 	0,			/* 39 reserved */
10114 	0,			/* 40 reserved */
10115 	0,			/* 41 reserved */
10116 	0,			/* 42 reserved */
10117 	0,			/* 43 reserved */
10118 	0,			/* 44 reserved */
10119 	0,			/* 45 reserved */
10120 	0,			/* 46 reserved */
10121 	0,			/* 47 reserved */
10122 	0,			/* 48 reserved */
10123 	0,			/* 49 reserved */
10124 	0,			/* 50 reserved */
10125 	0,			/* 51 reserved */
10126 	0,			/* 52 reserved */
10127 	0,			/* 53 reserved */
10128 	0,			/* 54 reserved */
10129 	0,			/* 55 reserved */
10130 	0,			/* 56 cisptr_lsw */
10131 	0,			/* 57 cisprt_msw */
10132 	PCI_VENDOR_ID_ASP,	/* 58 subsysvid */
10133 	PCI_DEVICE_ID_38C1600_REV1,	/* 59 subsysid */
10134 	0,			/* 60 reserved */
10135 	0,			/* 61 reserved */
10136 	0,			/* 62 reserved */
10137 	0			/* 63 reserved */
10138 };
10139 
10140 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
10141 	0,			/* 00 cfg_lsw */
10142 	0,			/* 01 cfg_msw */
10143 	0,			/* 02 disc_enable */
10144 	0,			/* 03 wdtr_able */
10145 	0,			/* 04 sdtr_speed1 */
10146 	0,			/* 05 start_motor */
10147 	0,			/* 06 tagqng_able */
10148 	0,			/* 07 bios_scan */
10149 	0,			/* 08 scam_tolerant */
10150 	1,			/* 09 adapter_scsi_id */
10151 	1,			/*    bios_boot_delay */
10152 	1,			/* 10 scsi_reset_delay */
10153 	1,			/*    bios_id_lun */
10154 	1,			/* 11 termination_se */
10155 	1,			/*    termination_lvd */
10156 	0,			/* 12 bios_ctrl */
10157 	0,			/* 13 sdtr_speed2 */
10158 	0,			/* 14 sdtr_speed3 */
10159 	1,			/* 15 max_host_qng */
10160 	1,			/*    max_dvc_qng */
10161 	0,			/* 16 dvc_cntl */
10162 	0,			/* 17 sdtr_speed4 */
10163 	0,			/* 18 serial_number_word1 */
10164 	0,			/* 19 serial_number_word2 */
10165 	0,			/* 20 serial_number_word3 */
10166 	0,			/* 21 check_sum */
10167 	{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
10168 	,			/* 22-29 oem_name[16] */
10169 	0,			/* 30 dvc_err_code */
10170 	0,			/* 31 adv_err_code */
10171 	0,			/* 32 adv_err_addr */
10172 	0,			/* 33 saved_dvc_err_code */
10173 	0,			/* 34 saved_adv_err_code */
10174 	0,			/* 35 saved_adv_err_addr */
10175 	0,			/* 36 reserved */
10176 	0,			/* 37 reserved */
10177 	0,			/* 38 reserved */
10178 	0,			/* 39 reserved */
10179 	0,			/* 40 reserved */
10180 	0,			/* 41 reserved */
10181 	0,			/* 42 reserved */
10182 	0,			/* 43 reserved */
10183 	0,			/* 44 reserved */
10184 	0,			/* 45 reserved */
10185 	0,			/* 46 reserved */
10186 	0,			/* 47 reserved */
10187 	0,			/* 48 reserved */
10188 	0,			/* 49 reserved */
10189 	0,			/* 50 reserved */
10190 	0,			/* 51 reserved */
10191 	0,			/* 52 reserved */
10192 	0,			/* 53 reserved */
10193 	0,			/* 54 reserved */
10194 	0,			/* 55 reserved */
10195 	0,			/* 56 cisptr_lsw */
10196 	0,			/* 57 cisprt_msw */
10197 	0,			/* 58 subsysvid */
10198 	0,			/* 59 subsysid */
10199 	0,			/* 60 reserved */
10200 	0,			/* 61 reserved */
10201 	0,			/* 62 reserved */
10202 	0			/* 63 reserved */
10203 };
10204 
10205 #ifdef CONFIG_PCI
10206 /*
10207  * Wait for EEPROM command to complete
10208  */
10209 static void AdvWaitEEPCmd(AdvPortAddr iop_base)
10210 {
10211 	int eep_delay_ms;
10212 
10213 	for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
10214 		if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
10215 		    ASC_EEP_CMD_DONE) {
10216 			break;
10217 		}
10218 		mdelay(1);
10219 	}
10220 	if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
10221 	    0)
10222 		BUG();
10223 }
10224 
10225 /*
10226  * Read the EEPROM from specified location
10227  */
10228 static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
10229 {
10230 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10231 			     ASC_EEP_CMD_READ | eep_word_addr);
10232 	AdvWaitEEPCmd(iop_base);
10233 	return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
10234 }
10235 
10236 /*
10237  * Write the EEPROM from 'cfg_buf'.
10238  */
10239 static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
10240 				ADVEEP_3550_CONFIG *cfg_buf)
10241 {
10242 	ushort *wbuf;
10243 	ushort addr, chksum;
10244 	ushort *charfields;
10245 
10246 	wbuf = (ushort *)cfg_buf;
10247 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10248 	chksum = 0;
10249 
10250 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10251 	AdvWaitEEPCmd(iop_base);
10252 
10253 	/*
10254 	 * Write EEPROM from word 0 to word 20.
10255 	 */
10256 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10257 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10258 		ushort word;
10259 
10260 		if (*charfields++) {
10261 			word = cpu_to_le16(*wbuf);
10262 		} else {
10263 			word = *wbuf;
10264 		}
10265 		chksum += *wbuf;	/* Checksum is calculated from word values. */
10266 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10267 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10268 				     ASC_EEP_CMD_WRITE | addr);
10269 		AdvWaitEEPCmd(iop_base);
10270 		mdelay(ADV_EEP_DELAY_MS);
10271 	}
10272 
10273 	/*
10274 	 * Write EEPROM checksum at word 21.
10275 	 */
10276 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10277 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10278 	AdvWaitEEPCmd(iop_base);
10279 	wbuf++;
10280 	charfields++;
10281 
10282 	/*
10283 	 * Write EEPROM OEM name at words 22 to 29.
10284 	 */
10285 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10286 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10287 		ushort word;
10288 
10289 		if (*charfields++) {
10290 			word = cpu_to_le16(*wbuf);
10291 		} else {
10292 			word = *wbuf;
10293 		}
10294 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10295 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10296 				     ASC_EEP_CMD_WRITE | addr);
10297 		AdvWaitEEPCmd(iop_base);
10298 	}
10299 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10300 	AdvWaitEEPCmd(iop_base);
10301 }
10302 
10303 /*
10304  * Write the EEPROM from 'cfg_buf'.
10305  */
10306 static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
10307 				   ADVEEP_38C0800_CONFIG *cfg_buf)
10308 {
10309 	ushort *wbuf;
10310 	ushort *charfields;
10311 	ushort addr, chksum;
10312 
10313 	wbuf = (ushort *)cfg_buf;
10314 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10315 	chksum = 0;
10316 
10317 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10318 	AdvWaitEEPCmd(iop_base);
10319 
10320 	/*
10321 	 * Write EEPROM from word 0 to word 20.
10322 	 */
10323 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10324 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10325 		ushort word;
10326 
10327 		if (*charfields++) {
10328 			word = cpu_to_le16(*wbuf);
10329 		} else {
10330 			word = *wbuf;
10331 		}
10332 		chksum += *wbuf;	/* Checksum is calculated from word values. */
10333 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10334 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10335 				     ASC_EEP_CMD_WRITE | addr);
10336 		AdvWaitEEPCmd(iop_base);
10337 		mdelay(ADV_EEP_DELAY_MS);
10338 	}
10339 
10340 	/*
10341 	 * Write EEPROM checksum at word 21.
10342 	 */
10343 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10344 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10345 	AdvWaitEEPCmd(iop_base);
10346 	wbuf++;
10347 	charfields++;
10348 
10349 	/*
10350 	 * Write EEPROM OEM name at words 22 to 29.
10351 	 */
10352 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10353 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10354 		ushort word;
10355 
10356 		if (*charfields++) {
10357 			word = cpu_to_le16(*wbuf);
10358 		} else {
10359 			word = *wbuf;
10360 		}
10361 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10362 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10363 				     ASC_EEP_CMD_WRITE | addr);
10364 		AdvWaitEEPCmd(iop_base);
10365 	}
10366 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10367 	AdvWaitEEPCmd(iop_base);
10368 }
10369 
10370 /*
10371  * Write the EEPROM from 'cfg_buf'.
10372  */
10373 static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
10374 				   ADVEEP_38C1600_CONFIG *cfg_buf)
10375 {
10376 	ushort *wbuf;
10377 	ushort *charfields;
10378 	ushort addr, chksum;
10379 
10380 	wbuf = (ushort *)cfg_buf;
10381 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10382 	chksum = 0;
10383 
10384 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
10385 	AdvWaitEEPCmd(iop_base);
10386 
10387 	/*
10388 	 * Write EEPROM from word 0 to word 20.
