1 #define DRV_NAME "advansys" 2 #define ASC_VERSION "3.4" /* AdvanSys Driver Version */ 3 4 /* 5 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters 6 * 7 * Copyright (c) 1995-2000 Advanced System Products, Inc. 8 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc. 9 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx> 10 * All Rights Reserved. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2 of the License, or 15 * (at your option) any later version. 16 */ 17 18 /* 19 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys) 20 * changed its name to ConnectCom Solutions, Inc. 21 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets 22 */ 23 24 #include <linux/module.h> 25 #include <linux/string.h> 26 #include <linux/kernel.h> 27 #include <linux/types.h> 28 #include <linux/ioport.h> 29 #include <linux/interrupt.h> 30 #include <linux/delay.h> 31 #include <linux/slab.h> 32 #include <linux/mm.h> 33 #include <linux/proc_fs.h> 34 #include <linux/init.h> 35 #include <linux/blkdev.h> 36 #include <linux/isa.h> 37 #include <linux/eisa.h> 38 #include <linux/pci.h> 39 #include <linux/spinlock.h> 40 #include <linux/dma-mapping.h> 41 #include <linux/firmware.h> 42 43 #include <asm/io.h> 44 #include <asm/dma.h> 45 46 #include <scsi/scsi_cmnd.h> 47 #include <scsi/scsi_device.h> 48 #include <scsi/scsi_tcq.h> 49 #include <scsi/scsi.h> 50 #include <scsi/scsi_host.h> 51 52 /* FIXME: 53 * 54 * 1. Although all of the necessary command mapping places have the 55 * appropriate dma_map.. APIs, the driver still processes its internal 56 * queue using bus_to_virt() and virt_to_bus() which are illegal under 57 * the API. The entire queue processing structure will need to be 58 * altered to fix this. 59 * 2. Need to add memory mapping workaround. Test the memory mapping. 60 * If it doesn't work revert to I/O port access. Can a test be done 61 * safely? 62 * 3. Handle an interrupt not working. Keep an interrupt counter in 63 * the interrupt handler. In the timeout function if the interrupt 64 * has not occurred then print a message and run in polled mode. 65 * 4. Need to add support for target mode commands, cf. CAM XPT. 66 * 5. check DMA mapping functions for failure 67 * 6. Use scsi_transport_spi 68 * 7. advansys_info is not safe against multiple simultaneous callers 69 * 8. Add module_param to override ISA/VLB ioport array 70 */ 71 #warning this driver is still not properly converted to the DMA API 72 73 /* Enable driver /proc statistics. */ 74 #define ADVANSYS_STATS 75 76 /* Enable driver tracing. */ 77 #undef ADVANSYS_DEBUG 78 79 /* 80 * Portable Data Types 81 * 82 * Any instance where a 32-bit long or pointer type is assumed 83 * for precision or HW defined structures, the following define 84 * types must be used. In Linux the char, short, and int types 85 * are all consistent at 8, 16, and 32 bits respectively. Pointers 86 * and long types are 64 bits on Alpha and UltraSPARC. 87 */ 88 #define ASC_PADDR __u32 /* Physical/Bus address data type. */ 89 #define ASC_VADDR __u32 /* Virtual address data type. */ 90 #define ASC_DCNT __u32 /* Unsigned Data count type. */ 91 #define ASC_SDCNT __s32 /* Signed Data count type. */ 92 93 typedef unsigned char uchar; 94 95 #ifndef TRUE 96 #define TRUE (1) 97 #endif 98 #ifndef FALSE 99 #define FALSE (0) 100 #endif 101 102 #define ERR (-1) 103 #define UW_ERR (uint)(0xFFFF) 104 #define isodd_word(val) ((((uint)val) & (uint)0x0001) != 0) 105 106 #define PCI_VENDOR_ID_ASP 0x10cd 107 #define PCI_DEVICE_ID_ASP_1200A 0x1100 108 #define PCI_DEVICE_ID_ASP_ABP940 0x1200 109 #define PCI_DEVICE_ID_ASP_ABP940U 0x1300 110 #define PCI_DEVICE_ID_ASP_ABP940UW 0x2300 111 #define PCI_DEVICE_ID_38C0800_REV1 0x2500 112 #define PCI_DEVICE_ID_38C1600_REV1 0x2700 113 114 /* 115 * Enable CC_VERY_LONG_SG_LIST to support up to 64K element SG lists. 116 * The SRB structure will have to be changed and the ASC_SRB2SCSIQ() 117 * macro re-defined to be able to obtain a ASC_SCSI_Q pointer from the 118 * SRB structure. 119 */ 120 #define CC_VERY_LONG_SG_LIST 0 121 #define ASC_SRB2SCSIQ(srb_ptr) (srb_ptr) 122 123 #define PortAddr unsigned int /* port address size */ 124 #define inp(port) inb(port) 125 #define outp(port, byte) outb((byte), (port)) 126 127 #define inpw(port) inw(port) 128 #define outpw(port, word) outw((word), (port)) 129 130 #define ASC_MAX_SG_QUEUE 7 131 #define ASC_MAX_SG_LIST 255 132 133 #define ASC_CS_TYPE unsigned short 134 135 #define ASC_IS_ISA (0x0001) 136 #define ASC_IS_ISAPNP (0x0081) 137 #define ASC_IS_EISA (0x0002) 138 #define ASC_IS_PCI (0x0004) 139 #define ASC_IS_PCI_ULTRA (0x0104) 140 #define ASC_IS_PCMCIA (0x0008) 141 #define ASC_IS_MCA (0x0020) 142 #define ASC_IS_VL (0x0040) 143 #define ASC_IS_WIDESCSI_16 (0x0100) 144 #define ASC_IS_WIDESCSI_32 (0x0200) 145 #define ASC_IS_BIG_ENDIAN (0x8000) 146 147 #define ASC_CHIP_MIN_VER_VL (0x01) 148 #define ASC_CHIP_MAX_VER_VL (0x07) 149 #define ASC_CHIP_MIN_VER_PCI (0x09) 150 #define ASC_CHIP_MAX_VER_PCI (0x0F) 151 #define ASC_CHIP_VER_PCI_BIT (0x08) 152 #define ASC_CHIP_MIN_VER_ISA (0x11) 153 #define ASC_CHIP_MIN_VER_ISA_PNP (0x21) 154 #define ASC_CHIP_MAX_VER_ISA (0x27) 155 #define ASC_CHIP_VER_ISA_BIT (0x30) 156 #define ASC_CHIP_VER_ISAPNP_BIT (0x20) 157 #define ASC_CHIP_VER_ASYN_BUG (0x21) 158 #define ASC_CHIP_VER_PCI 0x08 159 #define ASC_CHIP_VER_PCI_ULTRA_3150 (ASC_CHIP_VER_PCI | 0x02) 160 #define ASC_CHIP_VER_PCI_ULTRA_3050 (ASC_CHIP_VER_PCI | 0x03) 161 #define ASC_CHIP_MIN_VER_EISA (0x41) 162 #define ASC_CHIP_MAX_VER_EISA (0x47) 163 #define ASC_CHIP_VER_EISA_BIT (0x40) 164 #define ASC_CHIP_LATEST_VER_EISA ((ASC_CHIP_MIN_VER_EISA - 1) + 3) 165 #define ASC_MAX_VL_DMA_COUNT (0x07FFFFFFL) 166 #define ASC_MAX_PCI_DMA_COUNT (0xFFFFFFFFL) 167 #define ASC_MAX_ISA_DMA_COUNT (0x00FFFFFFL) 168 169 #define ASC_SCSI_ID_BITS 3 170 #define ASC_SCSI_TIX_TYPE uchar 171 #define ASC_ALL_DEVICE_BIT_SET 0xFF 172 #define ASC_SCSI_BIT_ID_TYPE uchar 173 #define ASC_MAX_TID 7 174 #define ASC_MAX_LUN 7 175 #define ASC_SCSI_WIDTH_BIT_SET 0xFF 176 #define ASC_MAX_SENSE_LEN 32 177 #define ASC_MIN_SENSE_LEN 14 178 #define ASC_SCSI_RESET_HOLD_TIME_US 60 179 180 /* 181 * Narrow boards only support 12-byte commands, while wide boards 182 * extend to 16-byte commands. 183 */ 184 #define ASC_MAX_CDB_LEN 12 185 #define ADV_MAX_CDB_LEN 16 186 187 #define MS_SDTR_LEN 0x03 188 #define MS_WDTR_LEN 0x02 189 190 #define ASC_SG_LIST_PER_Q 7 191 #define QS_FREE 0x00 192 #define QS_READY 0x01 193 #define QS_DISC1 0x02 194 #define QS_DISC2 0x04 195 #define QS_BUSY 0x08 196 #define QS_ABORTED 0x40 197 #define QS_DONE 0x80 198 #define QC_NO_CALLBACK 0x01 199 #define QC_SG_SWAP_QUEUE 0x02 200 #define QC_SG_HEAD 0x04 201 #define QC_DATA_IN 0x08 202 #define QC_DATA_OUT 0x10 203 #define QC_URGENT 0x20 204 #define QC_MSG_OUT 0x40 205 #define QC_REQ_SENSE 0x80 206 #define QCSG_SG_XFER_LIST 0x02 207 #define QCSG_SG_XFER_MORE 0x04 208 #define QCSG_SG_XFER_END 0x08 209 #define QD_IN_PROGRESS 0x00 210 #define QD_NO_ERROR 0x01 211 #define QD_ABORTED_BY_HOST 0x02 212 #define QD_WITH_ERROR 0x04 213 #define QD_INVALID_REQUEST 0x80 214 #define QD_INVALID_HOST_NUM 0x81 215 #define QD_INVALID_DEVICE 0x82 216 #define QD_ERR_INTERNAL 0xFF 217 #define QHSTA_NO_ERROR 0x00 218 #define QHSTA_M_SEL_TIMEOUT 0x11 219 #define QHSTA_M_DATA_OVER_RUN 0x12 220 #define QHSTA_M_DATA_UNDER_RUN 0x12 221 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 222 #define QHSTA_M_BAD_BUS_PHASE_SEQ 0x14 223 #define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21 224 #define QHSTA_D_ASC_DVC_ERROR_CODE_SET 0x22 225 #define QHSTA_D_HOST_ABORT_FAILED 0x23 226 #define QHSTA_D_EXE_SCSI_Q_FAILED 0x24 227 #define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25 228 #define QHSTA_D_ASPI_NO_BUF_POOL 0x26 229 #define QHSTA_M_WTM_TIMEOUT 0x41 230 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 231 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 232 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 233 #define QHSTA_M_TARGET_STATUS_BUSY 0x45 234 #define QHSTA_M_BAD_TAG_CODE 0x46 235 #define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY 0x47 236 #define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48 237 #define QHSTA_D_LRAM_CMP_ERROR 0x81 238 #define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1 239 #define ASC_FLAG_SCSIQ_REQ 0x01 240 #define ASC_FLAG_BIOS_SCSIQ_REQ 0x02 241 #define ASC_FLAG_BIOS_ASYNC_IO 0x04 242 #define ASC_FLAG_SRB_LINEAR_ADDR 0x08 243 #define ASC_FLAG_WIN16 0x10 244 #define ASC_FLAG_WIN32 0x20 245 #define ASC_FLAG_ISA_OVER_16MB 0x40 246 #define ASC_FLAG_DOS_VM_CALLBACK 0x80 247 #define ASC_TAG_FLAG_EXTRA_BYTES 0x10 248 #define ASC_TAG_FLAG_DISABLE_DISCONNECT 0x04 249 #define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX 0x08 250 #define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40 251 #define ASC_SCSIQ_CPY_BEG 4 252 #define ASC_SCSIQ_SGHD_CPY_BEG 2 253 #define ASC_SCSIQ_B_FWD 0 254 #define ASC_SCSIQ_B_BWD 1 255 #define ASC_SCSIQ_B_STATUS 2 256 #define ASC_SCSIQ_B_QNO 3 257 #define ASC_SCSIQ_B_CNTL 4 258 #define ASC_SCSIQ_B_SG_QUEUE_CNT 5 259 #define ASC_SCSIQ_D_DATA_ADDR 8 260 #define ASC_SCSIQ_D_DATA_CNT 12 261 #define ASC_SCSIQ_B_SENSE_LEN 20 262 #define ASC_SCSIQ_DONE_INFO_BEG 22 263 #define ASC_SCSIQ_D_SRBPTR 22 264 #define ASC_SCSIQ_B_TARGET_IX 26 265 #define ASC_SCSIQ_B_CDB_LEN 28 266 #define ASC_SCSIQ_B_TAG_CODE 29 267 #define ASC_SCSIQ_W_VM_ID 30 268 #define ASC_SCSIQ_DONE_STATUS 32 269 #define ASC_SCSIQ_HOST_STATUS 33 270 #define ASC_SCSIQ_SCSI_STATUS 34 271 #define ASC_SCSIQ_CDB_BEG 36 272 #define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56 273 #define ASC_SCSIQ_DW_REMAIN_XFER_CNT 60 274 #define ASC_SCSIQ_B_FIRST_SG_WK_QP 48 275 #define ASC_SCSIQ_B_SG_WK_QP 49 276 #define ASC_SCSIQ_B_SG_WK_IX 50 277 #define ASC_SCSIQ_W_ALT_DC1 52 278 #define ASC_SCSIQ_B_LIST_CNT 6 279 #define ASC_SCSIQ_B_CUR_LIST_CNT 7 280 #define ASC_SGQ_B_SG_CNTL 4 281 #define ASC_SGQ_B_SG_HEAD_QP 5 282 #define ASC_SGQ_B_SG_LIST_CNT 6 283 #define ASC_SGQ_B_SG_CUR_LIST_CNT 7 284 #define ASC_SGQ_LIST_BEG 8 285 #define ASC_DEF_SCSI1_QNG 4 286 #define ASC_MAX_SCSI1_QNG 4 287 #define ASC_DEF_SCSI2_QNG 16 288 #define ASC_MAX_SCSI2_QNG 32 289 #define ASC_TAG_CODE_MASK 0x23 290 #define ASC_STOP_REQ_RISC_STOP 0x01 291 #define ASC_STOP_ACK_RISC_STOP 0x03 292 #define ASC_STOP_CLEAN_UP_BUSY_Q 0x10 293 #define ASC_STOP_CLEAN_UP_DISC_Q 0x20 294 #define ASC_STOP_HOST_REQ_RISC_HALT 0x40 295 #define ASC_TIDLUN_TO_IX(tid, lun) (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS)) 296 #define ASC_TID_TO_TARGET_ID(tid) (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid)) 297 #define ASC_TIX_TO_TARGET_ID(tix) (0x01 << ((tix) & ASC_MAX_TID)) 298 #define ASC_TIX_TO_TID(tix) ((tix) & ASC_MAX_TID) 299 #define ASC_TID_TO_TIX(tid) ((tid) & ASC_MAX_TID) 300 #define ASC_TIX_TO_LUN(tix) (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN) 301 #define ASC_QNO_TO_QADDR(q_no) ((ASC_QADR_BEG)+((int)(q_no) << 6)) 302 303 typedef struct asc_scsiq_1 { 304 uchar status; 305 uchar q_no; 306 uchar cntl; 307 uchar sg_queue_cnt; 308 uchar target_id; 309 uchar target_lun; 310 ASC_PADDR data_addr; 311 ASC_DCNT data_cnt; 312 ASC_PADDR sense_addr; 313 uchar sense_len; 314 uchar extra_bytes; 315 } ASC_SCSIQ_1; 316 317 typedef struct asc_scsiq_2 { 318 ASC_VADDR srb_ptr; 319 uchar target_ix; 320 uchar flag; 321 uchar cdb_len; 322 uchar tag_code; 323 ushort vm_id; 324 } ASC_SCSIQ_2; 325 326 typedef struct asc_scsiq_3 { 327 uchar done_stat; 328 uchar host_stat; 329 uchar scsi_stat; 330 uchar scsi_msg; 331 } ASC_SCSIQ_3; 332 333 typedef struct asc_scsiq_4 { 334 uchar cdb[ASC_MAX_CDB_LEN]; 335 uchar y_first_sg_list_qp; 336 uchar y_working_sg_qp; 337 uchar y_working_sg_ix; 338 uchar y_res; 339 ushort x_req_count; 340 ushort x_reconnect_rtn; 341 ASC_PADDR x_saved_data_addr; 342 ASC_DCNT x_saved_data_cnt; 343 } ASC_SCSIQ_4; 344 345 typedef struct asc_q_done_info { 346 ASC_SCSIQ_2 d2; 347 ASC_SCSIQ_3 d3; 348 uchar q_status; 349 uchar q_no; 350 uchar cntl; 351 uchar sense_len; 352 uchar extra_bytes; 353 uchar res; 354 ASC_DCNT remain_bytes; 355 } ASC_QDONE_INFO; 356 357 typedef struct asc_sg_list { 358 ASC_PADDR addr; 359 ASC_DCNT bytes; 360 } ASC_SG_LIST; 361 362 typedef struct asc_sg_head { 363 ushort entry_cnt; 364 ushort queue_cnt; 365 ushort entry_to_copy; 366 ushort res; 367 ASC_SG_LIST sg_list[0]; 368 } ASC_SG_HEAD; 369 370 typedef struct asc_scsi_q { 371 ASC_SCSIQ_1 q1; 372 ASC_SCSIQ_2 q2; 373 uchar *cdbptr; 374 ASC_SG_HEAD *sg_head; 375 ushort remain_sg_entry_cnt; 376 ushort next_sg_index; 377 } ASC_SCSI_Q; 378 379 typedef struct asc_scsi_req_q { 380 ASC_SCSIQ_1 r1; 381 ASC_SCSIQ_2 r2; 382 uchar *cdbptr; 383 ASC_SG_HEAD *sg_head; 384 uchar *sense_ptr; 385 ASC_SCSIQ_3 r3; 386 uchar cdb[ASC_MAX_CDB_LEN]; 387 uchar sense[ASC_MIN_SENSE_LEN]; 388 } ASC_SCSI_REQ_Q; 389 390 typedef struct asc_scsi_bios_req_q { 391 ASC_SCSIQ_1 r1; 392 ASC_SCSIQ_2 r2; 393 uchar *cdbptr; 394 ASC_SG_HEAD *sg_head; 395 uchar *sense_ptr; 396 ASC_SCSIQ_3 r3; 397 uchar cdb[ASC_MAX_CDB_LEN]; 398 uchar sense[ASC_MIN_SENSE_LEN]; 399 } ASC_SCSI_BIOS_REQ_Q; 400 401 typedef struct asc_risc_q { 402 uchar fwd; 403 uchar bwd; 404 ASC_SCSIQ_1 i1; 405 ASC_SCSIQ_2 i2; 406 ASC_SCSIQ_3 i3; 407 ASC_SCSIQ_4 i4; 408 } ASC_RISC_Q; 409 410 typedef struct asc_sg_list_q { 411 uchar seq_no; 412 uchar q_no; 413 uchar cntl; 414 uchar sg_head_qp; 415 uchar sg_list_cnt; 416 uchar sg_cur_list_cnt; 417 } ASC_SG_LIST_Q; 418 419 typedef struct asc_risc_sg_list_q { 420 uchar fwd; 421 uchar bwd; 422 ASC_SG_LIST_Q sg; 423 ASC_SG_LIST sg_list[7]; 424 } ASC_RISC_SG_LIST_Q; 425 426 #define ASCQ_ERR_Q_STATUS 0x0D 427 #define ASCQ_ERR_CUR_QNG 0x17 428 #define ASCQ_ERR_SG_Q_LINKS 0x18 429 #define ASCQ_ERR_ISR_RE_ENTRY 0x1A 430 #define ASCQ_ERR_CRITICAL_RE_ENTRY 0x1B 431 #define ASCQ_ERR_ISR_ON_CRITICAL 0x1C 432 433 /* 434 * Warning code values are set in ASC_DVC_VAR 'warn_code'. 435 */ 436 #define ASC_WARN_NO_ERROR 0x0000 437 #define ASC_WARN_IO_PORT_ROTATE 0x0001 438 #define ASC_WARN_EEPROM_CHKSUM 0x0002 439 #define ASC_WARN_IRQ_MODIFIED 0x0004 440 #define ASC_WARN_AUTO_CONFIG 0x0008 441 #define ASC_WARN_CMD_QNG_CONFLICT 0x0010 442 #define ASC_WARN_EEPROM_RECOVER 0x0020 443 #define ASC_WARN_CFG_MSW_RECOVER 0x0040 444 445 /* 446 * Error code values are set in {ASC/ADV}_DVC_VAR 'err_code'. 447 */ 448 #define ASC_IERR_NO_CARRIER 0x0001 /* No more carrier memory */ 449 #define ASC_IERR_MCODE_CHKSUM 0x0002 /* micro code check sum error */ 450 #define ASC_IERR_SET_PC_ADDR 0x0004 451 #define ASC_IERR_START_STOP_CHIP 0x0008 /* start/stop chip failed */ 452 #define ASC_IERR_ILLEGAL_CONNECTION 0x0010 /* Illegal cable connection */ 453 #define ASC_IERR_SINGLE_END_DEVICE 0x0020 /* SE device on DIFF bus */ 454 #define ASC_IERR_REVERSED_CABLE 0x0040 /* Narrow flat cable reversed */ 455 #define ASC_IERR_SET_SCSI_ID 0x0080 /* set SCSI ID failed */ 456 #define ASC_IERR_HVD_DEVICE 0x0100 /* HVD device on LVD port */ 457 #define ASC_IERR_BAD_SIGNATURE 0x0200 /* signature not found */ 458 #define ASC_IERR_NO_BUS_TYPE 0x0400 459 #define ASC_IERR_BIST_PRE_TEST 0x0800 /* BIST pre-test error */ 460 #define ASC_IERR_BIST_RAM_TEST 0x1000 /* BIST RAM test error */ 461 #define ASC_IERR_BAD_CHIPTYPE 0x2000 /* Invalid chip_type setting */ 462 463 #define ASC_DEF_MAX_TOTAL_QNG (0xF0) 464 #define ASC_MIN_TAG_Q_PER_DVC (0x04) 465 #define ASC_MIN_FREE_Q (0x02) 466 #define ASC_MIN_TOTAL_QNG ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q)) 467 #define ASC_MAX_TOTAL_QNG 240 468 #define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16 469 #define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG 8 470 #define ASC_MAX_PCI_INRAM_TOTAL_QNG 20 471 #define ASC_MAX_INRAM_TAG_QNG 16 472 #define ASC_IOADR_GAP 0x10 473 #define ASC_SYN_MAX_OFFSET 0x0F 474 #define ASC_DEF_SDTR_OFFSET 0x0F 475 #define ASC_SDTR_ULTRA_PCI_10MB_INDEX 0x02 476 #define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41 477 478 /* The narrow chip only supports a limited selection of transfer rates. 479 * These are encoded in the range 0..7 or 0..15 depending whether the chip 480 * is Ultra-capable or not. These tables let us convert from one to the other. 481 */ 482 static const unsigned char asc_syn_xfer_period[8] = { 483 25, 30, 35, 40, 50, 60, 70, 85 484 }; 485 486 static const unsigned char asc_syn_ultra_xfer_period[16] = { 487 12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107 488 }; 489 490 typedef struct ext_msg { 491 uchar msg_type; 492 uchar msg_len; 493 uchar msg_req; 494 union { 495 struct { 496 uchar sdtr_xfer_period; 497 uchar sdtr_req_ack_offset; 498 } sdtr; 499 struct { 500 uchar wdtr_width; 501 } wdtr; 502 struct { 503 uchar mdp_b3; 504 uchar mdp_b2; 505 uchar mdp_b1; 506 uchar mdp_b0; 507 } mdp; 508 } u_ext_msg; 509 uchar res; 510 } EXT_MSG; 511 512 #define xfer_period u_ext_msg.sdtr.sdtr_xfer_period 513 #define req_ack_offset u_ext_msg.sdtr.sdtr_req_ack_offset 514 #define wdtr_width u_ext_msg.wdtr.wdtr_width 515 #define mdp_b3 u_ext_msg.mdp_b3 516 #define mdp_b2 u_ext_msg.mdp_b2 517 #define mdp_b1 u_ext_msg.mdp_b1 518 #define mdp_b0 u_ext_msg.mdp_b0 519 520 typedef struct asc_dvc_cfg { 521 ASC_SCSI_BIT_ID_TYPE can_tagged_qng; 522 ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled; 523 ASC_SCSI_BIT_ID_TYPE disc_enable; 524 ASC_SCSI_BIT_ID_TYPE sdtr_enable; 525 uchar chip_scsi_id; 526 uchar isa_dma_speed; 527 uchar isa_dma_channel; 528 uchar chip_version; 529 ushort mcode_date; 530 ushort mcode_version; 531 uchar max_tag_qng[ASC_MAX_TID + 1]; 532 uchar sdtr_period_offset[ASC_MAX_TID + 1]; 533 uchar adapter_info[6]; 534 } ASC_DVC_CFG; 535 536 #define ASC_DEF_DVC_CNTL 0xFFFF 537 #define ASC_DEF_CHIP_SCSI_ID 7 538 #define ASC_DEF_ISA_DMA_SPEED 4 539 #define ASC_INIT_STATE_BEG_GET_CFG 0x0001 540 #define ASC_INIT_STATE_END_GET_CFG 0x0002 541 #define ASC_INIT_STATE_BEG_SET_CFG 0x0004 542 #define ASC_INIT_STATE_END_SET_CFG 0x0008 543 #define ASC_INIT_STATE_BEG_LOAD_MC 0x0010 544 #define ASC_INIT_STATE_END_LOAD_MC 0x0020 545 #define ASC_INIT_STATE_BEG_INQUIRY 0x0040 546 #define ASC_INIT_STATE_END_INQUIRY 0x0080 547 #define ASC_INIT_RESET_SCSI_DONE 0x0100 548 #define ASC_INIT_STATE_WITHOUT_EEP 0x8000 549 #define ASC_BUG_FIX_IF_NOT_DWB 0x0001 550 #define ASC_BUG_FIX_ASYN_USE_SYN 0x0002 551 #define ASC_MIN_TAGGED_CMD 7 552 #define ASC_MAX_SCSI_RESET_WAIT 30 553 #define ASC_OVERRUN_BSIZE 64 554 555 struct asc_dvc_var; /* Forward Declaration. */ 556 557 typedef struct asc_dvc_var { 558 PortAddr iop_base; 559 ushort err_code; 560 ushort dvc_cntl; 561 ushort bug_fix_cntl; 562 ushort bus_type; 563 ASC_SCSI_BIT_ID_TYPE init_sdtr; 564 ASC_SCSI_BIT_ID_TYPE sdtr_done; 565 ASC_SCSI_BIT_ID_TYPE use_tagged_qng; 566 ASC_SCSI_BIT_ID_TYPE unit_not_ready; 567 ASC_SCSI_BIT_ID_TYPE queue_full_or_busy; 568 ASC_SCSI_BIT_ID_TYPE start_motor; 569 uchar *overrun_buf; 570 dma_addr_t overrun_dma; 571 uchar scsi_reset_wait; 572 uchar chip_no; 573 char is_in_int; 574 uchar max_total_qng; 575 uchar cur_total_qng; 576 uchar in_critical_cnt; 577 uchar last_q_shortage; 578 ushort init_state; 579 uchar cur_dvc_qng[ASC_MAX_TID + 1]; 580 uchar max_dvc_qng[ASC_MAX_TID + 1]; 581 ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1]; 582 ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1]; 583 const uchar *sdtr_period_tbl; 584 ASC_DVC_CFG *cfg; 585 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always; 586 char redo_scam; 587 ushort res2; 588 uchar dos_int13_table[ASC_MAX_TID + 1]; 589 ASC_DCNT max_dma_count; 590 ASC_SCSI_BIT_ID_TYPE no_scam; 591 ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer; 592 uchar min_sdtr_index; 593 uchar max_sdtr_index; 594 struct asc_board *drv_ptr; 595 int ptr_map_count; 596 void **ptr_map; 597 ASC_DCNT uc_break; 598 } ASC_DVC_VAR; 599 600 typedef struct asc_dvc_inq_info { 601 uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 602 } ASC_DVC_INQ_INFO; 603 604 typedef struct asc_cap_info { 605 ASC_DCNT lba; 606 ASC_DCNT blk_size; 607 } ASC_CAP_INFO; 608 609 typedef struct asc_cap_info_array { 610 ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1]; 611 } ASC_CAP_INFO_ARRAY; 612 613 #define ASC_MCNTL_NO_SEL_TIMEOUT (ushort)0x0001 614 #define ASC_MCNTL_NULL_TARGET (ushort)0x0002 615 #define ASC_CNTL_INITIATOR (ushort)0x0001 616 #define ASC_CNTL_BIOS_GT_1GB (ushort)0x0002 617 #define ASC_CNTL_BIOS_GT_2_DISK (ushort)0x0004 618 #define ASC_CNTL_BIOS_REMOVABLE (ushort)0x0008 619 #define ASC_CNTL_NO_SCAM (ushort)0x0010 620 #define ASC_CNTL_INT_MULTI_Q (ushort)0x0080 621 #define ASC_CNTL_NO_LUN_SUPPORT (ushort)0x0040 622 #define ASC_CNTL_NO_VERIFY_COPY (ushort)0x0100 623 #define ASC_CNTL_RESET_SCSI (ushort)0x0200 624 #define ASC_CNTL_INIT_INQUIRY (ushort)0x0400 625 #define ASC_CNTL_INIT_VERBOSE (ushort)0x0800 626 #define ASC_CNTL_SCSI_PARITY (ushort)0x1000 627 #define ASC_CNTL_BURST_MODE (ushort)0x2000 628 #define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000 629 #define ASC_EEP_DVC_CFG_BEG_VL 2 630 #define ASC_EEP_MAX_DVC_ADDR_VL 15 631 #define ASC_EEP_DVC_CFG_BEG 32 632 #define ASC_EEP_MAX_DVC_ADDR 45 633 #define ASC_EEP_MAX_RETRY 20 634 635 /* 636 * These macros keep the chip SCSI id and ISA DMA speed 637 * bitfields in board order. C bitfields aren't portable 638 * between big and little-endian platforms so they are 639 * not used. 640 */ 641 642 #define ASC_EEP_GET_CHIP_ID(cfg) ((cfg)->id_speed & 0x0f) 643 #define ASC_EEP_GET_DMA_SPD(cfg) (((cfg)->id_speed & 0xf0) >> 4) 644 #define ASC_EEP_SET_CHIP_ID(cfg, sid) \ 645 ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID)) 646 #define ASC_EEP_SET_DMA_SPD(cfg, spd) \ 647 ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4) 648 649 typedef struct asceep_config { 650 ushort cfg_lsw; 651 ushort cfg_msw; 652 uchar init_sdtr; 653 uchar disc_enable; 654 uchar use_cmd_qng; 655 uchar start_motor; 656 uchar max_total_qng; 657 uchar max_tag_qng; 658 uchar bios_scan; 659 uchar power_up_wait; 660 uchar no_scam; 661 uchar id_speed; /* low order 4 bits is chip scsi id */ 662 /* high order 4 bits is isa dma speed */ 663 uchar dos_int13_table[ASC_MAX_TID + 1]; 664 uchar adapter_info[6]; 665 ushort cntl; 666 ushort chksum; 667 } ASCEEP_CONFIG; 668 669 #define ASC_EEP_CMD_READ 0x80 670 #define ASC_EEP_CMD_WRITE 0x40 671 #define ASC_EEP_CMD_WRITE_ABLE 0x30 672 #define ASC_EEP_CMD_WRITE_DISABLE 0x00 673 #define ASCV_MSGOUT_BEG 0x0000 674 #define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3) 675 #define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4) 676 #define ASCV_BREAK_SAVED_CODE (ushort)0x0006 677 #define ASCV_MSGIN_BEG (ASCV_MSGOUT_BEG+8) 678 #define ASCV_MSGIN_SDTR_PERIOD (ASCV_MSGIN_BEG+3) 679 #define ASCV_MSGIN_SDTR_OFFSET (ASCV_MSGIN_BEG+4) 680 #define ASCV_SDTR_DATA_BEG (ASCV_MSGIN_BEG+8) 681 #define ASCV_SDTR_DONE_BEG (ASCV_SDTR_DATA_BEG+8) 682 #define ASCV_MAX_DVC_QNG_BEG (ushort)0x0020 683 #define ASCV_BREAK_ADDR (ushort)0x0028 684 #define ASCV_BREAK_NOTIFY_COUNT (ushort)0x002A 685 #define ASCV_BREAK_CONTROL (ushort)0x002C 686 #define ASCV_BREAK_HIT_COUNT (ushort)0x002E 687 688 #define ASCV_ASCDVC_ERR_CODE_W (ushort)0x0030 689 #define ASCV_MCODE_CHKSUM_W (ushort)0x0032 690 #define ASCV_MCODE_SIZE_W (ushort)0x0034 691 #define ASCV_STOP_CODE_B (ushort)0x0036 692 #define ASCV_DVC_ERR_CODE_B (ushort)0x0037 693 #define ASCV_OVERRUN_PADDR_D (ushort)0x0038 694 #define ASCV_OVERRUN_BSIZE_D (ushort)0x003C 695 #define ASCV_HALTCODE_W (ushort)0x0040 696 #define ASCV_CHKSUM_W (ushort)0x0042 697 #define ASCV_MC_DATE_W (ushort)0x0044 698 #define ASCV_MC_VER_W (ushort)0x0046 699 #define ASCV_NEXTRDY_B (ushort)0x0048 700 #define ASCV_DONENEXT_B (ushort)0x0049 701 #define ASCV_USE_TAGGED_QNG_B (ushort)0x004A 702 #define ASCV_SCSIBUSY_B (ushort)0x004B 703 #define ASCV_Q_DONE_IN_PROGRESS_B (ushort)0x004C 704 #define ASCV_CURCDB_B (ushort)0x004D 705 #define ASCV_RCLUN_B (ushort)0x004E 706 #define ASCV_BUSY_QHEAD_B (ushort)0x004F 707 #define ASCV_DISC1_QHEAD_B (ushort)0x0050 708 #define ASCV_DISC_ENABLE_B (ushort)0x0052 709 #define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053 710 #define ASCV_HOSTSCSI_ID_B (ushort)0x0055 711 #define ASCV_MCODE_CNTL_B (ushort)0x0056 712 #define ASCV_NULL_TARGET_B (ushort)0x0057 713 #define ASCV_FREE_Q_HEAD_W (ushort)0x0058 714 #define ASCV_DONE_Q_TAIL_W (ushort)0x005A 715 #define ASCV_FREE_Q_HEAD_B (ushort)(ASCV_FREE_Q_HEAD_W+1) 716 #define ASCV_DONE_Q_TAIL_B (ushort)(ASCV_DONE_Q_TAIL_W+1) 717 #define ASCV_HOST_FLAG_B (ushort)0x005D 718 #define ASCV_TOTAL_READY_Q_B (ushort)0x0064 719 #define ASCV_VER_SERIAL_B (ushort)0x0065 720 #define ASCV_HALTCODE_SAVED_W (ushort)0x0066 721 #define ASCV_WTM_FLAG_B (ushort)0x0068 722 #define ASCV_RISC_FLAG_B (ushort)0x006A 723 #define ASCV_REQ_SG_LIST_QP (ushort)0x006B 724 #define ASC_HOST_FLAG_IN_ISR 0x01 725 #define ASC_HOST_FLAG_ACK_INT 0x02 726 #define ASC_RISC_FLAG_GEN_INT 0x01 727 #define ASC_RISC_FLAG_REQ_SG_LIST 0x02 728 #define IOP_CTRL (0x0F) 729 #define IOP_STATUS (0x0E) 730 #define IOP_INT_ACK IOP_STATUS 731 #define IOP_REG_IFC (0x0D) 732 #define IOP_SYN_OFFSET (0x0B) 733 #define IOP_EXTRA_CONTROL (0x0D) 734 #define IOP_REG_PC (0x0C) 735 #define IOP_RAM_ADDR (0x0A) 736 #define IOP_RAM_DATA (0x08) 737 #define IOP_EEP_DATA (0x06) 738 #define IOP_EEP_CMD (0x07) 739 #define IOP_VERSION (0x03) 740 #define IOP_CONFIG_HIGH (0x04) 741 #define IOP_CONFIG_LOW (0x02) 742 #define IOP_SIG_BYTE (0x01) 743 #define IOP_SIG_WORD (0x00) 744 #define IOP_REG_DC1 (0x0E) 745 #define IOP_REG_DC0 (0x0C) 746 #define IOP_REG_SB (0x0B) 747 #define IOP_REG_DA1 (0x0A) 748 #define IOP_REG_DA0 (0x08) 749 #define IOP_REG_SC (0x09) 750 #define IOP_DMA_SPEED (0x07) 751 #define IOP_REG_FLAG (0x07) 752 #define IOP_FIFO_H (0x06) 753 #define IOP_FIFO_L (0x04) 754 #define IOP_REG_ID (0x05) 755 #define IOP_REG_QP (0x03) 756 #define IOP_REG_IH (0x02) 757 #define IOP_REG_IX (0x01) 758 #define IOP_REG_AX (0x00) 759 #define IFC_REG_LOCK (0x00) 760 #define IFC_REG_UNLOCK (0x09) 761 #define IFC_WR_EN_FILTER (0x10) 762 #define IFC_RD_NO_EEPROM (0x10) 763 #define IFC_SLEW_RATE (0x20) 764 #define IFC_ACT_NEG (0x40) 765 #define IFC_INP_FILTER (0x80) 766 #define IFC_INIT_DEFAULT (IFC_ACT_NEG | IFC_REG_UNLOCK) 767 #define SC_SEL (uchar)(0x80) 768 #define SC_BSY (uchar)(0x40) 769 #define SC_ACK (uchar)(0x20) 770 #define SC_REQ (uchar)(0x10) 771 #define SC_ATN (uchar)(0x08) 772 #define SC_IO (uchar)(0x04) 773 #define SC_CD (uchar)(0x02) 774 #define SC_MSG (uchar)(0x01) 775 #define SEC_SCSI_CTL (uchar)(0x80) 776 #define SEC_ACTIVE_NEGATE (uchar)(0x40) 777 #define SEC_SLEW_RATE (uchar)(0x20) 778 #define SEC_ENABLE_FILTER (uchar)(0x10) 779 #define ASC_HALT_EXTMSG_IN (ushort)0x8000 780 #define ASC_HALT_CHK_CONDITION (ushort)0x8100 781 #define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200 782 #define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX (ushort)0x8300 783 #define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX (ushort)0x8400 784 #define ASC_HALT_SDTR_REJECTED (ushort)0x4000 785 #define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000 786 #define ASC_MAX_QNO 0xF8 787 #define ASC_DATA_SEC_BEG (ushort)0x0080 788 #define ASC_DATA_SEC_END (ushort)0x0080 789 #define ASC_CODE_SEC_BEG (ushort)0x0080 790 #define ASC_CODE_SEC_END (ushort)0x0080 791 #define ASC_QADR_BEG (0x4000) 792 #define ASC_QADR_USED (ushort)(ASC_MAX_QNO * 64) 793 #define ASC_QADR_END (ushort)0x7FFF 794 #define ASC_QLAST_ADR (ushort)0x7FC0 795 #define ASC_QBLK_SIZE 0x40 796 #define ASC_BIOS_DATA_QBEG 0xF8 797 #define ASC_MIN_ACTIVE_QNO 0x01 798 #define ASC_QLINK_END 0xFF 799 #define ASC_EEPROM_WORDS 0x10 800 #define ASC_MAX_MGS_LEN 0x10 801 #define ASC_BIOS_ADDR_DEF 0xDC00 802 #define ASC_BIOS_SIZE 0x3800 803 #define ASC_BIOS_RAM_OFF 0x3800 804 #define ASC_BIOS_RAM_SIZE 0x800 805 #define ASC_BIOS_MIN_ADDR 0xC000 806 #define ASC_BIOS_MAX_ADDR 0xEC00 807 #define ASC_BIOS_BANK_SIZE 0x0400 808 #define ASC_MCODE_START_ADDR 0x0080 809 #define ASC_CFG0_HOST_INT_ON 0x0020 810 #define ASC_CFG0_BIOS_ON 0x0040 811 #define ASC_CFG0_VERA_BURST_ON 0x0080 812 #define ASC_CFG0_SCSI_PARITY_ON 0x0800 813 #define ASC_CFG1_SCSI_TARGET_ON 0x0080 814 #define ASC_CFG1_LRAM_8BITS_ON 0x0800 815 #define ASC_CFG_MSW_CLR_MASK 0x3080 816 #define CSW_TEST1 (ASC_CS_TYPE)0x8000 817 #define CSW_AUTO_CONFIG (ASC_CS_TYPE)0x4000 818 #define CSW_RESERVED1 (ASC_CS_TYPE)0x2000 819 #define CSW_IRQ_WRITTEN (ASC_CS_TYPE)0x1000 820 #define CSW_33MHZ_SELECTED (ASC_CS_TYPE)0x0800 821 #define CSW_TEST2 (ASC_CS_TYPE)0x0400 822 #define CSW_TEST3 (ASC_CS_TYPE)0x0200 823 #define CSW_RESERVED2 (ASC_CS_TYPE)0x0100 824 #define CSW_DMA_DONE (ASC_CS_TYPE)0x0080 825 #define CSW_FIFO_RDY (ASC_CS_TYPE)0x0040 826 #define CSW_EEP_READ_DONE (ASC_CS_TYPE)0x0020 827 #define CSW_HALTED (ASC_CS_TYPE)0x0010 828 #define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008 829 #define CSW_PARITY_ERR (ASC_CS_TYPE)0x0004 830 #define CSW_SCSI_RESET_LATCH (ASC_CS_TYPE)0x0002 831 #define CSW_INT_PENDING (ASC_CS_TYPE)0x0001 832 #define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000 833 #define CIW_INT_ACK (ASC_CS_TYPE)0x0100 834 #define CIW_TEST1 (ASC_CS_TYPE)0x0200 835 #define CIW_TEST2 (ASC_CS_TYPE)0x0400 836 #define CIW_SEL_33MHZ (ASC_CS_TYPE)0x0800 837 #define CIW_IRQ_ACT (ASC_CS_TYPE)0x1000 838 #define CC_CHIP_RESET (uchar)0x80 839 #define CC_SCSI_RESET (uchar)0x40 840 #define CC_HALT (uchar)0x20 841 #define CC_SINGLE_STEP (uchar)0x10 842 #define CC_DMA_ABLE (uchar)0x08 843 #define CC_TEST (uchar)0x04 844 #define CC_BANK_ONE (uchar)0x02 845 #define CC_DIAG (uchar)0x01 846 #define ASC_1000_ID0W 0x04C1 847 #define ASC_1000_ID0W_FIX 0x00C1 848 #define ASC_1000_ID1B 0x25 849 #define ASC_EISA_REV_IOP_MASK (0x0C83) 850 #define ASC_EISA_CFG_IOP_MASK (0x0C86) 851 #define ASC_GET_EISA_SLOT(iop) (PortAddr)((iop) & 0xF000) 852 #define INS_HALTINT (ushort)0x6281 853 #define INS_HALT (ushort)0x6280 854 #define INS_SINT (ushort)0x6200 855 #define INS_RFLAG_WTM (ushort)0x7380 856 #define ASC_MC_SAVE_CODE_WSIZE 0x500 857 #define ASC_MC_SAVE_DATA_WSIZE 0x40 858 859 typedef struct asc_mc_saved { 860 ushort data[ASC_MC_SAVE_DATA_WSIZE]; 861 ushort code[ASC_MC_SAVE_CODE_WSIZE]; 862 } ASC_MC_SAVED; 863 864 #define AscGetQDoneInProgress(port) AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B) 865 #define AscPutQDoneInProgress(port, val) AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val) 866 #define AscGetVarFreeQHead(port) AscReadLramWord((port), ASCV_FREE_Q_HEAD_W) 867 #define AscGetVarDoneQTail(port) AscReadLramWord((port), ASCV_DONE_Q_TAIL_W) 868 #define AscPutVarFreeQHead(port, val) AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val) 869 #define AscPutVarDoneQTail(port, val) AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val) 870 #define AscGetRiscVarFreeQHead(port) AscReadLramByte((port), ASCV_NEXTRDY_B) 871 #define AscGetRiscVarDoneQTail(port) AscReadLramByte((port), ASCV_DONENEXT_B) 872 #define AscPutRiscVarFreeQHead(port, val) AscWriteLramByte((port), ASCV_NEXTRDY_B, val) 873 #define AscPutRiscVarDoneQTail(port, val) AscWriteLramByte((port), ASCV_DONENEXT_B, val) 874 #define AscPutMCodeSDTRDoneAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data)) 875 #define AscGetMCodeSDTRDoneAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id)) 876 #define AscPutMCodeInitSDTRAtID(port, id, data) AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data) 877 #define AscGetMCodeInitSDTRAtID(port, id) AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id)) 878 #define AscGetChipSignatureByte(port) (uchar)inp((port)+IOP_SIG_BYTE) 879 #define AscGetChipSignatureWord(port) (ushort)inpw((port)+IOP_SIG_WORD) 880 #define AscGetChipVerNo(port) (uchar)inp((port)+IOP_VERSION) 881 #define AscGetChipCfgLsw(port) (ushort)inpw((port)+IOP_CONFIG_LOW) 882 #define AscGetChipCfgMsw(port) (ushort)inpw((port)+IOP_CONFIG_HIGH) 883 #define AscSetChipCfgLsw(port, data) outpw((port)+IOP_CONFIG_LOW, data) 884 #define AscSetChipCfgMsw(port, data) outpw((port)+IOP_CONFIG_HIGH, data) 885 #define AscGetChipEEPCmd(port) (uchar)inp((port)+IOP_EEP_CMD) 886 #define AscSetChipEEPCmd(port, data) outp((port)+IOP_EEP_CMD, data) 887 #define AscGetChipEEPData(port) (ushort)inpw((port)+IOP_EEP_DATA) 888 #define AscSetChipEEPData(port, data) outpw((port)+IOP_EEP_DATA, data) 889 #define AscGetChipLramAddr(port) (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR)) 890 #define AscSetChipLramAddr(port, addr) outpw((PortAddr)((port)+IOP_RAM_ADDR), addr) 891 #define AscGetChipLramData(port) (ushort)inpw((port)+IOP_RAM_DATA) 892 #define AscSetChipLramData(port, data) outpw((port)+IOP_RAM_DATA, data) 893 #define AscGetChipIFC(port) (uchar)inp((port)+IOP_REG_IFC) 894 #define AscSetChipIFC(port, data) outp((port)+IOP_REG_IFC, data) 895 #define AscGetChipStatus(port) (ASC_CS_TYPE)inpw((port)+IOP_STATUS) 896 #define AscSetChipStatus(port, cs_val) outpw((port)+IOP_STATUS, cs_val) 897 #define AscGetChipControl(port) (uchar)inp((port)+IOP_CTRL) 898 #define AscSetChipControl(port, cc_val) outp((port)+IOP_CTRL, cc_val) 899 #define AscGetChipSyn(port) (uchar)inp((port)+IOP_SYN_OFFSET) 900 #define AscSetChipSyn(port, data) outp((port)+IOP_SYN_OFFSET, data) 901 #define AscSetPCAddr(port, data) outpw((port)+IOP_REG_PC, data) 902 #define AscGetPCAddr(port) (ushort)inpw((port)+IOP_REG_PC) 903 #define AscIsIntPending(port) (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH)) 904 #define AscGetChipScsiID(port) ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID) 905 #define AscGetExtraControl(port) (uchar)inp((port)+IOP_EXTRA_CONTROL) 906 #define AscSetExtraControl(port, data) outp((port)+IOP_EXTRA_CONTROL, data) 907 #define AscReadChipAX(port) (ushort)inpw((port)+IOP_REG_AX) 908 #define AscWriteChipAX(port, data) outpw((port)+IOP_REG_AX, data) 909 #define AscReadChipIX(port) (uchar)inp((port)+IOP_REG_IX) 910 #define AscWriteChipIX(port, data) outp((port)+IOP_REG_IX, data) 911 #define AscReadChipIH(port) (ushort)inpw((port)+IOP_REG_IH) 912 #define AscWriteChipIH(port, data) outpw((port)+IOP_REG_IH, data) 913 #define AscReadChipQP(port) (uchar)inp((port)+IOP_REG_QP) 914 #define AscWriteChipQP(port, data) outp((port)+IOP_REG_QP, data) 915 #define AscReadChipFIFO_L(port) (ushort)inpw((port)+IOP_REG_FIFO_L) 916 #define AscWriteChipFIFO_L(port, data) outpw((port)+IOP_REG_FIFO_L, data) 917 #define AscReadChipFIFO_H(port) (ushort)inpw((port)+IOP_REG_FIFO_H) 918 #define AscWriteChipFIFO_H(port, data) outpw((port)+IOP_REG_FIFO_H, data) 919 #define AscReadChipDmaSpeed(port) (uchar)inp((port)+IOP_DMA_SPEED) 920 #define AscWriteChipDmaSpeed(port, data) outp((port)+IOP_DMA_SPEED, data) 921 #define AscReadChipDA0(port) (ushort)inpw((port)+IOP_REG_DA0) 922 #define AscWriteChipDA0(port) outpw((port)+IOP_REG_DA0, data) 923 #define AscReadChipDA1(port) (ushort)inpw((port)+IOP_REG_DA1) 924 #define AscWriteChipDA1(port) outpw((port)+IOP_REG_DA1, data) 925 #define AscReadChipDC0(port) (ushort)inpw((port)+IOP_REG_DC0) 926 #define AscWriteChipDC0(port) outpw((port)+IOP_REG_DC0, data) 927 #define AscReadChipDC1(port) (ushort)inpw((port)+IOP_REG_DC1) 928 #define AscWriteChipDC1(port) outpw((port)+IOP_REG_DC1, data) 929 #define AscReadChipDvcID(port) (uchar)inp((port)+IOP_REG_ID) 930 #define AscWriteChipDvcID(port, data) outp((port)+IOP_REG_ID, data) 931 932 /* 933 * Portable Data Types 934 * 935 * Any instance where a 32-bit long or pointer type is assumed 936 * for precision or HW defined structures, the following define 937 * types must be used. In Linux the char, short, and int types 938 * are all consistent at 8, 16, and 32 bits respectively. Pointers 939 * and long types are 64 bits on Alpha and UltraSPARC. 940 */ 941 #define ADV_PADDR __u32 /* Physical address data type. */ 942 #define ADV_VADDR __u32 /* Virtual address data type. */ 943 #define ADV_DCNT __u32 /* Unsigned Data count type. */ 944 #define ADV_SDCNT __s32 /* Signed Data count type. */ 945 946 /* 947 * These macros are used to convert a virtual address to a 948 * 32-bit value. This currently can be used on Linux Alpha 949 * which uses 64-bit virtual address but a 32-bit bus address. 950 * This is likely to break in the future, but doing this now 951 * will give us time to change the HW and FW to handle 64-bit 952 * addresses. 953 */ 954 #define ADV_VADDR_TO_U32 virt_to_bus 955 #define ADV_U32_TO_VADDR bus_to_virt 956 957 #define AdvPortAddr void __iomem * /* Virtual memory address size */ 958 959 /* 960 * Define Adv Library required memory access macros. 961 */ 962 #define ADV_MEM_READB(addr) readb(addr) 963 #define ADV_MEM_READW(addr) readw(addr) 964 #define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr) 965 #define ADV_MEM_WRITEW(addr, word) writew(word, addr) 966 #define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr) 967 968 #define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 15) 969 970 /* 971 * Define total number of simultaneous maximum element scatter-gather 972 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the 973 * maximum number of outstanding commands per wide host adapter. Each 974 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather 975 * elements. Allow each command to have at least one ADV_SG_BLOCK structure. 976 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK 977 * structures or 255 scatter-gather elements. 978 */ 979 #define ADV_TOT_SG_BLOCK ASC_DEF_MAX_HOST_QNG 980 981 /* 982 * Define maximum number of scatter-gather elements per request. 983 */ 984 #define ADV_MAX_SG_LIST 255 985 #define NO_OF_SG_PER_BLOCK 15 986 987 #define ADV_EEP_DVC_CFG_BEGIN (0x00) 988 #define ADV_EEP_DVC_CFG_END (0x15) 989 #define ADV_EEP_DVC_CTL_BEGIN (0x16) /* location of OEM name */ 990 #define ADV_EEP_MAX_WORD_ADDR (0x1E) 991 992 #define ADV_EEP_DELAY_MS 100 993 994 #define ADV_EEPROM_BIG_ENDIAN 0x8000 /* EEPROM Bit 15 */ 995 #define ADV_EEPROM_BIOS_ENABLE 0x4000 /* EEPROM Bit 14 */ 996 /* 997 * For the ASC3550 Bit 13 is Termination Polarity control bit. 998 * For later ICs Bit 13 controls whether the CIS (Card Information 999 * Service Section) is loaded from EEPROM. 1000 */ 1001 #define ADV_EEPROM_TERM_POL 0x2000 /* EEPROM Bit 13 */ 1002 #define ADV_EEPROM_CIS_LD 0x2000 /* EEPROM Bit 13 */ 1003 /* 1004 * ASC38C1600 Bit 11 1005 * 1006 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify 1007 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then 1008 * Function 0 will specify INT B. 1009 * 1010 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify 1011 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then 1012 * Function 1 will specify INT A. 1013 */ 1014 #define ADV_EEPROM_INTAB 0x0800 /* EEPROM Bit 11 */ 1015 1016 typedef struct adveep_3550_config { 1017 /* Word Offset, Description */ 1018 1019 ushort cfg_lsw; /* 00 power up initialization */ 1020 /* bit 13 set - Term Polarity Control */ 1021 /* bit 14 set - BIOS Enable */ 1022 /* bit 15 set - Big Endian Mode */ 1023 ushort cfg_msw; /* 01 unused */ 1024 ushort disc_enable; /* 02 disconnect enable */ 1025 ushort wdtr_able; /* 03 Wide DTR able */ 1026 ushort sdtr_able; /* 04 Synchronous DTR able */ 1027 ushort start_motor; /* 05 send start up motor */ 1028 ushort tagqng_able; /* 06 tag queuing able */ 1029 ushort bios_scan; /* 07 BIOS device control */ 1030 ushort scam_tolerant; /* 08 no scam */ 1031 1032 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1033 uchar bios_boot_delay; /* power up wait */ 1034 1035 uchar scsi_reset_delay; /* 10 reset delay */ 1036 uchar bios_id_lun; /* first boot device scsi id & lun */ 1037 /* high nibble is lun */ 1038 /* low nibble is scsi id */ 1039 1040 uchar termination; /* 11 0 - automatic */ 1041 /* 1 - low off / high off */ 1042 /* 2 - low off / high on */ 1043 /* 3 - low on / high on */ 1044 /* There is no low on / high off */ 1045 1046 uchar reserved1; /* reserved byte (not used) */ 1047 1048 ushort bios_ctrl; /* 12 BIOS control bits */ 1049 /* bit 0 BIOS don't act as initiator. */ 1050 /* bit 1 BIOS > 1 GB support */ 1051 /* bit 2 BIOS > 2 Disk Support */ 1052 /* bit 3 BIOS don't support removables */ 1053 /* bit 4 BIOS support bootable CD */ 1054 /* bit 5 BIOS scan enabled */ 1055 /* bit 6 BIOS support multiple LUNs */ 1056 /* bit 7 BIOS display of message */ 1057 /* bit 8 SCAM disabled */ 1058 /* bit 9 Reset SCSI bus during init. */ 1059 /* bit 10 */ 1060 /* bit 11 No verbose initialization. */ 1061 /* bit 12 SCSI parity enabled */ 1062 /* bit 13 */ 1063 /* bit 14 */ 1064 /* bit 15 */ 1065 ushort ultra_able; /* 13 ULTRA speed able */ 1066 ushort reserved2; /* 14 reserved */ 1067 uchar max_host_qng; /* 15 maximum host queuing */ 1068 uchar max_dvc_qng; /* maximum per device queuing */ 1069 ushort dvc_cntl; /* 16 control bit for driver */ 1070 ushort bug_fix; /* 17 control bit for bug fix */ 1071 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1072 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1073 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1074 ushort check_sum; /* 21 EEP check sum */ 1075 uchar oem_name[16]; /* 22 OEM name */ 1076 ushort dvc_err_code; /* 30 last device driver error code */ 1077 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1078 ushort adv_err_addr; /* 32 last uc error address */ 1079 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1080 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1081 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1082 ushort num_of_err; /* 36 number of error */ 1083 } ADVEEP_3550_CONFIG; 1084 1085 typedef struct adveep_38C0800_config { 1086 /* Word Offset, Description */ 1087 1088 ushort cfg_lsw; /* 00 power up initialization */ 1089 /* bit 13 set - Load CIS */ 1090 /* bit 14 set - BIOS Enable */ 1091 /* bit 15 set - Big Endian Mode */ 1092 ushort cfg_msw; /* 01 unused */ 1093 ushort disc_enable; /* 02 disconnect enable */ 1094 ushort wdtr_able; /* 03 Wide DTR able */ 1095 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1096 ushort start_motor; /* 05 send start up motor */ 1097 ushort tagqng_able; /* 06 tag queuing able */ 1098 ushort bios_scan; /* 07 BIOS device control */ 1099 ushort scam_tolerant; /* 08 no scam */ 1100 1101 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1102 uchar bios_boot_delay; /* power up wait */ 1103 1104 uchar scsi_reset_delay; /* 10 reset delay */ 1105 uchar bios_id_lun; /* first boot device scsi id & lun */ 1106 /* high nibble is lun */ 1107 /* low nibble is scsi id */ 1108 1109 uchar termination_se; /* 11 0 - automatic */ 1110 /* 1 - low off / high off */ 1111 /* 2 - low off / high on */ 1112 /* 3 - low on / high on */ 1113 /* There is no low on / high off */ 1114 1115 uchar termination_lvd; /* 11 0 - automatic */ 1116 /* 1 - low off / high off */ 1117 /* 2 - low off / high on */ 1118 /* 3 - low on / high on */ 1119 /* There is no low on / high off */ 1120 1121 ushort bios_ctrl; /* 12 BIOS control bits */ 1122 /* bit 0 BIOS don't act as initiator. */ 1123 /* bit 1 BIOS > 1 GB support */ 1124 /* bit 2 BIOS > 2 Disk Support */ 1125 /* bit 3 BIOS don't support removables */ 1126 /* bit 4 BIOS support bootable CD */ 1127 /* bit 5 BIOS scan enabled */ 1128 /* bit 6 BIOS support multiple LUNs */ 1129 /* bit 7 BIOS display of message */ 1130 /* bit 8 SCAM disabled */ 1131 /* bit 9 Reset SCSI bus during init. */ 1132 /* bit 10 */ 1133 /* bit 11 No verbose initialization. */ 1134 /* bit 12 SCSI parity enabled */ 1135 /* bit 13 */ 1136 /* bit 14 */ 1137 /* bit 15 */ 1138 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1139 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1140 uchar max_host_qng; /* 15 maximum host queueing */ 1141 uchar max_dvc_qng; /* maximum per device queuing */ 1142 ushort dvc_cntl; /* 16 control bit for driver */ 1143 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1144 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1145 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1146 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1147 ushort check_sum; /* 21 EEP check sum */ 1148 uchar oem_name[16]; /* 22 OEM name */ 1149 ushort dvc_err_code; /* 30 last device driver error code */ 1150 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1151 ushort adv_err_addr; /* 32 last uc error address */ 1152 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1153 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1154 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1155 ushort reserved36; /* 36 reserved */ 1156 ushort reserved37; /* 37 reserved */ 1157 ushort reserved38; /* 38 reserved */ 1158 ushort reserved39; /* 39 reserved */ 1159 ushort reserved40; /* 40 reserved */ 1160 ushort reserved41; /* 41 reserved */ 1161 ushort reserved42; /* 42 reserved */ 1162 ushort reserved43; /* 43 reserved */ 1163 ushort reserved44; /* 44 reserved */ 1164 ushort reserved45; /* 45 reserved */ 1165 ushort reserved46; /* 46 reserved */ 1166 ushort reserved47; /* 47 reserved */ 1167 ushort reserved48; /* 48 reserved */ 1168 ushort reserved49; /* 49 reserved */ 1169 ushort reserved50; /* 50 reserved */ 1170 ushort reserved51; /* 51 reserved */ 1171 ushort reserved52; /* 52 reserved */ 1172 ushort reserved53; /* 53 reserved */ 1173 ushort reserved54; /* 54 reserved */ 1174 ushort reserved55; /* 55 reserved */ 1175 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1176 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1177 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1178 ushort subsysid; /* 59 SubSystem ID */ 1179 ushort reserved60; /* 60 reserved */ 1180 ushort reserved61; /* 61 reserved */ 1181 ushort reserved62; /* 62 reserved */ 1182 ushort reserved63; /* 63 reserved */ 1183 } ADVEEP_38C0800_CONFIG; 1184 1185 typedef struct adveep_38C1600_config { 1186 /* Word Offset, Description */ 1187 1188 ushort cfg_lsw; /* 00 power up initialization */ 1189 /* bit 11 set - Func. 0 INTB, Func. 1 INTA */ 1190 /* clear - Func. 0 INTA, Func. 1 INTB */ 1191 /* bit 13 set - Load CIS */ 1192 /* bit 14 set - BIOS Enable */ 1193 /* bit 15 set - Big Endian Mode */ 1194 ushort cfg_msw; /* 01 unused */ 1195 ushort disc_enable; /* 02 disconnect enable */ 1196 ushort wdtr_able; /* 03 Wide DTR able */ 1197 ushort sdtr_speed1; /* 04 SDTR Speed TID 0-3 */ 1198 ushort start_motor; /* 05 send start up motor */ 1199 ushort tagqng_able; /* 06 tag queuing able */ 1200 ushort bios_scan; /* 07 BIOS device control */ 1201 ushort scam_tolerant; /* 08 no scam */ 1202 1203 uchar adapter_scsi_id; /* 09 Host Adapter ID */ 1204 uchar bios_boot_delay; /* power up wait */ 1205 1206 uchar scsi_reset_delay; /* 10 reset delay */ 1207 uchar bios_id_lun; /* first boot device scsi id & lun */ 1208 /* high nibble is lun */ 1209 /* low nibble is scsi id */ 1210 1211 uchar termination_se; /* 11 0 - automatic */ 1212 /* 1 - low off / high off */ 1213 /* 2 - low off / high on */ 1214 /* 3 - low on / high on */ 1215 /* There is no low on / high off */ 1216 1217 uchar termination_lvd; /* 11 0 - automatic */ 1218 /* 1 - low off / high off */ 1219 /* 2 - low off / high on */ 1220 /* 3 - low on / high on */ 1221 /* There is no low on / high off */ 1222 1223 ushort bios_ctrl; /* 12 BIOS control bits */ 1224 /* bit 0 BIOS don't act as initiator. */ 1225 /* bit 1 BIOS > 1 GB support */ 1226 /* bit 2 BIOS > 2 Disk Support */ 1227 /* bit 3 BIOS don't support removables */ 1228 /* bit 4 BIOS support bootable CD */ 1229 /* bit 5 BIOS scan enabled */ 1230 /* bit 6 BIOS support multiple LUNs */ 1231 /* bit 7 BIOS display of message */ 1232 /* bit 8 SCAM disabled */ 1233 /* bit 9 Reset SCSI bus during init. */ 1234 /* bit 10 Basic Integrity Checking disabled */ 1235 /* bit 11 No verbose initialization. */ 1236 /* bit 12 SCSI parity enabled */ 1237 /* bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */ 1238 /* bit 14 */ 1239 /* bit 15 */ 1240 ushort sdtr_speed2; /* 13 SDTR speed TID 4-7 */ 1241 ushort sdtr_speed3; /* 14 SDTR speed TID 8-11 */ 1242 uchar max_host_qng; /* 15 maximum host queueing */ 1243 uchar max_dvc_qng; /* maximum per device queuing */ 1244 ushort dvc_cntl; /* 16 control bit for driver */ 1245 ushort sdtr_speed4; /* 17 SDTR speed 4 TID 12-15 */ 1246 ushort serial_number_word1; /* 18 Board serial number word 1 */ 1247 ushort serial_number_word2; /* 19 Board serial number word 2 */ 1248 ushort serial_number_word3; /* 20 Board serial number word 3 */ 1249 ushort check_sum; /* 21 EEP check sum */ 1250 uchar oem_name[16]; /* 22 OEM name */ 1251 ushort dvc_err_code; /* 30 last device driver error code */ 1252 ushort adv_err_code; /* 31 last uc and Adv Lib error code */ 1253 ushort adv_err_addr; /* 32 last uc error address */ 1254 ushort saved_dvc_err_code; /* 33 saved last dev. driver error code */ 1255 ushort saved_adv_err_code; /* 34 saved last uc and Adv Lib error code */ 1256 ushort saved_adv_err_addr; /* 35 saved last uc error address */ 1257 ushort reserved36; /* 36 reserved */ 1258 ushort reserved37; /* 37 reserved */ 1259 ushort reserved38; /* 38 reserved */ 1260 ushort reserved39; /* 39 reserved */ 1261 ushort reserved40; /* 40 reserved */ 1262 ushort reserved41; /* 41 reserved */ 1263 ushort reserved42; /* 42 reserved */ 1264 ushort reserved43; /* 43 reserved */ 1265 ushort reserved44; /* 44 reserved */ 1266 ushort reserved45; /* 45 reserved */ 1267 ushort reserved46; /* 46 reserved */ 1268 ushort reserved47; /* 47 reserved */ 1269 ushort reserved48; /* 48 reserved */ 1270 ushort reserved49; /* 49 reserved */ 1271 ushort reserved50; /* 50 reserved */ 1272 ushort reserved51; /* 51 reserved */ 1273 ushort reserved52; /* 52 reserved */ 1274 ushort reserved53; /* 53 reserved */ 1275 ushort reserved54; /* 54 reserved */ 1276 ushort reserved55; /* 55 reserved */ 1277 ushort cisptr_lsw; /* 56 CIS PTR LSW */ 1278 ushort cisprt_msw; /* 57 CIS PTR MSW */ 1279 ushort subsysvid; /* 58 SubSystem Vendor ID */ 1280 ushort subsysid; /* 59 SubSystem ID */ 1281 ushort reserved60; /* 60 reserved */ 1282 ushort reserved61; /* 61 reserved */ 1283 ushort reserved62; /* 62 reserved */ 1284 ushort reserved63; /* 63 reserved */ 1285 } ADVEEP_38C1600_CONFIG; 1286 1287 /* 1288 * EEPROM Commands 1289 */ 1290 #define ASC_EEP_CMD_DONE 0x0200 1291 1292 /* bios_ctrl */ 1293 #define BIOS_CTRL_BIOS 0x0001 1294 #define BIOS_CTRL_EXTENDED_XLAT 0x0002 1295 #define BIOS_CTRL_GT_2_DISK 0x0004 1296 #define BIOS_CTRL_BIOS_REMOVABLE 0x0008 1297 #define BIOS_CTRL_BOOTABLE_CD 0x0010 1298 #define BIOS_CTRL_MULTIPLE_LUN 0x0040 1299 #define BIOS_CTRL_DISPLAY_MSG 0x0080 1300 #define BIOS_CTRL_NO_SCAM 0x0100 1301 #define BIOS_CTRL_RESET_SCSI_BUS 0x0200 1302 #define BIOS_CTRL_INIT_VERBOSE 0x0800 1303 #define BIOS_CTRL_SCSI_PARITY 0x1000 1304 #define BIOS_CTRL_AIPP_DIS 0x2000 1305 1306 #define ADV_3550_MEMSIZE 0x2000 /* 8 KB Internal Memory */ 1307 1308 #define ADV_38C0800_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1309 1310 /* 1311 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is 1312 * a special 16K Adv Library and Microcode version. After the issue is 1313 * resolved, should restore 32K support. 