10389 	 */
10390 	for (addr = ADV_EEP_DVC_CFG_BEGIN;
10391 	     addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
10392 		ushort word;
10393 
10394 		if (*charfields++) {
10395 			word = cpu_to_le16(*wbuf);
10396 		} else {
10397 			word = *wbuf;
10398 		}
10399 		chksum += *wbuf;	/* Checksum is calculated from word values. */
10400 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10401 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10402 				     ASC_EEP_CMD_WRITE | addr);
10403 		AdvWaitEEPCmd(iop_base);
10404 		mdelay(ADV_EEP_DELAY_MS);
10405 	}
10406 
10407 	/*
10408 	 * Write EEPROM checksum at word 21.
10409 	 */
10410 	AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
10411 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
10412 	AdvWaitEEPCmd(iop_base);
10413 	wbuf++;
10414 	charfields++;
10415 
10416 	/*
10417 	 * Write EEPROM OEM name at words 22 to 29.
10418 	 */
10419 	for (addr = ADV_EEP_DVC_CTL_BEGIN;
10420 	     addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
10421 		ushort word;
10422 
10423 		if (*charfields++) {
10424 			word = cpu_to_le16(*wbuf);
10425 		} else {
10426 			word = *wbuf;
10427 		}
10428 		AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
10429 		AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
10430 				     ASC_EEP_CMD_WRITE | addr);
10431 		AdvWaitEEPCmd(iop_base);
10432 	}
10433 	AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
10434 	AdvWaitEEPCmd(iop_base);
10435 }
10436 
10437 /*
10438  * Read EEPROM configuration into the specified buffer.
10439  *
10440  * Return a checksum based on the EEPROM configuration read.
10441  */
10442 static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
10443 				  ADVEEP_3550_CONFIG *cfg_buf)
10444 {
10445 	ushort wval, chksum;
10446 	ushort *wbuf;
10447 	int eep_addr;
10448 	ushort *charfields;
10449 
10450 	charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10451 	wbuf = (ushort *)cfg_buf;
10452 	chksum = 0;
10453 
10454 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10455 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10456 		wval = AdvReadEEPWord(iop_base, eep_addr);
10457 		chksum += wval;	/* Checksum is calculated from word values. */
10458 		if (*charfields++) {
10459 			*wbuf = le16_to_cpu(wval);
10460 		} else {
10461 			*wbuf = wval;
10462 		}
10463 	}
10464 	/* Read checksum word. */
10465 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10466 	wbuf++;
10467 	charfields++;
10468 
10469 	/* Read rest of EEPROM not covered by the checksum. */
10470 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10471 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10472 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10473 		if (*charfields++) {
10474 			*wbuf = le16_to_cpu(*wbuf);
10475 		}
10476 	}
10477 	return chksum;
10478 }
10479 
10480 /*
10481  * Read EEPROM configuration into the specified buffer.
10482  *
10483  * Return a checksum based on the EEPROM configuration read.
10484  */
10485 static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10486 				     ADVEEP_38C0800_CONFIG *cfg_buf)
10487 {
10488 	ushort wval, chksum;
10489 	ushort *wbuf;
10490 	int eep_addr;
10491 	ushort *charfields;
10492 
10493 	charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10494 	wbuf = (ushort *)cfg_buf;
10495 	chksum = 0;
10496 
10497 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10498 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10499 		wval = AdvReadEEPWord(iop_base, eep_addr);
10500 		chksum += wval;	/* Checksum is calculated from word values. */
10501 		if (*charfields++) {
10502 			*wbuf = le16_to_cpu(wval);
10503 		} else {
10504 			*wbuf = wval;
10505 		}
10506 	}
10507 	/* Read checksum word. */
10508 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10509 	wbuf++;
10510 	charfields++;
10511 
10512 	/* Read rest of EEPROM not covered by the checksum. */
10513 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10514 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10515 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10516 		if (*charfields++) {
10517 			*wbuf = le16_to_cpu(*wbuf);
10518 		}
10519 	}
10520 	return chksum;
10521 }
10522 
10523 /*
10524  * Read EEPROM configuration into the specified buffer.
10525  *
10526  * Return a checksum based on the EEPROM configuration read.
10527  */
10528 static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10529 				     ADVEEP_38C1600_CONFIG *cfg_buf)
10530 {
10531 	ushort wval, chksum;
10532 	ushort *wbuf;
10533 	int eep_addr;
10534 	ushort *charfields;
10535 
10536 	charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10537 	wbuf = (ushort *)cfg_buf;
10538 	chksum = 0;
10539 
10540 	for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10541 	     eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10542 		wval = AdvReadEEPWord(iop_base, eep_addr);
10543 		chksum += wval;	/* Checksum is calculated from word values. */
10544 		if (*charfields++) {
10545 			*wbuf = le16_to_cpu(wval);
10546 		} else {
10547 			*wbuf = wval;
10548 		}
10549 	}
10550 	/* Read checksum word. */
10551 	*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10552 	wbuf++;
10553 	charfields++;
10554 
10555 	/* Read rest of EEPROM not covered by the checksum. */
10556 	for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10557 	     eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10558 		*wbuf = AdvReadEEPWord(iop_base, eep_addr);
10559 		if (*charfields++) {
10560 			*wbuf = le16_to_cpu(*wbuf);
10561 		}
10562 	}
10563 	return chksum;
10564 }
10565 
10566 /*
10567  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10568  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10569  * all of this is done.
10570  *
10571  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10572  *
10573  * For a non-fatal error return a warning code. If there are no warnings
10574  * then 0 is returned.
10575  *
10576  * Note: Chip is stopped on entry.
10577  */
10578 static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10579 {
10580 	AdvPortAddr iop_base;
10581 	ushort warn_code;
10582 	ADVEEP_3550_CONFIG eep_config;
10583 
10584 	iop_base = asc_dvc->iop_base;
10585 
10586 	warn_code = 0;
10587 
10588 	/*
10589 	 * Read the board's EEPROM configuration.
10590 	 *
10591 	 * Set default values if a bad checksum is found.
10592 	 */
10593 	if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10594 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10595 
10596 		/*
10597 		 * Set EEPROM default values.
10598 		 */
10599 		memcpy(&eep_config, &Default_3550_EEPROM_Config,
10600 			sizeof(ADVEEP_3550_CONFIG));
10601 
10602 		/*
10603 		 * Assume the 6 byte board serial number that was read from
10604 		 * EEPROM is correct even if the EEPROM checksum failed.
10605 		 */
10606 		eep_config.serial_number_word3 =
10607 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10608 
10609 		eep_config.serial_number_word2 =
10610 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10611 
10612 		eep_config.serial_number_word1 =
10613 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10614 
10615 		AdvSet3550EEPConfig(iop_base, &eep_config);
10616 	}
10617 	/*
10618 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10619 	 * EEPROM configuration that was read.
10620 	 *
10621 	 * This is the mapping of EEPROM fields to Adv Library fields.
10622 	 */
10623 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10624 	asc_dvc->sdtr_able = eep_config.sdtr_able;
10625 	asc_dvc->ultra_able = eep_config.ultra_able;
10626 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10627 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10628 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10629 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10630 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10631 	asc_dvc->start_motor = eep_config.start_motor;
10632 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10633 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10634 	asc_dvc->no_scam = eep_config.scam_tolerant;
10635 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10636 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10637 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10638 
10639 	/*
10640 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10641 	 * maximum queuing (max. 63, min. 4).
10642 	 */
10643 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10644 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10645 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10646 		/* If the value is zero, assume it is uninitialized. */
10647 		if (eep_config.max_host_qng == 0) {
10648 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10649 		} else {
10650 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10651 		}
10652 	}
10653 
10654 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10655 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10656 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10657 		/* If the value is zero, assume it is uninitialized. */
10658 		if (eep_config.max_dvc_qng == 0) {
10659 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10660 		} else {
10661 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10662 		}
10663 	}
10664 
10665 	/*
10666 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10667 	 * set 'max_dvc_qng' to 'max_host_qng'.
10668 	 */
10669 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10670 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10671 	}
10672 
10673 	/*
10674 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10675 	 * values based on possibly adjusted EEPROM values.
10676 	 */
10677 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10678 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10679 
10680 	/*
10681 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10682 	 * the ADV_DVC_CFG 'termination' field to automatic also.
10683 	 *
10684 	 * If the termination is specified with a non-zero 'termination'
10685 	 * value check that a legal value is set and set the ADV_DVC_CFG
10686 	 * 'termination' field appropriately.
10687 	 */
10688 	if (eep_config.termination == 0) {
10689 		asc_dvc->cfg->termination = 0;	/* auto termination */
10690 	} else {
10691 		/* Enable manual control with low off / high off. */
10692 		if (eep_config.termination == 1) {
10693 			asc_dvc->cfg->termination = TERM_CTL_SEL;
10694 
10695 			/* Enable manual control with low off / high on. */
10696 		} else if (eep_config.termination == 2) {
10697 			asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10698 
10699 			/* Enable manual control with low on / high on. */
10700 		} else if (eep_config.termination == 3) {
10701 			asc_dvc->cfg->termination =
10702 			    TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10703 		} else {
10704 			/*
10705 			 * The EEPROM 'termination' field contains a bad value. Use
10706 			 * automatic termination instead.
10707 			 */
10708 			asc_dvc->cfg->termination = 0;
10709 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10710 		}
10711 	}
10712 
10713 	return warn_code;
10714 }
10715 
10716 /*
10717  * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10718  * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10719  * all of this is done.
10720  *
10721  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10722  *
10723  * For a non-fatal error return a warning code. If there are no warnings
10724  * then 0 is returned.
10725  *
10726  * Note: Chip is stopped on entry.
10727  */
10728 static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10729 {
10730 	AdvPortAddr iop_base;
10731 	ushort warn_code;
10732 	ADVEEP_38C0800_CONFIG eep_config;
10733 	uchar tid, termination;
10734 	ushort sdtr_speed = 0;
10735 
10736 	iop_base = asc_dvc->iop_base;
10737 
10738 	warn_code = 0;
10739 
10740 	/*
10741 	 * Read the board's EEPROM configuration.
10742 	 *
10743 	 * Set default values if a bad checksum is found.
10744 	 */
10745 	if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10746 	    eep_config.check_sum) {
10747 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10748 
10749 		/*
10750 		 * Set EEPROM default values.
10751 		 */
10752 		memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10753 			sizeof(ADVEEP_38C0800_CONFIG));
10754 
10755 		/*
10756 		 * Assume the 6 byte board serial number that was read from
10757 		 * EEPROM is correct even if the EEPROM checksum failed.
10758 		 */
10759 		eep_config.serial_number_word3 =
10760 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10761 
10762 		eep_config.serial_number_word2 =
10763 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10764 
10765 		eep_config.serial_number_word1 =
10766 		    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10767 
10768 		AdvSet38C0800EEPConfig(iop_base, &eep_config);
10769 	}
10770 	/*
10771 	 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10772 	 * EEPROM configuration that was read.
10773 	 *
10774 	 * This is the mapping of EEPROM fields to Adv Library fields.
10775 	 */
10776 	asc_dvc->wdtr_able = eep_config.wdtr_able;
10777 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10778 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10779 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10780 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10781 	asc_dvc->tagqng_able = eep_config.tagqng_able;
10782 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10783 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10784 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10785 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10786 	asc_dvc->start_motor = eep_config.start_motor;
10787 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10788 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10789 	asc_dvc->no_scam = eep_config.scam_tolerant;
10790 	asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10791 	asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10792 	asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10793 
10794 	/*
10795 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
10796 	 * are set, then set an 'sdtr_able' bit for it.
10797 	 */
10798 	asc_dvc->sdtr_able = 0;
10799 	for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10800 		if (tid == 0) {
10801 			sdtr_speed = asc_dvc->sdtr_speed1;
10802 		} else if (tid == 4) {
10803 			sdtr_speed = asc_dvc->sdtr_speed2;
10804 		} else if (tid == 8) {
10805 			sdtr_speed = asc_dvc->sdtr_speed3;
10806 		} else if (tid == 12) {
10807 			sdtr_speed = asc_dvc->sdtr_speed4;
10808 		}
10809 		if (sdtr_speed & ADV_MAX_TID) {
10810 			asc_dvc->sdtr_able |= (1 << tid);
10811 		}
10812 		sdtr_speed >>= 4;
10813 	}
10814 
10815 	/*
10816 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
10817 	 * maximum queuing (max. 63, min. 4).
10818 	 */
10819 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10820 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10821 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10822 		/* If the value is zero, assume it is uninitialized. */
10823 		if (eep_config.max_host_qng == 0) {
10824 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10825 		} else {
10826 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10827 		}
10828 	}
10829 
10830 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10831 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10832 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10833 		/* If the value is zero, assume it is uninitialized. */
10834 		if (eep_config.max_dvc_qng == 0) {
10835 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10836 		} else {
10837 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10838 		}
10839 	}
10840 
10841 	/*
10842 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
10843 	 * set 'max_dvc_qng' to 'max_host_qng'.
10844 	 */
10845 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10846 		eep_config.max_dvc_qng = eep_config.max_host_qng;
10847 	}
10848 
10849 	/*
10850 	 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10851 	 * values based on possibly adjusted EEPROM values.
10852 	 */
10853 	asc_dvc->max_host_qng = eep_config.max_host_qng;
10854 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10855 
10856 	/*
10857 	 * If the EEPROM 'termination' field is set to automatic (0), then set
10858 	 * the ADV_DVC_CFG 'termination' field to automatic also.
10859 	 *
10860 	 * If the termination is specified with a non-zero 'termination'
10861 	 * value check that a legal value is set and set the ADV_DVC_CFG
10862 	 * 'termination' field appropriately.
10863 	 */
10864 	if (eep_config.termination_se == 0) {
10865 		termination = 0;	/* auto termination for SE */
10866 	} else {
10867 		/* Enable manual control with low off / high off. */
10868 		if (eep_config.termination_se == 1) {
10869 			termination = 0;
10870 
10871 			/* Enable manual control with low off / high on. */
10872 		} else if (eep_config.termination_se == 2) {
10873 			termination = TERM_SE_HI;
10874 
10875 			/* Enable manual control with low on / high on. */
10876 		} else if (eep_config.termination_se == 3) {
10877 			termination = TERM_SE;
10878 		} else {
10879 			/*
10880 			 * The EEPROM 'termination_se' field contains a bad value.
10881 			 * Use automatic termination instead.
10882 			 */
10883 			termination = 0;
10884 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10885 		}
10886 	}
10887 
10888 	if (eep_config.termination_lvd == 0) {
10889 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
10890 	} else {
10891 		/* Enable manual control with low off / high off. */
10892 		if (eep_config.termination_lvd == 1) {
10893 			asc_dvc->cfg->termination = termination;
10894 
10895 			/* Enable manual control with low off / high on. */
10896 		} else if (eep_config.termination_lvd == 2) {
10897 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10898 
10899 			/* Enable manual control with low on / high on. */
10900 		} else if (eep_config.termination_lvd == 3) {
10901 			asc_dvc->cfg->termination = termination | TERM_LVD;
10902 		} else {
10903 			/*
10904 			 * The EEPROM 'termination_lvd' field contains a bad value.
10905 			 * Use automatic termination instead.
10906 			 */
10907 			asc_dvc->cfg->termination = termination;
10908 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
10909 		}
10910 	}
10911 
10912 	return warn_code;
10913 }
10914 
10915 /*
10916  * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10917  * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10918  * all of this is done.
10919  *
10920  * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10921  *
10922  * For a non-fatal error return a warning code. If there are no warnings
10923  * then 0 is returned.
10924  *
10925  * Note: Chip is stopped on entry.
10926  */
10927 static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10928 {
10929 	AdvPortAddr iop_base;
10930 	ushort warn_code;
10931 	ADVEEP_38C1600_CONFIG eep_config;
10932 	uchar tid, termination;
10933 	ushort sdtr_speed = 0;
10934 
10935 	iop_base = asc_dvc->iop_base;
10936 
10937 	warn_code = 0;
10938 
10939 	/*
10940 	 * Read the board's EEPROM configuration.
10941 	 *
10942 	 * Set default values if a bad checksum is found.
10943 	 */
10944 	if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10945 	    eep_config.check_sum) {
10946 		struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10947 		warn_code |= ASC_WARN_EEPROM_CHKSUM;
10948 
10949 		/*
10950 		 * Set EEPROM default values.
10951 		 */
10952 		memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10953 			sizeof(ADVEEP_38C1600_CONFIG));
10954 
10955 		if (PCI_FUNC(pdev->devfn) != 0) {
10956 			u8 ints;
10957 			/*
10958 			 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10959 			 * and old Mac system booting problem. The Expansion
10960 			 * ROM must be disabled in Function 1 for these systems
10961 			 */
10962 			eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10963 			/*
10964 			 * Clear the INTAB (bit 11) if the GPIO 0 input
10965 			 * indicates the Function 1 interrupt line is wired
10966 			 * to INTB.
10967 			 *
10968 			 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10969 			 *   1 - Function 1 interrupt line wired to INT A.
10970 			 *   0 - Function 1 interrupt line wired to INT B.
10971 			 *
10972 			 * Note: Function 0 is always wired to INTA.
10973 			 * Put all 5 GPIO bits in input mode and then read
10974 			 * their input values.
10975 			 */
10976 			AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10977 			ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10978 			if ((ints & 0x01) == 0)
10979 				eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10980 		}
10981 
10982 		/*
10983 		 * Assume the 6 byte board serial number that was read from
10984 		 * EEPROM is correct even if the EEPROM checksum failed.
10985 		 */
10986 		eep_config.serial_number_word3 =
10987 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10988 		eep_config.serial_number_word2 =
10989 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10990 		eep_config.serial_number_word1 =
10991 			AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10992 
10993 		AdvSet38C1600EEPConfig(iop_base, &eep_config);
10994 	}
10995 
10996 	/*
10997 	 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10998 	 * EEPROM configuration that was read.