1314 * 1315 * #define ADV_38C1600_MEMSIZE 0x8000L * 32 KB Internal Memory * 1316 */ 1317 #define ADV_38C1600_MEMSIZE 0x4000 /* 16 KB Internal Memory */ 1318 1319 /* 1320 * Byte I/O register address from base of 'iop_base'. 1321 */ 1322 #define IOPB_INTR_STATUS_REG 0x00 1323 #define IOPB_CHIP_ID_1 0x01 1324 #define IOPB_INTR_ENABLES 0x02 1325 #define IOPB_CHIP_TYPE_REV 0x03 1326 #define IOPB_RES_ADDR_4 0x04 1327 #define IOPB_RES_ADDR_5 0x05 1328 #define IOPB_RAM_DATA 0x06 1329 #define IOPB_RES_ADDR_7 0x07 1330 #define IOPB_FLAG_REG 0x08 1331 #define IOPB_RES_ADDR_9 0x09 1332 #define IOPB_RISC_CSR 0x0A 1333 #define IOPB_RES_ADDR_B 0x0B 1334 #define IOPB_RES_ADDR_C 0x0C 1335 #define IOPB_RES_ADDR_D 0x0D 1336 #define IOPB_SOFT_OVER_WR 0x0E 1337 #define IOPB_RES_ADDR_F 0x0F 1338 #define IOPB_MEM_CFG 0x10 1339 #define IOPB_RES_ADDR_11 0x11 1340 #define IOPB_GPIO_DATA 0x12 1341 #define IOPB_RES_ADDR_13 0x13 1342 #define IOPB_FLASH_PAGE 0x14 1343 #define IOPB_RES_ADDR_15 0x15 1344 #define IOPB_GPIO_CNTL 0x16 1345 #define IOPB_RES_ADDR_17 0x17 1346 #define IOPB_FLASH_DATA 0x18 1347 #define IOPB_RES_ADDR_19 0x19 1348 #define IOPB_RES_ADDR_1A 0x1A 1349 #define IOPB_RES_ADDR_1B 0x1B 1350 #define IOPB_RES_ADDR_1C 0x1C 1351 #define IOPB_RES_ADDR_1D 0x1D 1352 #define IOPB_RES_ADDR_1E 0x1E 1353 #define IOPB_RES_ADDR_1F 0x1F 1354 #define IOPB_DMA_CFG0 0x20 1355 #define IOPB_DMA_CFG1 0x21 1356 #define IOPB_TICKLE 0x22 1357 #define IOPB_DMA_REG_WR 0x23 1358 #define IOPB_SDMA_STATUS 0x24 1359 #define IOPB_SCSI_BYTE_CNT 0x25 1360 #define IOPB_HOST_BYTE_CNT 0x26 1361 #define IOPB_BYTE_LEFT_TO_XFER 0x27 1362 #define IOPB_BYTE_TO_XFER_0 0x28 1363 #define IOPB_BYTE_TO_XFER_1 0x29 1364 #define IOPB_BYTE_TO_XFER_2 0x2A 1365 #define IOPB_BYTE_TO_XFER_3 0x2B 1366 #define IOPB_ACC_GRP 0x2C 1367 #define IOPB_RES_ADDR_2D 0x2D 1368 #define IOPB_DEV_ID 0x2E 1369 #define IOPB_RES_ADDR_2F 0x2F 1370 #define IOPB_SCSI_DATA 0x30 1371 #define IOPB_RES_ADDR_31 0x31 1372 #define IOPB_RES_ADDR_32 0x32 1373 #define IOPB_SCSI_DATA_HSHK 0x33 1374 #define IOPB_SCSI_CTRL 0x34 1375 #define IOPB_RES_ADDR_35 0x35 1376 #define IOPB_RES_ADDR_36 0x36 1377 #define IOPB_RES_ADDR_37 0x37 1378 #define IOPB_RAM_BIST 0x38 1379 #define IOPB_PLL_TEST 0x39 1380 #define IOPB_PCI_INT_CFG 0x3A 1381 #define IOPB_RES_ADDR_3B 0x3B 1382 #define IOPB_RFIFO_CNT 0x3C 1383 #define IOPB_RES_ADDR_3D 0x3D 1384 #define IOPB_RES_ADDR_3E 0x3E 1385 #define IOPB_RES_ADDR_3F 0x3F 1386 1387 /* 1388 * Word I/O register address from base of 'iop_base'. 1389 */ 1390 #define IOPW_CHIP_ID_0 0x00 /* CID0 */ 1391 #define IOPW_CTRL_REG 0x02 /* CC */ 1392 #define IOPW_RAM_ADDR 0x04 /* LA */ 1393 #define IOPW_RAM_DATA 0x06 /* LD */ 1394 #define IOPW_RES_ADDR_08 0x08 1395 #define IOPW_RISC_CSR 0x0A /* CSR */ 1396 #define IOPW_SCSI_CFG0 0x0C /* CFG0 */ 1397 #define IOPW_SCSI_CFG1 0x0E /* CFG1 */ 1398 #define IOPW_RES_ADDR_10 0x10 1399 #define IOPW_SEL_MASK 0x12 /* SM */ 1400 #define IOPW_RES_ADDR_14 0x14 1401 #define IOPW_FLASH_ADDR 0x16 /* FA */ 1402 #define IOPW_RES_ADDR_18 0x18 1403 #define IOPW_EE_CMD 0x1A /* EC */ 1404 #define IOPW_EE_DATA 0x1C /* ED */ 1405 #define IOPW_SFIFO_CNT 0x1E /* SFC */ 1406 #define IOPW_RES_ADDR_20 0x20 1407 #define IOPW_Q_BASE 0x22 /* QB */ 1408 #define IOPW_QP 0x24 /* QP */ 1409 #define IOPW_IX 0x26 /* IX */ 1410 #define IOPW_SP 0x28 /* SP */ 1411 #define IOPW_PC 0x2A /* PC */ 1412 #define IOPW_RES_ADDR_2C 0x2C 1413 #define IOPW_RES_ADDR_2E 0x2E 1414 #define IOPW_SCSI_DATA 0x30 /* SD */ 1415 #define IOPW_SCSI_DATA_HSHK 0x32 /* SDH */ 1416 #define IOPW_SCSI_CTRL 0x34 /* SC */ 1417 #define IOPW_HSHK_CFG 0x36 /* HCFG */ 1418 #define IOPW_SXFR_STATUS 0x36 /* SXS */ 1419 #define IOPW_SXFR_CNTL 0x38 /* SXL */ 1420 #define IOPW_SXFR_CNTH 0x3A /* SXH */ 1421 #define IOPW_RES_ADDR_3C 0x3C 1422 #define IOPW_RFIFO_DATA 0x3E /* RFD */ 1423 1424 /* 1425 * Doubleword I/O register address from base of 'iop_base'. 1426 */ 1427 #define IOPDW_RES_ADDR_0 0x00 1428 #define IOPDW_RAM_DATA 0x04 1429 #define IOPDW_RES_ADDR_8 0x08 1430 #define IOPDW_RES_ADDR_C 0x0C 1431 #define IOPDW_RES_ADDR_10 0x10 1432 #define IOPDW_COMMA 0x14 1433 #define IOPDW_COMMB 0x18 1434 #define IOPDW_RES_ADDR_1C 0x1C 1435 #define IOPDW_SDMA_ADDR0 0x20 1436 #define IOPDW_SDMA_ADDR1 0x24 1437 #define IOPDW_SDMA_COUNT 0x28 1438 #define IOPDW_SDMA_ERROR 0x2C 1439 #define IOPDW_RDMA_ADDR0 0x30 1440 #define IOPDW_RDMA_ADDR1 0x34 1441 #define IOPDW_RDMA_COUNT 0x38 1442 #define IOPDW_RDMA_ERROR 0x3C 1443 1444 #define ADV_CHIP_ID_BYTE 0x25 1445 #define ADV_CHIP_ID_WORD 0x04C1 1446 1447 #define ADV_INTR_ENABLE_HOST_INTR 0x01 1448 #define ADV_INTR_ENABLE_SEL_INTR 0x02 1449 #define ADV_INTR_ENABLE_DPR_INTR 0x04 1450 #define ADV_INTR_ENABLE_RTA_INTR 0x08 1451 #define ADV_INTR_ENABLE_RMA_INTR 0x10 1452 #define ADV_INTR_ENABLE_RST_INTR 0x20 1453 #define ADV_INTR_ENABLE_DPE_INTR 0x40 1454 #define ADV_INTR_ENABLE_GLOBAL_INTR 0x80 1455 1456 #define ADV_INTR_STATUS_INTRA 0x01 1457 #define ADV_INTR_STATUS_INTRB 0x02 1458 #define ADV_INTR_STATUS_INTRC 0x04 1459 1460 #define ADV_RISC_CSR_STOP (0x0000) 1461 #define ADV_RISC_TEST_COND (0x2000) 1462 #define ADV_RISC_CSR_RUN (0x4000) 1463 #define ADV_RISC_CSR_SINGLE_STEP (0x8000) 1464 1465 #define ADV_CTRL_REG_HOST_INTR 0x0100 1466 #define ADV_CTRL_REG_SEL_INTR 0x0200 1467 #define ADV_CTRL_REG_DPR_INTR 0x0400 1468 #define ADV_CTRL_REG_RTA_INTR 0x0800 1469 #define ADV_CTRL_REG_RMA_INTR 0x1000 1470 #define ADV_CTRL_REG_RES_BIT14 0x2000 1471 #define ADV_CTRL_REG_DPE_INTR 0x4000 1472 #define ADV_CTRL_REG_POWER_DONE 0x8000 1473 #define ADV_CTRL_REG_ANY_INTR 0xFF00 1474 1475 #define ADV_CTRL_REG_CMD_RESET 0x00C6 1476 #define ADV_CTRL_REG_CMD_WR_IO_REG 0x00C5 1477 #define ADV_CTRL_REG_CMD_RD_IO_REG 0x00C4 1478 #define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE 0x00C3 1479 #define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE 0x00C2 1480 1481 #define ADV_TICKLE_NOP 0x00 1482 #define ADV_TICKLE_A 0x01 1483 #define ADV_TICKLE_B 0x02 1484 #define ADV_TICKLE_C 0x03 1485 1486 #define AdvIsIntPending(port) \ 1487 (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR) 1488 1489 /* 1490 * SCSI_CFG0 Register bit definitions 1491 */ 1492 #define TIMER_MODEAB 0xC000 /* Watchdog, Second, and Select. Timer Ctrl. */ 1493 #define PARITY_EN 0x2000 /* Enable SCSI Parity Error detection */ 1494 #define EVEN_PARITY 0x1000 /* Select Even Parity */ 1495 #define WD_LONG 0x0800 /* Watchdog Interval, 1: 57 min, 0: 13 sec */ 1496 #define QUEUE_128 0x0400 /* Queue Size, 1: 128 byte, 0: 64 byte */ 1497 #define PRIM_MODE 0x0100 /* Primitive SCSI mode */ 1498 #define SCAM_EN 0x0080 /* Enable SCAM selection */ 1499 #define SEL_TMO_LONG 0x0040 /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */ 1500 #define CFRM_ID 0x0020 /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */ 1501 #define OUR_ID_EN 0x0010 /* Enable OUR_ID bits */ 1502 #define OUR_ID 0x000F /* SCSI ID */ 1503 1504 /* 1505 * SCSI_CFG1 Register bit definitions 1506 */ 1507 #define BIG_ENDIAN 0x8000 /* Enable Big Endian Mode MIO:15, EEP:15 */ 1508 #define TERM_POL 0x2000 /* Terminator Polarity Ctrl. MIO:13, EEP:13 */ 1509 #define SLEW_RATE 0x1000 /* SCSI output buffer slew rate */ 1510 #define FILTER_SEL 0x0C00 /* Filter Period Selection */ 1511 #define FLTR_DISABLE 0x0000 /* Input Filtering Disabled */ 1512 #define FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */ 1513 #define FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */ 1514 #define ACTIVE_DBL 0x0200 /* Disable Active Negation */ 1515 #define DIFF_MODE 0x0100 /* SCSI differential Mode (Read-Only) */ 1516 #define DIFF_SENSE 0x0080 /* 1: No SE cables, 0: SE cable (Read-Only) */ 1517 #define TERM_CTL_SEL 0x0040 /* Enable TERM_CTL_H and TERM_CTL_L */ 1518 #define TERM_CTL 0x0030 /* External SCSI Termination Bits */ 1519 #define TERM_CTL_H 0x0020 /* Enable External SCSI Upper Termination */ 1520 #define TERM_CTL_L 0x0010 /* Enable External SCSI Lower Termination */ 1521 #define CABLE_DETECT 0x000F /* External SCSI Cable Connection Status */ 1522 1523 /* 1524 * Addendum for ASC-38C0800 Chip 1525 * 1526 * The ASC-38C1600 Chip uses the same definitions except that the 1527 * bus mode override bits [12:10] have been moved to byte register 1528 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in 1529 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV) 1530 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only. 1531 * Also each ASC-38C1600 function or channel uses only cable bits [5:4] 1532 * and [1:0]. Bits [14], [7:6], [3:2] are unused. 1533 */ 1534 #define DIS_TERM_DRV 0x4000 /* 1: Read c_det[3:0], 0: cannot read */ 1535 #define HVD_LVD_SE 0x1C00 /* Device Detect Bits */ 1536 #define HVD 0x1000 /* HVD Device Detect */ 1537 #define LVD 0x0800 /* LVD Device Detect */ 1538 #define SE 0x0400 /* SE Device Detect */ 1539 #define TERM_LVD 0x00C0 /* LVD Termination Bits */ 1540 #define TERM_LVD_HI 0x0080 /* Enable LVD Upper Termination */ 1541 #define TERM_LVD_LO 0x0040 /* Enable LVD Lower Termination */ 1542 #define TERM_SE 0x0030 /* SE Termination Bits */ 1543 #define TERM_SE_HI 0x0020 /* Enable SE Upper Termination */ 1544 #define TERM_SE_LO 0x0010 /* Enable SE Lower Termination */ 1545 #define C_DET_LVD 0x000C /* LVD Cable Detect Bits */ 1546 #define C_DET3 0x0008 /* Cable Detect for LVD External Wide */ 1547 #define C_DET2 0x0004 /* Cable Detect for LVD Internal Wide */ 1548 #define C_DET_SE 0x0003 /* SE Cable Detect Bits */ 1549 #define C_DET1 0x0002 /* Cable Detect for SE Internal Wide */ 1550 #define C_DET0 0x0001 /* Cable Detect for SE Internal Narrow */ 1551 1552 #define CABLE_ILLEGAL_A 0x7 1553 /* x 0 0 0 | on on | Illegal (all 3 connectors are used) */ 1554 1555 #define CABLE_ILLEGAL_B 0xB 1556 /* 0 x 0 0 | on on | Illegal (all 3 connectors are used) */ 1557 1558 /* 1559 * MEM_CFG Register bit definitions 1560 */ 1561 #define BIOS_EN 0x40 /* BIOS Enable MIO:14,EEP:14 */ 1562 #define FAST_EE_CLK 0x20 /* Diagnostic Bit */ 1563 #define RAM_SZ 0x1C /* Specify size of RAM to RISC */ 1564 #define RAM_SZ_2KB 0x00 /* 2 KB */ 1565 #define RAM_SZ_4KB 0x04 /* 4 KB */ 1566 #define RAM_SZ_8KB 0x08 /* 8 KB */ 1567 #define RAM_SZ_16KB 0x0C /* 16 KB */ 1568 #define RAM_SZ_32KB 0x10 /* 32 KB */ 1569 #define RAM_SZ_64KB 0x14 /* 64 KB */ 1570 1571 /* 1572 * DMA_CFG0 Register bit definitions 1573 * 1574 * This register is only accessible to the host. 1575 */ 1576 #define BC_THRESH_ENB 0x80 /* PCI DMA Start Conditions */ 1577 #define FIFO_THRESH 0x70 /* PCI DMA FIFO Threshold */ 1578 #define FIFO_THRESH_16B 0x00 /* 16 bytes */ 1579 #define FIFO_THRESH_32B 0x20 /* 32 bytes */ 1580 #define FIFO_THRESH_48B 0x30 /* 48 bytes */ 1581 #define FIFO_THRESH_64B 0x40 /* 64 bytes */ 1582 #define FIFO_THRESH_80B 0x50 /* 80 bytes (default) */ 1583 #define FIFO_THRESH_96B 0x60 /* 96 bytes */ 1584 #define FIFO_THRESH_112B 0x70 /* 112 bytes */ 1585 #define START_CTL 0x0C /* DMA start conditions */ 1586 #define START_CTL_TH 0x00 /* Wait threshold level (default) */ 1587 #define START_CTL_ID 0x04 /* Wait SDMA/SBUS idle */ 1588 #define START_CTL_THID 0x08 /* Wait threshold and SDMA/SBUS idle */ 1589 #define START_CTL_EMFU 0x0C /* Wait SDMA FIFO empty/full */ 1590 #define READ_CMD 0x03 /* Memory Read Method */ 1591 #define READ_CMD_MR 0x00 /* Memory Read */ 1592 #define READ_CMD_MRL 0x02 /* Memory Read Long */ 1593 #define READ_CMD_MRM 0x03 /* Memory Read Multiple (default) */ 1594 1595 /* 1596 * ASC-38C0800 RAM BIST Register bit definitions 1597 */ 1598 #define RAM_TEST_MODE 0x80 1599 #define PRE_TEST_MODE 0x40 1600 #define NORMAL_MODE 0x00 1601 #define RAM_TEST_DONE 0x10 1602 #define RAM_TEST_STATUS 0x0F 1603 #define RAM_TEST_HOST_ERROR 0x08 1604 #define RAM_TEST_INTRAM_ERROR 0x04 1605 #define RAM_TEST_RISC_ERROR 0x02 1606 #define RAM_TEST_SCSI_ERROR 0x01 1607 #define RAM_TEST_SUCCESS 0x00 1608 #define PRE_TEST_VALUE 0x05 1609 #define NORMAL_VALUE 0x00 1610 1611 /* 1612 * ASC38C1600 Definitions 1613 * 1614 * IOPB_PCI_INT_CFG Bit Field Definitions 1615 */ 1616 1617 #define INTAB_LD 0x80 /* Value loaded from EEPROM Bit 11. */ 1618 1619 /* 1620 * Bit 1 can be set to change the interrupt for the Function to operate in 1621 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in 1622 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same 1623 * mode, otherwise the operating mode is undefined. 1624 */ 1625 #define TOTEMPOLE 0x02 1626 1627 /* 1628 * Bit 0 can be used to change the Int Pin for the Function. The value is 1629 * 0 by default for both Functions with Function 0 using INT A and Function 1630 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set, 1631 * INT A is used. 1632 * 1633 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin 1634 * value specified in the PCI Configuration Space. 1635 */ 1636 #define INTAB 0x01 1637 1638 /* 1639 * Adv Library Status Definitions 1640 */ 1641 #define ADV_TRUE 1 1642 #define ADV_FALSE 0 1643 #define ADV_SUCCESS 1 1644 #define ADV_BUSY 0 1645 #define ADV_ERROR (-1) 1646 1647 /* 1648 * ADV_DVC_VAR 'warn_code' values 1649 */ 1650 #define ASC_WARN_BUSRESET_ERROR 0x0001 /* SCSI Bus Reset error */ 1651 #define ASC_WARN_EEPROM_CHKSUM 0x0002 /* EEP check sum error */ 1652 #define ASC_WARN_EEPROM_TERMINATION 0x0004 /* EEP termination bad field */ 1653 #define ASC_WARN_ERROR 0xFFFF /* ADV_ERROR return */ 1654 1655 #define ADV_MAX_TID 15 /* max. target identifier */ 1656 #define ADV_MAX_LUN 7 /* max. logical unit number */ 1657 1658 /* 1659 * Fixed locations of microcode operating variables. 1660 */ 1661 #define ASC_MC_CODE_BEGIN_ADDR 0x0028 /* microcode start address */ 1662 #define ASC_MC_CODE_END_ADDR 0x002A /* microcode end address */ 1663 #define ASC_MC_CODE_CHK_SUM 0x002C /* microcode code checksum */ 1664 #define ASC_MC_VERSION_DATE 0x0038 /* microcode version */ 1665 #define ASC_MC_VERSION_NUM 0x003A /* microcode number */ 1666 #define ASC_MC_BIOSMEM 0x0040 /* BIOS RISC Memory Start */ 1667 #define ASC_MC_BIOSLEN 0x0050 /* BIOS RISC Memory Length */ 1668 #define ASC_MC_BIOS_SIGNATURE 0x0058 /* BIOS Signature 0x55AA */ 1669 #define ASC_MC_BIOS_VERSION 0x005A /* BIOS Version (2 bytes) */ 1670 #define ASC_MC_SDTR_SPEED1 0x0090 /* SDTR Speed for TID 0-3 */ 1671 #define ASC_MC_SDTR_SPEED2 0x0092 /* SDTR Speed for TID 4-7 */ 1672 #define ASC_MC_SDTR_SPEED3 0x0094 /* SDTR Speed for TID 8-11 */ 1673 #define ASC_MC_SDTR_SPEED4 0x0096 /* SDTR Speed for TID 12-15 */ 1674 #define ASC_MC_CHIP_TYPE 0x009A 1675 #define ASC_MC_INTRB_CODE 0x009B 1676 #define ASC_MC_WDTR_ABLE 0x009C 1677 #define ASC_MC_SDTR_ABLE 0x009E 1678 #define ASC_MC_TAGQNG_ABLE 0x00A0 1679 #define ASC_MC_DISC_ENABLE 0x00A2 1680 #define ASC_MC_IDLE_CMD_STATUS 0x00A4 1681 #define ASC_MC_IDLE_CMD 0x00A6 1682 #define ASC_MC_IDLE_CMD_PARAMETER 0x00A8 1683 #define ASC_MC_DEFAULT_SCSI_CFG0 0x00AC 1684 #define ASC_MC_DEFAULT_SCSI_CFG1 0x00AE 1685 #define ASC_MC_DEFAULT_MEM_CFG 0x00B0 1686 #define ASC_MC_DEFAULT_SEL_MASK 0x00B2 1687 #define ASC_MC_SDTR_DONE 0x00B6 1688 #define ASC_MC_NUMBER_OF_QUEUED_CMD 0x00C0 1689 #define ASC_MC_NUMBER_OF_MAX_CMD 0x00D0 1690 #define ASC_MC_DEVICE_HSHK_CFG_TABLE 0x0100 1691 #define ASC_MC_CONTROL_FLAG 0x0122 /* Microcode control flag. */ 1692 #define ASC_MC_WDTR_DONE 0x0124 1693 #define ASC_MC_CAM_MODE_MASK 0x015E /* CAM mode TID bitmask. */ 1694 #define ASC_MC_ICQ 0x0160 1695 #define ASC_MC_IRQ 0x0164 1696 #define ASC_MC_PPR_ABLE 0x017A 1697 1698 /* 1699 * BIOS LRAM variable absolute offsets. 1700 */ 1701 #define BIOS_CODESEG 0x54 1702 #define BIOS_CODELEN 0x56 1703 #define BIOS_SIGNATURE 0x58 1704 #define BIOS_VERSION 0x5A 1705 1706 /* 1707 * Microcode Control Flags 1708 * 1709 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122) 1710 * and handled by the microcode. 1711 */ 1712 #define CONTROL_FLAG_IGNORE_PERR 0x0001 /* Ignore DMA Parity Errors */ 1713 #define CONTROL_FLAG_ENABLE_AIPP 0x0002 /* Enabled AIPP checking. */ 1714 1715 /* 1716 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format 1717 */ 1718 #define HSHK_CFG_WIDE_XFR 0x8000 1719 #define HSHK_CFG_RATE 0x0F00 1720 #define HSHK_CFG_OFFSET 0x001F 1721 1722 #define ASC_DEF_MAX_HOST_QNG 0xFD /* Max. number of host commands (253) */ 1723 #define ASC_DEF_MIN_HOST_QNG 0x10 /* Min. number of host commands (16) */ 1724 #define ASC_DEF_MAX_DVC_QNG 0x3F /* Max. number commands per device (63) */ 1725 #define ASC_DEF_MIN_DVC_QNG 0x04 /* Min. number commands per device (4) */ 1726 1727 #define ASC_QC_DATA_CHECK 0x01 /* Require ASC_QC_DATA_OUT set or clear. */ 1728 #define ASC_QC_DATA_OUT 0x02 /* Data out DMA transfer. */ 1729 #define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */ 1730 #define ASC_QC_NO_OVERRUN 0x08 /* Don't report overrun. */ 1731 #define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */ 1732 1733 #define ASC_QSC_NO_DISC 0x01 /* Don't allow disconnect for request. */ 1734 #define ASC_QSC_NO_TAGMSG 0x02 /* Don't allow tag queuing for request. */ 1735 #define ASC_QSC_NO_SYNC 0x04 /* Don't use Synch. transfer on request. */ 1736 #define ASC_QSC_NO_WIDE 0x08 /* Don't use Wide transfer on request. */ 1737 #define ASC_QSC_REDO_DTR 0x10 /* Renegotiate WDTR/SDTR before request. */ 1738 /* 1739 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or 1740 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used. 1741 */ 1742 #define ASC_QSC_HEAD_TAG 0x40 /* Use Head Tag Message (0x21). */ 1743 #define ASC_QSC_ORDERED_TAG 0x80 /* Use Ordered Tag Message (0x22). */ 1744 1745 /* 1746 * All fields here are accessed by the board microcode and need to be 1747 * little-endian. 1748 */ 1749 typedef struct adv_carr_t { 1750 ADV_VADDR carr_va; /* Carrier Virtual Address */ 1751 ADV_PADDR carr_pa; /* Carrier Physical Address */ 1752 ADV_VADDR areq_vpa; /* ASC_SCSI_REQ_Q Virtual or Physical Address */ 1753 /* 1754 * next_vpa [31:4] Carrier Virtual or Physical Next Pointer 1755 * 1756 * next_vpa [3:1] Reserved Bits 1757 * next_vpa [0] Done Flag set in Response Queue. 1758 */ 1759 ADV_VADDR next_vpa; 1760 } ADV_CARR_T; 1761 1762 /* 1763 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field. 1764 */ 1765 #define ASC_NEXT_VPA_MASK 0xFFFFFFF0 1766 1767 #define ASC_RQ_DONE 0x00000001 1768 #define ASC_RQ_GOOD 0x00000002 1769 #define ASC_CQ_STOPPER 0x00000000 1770 1771 #define ASC_GET_CARRP(carrp) ((carrp) & ASC_NEXT_VPA_MASK) 1772 1773 #define ADV_CARRIER_NUM_PAGE_CROSSING \ 1774 (((ADV_CARRIER_COUNT * sizeof(ADV_CARR_T)) + (PAGE_SIZE - 1))/PAGE_SIZE) 1775 1776 #define ADV_CARRIER_BUFSIZE \ 1777 ((ADV_CARRIER_COUNT + ADV_CARRIER_NUM_PAGE_CROSSING) * sizeof(ADV_CARR_T)) 1778 1779 /* 1780 * ASC_SCSI_REQ_Q 'a_flag' definitions 1781 * 1782 * The Adv Library should limit use to the lower nibble (4 bits) of 1783 * a_flag. Drivers are free to use the upper nibble (4 bits) of a_flag. 1784 */ 1785 #define ADV_POLL_REQUEST 0x01 /* poll for request completion */ 1786 #define ADV_SCSIQ_DONE 0x02 /* request done */ 1787 #define ADV_DONT_RETRY 0x08 /* don't do retry */ 1788 1789 #define ADV_CHIP_ASC3550 0x01 /* Ultra-Wide IC */ 1790 #define ADV_CHIP_ASC38C0800 0x02 /* Ultra2-Wide/LVD IC */ 1791 #define ADV_CHIP_ASC38C1600 0x03 /* Ultra3-Wide/LVD2 IC */ 1792 1793 /* 1794 * Adapter temporary configuration structure 1795 * 1796 * This structure can be discarded after initialization. Don't add 1797 * fields here needed after initialization. 1798 * 1799 * Field naming convention: 1800 * 1801 * *_enable indicates the field enables or disables a feature. The 1802 * value of the field is never reset. 1803 */ 1804 typedef struct adv_dvc_cfg { 1805 ushort disc_enable; /* enable disconnection */ 1806 uchar chip_version; /* chip version */ 1807 uchar termination; /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */ 1808 ushort control_flag; /* Microcode Control Flag */ 1809 ushort mcode_date; /* Microcode date */ 1810 ushort mcode_version; /* Microcode version */ 1811 ushort serial1; /* EEPROM serial number word 1 */ 1812 ushort serial2; /* EEPROM serial number word 2 */ 1813 ushort serial3; /* EEPROM serial number word 3 */ 1814 } ADV_DVC_CFG; 1815 1816 struct adv_dvc_var; 1817 struct adv_scsi_req_q; 1818 1819 typedef struct asc_sg_block { 1820 uchar reserved1; 1821 uchar reserved2; 1822 uchar reserved3; 1823 uchar sg_cnt; /* Valid entries in block. */ 1824 ADV_PADDR sg_ptr; /* Pointer to next sg block. */ 1825 struct { 1826 ADV_PADDR sg_addr; /* SG element address. */ 1827 ADV_DCNT sg_count; /* SG element count. */ 1828 } sg_list[NO_OF_SG_PER_BLOCK]; 1829 } ADV_SG_BLOCK; 1830 1831 /* 1832 * ADV_SCSI_REQ_Q - microcode request structure 1833 * 1834 * All fields in this structure up to byte 60 are used by the microcode. 1835 * The microcode makes assumptions about the size and ordering of fields 1836 * in this structure. Do not change the structure definition here without 1837 * coordinating the change with the microcode. 1838 * 1839 * All fields accessed by microcode must be maintained in little_endian 1840 * order. 1841 */ 1842 typedef struct adv_scsi_req_q { 1843 uchar cntl; /* Ucode flags and state (ASC_MC_QC_*). */ 1844 uchar target_cmd; 1845 uchar target_id; /* Device target identifier. */ 1846 uchar target_lun; /* Device target logical unit number. */ 1847 ADV_PADDR data_addr; /* Data buffer physical address. */ 1848 ADV_DCNT data_cnt; /* Data count. Ucode sets to residual. */ 1849 ADV_PADDR sense_addr; 1850 ADV_PADDR carr_pa; 1851 uchar mflag; 1852 uchar sense_len; 1853 uchar cdb_len; /* SCSI CDB length. Must <= 16 bytes. */ 1854 uchar scsi_cntl; 1855 uchar done_status; /* Completion status. */ 1856 uchar scsi_status; /* SCSI status byte. */ 1857 uchar host_status; /* Ucode host status. */ 1858 uchar sg_working_ix; 1859 uchar cdb[12]; /* SCSI CDB bytes 0-11. */ 1860 ADV_PADDR sg_real_addr; /* SG list physical address. */ 1861 ADV_PADDR scsiq_rptr; 1862 uchar cdb16[4]; /* SCSI CDB bytes 12-15. */ 1863 ADV_VADDR scsiq_ptr; 1864 ADV_VADDR carr_va; 1865 /* 1866 * End of microcode structure - 60 bytes. The rest of the structure 1867 * is used by the Adv Library and ignored by the microcode. 1868 */ 1869 ADV_VADDR srb_ptr; 1870 ADV_SG_BLOCK *sg_list_ptr; /* SG list virtual address. */ 1871 char *vdata_addr; /* Data buffer virtual address. */ 1872 uchar a_flag; 1873 uchar pad[2]; /* Pad out to a word boundary. */ 1874 } ADV_SCSI_REQ_Q; 1875 1876 /* 1877 * The following two structures are used to process Wide Board requests. 1878 * 1879 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library 1880 * and microcode with the ADV_SCSI_REQ_Q field 'srb_ptr' pointing to the 1881 * adv_req_t. The adv_req_t structure 'cmndp' field in turn points to the 1882 * Mid-Level SCSI request structure. 1883 * 1884 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each 1885 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux 1886 * up to 255 scatter-gather elements may be used per request or 1887 * ADV_SCSI_REQ_Q. 1888 * 1889 * Both structures must be 32 byte aligned. 1890 */ 1891 typedef struct adv_sgblk { 1892 ADV_SG_BLOCK sg_block; /* Sgblock structure. */ 1893 uchar align[32]; /* Sgblock structure padding. */ 1894 struct adv_sgblk *next_sgblkp; /* Next scatter-gather structure. */ 1895 } adv_sgblk_t; 1896 1897 typedef struct adv_req { 1898 ADV_SCSI_REQ_Q scsi_req_q; /* Adv Library request structure. */ 1899 uchar align[32]; /* Request structure padding. */ 1900 struct scsi_cmnd *cmndp; /* Mid-Level SCSI command pointer. */ 1901 adv_sgblk_t *sgblkp; /* Adv Library scatter-gather pointer. */ 1902 struct adv_req *next_reqp; /* Next Request Structure. */ 1903 } adv_req_t; 1904 1905 /* 1906 * Adapter operation variable structure. 1907 * 1908 * One structure is required per host adapter. 1909 * 1910 * Field naming convention: 1911 * 1912 * *_able indicates both whether a feature should be enabled or disabled 1913 * and whether a device isi capable of the feature. At initialization 1914 * this field may be set, but later if a device is found to be incapable 1915 * of the feature, the field is cleared. 1916 */ 1917 typedef struct adv_dvc_var { 1918 AdvPortAddr iop_base; /* I/O port address */ 1919 ushort err_code; /* fatal error code */ 1920 ushort bios_ctrl; /* BIOS control word, EEPROM word 12 */ 1921 ushort wdtr_able; /* try WDTR for a device */ 1922 ushort sdtr_able; /* try SDTR for a device */ 1923 ushort ultra_able; /* try SDTR Ultra speed for a device */ 1924 ushort sdtr_speed1; /* EEPROM SDTR Speed for TID 0-3 */ 1925 ushort sdtr_speed2; /* EEPROM SDTR Speed for TID 4-7 */ 1926 ushort sdtr_speed3; /* EEPROM SDTR Speed for TID 8-11 */ 1927 ushort sdtr_speed4; /* EEPROM SDTR Speed for TID 12-15 */ 1928 ushort tagqng_able; /* try tagged queuing with a device */ 1929 ushort ppr_able; /* PPR message capable per TID bitmask. */ 1930 uchar max_dvc_qng; /* maximum number of tagged commands per device */ 1931 ushort start_motor; /* start motor command allowed */ 1932 uchar scsi_reset_wait; /* delay in seconds after scsi bus reset */ 1933 uchar chip_no; /* should be assigned by caller */ 1934 uchar max_host_qng; /* maximum number of Q'ed command allowed */ 1935 ushort no_scam; /* scam_tolerant of EEPROM */ 1936 struct asc_board *drv_ptr; /* driver pointer to private structure */ 1937 uchar chip_scsi_id; /* chip SCSI target ID */ 1938 uchar chip_type; 1939 uchar bist_err_code; 1940 ADV_CARR_T *carrier_buf; 1941 ADV_CARR_T *carr_freelist; /* Carrier free list. */ 1942 ADV_CARR_T *icq_sp; /* Initiator command queue stopper pointer. */ 1943 ADV_CARR_T *irq_sp; /* Initiator response queue stopper pointer. */ 1944 ushort carr_pending_cnt; /* Count of pending carriers. */ 1945 struct adv_req *orig_reqp; /* adv_req_t memory block. */ 1946 /* 1947 * Note: The following fields will not be used after initialization. The 1948 * driver may discard the buffer after initialization is done. 1949 */ 1950 ADV_DVC_CFG *cfg; /* temporary configuration structure */ 1951 } ADV_DVC_VAR; 1952 1953 /* 1954 * Microcode idle loop commands 1955 */ 1956 #define IDLE_CMD_COMPLETED 0 1957 #define IDLE_CMD_STOP_CHIP 0x0001 1958 #define IDLE_CMD_STOP_CHIP_SEND_INT 0x0002 1959 #define IDLE_CMD_SEND_INT 0x0004 1960 #define IDLE_CMD_ABORT 0x0008 1961 #define IDLE_CMD_DEVICE_RESET 0x0010 1962 #define IDLE_CMD_SCSI_RESET_START 0x0020 /* Assert SCSI Bus Reset */ 1963 #define IDLE_CMD_SCSI_RESET_END 0x0040 /* Deassert SCSI Bus Reset */ 1964 #define IDLE_CMD_SCSIREQ 0x0080 1965 1966 #define IDLE_CMD_STATUS_SUCCESS 0x0001 1967 #define IDLE_CMD_STATUS_FAILURE 0x0002 1968 1969 /* 1970 * AdvSendIdleCmd() flag definitions. 1971 */ 1972 #define ADV_NOWAIT 0x01 1973 1974 /* 1975 * Wait loop time out values. 1976 */ 1977 #define SCSI_WAIT_100_MSEC 100UL /* 100 milliseconds */ 1978 #define SCSI_US_PER_MSEC 1000 /* microseconds per millisecond */ 1979 #define SCSI_MAX_RETRY 10 /* retry count */ 1980 1981 #define ADV_ASYNC_RDMA_FAILURE 0x01 /* Fatal RDMA failure. */ 1982 #define ADV_ASYNC_SCSI_BUS_RESET_DET 0x02 /* Detected SCSI Bus Reset. */ 1983 #define ADV_ASYNC_CARRIER_READY_FAILURE 0x03 /* Carrier Ready failure. */ 1984 #define ADV_RDMA_IN_CARR_AND_Q_INVALID 0x04 /* RDMAed-in data invalid. */ 1985 1986 #define ADV_HOST_SCSI_BUS_RESET 0x80 /* Host Initiated SCSI Bus Reset. */ 1987 1988 /* Read byte from a register. */ 1989 #define AdvReadByteRegister(iop_base, reg_off) \ 1990 (ADV_MEM_READB((iop_base) + (reg_off))) 1991 1992 /* Write byte to a register. */ 1993 #define AdvWriteByteRegister(iop_base, reg_off, byte) \ 1994 (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte))) 1995 1996 /* Read word (2 bytes) from a register. */ 1997 #define AdvReadWordRegister(iop_base, reg_off) \ 1998 (ADV_MEM_READW((iop_base) + (reg_off))) 1999 2000 /* Write word (2 bytes) to a register. */ 2001 #define AdvWriteWordRegister(iop_base, reg_off, word) \ 2002 (ADV_MEM_WRITEW((iop_base) + (reg_off), (word))) 2003 2004 /* Write dword (4 bytes) to a register. */ 2005 #define AdvWriteDWordRegister(iop_base, reg_off, dword) \ 2006 (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword))) 2007 2008 /* Read byte from LRAM. */ 2009 #define AdvReadByteLram(iop_base, addr, byte) \ 2010 do { \ 2011 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 2012 (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \ 2013 } while (0) 2014 2015 /* Write byte to LRAM. */ 2016 #define AdvWriteByteLram(iop_base, addr, byte) \ 2017 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 2018 ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte))) 2019 2020 /* Read word (2 bytes) from LRAM. */ 2021 #define AdvReadWordLram(iop_base, addr, word) \ 2022 do { \ 2023 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \ 2024 (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \ 2025 } while (0) 2026 2027 /* Write word (2 bytes) to LRAM. */ 2028 #define AdvWriteWordLram(iop_base, addr, word) \ 2029 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 2030 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 2031 2032 /* Write little-endian double word (4 bytes) to LRAM */ 2033 /* Because of unspecified C language ordering don't use auto-increment. */ 2034 #define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \ 2035 ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \ 2036 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 2037 cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \ 2038 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \ 2039 ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \ 2040 cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF))))) 2041 2042 /* Read word (2 bytes) from LRAM assuming that the address is already set. */ 2043 #define AdvReadWordAutoIncLram(iop_base) \ 2044 (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)) 2045 2046 /* Write word (2 bytes) to LRAM assuming that the address is already set. */ 2047 #define AdvWriteWordAutoIncLram(iop_base, word) \ 2048 (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word))) 2049 2050 /* 2051 * Define macro to check for Condor signature. 2052 * 2053 * Evaluate to ADV_TRUE if a Condor chip is found the specified port 2054 * address 'iop_base'. Otherwise evalue to ADV_FALSE. 2055 */ 2056 #define AdvFindSignature(iop_base) \ 2057 (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \ 2058 ADV_CHIP_ID_BYTE) && \ 2059 (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \ 2060 ADV_CHIP_ID_WORD)) ? ADV_TRUE : ADV_FALSE) 2061 2062 /* 2063 * Define macro to Return the version number of the chip at 'iop_base'. 2064 * 2065 * The second parameter 'bus_type' is currently unused. 2066 */ 2067 #define AdvGetChipVersion(iop_base, bus_type) \ 2068 AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV) 2069 2070 /* 2071 * Abort an SRB in the chip's RISC Memory. The 'srb_ptr' argument must 2072 * match the ASC_SCSI_REQ_Q 'srb_ptr' field. 2073 * 2074 * If the request has not yet been sent to the device it will simply be 2075 * aborted from RISC memory. If the request is disconnected it will be 2076 * aborted on reselection by sending an Abort Message to the target ID. 2077 * 2078 * Return value: 2079 * ADV_TRUE(1) - Queue was successfully aborted. 2080 * ADV_FALSE(0) - Queue was not found on the active queue list. 2081 */ 2082 #define AdvAbortQueue(asc_dvc, scsiq) \ 2083 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \ 2084 (ADV_DCNT) (scsiq)) 2085 2086 /* 2087 * Send a Bus Device Reset Message to the specified target ID. 2088 * 2089 * All outstanding commands will be purged if sending the 2090 * Bus Device Reset Message is successful. 2091 * 2092 * Return Value: 2093 * ADV_TRUE(1) - All requests on the target are purged. 2094 * ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests 2095 * are not purged. 2096 */ 2097 #define AdvResetDevice(asc_dvc, target_id) \ 2098 AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET, \ 2099 (ADV_DCNT) (target_id)) 2100 2101 /* 2102 * SCSI Wide Type definition. 2103 */ 2104 #define ADV_SCSI_BIT_ID_TYPE ushort 2105 2106 /* 2107 * AdvInitScsiTarget() 'cntl_flag' options. 2108 */ 2109 #define ADV_SCAN_LUN 0x01 2110 #define ADV_CAPINFO_NOLUN 0x02 2111 2112 /* 2113 * Convert target id to target id bit mask. 2114 */ 2115 #define ADV_TID_TO_TIDMASK(tid) (0x01 << ((tid) & ADV_MAX_TID)) 2116 2117 /* 2118 * ASC_SCSI_REQ_Q 'done_status' and 'host_status' return values. 2119 */ 2120 2121 #define QD_NO_STATUS 0x00 /* Request not completed yet. */ 2122 #define QD_NO_ERROR 0x01 2123 #define QD_ABORTED_BY_HOST 0x02 2124 #define QD_WITH_ERROR 0x04 2125 2126 #define QHSTA_NO_ERROR 0x00 2127 #define QHSTA_M_SEL_TIMEOUT 0x11 2128 #define QHSTA_M_DATA_OVER_RUN 0x12 2129 #define QHSTA_M_UNEXPECTED_BUS_FREE 0x13 2130 #define QHSTA_M_QUEUE_ABORTED 0x15 2131 #define QHSTA_M_SXFR_SDMA_ERR 0x16 /* SXFR_STATUS SCSI DMA Error */ 2132 #define QHSTA_M_SXFR_SXFR_PERR 0x17 /* SXFR_STATUS SCSI Bus Parity Error */ 2133 #define QHSTA_M_RDMA_PERR 0x18 /* RISC PCI DMA parity error */ 2134 #define QHSTA_M_SXFR_OFF_UFLW 0x19 /* SXFR_STATUS Offset Underflow */ 2135 #define QHSTA_M_SXFR_OFF_OFLW 0x20 /* SXFR_STATUS Offset Overflow */ 2136 #define QHSTA_M_SXFR_WD_TMO 0x21 /* SXFR_STATUS Watchdog Timeout */ 2137 #define QHSTA_M_SXFR_DESELECTED 0x22 /* SXFR_STATUS Deselected */ 2138 /* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */ 2139 #define QHSTA_M_SXFR_XFR_OFLW 0x12 /* SXFR_STATUS Transfer Overflow */ 2140 #define QHSTA_M_SXFR_XFR_PH_ERR 0x24 /* SXFR_STATUS Transfer Phase Error */ 2141 #define QHSTA_M_SXFR_UNKNOWN_ERROR 0x25 /* SXFR_STATUS Unknown Error */ 2142 #define QHSTA_M_SCSI_BUS_RESET 0x30 /* Request aborted from SBR */ 2143 #define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31 /* Request aborted from unsol. SBR */ 2144 #define QHSTA_M_BUS_DEVICE_RESET 0x32 /* Request aborted from BDR */ 2145 #define QHSTA_M_DIRECTION_ERR 0x35 /* Data Phase mismatch */ 2146 #define QHSTA_M_DIRECTION_ERR_HUNG 0x36 /* Data Phase mismatch and bus hang */ 2147 #define QHSTA_M_WTM_TIMEOUT 0x41 2148 #define QHSTA_M_BAD_CMPL_STATUS_IN 0x42 2149 #define QHSTA_M_NO_AUTO_REQ_SENSE 0x43 2150 #define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44 2151 #define QHSTA_M_INVALID_DEVICE 0x45 /* Bad target ID */ 2152 #define QHSTA_M_FROZEN_TIDQ 0x46 /* TID Queue frozen. */ 2153 #define QHSTA_M_SGBACKUP_ERROR 0x47 /* Scatter-Gather backup error */ 2154 2155 /* Return the address that is aligned at the next doubleword >= to 'addr'. */ 2156 #define ADV_8BALIGN(addr) (((ulong) (addr) + 0x7) & ~0x7) 2157 #define ADV_16BALIGN(addr) (((ulong) (addr) + 0xF) & ~0xF) 2158 #define ADV_32BALIGN(addr) (((ulong) (addr) + 0x1F) & ~0x1F) 2159 2160 /* 2161 * Total contiguous memory needed for driver SG blocks. 2162 * 2163 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum 2164 * number of scatter-gather elements the driver supports in a 2165 * single request. 2166 */ 2167 2168 #define ADV_SG_LIST_MAX_BYTE_SIZE \ 2169 (sizeof(ADV_SG_BLOCK) * \ 2170 ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK)) 2171 2172 /* struct asc_board flags */ 2173 #define ASC_IS_WIDE_BOARD 0x04 /* AdvanSys Wide Board */ 2174 2175 #define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0) 2176 2177 #define NO_ISA_DMA 0xff /* No ISA DMA Channel Used */ 2178 2179 #define ASC_INFO_SIZE 128 /* advansys_info() line size */ 2180 2181 #ifdef CONFIG_PROC_FS 2182 /* /proc/scsi/advansys/[0...] related definitions */ 2183 #define ASC_PRTBUF_SIZE 2048 2184 #define ASC_PRTLINE_SIZE 160 2185 2186 #define ASC_PRT_NEXT() \ 2187 if (cp) { \ 2188 totlen += len; \ 2189 leftlen -= len; \ 2190 if (leftlen == 0) { \ 2191 return totlen; \ 2192 } \ 2193 cp += len; \ 2194 } 2195 #endif /* CONFIG_PROC_FS */ 2196 2197 /* Asc Library return codes */ 2198 #define ASC_TRUE 1 2199 #define ASC_FALSE 0 2200 #define ASC_NOERROR 1 2201 #define ASC_BUSY 0 2202 #define ASC_ERROR (-1) 2203 2204 /* struct scsi_cmnd function return codes */ 2205 #define STATUS_BYTE(byte) (byte) 2206 #define MSG_BYTE(byte) ((byte) << 8) 2207 #define HOST_BYTE(byte) ((byte) << 16) 2208 #define DRIVER_BYTE(byte) ((byte) << 24) 2209 2210 #define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1) 2211 #ifndef ADVANSYS_STATS 2212 #define ASC_STATS_ADD(shost, counter, count) 2213 #else /* ADVANSYS_STATS */ 2214 #define ASC_STATS_ADD(shost, counter, count) \ 2215 (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count)) 2216 #endif /* ADVANSYS_STATS */ 2217 2218 /* If the result wraps when calculating tenths, return 0. */ 2219 #define ASC_TENTHS(num, den) \ 2220 (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \ 2221 0 : ((((num) * 10)/(den)) - (10 * ((num)/(den))))) 2222 2223 /* 2224 * Display a message to the console. 2225 */ 2226 #define ASC_PRINT(s) \ 2227 { \ 2228 printk("advansys: "); \ 2229 printk(s); \ 2230 } 2231 2232 #define ASC_PRINT1(s, a1) \ 2233 { \ 2234 printk("advansys: "); \ 2235 printk((s), (a1)); \ 2236 } 2237 2238 #define ASC_PRINT2(s, a1, a2) \ 2239 { \ 2240 printk("advansys: "); \ 2241 printk((s), (a1), (a2)); \ 2242 } 2243 2244 #define ASC_PRINT3(s, a1, a2, a3) \ 2245 { \ 2246 printk("advansys: "); \ 2247 printk((s), (a1), (a2), (a3)); \ 2248 } 2249 2250 #define ASC_PRINT4(s, a1, a2, a3, a4) \ 2251 { \ 2252 printk("advansys: "); \ 2253 printk((s), (a1), (a2), (a3), (a4)); \ 2254 } 2255 2256 #ifndef ADVANSYS_DEBUG 2257 2258 #define ASC_DBG(lvl, s...) 2259 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) 2260 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) 2261 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2262 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) 2263 #define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) 2264 #define ASC_DBG_PRT_HEX(lvl, name, start, length) 2265 #define ASC_DBG_PRT_CDB(lvl, cdb, len) 2266 #define ASC_DBG_PRT_SENSE(lvl, sense, len) 2267 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) 2268 2269 #else /* ADVANSYS_DEBUG */ 2270 2271 /* 2272 * Debugging Message Levels: 2273 * 0: Errors Only 2274 * 1: High-Level Tracing 2275 * 2-N: Verbose Tracing 2276 */ 2277 2278 #define ASC_DBG(lvl, format, arg...) { \ 2279 if (asc_dbglvl >= (lvl)) \ 2280 printk(KERN_DEBUG "%s: %s: " format, DRV_NAME, \ 2281 __func__ , ## arg); \ 2282 } 2283 2284 #define ASC_DBG_PRT_SCSI_HOST(lvl, s) \ 2285 { \ 2286 if (asc_dbglvl >= (lvl)) { \ 2287 asc_prt_scsi_host(s); \ 2288 } \ 2289 } 2290 2291 #define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \ 2292 { \ 2293 if (asc_dbglvl >= (lvl)) { \ 2294 asc_prt_asc_scsi_q(scsiqp); \ 2295 } \ 2296 } 2297 2298 #define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \ 2299 { \ 2300 if (asc_dbglvl >= (lvl)) { \ 2301 asc_prt_asc_qdone_info(qdone); \ 2302 } \ 2303 } 2304 2305 #define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \ 2306 { \ 2307 if (asc_dbglvl >= (lvl)) { \ 2308 asc_prt_adv_scsi_req_q(scsiqp); \ 2309 } \ 2310 } 2311 2312 #define ASC_DBG_PRT_HEX(lvl, name, start, length) \ 2313 { \ 2314 if (asc_dbglvl >= (lvl)) { \ 2315 asc_prt_hex((name), (start), (length)); \ 2316 } \ 2317 } 2318 2319 #define ASC_DBG_PRT_CDB(lvl, cdb, len) \ 2320 ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len)); 2321 2322 #define ASC_DBG_PRT_SENSE(lvl, sense, len) \ 2323 ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len)); 2324 2325 #define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \ 2326 ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len)); 2327 #endif /* ADVANSYS_DEBUG */ 2328 2329 #ifdef ADVANSYS_STATS 2330 2331 /* Per board statistics structure */ 2332 struct asc_stats { 2333 /* Driver Entrypoint Statistics */ 2334 ADV_DCNT queuecommand; /* # calls to advansys_queuecommand() */ 2335 ADV_DCNT reset; /* # calls to advansys_eh_bus_reset() */ 2336 ADV_DCNT biosparam; /* # calls to advansys_biosparam() */ 2337 ADV_DCNT interrupt; /* # advansys_interrupt() calls */ 2338 ADV_DCNT callback; /* # calls to asc/adv_isr_callback() */ 2339 ADV_DCNT done; /* # calls to request's scsi_done function */ 2340 ADV_DCNT build_error; /* # asc/adv_build_req() ASC_ERROR returns. */ 2341 ADV_DCNT adv_build_noreq; /* # adv_build_req() adv_req_t alloc. fail. */ 2342 ADV_DCNT adv_build_nosg; /* # adv_build_req() adv_sgblk_t alloc. fail. */ 2343 /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */ 2344 ADV_DCNT exe_noerror; /* # ASC_NOERROR returns. */ 2345 ADV_DCNT exe_busy; /* # ASC_BUSY returns. */ 2346 ADV_DCNT exe_error; /* # ASC_ERROR returns. */ 2347 ADV_DCNT exe_unknown; /* # unknown returns. */ 2348 /* Data Transfer Statistics */ 2349 ADV_DCNT xfer_cnt; /* # I/O requests received */ 2350 ADV_DCNT xfer_elem; /* # scatter-gather elements */ 2351 ADV_DCNT xfer_sect; /* # 512-byte blocks */ 2352 }; 2353 #endif /* ADVANSYS_STATS */ 2354 2355 /* 2356 * Structure allocated for each board. 2357 * 2358 * This structure is allocated by scsi_host_alloc() at the end 2359 * of the 'Scsi_Host' structure starting at the 'hostdata' 2360 * field. It is guaranteed to be allocated from DMA-able memory. 2361 */ 2362 struct asc_board { 2363 struct device *dev; 2364 uint flags; /* Board flags */ 2365 unsigned int irq; 2366 union { 2367 ASC_DVC_VAR asc_dvc_var; /* Narrow board */ 2368 ADV_DVC_VAR adv_dvc_var; /* Wide board */ 2369 } dvc_var; 2370 union { 2371 ASC_DVC_CFG asc_dvc_cfg; /* Narrow board */ 2372 ADV_DVC_CFG adv_dvc_cfg; /* Wide board */ 2373 } dvc_cfg; 2374 ushort asc_n_io_port; /* Number I/O ports. */ 2375 ADV_SCSI_BIT_ID_TYPE init_tidmask; /* Target init./valid mask */ 2376 ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */ 2377 ADV_SCSI_BIT_ID_TYPE queue_full; /* Queue full mask */ 2378 ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */ 2379 union { 2380 ASCEEP_CONFIG asc_eep; /* Narrow EEPROM config. */ 2381 ADVEEP_3550_CONFIG adv_3550_eep; /* 3550 EEPROM config. */ 2382 ADVEEP_38C0800_CONFIG adv_38C0800_eep; /* 38C0800 EEPROM config. */ 2383 ADVEEP_38C1600_CONFIG adv_38C1600_eep; /* 38C1600 EEPROM config. */ 2384 } eep_config; 2385 ulong last_reset; /* Saved last reset time */ 2386 /* /proc/scsi/advansys/[0...] */ 2387 char *prtbuf; /* /proc print buffer */ 2388 #ifdef ADVANSYS_STATS 2389 struct asc_stats asc_stats; /* Board statistics */ 2390 #endif /* ADVANSYS_STATS */ 2391 /* 2392 * The following fields are used only for Narrow Boards. 