10999 	 *
11000 	 * This is the mapping of EEPROM fields to Adv Library fields.
11001 	 */
11002 	asc_dvc->wdtr_able = eep_config.wdtr_able;
11003 	asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
11004 	asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
11005 	asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
11006 	asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
11007 	asc_dvc->ppr_able = 0;
11008 	asc_dvc->tagqng_able = eep_config.tagqng_able;
11009 	asc_dvc->cfg->disc_enable = eep_config.disc_enable;
11010 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11011 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11012 	asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
11013 	asc_dvc->start_motor = eep_config.start_motor;
11014 	asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
11015 	asc_dvc->bios_ctrl = eep_config.bios_ctrl;
11016 	asc_dvc->no_scam = eep_config.scam_tolerant;
11017 
11018 	/*
11019 	 * For every Target ID if any of its 'sdtr_speed[1234]' bits
11020 	 * are set, then set an 'sdtr_able' bit for it.
11021 	 */
11022 	asc_dvc->sdtr_able = 0;
11023 	for (tid = 0; tid <= ASC_MAX_TID; tid++) {
11024 		if (tid == 0) {
11025 			sdtr_speed = asc_dvc->sdtr_speed1;
11026 		} else if (tid == 4) {
11027 			sdtr_speed = asc_dvc->sdtr_speed2;
11028 		} else if (tid == 8) {
11029 			sdtr_speed = asc_dvc->sdtr_speed3;
11030 		} else if (tid == 12) {
11031 			sdtr_speed = asc_dvc->sdtr_speed4;
11032 		}
11033 		if (sdtr_speed & ASC_MAX_TID) {
11034 			asc_dvc->sdtr_able |= (1 << tid);
11035 		}
11036 		sdtr_speed >>= 4;
11037 	}
11038 
11039 	/*
11040 	 * Set the host maximum queuing (max. 253, min. 16) and the per device
11041 	 * maximum queuing (max. 63, min. 4).
11042 	 */
11043 	if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
11044 		eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11045 	} else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
11046 		/* If the value is zero, assume it is uninitialized. */
11047 		if (eep_config.max_host_qng == 0) {
11048 			eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
11049 		} else {
11050 			eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
11051 		}
11052 	}
11053 
11054 	if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
11055 		eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11056 	} else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
11057 		/* If the value is zero, assume it is uninitialized. */
11058 		if (eep_config.max_dvc_qng == 0) {
11059 			eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
11060 		} else {
11061 			eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
11062 		}
11063 	}
11064 
11065 	/*
11066 	 * If 'max_dvc_qng' is greater than 'max_host_qng', then
11067 	 * set 'max_dvc_qng' to 'max_host_qng'.
11068 	 */
11069 	if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
11070 		eep_config.max_dvc_qng = eep_config.max_host_qng;
11071 	}
11072 
11073 	/*
11074 	 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
11075 	 * values based on possibly adjusted EEPROM values.
11076 	 */
11077 	asc_dvc->max_host_qng = eep_config.max_host_qng;
11078 	asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
11079 
11080 	/*
11081 	 * If the EEPROM 'termination' field is set to automatic (0), then set
11082 	 * the ASC_DVC_CFG 'termination' field to automatic also.
11083 	 *
11084 	 * If the termination is specified with a non-zero 'termination'
11085 	 * value check that a legal value is set and set the ASC_DVC_CFG
11086 	 * 'termination' field appropriately.
11087 	 */
11088 	if (eep_config.termination_se == 0) {
11089 		termination = 0;	/* auto termination for SE */
11090 	} else {
11091 		/* Enable manual control with low off / high off. */
11092 		if (eep_config.termination_se == 1) {
11093 			termination = 0;
11094 
11095 			/* Enable manual control with low off / high on. */
11096 		} else if (eep_config.termination_se == 2) {
11097 			termination = TERM_SE_HI;
11098 
11099 			/* Enable manual control with low on / high on. */
11100 		} else if (eep_config.termination_se == 3) {
11101 			termination = TERM_SE;
11102 		} else {
11103 			/*
11104 			 * The EEPROM 'termination_se' field contains a bad value.
11105 			 * Use automatic termination instead.
11106 			 */
11107 			termination = 0;
11108 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11109 		}
11110 	}
11111 
11112 	if (eep_config.termination_lvd == 0) {
11113 		asc_dvc->cfg->termination = termination;	/* auto termination for LVD */
11114 	} else {
11115 		/* Enable manual control with low off / high off. */
11116 		if (eep_config.termination_lvd == 1) {
11117 			asc_dvc->cfg->termination = termination;
11118 
11119 			/* Enable manual control with low off / high on. */
11120 		} else if (eep_config.termination_lvd == 2) {
11121 			asc_dvc->cfg->termination = termination | TERM_LVD_HI;
11122 
11123 			/* Enable manual control with low on / high on. */
11124 		} else if (eep_config.termination_lvd == 3) {
11125 			asc_dvc->cfg->termination = termination | TERM_LVD;
11126 		} else {
11127 			/*
11128 			 * The EEPROM 'termination_lvd' field contains a bad value.
11129 			 * Use automatic termination instead.
11130 			 */
11131 			asc_dvc->cfg->termination = termination;
11132 			warn_code |= ASC_WARN_EEPROM_TERMINATION;
11133 		}
11134 	}
11135 
11136 	return warn_code;
11137 }
11138 
11139 /*
11140  * Initialize the ADV_DVC_VAR structure.
11141  *
11142  * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
11143  *
11144  * For a non-fatal error return a warning code. If there are no warnings
11145  * then 0 is returned.
11146  */
11147 static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
11148 {
11149 	struct asc_board *board = shost_priv(shost);
11150 	ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
11151 	unsigned short warn_code = 0;
11152 	AdvPortAddr iop_base = asc_dvc->iop_base;
11153 	u16 cmd;
11154 	int status;
11155 
11156 	asc_dvc->err_code = 0;
11157 
11158 	/*
11159 	 * Save the state of the PCI Configuration Command Register
11160 	 * "Parity Error Response Control" Bit. If the bit is clear (0),
11161 	 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
11162 	 * DMA parity errors.
11163 	 */
11164 	asc_dvc->cfg->control_flag = 0;
11165 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
11166 	if ((cmd & PCI_COMMAND_PARITY) == 0)
11167 		asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
11168 
11169 	asc_dvc->cfg->chip_version =
11170 	    AdvGetChipVersion(iop_base, asc_dvc->bus_type);
11171 
11172 	ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
11173 		 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
11174 		 (ushort)ADV_CHIP_ID_BYTE);
11175 
11176 	ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
11177 		 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
11178 		 (ushort)ADV_CHIP_ID_WORD);
11179 
11180 	/*
11181 	 * Reset the chip to start and allow register writes.
11182 	 */
11183 	if (AdvFindSignature(iop_base) == 0) {
11184 		asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
11185 		return ADV_ERROR;
11186 	} else {
11187 		/*
11188 		 * The caller must set 'chip_type' to a valid setting.
11189 		 */
11190 		if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
11191 		    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
11192 		    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
11193 			asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
11194 			return ADV_ERROR;
11195 		}
11196 
11197 		/*
11198 		 * Reset Chip.
11199 		 */
11200 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11201 				     ADV_CTRL_REG_CMD_RESET);
11202 		mdelay(100);
11203 		AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
11204 				     ADV_CTRL_REG_CMD_WR_IO_REG);
11205 
11206 		if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
11207 			status = AdvInitFrom38C1600EEP(asc_dvc);
11208 		} else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11209 			status = AdvInitFrom38C0800EEP(asc_dvc);
11210 		} else {
11211 			status = AdvInitFrom3550EEP(asc_dvc);
11212 		}
11213 		warn_code |= status;
11214 	}
11215 
11216 	if (warn_code != 0)
11217 		shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
11218 
11219 	if (asc_dvc->err_code)
11220 		shost_printk(KERN_ERR, shost, "error code 0x%x\n",
11221 				asc_dvc->err_code);
11222 
11223 	return asc_dvc->err_code;
11224 }
11225 #endif
11226 
11227 static struct scsi_host_template advansys_template = {
11228 	.proc_name = DRV_NAME,
11229 #ifdef CONFIG_PROC_FS
11230 	.show_info = advansys_show_info,
11231 #endif
11232 	.name = DRV_NAME,
11233 	.info = advansys_info,
11234 	.queuecommand = advansys_queuecommand,
11235 	.eh_bus_reset_handler = advansys_reset,
11236 	.bios_param = advansys_biosparam,
11237 	.slave_configure = advansys_slave_configure,
11238 	/*
11239 	 * Because the driver may control an ISA adapter 'unchecked_isa_dma'
11240 	 * must be set. The flag will be cleared in advansys_board_found
11241 	 * for non-ISA adapters.
11242 	 */
11243 	.unchecked_isa_dma = 1,
11244 	/*
11245 	 * All adapters controlled by this driver are capable of large
11246 	 * scatter-gather lists. According to the mid-level SCSI documentation
11247 	 * this obviates any performance gain provided by setting
11248 	 * 'use_clustering'. But empirically while CPU utilization is increased
11249 	 * by enabling clustering, I/O throughput increases as well.
11250 	 */
11251 	.use_clustering = ENABLE_CLUSTERING,
11252 };
11253 
11254 static int advansys_wide_init_chip(struct Scsi_Host *shost)
11255 {
11256 	struct asc_board *board = shost_priv(shost);
11257 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11258 	int req_cnt = 0;
11259 	adv_req_t *reqp = NULL;
11260 	int sg_cnt = 0;
11261 	adv_sgblk_t *sgp;
11262 	int warn_code, err_code;
11263 
11264 	/*
11265 	 * Allocate buffer carrier structures. The total size
11266 	 * is about 4 KB, so allocate all at once.
11267 	 */
11268 	adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL);
11269 	ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf);
11270 
11271 	if (!adv_dvc->carrier_buf)
11272 		goto kmalloc_failed;
11273 
11274 	/*
11275 	 * Allocate up to 'max_host_qng' request structures for the Wide
11276 	 * board. The total size is about 16 KB, so allocate all at once.
11277 	 * If the allocation fails decrement and try again.
11278 	 */
11279 	for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) {
11280 		reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL);
11281 
11282 		ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt,
11283 			 (ulong)sizeof(adv_req_t) * req_cnt);
11284 
11285 		if (reqp)
11286 			break;
11287 	}
11288 
11289 	if (!reqp)
11290 		goto kmalloc_failed;
11291 
11292 	adv_dvc->orig_reqp = reqp;
11293 
11294 	/*
11295 	 * Allocate up to ADV_TOT_SG_BLOCK request structures for
11296 	 * the Wide board. Each structure is about 136 bytes.
11297 	 */
11298 	board->adv_sgblkp = NULL;
11299 	for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) {
11300 		sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL);
11301 
11302 		if (!sgp)
11303 			break;
11304 
11305 		sgp->next_sgblkp = board->adv_sgblkp;
11306 		board->adv_sgblkp = sgp;
11307 
11308 	}
11309 
11310 	ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t),
11311 		 sizeof(adv_sgblk_t) * sg_cnt);
11312 
11313 	if (!board->adv_sgblkp)
11314 		goto kmalloc_failed;
11315 
11316 	/*
11317 	 * Point 'adv_reqp' to the request structures and
11318 	 * link them together.
11319 	 */
11320 	req_cnt--;
11321 	reqp[req_cnt].next_reqp = NULL;
11322 	for (; req_cnt > 0; req_cnt--) {
11323 		reqp[req_cnt - 1].next_reqp = &reqp[req_cnt];
11324 	}
11325 	board->adv_reqp = &reqp[0];
11326 
11327 	if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
11328 		ASC_DBG(2, "AdvInitAsc3550Driver()\n");
11329 		warn_code = AdvInitAsc3550Driver(adv_dvc);
11330 	} else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
11331 		ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
11332 		warn_code = AdvInitAsc38C0800Driver(adv_dvc);
11333 	} else {
11334 		ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
11335 		warn_code = AdvInitAsc38C1600Driver(adv_dvc);
11336 	}
11337 	err_code = adv_dvc->err_code;
11338 
11339 	if (warn_code || err_code) {
11340 		shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
11341 			"0x%x\n", warn_code, err_code);
11342 	}
11343 
11344 	goto exit;
11345 
11346  kmalloc_failed:
11347 	shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
11348 	err_code = ADV_ERROR;
11349  exit:
11350 	return err_code;
11351 }
11352 
11353 static void advansys_wide_free_mem(struct asc_board *board)
11354 {
11355 	struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
11356 	kfree(adv_dvc->carrier_buf);
11357 	adv_dvc->carrier_buf = NULL;
11358 	kfree(adv_dvc->orig_reqp);
11359 	adv_dvc->orig_reqp = board->adv_reqp = NULL;
11360 	while (board->adv_sgblkp) {
11361 		adv_sgblk_t *sgp = board->adv_sgblkp;
11362 		board->adv_sgblkp = sgp->next_sgblkp;
11363 		kfree(sgp);
11364 	}
11365 }
11366 
11367 static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
11368 				int bus_type)
11369 {
11370 	struct pci_dev *pdev;
11371 	struct asc_board *boardp = shost_priv(shost);
11372 	ASC_DVC_VAR *asc_dvc_varp = NULL;
11373 	ADV_DVC_VAR *adv_dvc_varp = NULL;
11374 	int share_irq, warn_code, ret;
11375 
11376 	pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
11377 
11378 	if (ASC_NARROW_BOARD(boardp)) {
11379 		ASC_DBG(1, "narrow board\n");
11380 		asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
11381 		asc_dvc_varp->bus_type = bus_type;
11382 		asc_dvc_varp->drv_ptr = boardp;
11383 		asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
11384 		asc_dvc_varp->iop_base = iop;
11385 	} else {
11386 #ifdef CONFIG_PCI
11387 		adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
11388 		adv_dvc_varp->drv_ptr = boardp;
11389 		adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
11390 		if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
11391 			ASC_DBG(1, "wide board ASC-3550\n");
11392 			adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
11393 		} else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
11394 			ASC_DBG(1, "wide board ASC-38C0800\n");
11395 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
11396 		} else {
11397 			ASC_DBG(1, "wide board ASC-38C1600\n");
11398 			adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
11399 		}
11400 
11401 		boardp->asc_n_io_port = pci_resource_len(pdev, 1);
11402 		boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
11403 		if (!boardp->ioremap_addr) {
11404 			shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
11405 					"returned NULL\n",
11406 					(long)pci_resource_start(pdev, 1),
11407 					boardp->asc_n_io_port);
11408 			ret = -ENODEV;
11409 			goto err_shost;
11410 		}
11411 		adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
11412 		ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
11413 
11414 		/*
11415 		 * Even though it isn't used to access wide boards, other
11416 		 * than for the debug line below, save I/O Port address so
11417 		 * that it can be reported.
11418 		 */
11419 		boardp->ioport = iop;
11420 
11421 		ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
11422 				(ushort)inp(iop + 1), (ushort)inpw(iop));
11423 #endif /* CONFIG_PCI */
11424 	}
11425 
11426 	if (ASC_NARROW_BOARD(boardp)) {
11427 		/*
11428 		 * Set the board bus type and PCI IRQ before
11429 		 * calling AscInitGetConfig().
11430 		 */
11431 		switch (asc_dvc_varp->bus_type) {
11432 #ifdef CONFIG_ISA
11433 		case ASC_IS_ISA:
11434 			shost->unchecked_isa_dma = TRUE;
11435 			share_irq = 0;
11436 			break;
11437 		case ASC_IS_VL:
11438 			shost->unchecked_isa_dma = FALSE;
11439 			share_irq = 0;
11440 			break;
11441 		case ASC_IS_EISA:
11442 			shost->unchecked_isa_dma = FALSE;
11443 			share_irq = IRQF_SHARED;
11444 			break;
11445 #endif /* CONFIG_ISA */
11446 #ifdef CONFIG_PCI
11447 		case ASC_IS_PCI:
11448 			shost->unchecked_isa_dma = FALSE;
11449 			share_irq = IRQF_SHARED;
11450 			break;
11451 #endif /* CONFIG_PCI */
11452 		default:
11453 			shost_printk(KERN_ERR, shost, "unknown adapter type: "
11454 					"%d\n", asc_dvc_varp->bus_type);
11455 			shost->unchecked_isa_dma = TRUE;
11456 			share_irq = 0;
11457 			break;
11458 		}
11459 
11460 		/*
11461 		 * NOTE: AscInitGetConfig() may change the board's
11462 		 * bus_type value. The bus_type value should no
11463 		 * longer be used. If the bus_type field must be
11464 		 * referenced only use the bit-wise AND operator "&".
11465 		 */
11466 		ASC_DBG(2, "AscInitGetConfig()\n");
11467 		ret = AscInitGetConfig(shost) ? -ENODEV : 0;
11468 	} else {
11469 #ifdef CONFIG_PCI
11470 		/*
11471 		 * For Wide boards set PCI information before calling
11472 		 * AdvInitGetConfig().
11473 		 */
11474 		shost->unchecked_isa_dma = FALSE;
11475 		share_irq = IRQF_SHARED;
11476 		ASC_DBG(2, "AdvInitGetConfig()\n");
11477 
11478 		ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11479 #endif /* CONFIG_PCI */
11480 	}
11481 
11482 	if (ret)
11483 		goto err_unmap;
11484 
11485 	/*
11486 	 * Save the EEPROM configuration so that it can be displayed
11487 	 * from /proc/scsi/advansys/[0...].
11488 	 */
11489 	if (ASC_NARROW_BOARD(boardp)) {
11490 
11491 		ASCEEP_CONFIG *ep;
11492 
11493 		/*
11494 		 * Set the adapter's target id bit in the 'init_tidmask' field.
11495 		 */
11496 		boardp->init_tidmask |=
11497 		    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11498 
11499 		/*
11500 		 * Save EEPROM settings for the board.