2393 */ 2394 uchar sdtr_data[ASC_MAX_TID + 1]; /* SDTR information */ 2395 /* 2396 * The following fields are used only for Wide Boards. 2397 */ 2398 void __iomem *ioremap_addr; /* I/O Memory remap address. */ 2399 ushort ioport; /* I/O Port address. */ 2400 adv_req_t *adv_reqp; /* Request structures. */ 2401 adv_sgblk_t *adv_sgblkp; /* Scatter-gather structures. */ 2402 ushort bios_signature; /* BIOS Signature. */ 2403 ushort bios_version; /* BIOS Version. */ 2404 ushort bios_codeseg; /* BIOS Code Segment. */ 2405 ushort bios_codelen; /* BIOS Code Segment Length. */ 2406 }; 2407 2408 #define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \ 2409 dvc_var.asc_dvc_var) 2410 #define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \ 2411 dvc_var.adv_dvc_var) 2412 #define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev) 2413 2414 #ifdef ADVANSYS_DEBUG 2415 static int asc_dbglvl = 3; 2416 2417 /* 2418 * asc_prt_asc_dvc_var() 2419 */ 2420 static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h) 2421 { 2422 printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h); 2423 2424 printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl " 2425 "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl); 2426 2427 printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type, 2428 (unsigned)h->init_sdtr); 2429 2430 printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, " 2431 "chip_no 0x%x,\n", (unsigned)h->sdtr_done, 2432 (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready, 2433 (unsigned)h->chip_no); 2434 2435 printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait " 2436 "%u,\n", (unsigned)h->queue_full_or_busy, 2437 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2438 2439 printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, " 2440 "in_critical_cnt %u,\n", (unsigned)h->is_in_int, 2441 (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng, 2442 (unsigned)h->in_critical_cnt); 2443 2444 printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, " 2445 "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage, 2446 (unsigned)h->init_state, (unsigned)h->no_scam, 2447 (unsigned)h->pci_fix_asyn_xfer); 2448 2449 printk(" cfg 0x%lx\n", (ulong)h->cfg); 2450 } 2451 2452 /* 2453 * asc_prt_asc_dvc_cfg() 2454 */ 2455 static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h) 2456 { 2457 printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h); 2458 2459 printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n", 2460 h->can_tagged_qng, h->cmd_qng_enabled); 2461 printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n", 2462 h->disc_enable, h->sdtr_enable); 2463 2464 printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, " 2465 "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed, 2466 h->isa_dma_channel, h->chip_version); 2467 2468 printk(" mcode_date 0x%x, mcode_version %d\n", 2469 h->mcode_date, h->mcode_version); 2470 } 2471 2472 /* 2473 * asc_prt_adv_dvc_var() 2474 * 2475 * Display an ADV_DVC_VAR structure. 2476 */ 2477 static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h) 2478 { 2479 printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h); 2480 2481 printk(" iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n", 2482 (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able); 2483 2484 printk(" sdtr_able 0x%x, wdtr_able 0x%x\n", 2485 (unsigned)h->sdtr_able, (unsigned)h->wdtr_able); 2486 2487 printk(" start_motor 0x%x, scsi_reset_wait 0x%x\n", 2488 (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait); 2489 2490 printk(" max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%lxn\n", 2491 (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng, 2492 (ulong)h->carr_freelist); 2493 2494 printk(" icq_sp 0x%lx, irq_sp 0x%lx\n", 2495 (ulong)h->icq_sp, (ulong)h->irq_sp); 2496 2497 printk(" no_scam 0x%x, tagqng_able 0x%x\n", 2498 (unsigned)h->no_scam, (unsigned)h->tagqng_able); 2499 2500 printk(" chip_scsi_id 0x%x, cfg 0x%lx\n", 2501 (unsigned)h->chip_scsi_id, (ulong)h->cfg); 2502 } 2503 2504 /* 2505 * asc_prt_adv_dvc_cfg() 2506 * 2507 * Display an ADV_DVC_CFG structure. 2508 */ 2509 static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h) 2510 { 2511 printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h); 2512 2513 printk(" disc_enable 0x%x, termination 0x%x\n", 2514 h->disc_enable, h->termination); 2515 2516 printk(" chip_version 0x%x, mcode_date 0x%x\n", 2517 h->chip_version, h->mcode_date); 2518 2519 printk(" mcode_version 0x%x, control_flag 0x%x\n", 2520 h->mcode_version, h->control_flag); 2521 } 2522 2523 /* 2524 * asc_prt_scsi_host() 2525 */ 2526 static void asc_prt_scsi_host(struct Scsi_Host *s) 2527 { 2528 struct asc_board *boardp = shost_priv(s); 2529 2530 printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev)); 2531 printk(" host_busy %u, host_no %d, last_reset %d,\n", 2532 s->host_busy, s->host_no, (unsigned)s->last_reset); 2533 2534 printk(" base 0x%lx, io_port 0x%lx, irq %d,\n", 2535 (ulong)s->base, (ulong)s->io_port, boardp->irq); 2536 2537 printk(" dma_channel %d, this_id %d, can_queue %d,\n", 2538 s->dma_channel, s->this_id, s->can_queue); 2539 2540 printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n", 2541 s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma); 2542 2543 if (ASC_NARROW_BOARD(boardp)) { 2544 asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var); 2545 asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg); 2546 } else { 2547 asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var); 2548 asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg); 2549 } 2550 } 2551 2552 /* 2553 * asc_prt_hex() 2554 * 2555 * Print hexadecimal output in 4 byte groupings 32 bytes 2556 * or 8 double-words per line. 2557 */ 2558 static void asc_prt_hex(char *f, uchar *s, int l) 2559 { 2560 int i; 2561 int j; 2562 int k; 2563 int m; 2564 2565 printk("%s: (%d bytes)\n", f, l); 2566 2567 for (i = 0; i < l; i += 32) { 2568 2569 /* Display a maximum of 8 double-words per line. */ 2570 if ((k = (l - i) / 4) >= 8) { 2571 k = 8; 2572 m = 0; 2573 } else { 2574 m = (l - i) % 4; 2575 } 2576 2577 for (j = 0; j < k; j++) { 2578 printk(" %2.2X%2.2X%2.2X%2.2X", 2579 (unsigned)s[i + (j * 4)], 2580 (unsigned)s[i + (j * 4) + 1], 2581 (unsigned)s[i + (j * 4) + 2], 2582 (unsigned)s[i + (j * 4) + 3]); 2583 } 2584 2585 switch (m) { 2586 case 0: 2587 default: 2588 break; 2589 case 1: 2590 printk(" %2.2X", (unsigned)s[i + (j * 4)]); 2591 break; 2592 case 2: 2593 printk(" %2.2X%2.2X", 2594 (unsigned)s[i + (j * 4)], 2595 (unsigned)s[i + (j * 4) + 1]); 2596 break; 2597 case 3: 2598 printk(" %2.2X%2.2X%2.2X", 2599 (unsigned)s[i + (j * 4) + 1], 2600 (unsigned)s[i + (j * 4) + 2], 2601 (unsigned)s[i + (j * 4) + 3]); 2602 break; 2603 } 2604 2605 printk("\n"); 2606 } 2607 } 2608 2609 /* 2610 * asc_prt_asc_scsi_q() 2611 */ 2612 static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q) 2613 { 2614 ASC_SG_HEAD *sgp; 2615 int i; 2616 2617 printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q); 2618 2619 printk 2620 (" target_ix 0x%x, target_lun %u, srb_ptr 0x%lx, tag_code 0x%x,\n", 2621 q->q2.target_ix, q->q1.target_lun, (ulong)q->q2.srb_ptr, 2622 q->q2.tag_code); 2623 2624 printk 2625 (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2626 (ulong)le32_to_cpu(q->q1.data_addr), 2627 (ulong)le32_to_cpu(q->q1.data_cnt), 2628 (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len); 2629 2630 printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n", 2631 (ulong)q->cdbptr, q->q2.cdb_len, 2632 (ulong)q->sg_head, q->q1.sg_queue_cnt); 2633 2634 if (q->sg_head) { 2635 sgp = q->sg_head; 2636 printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp); 2637 printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt, 2638 sgp->queue_cnt); 2639 for (i = 0; i < sgp->entry_cnt; i++) { 2640 printk(" [%u]: addr 0x%lx, bytes %lu\n", 2641 i, (ulong)le32_to_cpu(sgp->sg_list[i].addr), 2642 (ulong)le32_to_cpu(sgp->sg_list[i].bytes)); 2643 } 2644 2645 } 2646 } 2647 2648 /* 2649 * asc_prt_asc_qdone_info() 2650 */ 2651 static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q) 2652 { 2653 printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q); 2654 printk(" srb_ptr 0x%lx, target_ix %u, cdb_len %u, tag_code %u,\n", 2655 (ulong)q->d2.srb_ptr, q->d2.target_ix, q->d2.cdb_len, 2656 q->d2.tag_code); 2657 printk 2658 (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n", 2659 q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg); 2660 } 2661 2662 /* 2663 * asc_prt_adv_sgblock() 2664 * 2665 * Display an ADV_SG_BLOCK structure. 2666 */ 2667 static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b) 2668 { 2669 int i; 2670 2671 printk(" ASC_SG_BLOCK at addr 0x%lx (sgblockno %d)\n", 2672 (ulong)b, sgblockno); 2673 printk(" sg_cnt %u, sg_ptr 0x%lx\n", 2674 b->sg_cnt, (ulong)le32_to_cpu(b->sg_ptr)); 2675 BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK); 2676 if (b->sg_ptr != 0) 2677 BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK); 2678 for (i = 0; i < b->sg_cnt; i++) { 2679 printk(" [%u]: sg_addr 0x%lx, sg_count 0x%lx\n", 2680 i, (ulong)b->sg_list[i].sg_addr, 2681 (ulong)b->sg_list[i].sg_count); 2682 } 2683 } 2684 2685 /* 2686 * asc_prt_adv_scsi_req_q() 2687 * 2688 * Display an ADV_SCSI_REQ_Q structure. 2689 */ 2690 static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q) 2691 { 2692 int sg_blk_cnt; 2693 struct asc_sg_block *sg_ptr; 2694 2695 printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q); 2696 2697 printk(" target_id %u, target_lun %u, srb_ptr 0x%lx, a_flag 0x%x\n", 2698 q->target_id, q->target_lun, (ulong)q->srb_ptr, q->a_flag); 2699 2700 printk(" cntl 0x%x, data_addr 0x%lx, vdata_addr 0x%lx\n", 2701 q->cntl, (ulong)le32_to_cpu(q->data_addr), (ulong)q->vdata_addr); 2702 2703 printk(" data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n", 2704 (ulong)le32_to_cpu(q->data_cnt), 2705 (ulong)le32_to_cpu(q->sense_addr), q->sense_len); 2706 2707 printk 2708 (" cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n", 2709 q->cdb_len, q->done_status, q->host_status, q->scsi_status); 2710 2711 printk(" sg_working_ix 0x%x, target_cmd %u\n", 2712 q->sg_working_ix, q->target_cmd); 2713 2714 printk(" scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n", 2715 (ulong)le32_to_cpu(q->scsiq_rptr), 2716 (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr); 2717 2718 /* Display the request's ADV_SG_BLOCK structures. */ 2719 if (q->sg_list_ptr != NULL) { 2720 sg_blk_cnt = 0; 2721 while (1) { 2722 /* 2723 * 'sg_ptr' is a physical address. Convert it to a virtual 2724 * address by indexing 'sg_blk_cnt' into the virtual address 2725 * array 'sg_list_ptr'. 2726 * 2727 * XXX - Assumes all SG physical blocks are virtually contiguous. 2728 */ 2729 sg_ptr = 2730 &(((ADV_SG_BLOCK *)(q->sg_list_ptr))[sg_blk_cnt]); 2731 asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr); 2732 if (sg_ptr->sg_ptr == 0) { 2733 break; 2734 } 2735 sg_blk_cnt++; 2736 } 2737 } 2738 } 2739 #endif /* ADVANSYS_DEBUG */ 2740 2741 /* 2742 * The advansys chip/microcode contains a 32-bit identifier for each command 2743 * known as the 'srb'. I don't know what it stands for. The driver used 2744 * to encode the scsi_cmnd pointer by calling virt_to_bus and retrieve it 2745 * with bus_to_virt. Now the driver keeps a per-host map of integers to 2746 * pointers. It auto-expands when full, unless it can't allocate memory. 2747 * Note that an srb of 0 is treated specially by the chip/firmware, hence 2748 * the return of i+1 in this routine, and the corresponding subtraction in 2749 * the inverse routine. 2750 */ 2751 #define BAD_SRB 0 2752 static u32 advansys_ptr_to_srb(struct asc_dvc_var *asc_dvc, void *ptr) 2753 { 2754 int i; 2755 void **new_ptr; 2756 2757 for (i = 0; i < asc_dvc->ptr_map_count; i++) { 2758 if (!asc_dvc->ptr_map[i]) 2759 goto out; 2760 } 2761 2762 if (asc_dvc->ptr_map_count == 0) 2763 asc_dvc->ptr_map_count = 1; 2764 else 2765 asc_dvc->ptr_map_count *= 2; 2766 2767 new_ptr = krealloc(asc_dvc->ptr_map, 2768 asc_dvc->ptr_map_count * sizeof(void *), GFP_ATOMIC); 2769 if (!new_ptr) 2770 return BAD_SRB; 2771 asc_dvc->ptr_map = new_ptr; 2772 out: 2773 ASC_DBG(3, "Putting ptr %p into array offset %d\n", ptr, i); 2774 asc_dvc->ptr_map[i] = ptr; 2775 return i + 1; 2776 } 2777 2778 static void * advansys_srb_to_ptr(struct asc_dvc_var *asc_dvc, u32 srb) 2779 { 2780 void *ptr; 2781 2782 srb--; 2783 if (srb >= asc_dvc->ptr_map_count) { 2784 printk("advansys: bad SRB %u, max %u\n", srb, 2785 asc_dvc->ptr_map_count); 2786 return NULL; 2787 } 2788 ptr = asc_dvc->ptr_map[srb]; 2789 asc_dvc->ptr_map[srb] = NULL; 2790 ASC_DBG(3, "Returning ptr %p from array offset %d\n", ptr, srb); 2791 return ptr; 2792 } 2793 2794 /* 2795 * advansys_info() 2796 * 2797 * Return suitable for printing on the console with the argument 2798 * adapter's configuration information. 2799 * 2800 * Note: The information line should not exceed ASC_INFO_SIZE bytes, 2801 * otherwise the static 'info' array will be overrun. 2802 */ 2803 static const char *advansys_info(struct Scsi_Host *shost) 2804 { 2805 static char info[ASC_INFO_SIZE]; 2806 struct asc_board *boardp = shost_priv(shost); 2807 ASC_DVC_VAR *asc_dvc_varp; 2808 ADV_DVC_VAR *adv_dvc_varp; 2809 char *busname; 2810 char *widename = NULL; 2811 2812 if (ASC_NARROW_BOARD(boardp)) { 2813 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 2814 ASC_DBG(1, "begin\n"); 2815 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 2816 if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) == 2817 ASC_IS_ISAPNP) { 2818 busname = "ISA PnP"; 2819 } else { 2820 busname = "ISA"; 2821 } 2822 sprintf(info, 2823 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X", 2824 ASC_VERSION, busname, 2825 (ulong)shost->io_port, 2826 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2827 boardp->irq, shost->dma_channel); 2828 } else { 2829 if (asc_dvc_varp->bus_type & ASC_IS_VL) { 2830 busname = "VL"; 2831 } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) { 2832 busname = "EISA"; 2833 } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) { 2834 if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA) 2835 == ASC_IS_PCI_ULTRA) { 2836 busname = "PCI Ultra"; 2837 } else { 2838 busname = "PCI"; 2839 } 2840 } else { 2841 busname = "?"; 2842 shost_printk(KERN_ERR, shost, "unknown bus " 2843 "type %d\n", asc_dvc_varp->bus_type); 2844 } 2845 sprintf(info, 2846 "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X", 2847 ASC_VERSION, busname, (ulong)shost->io_port, 2848 (ulong)shost->io_port + ASC_IOADR_GAP - 1, 2849 boardp->irq); 2850 } 2851 } else { 2852 /* 2853 * Wide Adapter Information 2854 * 2855 * Memory-mapped I/O is used instead of I/O space to access 2856 * the adapter, but display the I/O Port range. The Memory 2857 * I/O address is displayed through the driver /proc file. 2858 */ 2859 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 2860 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 2861 widename = "Ultra-Wide"; 2862 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 2863 widename = "Ultra2-Wide"; 2864 } else { 2865 widename = "Ultra3-Wide"; 2866 } 2867 sprintf(info, 2868 "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X", 2869 ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base, 2870 (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq); 2871 } 2872 BUG_ON(strlen(info) >= ASC_INFO_SIZE); 2873 ASC_DBG(1, "end\n"); 2874 return info; 2875 } 2876 2877 #ifdef CONFIG_PROC_FS 2878 /* 2879 * asc_prt_line() 2880 * 2881 * If 'cp' is NULL print to the console, otherwise print to a buffer. 2882 * 2883 * Return 0 if printing to the console, otherwise return the number of 2884 * bytes written to the buffer. 2885 * 2886 * Note: If any single line is greater than ASC_PRTLINE_SIZE bytes the stack 2887 * will be corrupted. 's[]' is defined to be ASC_PRTLINE_SIZE bytes. 2888 */ 2889 static int asc_prt_line(char *buf, int buflen, char *fmt, ...) 2890 { 2891 va_list args; 2892 int ret; 2893 char s[ASC_PRTLINE_SIZE]; 2894 2895 va_start(args, fmt); 2896 ret = vsprintf(s, fmt, args); 2897 BUG_ON(ret >= ASC_PRTLINE_SIZE); 2898 if (buf == NULL) { 2899 (void)printk(s); 2900 ret = 0; 2901 } else { 2902 ret = min(buflen, ret); 2903 memcpy(buf, s, ret); 2904 } 2905 va_end(args); 2906 return ret; 2907 } 2908 2909 /* 2910 * asc_prt_board_devices() 2911 * 2912 * Print driver information for devices attached to the board. 2913 * 2914 * Note: no single line should be greater than ASC_PRTLINE_SIZE, 2915 * cf. asc_prt_line(). 2916 * 2917 * Return the number of characters copied into 'cp'. No more than 2918 * 'cplen' characters will be copied to 'cp'. 2919 */ 2920 static int asc_prt_board_devices(struct Scsi_Host *shost, char *cp, int cplen) 2921 { 2922 struct asc_board *boardp = shost_priv(shost); 2923 int leftlen; 2924 int totlen; 2925 int len; 2926 int chip_scsi_id; 2927 int i; 2928 2929 leftlen = cplen; 2930 totlen = len = 0; 2931 2932 len = asc_prt_line(cp, leftlen, 2933 "\nDevice Information for AdvanSys SCSI Host %d:\n", 2934 shost->host_no); 2935 ASC_PRT_NEXT(); 2936 2937 if (ASC_NARROW_BOARD(boardp)) { 2938 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 2939 } else { 2940 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 2941 } 2942 2943 len = asc_prt_line(cp, leftlen, "Target IDs Detected:"); 2944 ASC_PRT_NEXT(); 2945 for (i = 0; i <= ADV_MAX_TID; i++) { 2946 if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) { 2947 len = asc_prt_line(cp, leftlen, " %X,", i); 2948 ASC_PRT_NEXT(); 2949 } 2950 } 2951 len = asc_prt_line(cp, leftlen, " (%X=Host Adapter)\n", chip_scsi_id); 2952 ASC_PRT_NEXT(); 2953 2954 return totlen; 2955 } 2956 2957 /* 2958 * Display Wide Board BIOS Information. 2959 */ 2960 static int asc_prt_adv_bios(struct Scsi_Host *shost, char *cp, int cplen) 2961 { 2962 struct asc_board *boardp = shost_priv(shost); 2963 int leftlen; 2964 int totlen; 2965 int len; 2966 ushort major, minor, letter; 2967 2968 leftlen = cplen; 2969 totlen = len = 0; 2970 2971 len = asc_prt_line(cp, leftlen, "\nROM BIOS Version: "); 2972 ASC_PRT_NEXT(); 2973 2974 /* 2975 * If the BIOS saved a valid signature, then fill in 2976 * the BIOS code segment base address. 2977 */ 2978 if (boardp->bios_signature != 0x55AA) { 2979 len = asc_prt_line(cp, leftlen, "Disabled or Pre-3.1\n"); 2980 ASC_PRT_NEXT(); 2981 len = asc_prt_line(cp, leftlen, 2982 "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"); 2983 ASC_PRT_NEXT(); 2984 len = asc_prt_line(cp, leftlen, 2985 "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n"); 2986 ASC_PRT_NEXT(); 2987 } else { 2988 major = (boardp->bios_version >> 12) & 0xF; 2989 minor = (boardp->bios_version >> 8) & 0xF; 2990 letter = (boardp->bios_version & 0xFF); 2991 2992 len = asc_prt_line(cp, leftlen, "%d.%d%c\n", 2993 major, minor, 2994 letter >= 26 ? '?' : letter + 'A'); 2995 ASC_PRT_NEXT(); 2996 2997 /* 2998 * Current available ROM BIOS release is 3.1I for UW 2999 * and 3.2I for U2W. This code doesn't differentiate 3000 * UW and U2W boards. 3001 */ 3002 if (major < 3 || (major <= 3 && minor < 1) || 3003 (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) { 3004 len = asc_prt_line(cp, leftlen, 3005 "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"); 3006 ASC_PRT_NEXT(); 3007 len = asc_prt_line(cp, leftlen, 3008 "ftp://ftp.connectcom.net/pub\n"); 3009 ASC_PRT_NEXT(); 3010 } 3011 } 3012 3013 return totlen; 3014 } 3015 3016 /* 3017 * Add serial number to information bar if signature AAh 3018 * is found in at bit 15-9 (7 bits) of word 1. 3019 * 3020 * Serial Number consists fo 12 alpha-numeric digits. 3021 * 3022 * 1 - Product type (A,B,C,D..) Word0: 15-13 (3 bits) 3023 * 2 - MFG Location (A,B,C,D..) Word0: 12-10 (3 bits) 3024 * 3-4 - Product ID (0-99) Word0: 9-0 (10 bits) 3025 * 5 - Product revision (A-J) Word0: " " 3026 * 3027 * Signature Word1: 15-9 (7 bits) 3028 * 6 - Year (0-9) Word1: 8-6 (3 bits) & Word2: 15 (1 bit) 3029 * 7-8 - Week of the year (1-52) Word1: 5-0 (6 bits) 3030 * 3031 * 9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits) 3032 * 3033 * Note 1: Only production cards will have a serial number. 3034 * 3035 * Note 2: Signature is most significant 7 bits (0xFE). 3036 * 3037 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE. 3038 */ 3039 static int asc_get_eeprom_string(ushort *serialnum, uchar *cp) 3040 { 3041 ushort w, num; 3042 3043 if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) { 3044 return ASC_FALSE; 3045 } else { 3046 /* 3047 * First word - 6 digits. 3048 */ 3049 w = serialnum[0]; 3050 3051 /* Product type - 1st digit. */ 3052 if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') { 3053 /* Product type is P=Prototype */ 3054 *cp += 0x8; 3055 } 3056 cp++; 3057 3058 /* Manufacturing location - 2nd digit. */ 3059 *cp++ = 'A' + ((w & 0x1C00) >> 10); 3060 3061 /* Product ID - 3rd, 4th digits. */ 3062 num = w & 0x3FF; 3063 *cp++ = '0' + (num / 100); 3064 num %= 100; 3065 *cp++ = '0' + (num / 10); 3066 3067 /* Product revision - 5th digit. */ 3068 *cp++ = 'A' + (num % 10); 3069 3070 /* 3071 * Second word 3072 */ 3073 w = serialnum[1]; 3074 3075 /* 3076 * Year - 6th digit. 3077 * 3078 * If bit 15 of third word is set, then the 3079 * last digit of the year is greater than 7. 3080 */ 3081 if (serialnum[2] & 0x8000) { 3082 *cp++ = '8' + ((w & 0x1C0) >> 6); 3083 } else { 3084 *cp++ = '0' + ((w & 0x1C0) >> 6); 3085 } 3086 3087 /* Week of year - 7th, 8th digits. */ 3088 num = w & 0x003F; 3089 *cp++ = '0' + num / 10; 3090 num %= 10; 3091 *cp++ = '0' + num; 3092 3093 /* 3094 * Third word 3095 */ 3096 w = serialnum[2] & 0x7FFF; 3097 3098 /* Serial number - 9th digit. */ 3099 *cp++ = 'A' + (w / 1000); 3100 3101 /* 10th, 11th, 12th digits. */ 3102 num = w % 1000; 3103 *cp++ = '0' + num / 100; 3104 num %= 100; 3105 *cp++ = '0' + num / 10; 3106 num %= 10; 3107 *cp++ = '0' + num; 3108 3109 *cp = '\0'; /* Null Terminate the string. */ 3110 return ASC_TRUE; 3111 } 3112 } 3113 3114 /* 3115 * asc_prt_asc_board_eeprom() 3116 * 3117 * Print board EEPROM configuration. 3118 * 3119 * Note: no single line should be greater than ASC_PRTLINE_SIZE, 3120 * cf. asc_prt_line(). 3121 * 3122 * Return the number of characters copied into 'cp'. No more than 3123 * 'cplen' characters will be copied to 'cp'. 3124 */ 3125 static int asc_prt_asc_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen) 3126 { 3127 struct asc_board *boardp = shost_priv(shost); 3128 ASC_DVC_VAR *asc_dvc_varp; 3129 int leftlen; 3130 int totlen; 3131 int len; 3132 ASCEEP_CONFIG *ep; 3133 int i; 3134 #ifdef CONFIG_ISA 3135 int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 }; 3136 #endif /* CONFIG_ISA */ 3137 uchar serialstr[13]; 3138 3139 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 3140 ep = &boardp->eep_config.asc_eep; 3141 3142 leftlen = cplen; 3143 totlen = len = 0; 3144 3145 len = asc_prt_line(cp, leftlen, 3146 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 3147 shost->host_no); 3148 ASC_PRT_NEXT(); 3149 3150 if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr) 3151 == ASC_TRUE) { 3152 len = 3153 asc_prt_line(cp, leftlen, " Serial Number: %s\n", 3154 serialstr); 3155 ASC_PRT_NEXT(); 3156 } else { 3157 if (ep->adapter_info[5] == 0xBB) { 3158 len = asc_prt_line(cp, leftlen, 3159 " Default Settings Used for EEPROM-less Adapter.\n"); 3160 ASC_PRT_NEXT(); 3161 } else { 3162 len = asc_prt_line(cp, leftlen, 3163 " Serial Number Signature Not Present.\n"); 3164 ASC_PRT_NEXT(); 3165 } 3166 } 3167 3168 len = asc_prt_line(cp, leftlen, 3169 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3170 ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng, 3171 ep->max_tag_qng); 3172 ASC_PRT_NEXT(); 3173 3174 len = asc_prt_line(cp, leftlen, 3175 " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam); 3176 ASC_PRT_NEXT(); 3177 3178 len = asc_prt_line(cp, leftlen, " Target ID: "); 3179 ASC_PRT_NEXT(); 3180 for (i = 0; i <= ASC_MAX_TID; i++) { 3181 len = asc_prt_line(cp, leftlen, " %d", i); 3182 ASC_PRT_NEXT(); 3183 } 3184 len = asc_prt_line(cp, leftlen, "\n"); 3185 ASC_PRT_NEXT(); 3186 3187 len = asc_prt_line(cp, leftlen, " Disconnects: "); 3188 ASC_PRT_NEXT(); 3189 for (i = 0; i <= ASC_MAX_TID; i++) { 3190 len = asc_prt_line(cp, leftlen, " %c", 3191 (ep-> 3192 disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 3193 'N'); 3194 ASC_PRT_NEXT(); 3195 } 3196 len = asc_prt_line(cp, leftlen, "\n"); 3197 ASC_PRT_NEXT(); 3198 3199 len = asc_prt_line(cp, leftlen, " Command Queuing: "); 3200 ASC_PRT_NEXT(); 3201 for (i = 0; i <= ASC_MAX_TID; i++) { 3202 len = asc_prt_line(cp, leftlen, " %c", 3203 (ep-> 3204 use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 3205 'N'); 3206 ASC_PRT_NEXT(); 3207 } 3208 len = asc_prt_line(cp, leftlen, "\n"); 3209 ASC_PRT_NEXT(); 3210 3211 len = asc_prt_line(cp, leftlen, " Start Motor: "); 3212 ASC_PRT_NEXT(); 3213 for (i = 0; i <= ASC_MAX_TID; i++) { 3214 len = asc_prt_line(cp, leftlen, " %c", 3215 (ep-> 3216 start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 3217 'N'); 3218 ASC_PRT_NEXT(); 3219 } 3220 len = asc_prt_line(cp, leftlen, "\n"); 3221 ASC_PRT_NEXT(); 3222 3223 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:"); 3224 ASC_PRT_NEXT(); 3225 for (i = 0; i <= ASC_MAX_TID; i++) { 3226 len = asc_prt_line(cp, leftlen, " %c", 3227 (ep-> 3228 init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 3229 'N'); 3230 ASC_PRT_NEXT(); 3231 } 3232 len = asc_prt_line(cp, leftlen, "\n"); 3233 ASC_PRT_NEXT(); 3234 3235 #ifdef CONFIG_ISA 3236 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 3237 len = asc_prt_line(cp, leftlen, 3238 " Host ISA DMA speed: %d MB/S\n", 3239 isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]); 3240 ASC_PRT_NEXT(); 3241 } 3242 #endif /* CONFIG_ISA */ 3243 3244 return totlen; 3245 } 3246 3247 /* 3248 * asc_prt_adv_board_eeprom() 3249 * 3250 * Print board EEPROM configuration. 3251 * 3252 * Note: no single line should be greater than ASC_PRTLINE_SIZE, 3253 * cf. asc_prt_line(). 3254 * 3255 * Return the number of characters copied into 'cp'. No more than 3256 * 'cplen' characters will be copied to 'cp'. 3257 */ 3258 static int asc_prt_adv_board_eeprom(struct Scsi_Host *shost, char *cp, int cplen) 3259 { 3260 struct asc_board *boardp = shost_priv(shost); 3261 ADV_DVC_VAR *adv_dvc_varp; 3262 int leftlen; 3263 int totlen; 3264 int len; 3265 int i; 3266 char *termstr; 3267 uchar serialstr[13]; 3268 ADVEEP_3550_CONFIG *ep_3550 = NULL; 3269 ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL; 3270 ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL; 3271 ushort word; 3272 ushort *wordp; 3273 ushort sdtr_speed = 0; 3274 3275 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 3276 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3277 ep_3550 = &boardp->eep_config.adv_3550_eep; 3278 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3279 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 3280 } else { 3281 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 3282 } 3283 3284 leftlen = cplen; 3285 totlen = len = 0; 3286 3287 len = asc_prt_line(cp, leftlen, 3288 "\nEEPROM Settings for AdvanSys SCSI Host %d:\n", 3289 shost->host_no); 3290 ASC_PRT_NEXT(); 3291 3292 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3293 wordp = &ep_3550->serial_number_word1; 3294 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3295 wordp = &ep_38C0800->serial_number_word1; 3296 } else { 3297 wordp = &ep_38C1600->serial_number_word1; 3298 } 3299 3300 if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE) { 3301 len = 3302 asc_prt_line(cp, leftlen, " Serial Number: %s\n", 3303 serialstr); 3304 ASC_PRT_NEXT(); 3305 } else { 3306 len = asc_prt_line(cp, leftlen, 3307 " Serial Number Signature Not Present.\n"); 3308 ASC_PRT_NEXT(); 3309 } 3310 3311 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3312 len = asc_prt_line(cp, leftlen, 3313 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3314 ep_3550->adapter_scsi_id, 3315 ep_3550->max_host_qng, ep_3550->max_dvc_qng); 3316 ASC_PRT_NEXT(); 3317 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3318 len = asc_prt_line(cp, leftlen, 3319 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3320 ep_38C0800->adapter_scsi_id, 3321 ep_38C0800->max_host_qng, 3322 ep_38C0800->max_dvc_qng); 3323 ASC_PRT_NEXT(); 3324 } else { 3325 len = asc_prt_line(cp, leftlen, 3326 " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n", 3327 ep_38C1600->adapter_scsi_id, 3328 ep_38C1600->max_host_qng, 3329 ep_38C1600->max_dvc_qng); 3330 ASC_PRT_NEXT(); 3331 } 3332 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3333 word = ep_3550->termination; 3334 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3335 word = ep_38C0800->termination_lvd; 3336 } else { 3337 word = ep_38C1600->termination_lvd; 3338 } 3339 switch (word) { 3340 case 1: 3341 termstr = "Low Off/High Off"; 3342 break; 3343 case 2: 3344 termstr = "Low Off/High On"; 3345 break; 3346 case 3: 3347 termstr = "Low On/High On"; 3348 break; 3349 default: 3350 case 0: 3351 termstr = "Automatic"; 3352 break; 3353 } 3354 3355 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3356 len = asc_prt_line(cp, leftlen, 3357 " termination: %u (%s), bios_ctrl: 0x%x\n", 3358 ep_3550->termination, termstr, 3359 ep_3550->bios_ctrl); 3360 ASC_PRT_NEXT(); 3361 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3362 len = asc_prt_line(cp, leftlen, 3363 " termination: %u (%s), bios_ctrl: 0x%x\n", 3364 ep_38C0800->termination_lvd, termstr, 3365 ep_38C0800->bios_ctrl); 3366 ASC_PRT_NEXT(); 3367 } else { 3368 len = asc_prt_line(cp, leftlen, 3369 " termination: %u (%s), bios_ctrl: 0x%x\n", 3370 ep_38C1600->termination_lvd, termstr, 3371 ep_38C1600->bios_ctrl); 3372 ASC_PRT_NEXT(); 3373 } 3374 3375 len = asc_prt_line(cp, leftlen, " Target ID: "); 3376 ASC_PRT_NEXT(); 3377 for (i = 0; i <= ADV_MAX_TID; i++) { 3378 len = asc_prt_line(cp, leftlen, " %X", i); 3379 ASC_PRT_NEXT(); 3380 } 3381 len = asc_prt_line(cp, leftlen, "\n"); 3382 ASC_PRT_NEXT(); 3383 3384 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3385 word = ep_3550->disc_enable; 3386 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3387 word = ep_38C0800->disc_enable; 3388 } else { 3389 word = ep_38C1600->disc_enable; 3390 } 3391 len = asc_prt_line(cp, leftlen, " Disconnects: "); 3392 ASC_PRT_NEXT(); 3393 for (i = 0; i <= ADV_MAX_TID; i++) { 3394 len = asc_prt_line(cp, leftlen, " %c", 3395 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3396 ASC_PRT_NEXT(); 3397 } 3398 len = asc_prt_line(cp, leftlen, "\n"); 3399 ASC_PRT_NEXT(); 3400 3401 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3402 word = ep_3550->tagqng_able; 3403 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3404 word = ep_38C0800->tagqng_able; 3405 } else { 3406 word = ep_38C1600->tagqng_able; 3407 } 3408 len = asc_prt_line(cp, leftlen, " Command Queuing: "); 3409 ASC_PRT_NEXT(); 3410 for (i = 0; i <= ADV_MAX_TID; i++) { 3411 len = asc_prt_line(cp, leftlen, " %c", 3412 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3413 ASC_PRT_NEXT(); 3414 } 3415 len = asc_prt_line(cp, leftlen, "\n"); 3416 ASC_PRT_NEXT(); 3417 3418 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3419 word = ep_3550->start_motor; 3420 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3421 word = ep_38C0800->start_motor; 3422 } else { 3423 word = ep_38C1600->start_motor; 3424 } 3425 len = asc_prt_line(cp, leftlen, " Start Motor: "); 3426 ASC_PRT_NEXT(); 3427 for (i = 0; i <= ADV_MAX_TID; i++) { 3428 len = asc_prt_line(cp, leftlen, " %c", 3429 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3430 ASC_PRT_NEXT(); 3431 } 3432 len = asc_prt_line(cp, leftlen, "\n"); 3433 ASC_PRT_NEXT(); 3434 3435 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3436 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:"); 3437 ASC_PRT_NEXT(); 3438 for (i = 0; i <= ADV_MAX_TID; i++) { 3439 len = asc_prt_line(cp, leftlen, " %c", 3440 (ep_3550-> 3441 sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 3442 'Y' : 'N'); 3443 ASC_PRT_NEXT(); 3444 } 3445 len = asc_prt_line(cp, leftlen, "\n"); 3446 ASC_PRT_NEXT(); 3447 } 3448 3449 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3450 len = asc_prt_line(cp, leftlen, " Ultra Transfer: "); 3451 ASC_PRT_NEXT(); 3452 for (i = 0; i <= ADV_MAX_TID; i++) { 3453 len = asc_prt_line(cp, leftlen, " %c", 3454 (ep_3550-> 3455 ultra_able & ADV_TID_TO_TIDMASK(i)) 3456 ? 'Y' : 'N'); 3457 ASC_PRT_NEXT(); 3458 } 3459 len = asc_prt_line(cp, leftlen, "\n"); 3460 ASC_PRT_NEXT(); 3461 } 3462 3463 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 3464 word = ep_3550->wdtr_able; 3465 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 3466 word = ep_38C0800->wdtr_able; 3467 } else { 3468 word = ep_38C1600->wdtr_able; 3469 } 3470 len = asc_prt_line(cp, leftlen, " Wide Transfer: "); 3471 ASC_PRT_NEXT(); 3472 for (i = 0; i <= ADV_MAX_TID; i++) { 3473 len = asc_prt_line(cp, leftlen, " %c", 3474 (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N'); 3475 ASC_PRT_NEXT(); 3476 } 3477 len = asc_prt_line(cp, leftlen, "\n"); 3478 ASC_PRT_NEXT(); 3479 3480 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 || 3481 adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) { 3482 len = asc_prt_line(cp, leftlen, 3483 " Synchronous Transfer Speed (Mhz):\n "); 3484 ASC_PRT_NEXT(); 3485 for (i = 0; i <= ADV_MAX_TID; i++) { 3486 char *speed_str; 3487 3488 if (i == 0) { 3489 sdtr_speed = adv_dvc_varp->sdtr_speed1; 3490 } else if (i == 4) { 3491 sdtr_speed = adv_dvc_varp->sdtr_speed2; 3492 } else if (i == 8) { 3493 sdtr_speed = adv_dvc_varp->sdtr_speed3; 3494 } else if (i == 12) { 3495 sdtr_speed = adv_dvc_varp->sdtr_speed4; 3496 } 3497 switch (sdtr_speed & ADV_MAX_TID) { 3498 case 0: 3499 speed_str = "Off"; 3500 break; 3501 case 1: 3502 speed_str = " 5"; 3503 break; 3504 case 2: 3505 speed_str = " 10"; 3506 break; 3507 case 3: 3508 speed_str = " 20"; 3509 break; 3510 case 4: 3511 speed_str = " 40"; 3512 break; 3513 case 5: 3514 speed_str = " 80"; 3515 break; 3516 default: 3517 speed_str = "Unk"; 3518 break; 3519 } 3520 len = asc_prt_line(cp, leftlen, "%X:%s ", i, speed_str); 3521 ASC_PRT_NEXT(); 3522 if (i == 7) { 3523 len = asc_prt_line(cp, leftlen, "\n "); 3524 ASC_PRT_NEXT(); 3525 } 3526 sdtr_speed >>= 4; 3527 } 3528 len = asc_prt_line(cp, leftlen, "\n"); 3529 ASC_PRT_NEXT(); 3530 } 3531 3532 return totlen; 3533 } 3534 3535 /* 3536 * asc_prt_driver_conf() 3537 * 3538 * Note: no single line should be greater than ASC_PRTLINE_SIZE, 3539 * cf. asc_prt_line(). 3540 * 3541 * Return the number of characters copied into 'cp'. No more than 3542 * 'cplen' characters will be copied to 'cp'. 3543 */ 3544 static int asc_prt_driver_conf(struct Scsi_Host *shost, char *cp, int cplen) 3545 { 3546 struct asc_board *boardp = shost_priv(shost); 3547 int leftlen; 3548 int totlen; 3549 int len; 3550 int chip_scsi_id; 3551 3552 leftlen = cplen; 3553 totlen = len = 0; 3554 3555 len = asc_prt_line(cp, leftlen, 3556 "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n", 3557 shost->host_no); 3558 ASC_PRT_NEXT(); 3559 3560 len = asc_prt_line(cp, leftlen, 3561 " host_busy %u, last_reset %u, max_id %u, max_lun %u, max_channel %u\n", 3562 shost->host_busy, shost->last_reset, shost->max_id, 3563 shost->max_lun, shost->max_channel); 3564 ASC_PRT_NEXT(); 3565 3566 len = asc_prt_line(cp, leftlen, 3567 " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n", 3568 shost->unique_id, shost->can_queue, shost->this_id, 3569 shost->sg_tablesize, shost->cmd_per_lun); 3570 ASC_PRT_NEXT(); 3571 3572 len = asc_prt_line(cp, leftlen, 3573 " unchecked_isa_dma %d, use_clustering %d\n", 3574 shost->unchecked_isa_dma, shost->use_clustering); 3575 ASC_PRT_NEXT(); 3576 3577 len = asc_prt_line(cp, leftlen, 3578 " flags 0x%x, last_reset 0x%x, jiffies 0x%x, asc_n_io_port 0x%x\n", 3579 boardp->flags, boardp->last_reset, jiffies, 3580 boardp->asc_n_io_port); 3581 ASC_PRT_NEXT(); 3582 3583 len = asc_prt_line(cp, leftlen, " io_port 0x%x\n", shost->io_port); 3584 ASC_PRT_NEXT(); 3585 3586 if (ASC_NARROW_BOARD(boardp)) { 3587 chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id; 3588 } else { 3589 chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id; 3590 } 3591 3592 return totlen; 3593 } 3594 3595 /* 3596 * asc_prt_asc_board_info() 3597 * 3598 * Print dynamic board configuration information. 3599 * 3600 * Note: no single line should be greater than ASC_PRTLINE_SIZE, 3601 * cf. asc_prt_line(). 3602 * 3603 * Return the number of characters copied into 'cp'. No more than 3604 * 'cplen' characters will be copied to 'cp'. 3605 */ 3606 static int asc_prt_asc_board_info(struct Scsi_Host *shost, char *cp, int cplen) 3607 { 3608 struct asc_board *boardp = shost_priv(shost); 3609 int chip_scsi_id; 3610 int leftlen; 3611 int totlen; 3612 int len; 3613 ASC_DVC_VAR *v; 3614 ASC_DVC_CFG *c; 3615 int i; 3616 int renegotiate = 0; 3617 3618 v = &boardp->dvc_var.asc_dvc_var; 3619 c = &boardp->dvc_cfg.asc_dvc_cfg; 3620 chip_scsi_id = c->chip_scsi_id; 3621 3622 leftlen = cplen; 3623 totlen = len = 0; 3624 3625 len = asc_prt_line(cp, leftlen, 3626 "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3627 shost->host_no); 3628 ASC_PRT_NEXT(); 3629 3630 len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, " 3631 "mcode_version 0x%x, err_code %u\n", 3632 c->chip_version, c->mcode_date, c->mcode_version, 3633 v->err_code); 3634 ASC_PRT_NEXT(); 3635 3636 /* Current number of commands waiting for the host. */ 3637 len = asc_prt_line(cp, leftlen, 3638 " Total Command Pending: %d\n", v->cur_total_qng); 3639 ASC_PRT_NEXT(); 3640 3641 len = asc_prt_line(cp, leftlen, " Command Queuing:"); 3642 ASC_PRT_NEXT(); 3643 for (i = 0; i <= ASC_MAX_TID; i++) { 3644 if ((chip_scsi_id == i) || 3645 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3646 continue; 3647 } 3648 len = asc_prt_line(cp, leftlen, " %X:%c", 3649 i, 3650 (v-> 3651 use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 3652 'Y' : 'N'); 3653 ASC_PRT_NEXT(); 3654 } 3655 len = asc_prt_line(cp, leftlen, "\n"); 3656 ASC_PRT_NEXT(); 3657 3658 /* Current number of commands waiting for a device. */ 3659 len = asc_prt_line(cp, leftlen, " Command Queue Pending:"); 3660 ASC_PRT_NEXT(); 3661 for (i = 0; i <= ASC_MAX_TID; i++) { 3662 if ((chip_scsi_id == i) || 3663 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3664 continue; 3665 } 3666 len = asc_prt_line(cp, leftlen, " %X:%u", i, v->cur_dvc_qng[i]); 3667 ASC_PRT_NEXT(); 3668 } 3669 len = asc_prt_line(cp, leftlen, "\n"); 3670 ASC_PRT_NEXT(); 3671 3672 /* Current limit on number of commands that can be sent to a device. */ 3673 len = asc_prt_line(cp, leftlen, " Command Queue Limit:"); 3674 ASC_PRT_NEXT(); 3675 for (i = 0; i <= ASC_MAX_TID; i++) { 3676 if ((chip_scsi_id == i) || 3677 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3678 continue; 3679 } 3680 len = asc_prt_line(cp, leftlen, " %X:%u", i, v->max_dvc_qng[i]); 3681 ASC_PRT_NEXT(); 3682 } 3683 len = asc_prt_line(cp, leftlen, "\n"); 3684 ASC_PRT_NEXT(); 3685 3686 /* Indicate whether the device has returned queue full status. */ 3687 len = asc_prt_line(cp, leftlen, " Command Queue Full:"); 3688 ASC_PRT_NEXT(); 3689 for (i = 0; i <= ASC_MAX_TID; i++) { 3690 if ((chip_scsi_id == i) || 3691 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3692 continue; 3693 } 3694 if (boardp->queue_full & ADV_TID_TO_TIDMASK(i)) { 3695 len = asc_prt_line(cp, leftlen, " %X:Y-%d", 3696 i, boardp->queue_full_cnt[i]); 3697 } else { 3698 len = asc_prt_line(cp, leftlen, " %X:N", i); 3699 } 3700 ASC_PRT_NEXT(); 3701 } 3702 len = asc_prt_line(cp, leftlen, "\n"); 3703 ASC_PRT_NEXT(); 3704 3705 len = asc_prt_line(cp, leftlen, " Synchronous Transfer:"); 3706 ASC_PRT_NEXT(); 3707 for (i = 0; i <= ASC_MAX_TID; i++) { 3708 if ((chip_scsi_id == i) || 3709 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3710 continue; 3711 } 3712 len = asc_prt_line(cp, leftlen, " %X:%c", 3713 i, 3714 (v-> 3715 sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 3716 'N'); 3717 ASC_PRT_NEXT(); 3718 } 3719 len = asc_prt_line(cp, leftlen, "\n"); 3720 ASC_PRT_NEXT(); 3721 3722 for (i = 0; i <= ASC_MAX_TID; i++) { 3723 uchar syn_period_ix; 3724 3725 if ((chip_scsi_id == i) || 3726 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3727 ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) { 3728 continue; 3729 } 3730 3731 len = asc_prt_line(cp, leftlen, " %X:", i); 3732 ASC_PRT_NEXT(); 3733 3734 if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) { 3735 len = asc_prt_line(cp, leftlen, " Asynchronous"); 3736 ASC_PRT_NEXT(); 3737 } else { 3738 syn_period_ix = 3739 (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index - 3740 1); 3741 3742 len = asc_prt_line(cp, leftlen, 3743 " Transfer Period Factor: %d (%d.%d Mhz),", 3744 v->sdtr_period_tbl[syn_period_ix], 3745 250 / 3746 v->sdtr_period_tbl[syn_period_ix], 3747 ASC_TENTHS(250, 3748 v-> 3749 sdtr_period_tbl 3750 [syn_period_ix])); 3751 ASC_PRT_NEXT(); 3752 3753 len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d", 3754 boardp-> 3755 sdtr_data[i] & ASC_SYN_MAX_OFFSET); 3756 ASC_PRT_NEXT(); 3757 } 3758 3759 if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3760 len = asc_prt_line(cp, leftlen, "*\n"); 3761 renegotiate = 1; 3762 } else { 3763 len = asc_prt_line(cp, leftlen, "\n"); 3764 } 3765 ASC_PRT_NEXT(); 3766 } 3767 3768 if (renegotiate) { 3769 len = asc_prt_line(cp, leftlen, 3770 " * = Re-negotiation pending before next command.\n"); 3771 ASC_PRT_NEXT(); 3772 } 3773 3774 return totlen; 3775 } 3776 3777 /* 3778 * asc_prt_adv_board_info() 3779 * 3780 * Print dynamic board configuration information. 3781 * 3782 * Note: no single line should be greater than ASC_PRTLINE_SIZE, 3783 * cf. asc_prt_line(). 3784 * 3785 * Return the number of characters copied into 'cp'. No more than 3786 * 'cplen' characters will be copied to 'cp'. 3787 */ 3788 static int asc_prt_adv_board_info(struct Scsi_Host *shost, char *cp, int cplen) 3789 { 3790 struct asc_board *boardp = shost_priv(shost); 3791 int leftlen; 3792 int totlen; 3793 int len; 3794 int i; 3795 ADV_DVC_VAR *v; 3796 ADV_DVC_CFG *c; 3797 AdvPortAddr iop_base; 3798 ushort chip_scsi_id; 3799 ushort lramword; 3800 uchar lrambyte; 3801 ushort tagqng_able; 3802 ushort sdtr_able, wdtr_able; 3803 ushort wdtr_done, sdtr_done; 3804 ushort period = 0; 3805 int renegotiate = 0; 3806 3807 v = &boardp->dvc_var.adv_dvc_var; 3808 c = &boardp->dvc_cfg.adv_dvc_cfg; 3809 iop_base = v->iop_base; 3810 chip_scsi_id = v->chip_scsi_id; 3811 3812 leftlen = cplen; 3813 totlen = len = 0; 3814 3815 len = asc_prt_line(cp, leftlen, 3816 "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n", 3817 shost->host_no); 3818 ASC_PRT_NEXT(); 3819 3820 len = asc_prt_line(cp, leftlen, 3821 " iop_base 0x%lx, cable_detect: %X, err_code %u\n", 3822 v->iop_base, 3823 AdvReadWordRegister(iop_base, 3824 IOPW_SCSI_CFG1) & CABLE_DETECT, 3825 v->err_code); 3826 ASC_PRT_NEXT(); 3827 3828 len = asc_prt_line(cp, leftlen, " chip_version %u, mcode_date 0x%x, " 3829 "mcode_version 0x%x\n", c->chip_version, 3830 c->mcode_date, c->mcode_version); 3831 ASC_PRT_NEXT(); 3832 3833 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 3834 len = asc_prt_line(cp, leftlen, " Queuing Enabled:"); 3835 ASC_PRT_NEXT(); 3836 for (i = 0; i <= ADV_MAX_TID; i++) { 3837 if ((chip_scsi_id == i) || 3838 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3839 continue; 3840 } 3841 3842 len = asc_prt_line(cp, leftlen, " %X:%c", 3843 i, 3844 (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 3845 'N'); 3846 ASC_PRT_NEXT(); 3847 } 3848 len = asc_prt_line(cp, leftlen, "\n"); 3849 ASC_PRT_NEXT(); 3850 3851 len = asc_prt_line(cp, leftlen, " Queue Limit:"); 3852 ASC_PRT_NEXT(); 3853 for (i = 0; i <= ADV_MAX_TID; i++) { 3854 if ((chip_scsi_id == i) || 3855 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3856 continue; 3857 } 3858 3859 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i, 3860 lrambyte); 3861 3862 len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte); 3863 ASC_PRT_NEXT(); 3864 } 3865 len = asc_prt_line(cp, leftlen, "\n"); 3866 ASC_PRT_NEXT(); 3867 3868 len = asc_prt_line(cp, leftlen, " Command Pending:"); 3869 ASC_PRT_NEXT(); 3870 for (i = 0; i <= ADV_MAX_TID; i++) { 3871 if ((chip_scsi_id == i) || 3872 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3873 continue; 3874 } 3875 3876 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i, 3877 lrambyte); 3878 3879 len = asc_prt_line(cp, leftlen, " %X:%d", i, lrambyte); 3880 ASC_PRT_NEXT(); 3881 } 3882 len = asc_prt_line(cp, leftlen, "\n"); 3883 ASC_PRT_NEXT(); 3884 3885 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 3886 len = asc_prt_line(cp, leftlen, " Wide Enabled:"); 3887 ASC_PRT_NEXT(); 3888 for (i = 0; i <= ADV_MAX_TID; i++) { 3889 if ((chip_scsi_id == i) || 3890 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3891 continue; 3892 } 3893 3894 len = asc_prt_line(cp, leftlen, " %X:%c", 3895 i, 3896 (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 3897 'N'); 3898 ASC_PRT_NEXT(); 3899 } 3900 len = asc_prt_line(cp, leftlen, "\n"); 3901 ASC_PRT_NEXT(); 3902 3903 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done); 3904 len = asc_prt_line(cp, leftlen, " Transfer Bit Width:"); 3905 ASC_PRT_NEXT(); 3906 for (i = 0; i <= ADV_MAX_TID; i++) { 3907 if ((chip_scsi_id == i) || 3908 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3909 continue; 3910 } 3911 3912 AdvReadWordLram(iop_base, 3913 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3914 lramword); 3915 3916 len = asc_prt_line(cp, leftlen, " %X:%d", 3917 i, (lramword & 0x8000) ? 16 : 8); 3918 ASC_PRT_NEXT(); 3919 3920 if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) && 3921 (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 3922 len = asc_prt_line(cp, leftlen, "*"); 3923 ASC_PRT_NEXT(); 3924 renegotiate = 1; 3925 } 3926 } 3927 len = asc_prt_line(cp, leftlen, "\n"); 3928 ASC_PRT_NEXT(); 3929 3930 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 3931 len = asc_prt_line(cp, leftlen, " Synchronous Enabled:"); 3932 ASC_PRT_NEXT(); 3933 for (i = 0; i <= ADV_MAX_TID; i++) { 3934 if ((chip_scsi_id == i) || 3935 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) { 3936 continue; 3937 } 3938 3939 len = asc_prt_line(cp, leftlen, " %X:%c", 3940 i, 3941 (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 3942 'N'); 3943 ASC_PRT_NEXT(); 3944 } 3945 len = asc_prt_line(cp, leftlen, "\n"); 3946 ASC_PRT_NEXT(); 3947 3948 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done); 3949 for (i = 0; i <= ADV_MAX_TID; i++) { 3950 3951 AdvReadWordLram(iop_base, 3952 ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i), 3953 lramword); 3954 lramword &= ~0x8000; 3955 3956 if ((chip_scsi_id == i) || 3957 ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) || 3958 ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) { 3959 continue; 3960 } 3961 3962 len = asc_prt_line(cp, leftlen, " %X:", i); 3963 ASC_PRT_NEXT(); 3964 3965 if ((lramword & 0x1F) == 0) { /* Check for REQ/ACK Offset 0. */ 3966 len = asc_prt_line(cp, leftlen, " Asynchronous"); 3967 ASC_PRT_NEXT(); 3968 } else { 3969 len = 3970 asc_prt_line(cp, leftlen, 3971 " Transfer Period Factor: "); 3972 ASC_PRT_NEXT(); 3973 3974 if ((lramword & 0x1F00) == 0x1100) { /* 80 Mhz */ 3975 len = 3976 asc_prt_line(cp, leftlen, "9 (80.0 Mhz),"); 3977 ASC_PRT_NEXT(); 3978 } else if ((lramword & 0x1F00) == 0x1000) { /* 40 Mhz */ 3979 len = 3980 asc_prt_line(cp, leftlen, "10 (40.0 Mhz),"); 3981 ASC_PRT_NEXT(); 3982 } else { /* 20 Mhz or below. */ 3983 3984 period = (((lramword >> 8) * 25) + 50) / 4; 3985 3986 if (period == 0) { /* Should never happen. */ 3987 len = 3988 asc_prt_line(cp, leftlen, 3989 "%d (? Mhz), "); 3990 ASC_PRT_NEXT(); 3991 } else { 3992 len = asc_prt_line(cp, leftlen, 3993 "%d (%d.%d Mhz),", 3994 period, 250 / period, 3995 ASC_TENTHS(250, 3996 period)); 3997 ASC_PRT_NEXT(); 3998 } 3999 } 4000 4001 len = asc_prt_line(cp, leftlen, " REQ/ACK Offset: %d", 4002 lramword & 0x1F); 4003 ASC_PRT_NEXT(); 4004 } 4005 4006 if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) { 4007 len = asc_prt_line(cp, leftlen, "*\n"); 4008 renegotiate = 1; 4009 } else { 4010 len = asc_prt_line(cp, leftlen, "\n"); 4011 } 4012 ASC_PRT_NEXT(); 4013 } 4014 4015 if (renegotiate) { 4016 len = asc_prt_line(cp, leftlen, 4017 " * = Re-negotiation pending before next command.\n"); 4018 ASC_PRT_NEXT(); 4019 } 4020 4021 return totlen; 4022 } 4023 4024 /* 4025 * asc_proc_copy() 4026 * 4027 * Copy proc information to a read buffer taking into account the current 4028 * read offset in the file and the remaining space in the read buffer. 4029 */ 4030 static int 4031 asc_proc_copy(off_t advoffset, off_t offset, char *curbuf, int leftlen, 4032 char *cp, int cplen) 4033 { 4034 int cnt = 0; 4035 4036 ASC_DBG(2, "offset %d, advoffset %d, cplen %d\n", 4037 (unsigned)offset, (unsigned)advoffset, cplen); 4038 if (offset <= advoffset) { 4039 /* Read offset below current offset, copy everything. */ 4040 cnt = min(cplen, leftlen); 4041 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n", 4042 (ulong)curbuf, (ulong)cp, cnt); 4043 memcpy(curbuf, cp, cnt); 4044 } else if (offset < advoffset + cplen) { 4045 /* Read offset within current range, partial copy. */ 4046 cnt = (advoffset + cplen) - offset; 4047 cp = (cp + cplen) - cnt; 4048 cnt = min(cnt, leftlen); 4049 ASC_DBG(2, "curbuf 0x%lx, cp 0x%lx, cnt %d\n", 4050 (ulong)curbuf, (ulong)cp, cnt); 4051 memcpy(curbuf, cp, cnt); 4052 } 4053 return cnt; 4054 } 4055 4056 #ifdef ADVANSYS_STATS 4057 /* 4058 * asc_prt_board_stats() 4059 * 4060 * Note: no single line should be greater than ASC_PRTLINE_SIZE, 4061 * cf. asc_prt_line(). 4062 * 4063 * Return the number of characters copied into 'cp'. No more than 4064 * 'cplen' characters will be copied to 'cp'. 4065 */ 4066 static int asc_prt_board_stats(struct Scsi_Host *shost, char *cp, int cplen) 4067 { 4068 struct asc_board *boardp = shost_priv(shost); 4069 struct asc_stats *s = &boardp->asc_stats; 4070 4071 int leftlen = cplen; 4072 int len, totlen = 0; 4073 4074 len = asc_prt_line(cp, leftlen, 4075 "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n", 4076 shost->host_no); 4077 ASC_PRT_NEXT(); 4078 4079 len = asc_prt_line(cp, leftlen, 4080 " queuecommand %lu, reset %lu, biosparam %lu, interrupt %lu\n", 4081 s->queuecommand, s->reset, s->biosparam, 4082 s->interrupt); 4083 ASC_PRT_NEXT(); 4084 4085 len = asc_prt_line(cp, leftlen, 4086 " callback %lu, done %lu, build_error %lu, build_noreq %lu, build_nosg %lu\n", 4087 s->callback, s->done, s->build_error, 4088 s->adv_build_noreq, s->adv_build_nosg); 4089 ASC_PRT_NEXT(); 4090 4091 len = asc_prt_line(cp, leftlen, 4092 " exe_noerror %lu, exe_busy %lu, exe_error %lu, exe_unknown %lu\n", 4093 s->exe_noerror, s->exe_busy, s->exe_error, 4094 s->exe_unknown); 4095 ASC_PRT_NEXT(); 4096 4097 /* 4098 * Display data transfer statistics. 4099 */ 4100 if (s->xfer_cnt > 0) { 4101 len = asc_prt_line(cp, leftlen, " xfer_cnt %lu, xfer_elem %lu, ", 4102 s->xfer_cnt, s->xfer_elem); 4103 ASC_PRT_NEXT(); 4104 4105 len = asc_prt_line(cp, leftlen, "xfer_bytes %lu.%01lu kb\n", 4106 s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2)); 4107 ASC_PRT_NEXT(); 4108 4109 /* Scatter gather transfer statistics */ 4110 len = asc_prt_line(cp, leftlen, " avg_num_elem %lu.%01lu, ", 4111 s->xfer_elem / s->xfer_cnt, 4112 ASC_TENTHS(s->xfer_elem, s->xfer_cnt)); 4113 ASC_PRT_NEXT(); 4114 4115 len = asc_prt_line(cp, leftlen, "avg_elem_size %lu.%01lu kb, ", 4116 (s->xfer_sect / 2) / s->xfer_elem, 4117 ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem)); 4118 ASC_PRT_NEXT(); 4119 4120 len = asc_prt_line(cp, leftlen, "avg_xfer_size %lu.%01lu kb\n", 4121 (s->xfer_sect / 2) / s->xfer_cnt, 4122 ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt)); 4123 ASC_PRT_NEXT(); 4124 } 4125 4126 return totlen; 4127 } 4128 #endif /* ADVANSYS_STATS */ 4129 4130 /* 4131 * advansys_proc_info() - /proc/scsi/advansys/{0,1,2,3,...} 4132 * 4133 * *buffer: I/O buffer 4134 * **start: if inout == FALSE pointer into buffer where user read should start 4135 * offset: current offset into a /proc/scsi/advansys/[0...] file 4136 * length: length of buffer 4137 * hostno: Scsi_Host host_no 4138 * inout: TRUE - user is writing; FALSE - user is reading 4139 * 4140 * Return the number of bytes read from or written to a 4141 * /proc/scsi/advansys/[0...] file. 4142 * 4143 * Note: This function uses the per board buffer 'prtbuf' which is 4144 * allocated when the board is initialized in advansys_detect(). The 4145 * buffer is ASC_PRTBUF_SIZE bytes. The function asc_proc_copy() is 4146 * used to write to the buffer. The way asc_proc_copy() is written 4147 * if 'prtbuf' is too small it will not be overwritten. Instead the 4148 * user just won't get all the available statistics. 4149 */ 4150 static int 4151 advansys_proc_info(struct Scsi_Host *shost, char *buffer, char **start, 4152 off_t offset, int length, int inout) 4153 { 4154 struct asc_board *boardp = shost_priv(shost); 4155 char *cp; 4156 int cplen; 4157 int cnt; 4158 int totcnt; 4159 int leftlen; 4160 char *curbuf; 4161 off_t advoffset; 4162 4163 ASC_DBG(1, "begin\n"); 4164 4165 /* 4166 * User write not supported. 4167 */ 4168 if (inout == TRUE) 4169 return -ENOSYS; 4170 4171 /* 4172 * User read of /proc/scsi/advansys/[0...] file. 4173 */ 4174 4175 /* Copy read data starting at the beginning of the buffer. */ 4176 *start = buffer; 4177 curbuf = buffer; 4178 advoffset = 0; 4179 totcnt = 0; 4180 leftlen = length; 4181 4182 /* 4183 * Get board configuration information. 4184 * 4185 * advansys_info() returns the board string from its own static buffer. 4186 */ 4187 cp = (char *)advansys_info(shost); 4188 strcat(cp, "\n"); 4189 cplen = strlen(cp); 4190 /* Copy board information. */ 4191 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); 4192 totcnt += cnt; 4193 leftlen -= cnt; 4194 if (leftlen == 0) { 4195 ASC_DBG(1, "totcnt %d\n", totcnt); 4196 return totcnt; 4197 } 4198 advoffset += cplen; 4199 curbuf += cnt; 4200 4201 /* 4202 * Display Wide Board BIOS Information. 4203 */ 4204 if (!ASC_NARROW_BOARD(boardp)) { 4205 cp = boardp->prtbuf; 4206 cplen = asc_prt_adv_bios(shost, cp, ASC_PRTBUF_SIZE); 4207 BUG_ON(cplen >= ASC_PRTBUF_SIZE); 4208 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, 4209 cplen); 4210 totcnt += cnt; 4211 leftlen -= cnt; 4212 if (leftlen == 0) { 4213 ASC_DBG(1, "totcnt %d\n", totcnt); 4214 return totcnt; 4215 } 4216 advoffset += cplen; 4217 curbuf += cnt; 4218 } 4219 4220 /* 4221 * Display driver information for each device attached to the board. 4222 */ 4223 cp = boardp->prtbuf; 4224 cplen = asc_prt_board_devices(shost, cp, ASC_PRTBUF_SIZE); 4225 BUG_ON(cplen >= ASC_PRTBUF_SIZE); 4226 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); 4227 totcnt += cnt; 4228 leftlen -= cnt; 4229 if (leftlen == 0) { 4230 ASC_DBG(1, "totcnt %d\n", totcnt); 4231 return totcnt; 4232 } 4233 advoffset += cplen; 4234 curbuf += cnt; 4235 4236 /* 4237 * Display EEPROM configuration for the board. 4238 */ 4239 cp = boardp->prtbuf; 4240 if (ASC_NARROW_BOARD(boardp)) { 4241 cplen = asc_prt_asc_board_eeprom(shost, cp, ASC_PRTBUF_SIZE); 4242 } else { 4243 cplen = asc_prt_adv_board_eeprom(shost, cp, ASC_PRTBUF_SIZE); 4244 } 4245 BUG_ON(cplen >= ASC_PRTBUF_SIZE); 4246 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); 4247 totcnt += cnt; 4248 leftlen -= cnt; 4249 if (leftlen == 0) { 4250 ASC_DBG(1, "totcnt %d\n", totcnt); 4251 return totcnt; 4252 } 4253 advoffset += cplen; 4254 curbuf += cnt; 4255 4256 /* 4257 * Display driver configuration and information for the board. 4258 */ 4259 cp = boardp->prtbuf; 4260 cplen = asc_prt_driver_conf(shost, cp, ASC_PRTBUF_SIZE); 4261 BUG_ON(cplen >= ASC_PRTBUF_SIZE); 4262 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); 4263 totcnt += cnt; 4264 leftlen -= cnt; 4265 if (leftlen == 0) { 4266 ASC_DBG(1, "totcnt %d\n", totcnt); 4267 return totcnt; 4268 } 4269 advoffset += cplen; 4270 curbuf += cnt; 4271 4272 #ifdef ADVANSYS_STATS 4273 /* 4274 * Display driver statistics for the board. 4275 */ 4276 cp = boardp->prtbuf; 4277 cplen = asc_prt_board_stats(shost, cp, ASC_PRTBUF_SIZE); 4278 BUG_ON(cplen >= ASC_PRTBUF_SIZE); 4279 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); 4280 totcnt += cnt; 4281 leftlen -= cnt; 4282 if (leftlen == 0) { 4283 ASC_DBG(1, "totcnt %d\n", totcnt); 4284 return totcnt; 4285 } 4286 advoffset += cplen; 4287 curbuf += cnt; 4288 #endif /* ADVANSYS_STATS */ 4289 4290 /* 4291 * Display Asc Library dynamic configuration information 4292 * for the board. 4293 */ 4294 cp = boardp->prtbuf; 4295 if (ASC_NARROW_BOARD(boardp)) { 4296 cplen = asc_prt_asc_board_info(shost, cp, ASC_PRTBUF_SIZE); 4297 } else { 4298 cplen = asc_prt_adv_board_info(shost, cp, ASC_PRTBUF_SIZE); 4299 } 4300 BUG_ON(cplen >= ASC_PRTBUF_SIZE); 4301 cnt = asc_proc_copy(advoffset, offset, curbuf, leftlen, cp, cplen); 4302 totcnt += cnt; 4303 leftlen -= cnt; 4304 if (leftlen == 0) { 4305 ASC_DBG(1, "totcnt %d\n", totcnt); 4306 return totcnt; 4307 } 4308 advoffset += cplen; 4309 curbuf += cnt; 4310 4311 ASC_DBG(1, "totcnt %d\n", totcnt); 4312 4313 return totcnt; 4314 } 4315 #endif /* CONFIG_PROC_FS */ 4316 4317 static void asc_scsi_done(struct scsi_cmnd *scp) 4318 { 4319 scsi_dma_unmap(scp); 4320 ASC_STATS(scp->device->host, done); 4321 scp->scsi_done(scp); 4322 } 4323 4324 static void AscSetBank(PortAddr iop_base, uchar bank) 4325 { 4326 uchar val; 4327 4328 val = AscGetChipControl(iop_base) & 4329 (~ 4330 (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET | 4331 CC_CHIP_RESET)); 4332 if (bank == 1) { 4333 val |= CC_BANK_ONE; 4334 } else if (bank == 2) { 4335 val |= CC_DIAG | CC_BANK_ONE; 4336 } else { 4337 val &= ~CC_BANK_ONE; 4338 } 4339 AscSetChipControl(iop_base, val); 4340 } 4341 4342 static void AscSetChipIH(PortAddr iop_base, ushort ins_code) 4343 { 4344 AscSetBank(iop_base, 1); 4345 AscWriteChipIH(iop_base, ins_code); 4346 AscSetBank(iop_base, 0); 4347 } 4348 4349 static int AscStartChip(PortAddr iop_base) 4350 { 4351 AscSetChipControl(iop_base, 0); 4352 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 4353 return (0); 4354 } 4355 return (1); 4356 } 4357 4358 static int AscStopChip(PortAddr iop_base) 4359 { 4360 uchar cc_val; 4361 4362 cc_val = 4363 AscGetChipControl(iop_base) & 4364 (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG)); 4365 AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT)); 4366 AscSetChipIH(iop_base, INS_HALT); 4367 AscSetChipIH(iop_base, INS_RFLAG_WTM); 4368 if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) { 4369 return (0); 4370 } 4371 return (1); 4372 } 4373 4374 static int AscIsChipHalted(PortAddr iop_base) 4375 { 4376 if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) { 4377 if ((AscGetChipControl(iop_base) & CC_HALT) != 0) { 4378 return (1); 4379 } 4380 } 4381 return (0); 4382 } 4383 4384 static int AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc) 4385 { 4386 PortAddr iop_base; 4387 int i = 10; 4388 4389 iop_base = asc_dvc->iop_base; 4390 while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE) 4391 && (i-- > 0)) { 4392 mdelay(100); 4393 } 4394 AscStopChip(iop_base); 4395 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT); 4396 udelay(60); 4397 AscSetChipIH(iop_base, INS_RFLAG_WTM); 4398 AscSetChipIH(iop_base, INS_HALT); 4399 AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT); 4400 AscSetChipControl(iop_base, CC_HALT); 4401 mdelay(200); 4402 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 4403 AscSetChipStatus(iop_base, 0); 4404 return (AscIsChipHalted(iop_base)); 4405 } 4406 4407 static int AscFindSignature(PortAddr iop_base) 4408 { 4409 ushort sig_word; 4410 4411 ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n", 4412 iop_base, AscGetChipSignatureByte(iop_base)); 4413 if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) { 4414 ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n", 4415 iop_base, AscGetChipSignatureWord(iop_base)); 4416 sig_word = AscGetChipSignatureWord(iop_base); 4417 if ((sig_word == (ushort)ASC_1000_ID0W) || 4418 (sig_word == (ushort)ASC_1000_ID0W_FIX)) { 4419 return (1); 4420 } 4421 } 4422 return (0); 4423 } 4424 4425 static void AscEnableInterrupt(PortAddr iop_base) 4426 { 4427 ushort cfg; 4428 4429 cfg = AscGetChipCfgLsw(iop_base); 4430 AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON); 4431 } 4432 4433 static void AscDisableInterrupt(PortAddr iop_base) 4434 { 4435 ushort cfg; 4436 4437 cfg = AscGetChipCfgLsw(iop_base); 4438 AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON)); 4439 } 4440 4441 static uchar AscReadLramByte(PortAddr iop_base, ushort addr) 4442 { 4443 unsigned char byte_data; 4444 unsigned short word_data; 4445 4446 if (isodd_word(addr)) { 4447 AscSetChipLramAddr(iop_base, addr - 1); 4448 word_data = AscGetChipLramData(iop_base); 4449 byte_data = (word_data >> 8) & 0xFF; 4450 } else { 4451 AscSetChipLramAddr(iop_base, addr); 4452 word_data = AscGetChipLramData(iop_base); 4453 byte_data = word_data & 0xFF; 4454 } 4455 return byte_data; 4456 } 4457 4458 static ushort AscReadLramWord(PortAddr iop_base, ushort addr) 4459 { 4460 ushort word_data; 4461 4462 AscSetChipLramAddr(iop_base, addr); 4463 word_data = AscGetChipLramData(iop_base); 4464 return (word_data); 4465 } 4466 4467 #if CC_VERY_LONG_SG_LIST 4468 static ASC_DCNT AscReadLramDWord(PortAddr iop_base, ushort addr) 4469 { 4470 ushort val_low, val_high; 4471 ASC_DCNT dword_data; 4472 4473 AscSetChipLramAddr(iop_base, addr); 4474 val_low = AscGetChipLramData(iop_base); 4475 val_high = AscGetChipLramData(iop_base); 4476 dword_data = ((ASC_DCNT) val_high << 16) | (ASC_DCNT) val_low; 4477 return (dword_data); 4478 } 4479 #endif /* CC_VERY_LONG_SG_LIST */ 4480 4481 static void 4482 AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words) 4483 { 4484 int i; 4485 4486 AscSetChipLramAddr(iop_base, s_addr); 4487 for (i = 0; i < words; i++) { 4488 AscSetChipLramData(iop_base, set_wval); 4489 } 4490 } 4491 4492 static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val) 4493 { 4494 AscSetChipLramAddr(iop_base, addr); 4495 AscSetChipLramData(iop_base, word_val); 4496 } 4497 4498 static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val) 4499 { 4500 ushort word_data; 4501 4502 if (isodd_word(addr)) { 4503 addr--; 4504 word_data = AscReadLramWord(iop_base, addr); 4505 word_data &= 0x00FF; 4506 word_data |= (((ushort)byte_val << 8) & 0xFF00); 4507 } else { 4508 word_data = AscReadLramWord(iop_base, addr); 4509 word_data &= 0xFF00; 4510 word_data |= ((ushort)byte_val & 0x00FF); 4511 } 4512 AscWriteLramWord(iop_base, addr, word_data); 4513 } 4514 4515 /* 4516 * Copy 2 bytes to LRAM. 4517 * 4518 * The source data is assumed to be in little-endian order in memory 4519 * and is maintained in little-endian order when written to LRAM. 4520 */ 4521 static void 4522 AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr, 4523 const uchar *s_buffer, int words) 4524 { 4525 int i; 4526 4527 AscSetChipLramAddr(iop_base, s_addr); 4528 for (i = 0; i < 2 * words; i += 2) { 4529 /* 4530 * On a little-endian system the second argument below 4531 * produces a little-endian ushort which is written to 4532 * LRAM in little-endian order. On a big-endian system 4533 * the second argument produces a big-endian ushort which 4534 * is "transparently" byte-swapped by outpw() and written 4535 * in little-endian order to LRAM. 4536 */ 4537 outpw(iop_base + IOP_RAM_DATA, 4538 ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); 4539 } 4540 } 4541 4542 /* 4543 * Copy 4 bytes to LRAM. 4544 * 4545 * The source data is assumed to be in little-endian order in memory 4546 * and is maintained in little-endian order when written to LRAM. 4547 */ 4548 static void 4549 AscMemDWordCopyPtrToLram(PortAddr iop_base, 4550 ushort s_addr, uchar *s_buffer, int dwords) 4551 { 4552 int i; 4553 4554 AscSetChipLramAddr(iop_base, s_addr); 4555 for (i = 0; i < 4 * dwords; i += 4) { 4556 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]); /* LSW */ 4557 outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]); /* MSW */ 4558 } 4559 } 4560 4561 /* 4562 * Copy 2 bytes from LRAM. 4563 * 4564 * The source data is assumed to be in little-endian order in LRAM 4565 * and is maintained in little-endian order when written to memory. 4566 */ 4567 static void 4568 AscMemWordCopyPtrFromLram(PortAddr iop_base, 4569 ushort s_addr, uchar *d_buffer, int words) 4570 { 4571 int i; 4572 ushort word; 4573 4574 AscSetChipLramAddr(iop_base, s_addr); 4575 for (i = 0; i < 2 * words; i += 2) { 4576 word = inpw(iop_base + IOP_RAM_DATA); 4577 d_buffer[i] = word & 0xff; 4578 d_buffer[i + 1] = (word >> 8) & 0xff; 4579 } 4580 } 4581 4582 static ASC_DCNT AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words) 4583 { 4584 ASC_DCNT sum; 4585 int i; 4586 4587 sum = 0L; 4588 for (i = 0; i < words; i++, s_addr += 2) { 4589 sum += AscReadLramWord(iop_base, s_addr); 4590 } 4591 return (sum); 4592 } 4593 4594 static ushort AscInitLram(ASC_DVC_VAR *asc_dvc) 4595 { 4596 uchar i; 4597 ushort s_addr; 4598 PortAddr iop_base; 4599 ushort warn_code; 4600 4601 iop_base = asc_dvc->iop_base; 4602 warn_code = 0; 4603 AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0, 4604 (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) * 4605 64) >> 1)); 4606 i = ASC_MIN_ACTIVE_QNO; 4607 s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE; 4608 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 4609 (uchar)(i + 1)); 4610 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 4611 (uchar)(asc_dvc->max_total_qng)); 4612 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 4613 (uchar)i); 4614 i++; 4615 s_addr += ASC_QBLK_SIZE; 4616 for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) { 4617 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 4618 (uchar)(i + 1)); 4619 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 4620 (uchar)(i - 1)); 4621 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 4622 (uchar)i); 4623 } 4624 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD), 4625 (uchar)ASC_QLINK_END); 4626 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD), 4627 (uchar)(asc_dvc->max_total_qng - 1)); 4628 AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO), 4629 (uchar)asc_dvc->max_total_qng); 4630 i++; 4631 s_addr += ASC_QBLK_SIZE; 4632 for (; i <= (uchar)(asc_dvc->max_total_qng + 3); 4633 i++, s_addr += ASC_QBLK_SIZE) { 4634 AscWriteLramByte(iop_base, 4635 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i); 4636 AscWriteLramByte(iop_base, 4637 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i); 4638 AscWriteLramByte(iop_base, 4639 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i); 4640 } 4641 return warn_code; 4642 } 4643 4644 static ASC_DCNT 4645 AscLoadMicroCode(PortAddr iop_base, ushort s_addr, 4646 const uchar *mcode_buf, ushort mcode_size) 4647 { 4648 ASC_DCNT chksum; 4649 ushort mcode_word_size; 4650 ushort mcode_chksum; 4651 4652 /* Write the microcode buffer starting at LRAM address 0. */ 4653 mcode_word_size = (ushort)(mcode_size >> 1); 4654 AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size); 4655 AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size); 4656 4657 chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size); 4658 ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum); 4659 mcode_chksum = (ushort)AscMemSumLramWord(iop_base, 4660 (ushort)ASC_CODE_SEC_BEG, 4661 (ushort)((mcode_size - 4662 s_addr - (ushort) 4663 ASC_CODE_SEC_BEG) / 4664 2)); 4665 ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum); 4666 AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum); 4667 AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size); 4668 return chksum; 4669 } 4670 4671 static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc) 4672 { 4673 PortAddr iop_base; 4674 int i; 4675 ushort lram_addr; 4676 4677 iop_base = asc_dvc->iop_base; 4678 AscPutRiscVarFreeQHead(iop_base, 1); 4679 AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng); 4680 AscPutVarFreeQHead(iop_base, 1); 4681 AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng); 4682 AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B, 4683 (uchar)((int)asc_dvc->max_total_qng + 1)); 4684 AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B, 4685 (uchar)((int)asc_dvc->max_total_qng + 2)); 4686 AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B, 4687 asc_dvc->max_total_qng); 4688 AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0); 4689 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 4690 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0); 4691 AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0); 4692 AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0); 4693 AscPutQDoneInProgress(iop_base, 0); 4694 lram_addr = ASC_QADR_BEG; 4695 for (i = 0; i < 32; i++, lram_addr += 2) { 4696 AscWriteLramWord(iop_base, lram_addr, 0); 4697 } 4698 } 4699 4700 static ushort AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc) 4701 { 4702 int i; 4703 ushort warn_code; 4704 PortAddr iop_base; 4705 ASC_PADDR phy_addr; 4706 ASC_DCNT phy_size; 4707 struct asc_board *board = asc_dvc_to_board(asc_dvc); 4708 4709 iop_base = asc_dvc->iop_base; 4710 warn_code = 0; 4711 for (i = 0; i <= ASC_MAX_TID; i++) { 4712 AscPutMCodeInitSDTRAtID(iop_base, i, 4713 asc_dvc->cfg->sdtr_period_offset[i]); 4714 } 4715 4716 AscInitQLinkVar(asc_dvc); 4717 AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B, 4718 asc_dvc->cfg->disc_enable); 4719 AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B, 4720 ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id)); 4721 4722 /* Ensure overrun buffer is aligned on an 8 byte boundary. */ 4723 BUG_ON((unsigned long)asc_dvc->overrun_buf & 7); 4724 asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf, 4725 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4726 if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) { 4727 warn_code = -ENOMEM; 4728 goto err_dma_map; 4729 } 4730 phy_addr = cpu_to_le32(asc_dvc->overrun_dma); 4731 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D, 4732 (uchar *)&phy_addr, 1); 4733 phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE); 4734 AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D, 4735 (uchar *)&phy_size, 1); 4736 4737 asc_dvc->cfg->mcode_date = 4738 AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W); 4739 asc_dvc->cfg->mcode_version = 4740 AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W); 4741 4742 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 4743 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 4744 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 4745 warn_code = UW_ERR; 4746 goto err_mcode_start; 4747 } 4748 if (AscStartChip(iop_base) != 1) { 4749 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 4750 warn_code = UW_ERR; 4751 goto err_mcode_start; 4752 } 4753 4754 return warn_code; 4755 4756 err_mcode_start: 4757 dma_unmap_single(board->dev, asc_dvc->overrun_dma, 4758 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 4759 err_dma_map: 4760 asc_dvc->overrun_dma = 0; 4761 return warn_code; 4762 } 4763 4764 static ushort AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc) 4765 { 4766 const struct firmware *fw; 4767 const char fwname[] = "advansys/mcode.bin"; 4768 int err; 4769 unsigned long chksum; 4770 ushort warn_code; 4771 PortAddr iop_base; 4772 4773 iop_base = asc_dvc->iop_base; 4774 warn_code = 0; 4775 if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) && 4776 !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) { 4777 AscResetChipAndScsiBus(asc_dvc); 4778 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 4779 } 4780 asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC; 4781 if (asc_dvc->err_code != 0) 4782 return UW_ERR; 4783 if (!AscFindSignature(asc_dvc->iop_base)) { 4784 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 4785 return warn_code; 4786 } 4787 AscDisableInterrupt(iop_base); 4788 warn_code |= AscInitLram(asc_dvc); 4789 if (asc_dvc->err_code != 0) 4790 return UW_ERR; 4791 4792 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 4793 if (err) { 4794 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 4795 fwname, err); 4796 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4797 return err; 4798 } 4799 if (fw->size < 4) { 4800 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 4801 fw->size, fwname); 4802 release_firmware(fw); 4803 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4804 return -EINVAL; 4805 } 4806 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 4807 (fw->data[1] << 8) | fw->data[0]; 4808 ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum); 4809 if (AscLoadMicroCode(iop_base, 0, &fw->data[4], 4810 fw->size - 4) != chksum) { 4811 asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM; 4812 release_firmware(fw); 4813 return warn_code; 4814 } 4815 release_firmware(fw); 4816 warn_code |= AscInitMicroCodeVar(asc_dvc); 4817 if (!asc_dvc->overrun_dma) 4818 return warn_code; 4819 asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC; 4820 AscEnableInterrupt(iop_base); 4821 return warn_code; 4822 } 4823 4824 /* 4825 * Load the Microcode 4826 * 4827 * Write the microcode image to RISC memory starting at address 0. 4828 * 4829 * The microcode is stored compressed in the following format: 4830 * 4831 * 254 word (508 byte) table indexed by byte code followed 4832 * by the following byte codes: 4833 * 4834 * 1-Byte Code: 4835 * 00: Emit word 0 in table. 4836 * 01: Emit word 1 in table. 4837 * . 4838 * FD: Emit word 253 in table. 4839 * 4840 * Multi-Byte Code: 4841 * FE WW WW: (3 byte code) Word to emit is the next word WW WW. 4842 * FF BB WW WW: (4 byte code) Emit BB count times next word WW WW. 4843 * 4844 * Returns 0 or an error if the checksum doesn't match 4845 */ 4846 static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf, 4847 int size, int memsize, int chksum) 4848 { 4849 int i, j, end, len = 0; 4850 ADV_DCNT sum; 4851 4852 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4853 4854 for (i = 253 * 2; i < size; i++) { 4855 if (buf[i] == 0xff) { 4856 unsigned short word = (buf[i + 3] << 8) | buf[i + 2]; 4857 for (j = 0; j < buf[i + 1]; j++) { 4858 AdvWriteWordAutoIncLram(iop_base, word); 4859 len += 2; 4860 } 4861 i += 3; 4862 } else if (buf[i] == 0xfe) { 4863 unsigned short word = (buf[i + 2] << 8) | buf[i + 1]; 4864 AdvWriteWordAutoIncLram(iop_base, word); 4865 i += 2; 4866 len += 2; 4867 } else { 4868 unsigned int off = buf[i] * 2; 4869 unsigned short word = (buf[off + 1] << 8) | buf[off]; 4870 AdvWriteWordAutoIncLram(iop_base, word); 4871 len += 2; 4872 } 4873 } 4874 4875 end = len; 4876 4877 while (len < memsize) { 4878 AdvWriteWordAutoIncLram(iop_base, 0); 4879 len += 2; 4880 } 4881 4882 /* Verify the microcode checksum. */ 4883 sum = 0; 4884 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0); 4885 4886 for (len = 0; len < end; len += 2) { 4887 sum += AdvReadWordAutoIncLram(iop_base); 4888 } 4889 4890 if (sum != chksum) 4891 return ASC_IERR_MCODE_CHKSUM; 4892 4893 return 0; 4894 } 4895 4896 static void AdvBuildCarrierFreelist(struct adv_dvc_var *asc_dvc) 4897 { 4898 ADV_CARR_T *carrp; 4899 ADV_SDCNT buf_size; 4900 ADV_PADDR carr_paddr; 4901 4902 carrp = (ADV_CARR_T *) ADV_16BALIGN(asc_dvc->carrier_buf); 4903 asc_dvc->carr_freelist = NULL; 4904 if (carrp == asc_dvc->carrier_buf) { 4905 buf_size = ADV_CARRIER_BUFSIZE; 4906 } else { 4907 buf_size = ADV_CARRIER_BUFSIZE - sizeof(ADV_CARR_T); 4908 } 4909 4910 do { 4911 /* Get physical address of the carrier 'carrp'. */ 4912 carr_paddr = cpu_to_le32(virt_to_bus(carrp)); 4913 4914 buf_size -= sizeof(ADV_CARR_T); 4915 4916 carrp->carr_pa = carr_paddr; 4917 carrp->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(carrp)); 4918 4919 /* 4920 * Insert the carrier at the beginning of the freelist. 4921 */ 4922 carrp->next_vpa = 4923 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist)); 4924 asc_dvc->carr_freelist = carrp; 4925 4926 carrp++; 4927 } while (buf_size > 0); 4928 } 4929 4930 /* 4931 * Send an idle command to the chip and wait for completion. 4932 * 4933 * Command completion is polled for once per microsecond. 4934 * 4935 * The function can be called from anywhere including an interrupt handler. 4936 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical() 4937 * functions to prevent reentrancy. 4938 * 4939 * Return Values: 4940 * ADV_TRUE - command completed successfully 4941 * ADV_FALSE - command failed 4942 * ADV_ERROR - command timed out 4943 */ 4944 static int 4945 AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc, 4946 ushort idle_cmd, ADV_DCNT idle_cmd_parameter) 4947 { 4948 int result; 4949 ADV_DCNT i, j; 4950 AdvPortAddr iop_base; 4951 4952 iop_base = asc_dvc->iop_base; 4953 4954 /* 4955 * Clear the idle command status which is set by the microcode 4956 * to a non-zero value to indicate when the command is completed. 4957 * The non-zero result is one of the IDLE_CMD_STATUS_* values 4958 */ 4959 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0); 4960 4961 /* 4962 * Write the idle command value after the idle command parameter 4963 * has been written to avoid a race condition. If the order is not 4964 * followed, the microcode may process the idle command before the 4965 * parameters have been written to LRAM. 4966 */ 4967 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER, 4968 cpu_to_le32(idle_cmd_parameter)); 4969 AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd); 4970 4971 /* 4972 * Tickle the RISC to tell it to process the idle command. 4973 */ 4974 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B); 4975 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 4976 /* 4977 * Clear the tickle value. In the ASC-3550 the RISC flag 4978 * command 'clr_tickle_b' does not work unless the host 4979 * value is cleared. 4980 */ 4981 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP); 4982 } 4983 4984 /* Wait for up to 100 millisecond for the idle command to timeout. */ 4985 for (i = 0; i < SCSI_WAIT_100_MSEC; i++) { 4986 /* Poll once each microsecond for command completion. */ 4987 for (j = 0; j < SCSI_US_PER_MSEC; j++) { 4988 AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, 4989 result); 4990 if (result != 0) 4991 return result; 4992 udelay(1); 4993 } 4994 } 4995 4996 BUG(); /* The idle command should never timeout. */ 4997 return ADV_ERROR; 4998 } 4999 5000 /* 5001 * Reset SCSI Bus and purge all outstanding requests. 5002 * 5003 * Return Value: 5004 * ADV_TRUE(1) - All requests are purged and SCSI Bus is reset. 5005 * ADV_FALSE(0) - Microcode command failed. 5006 * ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC 5007 * may be hung which requires driver recovery. 5008 */ 5009 static int AdvResetSB(ADV_DVC_VAR *asc_dvc) 5010 { 5011 int status; 5012 5013 /* 5014 * Send the SCSI Bus Reset idle start idle command which asserts 5015 * the SCSI Bus Reset signal. 5016 */ 5017 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L); 5018 if (status != ADV_TRUE) { 5019 return status; 5020 } 5021 5022 /* 5023 * Delay for the specified SCSI Bus Reset hold time. 5024 * 5025 * The hold time delay is done on the host because the RISC has no 5026 * microsecond accurate timer. 5027 */ 5028 udelay(ASC_SCSI_RESET_HOLD_TIME_US); 5029 5030 /* 5031 * Send the SCSI Bus Reset end idle command which de-asserts 5032 * the SCSI Bus Reset signal and purges any pending requests. 5033 */ 5034 status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L); 5035 if (status != ADV_TRUE) { 5036 return status; 5037 } 5038 5039 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 5040 5041 return status; 5042 } 5043 5044 /* 5045 * Initialize the ASC-3550. 5046 * 5047 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 5048 * 5049 * For a non-fatal error return a warning code. If there are no warnings 5050 * then 0 is returned. 5051 * 5052 * Needed after initialization for error recovery. 5053 */ 5054 static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc) 5055 { 5056 const struct firmware *fw; 5057 const char fwname[] = "advansys/3550.bin"; 5058 AdvPortAddr iop_base; 5059 ushort warn_code; 5060 int begin_addr; 5061 int end_addr; 5062 ushort code_sum; 5063 int word; 5064 int i; 5065 int err; 5066 unsigned long chksum; 5067 ushort scsi_cfg1; 5068 uchar tid; 5069 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 5070 ushort wdtr_able = 0, sdtr_able, tagqng_able; 5071 uchar max_cmd[ADV_MAX_TID + 1]; 5072 5073 /* If there is already an error, don't continue. */ 5074 if (asc_dvc->err_code != 0) 5075 return ADV_ERROR; 5076 5077 /* 5078 * The caller must set 'chip_type' to ADV_CHIP_ASC3550. 5079 */ 5080 if (asc_dvc->chip_type != ADV_CHIP_ASC3550) { 5081 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 5082 return ADV_ERROR; 5083 } 5084 5085 warn_code = 0; 5086 iop_base = asc_dvc->iop_base; 5087 5088 /* 5089 * Save the RISC memory BIOS region before writing the microcode. 5090 * The BIOS may already be loaded and using its RISC LRAM region 5091 * so its region must be saved and restored. 5092 * 5093 * Note: This code makes the assumption, which is currently true, 5094 * that a chip reset does not clear RISC LRAM. 5095 */ 5096 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5097 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5098 bios_mem[i]); 5099 } 5100 5101 /* 5102 * Save current per TID negotiated values. 5103 */ 5104 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) { 5105 ushort bios_version, major, minor; 5106 5107 bios_version = 5108 bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2]; 5109 major = (bios_version >> 12) & 0xF; 5110 minor = (bios_version >> 8) & 0xF; 5111 if (major < 3 || (major == 3 && minor == 1)) { 5112 /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */ 5113 AdvReadWordLram(iop_base, 0x120, wdtr_able); 5114 } else { 5115 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5116 } 5117 } 5118 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5119 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5120 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5121 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5122 max_cmd[tid]); 5123 } 5124 5125 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 5126 if (err) { 5127 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 5128 fwname, err); 5129 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5130 return err; 5131 } 5132 if (fw->size < 4) { 5133 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 5134 fw->size, fwname); 5135 release_firmware(fw); 5136 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5137 return -EINVAL; 5138 } 5139 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 5140 (fw->data[1] << 8) | fw->data[0]; 5141 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 5142 fw->size - 4, ADV_3550_MEMSIZE, 5143 chksum); 5144 release_firmware(fw); 5145 if (asc_dvc->err_code) 5146 return ADV_ERROR; 5147 5148 /* 5149 * Restore the RISC memory BIOS region. 5150 */ 5151 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5152 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5153 bios_mem[i]); 5154 } 5155 5156 /* 5157 * Calculate and write the microcode code checksum to the microcode 5158 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5159 */ 5160 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5161 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5162 code_sum = 0; 5163 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5164 for (word = begin_addr; word < end_addr; word += 2) { 5165 code_sum += AdvReadWordAutoIncLram(iop_base); 5166 } 5167 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5168 5169 /* 5170 * Read and save microcode version and date. 5171 */ 5172 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5173 asc_dvc->cfg->mcode_date); 5174 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5175 asc_dvc->cfg->mcode_version); 5176 5177 /* 5178 * Set the chip type to indicate the ASC3550. 5179 */ 5180 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550); 5181 5182 /* 5183 * If the PCI Configuration Command Register "Parity Error Response 5184 * Control" Bit was clear (0), then set the microcode variable 5185 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5186 * to ignore DMA parity errors. 5187 */ 5188 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5189 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5190 word |= CONTROL_FLAG_IGNORE_PERR; 5191 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5192 } 5193 5194 /* 5195 * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO 5196 * threshold of 128 bytes. This register is only accessible to the host. 5197 */ 5198 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5199 START_CTL_EMFU | READ_CMD_MRM); 5200 5201 /* 5202 * Microcode operating variables for WDTR, SDTR, and command tag 5203 * queuing will be set in slave_configure() based on what a 5204 * device reports it is capable of in Inquiry byte 7. 5205 * 5206 * If SCSI Bus Resets have been disabled, then directly set 5207 * SDTR and WDTR from the EEPROM configuration. This will allow 5208 * the BIOS and warm boot to work without a SCSI bus hang on 5209 * the Inquiry caused by host and target mismatched DTR values. 5210 * Without the SCSI Bus Reset, before an Inquiry a device can't 5211 * be assumed to be in Asynchronous, Narrow mode. 5212 */ 5213 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5214 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5215 asc_dvc->wdtr_able); 5216 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5217 asc_dvc->sdtr_able); 5218 } 5219 5220 /* 5221 * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2, 5222 * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID 5223 * bitmask. These values determine the maximum SDTR speed negotiated 5224 * with a device. 5225 * 5226 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5227 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5228 * without determining here whether the device supports SDTR. 5229 * 5230 * 4-bit speed SDTR speed name 5231 * =========== =============== 5232 * 0000b (0x0) SDTR disabled 5233 * 0001b (0x1) 5 Mhz 5234 * 0010b (0x2) 10 Mhz 5235 * 0011b (0x3) 20 Mhz (Ultra) 5236 * 0100b (0x4) 40 Mhz (LVD/Ultra2) 5237 * 0101b (0x5) 80 Mhz (LVD2/Ultra3) 5238 * 0110b (0x6) Undefined 5239 * . 5240 * 1111b (0xF) Undefined 5241 */ 5242 word = 0; 5243 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5244 if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) { 5245 /* Set Ultra speed for TID 'tid'. */ 5246 word |= (0x3 << (4 * (tid % 4))); 5247 } else { 5248 /* Set Fast speed for TID 'tid'. */ 5249 word |= (0x2 << (4 * (tid % 4))); 5250 } 5251 if (tid == 3) { /* Check if done with sdtr_speed1. */ 5252 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word); 5253 word = 0; 5254 } else if (tid == 7) { /* Check if done with sdtr_speed2. */ 5255 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word); 5256 word = 0; 5257 } else if (tid == 11) { /* Check if done with sdtr_speed3. */ 5258 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word); 5259 word = 0; 5260 } else if (tid == 15) { /* Check if done with sdtr_speed4. */ 5261 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word); 5262 /* End of loop. */ 5263 } 5264 } 5265 5266 /* 5267 * Set microcode operating variable for the disconnect per TID bitmask. 5268 */ 5269 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5270 asc_dvc->cfg->disc_enable); 5271 5272 /* 5273 * Set SCSI_CFG0 Microcode Default Value. 5274 * 5275 * The microcode will set the SCSI_CFG0 register using this value 5276 * after it is started below. 5277 */ 5278 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5279 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5280 asc_dvc->chip_scsi_id); 5281 5282 /* 5283 * Determine SCSI_CFG1 Microcode Default Value. 5284 * 5285 * The microcode will set the SCSI_CFG1 register using this value 5286 * after it is started below. 5287 */ 5288 5289 /* Read current SCSI_CFG1 Register value. */ 5290 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5291 5292 /* 5293 * If all three connectors are in use, return an error. 5294 */ 5295 if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 || 5296 (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) { 5297 asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION; 5298 return ADV_ERROR; 5299 } 5300 5301 /* 5302 * If the internal narrow cable is reversed all of the SCSI_CTRL 5303 * register signals will be set. Check for and return an error if 5304 * this condition is found. 5305 */ 5306 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5307 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5308 return ADV_ERROR; 5309 } 5310 5311 /* 5312 * If this is a differential board and a single-ended device 5313 * is attached to one of the connectors, return an error. 5314 */ 5315 if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) { 5316 asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE; 5317 return ADV_ERROR; 5318 } 5319 5320 /* 5321 * If automatic termination control is enabled, then set the 5322 * termination value based on a table listed in a_condor.h. 5323 * 5324 * If manual termination was specified with an EEPROM setting 5325 * then 'termination' was set-up in AdvInitFrom3550EEPROM() and 5326 * is ready to be 'ored' into SCSI_CFG1. 5327 */ 5328 if (asc_dvc->cfg->termination == 0) { 5329 /* 5330 * The software always controls termination by setting TERM_CTL_SEL. 5331 * If TERM_CTL_SEL were set to 0, the hardware would set termination. 5332 */ 5333 asc_dvc->cfg->termination |= TERM_CTL_SEL; 5334 5335 switch (scsi_cfg1 & CABLE_DETECT) { 5336 /* TERM_CTL_H: on, TERM_CTL_L: on */ 5337 case 0x3: 5338 case 0x7: 5339 case 0xB: 5340 case 0xD: 5341 case 0xE: 5342 case 0xF: 5343 asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L); 5344 break; 5345 5346 /* TERM_CTL_H: on, TERM_CTL_L: off */ 5347 case 0x1: 5348 case 0x5: 5349 case 0x9: 5350 case 0xA: 5351 case 0xC: 5352 asc_dvc->cfg->termination |= TERM_CTL_H; 5353 break; 5354 5355 /* TERM_CTL_H: off, TERM_CTL_L: off */ 5356 case 0x2: 5357 case 0x6: 5358 break; 5359 } 5360 } 5361 5362 /* 5363 * Clear any set TERM_CTL_H and TERM_CTL_L bits. 5364 */ 5365 scsi_cfg1 &= ~TERM_CTL; 5366 5367 /* 5368 * Invert the TERM_CTL_H and TERM_CTL_L bits and then 5369 * set 'scsi_cfg1'. The TERM_POL bit does not need to be 5370 * referenced, because the hardware internally inverts 5371 * the Termination High and Low bits if TERM_POL is set. 5372 */ 5373 scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL)); 5374 5375 /* 5376 * Set SCSI_CFG1 Microcode Default Value 5377 * 5378 * Set filter value and possibly modified termination control 5379 * bits in the Microcode SCSI_CFG1 Register Value. 5380 * 5381 * The microcode will set the SCSI_CFG1 register using this value 5382 * after it is started below. 5383 */ 5384 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, 5385 FLTR_DISABLE | scsi_cfg1); 5386 5387 /* 5388 * Set MEM_CFG Microcode Default Value 5389 * 5390 * The microcode will set the MEM_CFG register using this value 5391 * after it is started below. 5392 * 5393 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5394 * are defined. 5395 * 5396 * ASC-3550 has 8KB internal memory. 5397 */ 5398 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5399 BIOS_EN | RAM_SZ_8KB); 5400 5401 /* 5402 * Set SEL_MASK Microcode Default Value 5403 * 5404 * The microcode will set the SEL_MASK register using this value 5405 * after it is started below. 5406 */ 5407 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5408 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5409 5410 AdvBuildCarrierFreelist(asc_dvc); 5411 5412 /* 5413 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5414 */ 5415 5416 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { 5417 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5418 return ADV_ERROR; 5419 } 5420 asc_dvc->carr_freelist = (ADV_CARR_T *) 5421 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); 5422 5423 /* 5424 * The first command issued will be placed in the stopper carrier. 