11501 		 */
11502 		ep = &boardp->eep_config.asc_eep;
11503 
11504 		ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11505 		ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11506 		ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11507 		ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11508 		ep->start_motor = asc_dvc_varp->start_motor;
11509 		ep->cntl = asc_dvc_varp->dvc_cntl;
11510 		ep->no_scam = asc_dvc_varp->no_scam;
11511 		ep->max_total_qng = asc_dvc_varp->max_total_qng;
11512 		ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11513 		/* 'max_tag_qng' is set to the same value for every device. */
11514 		ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11515 		ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11516 		ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11517 		ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11518 		ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11519 		ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11520 		ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11521 
11522 		/*
11523 		 * Modify board configuration.
11524 		 */
11525 		ASC_DBG(2, "AscInitSetConfig()\n");
11526 		ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11527 		if (ret)
11528 			goto err_unmap;
11529 	} else {
11530 		ADVEEP_3550_CONFIG *ep_3550;
11531 		ADVEEP_38C0800_CONFIG *ep_38C0800;
11532 		ADVEEP_38C1600_CONFIG *ep_38C1600;
11533 
11534 		/*
11535 		 * Save Wide EEP Configuration Information.
11536 		 */
11537 		if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11538 			ep_3550 = &boardp->eep_config.adv_3550_eep;
11539 
11540 			ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11541 			ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11542 			ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11543 			ep_3550->termination = adv_dvc_varp->cfg->termination;
11544 			ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11545 			ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11546 			ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11547 			ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11548 			ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11549 			ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11550 			ep_3550->start_motor = adv_dvc_varp->start_motor;
11551 			ep_3550->scsi_reset_delay =
11552 			    adv_dvc_varp->scsi_reset_wait;
11553 			ep_3550->serial_number_word1 =
11554 			    adv_dvc_varp->cfg->serial1;
11555 			ep_3550->serial_number_word2 =
11556 			    adv_dvc_varp->cfg->serial2;
11557 			ep_3550->serial_number_word3 =
11558 			    adv_dvc_varp->cfg->serial3;
11559 		} else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11560 			ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11561 
11562 			ep_38C0800->adapter_scsi_id =
11563 			    adv_dvc_varp->chip_scsi_id;
11564 			ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11565 			ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11566 			ep_38C0800->termination_lvd =
11567 			    adv_dvc_varp->cfg->termination;
11568 			ep_38C0800->disc_enable =
11569 			    adv_dvc_varp->cfg->disc_enable;
11570 			ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11571 			ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11572 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11573 			ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11574 			ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11575 			ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11576 			ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11577 			ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11578 			ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11579 			ep_38C0800->scsi_reset_delay =
11580 			    adv_dvc_varp->scsi_reset_wait;
11581 			ep_38C0800->serial_number_word1 =
11582 			    adv_dvc_varp->cfg->serial1;
11583 			ep_38C0800->serial_number_word2 =
11584 			    adv_dvc_varp->cfg->serial2;
11585 			ep_38C0800->serial_number_word3 =
11586 			    adv_dvc_varp->cfg->serial3;
11587 		} else {
11588 			ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11589 
11590 			ep_38C1600->adapter_scsi_id =
11591 			    adv_dvc_varp->chip_scsi_id;
11592 			ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11593 			ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11594 			ep_38C1600->termination_lvd =
11595 			    adv_dvc_varp->cfg->termination;
11596 			ep_38C1600->disc_enable =
11597 			    adv_dvc_varp->cfg->disc_enable;
11598 			ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11599 			ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11600 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11601 			ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11602 			ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11603 			ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11604 			ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11605 			ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11606 			ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11607 			ep_38C1600->scsi_reset_delay =
11608 			    adv_dvc_varp->scsi_reset_wait;
11609 			ep_38C1600->serial_number_word1 =
11610 			    adv_dvc_varp->cfg->serial1;
11611 			ep_38C1600->serial_number_word2 =
11612 			    adv_dvc_varp->cfg->serial2;
11613 			ep_38C1600->serial_number_word3 =
11614 			    adv_dvc_varp->cfg->serial3;
11615 		}
11616 
11617 		/*
11618 		 * Set the adapter's target id bit in the 'init_tidmask' field.
11619 		 */
11620 		boardp->init_tidmask |=
11621 		    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11622 	}
11623 
11624 	/*
11625 	 * Channels are numbered beginning with 0. For AdvanSys one host
11626 	 * structure supports one channel. Multi-channel boards have a
11627 	 * separate host structure for each channel.
11628 	 */
11629 	shost->max_channel = 0;
11630 	if (ASC_NARROW_BOARD(boardp)) {
11631 		shost->max_id = ASC_MAX_TID + 1;
11632 		shost->max_lun = ASC_MAX_LUN + 1;
11633 		shost->max_cmd_len = ASC_MAX_CDB_LEN;
11634 
11635 		shost->io_port = asc_dvc_varp->iop_base;
11636 		boardp->asc_n_io_port = ASC_IOADR_GAP;
11637 		shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11638 
11639 		/* Set maximum number of queues the adapter can handle. */
11640 		shost->can_queue = asc_dvc_varp->max_total_qng;
11641 	} else {
11642 		shost->max_id = ADV_MAX_TID + 1;
11643 		shost->max_lun = ADV_MAX_LUN + 1;
11644 		shost->max_cmd_len = ADV_MAX_CDB_LEN;
11645 
11646 		/*
11647 		 * Save the I/O Port address and length even though
11648 		 * I/O ports are not used to access Wide boards.
11649 		 * Instead the Wide boards are accessed with
11650 		 * PCI Memory Mapped I/O.
11651 		 */
11652 		shost->io_port = iop;
11653 
11654 		shost->this_id = adv_dvc_varp->chip_scsi_id;
11655 
11656 		/* Set maximum number of queues the adapter can handle. */
11657 		shost->can_queue = adv_dvc_varp->max_host_qng;
11658 	}
11659 
11660 	/*
11661 	 * Following v1.3.89, 'cmd_per_lun' is no longer needed
11662 	 * and should be set to zero.
11663 	 *
11664 	 * But because of a bug introduced in v1.3.89 if the driver is
11665 	 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level
11666 	 * SCSI function 'allocate_device' will panic. To allow the driver
11667 	 * to work as a module in these kernels set 'cmd_per_lun' to 1.
11668 	 *
11669 	 * Note: This is wrong.  cmd_per_lun should be set to the depth
11670 	 * you want on untagged devices always.
11671 	 #ifdef MODULE
11672 	 */
11673 	shost->cmd_per_lun = 1;
11674 /* #else
11675             shost->cmd_per_lun = 0;
11676 #endif */
11677 
11678 	/*
11679 	 * Set the maximum number of scatter-gather elements the
11680 	 * adapter can handle.
11681 	 */
11682 	if (ASC_NARROW_BOARD(boardp)) {
11683 		/*
11684 		 * Allow two commands with 'sg_tablesize' scatter-gather
11685 		 * elements to be executed simultaneously. This value is
11686 		 * the theoretical hardware limit. It may be decreased
11687 		 * below.
11688 		 */
11689 		shost->sg_tablesize =
11690 		    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11691 		     ASC_SG_LIST_PER_Q) + 1;
11692 	} else {
11693 		shost->sg_tablesize = ADV_MAX_SG_LIST;
11694 	}
11695 
11696 	/*
11697 	 * The value of 'sg_tablesize' can not exceed the SCSI
11698 	 * mid-level driver definition of SG_ALL. SG_ALL also
11699 	 * must not be exceeded, because it is used to define the
11700 	 * size of the scatter-gather table in 'struct asc_sg_head'.
11701 	 */
11702 	if (shost->sg_tablesize > SG_ALL) {
11703 		shost->sg_tablesize = SG_ALL;
11704 	}
11705 
11706 	ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11707 
11708 	/* BIOS start address. */
11709 	if (ASC_NARROW_BOARD(boardp)) {
11710 		shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11711 						    asc_dvc_varp->bus_type);
11712 	} else {
11713 		/*
11714 		 * Fill-in BIOS board variables. The Wide BIOS saves
11715 		 * information in LRAM that is used by the driver.
11716 		 */
11717 		AdvReadWordLram(adv_dvc_varp->iop_base,
11718 				BIOS_SIGNATURE, boardp->bios_signature);
11719 		AdvReadWordLram(adv_dvc_varp->iop_base,
11720 				BIOS_VERSION, boardp->bios_version);
11721 		AdvReadWordLram(adv_dvc_varp->iop_base,
11722 				BIOS_CODESEG, boardp->bios_codeseg);
11723 		AdvReadWordLram(adv_dvc_varp->iop_base,
11724 				BIOS_CODELEN, boardp->bios_codelen);
11725 
11726 		ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11727 			 boardp->bios_signature, boardp->bios_version);
11728 
11729 		ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11730 			 boardp->bios_codeseg, boardp->bios_codelen);
11731 
11732 		/*
11733 		 * If the BIOS saved a valid signature, then fill in
11734 		 * the BIOS code segment base address.
11735 		 */
11736 		if (boardp->bios_signature == 0x55AA) {
11737 			/*
11738 			 * Convert x86 realmode code segment to a linear
11739 			 * address by shifting left 4.