5425 */ 5426 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 5427 5428 /* 5429 * Set RISC ICQ physical address start value. 5430 */ 5431 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5432 5433 /* 5434 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5435 */ 5436 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { 5437 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5438 return ADV_ERROR; 5439 } 5440 asc_dvc->carr_freelist = (ADV_CARR_T *) 5441 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); 5442 5443 /* 5444 * The first command completed by the RISC will be placed in 5445 * the stopper. 5446 * 5447 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is 5448 * completed the RISC will set the ASC_RQ_STOPPER bit. 5449 */ 5450 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 5451 5452 /* 5453 * Set RISC IRQ physical address start value. 5454 */ 5455 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5456 asc_dvc->carr_pending_cnt = 0; 5457 5458 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5459 (ADV_INTR_ENABLE_HOST_INTR | 5460 ADV_INTR_ENABLE_GLOBAL_INTR)); 5461 5462 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5463 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5464 5465 /* finally, finally, gentlemen, start your engine */ 5466 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5467 5468 /* 5469 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5470 * Resets should be performed. The RISC has to be running 5471 * to issue a SCSI Bus Reset. 5472 */ 5473 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5474 /* 5475 * If the BIOS Signature is present in memory, restore the 5476 * BIOS Handshake Configuration Table and do not perform 5477 * a SCSI Bus Reset. 5478 */ 5479 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5480 0x55AA) { 5481 /* 5482 * Restore per TID negotiated values. 5483 */ 5484 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5485 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5486 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5487 tagqng_able); 5488 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5489 AdvWriteByteLram(iop_base, 5490 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5491 max_cmd[tid]); 5492 } 5493 } else { 5494 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5495 warn_code = ASC_WARN_BUSRESET_ERROR; 5496 } 5497 } 5498 } 5499 5500 return warn_code; 5501 } 5502 5503 /* 5504 * Initialize the ASC-38C0800. 5505 * 5506 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 5507 * 5508 * For a non-fatal error return a warning code. If there are no warnings 5509 * then 0 is returned. 5510 * 5511 * Needed after initialization for error recovery. 5512 */ 5513 static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc) 5514 { 5515 const struct firmware *fw; 5516 const char fwname[] = "advansys/38C0800.bin"; 5517 AdvPortAddr iop_base; 5518 ushort warn_code; 5519 int begin_addr; 5520 int end_addr; 5521 ushort code_sum; 5522 int word; 5523 int i; 5524 int err; 5525 unsigned long chksum; 5526 ushort scsi_cfg1; 5527 uchar byte; 5528 uchar tid; 5529 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 5530 ushort wdtr_able, sdtr_able, tagqng_able; 5531 uchar max_cmd[ADV_MAX_TID + 1]; 5532 5533 /* If there is already an error, don't continue. */ 5534 if (asc_dvc->err_code != 0) 5535 return ADV_ERROR; 5536 5537 /* 5538 * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800. 5539 */ 5540 if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) { 5541 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 5542 return ADV_ERROR; 5543 } 5544 5545 warn_code = 0; 5546 iop_base = asc_dvc->iop_base; 5547 5548 /* 5549 * Save the RISC memory BIOS region before writing the microcode. 5550 * The BIOS may already be loaded and using its RISC LRAM region 5551 * so its region must be saved and restored. 5552 * 5553 * Note: This code makes the assumption, which is currently true, 5554 * that a chip reset does not clear RISC LRAM. 5555 */ 5556 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5557 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5558 bios_mem[i]); 5559 } 5560 5561 /* 5562 * Save current per TID negotiated values. 5563 */ 5564 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5565 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5566 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 5567 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5568 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 5569 max_cmd[tid]); 5570 } 5571 5572 /* 5573 * RAM BIST (RAM Built-In Self Test) 5574 * 5575 * Address : I/O base + offset 0x38h register (byte). 5576 * Function: Bit 7-6(RW) : RAM mode 5577 * Normal Mode : 0x00 5578 * Pre-test Mode : 0x40 5579 * RAM Test Mode : 0x80 5580 * Bit 5 : unused 5581 * Bit 4(RO) : Done bit 5582 * Bit 3-0(RO) : Status 5583 * Host Error : 0x08 5584 * Int_RAM Error : 0x04 5585 * RISC Error : 0x02 5586 * SCSI Error : 0x01 5587 * No Error : 0x00 5588 * 5589 * Note: RAM BIST code should be put right here, before loading the 5590 * microcode and after saving the RISC memory BIOS region. 5591 */ 5592 5593 /* 5594 * LRAM Pre-test 5595 * 5596 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 5597 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 5598 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 5599 * to NORMAL_MODE, return an error too. 5600 */ 5601 for (i = 0; i < 2; i++) { 5602 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 5603 mdelay(10); /* Wait for 10ms before reading back. */ 5604 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5605 if ((byte & RAM_TEST_DONE) == 0 5606 || (byte & 0x0F) != PRE_TEST_VALUE) { 5607 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5608 return ADV_ERROR; 5609 } 5610 5611 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5612 mdelay(10); /* Wait for 10ms before reading back. */ 5613 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 5614 != NORMAL_VALUE) { 5615 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 5616 return ADV_ERROR; 5617 } 5618 } 5619 5620 /* 5621 * LRAM Test - It takes about 1.5 ms to run through the test. 5622 * 5623 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 5624 * If Done bit not set or Status not 0, save register byte, set the 5625 * err_code, and return an error. 5626 */ 5627 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 5628 mdelay(10); /* Wait for 10ms before checking status. */ 5629 5630 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 5631 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 5632 /* Get here if Done bit not set or Status not 0. */ 5633 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 5634 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 5635 return ADV_ERROR; 5636 } 5637 5638 /* We need to reset back to normal mode after LRAM test passes. */ 5639 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 5640 5641 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 5642 if (err) { 5643 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 5644 fwname, err); 5645 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5646 return err; 5647 } 5648 if (fw->size < 4) { 5649 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 5650 fw->size, fwname); 5651 release_firmware(fw); 5652 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 5653 return -EINVAL; 5654 } 5655 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 5656 (fw->data[1] << 8) | fw->data[0]; 5657 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 5658 fw->size - 4, ADV_38C0800_MEMSIZE, 5659 chksum); 5660 release_firmware(fw); 5661 if (asc_dvc->err_code) 5662 return ADV_ERROR; 5663 5664 /* 5665 * Restore the RISC memory BIOS region. 5666 */ 5667 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 5668 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 5669 bios_mem[i]); 5670 } 5671 5672 /* 5673 * Calculate and write the microcode code checksum to the microcode 5674 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 5675 */ 5676 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 5677 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 5678 code_sum = 0; 5679 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 5680 for (word = begin_addr; word < end_addr; word += 2) { 5681 code_sum += AdvReadWordAutoIncLram(iop_base); 5682 } 5683 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 5684 5685 /* 5686 * Read microcode version and date. 5687 */ 5688 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 5689 asc_dvc->cfg->mcode_date); 5690 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 5691 asc_dvc->cfg->mcode_version); 5692 5693 /* 5694 * Set the chip type to indicate the ASC38C0800. 5695 */ 5696 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800); 5697 5698 /* 5699 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 5700 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 5701 * cable detection and then we are able to read C_DET[3:0]. 5702 * 5703 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 5704 * Microcode Default Value' section below. 5705 */ 5706 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5707 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 5708 scsi_cfg1 | DIS_TERM_DRV); 5709 5710 /* 5711 * If the PCI Configuration Command Register "Parity Error Response 5712 * Control" Bit was clear (0), then set the microcode variable 5713 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 5714 * to ignore DMA parity errors. 5715 */ 5716 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 5717 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5718 word |= CONTROL_FLAG_IGNORE_PERR; 5719 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 5720 } 5721 5722 /* 5723 * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2] 5724 * bits for the default FIFO threshold. 5725 * 5726 * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes. 5727 * 5728 * For DMA Errata #4 set the BC_THRESH_ENB bit. 5729 */ 5730 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 5731 BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH | 5732 READ_CMD_MRM); 5733 5734 /* 5735 * Microcode operating variables for WDTR, SDTR, and command tag 5736 * queuing will be set in slave_configure() based on what a 5737 * device reports it is capable of in Inquiry byte 7. 5738 * 5739 * If SCSI Bus Resets have been disabled, then directly set 5740 * SDTR and WDTR from the EEPROM configuration. This will allow 5741 * the BIOS and warm boot to work without a SCSI bus hang on 5742 * the Inquiry caused by host and target mismatched DTR values. 5743 * Without the SCSI Bus Reset, before an Inquiry a device can't 5744 * be assumed to be in Asynchronous, Narrow mode. 5745 */ 5746 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 5747 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 5748 asc_dvc->wdtr_able); 5749 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 5750 asc_dvc->sdtr_able); 5751 } 5752 5753 /* 5754 * Set microcode operating variables for DISC and SDTR_SPEED1, 5755 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 5756 * configuration values. 5757 * 5758 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 5759 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 5760 * without determining here whether the device supports SDTR. 5761 */ 5762 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 5763 asc_dvc->cfg->disc_enable); 5764 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 5765 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 5766 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 5767 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 5768 5769 /* 5770 * Set SCSI_CFG0 Microcode Default Value. 5771 * 5772 * The microcode will set the SCSI_CFG0 register using this value 5773 * after it is started below. 5774 */ 5775 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 5776 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 5777 asc_dvc->chip_scsi_id); 5778 5779 /* 5780 * Determine SCSI_CFG1 Microcode Default Value. 5781 * 5782 * The microcode will set the SCSI_CFG1 register using this value 5783 * after it is started below. 5784 */ 5785 5786 /* Read current SCSI_CFG1 Register value. */ 5787 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 5788 5789 /* 5790 * If the internal narrow cable is reversed all of the SCSI_CTRL 5791 * register signals will be set. Check for and return an error if 5792 * this condition is found. 5793 */ 5794 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 5795 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 5796 return ADV_ERROR; 5797 } 5798 5799 /* 5800 * All kind of combinations of devices attached to one of four 5801 * connectors are acceptable except HVD device attached. For example, 5802 * LVD device can be attached to SE connector while SE device attached 5803 * to LVD connector. If LVD device attached to SE connector, it only 5804 * runs up to Ultra speed. 5805 * 5806 * If an HVD device is attached to one of LVD connectors, return an 5807 * error. However, there is no way to detect HVD device attached to 5808 * SE connectors. 5809 */ 5810 if (scsi_cfg1 & HVD) { 5811 asc_dvc->err_code = ASC_IERR_HVD_DEVICE; 5812 return ADV_ERROR; 5813 } 5814 5815 /* 5816 * If either SE or LVD automatic termination control is enabled, then 5817 * set the termination value based on a table listed in a_condor.h. 5818 * 5819 * If manual termination was specified with an EEPROM setting then 5820 * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready 5821 * to be 'ored' into SCSI_CFG1. 5822 */ 5823 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 5824 /* SE automatic termination control is enabled. */ 5825 switch (scsi_cfg1 & C_DET_SE) { 5826 /* TERM_SE_HI: on, TERM_SE_LO: on */ 5827 case 0x1: 5828 case 0x2: 5829 case 0x3: 5830 asc_dvc->cfg->termination |= TERM_SE; 5831 break; 5832 5833 /* TERM_SE_HI: on, TERM_SE_LO: off */ 5834 case 0x0: 5835 asc_dvc->cfg->termination |= TERM_SE_HI; 5836 break; 5837 } 5838 } 5839 5840 if ((asc_dvc->cfg->termination & TERM_LVD) == 0) { 5841 /* LVD automatic termination control is enabled. */ 5842 switch (scsi_cfg1 & C_DET_LVD) { 5843 /* TERM_LVD_HI: on, TERM_LVD_LO: on */ 5844 case 0x4: 5845 case 0x8: 5846 case 0xC: 5847 asc_dvc->cfg->termination |= TERM_LVD; 5848 break; 5849 5850 /* TERM_LVD_HI: off, TERM_LVD_LO: off */ 5851 case 0x0: 5852 break; 5853 } 5854 } 5855 5856 /* 5857 * Clear any set TERM_SE and TERM_LVD bits. 5858 */ 5859 scsi_cfg1 &= (~TERM_SE & ~TERM_LVD); 5860 5861 /* 5862 * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'. 5863 */ 5864 scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0); 5865 5866 /* 5867 * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE 5868 * bits and set possibly modified termination control bits in the 5869 * Microcode SCSI_CFG1 Register Value. 5870 */ 5871 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE); 5872 5873 /* 5874 * Set SCSI_CFG1 Microcode Default Value 5875 * 5876 * Set possibly modified termination control and reset DIS_TERM_DRV 5877 * bits in the Microcode SCSI_CFG1 Register Value. 5878 * 5879 * The microcode will set the SCSI_CFG1 register using this value 5880 * after it is started below. 5881 */ 5882 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 5883 5884 /* 5885 * Set MEM_CFG Microcode Default Value 5886 * 5887 * The microcode will set the MEM_CFG register using this value 5888 * after it is started below. 5889 * 5890 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 5891 * are defined. 5892 * 5893 * ASC-38C0800 has 16KB internal memory. 5894 */ 5895 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 5896 BIOS_EN | RAM_SZ_16KB); 5897 5898 /* 5899 * Set SEL_MASK Microcode Default Value 5900 * 5901 * The microcode will set the SEL_MASK register using this value 5902 * after it is started below. 5903 */ 5904 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 5905 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 5906 5907 AdvBuildCarrierFreelist(asc_dvc); 5908 5909 /* 5910 * Set-up the Host->RISC Initiator Command Queue (ICQ). 5911 */ 5912 5913 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { 5914 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5915 return ADV_ERROR; 5916 } 5917 asc_dvc->carr_freelist = (ADV_CARR_T *) 5918 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); 5919 5920 /* 5921 * The first command issued will be placed in the stopper carrier. 5922 */ 5923 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 5924 5925 /* 5926 * Set RISC ICQ physical address start value. 5927 * carr_pa is LE, must be native before write 5928 */ 5929 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 5930 5931 /* 5932 * Set-up the RISC->Host Initiator Response Queue (IRQ). 5933 */ 5934 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { 5935 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 5936 return ADV_ERROR; 5937 } 5938 asc_dvc->carr_freelist = (ADV_CARR_T *) 5939 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); 5940 5941 /* 5942 * The first command completed by the RISC will be placed in 5943 * the stopper. 5944 * 5945 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is 5946 * completed the RISC will set the ASC_RQ_STOPPER bit. 5947 */ 5948 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 5949 5950 /* 5951 * Set RISC IRQ physical address start value. 5952 * 5953 * carr_pa is LE, must be native before write * 5954 */ 5955 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 5956 asc_dvc->carr_pending_cnt = 0; 5957 5958 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 5959 (ADV_INTR_ENABLE_HOST_INTR | 5960 ADV_INTR_ENABLE_GLOBAL_INTR)); 5961 5962 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 5963 AdvWriteWordRegister(iop_base, IOPW_PC, word); 5964 5965 /* finally, finally, gentlemen, start your engine */ 5966 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 5967 5968 /* 5969 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 5970 * Resets should be performed. The RISC has to be running 5971 * to issue a SCSI Bus Reset. 5972 */ 5973 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 5974 /* 5975 * If the BIOS Signature is present in memory, restore the 5976 * BIOS Handshake Configuration Table and do not perform 5977 * a SCSI Bus Reset. 5978 */ 5979 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 5980 0x55AA) { 5981 /* 5982 * Restore per TID negotiated values. 5983 */ 5984 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 5985 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 5986 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 5987 tagqng_able); 5988 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 5989 AdvWriteByteLram(iop_base, 5990 ASC_MC_NUMBER_OF_MAX_CMD + tid, 5991 max_cmd[tid]); 5992 } 5993 } else { 5994 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 5995 warn_code = ASC_WARN_BUSRESET_ERROR; 5996 } 5997 } 5998 } 5999 6000 return warn_code; 6001 } 6002 6003 /* 6004 * Initialize the ASC-38C1600. 6005 * 6006 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 6007 * 6008 * For a non-fatal error return a warning code. If there are no warnings 6009 * then 0 is returned. 6010 * 6011 * Needed after initialization for error recovery. 6012 */ 6013 static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc) 6014 { 6015 const struct firmware *fw; 6016 const char fwname[] = "advansys/38C1600.bin"; 6017 AdvPortAddr iop_base; 6018 ushort warn_code; 6019 int begin_addr; 6020 int end_addr; 6021 ushort code_sum; 6022 long word; 6023 int i; 6024 int err; 6025 unsigned long chksum; 6026 ushort scsi_cfg1; 6027 uchar byte; 6028 uchar tid; 6029 ushort bios_mem[ASC_MC_BIOSLEN / 2]; /* BIOS RISC Memory 0x40-0x8F. */ 6030 ushort wdtr_able, sdtr_able, ppr_able, tagqng_able; 6031 uchar max_cmd[ASC_MAX_TID + 1]; 6032 6033 /* If there is already an error, don't continue. */ 6034 if (asc_dvc->err_code != 0) { 6035 return ADV_ERROR; 6036 } 6037 6038 /* 6039 * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600. 6040 */ 6041 if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 6042 asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE; 6043 return ADV_ERROR; 6044 } 6045 6046 warn_code = 0; 6047 iop_base = asc_dvc->iop_base; 6048 6049 /* 6050 * Save the RISC memory BIOS region before writing the microcode. 6051 * The BIOS may already be loaded and using its RISC LRAM region 6052 * so its region must be saved and restored. 6053 * 6054 * Note: This code makes the assumption, which is currently true, 6055 * that a chip reset does not clear RISC LRAM. 6056 */ 6057 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 6058 AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 6059 bios_mem[i]); 6060 } 6061 6062 /* 6063 * Save current per TID negotiated values. 6064 */ 6065 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 6066 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 6067 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 6068 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 6069 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 6070 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 6071 max_cmd[tid]); 6072 } 6073 6074 /* 6075 * RAM BIST (Built-In Self Test) 6076 * 6077 * Address : I/O base + offset 0x38h register (byte). 6078 * Function: Bit 7-6(RW) : RAM mode 6079 * Normal Mode : 0x00 6080 * Pre-test Mode : 0x40 6081 * RAM Test Mode : 0x80 6082 * Bit 5 : unused 6083 * Bit 4(RO) : Done bit 6084 * Bit 3-0(RO) : Status 6085 * Host Error : 0x08 6086 * Int_RAM Error : 0x04 6087 * RISC Error : 0x02 6088 * SCSI Error : 0x01 6089 * No Error : 0x00 6090 * 6091 * Note: RAM BIST code should be put right here, before loading the 6092 * microcode and after saving the RISC memory BIOS region. 6093 */ 6094 6095 /* 6096 * LRAM Pre-test 6097 * 6098 * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds. 6099 * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return 6100 * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset 6101 * to NORMAL_MODE, return an error too. 6102 */ 6103 for (i = 0; i < 2; i++) { 6104 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE); 6105 mdelay(10); /* Wait for 10ms before reading back. */ 6106 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 6107 if ((byte & RAM_TEST_DONE) == 0 6108 || (byte & 0x0F) != PRE_TEST_VALUE) { 6109 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 6110 return ADV_ERROR; 6111 } 6112 6113 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 6114 mdelay(10); /* Wait for 10ms before reading back. */ 6115 if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST) 6116 != NORMAL_VALUE) { 6117 asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST; 6118 return ADV_ERROR; 6119 } 6120 } 6121 6122 /* 6123 * LRAM Test - It takes about 1.5 ms to run through the test. 6124 * 6125 * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds. 6126 * If Done bit not set or Status not 0, save register byte, set the 6127 * err_code, and return an error. 6128 */ 6129 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE); 6130 mdelay(10); /* Wait for 10ms before checking status. */ 6131 6132 byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST); 6133 if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) { 6134 /* Get here if Done bit not set or Status not 0. */ 6135 asc_dvc->bist_err_code = byte; /* for BIOS display message */ 6136 asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST; 6137 return ADV_ERROR; 6138 } 6139 6140 /* We need to reset back to normal mode after LRAM test passes. */ 6141 AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE); 6142 6143 err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev); 6144 if (err) { 6145 printk(KERN_ERR "Failed to load image \"%s\" err %d\n", 6146 fwname, err); 6147 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 6148 return err; 6149 } 6150 if (fw->size < 4) { 6151 printk(KERN_ERR "Bogus length %zu in image \"%s\"\n", 6152 fw->size, fwname); 6153 release_firmware(fw); 6154 asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM; 6155 return -EINVAL; 6156 } 6157 chksum = (fw->data[3] << 24) | (fw->data[2] << 16) | 6158 (fw->data[1] << 8) | fw->data[0]; 6159 asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4], 6160 fw->size - 4, ADV_38C1600_MEMSIZE, 6161 chksum); 6162 release_firmware(fw); 6163 if (asc_dvc->err_code) 6164 return ADV_ERROR; 6165 6166 /* 6167 * Restore the RISC memory BIOS region. 6168 */ 6169 for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) { 6170 AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i), 6171 bios_mem[i]); 6172 } 6173 6174 /* 6175 * Calculate and write the microcode code checksum to the microcode 6176 * code checksum location ASC_MC_CODE_CHK_SUM (0x2C). 6177 */ 6178 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr); 6179 AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr); 6180 code_sum = 0; 6181 AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr); 6182 for (word = begin_addr; word < end_addr; word += 2) { 6183 code_sum += AdvReadWordAutoIncLram(iop_base); 6184 } 6185 AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum); 6186 6187 /* 6188 * Read microcode version and date. 6189 */ 6190 AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE, 6191 asc_dvc->cfg->mcode_date); 6192 AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM, 6193 asc_dvc->cfg->mcode_version); 6194 6195 /* 6196 * Set the chip type to indicate the ASC38C1600. 6197 */ 6198 AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600); 6199 6200 /* 6201 * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register. 6202 * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current 6203 * cable detection and then we are able to read C_DET[3:0]. 6204 * 6205 * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1 6206 * Microcode Default Value' section below. 6207 */ 6208 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 6209 AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1, 6210 scsi_cfg1 | DIS_TERM_DRV); 6211 6212 /* 6213 * If the PCI Configuration Command Register "Parity Error Response 6214 * Control" Bit was clear (0), then set the microcode variable 6215 * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode 6216 * to ignore DMA parity errors. 6217 */ 6218 if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) { 6219 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 6220 word |= CONTROL_FLAG_IGNORE_PERR; 6221 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 6222 } 6223 6224 /* 6225 * If the BIOS control flag AIPP (Asynchronous Information 6226 * Phase Protection) disable bit is not set, then set the firmware 6227 * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable 6228 * AIPP checking and encoding. 6229 */ 6230 if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) { 6231 AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 6232 word |= CONTROL_FLAG_ENABLE_AIPP; 6233 AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word); 6234 } 6235 6236 /* 6237 * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4], 6238 * and START_CTL_TH [3:2]. 6239 */ 6240 AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0, 6241 FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM); 6242 6243 /* 6244 * Microcode operating variables for WDTR, SDTR, and command tag 6245 * queuing will be set in slave_configure() based on what a 6246 * device reports it is capable of in Inquiry byte 7. 6247 * 6248 * If SCSI Bus Resets have been disabled, then directly set 6249 * SDTR and WDTR from the EEPROM configuration. This will allow 6250 * the BIOS and warm boot to work without a SCSI bus hang on 6251 * the Inquiry caused by host and target mismatched DTR values. 6252 * Without the SCSI Bus Reset, before an Inquiry a device can't 6253 * be assumed to be in Asynchronous, Narrow mode. 6254 */ 6255 if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) { 6256 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, 6257 asc_dvc->wdtr_able); 6258 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, 6259 asc_dvc->sdtr_able); 6260 } 6261 6262 /* 6263 * Set microcode operating variables for DISC and SDTR_SPEED1, 6264 * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM 6265 * configuration values. 6266 * 6267 * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2, 6268 * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them 6269 * without determining here whether the device supports SDTR. 6270 */ 6271 AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE, 6272 asc_dvc->cfg->disc_enable); 6273 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1); 6274 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2); 6275 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3); 6276 AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4); 6277 6278 /* 6279 * Set SCSI_CFG0 Microcode Default Value. 6280 * 6281 * The microcode will set the SCSI_CFG0 register using this value 6282 * after it is started below. 6283 */ 6284 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0, 6285 PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN | 6286 asc_dvc->chip_scsi_id); 6287 6288 /* 6289 * Calculate SCSI_CFG1 Microcode Default Value. 6290 * 6291 * The microcode will set the SCSI_CFG1 register using this value 6292 * after it is started below. 6293 * 6294 * Each ASC-38C1600 function has only two cable detect bits. 6295 * The bus mode override bits are in IOPB_SOFT_OVER_WR. 6296 */ 6297 scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1); 6298 6299 /* 6300 * If the cable is reversed all of the SCSI_CTRL register signals 6301 * will be set. Check for and return an error if this condition is 6302 * found. 6303 */ 6304 if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) { 6305 asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE; 6306 return ADV_ERROR; 6307 } 6308 6309 /* 6310 * Each ASC-38C1600 function has two connectors. Only an HVD device 6311 * can not be connected to either connector. An LVD device or SE device 6312 * may be connected to either connecor. If an SE device is connected, 6313 * then at most Ultra speed (20 Mhz) can be used on both connectors. 6314 * 6315 * If an HVD device is attached, return an error. 6316 */ 6317 if (scsi_cfg1 & HVD) { 6318 asc_dvc->err_code |= ASC_IERR_HVD_DEVICE; 6319 return ADV_ERROR; 6320 } 6321 6322 /* 6323 * Each function in the ASC-38C1600 uses only the SE cable detect and 6324 * termination because there are two connectors for each function. Each 6325 * function may use either LVD or SE mode. Corresponding the SE automatic 6326 * termination control EEPROM bits are used for each function. Each 6327 * function has its own EEPROM. If SE automatic control is enabled for 6328 * the function, then set the termination value based on a table listed 6329 * in a_condor.h. 6330 * 6331 * If manual termination is specified in the EEPROM for the function, 6332 * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is 6333 * ready to be 'ored' into SCSI_CFG1. 6334 */ 6335 if ((asc_dvc->cfg->termination & TERM_SE) == 0) { 6336 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 6337 /* SE automatic termination control is enabled. */ 6338 switch (scsi_cfg1 & C_DET_SE) { 6339 /* TERM_SE_HI: on, TERM_SE_LO: on */ 6340 case 0x1: 6341 case 0x2: 6342 case 0x3: 6343 asc_dvc->cfg->termination |= TERM_SE; 6344 break; 6345 6346 case 0x0: 6347 if (PCI_FUNC(pdev->devfn) == 0) { 6348 /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */ 6349 } else { 6350 /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */ 6351 asc_dvc->cfg->termination |= TERM_SE_HI; 6352 } 6353 break; 6354 } 6355 } 6356 6357 /* 6358 * Clear any set TERM_SE bits. 6359 */ 6360 scsi_cfg1 &= ~TERM_SE; 6361 6362 /* 6363 * Invert the TERM_SE bits and then set 'scsi_cfg1'. 6364 */ 6365 scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE); 6366 6367 /* 6368 * Clear Big Endian and Terminator Polarity bits and set possibly 6369 * modified termination control bits in the Microcode SCSI_CFG1 6370 * Register Value. 6371 * 6372 * Big Endian bit is not used even on big endian machines. 6373 */ 6374 scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL); 6375 6376 /* 6377 * Set SCSI_CFG1 Microcode Default Value 6378 * 6379 * Set possibly modified termination control bits in the Microcode 6380 * SCSI_CFG1 Register Value. 6381 * 6382 * The microcode will set the SCSI_CFG1 register using this value 6383 * after it is started below. 6384 */ 6385 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1); 6386 6387 /* 6388 * Set MEM_CFG Microcode Default Value 6389 * 6390 * The microcode will set the MEM_CFG register using this value 6391 * after it is started below. 6392 * 6393 * MEM_CFG may be accessed as a word or byte, but only bits 0-7 6394 * are defined. 6395 * 6396 * ASC-38C1600 has 32KB internal memory. 6397 * 6398 * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come 6399 * out a special 16K Adv Library and Microcode version. After the issue 6400 * resolved, we should turn back to the 32K support. Both a_condor.h and 6401 * mcode.sas files also need to be updated. 6402 * 6403 * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 6404 * BIOS_EN | RAM_SZ_32KB); 6405 */ 6406 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG, 6407 BIOS_EN | RAM_SZ_16KB); 6408 6409 /* 6410 * Set SEL_MASK Microcode Default Value 6411 * 6412 * The microcode will set the SEL_MASK register using this value 6413 * after it is started below. 6414 */ 6415 AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK, 6416 ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id)); 6417 6418 AdvBuildCarrierFreelist(asc_dvc); 6419 6420 /* 6421 * Set-up the Host->RISC Initiator Command Queue (ICQ). 6422 */ 6423 if ((asc_dvc->icq_sp = asc_dvc->carr_freelist) == NULL) { 6424 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 6425 return ADV_ERROR; 6426 } 6427 asc_dvc->carr_freelist = (ADV_CARR_T *) 6428 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->icq_sp->next_vpa)); 6429 6430 /* 6431 * The first command issued will be placed in the stopper carrier. 6432 */ 6433 asc_dvc->icq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 6434 6435 /* 6436 * Set RISC ICQ physical address start value. Initialize the 6437 * COMMA register to the same value otherwise the RISC will 6438 * prematurely detect a command is available. 6439 */ 6440 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa); 6441 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 6442 le32_to_cpu(asc_dvc->icq_sp->carr_pa)); 6443 6444 /* 6445 * Set-up the RISC->Host Initiator Response Queue (IRQ). 6446 */ 6447 if ((asc_dvc->irq_sp = asc_dvc->carr_freelist) == NULL) { 6448 asc_dvc->err_code |= ASC_IERR_NO_CARRIER; 6449 return ADV_ERROR; 6450 } 6451 asc_dvc->carr_freelist = (ADV_CARR_T *) 6452 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->next_vpa)); 6453 6454 /* 6455 * The first command completed by the RISC will be placed in 6456 * the stopper. 6457 * 6458 * Note: Set 'next_vpa' to ASC_CQ_STOPPER. When the request is 6459 * completed the RISC will set the ASC_RQ_STOPPER bit. 6460 */ 6461 asc_dvc->irq_sp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 6462 6463 /* 6464 * Set RISC IRQ physical address start value. 6465 */ 6466 AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa); 6467 asc_dvc->carr_pending_cnt = 0; 6468 6469 AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES, 6470 (ADV_INTR_ENABLE_HOST_INTR | 6471 ADV_INTR_ENABLE_GLOBAL_INTR)); 6472 AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word); 6473 AdvWriteWordRegister(iop_base, IOPW_PC, word); 6474 6475 /* finally, finally, gentlemen, start your engine */ 6476 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN); 6477 6478 /* 6479 * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus 6480 * Resets should be performed. The RISC has to be running 6481 * to issue a SCSI Bus Reset. 6482 */ 6483 if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) { 6484 /* 6485 * If the BIOS Signature is present in memory, restore the 6486 * per TID microcode operating variables. 6487 */ 6488 if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 6489 0x55AA) { 6490 /* 6491 * Restore per TID negotiated values. 6492 */ 6493 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 6494 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 6495 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 6496 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 6497 tagqng_able); 6498 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 6499 AdvWriteByteLram(iop_base, 6500 ASC_MC_NUMBER_OF_MAX_CMD + tid, 6501 max_cmd[tid]); 6502 } 6503 } else { 6504 if (AdvResetSB(asc_dvc) != ADV_TRUE) { 6505 warn_code = ASC_WARN_BUSRESET_ERROR; 6506 } 6507 } 6508 } 6509 6510 return warn_code; 6511 } 6512 6513 /* 6514 * Reset chip and SCSI Bus. 6515 * 6516 * Return Value: 6517 * ADV_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful. 6518 * ADV_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure. 6519 */ 6520 static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc) 6521 { 6522 int status; 6523 ushort wdtr_able, sdtr_able, tagqng_able; 6524 ushort ppr_able = 0; 6525 uchar tid, max_cmd[ADV_MAX_TID + 1]; 6526 AdvPortAddr iop_base; 6527 ushort bios_sig; 6528 6529 iop_base = asc_dvc->iop_base; 6530 6531 /* 6532 * Save current per TID negotiated values. 6533 */ 6534 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 6535 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 6536 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 6537 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 6538 } 6539 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 6540 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 6541 AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 6542 max_cmd[tid]); 6543 } 6544 6545 /* 6546 * Force the AdvInitAsc3550/38C0800Driver() function to 6547 * perform a SCSI Bus Reset by clearing the BIOS signature word. 6548 * The initialization functions assumes a SCSI Bus Reset is not 6549 * needed if the BIOS signature word is present. 6550 */ 6551 AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 6552 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0); 6553 6554 /* 6555 * Stop chip and reset it. 6556 */ 6557 AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP); 6558 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET); 6559 mdelay(100); 6560 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 6561 ADV_CTRL_REG_CMD_WR_IO_REG); 6562 6563 /* 6564 * Reset Adv Library error code, if any, and try 6565 * re-initializing the chip. 6566 */ 6567 asc_dvc->err_code = 0; 6568 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 6569 status = AdvInitAsc38C1600Driver(asc_dvc); 6570 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 6571 status = AdvInitAsc38C0800Driver(asc_dvc); 6572 } else { 6573 status = AdvInitAsc3550Driver(asc_dvc); 6574 } 6575 6576 /* Translate initialization return value to status value. */ 6577 if (status == 0) { 6578 status = ADV_TRUE; 6579 } else { 6580 status = ADV_FALSE; 6581 } 6582 6583 /* 6584 * Restore the BIOS signature word. 6585 */ 6586 AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig); 6587 6588 /* 6589 * Restore per TID negotiated values. 6590 */ 6591 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able); 6592 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able); 6593 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 6594 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able); 6595 } 6596 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able); 6597 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 6598 AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid, 6599 max_cmd[tid]); 6600 } 6601 6602 return status; 6603 } 6604 6605 /* 6606 * adv_async_callback() - Adv Library asynchronous event callback function. 6607 */ 6608 static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code) 6609 { 6610 switch (code) { 6611 case ADV_ASYNC_SCSI_BUS_RESET_DET: 6612 /* 6613 * The firmware detected a SCSI Bus reset. 6614 */ 6615 ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n"); 6616 break; 6617 6618 case ADV_ASYNC_RDMA_FAILURE: 6619 /* 6620 * Handle RDMA failure by resetting the SCSI Bus and 6621 * possibly the chip if it is unresponsive. Log the error 6622 * with a unique code. 6623 */ 6624 ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n"); 6625 AdvResetChipAndSB(adv_dvc_varp); 6626 break; 6627 6628 case ADV_HOST_SCSI_BUS_RESET: 6629 /* 6630 * Host generated SCSI bus reset occurred. 6631 */ 6632 ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n"); 6633 break; 6634 6635 default: 6636 ASC_DBG(0, "unknown code 0x%x\n", code); 6637 break; 6638 } 6639 } 6640 6641 /* 6642 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR(). 6643 * 6644 * Callback function for the Wide SCSI Adv Library. 6645 */ 6646 static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp) 6647 { 6648 struct asc_board *boardp; 6649 adv_req_t *reqp; 6650 adv_sgblk_t *sgblkp; 6651 struct scsi_cmnd *scp; 6652 struct Scsi_Host *shost; 6653 ADV_DCNT resid_cnt; 6654 6655 ASC_DBG(1, "adv_dvc_varp 0x%lx, scsiqp 0x%lx\n", 6656 (ulong)adv_dvc_varp, (ulong)scsiqp); 6657 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 6658 6659 /* 6660 * Get the adv_req_t structure for the command that has been 6661 * completed. The adv_req_t structure actually contains the 6662 * completed ADV_SCSI_REQ_Q structure. 6663 */ 6664 reqp = (adv_req_t *)ADV_U32_TO_VADDR(scsiqp->srb_ptr); 6665 ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp); 6666 if (reqp == NULL) { 6667 ASC_PRINT("adv_isr_callback: reqp is NULL\n"); 6668 return; 6669 } 6670 6671 /* 6672 * Get the struct scsi_cmnd structure and Scsi_Host structure for the 6673 * command that has been completed. 6674 * 6675 * Note: The adv_req_t request structure and adv_sgblk_t structure, 6676 * if any, are dropped, because a board structure pointer can not be 6677 * determined. 6678 */ 6679 scp = reqp->cmndp; 6680 ASC_DBG(1, "scp 0x%p\n", scp); 6681 if (scp == NULL) { 6682 ASC_PRINT 6683 ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n"); 6684 return; 6685 } 6686 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 6687 6688 shost = scp->device->host; 6689 ASC_STATS(shost, callback); 6690 ASC_DBG(1, "shost 0x%p\n", shost); 6691 6692 boardp = shost_priv(shost); 6693 BUG_ON(adv_dvc_varp != &boardp->dvc_var.adv_dvc_var); 6694 6695 /* 6696 * 'done_status' contains the command's ending status. 6697 */ 6698 switch (scsiqp->done_status) { 6699 case QD_NO_ERROR: 6700 ASC_DBG(2, "QD_NO_ERROR\n"); 6701 scp->result = 0; 6702 6703 /* 6704 * Check for an underrun condition. 6705 * 6706 * If there was no error and an underrun condition, then 6707 * then return the number of underrun bytes. 6708 */ 6709 resid_cnt = le32_to_cpu(scsiqp->data_cnt); 6710 if (scsi_bufflen(scp) != 0 && resid_cnt != 0 && 6711 resid_cnt <= scsi_bufflen(scp)) { 6712 ASC_DBG(1, "underrun condition %lu bytes\n", 6713 (ulong)resid_cnt); 6714 scsi_set_resid(scp, resid_cnt); 6715 } 6716 break; 6717 6718 case QD_WITH_ERROR: 6719 ASC_DBG(2, "QD_WITH_ERROR\n"); 6720 switch (scsiqp->host_status) { 6721 case QHSTA_NO_ERROR: 6722 if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) { 6723 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 6724 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 6725 SCSI_SENSE_BUFFERSIZE); 6726 /* 6727 * Note: The 'status_byte()' macro used by 6728 * target drivers defined in scsi.h shifts the 6729 * status byte returned by host drivers right 6730 * by 1 bit. This is why target drivers also 6731 * use right shifted status byte definitions. 6732 * For instance target drivers use 6733 * CHECK_CONDITION, defined to 0x1, instead of 6734 * the SCSI defined check condition value of 6735 * 0x2. Host drivers are supposed to return 6736 * the status byte as it is defined by SCSI. 6737 */ 6738 scp->result = DRIVER_BYTE(DRIVER_SENSE) | 6739 STATUS_BYTE(scsiqp->scsi_status); 6740 } else { 6741 scp->result = STATUS_BYTE(scsiqp->scsi_status); 6742 } 6743 break; 6744 6745 default: 6746 /* Some other QHSTA error occurred. */ 6747 ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status); 6748 scp->result = HOST_BYTE(DID_BAD_TARGET); 6749 break; 6750 } 6751 break; 6752 6753 case QD_ABORTED_BY_HOST: 6754 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 6755 scp->result = 6756 HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status); 6757 break; 6758 6759 default: 6760 ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status); 6761 scp->result = 6762 HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status); 6763 break; 6764 } 6765 6766 /* 6767 * If the 'init_tidmask' bit isn't already set for the target and the 6768 * current request finished normally, then set the bit for the target 6769 * to indicate that a device is present. 6770 */ 6771 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 6772 scsiqp->done_status == QD_NO_ERROR && 6773 scsiqp->host_status == QHSTA_NO_ERROR) { 6774 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 6775 } 6776 6777 asc_scsi_done(scp); 6778 6779 /* 6780 * Free all 'adv_sgblk_t' structures allocated for the request. 6781 */ 6782 while ((sgblkp = reqp->sgblkp) != NULL) { 6783 /* Remove 'sgblkp' from the request list. */ 6784 reqp->sgblkp = sgblkp->next_sgblkp; 6785 6786 /* Add 'sgblkp' to the board free list. */ 6787 sgblkp->next_sgblkp = boardp->adv_sgblkp; 6788 boardp->adv_sgblkp = sgblkp; 6789 } 6790 6791 /* 6792 * Free the adv_req_t structure used with the command by adding 6793 * it back to the board free list. 6794 */ 6795 reqp->next_reqp = boardp->adv_reqp; 6796 boardp->adv_reqp = reqp; 6797 6798 ASC_DBG(1, "done\n"); 6799 } 6800 6801 /* 6802 * Adv Library Interrupt Service Routine 6803 * 6804 * This function is called by a driver's interrupt service routine. 6805 * The function disables and re-enables interrupts. 6806 * 6807 * When a microcode idle command is completed, the ADV_DVC_VAR 6808 * 'idle_cmd_done' field is set to ADV_TRUE. 6809 * 6810 * Note: AdvISR() can be called when interrupts are disabled or even 6811 * when there is no hardware interrupt condition present. It will 6812 * always check for completed idle commands and microcode requests. 6813 * This is an important feature that shouldn't be changed because it 6814 * allows commands to be completed from polling mode loops. 6815 * 6816 * Return: 6817 * ADV_TRUE(1) - interrupt was pending 6818 * ADV_FALSE(0) - no interrupt was pending 6819 */ 6820 static int AdvISR(ADV_DVC_VAR *asc_dvc) 6821 { 6822 AdvPortAddr iop_base; 6823 uchar int_stat; 6824 ushort target_bit; 6825 ADV_CARR_T *free_carrp; 6826 ADV_VADDR irq_next_vpa; 6827 ADV_SCSI_REQ_Q *scsiq; 6828 6829 iop_base = asc_dvc->iop_base; 6830 6831 /* Reading the register clears the interrupt. */ 6832 int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG); 6833 6834 if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB | 6835 ADV_INTR_STATUS_INTRC)) == 0) { 6836 return ADV_FALSE; 6837 } 6838 6839 /* 6840 * Notify the driver of an asynchronous microcode condition by 6841 * calling the adv_async_callback function. The function 6842 * is passed the microcode ASC_MC_INTRB_CODE byte value. 6843 */ 6844 if (int_stat & ADV_INTR_STATUS_INTRB) { 6845 uchar intrb_code; 6846 6847 AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code); 6848 6849 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 6850 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 6851 if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE && 6852 asc_dvc->carr_pending_cnt != 0) { 6853 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 6854 ADV_TICKLE_A); 6855 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 6856 AdvWriteByteRegister(iop_base, 6857 IOPB_TICKLE, 6858 ADV_TICKLE_NOP); 6859 } 6860 } 6861 } 6862 6863 adv_async_callback(asc_dvc, intrb_code); 6864 } 6865 6866 /* 6867 * Check if the IRQ stopper carrier contains a completed request. 6868 */ 6869 while (((irq_next_vpa = 6870 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ASC_RQ_DONE) != 0) { 6871 /* 6872 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure. 6873 * The RISC will have set 'areq_vpa' to a virtual address. 6874 * 6875 * The firmware will have copied the ASC_SCSI_REQ_Q.scsiq_ptr 6876 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion 6877 * below complements the conversion of ASC_SCSI_REQ_Q.scsiq_ptr' 6878 * in AdvExeScsiQueue(). 6879 */ 6880 scsiq = (ADV_SCSI_REQ_Q *) 6881 ADV_U32_TO_VADDR(le32_to_cpu(asc_dvc->irq_sp->areq_vpa)); 6882 6883 /* 6884 * Request finished with good status and the queue was not 6885 * DMAed to host memory by the firmware. Set all status fields 6886 * to indicate good status. 6887 */ 6888 if ((irq_next_vpa & ASC_RQ_GOOD) != 0) { 6889 scsiq->done_status = QD_NO_ERROR; 6890 scsiq->host_status = scsiq->scsi_status = 0; 6891 scsiq->data_cnt = 0L; 6892 } 6893 6894 /* 6895 * Advance the stopper pointer to the next carrier 6896 * ignoring the lower four bits. Free the previous 6897 * stopper carrier. 6898 */ 6899 free_carrp = asc_dvc->irq_sp; 6900 asc_dvc->irq_sp = (ADV_CARR_T *) 6901 ADV_U32_TO_VADDR(ASC_GET_CARRP(irq_next_vpa)); 6902 6903 free_carrp->next_vpa = 6904 cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->carr_freelist)); 6905 asc_dvc->carr_freelist = free_carrp; 6906 asc_dvc->carr_pending_cnt--; 6907 6908 target_bit = ADV_TID_TO_TIDMASK(scsiq->target_id); 6909 6910 /* 6911 * Clear request microcode control flag. 6912 */ 6913 scsiq->cntl = 0; 6914 6915 /* 6916 * Notify the driver of the completed request by passing 6917 * the ADV_SCSI_REQ_Q pointer to its callback function. 6918 */ 6919 scsiq->a_flag |= ADV_SCSIQ_DONE; 6920 adv_isr_callback(asc_dvc, scsiq); 6921 /* 6922 * Note: After the driver callback function is called, 'scsiq' 6923 * can no longer be referenced. 6924 * 6925 * Fall through and continue processing other completed 6926 * requests... 6927 */ 6928 } 6929 return ADV_TRUE; 6930 } 6931 6932 static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code) 6933 { 6934 if (asc_dvc->err_code == 0) { 6935 asc_dvc->err_code = err_code; 6936 AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W, 6937 err_code); 6938 } 6939 return err_code; 6940 } 6941 6942 static void AscAckInterrupt(PortAddr iop_base) 6943 { 6944 uchar host_flag; 6945 uchar risc_flag; 6946 ushort loop; 6947 6948 loop = 0; 6949 do { 6950 risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B); 6951 if (loop++ > 0x7FFF) { 6952 break; 6953 } 6954 } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0); 6955 host_flag = 6956 AscReadLramByte(iop_base, 6957 ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT); 6958 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 6959 (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT)); 6960 AscSetChipStatus(iop_base, CIW_INT_ACK); 6961 loop = 0; 6962 while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) { 6963 AscSetChipStatus(iop_base, CIW_INT_ACK); 6964 if (loop++ > 3) { 6965 break; 6966 } 6967 } 6968 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 6969 } 6970 6971 static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time) 6972 { 6973 const uchar *period_table; 6974 int max_index; 6975 int min_index; 6976 int i; 6977 6978 period_table = asc_dvc->sdtr_period_tbl; 6979 max_index = (int)asc_dvc->max_sdtr_index; 6980 min_index = (int)asc_dvc->min_sdtr_index; 6981 if ((syn_time <= period_table[max_index])) { 6982 for (i = min_index; i < (max_index - 1); i++) { 6983 if (syn_time <= period_table[i]) { 6984 return (uchar)i; 6985 } 6986 } 6987 return (uchar)max_index; 6988 } else { 6989 return (uchar)(max_index + 1); 6990 } 6991 } 6992 6993 static uchar 6994 AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset) 6995 { 6996 EXT_MSG sdtr_buf; 6997 uchar sdtr_period_index; 6998 PortAddr iop_base; 6999 7000 iop_base = asc_dvc->iop_base; 7001 sdtr_buf.msg_type = EXTENDED_MESSAGE; 7002 sdtr_buf.msg_len = MS_SDTR_LEN; 7003 sdtr_buf.msg_req = EXTENDED_SDTR; 7004 sdtr_buf.xfer_period = sdtr_period; 7005 sdtr_offset &= ASC_SYN_MAX_OFFSET; 7006 sdtr_buf.req_ack_offset = sdtr_offset; 7007 sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 7008 if (sdtr_period_index <= asc_dvc->max_sdtr_index) { 7009 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 7010 (uchar *)&sdtr_buf, 7011 sizeof(EXT_MSG) >> 1); 7012 return ((sdtr_period_index << 4) | sdtr_offset); 7013 } else { 7014 sdtr_buf.req_ack_offset = 0; 7015 AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG, 7016 (uchar *)&sdtr_buf, 7017 sizeof(EXT_MSG) >> 1); 7018 return 0; 7019 } 7020 } 7021 7022 static uchar 7023 AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset) 7024 { 7025 uchar byte; 7026 uchar sdtr_period_ix; 7027 7028 sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period); 7029 if (sdtr_period_ix > asc_dvc->max_sdtr_index) 7030 return 0xFF; 7031 byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET); 7032 return byte; 7033 } 7034 7035 static int AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data) 7036 { 7037 ASC_SCSI_BIT_ID_TYPE org_id; 7038 int i; 7039 int sta = TRUE; 7040 7041 AscSetBank(iop_base, 1); 7042 org_id = AscReadChipDvcID(iop_base); 7043 for (i = 0; i <= ASC_MAX_TID; i++) { 7044 if (org_id == (0x01 << i)) 7045 break; 7046 } 7047 org_id = (ASC_SCSI_BIT_ID_TYPE) i; 7048 AscWriteChipDvcID(iop_base, id); 7049 if (AscReadChipDvcID(iop_base) == (0x01 << id)) { 7050 AscSetBank(iop_base, 0); 7051 AscSetChipSyn(iop_base, sdtr_data); 7052 if (AscGetChipSyn(iop_base) != sdtr_data) { 7053 sta = FALSE; 7054 } 7055 } else { 7056 sta = FALSE; 7057 } 7058 AscSetBank(iop_base, 1); 7059 AscWriteChipDvcID(iop_base, org_id); 7060 AscSetBank(iop_base, 0); 7061 return (sta); 7062 } 7063 7064 static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no) 7065 { 7066 AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 7067 AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data); 7068 } 7069 7070 static int AscIsrChipHalted(ASC_DVC_VAR *asc_dvc) 7071 { 7072 EXT_MSG ext_msg; 7073 EXT_MSG out_msg; 7074 ushort halt_q_addr; 7075 int sdtr_accept; 7076 ushort int_halt_code; 7077 ASC_SCSI_BIT_ID_TYPE scsi_busy; 7078 ASC_SCSI_BIT_ID_TYPE target_id; 7079 PortAddr iop_base; 7080 uchar tag_code; 7081 uchar q_status; 7082 uchar halt_qp; 7083 uchar sdtr_data; 7084 uchar target_ix; 7085 uchar q_cntl, tid_no; 7086 uchar cur_dvc_qng; 7087 uchar asyn_sdtr; 7088 uchar scsi_status; 7089 struct asc_board *boardp; 7090 7091 BUG_ON(!asc_dvc->drv_ptr); 7092 boardp = asc_dvc->drv_ptr; 7093 7094 iop_base = asc_dvc->iop_base; 7095 int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W); 7096 7097 halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B); 7098 halt_q_addr = ASC_QNO_TO_QADDR(halt_qp); 7099 target_ix = AscReadLramByte(iop_base, 7100 (ushort)(halt_q_addr + 7101 (ushort)ASC_SCSIQ_B_TARGET_IX)); 7102 q_cntl = AscReadLramByte(iop_base, 7103 (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 7104 tid_no = ASC_TIX_TO_TID(target_ix); 7105 target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no); 7106 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 7107 asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB; 7108 } else { 7109 asyn_sdtr = 0; 7110 } 7111 if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) { 7112 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 7113 AscSetChipSDTR(iop_base, 0, tid_no); 7114 boardp->sdtr_data[tid_no] = 0; 7115 } 7116 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 7117 return (0); 7118 } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) { 7119 if (asc_dvc->pci_fix_asyn_xfer & target_id) { 7120 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 7121 boardp->sdtr_data[tid_no] = asyn_sdtr; 7122 } 7123 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 7124 return (0); 7125 } else if (int_halt_code == ASC_HALT_EXTMSG_IN) { 7126 AscMemWordCopyPtrFromLram(iop_base, 7127 ASCV_MSGIN_BEG, 7128 (uchar *)&ext_msg, 7129 sizeof(EXT_MSG) >> 1); 7130 7131 if (ext_msg.msg_type == EXTENDED_MESSAGE && 7132 ext_msg.msg_req == EXTENDED_SDTR && 7133 ext_msg.msg_len == MS_SDTR_LEN) { 7134 sdtr_accept = TRUE; 7135 if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) { 7136 7137 sdtr_accept = FALSE; 7138 ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET; 7139 } 7140 if ((ext_msg.xfer_period < 7141 asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index]) 7142 || (ext_msg.xfer_period > 7143 asc_dvc->sdtr_period_tbl[asc_dvc-> 7144 max_sdtr_index])) { 7145 sdtr_accept = FALSE; 7146 ext_msg.xfer_period = 7147 asc_dvc->sdtr_period_tbl[asc_dvc-> 7148 min_sdtr_index]; 7149 } 7150 if (sdtr_accept) { 7151 sdtr_data = 7152 AscCalSDTRData(asc_dvc, ext_msg.xfer_period, 7153 ext_msg.req_ack_offset); 7154 if ((sdtr_data == 0xFF)) { 7155 7156 q_cntl |= QC_MSG_OUT; 7157 asc_dvc->init_sdtr &= ~target_id; 7158 asc_dvc->sdtr_done &= ~target_id; 7159 AscSetChipSDTR(iop_base, asyn_sdtr, 7160 tid_no); 7161 boardp->sdtr_data[tid_no] = asyn_sdtr; 7162 } 7163 } 7164 if (ext_msg.req_ack_offset == 0) { 7165 7166 q_cntl &= ~QC_MSG_OUT; 7167 asc_dvc->init_sdtr &= ~target_id; 7168 asc_dvc->sdtr_done &= ~target_id; 7169 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 7170 } else { 7171 if (sdtr_accept && (q_cntl & QC_MSG_OUT)) { 7172 q_cntl &= ~QC_MSG_OUT; 7173 asc_dvc->sdtr_done |= target_id; 7174 asc_dvc->init_sdtr |= target_id; 7175 asc_dvc->pci_fix_asyn_xfer &= 7176 ~target_id; 7177 sdtr_data = 7178 AscCalSDTRData(asc_dvc, 7179 ext_msg.xfer_period, 7180 ext_msg. 7181 req_ack_offset); 7182 AscSetChipSDTR(iop_base, sdtr_data, 7183 tid_no); 7184 boardp->sdtr_data[tid_no] = sdtr_data; 7185 } else { 7186 q_cntl |= QC_MSG_OUT; 7187 AscMsgOutSDTR(asc_dvc, 7188 ext_msg.xfer_period, 7189 ext_msg.req_ack_offset); 7190 asc_dvc->pci_fix_asyn_xfer &= 7191 ~target_id; 7192 sdtr_data = 7193 AscCalSDTRData(asc_dvc, 7194 ext_msg.xfer_period, 7195 ext_msg. 7196 req_ack_offset); 7197 AscSetChipSDTR(iop_base, sdtr_data, 7198 tid_no); 7199 boardp->sdtr_data[tid_no] = sdtr_data; 7200 asc_dvc->sdtr_done |= target_id; 7201 asc_dvc->init_sdtr |= target_id; 7202 } 7203 } 7204 7205 AscWriteLramByte(iop_base, 7206 (ushort)(halt_q_addr + 7207 (ushort)ASC_SCSIQ_B_CNTL), 7208 q_cntl); 7209 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 7210 return (0); 7211 } else if (ext_msg.msg_type == EXTENDED_MESSAGE && 7212 ext_msg.msg_req == EXTENDED_WDTR && 7213 ext_msg.msg_len == MS_WDTR_LEN) { 7214 7215 ext_msg.wdtr_width = 0; 7216 AscMemWordCopyPtrToLram(iop_base, 7217 ASCV_MSGOUT_BEG, 7218 (uchar *)&ext_msg, 7219 sizeof(EXT_MSG) >> 1); 7220 q_cntl |= QC_MSG_OUT; 7221 AscWriteLramByte(iop_base, 7222 (ushort)(halt_q_addr + 7223 (ushort)ASC_SCSIQ_B_CNTL), 7224 q_cntl); 7225 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 7226 return (0); 7227 } else { 7228 7229 ext_msg.msg_type = MESSAGE_REJECT; 7230 AscMemWordCopyPtrToLram(iop_base, 7231 ASCV_MSGOUT_BEG, 7232 (uchar *)&ext_msg, 7233 sizeof(EXT_MSG) >> 1); 7234 q_cntl |= QC_MSG_OUT; 7235 AscWriteLramByte(iop_base, 7236 (ushort)(halt_q_addr + 7237 (ushort)ASC_SCSIQ_B_CNTL), 7238 q_cntl); 7239 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 7240 return (0); 7241 } 7242 } else if (int_halt_code == ASC_HALT_CHK_CONDITION) { 7243 7244 q_cntl |= QC_REQ_SENSE; 7245 7246 if ((asc_dvc->init_sdtr & target_id) != 0) { 7247 7248 asc_dvc->sdtr_done &= ~target_id; 7249 7250 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 7251 q_cntl |= QC_MSG_OUT; 7252 AscMsgOutSDTR(asc_dvc, 7253 asc_dvc-> 7254 sdtr_period_tbl[(sdtr_data >> 4) & 7255 (uchar)(asc_dvc-> 7256 max_sdtr_index - 7257 1)], 7258 (uchar)(sdtr_data & (uchar) 7259 ASC_SYN_MAX_OFFSET)); 7260 } 7261 7262 AscWriteLramByte(iop_base, 7263 (ushort)(halt_q_addr + 7264 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 7265 7266 tag_code = AscReadLramByte(iop_base, 7267 (ushort)(halt_q_addr + (ushort) 7268 ASC_SCSIQ_B_TAG_CODE)); 7269 tag_code &= 0xDC; 7270 if ((asc_dvc->pci_fix_asyn_xfer & target_id) 7271 && !(asc_dvc->pci_fix_asyn_xfer_always & target_id) 7272 ) { 7273 7274 tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT 7275 | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX); 7276 7277 } 7278 AscWriteLramByte(iop_base, 7279 (ushort)(halt_q_addr + 7280 (ushort)ASC_SCSIQ_B_TAG_CODE), 7281 tag_code); 7282 7283 q_status = AscReadLramByte(iop_base, 7284 (ushort)(halt_q_addr + (ushort) 7285 ASC_SCSIQ_B_STATUS)); 7286 q_status |= (QS_READY | QS_BUSY); 7287 AscWriteLramByte(iop_base, 7288 (ushort)(halt_q_addr + 7289 (ushort)ASC_SCSIQ_B_STATUS), 7290 q_status); 7291 7292 scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B); 7293 scsi_busy &= ~target_id; 7294 AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy); 7295 7296 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 7297 return (0); 7298 } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) { 7299 7300 AscMemWordCopyPtrFromLram(iop_base, 7301 ASCV_MSGOUT_BEG, 7302 (uchar *)&out_msg, 7303 sizeof(EXT_MSG) >> 1); 7304 7305 if ((out_msg.msg_type == EXTENDED_MESSAGE) && 7306 (out_msg.msg_len == MS_SDTR_LEN) && 7307 (out_msg.msg_req == EXTENDED_SDTR)) { 7308 7309 asc_dvc->init_sdtr &= ~target_id; 7310 asc_dvc->sdtr_done &= ~target_id; 7311 AscSetChipSDTR(iop_base, asyn_sdtr, tid_no); 7312 boardp->sdtr_data[tid_no] = asyn_sdtr; 7313 } 7314 q_cntl &= ~QC_MSG_OUT; 7315 AscWriteLramByte(iop_base, 7316 (ushort)(halt_q_addr + 7317 (ushort)ASC_SCSIQ_B_CNTL), q_cntl); 7318 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 7319 return (0); 7320 } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) { 7321 7322 scsi_status = AscReadLramByte(iop_base, 7323 (ushort)((ushort)halt_q_addr + 7324 (ushort) 7325 ASC_SCSIQ_SCSI_STATUS)); 7326 cur_dvc_qng = 7327 AscReadLramByte(iop_base, 7328 (ushort)((ushort)ASC_QADR_BEG + 7329 (ushort)target_ix)); 7330 if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) { 7331 7332 scsi_busy = AscReadLramByte(iop_base, 7333 (ushort)ASCV_SCSIBUSY_B); 7334 scsi_busy |= target_id; 7335 AscWriteLramByte(iop_base, 7336 (ushort)ASCV_SCSIBUSY_B, scsi_busy); 7337 asc_dvc->queue_full_or_busy |= target_id; 7338 7339 if (scsi_status == SAM_STAT_TASK_SET_FULL) { 7340 if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) { 7341 cur_dvc_qng -= 1; 7342 asc_dvc->max_dvc_qng[tid_no] = 7343 cur_dvc_qng; 7344 7345 AscWriteLramByte(iop_base, 7346 (ushort)((ushort) 7347 ASCV_MAX_DVC_QNG_BEG 7348 + (ushort) 7349 tid_no), 7350 cur_dvc_qng); 7351 7352 /* 7353 * Set the device queue depth to the 7354 * number of active requests when the 7355 * QUEUE FULL condition was encountered. 7356 */ 7357 boardp->queue_full |= target_id; 7358 boardp->queue_full_cnt[tid_no] = 7359 cur_dvc_qng; 7360 } 7361 } 7362 } 7363 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 7364 return (0); 7365 } 7366 #if CC_VERY_LONG_SG_LIST 7367 else if (int_halt_code == ASC_HALT_HOST_COPY_SG_LIST_TO_RISC) { 7368 uchar q_no; 7369 ushort q_addr; 7370 uchar sg_wk_q_no; 7371 uchar first_sg_wk_q_no; 7372 ASC_SCSI_Q *scsiq; /* Ptr to driver request. */ 7373 ASC_SG_HEAD *sg_head; /* Ptr to driver SG request. */ 7374 ASC_SG_LIST_Q scsi_sg_q; /* Structure written to queue. */ 7375 ushort sg_list_dwords; 7376 ushort sg_entry_cnt; 7377 uchar next_qp; 7378 int i; 7379 7380 q_no = AscReadLramByte(iop_base, (ushort)ASCV_REQ_SG_LIST_QP); 7381 if (q_no == ASC_QLINK_END) 7382 return 0; 7383 7384 q_addr = ASC_QNO_TO_QADDR(q_no); 7385 7386 /* 7387 * Convert the request's SRB pointer to a host ASC_SCSI_REQ 7388 * structure pointer using a macro provided by the driver. 7389 * The ASC_SCSI_REQ pointer provides a pointer to the 7390 * host ASC_SG_HEAD structure. 7391 */ 7392 /* Read request's SRB pointer. */ 7393 scsiq = (ASC_SCSI_Q *) 7394 ASC_SRB2SCSIQ(ASC_U32_TO_VADDR(AscReadLramDWord(iop_base, 7395 (ushort) 7396 (q_addr + 7397 ASC_SCSIQ_D_SRBPTR)))); 7398 7399 /* 7400 * Get request's first and working SG queue. 7401 */ 7402 sg_wk_q_no = AscReadLramByte(iop_base, 7403 (ushort)(q_addr + 7404 ASC_SCSIQ_B_SG_WK_QP)); 7405 7406 first_sg_wk_q_no = AscReadLramByte(iop_base, 7407 (ushort)(q_addr + 7408 ASC_SCSIQ_B_FIRST_SG_WK_QP)); 7409 7410 /* 7411 * Reset request's working SG queue back to the 7412 * first SG queue. 7413 */ 7414 AscWriteLramByte(iop_base, 7415 (ushort)(q_addr + 7416 (ushort)ASC_SCSIQ_B_SG_WK_QP), 7417 first_sg_wk_q_no); 7418 7419 sg_head = scsiq->sg_head; 7420 7421 /* 7422 * Set sg_entry_cnt to the number of SG elements 7423 * that will be completed on this interrupt. 7424 * 7425 * Note: The allocated SG queues contain ASC_MAX_SG_LIST - 1 7426 * SG elements. The data_cnt and data_addr fields which 7427 * add 1 to the SG element capacity are not used when 7428 * restarting SG handling after a halt. 7429 */ 7430 if (scsiq->remain_sg_entry_cnt > (ASC_MAX_SG_LIST - 1)) { 7431 sg_entry_cnt = ASC_MAX_SG_LIST - 1; 7432 7433 /* 7434 * Keep track of remaining number of SG elements that 7435 * will need to be handled on the next interrupt. 7436 */ 7437 scsiq->remain_sg_entry_cnt -= (ASC_MAX_SG_LIST - 1); 7438 } else { 7439 sg_entry_cnt = scsiq->remain_sg_entry_cnt; 7440 scsiq->remain_sg_entry_cnt = 0; 7441 } 7442 7443 /* 7444 * Copy SG elements into the list of allocated SG queues. 7445 * 7446 * Last index completed is saved in scsiq->next_sg_index. 7447 */ 7448 next_qp = first_sg_wk_q_no; 7449 q_addr = ASC_QNO_TO_QADDR(next_qp); 7450 scsi_sg_q.sg_head_qp = q_no; 7451 scsi_sg_q.cntl = QCSG_SG_XFER_LIST; 7452 for (i = 0; i < sg_head->queue_cnt; i++) { 7453 scsi_sg_q.seq_no = i + 1; 7454 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { 7455 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); 7456 sg_entry_cnt -= ASC_SG_LIST_PER_Q; 7457 /* 7458 * After very first SG queue RISC FW uses next 7459 * SG queue first element then checks sg_list_cnt 7460 * against zero and then decrements, so set 7461 * sg_list_cnt 1 less than number of SG elements 7462 * in each SG queue. 7463 */ 7464 scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1; 7465 scsi_sg_q.sg_cur_list_cnt = 7466 ASC_SG_LIST_PER_Q - 1; 7467 } else { 7468 /* 7469 * This is the last SG queue in the list of 7470 * allocated SG queues. If there are more 7471 * SG elements than will fit in the allocated 7472 * queues, then set the QCSG_SG_XFER_MORE flag. 7473 */ 7474 if (scsiq->remain_sg_entry_cnt != 0) { 7475 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE; 7476 } else { 7477 scsi_sg_q.cntl |= QCSG_SG_XFER_END; 7478 } 7479 /* equals sg_entry_cnt * 2 */ 7480 sg_list_dwords = sg_entry_cnt << 1; 7481 scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1; 7482 scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1; 7483 sg_entry_cnt = 0; 7484 } 7485 7486 scsi_sg_q.q_no = next_qp; 7487 AscMemWordCopyPtrToLram(iop_base, 7488 q_addr + ASC_SCSIQ_SGHD_CPY_BEG, 7489 (uchar *)&scsi_sg_q, 7490 sizeof(ASC_SG_LIST_Q) >> 1); 7491 7492 AscMemDWordCopyPtrToLram(iop_base, 7493 q_addr + ASC_SGQ_LIST_BEG, 7494 (uchar *)&sg_head-> 7495 sg_list[scsiq->next_sg_index], 7496 sg_list_dwords); 7497 7498 scsiq->next_sg_index += ASC_SG_LIST_PER_Q; 7499 7500 /* 7501 * If the just completed SG queue contained the 7502 * last SG element, then no more SG queues need 7503 * to be written. 7504 */ 7505 if (scsi_sg_q.cntl & QCSG_SG_XFER_END) { 7506 break; 7507 } 7508 7509 next_qp = AscReadLramByte(iop_base, 7510 (ushort)(q_addr + 7511 ASC_SCSIQ_B_FWD)); 7512 q_addr = ASC_QNO_TO_QADDR(next_qp); 7513 } 7514 7515 /* 7516 * Clear the halt condition so the RISC will be restarted 7517 * after the return. 7518 */ 7519 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0); 7520 return (0); 7521 } 7522 #endif /* CC_VERY_LONG_SG_LIST */ 7523 return (0); 7524 } 7525 7526 /* 7527 * void 7528 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 7529 * 7530 * Calling/Exit State: 7531 * none 7532 * 7533 * Description: 7534 * Input an ASC_QDONE_INFO structure from the chip 7535 */ 7536 static void 7537 DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words) 7538 { 7539 int i; 7540 ushort word; 7541 7542 AscSetChipLramAddr(iop_base, s_addr); 7543 for (i = 0; i < 2 * words; i += 2) { 7544 if (i == 10) { 7545 continue; 7546 } 7547 word = inpw(iop_base + IOP_RAM_DATA); 7548 inbuf[i] = word & 0xff; 7549 inbuf[i + 1] = (word >> 8) & 0xff; 7550 } 7551 ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words); 7552 } 7553 7554 static uchar 7555 _AscCopyLramScsiDoneQ(PortAddr iop_base, 7556 ushort q_addr, 7557 ASC_QDONE_INFO *scsiq, ASC_DCNT max_dma_count) 7558 { 7559 ushort _val; 7560 uchar sg_queue_cnt; 7561 7562 DvcGetQinfo(iop_base, 7563 q_addr + ASC_SCSIQ_DONE_INFO_BEG, 7564 (uchar *)scsiq, 7565 (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2); 7566 7567 _val = AscReadLramWord(iop_base, 7568 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS)); 7569 scsiq->q_status = (uchar)_val; 7570 scsiq->q_no = (uchar)(_val >> 8); 7571 _val = AscReadLramWord(iop_base, 7572 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL)); 7573 scsiq->cntl = (uchar)_val; 7574 sg_queue_cnt = (uchar)(_val >> 8); 7575 _val = AscReadLramWord(iop_base, 7576 (ushort)(q_addr + 7577 (ushort)ASC_SCSIQ_B_SENSE_LEN)); 7578 scsiq->sense_len = (uchar)_val; 7579 scsiq->extra_bytes = (uchar)(_val >> 8); 7580 7581 /* 7582 * Read high word of remain bytes from alternate location. 7583 */ 7584 scsiq->remain_bytes = (((ADV_DCNT)AscReadLramWord(iop_base, 7585 (ushort)(q_addr + 7586 (ushort) 7587 ASC_SCSIQ_W_ALT_DC1))) 7588 << 16); 7589 /* 7590 * Read low word of remain bytes from original location. 7591 */ 7592 scsiq->remain_bytes += AscReadLramWord(iop_base, 7593 (ushort)(q_addr + (ushort) 7594 ASC_SCSIQ_DW_REMAIN_XFER_CNT)); 7595 7596 scsiq->remain_bytes &= max_dma_count; 7597 return sg_queue_cnt; 7598 } 7599 7600 /* 7601 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR(). 7602 * 7603 * Interrupt callback function for the Narrow SCSI Asc Library. 7604 */ 7605 static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep) 7606 { 7607 struct asc_board *boardp; 7608 struct scsi_cmnd *scp; 7609 struct Scsi_Host *shost; 7610 7611 ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep); 7612 ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep); 7613 7614 scp = advansys_srb_to_ptr(asc_dvc_varp, qdonep->d2.srb_ptr); 7615 if (!scp) 7616 return; 7617 7618 ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len); 7619 7620 shost = scp->device->host; 7621 ASC_STATS(shost, callback); 7622 ASC_DBG(1, "shost 0x%p\n", shost); 7623 7624 boardp = shost_priv(shost); 7625 BUG_ON(asc_dvc_varp != &boardp->dvc_var.asc_dvc_var); 7626 7627 dma_unmap_single(boardp->dev, scp->SCp.dma_handle, 7628 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 7629 /* 7630 * 'qdonep' contains the command's ending status. 7631 */ 7632 switch (qdonep->d3.done_stat) { 7633 case QD_NO_ERROR: 7634 ASC_DBG(2, "QD_NO_ERROR\n"); 7635 scp->result = 0; 7636 7637 /* 7638 * Check for an underrun condition. 7639 * 7640 * If there was no error and an underrun condition, then 7641 * return the number of underrun bytes. 7642 */ 7643 if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 && 7644 qdonep->remain_bytes <= scsi_bufflen(scp)) { 7645 ASC_DBG(1, "underrun condition %u bytes\n", 7646 (unsigned)qdonep->remain_bytes); 7647 scsi_set_resid(scp, qdonep->remain_bytes); 7648 } 7649 break; 7650 7651 case QD_WITH_ERROR: 7652 ASC_DBG(2, "QD_WITH_ERROR\n"); 7653 switch (qdonep->d3.host_stat) { 7654 case QHSTA_NO_ERROR: 7655 if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) { 7656 ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n"); 7657 ASC_DBG_PRT_SENSE(2, scp->sense_buffer, 7658 SCSI_SENSE_BUFFERSIZE); 7659 /* 7660 * Note: The 'status_byte()' macro used by 7661 * target drivers defined in scsi.h shifts the 7662 * status byte returned by host drivers right 7663 * by 1 bit. This is why target drivers also 7664 * use right shifted status byte definitions. 7665 * For instance target drivers use 7666 * CHECK_CONDITION, defined to 0x1, instead of 7667 * the SCSI defined check condition value of 7668 * 0x2. Host drivers are supposed to return 7669 * the status byte as it is defined by SCSI. 7670 */ 7671 scp->result = DRIVER_BYTE(DRIVER_SENSE) | 7672 STATUS_BYTE(qdonep->d3.scsi_stat); 7673 } else { 7674 scp->result = STATUS_BYTE(qdonep->d3.scsi_stat); 7675 } 7676 break; 7677 7678 default: 7679 /* QHSTA error occurred */ 7680 ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat); 7681 scp->result = HOST_BYTE(DID_BAD_TARGET); 7682 break; 7683 } 7684 break; 7685 7686 case QD_ABORTED_BY_HOST: 7687 ASC_DBG(1, "QD_ABORTED_BY_HOST\n"); 7688 scp->result = 7689 HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3. 7690 scsi_msg) | 7691 STATUS_BYTE(qdonep->d3.scsi_stat); 7692 break; 7693 7694 default: 7695 ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat); 7696 scp->result = 7697 HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3. 7698 scsi_msg) | 7699 STATUS_BYTE(qdonep->d3.scsi_stat); 7700 break; 7701 } 7702 7703 /* 7704 * If the 'init_tidmask' bit isn't already set for the target and the 7705 * current request finished normally, then set the bit for the target 7706 * to indicate that a device is present. 7707 */ 7708 if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 && 7709 qdonep->d3.done_stat == QD_NO_ERROR && 7710 qdonep->d3.host_stat == QHSTA_NO_ERROR) { 7711 boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id); 7712 } 7713 7714 asc_scsi_done(scp); 7715 } 7716 7717 static int AscIsrQDone(ASC_DVC_VAR *asc_dvc) 7718 { 7719 uchar next_qp; 7720 uchar n_q_used; 7721 uchar sg_list_qp; 7722 uchar sg_queue_cnt; 7723 uchar q_cnt; 7724 uchar done_q_tail; 7725 uchar tid_no; 7726 ASC_SCSI_BIT_ID_TYPE scsi_busy; 7727 ASC_SCSI_BIT_ID_TYPE target_id; 7728 PortAddr iop_base; 7729 ushort q_addr; 7730 ushort sg_q_addr; 7731 uchar cur_target_qng; 7732 ASC_QDONE_INFO scsiq_buf; 7733 ASC_QDONE_INFO *scsiq; 7734 int false_overrun; 7735 7736 iop_base = asc_dvc->iop_base; 7737 n_q_used = 1; 7738 scsiq = (ASC_QDONE_INFO *)&scsiq_buf; 7739 done_q_tail = (uchar)AscGetVarDoneQTail(iop_base); 7740 q_addr = ASC_QNO_TO_QADDR(done_q_tail); 7741 next_qp = AscReadLramByte(iop_base, 7742 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD)); 7743 if (next_qp != ASC_QLINK_END) { 7744 AscPutVarDoneQTail(iop_base, next_qp); 7745 q_addr = ASC_QNO_TO_QADDR(next_qp); 7746 sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq, 7747 asc_dvc->max_dma_count); 7748 AscWriteLramByte(iop_base, 7749 (ushort)(q_addr + 7750 (ushort)ASC_SCSIQ_B_STATUS), 7751 (uchar)(scsiq-> 7752 q_status & (uchar)~(QS_READY | 7753 QS_ABORTED))); 7754 tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix); 7755 target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix); 7756 if ((scsiq->cntl & QC_SG_HEAD) != 0) { 7757 sg_q_addr = q_addr; 7758 sg_list_qp = next_qp; 7759 for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) { 7760 sg_list_qp = AscReadLramByte(iop_base, 7761 (ushort)(sg_q_addr 7762 + (ushort) 7763 ASC_SCSIQ_B_FWD)); 7764 sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp); 7765 if (sg_list_qp == ASC_QLINK_END) { 7766 AscSetLibErrorCode(asc_dvc, 7767 ASCQ_ERR_SG_Q_LINKS); 7768 scsiq->d3.done_stat = QD_WITH_ERROR; 7769 scsiq->d3.host_stat = 7770 QHSTA_D_QDONE_SG_LIST_CORRUPTED; 7771 goto FATAL_ERR_QDONE; 7772 } 7773 AscWriteLramByte(iop_base, 7774 (ushort)(sg_q_addr + (ushort) 7775 ASC_SCSIQ_B_STATUS), 7776 QS_FREE); 7777 } 7778 n_q_used = sg_queue_cnt + 1; 7779 AscPutVarDoneQTail(iop_base, sg_list_qp); 7780 } 7781 if (asc_dvc->queue_full_or_busy & target_id) { 7782 cur_target_qng = AscReadLramByte(iop_base, 7783 (ushort)((ushort) 7784 ASC_QADR_BEG 7785 + (ushort) 7786 scsiq->d2. 7787 target_ix)); 7788 if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) { 7789 scsi_busy = AscReadLramByte(iop_base, (ushort) 7790 ASCV_SCSIBUSY_B); 7791 scsi_busy &= ~target_id; 7792 AscWriteLramByte(iop_base, 7793 (ushort)ASCV_SCSIBUSY_B, 7794 scsi_busy); 7795 asc_dvc->queue_full_or_busy &= ~target_id; 7796 } 7797 } 7798 if (asc_dvc->cur_total_qng >= n_q_used) { 7799 asc_dvc->cur_total_qng -= n_q_used; 7800 if (asc_dvc->cur_dvc_qng[tid_no] != 0) { 7801 asc_dvc->cur_dvc_qng[tid_no]--; 7802 } 7803 } else { 7804 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG); 7805 scsiq->d3.done_stat = QD_WITH_ERROR; 7806 goto FATAL_ERR_QDONE; 7807 } 7808 if ((scsiq->d2.srb_ptr == 0UL) || 7809 ((scsiq->q_status & QS_ABORTED) != 0)) { 7810 return (0x11); 7811 } else if (scsiq->q_status == QS_DONE) { 7812 false_overrun = FALSE; 7813 if (scsiq->extra_bytes != 0) { 7814 scsiq->remain_bytes += 7815 (ADV_DCNT)scsiq->extra_bytes; 7816 } 7817 if (scsiq->d3.done_stat == QD_WITH_ERROR) { 7818 if (scsiq->d3.host_stat == 7819 QHSTA_M_DATA_OVER_RUN) { 7820 if ((scsiq-> 7821 cntl & (QC_DATA_IN | QC_DATA_OUT)) 7822 == 0) { 7823 scsiq->d3.done_stat = 7824 QD_NO_ERROR; 7825 scsiq->d3.host_stat = 7826 QHSTA_NO_ERROR; 7827 } else if (false_overrun) { 7828 scsiq->d3.done_stat = 7829 QD_NO_ERROR; 7830 scsiq->d3.host_stat = 7831 QHSTA_NO_ERROR; 7832 } 7833 } else if (scsiq->d3.host_stat == 7834 QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) { 7835 AscStopChip(iop_base); 7836 AscSetChipControl(iop_base, 7837 (uchar)(CC_SCSI_RESET 7838 | CC_HALT)); 7839 udelay(60); 7840 AscSetChipControl(iop_base, CC_HALT); 7841 AscSetChipStatus(iop_base, 7842 CIW_CLR_SCSI_RESET_INT); 7843 AscSetChipStatus(iop_base, 0); 7844 AscSetChipControl(iop_base, 0); 7845 } 7846 } 7847 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 7848 asc_isr_callback(asc_dvc, scsiq); 7849 } else { 7850 if ((AscReadLramByte(iop_base, 7851 (ushort)(q_addr + (ushort) 7852 ASC_SCSIQ_CDB_BEG)) 7853 == START_STOP)) { 7854 asc_dvc->unit_not_ready &= ~target_id; 7855 if (scsiq->d3.done_stat != QD_NO_ERROR) { 7856 asc_dvc->start_motor &= 7857 ~target_id; 7858 } 7859 } 7860 } 7861 return (1); 7862 } else { 7863 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS); 7864 FATAL_ERR_QDONE: 7865 if ((scsiq->cntl & QC_NO_CALLBACK) == 0) { 7866 asc_isr_callback(asc_dvc, scsiq); 7867 } 7868 return (0x80); 7869 } 7870 } 7871 return (0); 7872 } 7873 7874 static int AscISR(ASC_DVC_VAR *asc_dvc) 7875 { 7876 ASC_CS_TYPE chipstat; 7877 PortAddr iop_base; 7878 ushort saved_ram_addr; 7879 uchar ctrl_reg; 7880 uchar saved_ctrl_reg; 7881 int int_pending; 7882 int status; 7883 uchar host_flag; 7884 7885 iop_base = asc_dvc->iop_base; 7886 int_pending = FALSE; 7887 7888 if (AscIsIntPending(iop_base) == 0) 7889 return int_pending; 7890 7891 if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) { 7892 return ERR; 7893 } 7894 if (asc_dvc->in_critical_cnt != 0) { 7895 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL); 7896 return ERR; 7897 } 7898 if (asc_dvc->is_in_int) { 7899 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY); 7900 return ERR; 7901 } 7902 asc_dvc->is_in_int = TRUE; 7903 ctrl_reg = AscGetChipControl(iop_base); 7904 saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET | 7905 CC_SINGLE_STEP | CC_DIAG | CC_TEST)); 7906 chipstat = AscGetChipStatus(iop_base); 7907 if (chipstat & CSW_SCSI_RESET_LATCH) { 7908 if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) { 7909 int i = 10; 7910 int_pending = TRUE; 7911 asc_dvc->sdtr_done = 0; 7912 saved_ctrl_reg &= (uchar)(~CC_HALT); 7913 while ((AscGetChipStatus(iop_base) & 7914 CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) { 7915 mdelay(100); 7916 } 7917 AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT)); 7918 AscSetChipControl(iop_base, CC_HALT); 7919 AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT); 7920 AscSetChipStatus(iop_base, 0); 7921 chipstat = AscGetChipStatus(iop_base); 7922 } 7923 } 7924 saved_ram_addr = AscGetChipLramAddr(iop_base); 7925 host_flag = AscReadLramByte(iop_base, 7926 ASCV_HOST_FLAG_B) & 7927 (uchar)(~ASC_HOST_FLAG_IN_ISR); 7928 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, 7929 (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR)); 7930 if ((chipstat & CSW_INT_PENDING) || (int_pending)) { 7931 AscAckInterrupt(iop_base); 7932 int_pending = TRUE; 7933 if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) { 7934 if (AscIsrChipHalted(asc_dvc) == ERR) { 7935 goto ISR_REPORT_QDONE_FATAL_ERROR; 7936 } else { 7937 saved_ctrl_reg &= (uchar)(~CC_HALT); 7938 } 7939 } else { 7940 ISR_REPORT_QDONE_FATAL_ERROR: 7941 if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) { 7942 while (((status = 7943 AscIsrQDone(asc_dvc)) & 0x01) != 0) { 7944 } 7945 } else { 7946 do { 7947 if ((status = 7948 AscIsrQDone(asc_dvc)) == 1) { 7949 break; 7950 } 7951 } while (status == 0x11); 7952 } 7953 if ((status & 0x80) != 0) 7954 int_pending = ERR; 7955 } 7956 } 7957 AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag); 7958 AscSetChipLramAddr(iop_base, saved_ram_addr); 7959 AscSetChipControl(iop_base, saved_ctrl_reg); 7960 asc_dvc->is_in_int = FALSE; 7961 return int_pending; 7962 } 7963 7964 /* 7965 * advansys_reset() 7966 * 7967 * Reset the bus associated with the command 'scp'. 7968 * 7969 * This function runs its own thread. Interrupts must be blocked but 7970 * sleeping is allowed and no locking other than for host structures is 7971 * required. Returns SUCCESS or FAILED. 7972 */ 7973 static int advansys_reset(struct scsi_cmnd *scp) 7974 { 7975 struct Scsi_Host *shost = scp->device->host; 7976 struct asc_board *boardp = shost_priv(shost); 7977 unsigned long flags; 7978 int status; 7979 int ret = SUCCESS; 7980 7981 ASC_DBG(1, "0x%p\n", scp); 7982 7983 ASC_STATS(shost, reset); 7984 7985 scmd_printk(KERN_INFO, scp, "SCSI bus reset started...\n"); 7986 7987 if (ASC_NARROW_BOARD(boardp)) { 7988 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 7989 7990 /* Reset the chip and SCSI bus. */ 7991 ASC_DBG(1, "before AscInitAsc1000Driver()\n"); 7992 status = AscInitAsc1000Driver(asc_dvc); 7993 7994 /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */ 7995 if (asc_dvc->err_code || !asc_dvc->overrun_dma) { 7996 scmd_printk(KERN_INFO, scp, "SCSI bus reset error: " 7997 "0x%x, status: 0x%x\n", asc_dvc->err_code, 7998 status); 7999 ret = FAILED; 8000 } else if (status) { 8001 scmd_printk(KERN_INFO, scp, "SCSI bus reset warning: " 8002 "0x%x\n", status); 8003 } else { 8004 scmd_printk(KERN_INFO, scp, "SCSI bus reset " 8005 "successful\n"); 8006 } 8007 8008 ASC_DBG(1, "after AscInitAsc1000Driver()\n"); 8009 spin_lock_irqsave(shost->host_lock, flags); 8010 } else { 8011 /* 8012 * If the suggest reset bus flags are set, then reset the bus. 8013 * Otherwise only reset the device. 8014 */ 8015 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 8016 8017 /* 8018 * Reset the target's SCSI bus. 8019 */ 8020 ASC_DBG(1, "before AdvResetChipAndSB()\n"); 8021 switch (AdvResetChipAndSB(adv_dvc)) { 8022 case ASC_TRUE: 8023 scmd_printk(KERN_INFO, scp, "SCSI bus reset " 8024 "successful\n"); 8025 break; 8026 case ASC_FALSE: 8027 default: 8028 scmd_printk(KERN_INFO, scp, "SCSI bus reset error\n"); 8029 ret = FAILED; 8030 break; 8031 } 8032 spin_lock_irqsave(shost->host_lock, flags); 8033 AdvISR(adv_dvc); 8034 } 8035 8036 /* Save the time of the most recently completed reset. */ 8037 boardp->last_reset = jiffies; 8038 spin_unlock_irqrestore(shost->host_lock, flags); 8039 8040 ASC_DBG(1, "ret %d\n", ret); 8041 8042 return ret; 8043 } 8044 8045 /* 8046 * advansys_biosparam() 8047 * 8048 * Translate disk drive geometry if the "BIOS greater than 1 GB" 8049 * support is enabled for a drive. 8050 * 8051 * ip (information pointer) is an int array with the following definition: 8052 * ip[0]: heads 8053 * ip[1]: sectors 8054 * ip[2]: cylinders 8055 */ 8056 static int 8057 advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev, 8058 sector_t capacity, int ip[]) 8059 { 8060 struct asc_board *boardp = shost_priv(sdev->host); 8061 8062 ASC_DBG(1, "begin\n"); 8063 ASC_STATS(sdev->host, biosparam); 8064 if (ASC_NARROW_BOARD(boardp)) { 8065 if ((boardp->dvc_var.asc_dvc_var.dvc_cntl & 8066 ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) { 8067 ip[0] = 255; 8068 ip[1] = 63; 8069 } else { 8070 ip[0] = 64; 8071 ip[1] = 32; 8072 } 8073 } else { 8074 if ((boardp->dvc_var.adv_dvc_var.bios_ctrl & 8075 BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) { 8076 ip[0] = 255; 8077 ip[1] = 63; 8078 } else { 8079 ip[0] = 64; 8080 ip[1] = 32; 8081 } 8082 } 8083 ip[2] = (unsigned long)capacity / (ip[0] * ip[1]); 8084 ASC_DBG(1, "end\n"); 8085 return 0; 8086 } 8087 8088 /* 8089 * First-level interrupt handler. 8090 * 8091 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host. 8092 */ 8093 static irqreturn_t advansys_interrupt(int irq, void *dev_id) 8094 { 8095 struct Scsi_Host *shost = dev_id; 8096 struct asc_board *boardp = shost_priv(shost); 8097 irqreturn_t result = IRQ_NONE; 8098 8099 ASC_DBG(2, "boardp 0x%p\n", boardp); 8100 spin_lock(shost->host_lock); 8101 if (ASC_NARROW_BOARD(boardp)) { 8102 if (AscIsIntPending(shost->io_port)) { 8103 result = IRQ_HANDLED; 8104 ASC_STATS(shost, interrupt); 8105 ASC_DBG(1, "before AscISR()\n"); 8106 AscISR(&boardp->dvc_var.asc_dvc_var); 8107 } 8108 } else { 8109 ASC_DBG(1, "before AdvISR()\n"); 8110 if (AdvISR(&boardp->dvc_var.adv_dvc_var)) { 8111 result = IRQ_HANDLED; 8112 ASC_STATS(shost, interrupt); 8113 } 8114 } 8115 spin_unlock(shost->host_lock); 8116 8117 ASC_DBG(1, "end\n"); 8118 return result; 8119 } 8120 8121 static int AscHostReqRiscHalt(PortAddr iop_base) 8122 { 8123 int count = 0; 8124 int sta = 0; 8125 uchar saved_stop_code; 8126 8127 if (AscIsChipHalted(iop_base)) 8128 return (1); 8129 saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B); 8130 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 8131 ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP); 8132 do { 8133 if (AscIsChipHalted(iop_base)) { 8134 sta = 1; 8135 break; 8136 } 8137 mdelay(100); 8138 } while (count++ < 20); 8139 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code); 8140 return (sta); 8141 } 8142 8143 static int 8144 AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data) 8145 { 8146 int sta = FALSE; 8147 8148 if (AscHostReqRiscHalt(iop_base)) { 8149 sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data); 8150 AscStartChip(iop_base); 8151 } 8152 return sta; 8153 } 8154 8155 static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev) 8156 { 8157 char type = sdev->type; 8158 ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id; 8159 8160 if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN)) 8161 return; 8162 if (asc_dvc->init_sdtr & tid_bits) 8163 return; 8164 8165 if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0)) 8166 asc_dvc->pci_fix_asyn_xfer_always |= tid_bits; 8167 8168 asc_dvc->pci_fix_asyn_xfer |= tid_bits; 8169 if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) || 8170 (type == TYPE_ROM) || (type == TYPE_TAPE)) 8171 asc_dvc->pci_fix_asyn_xfer &= ~tid_bits; 8172 8173 if (asc_dvc->pci_fix_asyn_xfer & tid_bits) 8174 AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id, 8175 ASYN_SDTR_DATA_FIX_PCI_REV_AB); 8176 } 8177 8178 static void 8179 advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc) 8180 { 8181 ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id; 8182 ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng; 8183 8184 if (sdev->lun == 0) { 8185 ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr; 8186 if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) { 8187 asc_dvc->init_sdtr |= tid_bit; 8188 } else { 8189 asc_dvc->init_sdtr &= ~tid_bit; 8190 } 8191 8192 if (orig_init_sdtr != asc_dvc->init_sdtr) 8193 AscAsyncFix(asc_dvc, sdev); 8194 } 8195 8196 if (sdev->tagged_supported) { 8197 if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) { 8198 if (sdev->lun == 0) { 8199 asc_dvc->cfg->can_tagged_qng |= tid_bit; 8200 asc_dvc->use_tagged_qng |= tid_bit; 8201 } 8202 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, 8203 asc_dvc->max_dvc_qng[sdev->id]); 8204 } 8205 } else { 8206 if (sdev->lun == 0) { 8207 asc_dvc->cfg->can_tagged_qng &= ~tid_bit; 8208 asc_dvc->use_tagged_qng &= ~tid_bit; 8209 } 8210 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun); 8211 } 8212 8213 if ((sdev->lun == 0) && 8214 (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) { 8215 AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B, 8216 asc_dvc->cfg->disc_enable); 8217 AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B, 8218 asc_dvc->use_tagged_qng); 8219 AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B, 8220 asc_dvc->cfg->can_tagged_qng); 8221 8222 asc_dvc->max_dvc_qng[sdev->id] = 8223 asc_dvc->cfg->max_tag_qng[sdev->id]; 8224 AscWriteLramByte(asc_dvc->iop_base, 8225 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id), 8226 asc_dvc->max_dvc_qng[sdev->id]); 8227 } 8228 } 8229 8230 /* 8231 * Wide Transfers 8232 * 8233 * If the EEPROM enabled WDTR for the device and the device supports wide 8234 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and 8235 * write the new value to the microcode. 8236 */ 8237 static void 8238 advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask) 8239 { 8240 unsigned short cfg_word; 8241 AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 8242 if ((cfg_word & tidmask) != 0) 8243 return; 8244 8245 cfg_word |= tidmask; 8246 AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word); 8247 8248 /* 8249 * Clear the microcode SDTR and WDTR negotiation done indicators for 8250 * the target to cause it to negotiate with the new setting set above. 8251 * WDTR when accepted causes the target to enter asynchronous mode, so 8252 * SDTR must be negotiated. 8253 */ 8254 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 8255 cfg_word &= ~tidmask; 8256 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 8257 AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 8258 cfg_word &= ~tidmask; 8259 AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word); 8260 } 8261 8262 /* 8263 * Synchronous Transfers 8264 * 8265 * If the EEPROM enabled SDTR for the device and the device 8266 * supports synchronous transfers, then turn on the device's 8267 * 'sdtr_able' bit. Write the new value to the microcode. 8268 */ 8269 static void 8270 advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask) 8271 { 8272 unsigned short cfg_word; 8273 AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 8274 if ((cfg_word & tidmask) != 0) 8275 return; 8276 8277 cfg_word |= tidmask; 8278 AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word); 8279 8280 /* 8281 * Clear the microcode "SDTR negotiation" done indicator for the 8282 * target to cause it to negotiate with the new setting set above. 8283 */ 8284 AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 8285 cfg_word &= ~tidmask; 8286 AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word); 8287 } 8288 8289 /* 8290 * PPR (Parallel Protocol Request) Capable 8291 * 8292 * If the device supports DT mode, then it must be PPR capable. 8293 * The PPR message will be used in place of the SDTR and WDTR 8294 * messages to negotiate synchronous speed and offset, transfer 8295 * width, and protocol options. 8296 */ 8297 static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc, 8298 AdvPortAddr iop_base, unsigned short tidmask) 8299 { 8300 AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 8301 adv_dvc->ppr_able |= tidmask; 8302 AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able); 8303 } 8304 8305 static void 8306 advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc) 8307 { 8308 AdvPortAddr iop_base = adv_dvc->iop_base; 8309 unsigned short tidmask = 1 << sdev->id; 8310 8311 if (sdev->lun == 0) { 8312 /* 8313 * Handle WDTR, SDTR, and Tag Queuing. If the feature 8314 * is enabled in the EEPROM and the device supports the 8315 * feature, then enable it in the microcode. 