11740 			 */
11741 			shost->base = ((ulong)boardp->bios_codeseg << 4);
11742 		} else {
11743 			shost->base = 0;
11744 		}
11745 	}
11746 
11747 	/*
11748 	 * Register Board Resources - I/O Port, DMA, IRQ
11749 	 */
11750 
11751 	/* Register DMA Channel for Narrow boards. */
11752 	shost->dma_channel = NO_ISA_DMA;	/* Default to no ISA DMA. */
11753 #ifdef CONFIG_ISA
11754 	if (ASC_NARROW_BOARD(boardp)) {
11755 		/* Register DMA channel for ISA bus. */
11756 		if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11757 			shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11758 			ret = request_dma(shost->dma_channel, DRV_NAME);
11759 			if (ret) {
11760 				shost_printk(KERN_ERR, shost, "request_dma() "
11761 						"%d failed %d\n",
11762 						shost->dma_channel, ret);
11763 				goto err_unmap;
11764 			}
11765 			AscEnableIsaDma(shost->dma_channel);
11766 		}
11767 	}
11768 #endif /* CONFIG_ISA */
11769 
11770 	/* Register IRQ Number. */
11771 	ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11772 
11773 	ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11774 			  DRV_NAME, shost);
11775 
11776 	if (ret) {
11777 		if (ret == -EBUSY) {
11778 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11779 					"already in use\n", boardp->irq);
11780 		} else if (ret == -EINVAL) {
11781 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11782 					"not valid\n", boardp->irq);
11783 		} else {
11784 			shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11785 					"failed with %d\n", boardp->irq, ret);
11786 		}
11787 		goto err_free_dma;
11788 	}
11789 
11790 	/*
11791 	 * Initialize board RISC chip and enable interrupts.
11792 	 */
11793 	if (ASC_NARROW_BOARD(boardp)) {
11794 		ASC_DBG(2, "AscInitAsc1000Driver()\n");
11795 
11796 		asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11797 		if (!asc_dvc_varp->overrun_buf) {
11798 			ret = -ENOMEM;
11799 			goto err_free_irq;
11800 		}
11801 		warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11802 
11803 		if (warn_code || asc_dvc_varp->err_code) {
11804 			shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11805 					"warn 0x%x, error 0x%x\n",
11806 					asc_dvc_varp->init_state, warn_code,
11807 					asc_dvc_varp->err_code);
11808 			if (!asc_dvc_varp->overrun_dma) {
11809 				ret = -ENODEV;
11810 				goto err_free_mem;
11811 			}
11812 		}
11813 	} else {
11814 		if (advansys_wide_init_chip(shost)) {
11815 			ret = -ENODEV;
11816 			goto err_free_mem;
11817 		}
11818 	}
11819 
11820 	ASC_DBG_PRT_SCSI_HOST(2, shost);
11821 
11822 	ret = scsi_add_host(shost, boardp->dev);
11823 	if (ret)
11824 		goto err_free_mem;
11825 
11826 	scsi_scan_host(shost);
11827 	return 0;
11828 
11829  err_free_mem:
11830 	if (ASC_NARROW_BOARD(boardp)) {
11831 		if (asc_dvc_varp->overrun_dma)
11832 			dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11833 					 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11834 		kfree(asc_dvc_varp->overrun_buf);
11835 	} else
11836 		advansys_wide_free_mem(boardp);
11837  err_free_irq:
11838 	free_irq(boardp->irq, shost);
11839  err_free_dma:
11840 #ifdef CONFIG_ISA
11841 	if (shost->dma_channel != NO_ISA_DMA)
11842 		free_dma(shost->dma_channel);
11843 #endif
11844  err_unmap:
11845 	if (boardp->ioremap_addr)
11846 		iounmap(boardp->ioremap_addr);
11847  err_shost:
11848 	return ret;
11849 }
11850 
11851 /*
11852  * advansys_release()
11853  *
11854  * Release resources allocated for a single AdvanSys adapter.
11855  */
11856 static int advansys_release(struct Scsi_Host *shost)
11857 {
11858 	struct asc_board *board = shost_priv(shost);
11859 	ASC_DBG(1, "begin\n");
11860 	scsi_remove_host(shost);
11861 	free_irq(board->irq, shost);
11862 #ifdef CONFIG_ISA
11863 	if (shost->dma_channel != NO_ISA_DMA) {
11864 		ASC_DBG(1, "free_dma()\n");
11865 		free_dma(shost->dma_channel);
11866 	}
11867 #endif
11868 	if (ASC_NARROW_BOARD(board)) {
11869 		dma_unmap_single(board->dev,
11870 					board->dvc_var.asc_dvc_var.overrun_dma,
11871 					ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11872 		kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11873 	} else {
11874 		iounmap(board->ioremap_addr);
11875 		advansys_wide_free_mem(board);
11876 	}
11877 	scsi_host_put(shost);
11878 	ASC_DBG(1, "end\n");
11879 	return 0;
11880 }
11881 
11882 #define ASC_IOADR_TABLE_MAX_IX  11
11883 
11884 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11885 	0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11886 	0x0210, 0x0230, 0x0250, 0x0330
11887 };
11888 
11889 /*
11890  * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
11891  * 00: 10
11892  * 01: 11
11893  * 10: 12
11894  * 11: 15
11895  */
11896 static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11897 {
11898 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11899 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11900 	if (chip_irq == 13)
11901 		chip_irq = 15;
11902 	return chip_irq;
11903 }
11904 
11905 static int advansys_isa_probe(struct device *dev, unsigned int id)
11906 {
11907 	int err = -ENODEV;
11908 	PortAddr iop_base = _asc_def_iop_base[id];
11909 	struct Scsi_Host *shost;
11910 	struct asc_board *board;
11911 
11912 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11913 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11914 		return -ENODEV;
11915 	}
11916 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11917 	if (!AscFindSignature(iop_base))
11918 		goto release_region;
11919 	if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11920 		goto release_region;
11921 
11922 	err = -ENOMEM;
11923 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11924 	if (!shost)
11925 		goto release_region;
11926 
11927 	board = shost_priv(shost);
11928 	board->irq = advansys_isa_irq_no(iop_base);
11929 	board->dev = dev;
11930 
11931 	err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11932 	if (err)
11933 		goto free_host;
11934 
11935 	dev_set_drvdata(dev, shost);
11936 	return 0;
11937 
11938  free_host:
11939 	scsi_host_put(shost);
11940  release_region:
11941 	release_region(iop_base, ASC_IOADR_GAP);
11942 	return err;
11943 }
11944 
11945 static int advansys_isa_remove(struct device *dev, unsigned int id)
11946 {
11947 	int ioport = _asc_def_iop_base[id];
11948 	advansys_release(dev_get_drvdata(dev));
11949 	release_region(ioport, ASC_IOADR_GAP);
11950 	return 0;
11951 }
11952 
11953 static struct isa_driver advansys_isa_driver = {
11954 	.probe		= advansys_isa_probe,
11955 	.remove		= advansys_isa_remove,
11956 	.driver = {
11957 		.owner	= THIS_MODULE,
11958 		.name	= DRV_NAME,
11959 	},
11960 };
11961 
11962 /*
11963  * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11964  * 000: invalid
11965  * 001: 10
11966  * 010: 11
11967  * 011: 12
11968  * 100: invalid
11969  * 101: 14
11970  * 110: 15
11971  * 111: invalid
11972  */
11973 static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11974 {
11975 	unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11976 	unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11977 	if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11978 		return 0;
11979 	return chip_irq;
11980 }
11981 
11982 static int advansys_vlb_probe(struct device *dev, unsigned int id)
11983 {
11984 	int err = -ENODEV;
11985 	PortAddr iop_base = _asc_def_iop_base[id];
11986 	struct Scsi_Host *shost;
11987 	struct asc_board *board;
11988 
11989 	if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11990 		ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11991 		return -ENODEV;
11992 	}
11993 	ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11994 	if (!AscFindSignature(iop_base))
11995 		goto release_region;
11996 	/*
11997 	 * I don't think this condition can actually happen, but the old
11998 	 * driver did it, and the chances of finding a VLB setup in 2007
11999 	 * to do testing with is slight to none.