8316 */ 8317 8318 if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr) 8319 advansys_wide_enable_wdtr(iop_base, tidmask); 8320 if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr) 8321 advansys_wide_enable_sdtr(iop_base, tidmask); 8322 if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr) 8323 advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask); 8324 8325 /* 8326 * Tag Queuing is disabled for the BIOS which runs in polled 8327 * mode and would see no benefit from Tag Queuing. Also by 8328 * disabling Tag Queuing in the BIOS devices with Tag Queuing 8329 * bugs will at least work with the BIOS. 8330 */ 8331 if ((adv_dvc->tagqng_able & tidmask) && 8332 sdev->tagged_supported) { 8333 unsigned short cfg_word; 8334 AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word); 8335 cfg_word |= tidmask; 8336 AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, 8337 cfg_word); 8338 AdvWriteByteLram(iop_base, 8339 ASC_MC_NUMBER_OF_MAX_CMD + sdev->id, 8340 adv_dvc->max_dvc_qng); 8341 } 8342 } 8343 8344 if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported) { 8345 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, 8346 adv_dvc->max_dvc_qng); 8347 } else { 8348 scsi_adjust_queue_depth(sdev, 0, sdev->host->cmd_per_lun); 8349 } 8350 } 8351 8352 /* 8353 * Set the number of commands to queue per device for the 8354 * specified host adapter. 8355 */ 8356 static int advansys_slave_configure(struct scsi_device *sdev) 8357 { 8358 struct asc_board *boardp = shost_priv(sdev->host); 8359 8360 if (ASC_NARROW_BOARD(boardp)) 8361 advansys_narrow_slave_configure(sdev, 8362 &boardp->dvc_var.asc_dvc_var); 8363 else 8364 advansys_wide_slave_configure(sdev, 8365 &boardp->dvc_var.adv_dvc_var); 8366 8367 return 0; 8368 } 8369 8370 static __le32 advansys_get_sense_buffer_dma(struct scsi_cmnd *scp) 8371 { 8372 struct asc_board *board = shost_priv(scp->device->host); 8373 scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer, 8374 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 8375 dma_cache_sync(board->dev, scp->sense_buffer, 8376 SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE); 8377 return cpu_to_le32(scp->SCp.dma_handle); 8378 } 8379 8380 static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 8381 struct asc_scsi_q *asc_scsi_q) 8382 { 8383 struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var; 8384 int use_sg; 8385 8386 memset(asc_scsi_q, 0, sizeof(*asc_scsi_q)); 8387 8388 /* 8389 * Point the ASC_SCSI_Q to the 'struct scsi_cmnd'. 8390 */ 8391 asc_scsi_q->q2.srb_ptr = advansys_ptr_to_srb(asc_dvc, scp); 8392 if (asc_scsi_q->q2.srb_ptr == BAD_SRB) { 8393 scp->result = HOST_BYTE(DID_SOFT_ERROR); 8394 return ASC_ERROR; 8395 } 8396 8397 /* 8398 * Build the ASC_SCSI_Q request. 8399 */ 8400 asc_scsi_q->cdbptr = &scp->cmnd[0]; 8401 asc_scsi_q->q2.cdb_len = scp->cmd_len; 8402 asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id); 8403 asc_scsi_q->q1.target_lun = scp->device->lun; 8404 asc_scsi_q->q2.target_ix = 8405 ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun); 8406 asc_scsi_q->q1.sense_addr = advansys_get_sense_buffer_dma(scp); 8407 asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE; 8408 8409 /* 8410 * If there are any outstanding requests for the current target, 8411 * then every 255th request send an ORDERED request. This heuristic 8412 * tries to retain the benefit of request sorting while preventing 8413 * request starvation. 255 is the max number of tags or pending commands 8414 * a device may have outstanding. 8415 * 8416 * The request count is incremented below for every successfully 8417 * started request. 8418 * 8419 */ 8420 if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) && 8421 (boardp->reqcnt[scp->device->id] % 255) == 0) { 8422 asc_scsi_q->q2.tag_code = MSG_ORDERED_TAG; 8423 } else { 8424 asc_scsi_q->q2.tag_code = MSG_SIMPLE_TAG; 8425 } 8426 8427 /* Build ASC_SCSI_Q */ 8428 use_sg = scsi_dma_map(scp); 8429 if (use_sg != 0) { 8430 int sgcnt; 8431 struct scatterlist *slp; 8432 struct asc_sg_head *asc_sg_head; 8433 8434 if (use_sg > scp->device->host->sg_tablesize) { 8435 scmd_printk(KERN_ERR, scp, "use_sg %d > " 8436 "sg_tablesize %d\n", use_sg, 8437 scp->device->host->sg_tablesize); 8438 scsi_dma_unmap(scp); 8439 scp->result = HOST_BYTE(DID_ERROR); 8440 return ASC_ERROR; 8441 } 8442 8443 asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) + 8444 use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC); 8445 if (!asc_sg_head) { 8446 scsi_dma_unmap(scp); 8447 scp->result = HOST_BYTE(DID_SOFT_ERROR); 8448 return ASC_ERROR; 8449 } 8450 8451 asc_scsi_q->q1.cntl |= QC_SG_HEAD; 8452 asc_scsi_q->sg_head = asc_sg_head; 8453 asc_scsi_q->q1.data_cnt = 0; 8454 asc_scsi_q->q1.data_addr = 0; 8455 /* This is a byte value, otherwise it would need to be swapped. */ 8456 asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg; 8457 ASC_STATS_ADD(scp->device->host, xfer_elem, 8458 asc_sg_head->entry_cnt); 8459 8460 /* 8461 * Convert scatter-gather list into ASC_SG_HEAD list. 8462 */ 8463 scsi_for_each_sg(scp, slp, use_sg, sgcnt) { 8464 asc_sg_head->sg_list[sgcnt].addr = 8465 cpu_to_le32(sg_dma_address(slp)); 8466 asc_sg_head->sg_list[sgcnt].bytes = 8467 cpu_to_le32(sg_dma_len(slp)); 8468 ASC_STATS_ADD(scp->device->host, xfer_sect, 8469 DIV_ROUND_UP(sg_dma_len(slp), 512)); 8470 } 8471 } 8472 8473 ASC_STATS(scp->device->host, xfer_cnt); 8474 8475 ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q); 8476 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 8477 8478 return ASC_NOERROR; 8479 } 8480 8481 /* 8482 * Build scatter-gather list for Adv Library (Wide Board). 8483 * 8484 * Additional ADV_SG_BLOCK structures will need to be allocated 8485 * if the total number of scatter-gather elements exceeds 8486 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are 8487 * assumed to be physically contiguous. 8488 * 8489 * Return: 8490 * ADV_SUCCESS(1) - SG List successfully created 8491 * ADV_ERROR(-1) - SG List creation failed 8492 */ 8493 static int 8494 adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp, struct scsi_cmnd *scp, 8495 int use_sg) 8496 { 8497 adv_sgblk_t *sgblkp; 8498 ADV_SCSI_REQ_Q *scsiqp; 8499 struct scatterlist *slp; 8500 int sg_elem_cnt; 8501 ADV_SG_BLOCK *sg_block, *prev_sg_block; 8502 ADV_PADDR sg_block_paddr; 8503 int i; 8504 8505 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q); 8506 slp = scsi_sglist(scp); 8507 sg_elem_cnt = use_sg; 8508 prev_sg_block = NULL; 8509 reqp->sgblkp = NULL; 8510 8511 for (;;) { 8512 /* 8513 * Allocate a 'adv_sgblk_t' structure from the board free 8514 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK 8515 * (15) scatter-gather elements. 8516 */ 8517 if ((sgblkp = boardp->adv_sgblkp) == NULL) { 8518 ASC_DBG(1, "no free adv_sgblk_t\n"); 8519 ASC_STATS(scp->device->host, adv_build_nosg); 8520 8521 /* 8522 * Allocation failed. Free 'adv_sgblk_t' structures 8523 * already allocated for the request. 8524 */ 8525 while ((sgblkp = reqp->sgblkp) != NULL) { 8526 /* Remove 'sgblkp' from the request list. */ 8527 reqp->sgblkp = sgblkp->next_sgblkp; 8528 8529 /* Add 'sgblkp' to the board free list. */ 8530 sgblkp->next_sgblkp = boardp->adv_sgblkp; 8531 boardp->adv_sgblkp = sgblkp; 8532 } 8533 return ASC_BUSY; 8534 } 8535 8536 /* Complete 'adv_sgblk_t' board allocation. */ 8537 boardp->adv_sgblkp = sgblkp->next_sgblkp; 8538 sgblkp->next_sgblkp = NULL; 8539 8540 /* 8541 * Get 8 byte aligned virtual and physical addresses 8542 * for the allocated ADV_SG_BLOCK structure. 8543 */ 8544 sg_block = (ADV_SG_BLOCK *)ADV_8BALIGN(&sgblkp->sg_block); 8545 sg_block_paddr = virt_to_bus(sg_block); 8546 8547 /* 8548 * Check if this is the first 'adv_sgblk_t' for the 8549 * request. 8550 */ 8551 if (reqp->sgblkp == NULL) { 8552 /* Request's first scatter-gather block. */ 8553 reqp->sgblkp = sgblkp; 8554 8555 /* 8556 * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical 8557 * address pointers. 8558 */ 8559 scsiqp->sg_list_ptr = sg_block; 8560 scsiqp->sg_real_addr = cpu_to_le32(sg_block_paddr); 8561 } else { 8562 /* Request's second or later scatter-gather block. */ 8563 sgblkp->next_sgblkp = reqp->sgblkp; 8564 reqp->sgblkp = sgblkp; 8565 8566 /* 8567 * Point the previous ADV_SG_BLOCK structure to 8568 * the newly allocated ADV_SG_BLOCK structure. 8569 */ 8570 prev_sg_block->sg_ptr = cpu_to_le32(sg_block_paddr); 8571 } 8572 8573 for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) { 8574 sg_block->sg_list[i].sg_addr = 8575 cpu_to_le32(sg_dma_address(slp)); 8576 sg_block->sg_list[i].sg_count = 8577 cpu_to_le32(sg_dma_len(slp)); 8578 ASC_STATS_ADD(scp->device->host, xfer_sect, 8579 DIV_ROUND_UP(sg_dma_len(slp), 512)); 8580 8581 if (--sg_elem_cnt == 0) { /* Last ADV_SG_BLOCK and scatter-gather entry. */ 8582 sg_block->sg_cnt = i + 1; 8583 sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */ 8584 return ADV_SUCCESS; 8585 } 8586 slp++; 8587 } 8588 sg_block->sg_cnt = NO_OF_SG_PER_BLOCK; 8589 prev_sg_block = sg_block; 8590 } 8591 } 8592 8593 /* 8594 * Build a request structure for the Adv Library (Wide Board). 8595 * 8596 * If an adv_req_t can not be allocated to issue the request, 8597 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR. 8598 * 8599 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the 8600 * microcode for DMA addresses or math operations are byte swapped 8601 * to little-endian order. 8602 */ 8603 static int 8604 adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp, 8605 ADV_SCSI_REQ_Q **adv_scsiqpp) 8606 { 8607 adv_req_t *reqp; 8608 ADV_SCSI_REQ_Q *scsiqp; 8609 int i; 8610 int ret; 8611 int use_sg; 8612 8613 /* 8614 * Allocate an adv_req_t structure from the board to execute 8615 * the command. 8616 */ 8617 if (boardp->adv_reqp == NULL) { 8618 ASC_DBG(1, "no free adv_req_t\n"); 8619 ASC_STATS(scp->device->host, adv_build_noreq); 8620 return ASC_BUSY; 8621 } else { 8622 reqp = boardp->adv_reqp; 8623 boardp->adv_reqp = reqp->next_reqp; 8624 reqp->next_reqp = NULL; 8625 } 8626 8627 /* 8628 * Get 32-byte aligned ADV_SCSI_REQ_Q and ADV_SG_BLOCK pointers. 8629 */ 8630 scsiqp = (ADV_SCSI_REQ_Q *)ADV_32BALIGN(&reqp->scsi_req_q); 8631 8632 /* 8633 * Initialize the structure. 8634 */ 8635 scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0; 8636 8637 /* 8638 * Set the ADV_SCSI_REQ_Q 'srb_ptr' to point to the adv_req_t structure. 8639 */ 8640 scsiqp->srb_ptr = ADV_VADDR_TO_U32(reqp); 8641 8642 /* 8643 * Set the adv_req_t 'cmndp' to point to the struct scsi_cmnd structure. 8644 */ 8645 reqp->cmndp = scp; 8646 8647 /* 8648 * Build the ADV_SCSI_REQ_Q request. 8649 */ 8650 8651 /* Set CDB length and copy it to the request structure. */ 8652 scsiqp->cdb_len = scp->cmd_len; 8653 /* Copy first 12 CDB bytes to cdb[]. */ 8654 for (i = 0; i < scp->cmd_len && i < 12; i++) { 8655 scsiqp->cdb[i] = scp->cmnd[i]; 8656 } 8657 /* Copy last 4 CDB bytes, if present, to cdb16[]. */ 8658 for (; i < scp->cmd_len; i++) { 8659 scsiqp->cdb16[i - 12] = scp->cmnd[i]; 8660 } 8661 8662 scsiqp->target_id = scp->device->id; 8663 scsiqp->target_lun = scp->device->lun; 8664 8665 scsiqp->sense_addr = cpu_to_le32(virt_to_bus(&scp->sense_buffer[0])); 8666 scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE; 8667 8668 /* Build ADV_SCSI_REQ_Q */ 8669 8670 use_sg = scsi_dma_map(scp); 8671 if (use_sg == 0) { 8672 /* Zero-length transfer */ 8673 reqp->sgblkp = NULL; 8674 scsiqp->data_cnt = 0; 8675 scsiqp->vdata_addr = NULL; 8676 8677 scsiqp->data_addr = 0; 8678 scsiqp->sg_list_ptr = NULL; 8679 scsiqp->sg_real_addr = 0; 8680 } else { 8681 if (use_sg > ADV_MAX_SG_LIST) { 8682 scmd_printk(KERN_ERR, scp, "use_sg %d > " 8683 "ADV_MAX_SG_LIST %d\n", use_sg, 8684 scp->device->host->sg_tablesize); 8685 scsi_dma_unmap(scp); 8686 scp->result = HOST_BYTE(DID_ERROR); 8687 8688 /* 8689 * Free the 'adv_req_t' structure by adding it back 8690 * to the board free list. 8691 */ 8692 reqp->next_reqp = boardp->adv_reqp; 8693 boardp->adv_reqp = reqp; 8694 8695 return ASC_ERROR; 8696 } 8697 8698 scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp)); 8699 8700 ret = adv_get_sglist(boardp, reqp, scp, use_sg); 8701 if (ret != ADV_SUCCESS) { 8702 /* 8703 * Free the adv_req_t structure by adding it back to 8704 * the board free list. 8705 */ 8706 reqp->next_reqp = boardp->adv_reqp; 8707 boardp->adv_reqp = reqp; 8708 8709 return ret; 8710 } 8711 8712 ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg); 8713 } 8714 8715 ASC_STATS(scp->device->host, xfer_cnt); 8716 8717 ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp); 8718 ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len); 8719 8720 *adv_scsiqpp = scsiqp; 8721 8722 return ASC_NOERROR; 8723 } 8724 8725 static int AscSgListToQueue(int sg_list) 8726 { 8727 int n_sg_list_qs; 8728 8729 n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q); 8730 if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0) 8731 n_sg_list_qs++; 8732 return n_sg_list_qs + 1; 8733 } 8734 8735 static uint 8736 AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs) 8737 { 8738 uint cur_used_qs; 8739 uint cur_free_qs; 8740 ASC_SCSI_BIT_ID_TYPE target_id; 8741 uchar tid_no; 8742 8743 target_id = ASC_TIX_TO_TARGET_ID(target_ix); 8744 tid_no = ASC_TIX_TO_TID(target_ix); 8745 if ((asc_dvc->unit_not_ready & target_id) || 8746 (asc_dvc->queue_full_or_busy & target_id)) { 8747 return 0; 8748 } 8749 if (n_qs == 1) { 8750 cur_used_qs = (uint) asc_dvc->cur_total_qng + 8751 (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q; 8752 } else { 8753 cur_used_qs = (uint) asc_dvc->cur_total_qng + 8754 (uint) ASC_MIN_FREE_Q; 8755 } 8756 if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) { 8757 cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs; 8758 if (asc_dvc->cur_dvc_qng[tid_no] >= 8759 asc_dvc->max_dvc_qng[tid_no]) { 8760 return 0; 8761 } 8762 return cur_free_qs; 8763 } 8764 if (n_qs > 1) { 8765 if ((n_qs > asc_dvc->last_q_shortage) 8766 && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) { 8767 asc_dvc->last_q_shortage = n_qs; 8768 } 8769 } 8770 return 0; 8771 } 8772 8773 static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head) 8774 { 8775 ushort q_addr; 8776 uchar next_qp; 8777 uchar q_status; 8778 8779 q_addr = ASC_QNO_TO_QADDR(free_q_head); 8780 q_status = (uchar)AscReadLramByte(iop_base, 8781 (ushort)(q_addr + 8782 ASC_SCSIQ_B_STATUS)); 8783 next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD)); 8784 if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END)) 8785 return next_qp; 8786 return ASC_QLINK_END; 8787 } 8788 8789 static uchar 8790 AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q) 8791 { 8792 uchar i; 8793 8794 for (i = 0; i < n_free_q; i++) { 8795 free_q_head = AscAllocFreeQueue(iop_base, free_q_head); 8796 if (free_q_head == ASC_QLINK_END) 8797 break; 8798 } 8799 return free_q_head; 8800 } 8801 8802 /* 8803 * void 8804 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 8805 * 8806 * Calling/Exit State: 8807 * none 8808 * 8809 * Description: 8810 * Output an ASC_SCSI_Q structure to the chip 8811 */ 8812 static void 8813 DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words) 8814 { 8815 int i; 8816 8817 ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words); 8818 AscSetChipLramAddr(iop_base, s_addr); 8819 for (i = 0; i < 2 * words; i += 2) { 8820 if (i == 4 || i == 20) { 8821 continue; 8822 } 8823 outpw(iop_base + IOP_RAM_DATA, 8824 ((ushort)outbuf[i + 1] << 8) | outbuf[i]); 8825 } 8826 } 8827 8828 static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 8829 { 8830 ushort q_addr; 8831 uchar tid_no; 8832 uchar sdtr_data; 8833 uchar syn_period_ix; 8834 uchar syn_offset; 8835 PortAddr iop_base; 8836 8837 iop_base = asc_dvc->iop_base; 8838 if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) && 8839 ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) { 8840 tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix); 8841 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 8842 syn_period_ix = 8843 (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1); 8844 syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET; 8845 AscMsgOutSDTR(asc_dvc, 8846 asc_dvc->sdtr_period_tbl[syn_period_ix], 8847 syn_offset); 8848 scsiq->q1.cntl |= QC_MSG_OUT; 8849 } 8850 q_addr = ASC_QNO_TO_QADDR(q_no); 8851 if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) { 8852 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG; 8853 } 8854 scsiq->q1.status = QS_FREE; 8855 AscMemWordCopyPtrToLram(iop_base, 8856 q_addr + ASC_SCSIQ_CDB_BEG, 8857 (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1); 8858 8859 DvcPutScsiQ(iop_base, 8860 q_addr + ASC_SCSIQ_CPY_BEG, 8861 (uchar *)&scsiq->q1.cntl, 8862 ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1); 8863 AscWriteLramWord(iop_base, 8864 (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS), 8865 (ushort)(((ushort)scsiq->q1. 8866 q_no << 8) | (ushort)QS_READY)); 8867 return 1; 8868 } 8869 8870 static int 8871 AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no) 8872 { 8873 int sta; 8874 int i; 8875 ASC_SG_HEAD *sg_head; 8876 ASC_SG_LIST_Q scsi_sg_q; 8877 ASC_DCNT saved_data_addr; 8878 ASC_DCNT saved_data_cnt; 8879 PortAddr iop_base; 8880 ushort sg_list_dwords; 8881 ushort sg_index; 8882 ushort sg_entry_cnt; 8883 ushort q_addr; 8884 uchar next_qp; 8885 8886 iop_base = asc_dvc->iop_base; 8887 sg_head = scsiq->sg_head; 8888 saved_data_addr = scsiq->q1.data_addr; 8889 saved_data_cnt = scsiq->q1.data_cnt; 8890 scsiq->q1.data_addr = (ASC_PADDR) sg_head->sg_list[0].addr; 8891 scsiq->q1.data_cnt = (ASC_DCNT) sg_head->sg_list[0].bytes; 8892 #if CC_VERY_LONG_SG_LIST 8893 /* 8894 * If sg_head->entry_cnt is greater than ASC_MAX_SG_LIST 8895 * then not all SG elements will fit in the allocated queues. 8896 * The rest of the SG elements will be copied when the RISC 8897 * completes the SG elements that fit and halts. 8898 */ 8899 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) { 8900 /* 8901 * Set sg_entry_cnt to be the number of SG elements that 8902 * will fit in the allocated SG queues. It is minus 1, because 8903 * the first SG element is handled above. ASC_MAX_SG_LIST is 8904 * already inflated by 1 to account for this. For example it 8905 * may be 50 which is 1 + 7 queues * 7 SG elements. 8906 */ 8907 sg_entry_cnt = ASC_MAX_SG_LIST - 1; 8908 8909 /* 8910 * Keep track of remaining number of SG elements that will 8911 * need to be handled from a_isr.c. 8912 */ 8913 scsiq->remain_sg_entry_cnt = 8914 sg_head->entry_cnt - ASC_MAX_SG_LIST; 8915 } else { 8916 #endif /* CC_VERY_LONG_SG_LIST */ 8917 /* 8918 * Set sg_entry_cnt to be the number of SG elements that 8919 * will fit in the allocated SG queues. It is minus 1, because 8920 * the first SG element is handled above. 8921 */ 8922 sg_entry_cnt = sg_head->entry_cnt - 1; 8923 #if CC_VERY_LONG_SG_LIST 8924 } 8925 #endif /* CC_VERY_LONG_SG_LIST */ 8926 if (sg_entry_cnt != 0) { 8927 scsiq->q1.cntl |= QC_SG_HEAD; 8928 q_addr = ASC_QNO_TO_QADDR(q_no); 8929 sg_index = 1; 8930 scsiq->q1.sg_queue_cnt = sg_head->queue_cnt; 8931 scsi_sg_q.sg_head_qp = q_no; 8932 scsi_sg_q.cntl = QCSG_SG_XFER_LIST; 8933 for (i = 0; i < sg_head->queue_cnt; i++) { 8934 scsi_sg_q.seq_no = i + 1; 8935 if (sg_entry_cnt > ASC_SG_LIST_PER_Q) { 8936 sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2); 8937 sg_entry_cnt -= ASC_SG_LIST_PER_Q; 8938 if (i == 0) { 8939 scsi_sg_q.sg_list_cnt = 8940 ASC_SG_LIST_PER_Q; 8941 scsi_sg_q.sg_cur_list_cnt = 8942 ASC_SG_LIST_PER_Q; 8943 } else { 8944 scsi_sg_q.sg_list_cnt = 8945 ASC_SG_LIST_PER_Q - 1; 8946 scsi_sg_q.sg_cur_list_cnt = 8947 ASC_SG_LIST_PER_Q - 1; 8948 } 8949 } else { 8950 #if CC_VERY_LONG_SG_LIST 8951 /* 8952 * This is the last SG queue in the list of 8953 * allocated SG queues. If there are more 8954 * SG elements than will fit in the allocated 8955 * queues, then set the QCSG_SG_XFER_MORE flag. 8956 */ 8957 if (sg_head->entry_cnt > ASC_MAX_SG_LIST) { 8958 scsi_sg_q.cntl |= QCSG_SG_XFER_MORE; 8959 } else { 8960 #endif /* CC_VERY_LONG_SG_LIST */ 8961 scsi_sg_q.cntl |= QCSG_SG_XFER_END; 8962 #if CC_VERY_LONG_SG_LIST 8963 } 8964 #endif /* CC_VERY_LONG_SG_LIST */ 8965 sg_list_dwords = sg_entry_cnt << 1; 8966 if (i == 0) { 8967 scsi_sg_q.sg_list_cnt = sg_entry_cnt; 8968 scsi_sg_q.sg_cur_list_cnt = 8969 sg_entry_cnt; 8970 } else { 8971 scsi_sg_q.sg_list_cnt = 8972 sg_entry_cnt - 1; 8973 scsi_sg_q.sg_cur_list_cnt = 8974 sg_entry_cnt - 1; 8975 } 8976 sg_entry_cnt = 0; 8977 } 8978 next_qp = AscReadLramByte(iop_base, 8979 (ushort)(q_addr + 8980 ASC_SCSIQ_B_FWD)); 8981 scsi_sg_q.q_no = next_qp; 8982 q_addr = ASC_QNO_TO_QADDR(next_qp); 8983 AscMemWordCopyPtrToLram(iop_base, 8984 q_addr + ASC_SCSIQ_SGHD_CPY_BEG, 8985 (uchar *)&scsi_sg_q, 8986 sizeof(ASC_SG_LIST_Q) >> 1); 8987 AscMemDWordCopyPtrToLram(iop_base, 8988 q_addr + ASC_SGQ_LIST_BEG, 8989 (uchar *)&sg_head-> 8990 sg_list[sg_index], 8991 sg_list_dwords); 8992 sg_index += ASC_SG_LIST_PER_Q; 8993 scsiq->next_sg_index = sg_index; 8994 } 8995 } else { 8996 scsiq->q1.cntl &= ~QC_SG_HEAD; 8997 } 8998 sta = AscPutReadyQueue(asc_dvc, scsiq, q_no); 8999 scsiq->q1.data_addr = saved_data_addr; 9000 scsiq->q1.data_cnt = saved_data_cnt; 9001 return (sta); 9002 } 9003 9004 static int 9005 AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required) 9006 { 9007 PortAddr iop_base; 9008 uchar free_q_head; 9009 uchar next_qp; 9010 uchar tid_no; 9011 uchar target_ix; 9012 int sta; 9013 9014 iop_base = asc_dvc->iop_base; 9015 target_ix = scsiq->q2.target_ix; 9016 tid_no = ASC_TIX_TO_TID(target_ix); 9017 sta = 0; 9018 free_q_head = (uchar)AscGetVarFreeQHead(iop_base); 9019 if (n_q_required > 1) { 9020 next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head, 9021 (uchar)n_q_required); 9022 if (next_qp != ASC_QLINK_END) { 9023 asc_dvc->last_q_shortage = 0; 9024 scsiq->sg_head->queue_cnt = n_q_required - 1; 9025 scsiq->q1.q_no = free_q_head; 9026 sta = AscPutReadySgListQueue(asc_dvc, scsiq, 9027 free_q_head); 9028 } 9029 } else if (n_q_required == 1) { 9030 next_qp = AscAllocFreeQueue(iop_base, free_q_head); 9031 if (next_qp != ASC_QLINK_END) { 9032 scsiq->q1.q_no = free_q_head; 9033 sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head); 9034 } 9035 } 9036 if (sta == 1) { 9037 AscPutVarFreeQHead(iop_base, next_qp); 9038 asc_dvc->cur_total_qng += n_q_required; 9039 asc_dvc->cur_dvc_qng[tid_no]++; 9040 } 9041 return sta; 9042 } 9043 9044 #define ASC_SYN_OFFSET_ONE_DISABLE_LIST 16 9045 static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = { 9046 INQUIRY, 9047 REQUEST_SENSE, 9048 READ_CAPACITY, 9049 READ_TOC, 9050 MODE_SELECT, 9051 MODE_SENSE, 9052 MODE_SELECT_10, 9053 MODE_SENSE_10, 9054 0xFF, 9055 0xFF, 9056 0xFF, 9057 0xFF, 9058 0xFF, 9059 0xFF, 9060 0xFF, 9061 0xFF 9062 }; 9063 9064 static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq) 9065 { 9066 PortAddr iop_base; 9067 int sta; 9068 int n_q_required; 9069 int disable_syn_offset_one_fix; 9070 int i; 9071 ASC_PADDR addr; 9072 ushort sg_entry_cnt = 0; 9073 ushort sg_entry_cnt_minus_one = 0; 9074 uchar target_ix; 9075 uchar tid_no; 9076 uchar sdtr_data; 9077 uchar extra_bytes; 9078 uchar scsi_cmd; 9079 uchar disable_cmd; 9080 ASC_SG_HEAD *sg_head; 9081 ASC_DCNT data_cnt; 9082 9083 iop_base = asc_dvc->iop_base; 9084 sg_head = scsiq->sg_head; 9085 if (asc_dvc->err_code != 0) 9086 return (ERR); 9087 scsiq->q1.q_no = 0; 9088 if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) { 9089 scsiq->q1.extra_bytes = 0; 9090 } 9091 sta = 0; 9092 target_ix = scsiq->q2.target_ix; 9093 tid_no = ASC_TIX_TO_TID(target_ix); 9094 n_q_required = 1; 9095 if (scsiq->cdbptr[0] == REQUEST_SENSE) { 9096 if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) { 9097 asc_dvc->sdtr_done &= ~scsiq->q1.target_id; 9098 sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no); 9099 AscMsgOutSDTR(asc_dvc, 9100 asc_dvc-> 9101 sdtr_period_tbl[(sdtr_data >> 4) & 9102 (uchar)(asc_dvc-> 9103 max_sdtr_index - 9104 1)], 9105 (uchar)(sdtr_data & (uchar) 9106 ASC_SYN_MAX_OFFSET)); 9107 scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT); 9108 } 9109 } 9110 if (asc_dvc->in_critical_cnt != 0) { 9111 AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY); 9112 return (ERR); 9113 } 9114 asc_dvc->in_critical_cnt++; 9115 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 9116 if ((sg_entry_cnt = sg_head->entry_cnt) == 0) { 9117 asc_dvc->in_critical_cnt--; 9118 return (ERR); 9119 } 9120 #if !CC_VERY_LONG_SG_LIST 9121 if (sg_entry_cnt > ASC_MAX_SG_LIST) { 9122 asc_dvc->in_critical_cnt--; 9123 return (ERR); 9124 } 9125 #endif /* !CC_VERY_LONG_SG_LIST */ 9126 if (sg_entry_cnt == 1) { 9127 scsiq->q1.data_addr = 9128 (ADV_PADDR)sg_head->sg_list[0].addr; 9129 scsiq->q1.data_cnt = 9130 (ADV_DCNT)sg_head->sg_list[0].bytes; 9131 scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE); 9132 } 9133 sg_entry_cnt_minus_one = sg_entry_cnt - 1; 9134 } 9135 scsi_cmd = scsiq->cdbptr[0]; 9136 disable_syn_offset_one_fix = FALSE; 9137 if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) && 9138 !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) { 9139 if (scsiq->q1.cntl & QC_SG_HEAD) { 9140 data_cnt = 0; 9141 for (i = 0; i < sg_entry_cnt; i++) { 9142 data_cnt += 9143 (ADV_DCNT)le32_to_cpu(sg_head->sg_list[i]. 9144 bytes); 9145 } 9146 } else { 9147 data_cnt = le32_to_cpu(scsiq->q1.data_cnt); 9148 } 9149 if (data_cnt != 0UL) { 9150 if (data_cnt < 512UL) { 9151 disable_syn_offset_one_fix = TRUE; 9152 } else { 9153 for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST; 9154 i++) { 9155 disable_cmd = 9156 _syn_offset_one_disable_cmd[i]; 9157 if (disable_cmd == 0xFF) { 9158 break; 9159 } 9160 if (scsi_cmd == disable_cmd) { 9161 disable_syn_offset_one_fix = 9162 TRUE; 9163 break; 9164 } 9165 } 9166 } 9167 } 9168 } 9169 if (disable_syn_offset_one_fix) { 9170 scsiq->q2.tag_code &= ~MSG_SIMPLE_TAG; 9171 scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX | 9172 ASC_TAG_FLAG_DISABLE_DISCONNECT); 9173 } else { 9174 scsiq->q2.tag_code &= 0x27; 9175 } 9176 if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) { 9177 if (asc_dvc->bug_fix_cntl) { 9178 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 9179 if ((scsi_cmd == READ_6) || 9180 (scsi_cmd == READ_10)) { 9181 addr = 9182 (ADV_PADDR)le32_to_cpu(sg_head-> 9183 sg_list 9184 [sg_entry_cnt_minus_one]. 9185 addr) + 9186 (ADV_DCNT)le32_to_cpu(sg_head-> 9187 sg_list 9188 [sg_entry_cnt_minus_one]. 9189 bytes); 9190 extra_bytes = 9191 (uchar)((ushort)addr & 0x0003); 9192 if ((extra_bytes != 0) 9193 && 9194 ((scsiq->q2. 9195 tag_code & 9196 ASC_TAG_FLAG_EXTRA_BYTES) 9197 == 0)) { 9198 scsiq->q2.tag_code |= 9199 ASC_TAG_FLAG_EXTRA_BYTES; 9200 scsiq->q1.extra_bytes = 9201 extra_bytes; 9202 data_cnt = 9203 le32_to_cpu(sg_head-> 9204 sg_list 9205 [sg_entry_cnt_minus_one]. 9206 bytes); 9207 data_cnt -= 9208 (ASC_DCNT) extra_bytes; 9209 sg_head-> 9210 sg_list 9211 [sg_entry_cnt_minus_one]. 9212 bytes = 9213 cpu_to_le32(data_cnt); 9214 } 9215 } 9216 } 9217 } 9218 sg_head->entry_to_copy = sg_head->entry_cnt; 9219 #if CC_VERY_LONG_SG_LIST 9220 /* 9221 * Set the sg_entry_cnt to the maximum possible. The rest of 9222 * the SG elements will be copied when the RISC completes the 9223 * SG elements that fit and halts. 9224 */ 9225 if (sg_entry_cnt > ASC_MAX_SG_LIST) { 9226 sg_entry_cnt = ASC_MAX_SG_LIST; 9227 } 9228 #endif /* CC_VERY_LONG_SG_LIST */ 9229 n_q_required = AscSgListToQueue(sg_entry_cnt); 9230 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >= 9231 (uint) n_q_required) 9232 || ((scsiq->q1.cntl & QC_URGENT) != 0)) { 9233 if ((sta = 9234 AscSendScsiQueue(asc_dvc, scsiq, 9235 n_q_required)) == 1) { 9236 asc_dvc->in_critical_cnt--; 9237 return (sta); 9238 } 9239 } 9240 } else { 9241 if (asc_dvc->bug_fix_cntl) { 9242 if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) { 9243 if ((scsi_cmd == READ_6) || 9244 (scsi_cmd == READ_10)) { 9245 addr = 9246 le32_to_cpu(scsiq->q1.data_addr) + 9247 le32_to_cpu(scsiq->q1.data_cnt); 9248 extra_bytes = 9249 (uchar)((ushort)addr & 0x0003); 9250 if ((extra_bytes != 0) 9251 && 9252 ((scsiq->q2. 9253 tag_code & 9254 ASC_TAG_FLAG_EXTRA_BYTES) 9255 == 0)) { 9256 data_cnt = 9257 le32_to_cpu(scsiq->q1. 9258 data_cnt); 9259 if (((ushort)data_cnt & 0x01FF) 9260 == 0) { 9261 scsiq->q2.tag_code |= 9262 ASC_TAG_FLAG_EXTRA_BYTES; 9263 data_cnt -= (ASC_DCNT) 9264 extra_bytes; 9265 scsiq->q1.data_cnt = 9266 cpu_to_le32 9267 (data_cnt); 9268 scsiq->q1.extra_bytes = 9269 extra_bytes; 9270 } 9271 } 9272 } 9273 } 9274 } 9275 n_q_required = 1; 9276 if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) || 9277 ((scsiq->q1.cntl & QC_URGENT) != 0)) { 9278 if ((sta = AscSendScsiQueue(asc_dvc, scsiq, 9279 n_q_required)) == 1) { 9280 asc_dvc->in_critical_cnt--; 9281 return (sta); 9282 } 9283 } 9284 } 9285 asc_dvc->in_critical_cnt--; 9286 return (sta); 9287 } 9288 9289 /* 9290 * AdvExeScsiQueue() - Send a request to the RISC microcode program. 9291 * 9292 * Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q, 9293 * add the carrier to the ICQ (Initiator Command Queue), and tickle the 9294 * RISC to notify it a new command is ready to be executed. 9295 * 9296 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be 9297 * set to SCSI_MAX_RETRY. 9298 * 9299 * Multi-byte fields in the ASC_SCSI_REQ_Q that are used by the microcode 9300 * for DMA addresses or math operations are byte swapped to little-endian 9301 * order. 9302 * 9303 * Return: 9304 * ADV_SUCCESS(1) - The request was successfully queued. 9305 * ADV_BUSY(0) - Resource unavailable; Retry again after pending 9306 * request completes. 9307 * ADV_ERROR(-1) - Invalid ADV_SCSI_REQ_Q request structure 9308 * host IC error. 9309 */ 9310 static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, ADV_SCSI_REQ_Q *scsiq) 9311 { 9312 AdvPortAddr iop_base; 9313 ADV_PADDR req_paddr; 9314 ADV_CARR_T *new_carrp; 9315 9316 /* 9317 * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID. 9318 */ 9319 if (scsiq->target_id > ADV_MAX_TID) { 9320 scsiq->host_status = QHSTA_M_INVALID_DEVICE; 9321 scsiq->done_status = QD_WITH_ERROR; 9322 return ADV_ERROR; 9323 } 9324 9325 iop_base = asc_dvc->iop_base; 9326 9327 /* 9328 * Allocate a carrier ensuring at least one carrier always 9329 * remains on the freelist and initialize fields. 9330 */ 9331 if ((new_carrp = asc_dvc->carr_freelist) == NULL) { 9332 return ADV_BUSY; 9333 } 9334 asc_dvc->carr_freelist = (ADV_CARR_T *) 9335 ADV_U32_TO_VADDR(le32_to_cpu(new_carrp->next_vpa)); 9336 asc_dvc->carr_pending_cnt++; 9337 9338 /* 9339 * Set the carrier to be a stopper by setting 'next_vpa' 9340 * to the stopper value. The current stopper will be changed 9341 * below to point to the new stopper. 9342 */ 9343 new_carrp->next_vpa = cpu_to_le32(ASC_CQ_STOPPER); 9344 9345 /* 9346 * Clear the ADV_SCSI_REQ_Q done flag. 9347 */ 9348 scsiq->a_flag &= ~ADV_SCSIQ_DONE; 9349 9350 req_paddr = virt_to_bus(scsiq); 9351 BUG_ON(req_paddr & 31); 9352 /* Wait for assertion before making little-endian */ 9353 req_paddr = cpu_to_le32(req_paddr); 9354 9355 /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */ 9356 scsiq->scsiq_ptr = cpu_to_le32(ADV_VADDR_TO_U32(scsiq)); 9357 scsiq->scsiq_rptr = req_paddr; 9358 9359 scsiq->carr_va = cpu_to_le32(ADV_VADDR_TO_U32(asc_dvc->icq_sp)); 9360 /* 9361 * Every ADV_CARR_T.carr_pa is byte swapped to little-endian 9362 * order during initialization. 9363 */ 9364 scsiq->carr_pa = asc_dvc->icq_sp->carr_pa; 9365 9366 /* 9367 * Use the current stopper to send the ADV_SCSI_REQ_Q command to 9368 * the microcode. The newly allocated stopper will become the new 9369 * stopper. 9370 */ 9371 asc_dvc->icq_sp->areq_vpa = req_paddr; 9372 9373 /* 9374 * Set the 'next_vpa' pointer for the old stopper to be the 9375 * physical address of the new stopper. The RISC can only 9376 * follow physical addresses. 9377 */ 9378 asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa; 9379 9380 /* 9381 * Set the host adapter stopper pointer to point to the new carrier. 9382 */ 9383 asc_dvc->icq_sp = new_carrp; 9384 9385 if (asc_dvc->chip_type == ADV_CHIP_ASC3550 || 9386 asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 9387 /* 9388 * Tickle the RISC to tell it to read its Command Queue Head pointer. 9389 */ 9390 AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A); 9391 if (asc_dvc->chip_type == ADV_CHIP_ASC3550) { 9392 /* 9393 * Clear the tickle value. In the ASC-3550 the RISC flag 9394 * command 'clr_tickle_a' does not work unless the host 9395 * value is cleared. 9396 */ 9397 AdvWriteByteRegister(iop_base, IOPB_TICKLE, 9398 ADV_TICKLE_NOP); 9399 } 9400 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 9401 /* 9402 * Notify the RISC a carrier is ready by writing the physical 9403 * address of the new carrier stopper to the COMMA register. 9404 */ 9405 AdvWriteDWordRegister(iop_base, IOPDW_COMMA, 9406 le32_to_cpu(new_carrp->carr_pa)); 9407 } 9408 9409 return ADV_SUCCESS; 9410 } 9411 9412 /* 9413 * Execute a single 'Scsi_Cmnd'. 9414 */ 9415 static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp) 9416 { 9417 int ret, err_code; 9418 struct asc_board *boardp = shost_priv(scp->device->host); 9419 9420 ASC_DBG(1, "scp 0x%p\n", scp); 9421 9422 if (ASC_NARROW_BOARD(boardp)) { 9423 ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var; 9424 struct asc_scsi_q asc_scsi_q; 9425 9426 /* asc_build_req() can not return ASC_BUSY. */ 9427 ret = asc_build_req(boardp, scp, &asc_scsi_q); 9428 if (ret == ASC_ERROR) { 9429 ASC_STATS(scp->device->host, build_error); 9430 return ASC_ERROR; 9431 } 9432 9433 ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q); 9434 kfree(asc_scsi_q.sg_head); 9435 err_code = asc_dvc->err_code; 9436 } else { 9437 ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var; 9438 ADV_SCSI_REQ_Q *adv_scsiqp; 9439 9440 switch (adv_build_req(boardp, scp, &adv_scsiqp)) { 9441 case ASC_NOERROR: 9442 ASC_DBG(3, "adv_build_req ASC_NOERROR\n"); 9443 break; 9444 case ASC_BUSY: 9445 ASC_DBG(1, "adv_build_req ASC_BUSY\n"); 9446 /* 9447 * The asc_stats fields 'adv_build_noreq' and 9448 * 'adv_build_nosg' count wide board busy conditions. 9449 * They are updated in adv_build_req and 9450 * adv_get_sglist, respectively. 9451 */ 9452 return ASC_BUSY; 9453 case ASC_ERROR: 9454 default: 9455 ASC_DBG(1, "adv_build_req ASC_ERROR\n"); 9456 ASC_STATS(scp->device->host, build_error); 9457 return ASC_ERROR; 9458 } 9459 9460 ret = AdvExeScsiQueue(adv_dvc, adv_scsiqp); 9461 err_code = adv_dvc->err_code; 9462 } 9463 9464 switch (ret) { 9465 case ASC_NOERROR: 9466 ASC_STATS(scp->device->host, exe_noerror); 9467 /* 9468 * Increment monotonically increasing per device 9469 * successful request counter. Wrapping doesn't matter. 9470 */ 9471 boardp->reqcnt[scp->device->id]++; 9472 ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n"); 9473 break; 9474 case ASC_BUSY: 9475 ASC_STATS(scp->device->host, exe_busy); 9476 break; 9477 case ASC_ERROR: 9478 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, " 9479 "err_code 0x%x\n", err_code); 9480 ASC_STATS(scp->device->host, exe_error); 9481 scp->result = HOST_BYTE(DID_ERROR); 9482 break; 9483 default: 9484 scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, " 9485 "err_code 0x%x\n", err_code); 9486 ASC_STATS(scp->device->host, exe_unknown); 9487 scp->result = HOST_BYTE(DID_ERROR); 9488 break; 9489 } 9490 9491 ASC_DBG(1, "end\n"); 9492 return ret; 9493 } 9494 9495 /* 9496 * advansys_queuecommand() - interrupt-driven I/O entrypoint. 9497 * 9498 * This function always returns 0. Command return status is saved 9499 * in the 'scp' result field. 9500 */ 9501 static int 9502 advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *)) 9503 { 9504 struct Scsi_Host *shost = scp->device->host; 9505 int asc_res, result = 0; 9506 9507 ASC_STATS(shost, queuecommand); 9508 scp->scsi_done = done; 9509 9510 asc_res = asc_execute_scsi_cmnd(scp); 9511 9512 switch (asc_res) { 9513 case ASC_NOERROR: 9514 break; 9515 case ASC_BUSY: 9516 result = SCSI_MLQUEUE_HOST_BUSY; 9517 break; 9518 case ASC_ERROR: 9519 default: 9520 asc_scsi_done(scp); 9521 break; 9522 } 9523 9524 return result; 9525 } 9526 9527 static DEF_SCSI_QCMD(advansys_queuecommand) 9528 9529 static ushort __devinit AscGetEisaChipCfg(PortAddr iop_base) 9530 { 9531 PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 9532 (PortAddr) (ASC_EISA_CFG_IOP_MASK); 9533 return inpw(eisa_cfg_iop); 9534 } 9535 9536 /* 9537 * Return the BIOS address of the adapter at the specified 9538 * I/O port and with the specified bus type. 9539 */ 9540 static unsigned short __devinit 9541 AscGetChipBiosAddress(PortAddr iop_base, unsigned short bus_type) 9542 { 9543 unsigned short cfg_lsw; 9544 unsigned short bios_addr; 9545 9546 /* 9547 * The PCI BIOS is re-located by the motherboard BIOS. Because 9548 * of this the driver can not determine where a PCI BIOS is 9549 * loaded and executes. 9550 */ 9551 if (bus_type & ASC_IS_PCI) 9552 return 0; 9553 9554 if ((bus_type & ASC_IS_EISA) != 0) { 9555 cfg_lsw = AscGetEisaChipCfg(iop_base); 9556 cfg_lsw &= 0x000F; 9557 bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE; 9558 return bios_addr; 9559 } 9560 9561 cfg_lsw = AscGetChipCfgLsw(iop_base); 9562 9563 /* 9564 * ISA PnP uses the top bit as the 32K BIOS flag 9565 */ 9566 if (bus_type == ASC_IS_ISAPNP) 9567 cfg_lsw &= 0x7FFF; 9568 bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE; 9569 return bios_addr; 9570 } 9571 9572 static uchar __devinit AscSetChipScsiID(PortAddr iop_base, uchar new_host_id) 9573 { 9574 ushort cfg_lsw; 9575 9576 if (AscGetChipScsiID(iop_base) == new_host_id) { 9577 return (new_host_id); 9578 } 9579 cfg_lsw = AscGetChipCfgLsw(iop_base); 9580 cfg_lsw &= 0xF8FF; 9581 cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8); 9582 AscSetChipCfgLsw(iop_base, cfg_lsw); 9583 return (AscGetChipScsiID(iop_base)); 9584 } 9585 9586 static unsigned char __devinit AscGetChipScsiCtrl(PortAddr iop_base) 9587 { 9588 unsigned char sc; 9589 9590 AscSetBank(iop_base, 1); 9591 sc = inp(iop_base + IOP_REG_SC); 9592 AscSetBank(iop_base, 0); 9593 return sc; 9594 } 9595 9596 static unsigned char __devinit 9597 AscGetChipVersion(PortAddr iop_base, unsigned short bus_type) 9598 { 9599 if (bus_type & ASC_IS_EISA) { 9600 PortAddr eisa_iop; 9601 unsigned char revision; 9602 eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) | 9603 (PortAddr) ASC_EISA_REV_IOP_MASK; 9604 revision = inp(eisa_iop); 9605 return ASC_CHIP_MIN_VER_EISA - 1 + revision; 9606 } 9607 return AscGetChipVerNo(iop_base); 9608 } 9609 9610 #ifdef CONFIG_ISA 9611 static void __devinit AscEnableIsaDma(uchar dma_channel) 9612 { 9613 if (dma_channel < 4) { 9614 outp(0x000B, (ushort)(0xC0 | dma_channel)); 9615 outp(0x000A, dma_channel); 9616 } else if (dma_channel < 8) { 9617 outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4))); 9618 outp(0x00D4, (ushort)(dma_channel - 4)); 9619 } 9620 } 9621 #endif /* CONFIG_ISA */ 9622 9623 static int AscStopQueueExe(PortAddr iop_base) 9624 { 9625 int count = 0; 9626 9627 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) { 9628 AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 9629 ASC_STOP_REQ_RISC_STOP); 9630 do { 9631 if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) & 9632 ASC_STOP_ACK_RISC_STOP) { 9633 return (1); 9634 } 9635 mdelay(100); 9636 } while (count++ < 20); 9637 } 9638 return (0); 9639 } 9640 9641 static ASC_DCNT __devinit AscGetMaxDmaCount(ushort bus_type) 9642 { 9643 if (bus_type & ASC_IS_ISA) 9644 return ASC_MAX_ISA_DMA_COUNT; 9645 else if (bus_type & (ASC_IS_EISA | ASC_IS_VL)) 9646 return ASC_MAX_VL_DMA_COUNT; 9647 return ASC_MAX_PCI_DMA_COUNT; 9648 } 9649 9650 #ifdef CONFIG_ISA 9651 static ushort __devinit AscGetIsaDmaChannel(PortAddr iop_base) 9652 { 9653 ushort channel; 9654 9655 channel = AscGetChipCfgLsw(iop_base) & 0x0003; 9656 if (channel == 0x03) 9657 return (0); 9658 else if (channel == 0x00) 9659 return (7); 9660 return (channel + 4); 9661 } 9662 9663 static ushort __devinit AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel) 9664 { 9665 ushort cfg_lsw; 9666 uchar value; 9667 9668 if ((dma_channel >= 5) && (dma_channel <= 7)) { 9669 if (dma_channel == 7) 9670 value = 0x00; 9671 else 9672 value = dma_channel - 4; 9673 cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC; 9674 cfg_lsw |= value; 9675 AscSetChipCfgLsw(iop_base, cfg_lsw); 9676 return (AscGetIsaDmaChannel(iop_base)); 9677 } 9678 return 0; 9679 } 9680 9681 static uchar __devinit AscGetIsaDmaSpeed(PortAddr iop_base) 9682 { 9683 uchar speed_value; 9684 9685 AscSetBank(iop_base, 1); 9686 speed_value = AscReadChipDmaSpeed(iop_base); 9687 speed_value &= 0x07; 9688 AscSetBank(iop_base, 0); 9689 return speed_value; 9690 } 9691 9692 static uchar __devinit AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value) 9693 { 9694 speed_value &= 0x07; 9695 AscSetBank(iop_base, 1); 9696 AscWriteChipDmaSpeed(iop_base, speed_value); 9697 AscSetBank(iop_base, 0); 9698 return AscGetIsaDmaSpeed(iop_base); 9699 } 9700 #endif /* CONFIG_ISA */ 9701 9702 static ushort __devinit AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc) 9703 { 9704 int i; 9705 PortAddr iop_base; 9706 ushort warn_code; 9707 uchar chip_version; 9708 9709 iop_base = asc_dvc->iop_base; 9710 warn_code = 0; 9711 asc_dvc->err_code = 0; 9712 if ((asc_dvc->bus_type & 9713 (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) { 9714 asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE; 9715 } 9716 AscSetChipControl(iop_base, CC_HALT); 9717 AscSetChipStatus(iop_base, 0); 9718 asc_dvc->bug_fix_cntl = 0; 9719 asc_dvc->pci_fix_asyn_xfer = 0; 9720 asc_dvc->pci_fix_asyn_xfer_always = 0; 9721 /* asc_dvc->init_state initialized in AscInitGetConfig(). */ 9722 asc_dvc->sdtr_done = 0; 9723 asc_dvc->cur_total_qng = 0; 9724 asc_dvc->is_in_int = 0; 9725 asc_dvc->in_critical_cnt = 0; 9726 asc_dvc->last_q_shortage = 0; 9727 asc_dvc->use_tagged_qng = 0; 9728 asc_dvc->no_scam = 0; 9729 asc_dvc->unit_not_ready = 0; 9730 asc_dvc->queue_full_or_busy = 0; 9731 asc_dvc->redo_scam = 0; 9732 asc_dvc->res2 = 0; 9733 asc_dvc->min_sdtr_index = 0; 9734 asc_dvc->cfg->can_tagged_qng = 0; 9735 asc_dvc->cfg->cmd_qng_enabled = 0; 9736 asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL; 9737 asc_dvc->init_sdtr = 0; 9738 asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG; 9739 asc_dvc->scsi_reset_wait = 3; 9740 asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET; 9741 asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type); 9742 asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET; 9743 asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET; 9744 asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID; 9745 chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type); 9746 asc_dvc->cfg->chip_version = chip_version; 9747 asc_dvc->sdtr_period_tbl = asc_syn_xfer_period; 9748 asc_dvc->max_sdtr_index = 7; 9749 if ((asc_dvc->bus_type & ASC_IS_PCI) && 9750 (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) { 9751 asc_dvc->bus_type = ASC_IS_PCI_ULTRA; 9752 asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period; 9753 asc_dvc->max_sdtr_index = 15; 9754 if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) { 9755 AscSetExtraControl(iop_base, 9756 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 9757 } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) { 9758 AscSetExtraControl(iop_base, 9759 (SEC_ACTIVE_NEGATE | 9760 SEC_ENABLE_FILTER)); 9761 } 9762 } 9763 if (asc_dvc->bus_type == ASC_IS_PCI) { 9764 AscSetExtraControl(iop_base, 9765 (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE)); 9766 } 9767 9768 asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED; 9769 #ifdef CONFIG_ISA 9770 if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) { 9771 if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) { 9772 AscSetChipIFC(iop_base, IFC_INIT_DEFAULT); 9773 asc_dvc->bus_type = ASC_IS_ISAPNP; 9774 } 9775 asc_dvc->cfg->isa_dma_channel = 9776 (uchar)AscGetIsaDmaChannel(iop_base); 9777 } 9778 #endif /* CONFIG_ISA */ 9779 for (i = 0; i <= ASC_MAX_TID; i++) { 9780 asc_dvc->cur_dvc_qng[i] = 0; 9781 asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG; 9782 asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L; 9783 asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L; 9784 asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG; 9785 } 9786 return warn_code; 9787 } 9788 9789 static int __devinit AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg) 9790 { 9791 int retry; 9792 9793 for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) { 9794 unsigned char read_back; 9795 AscSetChipEEPCmd(iop_base, cmd_reg); 9796 mdelay(1); 9797 read_back = AscGetChipEEPCmd(iop_base); 9798 if (read_back == cmd_reg) 9799 return 1; 9800 } 9801 return 0; 9802 } 9803 9804 static void __devinit AscWaitEEPRead(void) 9805 { 9806 mdelay(1); 9807 } 9808 9809 static ushort __devinit AscReadEEPWord(PortAddr iop_base, uchar addr) 9810 { 9811 ushort read_wval; 9812 uchar cmd_reg; 9813 9814 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 9815 AscWaitEEPRead(); 9816 cmd_reg = addr | ASC_EEP_CMD_READ; 9817 AscWriteEEPCmdReg(iop_base, cmd_reg); 9818 AscWaitEEPRead(); 9819 read_wval = AscGetChipEEPData(iop_base); 9820 AscWaitEEPRead(); 9821 return read_wval; 9822 } 9823 9824 static ushort __devinit 9825 AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type) 9826 { 9827 ushort wval; 9828 ushort sum; 9829 ushort *wbuf; 9830 int cfg_beg; 9831 int cfg_end; 9832 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 9833 int s_addr; 9834 9835 wbuf = (ushort *)cfg_buf; 9836 sum = 0; 9837 /* Read two config words; Byte-swapping done by AscReadEEPWord(). */ 9838 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9839 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 9840 sum += *wbuf; 9841 } 9842 if (bus_type & ASC_IS_VL) { 9843 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 9844 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 9845 } else { 9846 cfg_beg = ASC_EEP_DVC_CFG_BEG; 9847 cfg_end = ASC_EEP_MAX_DVC_ADDR; 9848 } 9849 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 9850 wval = AscReadEEPWord(iop_base, (uchar)s_addr); 9851 if (s_addr <= uchar_end_in_config) { 9852 /* 9853 * Swap all char fields - must unswap bytes already swapped 9854 * by AscReadEEPWord(). 9855 */ 9856 *wbuf = le16_to_cpu(wval); 9857 } else { 9858 /* Don't swap word field at the end - cntl field. */ 9859 *wbuf = wval; 9860 } 9861 sum += wval; /* Checksum treats all EEPROM data as words. */ 9862 } 9863 /* 9864 * Read the checksum word which will be compared against 'sum' 9865 * by the caller. Word field already swapped. 