12000 	 */
12001 	if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
12002 		goto release_region;
12003 
12004 	err = -ENOMEM;
12005 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12006 	if (!shost)
12007 		goto release_region;
12008 
12009 	board = shost_priv(shost);
12010 	board->irq = advansys_vlb_irq_no(iop_base);
12011 	board->dev = dev;
12012 
12013 	err = advansys_board_found(shost, iop_base, ASC_IS_VL);
12014 	if (err)
12015 		goto free_host;
12016 
12017 	dev_set_drvdata(dev, shost);
12018 	return 0;
12019 
12020  free_host:
12021 	scsi_host_put(shost);
12022  release_region:
12023 	release_region(iop_base, ASC_IOADR_GAP);
12024 	return -ENODEV;
12025 }
12026 
12027 static struct isa_driver advansys_vlb_driver = {
12028 	.probe		= advansys_vlb_probe,
12029 	.remove		= advansys_isa_remove,
12030 	.driver = {
12031 		.owner	= THIS_MODULE,
12032 		.name	= "advansys_vlb",
12033 	},
12034 };
12035 
12036 static struct eisa_device_id advansys_eisa_table[] = {
12037 	{ "ABP7401" },
12038 	{ "ABP7501" },
12039 	{ "" }
12040 };
12041 
12042 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
12043 
12044 /*
12045  * EISA is a little more tricky than PCI; each EISA device may have two
12046  * channels, and this driver is written to make each channel its own Scsi_Host
12047  */
12048 struct eisa_scsi_data {
12049 	struct Scsi_Host *host[2];
12050 };
12051 
12052 /*
12053  * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
12054  * 000: 10
12055  * 001: 11
12056  * 010: 12
12057  * 011: invalid
12058  * 100: 14
12059  * 101: 15
12060  * 110: invalid
12061  * 111: invalid
12062  */
12063 static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
12064 {
12065 	unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
12066 	unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
12067 	if ((chip_irq == 13) || (chip_irq > 15))
12068 		return 0;
12069 	return chip_irq;
12070 }
12071 
12072 static int advansys_eisa_probe(struct device *dev)
12073 {
12074 	int i, ioport, irq = 0;
12075 	int err;
12076 	struct eisa_device *edev = to_eisa_device(dev);
12077 	struct eisa_scsi_data *data;
12078 
12079 	err = -ENOMEM;
12080 	data = kzalloc(sizeof(*data), GFP_KERNEL);
12081 	if (!data)
12082 		goto fail;
12083 	ioport = edev->base_addr + 0xc30;
12084 
12085 	err = -ENODEV;
12086 	for (i = 0; i < 2; i++, ioport += 0x20) {
12087 		struct asc_board *board;
12088 		struct Scsi_Host *shost;
12089 		if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
12090 			printk(KERN_WARNING "Region %x-%x busy\n", ioport,
12091 			       ioport + ASC_IOADR_GAP - 1);
12092 			continue;
12093 		}
12094 		if (!AscFindSignature(ioport)) {
12095 			release_region(ioport, ASC_IOADR_GAP);
12096 			continue;
12097 		}
12098 
12099 		/*
12100 		 * I don't know why we need to do this for EISA chips, but
12101 		 * not for any others.  It looks to be equivalent to
12102 		 * AscGetChipCfgMsw, but I may have overlooked something,
12103 		 * so I'm not converting it until I get an EISA board to
12104 		 * test with.
12105 		 */
12106 		inw(ioport + 4);
12107 
12108 		if (!irq)
12109 			irq = advansys_eisa_irq_no(edev);
12110 
12111 		err = -ENOMEM;
12112 		shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12113 		if (!shost)
12114 			goto release_region;
12115 
12116 		board = shost_priv(shost);
12117 		board->irq = irq;
12118 		board->dev = dev;
12119 
12120 		err = advansys_board_found(shost, ioport, ASC_IS_EISA);
12121 		if (!err) {
12122 			data->host[i] = shost;
12123 			continue;
12124 		}
12125 
12126 		scsi_host_put(shost);
12127  release_region:
12128 		release_region(ioport, ASC_IOADR_GAP);
12129 		break;
12130 	}
12131 
12132 	if (err)
12133 		goto free_data;
12134 	dev_set_drvdata(dev, data);
12135 	return 0;
12136 
12137  free_data:
12138 	kfree(data->host[0]);
12139 	kfree(data->host[1]);
12140 	kfree(data);
12141  fail:
12142 	return err;
12143 }
12144 
12145 static int advansys_eisa_remove(struct device *dev)
12146 {
12147 	int i;
12148 	struct eisa_scsi_data *data = dev_get_drvdata(dev);
12149 
12150 	for (i = 0; i < 2; i++) {
12151 		int ioport;
12152 		struct Scsi_Host *shost = data->host[i];
12153 		if (!shost)
12154 			continue;
12155 		ioport = shost->io_port;
12156 		advansys_release(shost);
12157 		release_region(ioport, ASC_IOADR_GAP);
12158 	}
12159 
12160 	kfree(data);
12161 	return 0;
12162 }
12163 
12164 static struct eisa_driver advansys_eisa_driver = {
12165 	.id_table =		advansys_eisa_table,
12166 	.driver = {
12167 		.name =		DRV_NAME,
12168 		.probe =	advansys_eisa_probe,
12169 		.remove =	advansys_eisa_remove,
12170 	}
12171 };
12172 
12173 /* PCI Devices supported by this driver */
12174 static struct pci_device_id advansys_pci_tbl[] = {
12175 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
12176 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12177 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
12178 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12179 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
12180 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12181 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
12182 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12183 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
12184 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12185 	{PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
12186 	 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
12187 	{}
12188 };
12189 
12190 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
12191 
12192 static void advansys_set_latency(struct pci_dev *pdev)
12193 {
12194 	if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
12195 	    (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
12196 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
12197 	} else {
12198 		u8 latency;
12199 		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
12200 		if (latency < 0x20)
12201 			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
12202 	}
12203 }
12204 
12205 static int advansys_pci_probe(struct pci_dev *pdev,
12206 			      const struct pci_device_id *ent)
12207 {
12208 	int err, ioport;
12209 	struct Scsi_Host *shost;
12210 	struct asc_board *board;
12211 
12212 	err = pci_enable_device(pdev);
12213 	if (err)
12214 		goto fail;
12215 	err = pci_request_regions(pdev, DRV_NAME);
12216 	if (err)
12217 		goto disable_device;
12218 	pci_set_master(pdev);
12219 	advansys_set_latency(pdev);
12220 
12221 	err = -ENODEV;
12222 	if (pci_resource_len(pdev, 0) == 0)
12223 		goto release_region;
12224 
12225 	ioport = pci_resource_start(pdev, 0);
12226 
12227 	err = -ENOMEM;
12228 	shost = scsi_host_alloc(&advansys_template, sizeof(*board));
12229 	if (!shost)
12230 		goto release_region;
12231 
12232 	board = shost_priv(shost);
12233 	board->irq = pdev->irq;
12234 	board->dev = &pdev->dev;
12235 
12236 	if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
12237 	    pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
12238 	    pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
12239 		board->flags |= ASC_IS_WIDE_BOARD;
12240 	}
12241 
12242 	err = advansys_board_found(shost, ioport, ASC_IS_PCI);
12243 	if (err)
12244 		goto free_host;
12245 
12246 	pci_set_drvdata(pdev, shost);
12247 	return 0;
12248 
12249  free_host:
12250 	scsi_host_put(shost);
12251  release_region:
12252 	pci_release_regions(pdev);
12253  disable_device:
12254 	pci_disable_device(pdev);
12255  fail:
12256 	return err;
12257 }
12258 
12259 static void advansys_pci_remove(struct pci_dev *pdev)
12260 {
12261 	advansys_release(pci_get_drvdata(pdev));
12262 	pci_release_regions(pdev);
12263 	pci_disable_device(pdev);
12264 }
12265 
12266 static struct pci_driver advansys_pci_driver = {
12267 	.name =		DRV_NAME,
12268 	.id_table =	advansys_pci_tbl,
12269 	.probe =	advansys_pci_probe,
12270 	.remove =	advansys_pci_remove,
12271 };
12272 
12273 static int __init advansys_init(void)
12274 {
12275 	int error;
12276 
12277 	error = isa_register_driver(&advansys_isa_driver,
12278 				    ASC_IOADR_TABLE_MAX_IX);
12279 	if (error)
12280 		goto fail;
12281 
12282 	error = isa_register_driver(&advansys_vlb_driver,
12283 				    ASC_IOADR_TABLE_MAX_IX);
12284 	if (error)
12285 		goto unregister_isa;
12286 
12287 	error = eisa_driver_register(&advansys_eisa_driver);
12288 	if (error)
12289 		goto unregister_vlb;
12290 
12291 	error = pci_register_driver(&advansys_pci_driver);
12292 	if (error)
12293 		goto unregister_eisa;
12294 
12295 	return 0;
12296 
12297  unregister_eisa:
12298 	eisa_driver_unregister(&advansys_eisa_driver);
12299  unregister_vlb:
12300 	isa_unregister_driver(&advansys_vlb_driver);
12301  unregister_isa:
12302 	isa_unregister_driver(&advansys_isa_driver);
12303  fail:
12304 	return error;
12305 }
12306 
12307 static void __exit advansys_exit(void)
12308 {
12309 	pci_unregister_driver(&advansys_pci_driver);
12310 	eisa_driver_unregister(&advansys_eisa_driver);
12311 	isa_unregister_driver(&advansys_vlb_driver);
12312 	isa_unregister_driver(&advansys_isa_driver);
12313 }
12314 
12315 module_init(advansys_init);
12316 module_exit(advansys_exit);
12317 
12318 MODULE_LICENSE("GPL");
12319 MODULE_FIRMWARE("advansys/mcode.bin");
12320 MODULE_FIRMWARE("advansys/3550.bin");
12321 MODULE_FIRMWARE("advansys/38C0800.bin");
12322 MODULE_FIRMWARE("advansys/38C1600.bin");
12323