9866 */ 9867 *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr); 9868 return sum; 9869 } 9870 9871 static int __devinit AscTestExternalLram(ASC_DVC_VAR *asc_dvc) 9872 { 9873 PortAddr iop_base; 9874 ushort q_addr; 9875 ushort saved_word; 9876 int sta; 9877 9878 iop_base = asc_dvc->iop_base; 9879 sta = 0; 9880 q_addr = ASC_QNO_TO_QADDR(241); 9881 saved_word = AscReadLramWord(iop_base, q_addr); 9882 AscSetChipLramAddr(iop_base, q_addr); 9883 AscSetChipLramData(iop_base, 0x55AA); 9884 mdelay(10); 9885 AscSetChipLramAddr(iop_base, q_addr); 9886 if (AscGetChipLramData(iop_base) == 0x55AA) { 9887 sta = 1; 9888 AscWriteLramWord(iop_base, q_addr, saved_word); 9889 } 9890 return (sta); 9891 } 9892 9893 static void __devinit AscWaitEEPWrite(void) 9894 { 9895 mdelay(20); 9896 } 9897 9898 static int __devinit AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg) 9899 { 9900 ushort read_back; 9901 int retry; 9902 9903 retry = 0; 9904 while (TRUE) { 9905 AscSetChipEEPData(iop_base, data_reg); 9906 mdelay(1); 9907 read_back = AscGetChipEEPData(iop_base); 9908 if (read_back == data_reg) { 9909 return (1); 9910 } 9911 if (retry++ > ASC_EEP_MAX_RETRY) { 9912 return (0); 9913 } 9914 } 9915 } 9916 9917 static ushort __devinit 9918 AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val) 9919 { 9920 ushort read_wval; 9921 9922 read_wval = AscReadEEPWord(iop_base, addr); 9923 if (read_wval != word_val) { 9924 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE); 9925 AscWaitEEPRead(); 9926 AscWriteEEPDataReg(iop_base, word_val); 9927 AscWaitEEPRead(); 9928 AscWriteEEPCmdReg(iop_base, 9929 (uchar)((uchar)ASC_EEP_CMD_WRITE | addr)); 9930 AscWaitEEPWrite(); 9931 AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE); 9932 AscWaitEEPRead(); 9933 return (AscReadEEPWord(iop_base, addr)); 9934 } 9935 return (read_wval); 9936 } 9937 9938 static int __devinit 9939 AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type) 9940 { 9941 int n_error; 9942 ushort *wbuf; 9943 ushort word; 9944 ushort sum; 9945 int s_addr; 9946 int cfg_beg; 9947 int cfg_end; 9948 int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2; 9949 9950 wbuf = (ushort *)cfg_buf; 9951 n_error = 0; 9952 sum = 0; 9953 /* Write two config words; AscWriteEEPWord() will swap bytes. */ 9954 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9955 sum += *wbuf; 9956 if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 9957 n_error++; 9958 } 9959 } 9960 if (bus_type & ASC_IS_VL) { 9961 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 9962 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 9963 } else { 9964 cfg_beg = ASC_EEP_DVC_CFG_BEG; 9965 cfg_end = ASC_EEP_MAX_DVC_ADDR; 9966 } 9967 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 9968 if (s_addr <= uchar_end_in_config) { 9969 /* 9970 * This is a char field. Swap char fields before they are 9971 * swapped again by AscWriteEEPWord(). 9972 */ 9973 word = cpu_to_le16(*wbuf); 9974 if (word != 9975 AscWriteEEPWord(iop_base, (uchar)s_addr, word)) { 9976 n_error++; 9977 } 9978 } else { 9979 /* Don't swap word field at the end - cntl field. */ 9980 if (*wbuf != 9981 AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) { 9982 n_error++; 9983 } 9984 } 9985 sum += *wbuf; /* Checksum calculated from word values. */ 9986 } 9987 /* Write checksum word. It will be swapped by AscWriteEEPWord(). */ 9988 *wbuf = sum; 9989 if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) { 9990 n_error++; 9991 } 9992 9993 /* Read EEPROM back again. */ 9994 wbuf = (ushort *)cfg_buf; 9995 /* 9996 * Read two config words; Byte-swapping done by AscReadEEPWord(). 9997 */ 9998 for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) { 9999 if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) { 10000 n_error++; 10001 } 10002 } 10003 if (bus_type & ASC_IS_VL) { 10004 cfg_beg = ASC_EEP_DVC_CFG_BEG_VL; 10005 cfg_end = ASC_EEP_MAX_DVC_ADDR_VL; 10006 } else { 10007 cfg_beg = ASC_EEP_DVC_CFG_BEG; 10008 cfg_end = ASC_EEP_MAX_DVC_ADDR; 10009 } 10010 for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) { 10011 if (s_addr <= uchar_end_in_config) { 10012 /* 10013 * Swap all char fields. Must unswap bytes already swapped 10014 * by AscReadEEPWord(). 10015 */ 10016 word = 10017 le16_to_cpu(AscReadEEPWord 10018 (iop_base, (uchar)s_addr)); 10019 } else { 10020 /* Don't swap word field at the end - cntl field. */ 10021 word = AscReadEEPWord(iop_base, (uchar)s_addr); 10022 } 10023 if (*wbuf != word) { 10024 n_error++; 10025 } 10026 } 10027 /* Read checksum; Byte swapping not needed. */ 10028 if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) { 10029 n_error++; 10030 } 10031 return n_error; 10032 } 10033 10034 static int __devinit 10035 AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf, ushort bus_type) 10036 { 10037 int retry; 10038 int n_error; 10039 10040 retry = 0; 10041 while (TRUE) { 10042 if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf, 10043 bus_type)) == 0) { 10044 break; 10045 } 10046 if (++retry > ASC_EEP_MAX_RETRY) { 10047 break; 10048 } 10049 } 10050 return n_error; 10051 } 10052 10053 static ushort __devinit AscInitFromEEP(ASC_DVC_VAR *asc_dvc) 10054 { 10055 ASCEEP_CONFIG eep_config_buf; 10056 ASCEEP_CONFIG *eep_config; 10057 PortAddr iop_base; 10058 ushort chksum; 10059 ushort warn_code; 10060 ushort cfg_msw, cfg_lsw; 10061 int i; 10062 int write_eep = 0; 10063 10064 iop_base = asc_dvc->iop_base; 10065 warn_code = 0; 10066 AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE); 10067 AscStopQueueExe(iop_base); 10068 if ((AscStopChip(iop_base) == FALSE) || 10069 (AscGetChipScsiCtrl(iop_base) != 0)) { 10070 asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE; 10071 AscResetChipAndScsiBus(asc_dvc); 10072 mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */ 10073 } 10074 if (AscIsChipHalted(iop_base) == FALSE) { 10075 asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP; 10076 return (warn_code); 10077 } 10078 AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR); 10079 if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) { 10080 asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR; 10081 return (warn_code); 10082 } 10083 eep_config = (ASCEEP_CONFIG *)&eep_config_buf; 10084 cfg_msw = AscGetChipCfgMsw(iop_base); 10085 cfg_lsw = AscGetChipCfgLsw(iop_base); 10086 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 10087 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 10088 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 10089 AscSetChipCfgMsw(iop_base, cfg_msw); 10090 } 10091 chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type); 10092 ASC_DBG(1, "chksum 0x%x\n", chksum); 10093 if (chksum == 0) { 10094 chksum = 0xaa55; 10095 } 10096 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 10097 warn_code |= ASC_WARN_AUTO_CONFIG; 10098 if (asc_dvc->cfg->chip_version == 3) { 10099 if (eep_config->cfg_lsw != cfg_lsw) { 10100 warn_code |= ASC_WARN_EEPROM_RECOVER; 10101 eep_config->cfg_lsw = 10102 AscGetChipCfgLsw(iop_base); 10103 } 10104 if (eep_config->cfg_msw != cfg_msw) { 10105 warn_code |= ASC_WARN_EEPROM_RECOVER; 10106 eep_config->cfg_msw = 10107 AscGetChipCfgMsw(iop_base); 10108 } 10109 } 10110 } 10111 eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 10112 eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON; 10113 ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum); 10114 if (chksum != eep_config->chksum) { 10115 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) == 10116 ASC_CHIP_VER_PCI_ULTRA_3050) { 10117 ASC_DBG(1, "chksum error ignored; EEPROM-less board\n"); 10118 eep_config->init_sdtr = 0xFF; 10119 eep_config->disc_enable = 0xFF; 10120 eep_config->start_motor = 0xFF; 10121 eep_config->use_cmd_qng = 0; 10122 eep_config->max_total_qng = 0xF0; 10123 eep_config->max_tag_qng = 0x20; 10124 eep_config->cntl = 0xBFFF; 10125 ASC_EEP_SET_CHIP_ID(eep_config, 7); 10126 eep_config->no_scam = 0; 10127 eep_config->adapter_info[0] = 0; 10128 eep_config->adapter_info[1] = 0; 10129 eep_config->adapter_info[2] = 0; 10130 eep_config->adapter_info[3] = 0; 10131 eep_config->adapter_info[4] = 0; 10132 /* Indicate EEPROM-less board. */ 10133 eep_config->adapter_info[5] = 0xBB; 10134 } else { 10135 ASC_PRINT 10136 ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n"); 10137 write_eep = 1; 10138 warn_code |= ASC_WARN_EEPROM_CHKSUM; 10139 } 10140 } 10141 asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr; 10142 asc_dvc->cfg->disc_enable = eep_config->disc_enable; 10143 asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng; 10144 asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config); 10145 asc_dvc->start_motor = eep_config->start_motor; 10146 asc_dvc->dvc_cntl = eep_config->cntl; 10147 asc_dvc->no_scam = eep_config->no_scam; 10148 asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0]; 10149 asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1]; 10150 asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2]; 10151 asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3]; 10152 asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4]; 10153 asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5]; 10154 if (!AscTestExternalLram(asc_dvc)) { 10155 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == 10156 ASC_IS_PCI_ULTRA)) { 10157 eep_config->max_total_qng = 10158 ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG; 10159 eep_config->max_tag_qng = 10160 ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG; 10161 } else { 10162 eep_config->cfg_msw |= 0x0800; 10163 cfg_msw |= 0x0800; 10164 AscSetChipCfgMsw(iop_base, cfg_msw); 10165 eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG; 10166 eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG; 10167 } 10168 } else { 10169 } 10170 if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) { 10171 eep_config->max_total_qng = ASC_MIN_TOTAL_QNG; 10172 } 10173 if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) { 10174 eep_config->max_total_qng = ASC_MAX_TOTAL_QNG; 10175 } 10176 if (eep_config->max_tag_qng > eep_config->max_total_qng) { 10177 eep_config->max_tag_qng = eep_config->max_total_qng; 10178 } 10179 if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) { 10180 eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC; 10181 } 10182 asc_dvc->max_total_qng = eep_config->max_total_qng; 10183 if ((eep_config->use_cmd_qng & eep_config->disc_enable) != 10184 eep_config->use_cmd_qng) { 10185 eep_config->disc_enable = eep_config->use_cmd_qng; 10186 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 10187 } 10188 ASC_EEP_SET_CHIP_ID(eep_config, 10189 ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID); 10190 asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config); 10191 if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) && 10192 !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) { 10193 asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX; 10194 } 10195 10196 for (i = 0; i <= ASC_MAX_TID; i++) { 10197 asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i]; 10198 asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng; 10199 asc_dvc->cfg->sdtr_period_offset[i] = 10200 (uchar)(ASC_DEF_SDTR_OFFSET | 10201 (asc_dvc->min_sdtr_index << 4)); 10202 } 10203 eep_config->cfg_msw = AscGetChipCfgMsw(iop_base); 10204 if (write_eep) { 10205 if ((i = AscSetEEPConfig(iop_base, eep_config, 10206 asc_dvc->bus_type)) != 0) { 10207 ASC_PRINT1 10208 ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n", 10209 i); 10210 } else { 10211 ASC_PRINT 10212 ("AscInitFromEEP: Successfully re-wrote EEPROM.\n"); 10213 } 10214 } 10215 return (warn_code); 10216 } 10217 10218 static int __devinit AscInitGetConfig(struct Scsi_Host *shost) 10219 { 10220 struct asc_board *board = shost_priv(shost); 10221 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 10222 unsigned short warn_code = 0; 10223 10224 asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG; 10225 if (asc_dvc->err_code != 0) 10226 return asc_dvc->err_code; 10227 10228 if (AscFindSignature(asc_dvc->iop_base)) { 10229 warn_code |= AscInitAscDvcVar(asc_dvc); 10230 warn_code |= AscInitFromEEP(asc_dvc); 10231 asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG; 10232 if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT) 10233 asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT; 10234 } else { 10235 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 10236 } 10237 10238 switch (warn_code) { 10239 case 0: /* No error */ 10240 break; 10241 case ASC_WARN_IO_PORT_ROTATE: 10242 shost_printk(KERN_WARNING, shost, "I/O port address " 10243 "modified\n"); 10244 break; 10245 case ASC_WARN_AUTO_CONFIG: 10246 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 10247 "enabled\n"); 10248 break; 10249 case ASC_WARN_EEPROM_CHKSUM: 10250 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 10251 break; 10252 case ASC_WARN_IRQ_MODIFIED: 10253 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 10254 break; 10255 case ASC_WARN_CMD_QNG_CONFLICT: 10256 shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o " 10257 "disconnects\n"); 10258 break; 10259 default: 10260 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 10261 warn_code); 10262 break; 10263 } 10264 10265 if (asc_dvc->err_code != 0) 10266 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 10267 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 10268 10269 return asc_dvc->err_code; 10270 } 10271 10272 static int __devinit AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 10273 { 10274 struct asc_board *board = shost_priv(shost); 10275 ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var; 10276 PortAddr iop_base = asc_dvc->iop_base; 10277 unsigned short cfg_msw; 10278 unsigned short warn_code = 0; 10279 10280 asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG; 10281 if (asc_dvc->err_code != 0) 10282 return asc_dvc->err_code; 10283 if (!AscFindSignature(asc_dvc->iop_base)) { 10284 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 10285 return asc_dvc->err_code; 10286 } 10287 10288 cfg_msw = AscGetChipCfgMsw(iop_base); 10289 if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) { 10290 cfg_msw &= ~ASC_CFG_MSW_CLR_MASK; 10291 warn_code |= ASC_WARN_CFG_MSW_RECOVER; 10292 AscSetChipCfgMsw(iop_base, cfg_msw); 10293 } 10294 if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) != 10295 asc_dvc->cfg->cmd_qng_enabled) { 10296 asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled; 10297 warn_code |= ASC_WARN_CMD_QNG_CONFLICT; 10298 } 10299 if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) { 10300 warn_code |= ASC_WARN_AUTO_CONFIG; 10301 } 10302 #ifdef CONFIG_PCI 10303 if (asc_dvc->bus_type & ASC_IS_PCI) { 10304 cfg_msw &= 0xFFC0; 10305 AscSetChipCfgMsw(iop_base, cfg_msw); 10306 if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) { 10307 } else { 10308 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 10309 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 10310 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB; 10311 asc_dvc->bug_fix_cntl |= 10312 ASC_BUG_FIX_ASYN_USE_SYN; 10313 } 10314 } 10315 } else 10316 #endif /* CONFIG_PCI */ 10317 if (asc_dvc->bus_type == ASC_IS_ISAPNP) { 10318 if (AscGetChipVersion(iop_base, asc_dvc->bus_type) 10319 == ASC_CHIP_VER_ASYN_BUG) { 10320 asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN; 10321 } 10322 } 10323 if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) != 10324 asc_dvc->cfg->chip_scsi_id) { 10325 asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID; 10326 } 10327 #ifdef CONFIG_ISA 10328 if (asc_dvc->bus_type & ASC_IS_ISA) { 10329 AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel); 10330 AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed); 10331 } 10332 #endif /* CONFIG_ISA */ 10333 10334 asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG; 10335 10336 switch (warn_code) { 10337 case 0: /* No error. */ 10338 break; 10339 case ASC_WARN_IO_PORT_ROTATE: 10340 shost_printk(KERN_WARNING, shost, "I/O port address " 10341 "modified\n"); 10342 break; 10343 case ASC_WARN_AUTO_CONFIG: 10344 shost_printk(KERN_WARNING, shost, "I/O port increment switch " 10345 "enabled\n"); 10346 break; 10347 case ASC_WARN_EEPROM_CHKSUM: 10348 shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n"); 10349 break; 10350 case ASC_WARN_IRQ_MODIFIED: 10351 shost_printk(KERN_WARNING, shost, "IRQ modified\n"); 10352 break; 10353 case ASC_WARN_CMD_QNG_CONFLICT: 10354 shost_printk(KERN_WARNING, shost, "tag queuing w/o " 10355 "disconnects\n"); 10356 break; 10357 default: 10358 shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n", 10359 warn_code); 10360 break; 10361 } 10362 10363 if (asc_dvc->err_code != 0) 10364 shost_printk(KERN_ERR, shost, "error 0x%x at init_state " 10365 "0x%x\n", asc_dvc->err_code, asc_dvc->init_state); 10366 10367 return asc_dvc->err_code; 10368 } 10369 10370 /* 10371 * EEPROM Configuration. 10372 * 10373 * All drivers should use this structure to set the default EEPROM 10374 * configuration. The BIOS now uses this structure when it is built. 10375 * Additional structure information can be found in a_condor.h where 10376 * the structure is defined. 10377 * 10378 * The *_Field_IsChar structs are needed to correct for endianness. 10379 * These values are read from the board 16 bits at a time directly 10380 * into the structs. Because some fields are char, the values will be 10381 * in the wrong order. The *_Field_IsChar tells when to flip the 10382 * bytes. Data read and written to PCI memory is automatically swapped 10383 * on big-endian platforms so char fields read as words are actually being 10384 * unswapped on big-endian platforms. 10385 */ 10386 static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config __devinitdata = { 10387 ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */ 10388 0x0000, /* cfg_msw */ 10389 0xFFFF, /* disc_enable */ 10390 0xFFFF, /* wdtr_able */ 10391 0xFFFF, /* sdtr_able */ 10392 0xFFFF, /* start_motor */ 10393 0xFFFF, /* tagqng_able */ 10394 0xFFFF, /* bios_scan */ 10395 0, /* scam_tolerant */ 10396 7, /* adapter_scsi_id */ 10397 0, /* bios_boot_delay */ 10398 3, /* scsi_reset_delay */ 10399 0, /* bios_id_lun */ 10400 0, /* termination */ 10401 0, /* reserved1 */ 10402 0xFFE7, /* bios_ctrl */ 10403 0xFFFF, /* ultra_able */ 10404 0, /* reserved2 */ 10405 ASC_DEF_MAX_HOST_QNG, /* max_host_qng */ 10406 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 10407 0, /* dvc_cntl */ 10408 0, /* bug_fix */ 10409 0, /* serial_number_word1 */ 10410 0, /* serial_number_word2 */ 10411 0, /* serial_number_word3 */ 10412 0, /* check_sum */ 10413 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 10414 , /* oem_name[16] */ 10415 0, /* dvc_err_code */ 10416 0, /* adv_err_code */ 10417 0, /* adv_err_addr */ 10418 0, /* saved_dvc_err_code */ 10419 0, /* saved_adv_err_code */ 10420 0, /* saved_adv_err_addr */ 10421 0 /* num_of_err */ 10422 }; 10423 10424 static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar __devinitdata = { 10425 0, /* cfg_lsw */ 10426 0, /* cfg_msw */ 10427 0, /* -disc_enable */ 10428 0, /* wdtr_able */ 10429 0, /* sdtr_able */ 10430 0, /* start_motor */ 10431 0, /* tagqng_able */ 10432 0, /* bios_scan */ 10433 0, /* scam_tolerant */ 10434 1, /* adapter_scsi_id */ 10435 1, /* bios_boot_delay */ 10436 1, /* scsi_reset_delay */ 10437 1, /* bios_id_lun */ 10438 1, /* termination */ 10439 1, /* reserved1 */ 10440 0, /* bios_ctrl */ 10441 0, /* ultra_able */ 10442 0, /* reserved2 */ 10443 1, /* max_host_qng */ 10444 1, /* max_dvc_qng */ 10445 0, /* dvc_cntl */ 10446 0, /* bug_fix */ 10447 0, /* serial_number_word1 */ 10448 0, /* serial_number_word2 */ 10449 0, /* serial_number_word3 */ 10450 0, /* check_sum */ 10451 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 10452 , /* oem_name[16] */ 10453 0, /* dvc_err_code */ 10454 0, /* adv_err_code */ 10455 0, /* adv_err_addr */ 10456 0, /* saved_dvc_err_code */ 10457 0, /* saved_adv_err_code */ 10458 0, /* saved_adv_err_addr */ 10459 0 /* num_of_err */ 10460 }; 10461 10462 static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config __devinitdata = { 10463 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 10464 0x0000, /* 01 cfg_msw */ 10465 0xFFFF, /* 02 disc_enable */ 10466 0xFFFF, /* 03 wdtr_able */ 10467 0x4444, /* 04 sdtr_speed1 */ 10468 0xFFFF, /* 05 start_motor */ 10469 0xFFFF, /* 06 tagqng_able */ 10470 0xFFFF, /* 07 bios_scan */ 10471 0, /* 08 scam_tolerant */ 10472 7, /* 09 adapter_scsi_id */ 10473 0, /* bios_boot_delay */ 10474 3, /* 10 scsi_reset_delay */ 10475 0, /* bios_id_lun */ 10476 0, /* 11 termination_se */ 10477 0, /* termination_lvd */ 10478 0xFFE7, /* 12 bios_ctrl */ 10479 0x4444, /* 13 sdtr_speed2 */ 10480 0x4444, /* 14 sdtr_speed3 */ 10481 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 10482 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 10483 0, /* 16 dvc_cntl */ 10484 0x4444, /* 17 sdtr_speed4 */ 10485 0, /* 18 serial_number_word1 */ 10486 0, /* 19 serial_number_word2 */ 10487 0, /* 20 serial_number_word3 */ 10488 0, /* 21 check_sum */ 10489 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 10490 , /* 22-29 oem_name[16] */ 10491 0, /* 30 dvc_err_code */ 10492 0, /* 31 adv_err_code */ 10493 0, /* 32 adv_err_addr */ 10494 0, /* 33 saved_dvc_err_code */ 10495 0, /* 34 saved_adv_err_code */ 10496 0, /* 35 saved_adv_err_addr */ 10497 0, /* 36 reserved */ 10498 0, /* 37 reserved */ 10499 0, /* 38 reserved */ 10500 0, /* 39 reserved */ 10501 0, /* 40 reserved */ 10502 0, /* 41 reserved */ 10503 0, /* 42 reserved */ 10504 0, /* 43 reserved */ 10505 0, /* 44 reserved */ 10506 0, /* 45 reserved */ 10507 0, /* 46 reserved */ 10508 0, /* 47 reserved */ 10509 0, /* 48 reserved */ 10510 0, /* 49 reserved */ 10511 0, /* 50 reserved */ 10512 0, /* 51 reserved */ 10513 0, /* 52 reserved */ 10514 0, /* 53 reserved */ 10515 0, /* 54 reserved */ 10516 0, /* 55 reserved */ 10517 0, /* 56 cisptr_lsw */ 10518 0, /* 57 cisprt_msw */ 10519 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 10520 PCI_DEVICE_ID_38C0800_REV1, /* 59 subsysid */ 10521 0, /* 60 reserved */ 10522 0, /* 61 reserved */ 10523 0, /* 62 reserved */ 10524 0 /* 63 reserved */ 10525 }; 10526 10527 static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar __devinitdata = { 10528 0, /* 00 cfg_lsw */ 10529 0, /* 01 cfg_msw */ 10530 0, /* 02 disc_enable */ 10531 0, /* 03 wdtr_able */ 10532 0, /* 04 sdtr_speed1 */ 10533 0, /* 05 start_motor */ 10534 0, /* 06 tagqng_able */ 10535 0, /* 07 bios_scan */ 10536 0, /* 08 scam_tolerant */ 10537 1, /* 09 adapter_scsi_id */ 10538 1, /* bios_boot_delay */ 10539 1, /* 10 scsi_reset_delay */ 10540 1, /* bios_id_lun */ 10541 1, /* 11 termination_se */ 10542 1, /* termination_lvd */ 10543 0, /* 12 bios_ctrl */ 10544 0, /* 13 sdtr_speed2 */ 10545 0, /* 14 sdtr_speed3 */ 10546 1, /* 15 max_host_qng */ 10547 1, /* max_dvc_qng */ 10548 0, /* 16 dvc_cntl */ 10549 0, /* 17 sdtr_speed4 */ 10550 0, /* 18 serial_number_word1 */ 10551 0, /* 19 serial_number_word2 */ 10552 0, /* 20 serial_number_word3 */ 10553 0, /* 21 check_sum */ 10554 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 10555 , /* 22-29 oem_name[16] */ 10556 0, /* 30 dvc_err_code */ 10557 0, /* 31 adv_err_code */ 10558 0, /* 32 adv_err_addr */ 10559 0, /* 33 saved_dvc_err_code */ 10560 0, /* 34 saved_adv_err_code */ 10561 0, /* 35 saved_adv_err_addr */ 10562 0, /* 36 reserved */ 10563 0, /* 37 reserved */ 10564 0, /* 38 reserved */ 10565 0, /* 39 reserved */ 10566 0, /* 40 reserved */ 10567 0, /* 41 reserved */ 10568 0, /* 42 reserved */ 10569 0, /* 43 reserved */ 10570 0, /* 44 reserved */ 10571 0, /* 45 reserved */ 10572 0, /* 46 reserved */ 10573 0, /* 47 reserved */ 10574 0, /* 48 reserved */ 10575 0, /* 49 reserved */ 10576 0, /* 50 reserved */ 10577 0, /* 51 reserved */ 10578 0, /* 52 reserved */ 10579 0, /* 53 reserved */ 10580 0, /* 54 reserved */ 10581 0, /* 55 reserved */ 10582 0, /* 56 cisptr_lsw */ 10583 0, /* 57 cisprt_msw */ 10584 0, /* 58 subsysvid */ 10585 0, /* 59 subsysid */ 10586 0, /* 60 reserved */ 10587 0, /* 61 reserved */ 10588 0, /* 62 reserved */ 10589 0 /* 63 reserved */ 10590 }; 10591 10592 static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config __devinitdata = { 10593 ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */ 10594 0x0000, /* 01 cfg_msw */ 10595 0xFFFF, /* 02 disc_enable */ 10596 0xFFFF, /* 03 wdtr_able */ 10597 0x5555, /* 04 sdtr_speed1 */ 10598 0xFFFF, /* 05 start_motor */ 10599 0xFFFF, /* 06 tagqng_able */ 10600 0xFFFF, /* 07 bios_scan */ 10601 0, /* 08 scam_tolerant */ 10602 7, /* 09 adapter_scsi_id */ 10603 0, /* bios_boot_delay */ 10604 3, /* 10 scsi_reset_delay */ 10605 0, /* bios_id_lun */ 10606 0, /* 11 termination_se */ 10607 0, /* termination_lvd */ 10608 0xFFE7, /* 12 bios_ctrl */ 10609 0x5555, /* 13 sdtr_speed2 */ 10610 0x5555, /* 14 sdtr_speed3 */ 10611 ASC_DEF_MAX_HOST_QNG, /* 15 max_host_qng */ 10612 ASC_DEF_MAX_DVC_QNG, /* max_dvc_qng */ 10613 0, /* 16 dvc_cntl */ 10614 0x5555, /* 17 sdtr_speed4 */ 10615 0, /* 18 serial_number_word1 */ 10616 0, /* 19 serial_number_word2 */ 10617 0, /* 20 serial_number_word3 */ 10618 0, /* 21 check_sum */ 10619 {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} 10620 , /* 22-29 oem_name[16] */ 10621 0, /* 30 dvc_err_code */ 10622 0, /* 31 adv_err_code */ 10623 0, /* 32 adv_err_addr */ 10624 0, /* 33 saved_dvc_err_code */ 10625 0, /* 34 saved_adv_err_code */ 10626 0, /* 35 saved_adv_err_addr */ 10627 0, /* 36 reserved */ 10628 0, /* 37 reserved */ 10629 0, /* 38 reserved */ 10630 0, /* 39 reserved */ 10631 0, /* 40 reserved */ 10632 0, /* 41 reserved */ 10633 0, /* 42 reserved */ 10634 0, /* 43 reserved */ 10635 0, /* 44 reserved */ 10636 0, /* 45 reserved */ 10637 0, /* 46 reserved */ 10638 0, /* 47 reserved */ 10639 0, /* 48 reserved */ 10640 0, /* 49 reserved */ 10641 0, /* 50 reserved */ 10642 0, /* 51 reserved */ 10643 0, /* 52 reserved */ 10644 0, /* 53 reserved */ 10645 0, /* 54 reserved */ 10646 0, /* 55 reserved */ 10647 0, /* 56 cisptr_lsw */ 10648 0, /* 57 cisprt_msw */ 10649 PCI_VENDOR_ID_ASP, /* 58 subsysvid */ 10650 PCI_DEVICE_ID_38C1600_REV1, /* 59 subsysid */ 10651 0, /* 60 reserved */ 10652 0, /* 61 reserved */ 10653 0, /* 62 reserved */ 10654 0 /* 63 reserved */ 10655 }; 10656 10657 static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar __devinitdata = { 10658 0, /* 00 cfg_lsw */ 10659 0, /* 01 cfg_msw */ 10660 0, /* 02 disc_enable */ 10661 0, /* 03 wdtr_able */ 10662 0, /* 04 sdtr_speed1 */ 10663 0, /* 05 start_motor */ 10664 0, /* 06 tagqng_able */ 10665 0, /* 07 bios_scan */ 10666 0, /* 08 scam_tolerant */ 10667 1, /* 09 adapter_scsi_id */ 10668 1, /* bios_boot_delay */ 10669 1, /* 10 scsi_reset_delay */ 10670 1, /* bios_id_lun */ 10671 1, /* 11 termination_se */ 10672 1, /* termination_lvd */ 10673 0, /* 12 bios_ctrl */ 10674 0, /* 13 sdtr_speed2 */ 10675 0, /* 14 sdtr_speed3 */ 10676 1, /* 15 max_host_qng */ 10677 1, /* max_dvc_qng */ 10678 0, /* 16 dvc_cntl */ 10679 0, /* 17 sdtr_speed4 */ 10680 0, /* 18 serial_number_word1 */ 10681 0, /* 19 serial_number_word2 */ 10682 0, /* 20 serial_number_word3 */ 10683 0, /* 21 check_sum */ 10684 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 10685 , /* 22-29 oem_name[16] */ 10686 0, /* 30 dvc_err_code */ 10687 0, /* 31 adv_err_code */ 10688 0, /* 32 adv_err_addr */ 10689 0, /* 33 saved_dvc_err_code */ 10690 0, /* 34 saved_adv_err_code */ 10691 0, /* 35 saved_adv_err_addr */ 10692 0, /* 36 reserved */ 10693 0, /* 37 reserved */ 10694 0, /* 38 reserved */ 10695 0, /* 39 reserved */ 10696 0, /* 40 reserved */ 10697 0, /* 41 reserved */ 10698 0, /* 42 reserved */ 10699 0, /* 43 reserved */ 10700 0, /* 44 reserved */ 10701 0, /* 45 reserved */ 10702 0, /* 46 reserved */ 10703 0, /* 47 reserved */ 10704 0, /* 48 reserved */ 10705 0, /* 49 reserved */ 10706 0, /* 50 reserved */ 10707 0, /* 51 reserved */ 10708 0, /* 52 reserved */ 10709 0, /* 53 reserved */ 10710 0, /* 54 reserved */ 10711 0, /* 55 reserved */ 10712 0, /* 56 cisptr_lsw */ 10713 0, /* 57 cisprt_msw */ 10714 0, /* 58 subsysvid */ 10715 0, /* 59 subsysid */ 10716 0, /* 60 reserved */ 10717 0, /* 61 reserved */ 10718 0, /* 62 reserved */ 10719 0 /* 63 reserved */ 10720 }; 10721 10722 #ifdef CONFIG_PCI 10723 /* 10724 * Wait for EEPROM command to complete 10725 */ 10726 static void __devinit AdvWaitEEPCmd(AdvPortAddr iop_base) 10727 { 10728 int eep_delay_ms; 10729 10730 for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) { 10731 if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) & 10732 ASC_EEP_CMD_DONE) { 10733 break; 10734 } 10735 mdelay(1); 10736 } 10737 if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) == 10738 0) 10739 BUG(); 10740 } 10741 10742 /* 10743 * Read the EEPROM from specified location 10744 */ 10745 static ushort __devinit AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr) 10746 { 10747 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10748 ASC_EEP_CMD_READ | eep_word_addr); 10749 AdvWaitEEPCmd(iop_base); 10750 return AdvReadWordRegister(iop_base, IOPW_EE_DATA); 10751 } 10752 10753 /* 10754 * Write the EEPROM from 'cfg_buf'. 10755 */ 10756 static void __devinit 10757 AdvSet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf) 10758 { 10759 ushort *wbuf; 10760 ushort addr, chksum; 10761 ushort *charfields; 10762 10763 wbuf = (ushort *)cfg_buf; 10764 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 10765 chksum = 0; 10766 10767 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 10768 AdvWaitEEPCmd(iop_base); 10769 10770 /* 10771 * Write EEPROM from word 0 to word 20. 10772 */ 10773 for (addr = ADV_EEP_DVC_CFG_BEGIN; 10774 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 10775 ushort word; 10776 10777 if (*charfields++) { 10778 word = cpu_to_le16(*wbuf); 10779 } else { 10780 word = *wbuf; 10781 } 10782 chksum += *wbuf; /* Checksum is calculated from word values. */ 10783 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10784 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10785 ASC_EEP_CMD_WRITE | addr); 10786 AdvWaitEEPCmd(iop_base); 10787 mdelay(ADV_EEP_DELAY_MS); 10788 } 10789 10790 /* 10791 * Write EEPROM checksum at word 21. 10792 */ 10793 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 10794 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 10795 AdvWaitEEPCmd(iop_base); 10796 wbuf++; 10797 charfields++; 10798 10799 /* 10800 * Write EEPROM OEM name at words 22 to 29. 10801 */ 10802 for (addr = ADV_EEP_DVC_CTL_BEGIN; 10803 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 10804 ushort word; 10805 10806 if (*charfields++) { 10807 word = cpu_to_le16(*wbuf); 10808 } else { 10809 word = *wbuf; 10810 } 10811 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10812 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10813 ASC_EEP_CMD_WRITE | addr); 10814 AdvWaitEEPCmd(iop_base); 10815 } 10816 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 10817 AdvWaitEEPCmd(iop_base); 10818 } 10819 10820 /* 10821 * Write the EEPROM from 'cfg_buf'. 10822 */ 10823 static void __devinit 10824 AdvSet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf) 10825 { 10826 ushort *wbuf; 10827 ushort *charfields; 10828 ushort addr, chksum; 10829 10830 wbuf = (ushort *)cfg_buf; 10831 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 10832 chksum = 0; 10833 10834 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 10835 AdvWaitEEPCmd(iop_base); 10836 10837 /* 10838 * Write EEPROM from word 0 to word 20. 10839 */ 10840 for (addr = ADV_EEP_DVC_CFG_BEGIN; 10841 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 10842 ushort word; 10843 10844 if (*charfields++) { 10845 word = cpu_to_le16(*wbuf); 10846 } else { 10847 word = *wbuf; 10848 } 10849 chksum += *wbuf; /* Checksum is calculated from word values. */ 10850 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10851 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10852 ASC_EEP_CMD_WRITE | addr); 10853 AdvWaitEEPCmd(iop_base); 10854 mdelay(ADV_EEP_DELAY_MS); 10855 } 10856 10857 /* 10858 * Write EEPROM checksum at word 21. 10859 */ 10860 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 10861 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 10862 AdvWaitEEPCmd(iop_base); 10863 wbuf++; 10864 charfields++; 10865 10866 /* 10867 * Write EEPROM OEM name at words 22 to 29. 10868 */ 10869 for (addr = ADV_EEP_DVC_CTL_BEGIN; 10870 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 10871 ushort word; 10872 10873 if (*charfields++) { 10874 word = cpu_to_le16(*wbuf); 10875 } else { 10876 word = *wbuf; 10877 } 10878 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10879 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10880 ASC_EEP_CMD_WRITE | addr); 10881 AdvWaitEEPCmd(iop_base); 10882 } 10883 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 10884 AdvWaitEEPCmd(iop_base); 10885 } 10886 10887 /* 10888 * Write the EEPROM from 'cfg_buf'. 10889 */ 10890 static void __devinit 10891 AdvSet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf) 10892 { 10893 ushort *wbuf; 10894 ushort *charfields; 10895 ushort addr, chksum; 10896 10897 wbuf = (ushort *)cfg_buf; 10898 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 10899 chksum = 0; 10900 10901 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE); 10902 AdvWaitEEPCmd(iop_base); 10903 10904 /* 10905 * Write EEPROM from word 0 to word 20. 10906 */ 10907 for (addr = ADV_EEP_DVC_CFG_BEGIN; 10908 addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) { 10909 ushort word; 10910 10911 if (*charfields++) { 10912 word = cpu_to_le16(*wbuf); 10913 } else { 10914 word = *wbuf; 10915 } 10916 chksum += *wbuf; /* Checksum is calculated from word values. */ 10917 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10918 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10919 ASC_EEP_CMD_WRITE | addr); 10920 AdvWaitEEPCmd(iop_base); 10921 mdelay(ADV_EEP_DELAY_MS); 10922 } 10923 10924 /* 10925 * Write EEPROM checksum at word 21. 10926 */ 10927 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum); 10928 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr); 10929 AdvWaitEEPCmd(iop_base); 10930 wbuf++; 10931 charfields++; 10932 10933 /* 10934 * Write EEPROM OEM name at words 22 to 29. 10935 */ 10936 for (addr = ADV_EEP_DVC_CTL_BEGIN; 10937 addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) { 10938 ushort word; 10939 10940 if (*charfields++) { 10941 word = cpu_to_le16(*wbuf); 10942 } else { 10943 word = *wbuf; 10944 } 10945 AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word); 10946 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, 10947 ASC_EEP_CMD_WRITE | addr); 10948 AdvWaitEEPCmd(iop_base); 10949 } 10950 AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE); 10951 AdvWaitEEPCmd(iop_base); 10952 } 10953 10954 /* 10955 * Read EEPROM configuration into the specified buffer. 10956 * 10957 * Return a checksum based on the EEPROM configuration read. 10958 */ 10959 static ushort __devinit 10960 AdvGet3550EEPConfig(AdvPortAddr iop_base, ADVEEP_3550_CONFIG *cfg_buf) 10961 { 10962 ushort wval, chksum; 10963 ushort *wbuf; 10964 int eep_addr; 10965 ushort *charfields; 10966 10967 charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar; 10968 wbuf = (ushort *)cfg_buf; 10969 chksum = 0; 10970 10971 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 10972 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 10973 wval = AdvReadEEPWord(iop_base, eep_addr); 10974 chksum += wval; /* Checksum is calculated from word values. */ 10975 if (*charfields++) { 10976 *wbuf = le16_to_cpu(wval); 10977 } else { 10978 *wbuf = wval; 10979 } 10980 } 10981 /* Read checksum word. */ 10982 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10983 wbuf++; 10984 charfields++; 10985 10986 /* Read rest of EEPROM not covered by the checksum. */ 10987 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 10988 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 10989 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 10990 if (*charfields++) { 10991 *wbuf = le16_to_cpu(*wbuf); 10992 } 10993 } 10994 return chksum; 10995 } 10996 10997 /* 10998 * Read EEPROM configuration into the specified buffer. 10999 * 11000 * Return a checksum based on the EEPROM configuration read. 11001 */ 11002 static ushort __devinit 11003 AdvGet38C0800EEPConfig(AdvPortAddr iop_base, ADVEEP_38C0800_CONFIG *cfg_buf) 11004 { 11005 ushort wval, chksum; 11006 ushort *wbuf; 11007 int eep_addr; 11008 ushort *charfields; 11009 11010 charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar; 11011 wbuf = (ushort *)cfg_buf; 11012 chksum = 0; 11013 11014 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 11015 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 11016 wval = AdvReadEEPWord(iop_base, eep_addr); 11017 chksum += wval; /* Checksum is calculated from word values. */ 11018 if (*charfields++) { 11019 *wbuf = le16_to_cpu(wval); 11020 } else { 11021 *wbuf = wval; 11022 } 11023 } 11024 /* Read checksum word. */ 11025 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 11026 wbuf++; 11027 charfields++; 11028 11029 /* Read rest of EEPROM not covered by the checksum. */ 11030 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 11031 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 11032 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 11033 if (*charfields++) { 11034 *wbuf = le16_to_cpu(*wbuf); 11035 } 11036 } 11037 return chksum; 11038 } 11039 11040 /* 11041 * Read EEPROM configuration into the specified buffer. 11042 * 11043 * Return a checksum based on the EEPROM configuration read. 11044 */ 11045 static ushort __devinit 11046 AdvGet38C1600EEPConfig(AdvPortAddr iop_base, ADVEEP_38C1600_CONFIG *cfg_buf) 11047 { 11048 ushort wval, chksum; 11049 ushort *wbuf; 11050 int eep_addr; 11051 ushort *charfields; 11052 11053 charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar; 11054 wbuf = (ushort *)cfg_buf; 11055 chksum = 0; 11056 11057 for (eep_addr = ADV_EEP_DVC_CFG_BEGIN; 11058 eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) { 11059 wval = AdvReadEEPWord(iop_base, eep_addr); 11060 chksum += wval; /* Checksum is calculated from word values. */ 11061 if (*charfields++) { 11062 *wbuf = le16_to_cpu(wval); 11063 } else { 11064 *wbuf = wval; 11065 } 11066 } 11067 /* Read checksum word. */ 11068 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 11069 wbuf++; 11070 charfields++; 11071 11072 /* Read rest of EEPROM not covered by the checksum. */ 11073 for (eep_addr = ADV_EEP_DVC_CTL_BEGIN; 11074 eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) { 11075 *wbuf = AdvReadEEPWord(iop_base, eep_addr); 11076 if (*charfields++) { 11077 *wbuf = le16_to_cpu(*wbuf); 11078 } 11079 } 11080 return chksum; 11081 } 11082 11083 /* 11084 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 11085 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 11086 * all of this is done. 11087 * 11088 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 11089 * 11090 * For a non-fatal error return a warning code. If there are no warnings 11091 * then 0 is returned. 11092 * 11093 * Note: Chip is stopped on entry. 11094 */ 11095 static int __devinit AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc) 11096 { 11097 AdvPortAddr iop_base; 11098 ushort warn_code; 11099 ADVEEP_3550_CONFIG eep_config; 11100 11101 iop_base = asc_dvc->iop_base; 11102 11103 warn_code = 0; 11104 11105 /* 11106 * Read the board's EEPROM configuration. 11107 * 11108 * Set default values if a bad checksum is found. 11109 */ 11110 if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) { 11111 warn_code |= ASC_WARN_EEPROM_CHKSUM; 11112 11113 /* 11114 * Set EEPROM default values. 11115 */ 11116 memcpy(&eep_config, &Default_3550_EEPROM_Config, 11117 sizeof(ADVEEP_3550_CONFIG)); 11118 11119 /* 11120 * Assume the 6 byte board serial number that was read from 11121 * EEPROM is correct even if the EEPROM checksum failed. 11122 */ 11123 eep_config.serial_number_word3 = 11124 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 11125 11126 eep_config.serial_number_word2 = 11127 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 11128 11129 eep_config.serial_number_word1 = 11130 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 11131 11132 AdvSet3550EEPConfig(iop_base, &eep_config); 11133 } 11134 /* 11135 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 11136 * EEPROM configuration that was read. 11137 * 11138 * This is the mapping of EEPROM fields to Adv Library fields. 11139 */ 11140 asc_dvc->wdtr_able = eep_config.wdtr_able; 11141 asc_dvc->sdtr_able = eep_config.sdtr_able; 11142 asc_dvc->ultra_able = eep_config.ultra_able; 11143 asc_dvc->tagqng_able = eep_config.tagqng_able; 11144 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 11145 asc_dvc->max_host_qng = eep_config.max_host_qng; 11146 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 11147 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 11148 asc_dvc->start_motor = eep_config.start_motor; 11149 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 11150 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 11151 asc_dvc->no_scam = eep_config.scam_tolerant; 11152 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 11153 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 11154 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 11155 11156 /* 11157 * Set the host maximum queuing (max. 253, min. 16) and the per device 11158 * maximum queuing (max. 63, min. 4). 11159 */ 11160 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 11161 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 11162 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 11163 /* If the value is zero, assume it is uninitialized. */ 11164 if (eep_config.max_host_qng == 0) { 11165 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 11166 } else { 11167 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 11168 } 11169 } 11170 11171 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 11172 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 11173 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 11174 /* If the value is zero, assume it is uninitialized. */ 11175 if (eep_config.max_dvc_qng == 0) { 11176 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 11177 } else { 11178 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 11179 } 11180 } 11181 11182 /* 11183 * If 'max_dvc_qng' is greater than 'max_host_qng', then 11184 * set 'max_dvc_qng' to 'max_host_qng'. 11185 */ 11186 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 11187 eep_config.max_dvc_qng = eep_config.max_host_qng; 11188 } 11189 11190 /* 11191 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 11192 * values based on possibly adjusted EEPROM values. 11193 */ 11194 asc_dvc->max_host_qng = eep_config.max_host_qng; 11195 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 11196 11197 /* 11198 * If the EEPROM 'termination' field is set to automatic (0), then set 11199 * the ADV_DVC_CFG 'termination' field to automatic also. 11200 * 11201 * If the termination is specified with a non-zero 'termination' 11202 * value check that a legal value is set and set the ADV_DVC_CFG 11203 * 'termination' field appropriately. 11204 */ 11205 if (eep_config.termination == 0) { 11206 asc_dvc->cfg->termination = 0; /* auto termination */ 11207 } else { 11208 /* Enable manual control with low off / high off. */ 11209 if (eep_config.termination == 1) { 11210 asc_dvc->cfg->termination = TERM_CTL_SEL; 11211 11212 /* Enable manual control with low off / high on. */ 11213 } else if (eep_config.termination == 2) { 11214 asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H; 11215 11216 /* Enable manual control with low on / high on. */ 11217 } else if (eep_config.termination == 3) { 11218 asc_dvc->cfg->termination = 11219 TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L; 11220 } else { 11221 /* 11222 * The EEPROM 'termination' field contains a bad value. Use 11223 * automatic termination instead. 11224 */ 11225 asc_dvc->cfg->termination = 0; 11226 warn_code |= ASC_WARN_EEPROM_TERMINATION; 11227 } 11228 } 11229 11230 return warn_code; 11231 } 11232 11233 /* 11234 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and 11235 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while 11236 * all of this is done. 11237 * 11238 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 11239 * 11240 * For a non-fatal error return a warning code. If there are no warnings 11241 * then 0 is returned. 11242 * 11243 * Note: Chip is stopped on entry. 11244 */ 11245 static int __devinit AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc) 11246 { 11247 AdvPortAddr iop_base; 11248 ushort warn_code; 11249 ADVEEP_38C0800_CONFIG eep_config; 11250 uchar tid, termination; 11251 ushort sdtr_speed = 0; 11252 11253 iop_base = asc_dvc->iop_base; 11254 11255 warn_code = 0; 11256 11257 /* 11258 * Read the board's EEPROM configuration. 11259 * 11260 * Set default values if a bad checksum is found. 11261 */ 11262 if (AdvGet38C0800EEPConfig(iop_base, &eep_config) != 11263 eep_config.check_sum) { 11264 warn_code |= ASC_WARN_EEPROM_CHKSUM; 11265 11266 /* 11267 * Set EEPROM default values. 11268 */ 11269 memcpy(&eep_config, &Default_38C0800_EEPROM_Config, 11270 sizeof(ADVEEP_38C0800_CONFIG)); 11271 11272 /* 11273 * Assume the 6 byte board serial number that was read from 11274 * EEPROM is correct even if the EEPROM checksum failed. 11275 */ 11276 eep_config.serial_number_word3 = 11277 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 11278 11279 eep_config.serial_number_word2 = 11280 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 11281 11282 eep_config.serial_number_word1 = 11283 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 11284 11285 AdvSet38C0800EEPConfig(iop_base, &eep_config); 11286 } 11287 /* 11288 * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the 11289 * EEPROM configuration that was read. 11290 * 11291 * This is the mapping of EEPROM fields to Adv Library fields. 11292 */ 11293 asc_dvc->wdtr_able = eep_config.wdtr_able; 11294 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 11295 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 11296 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 11297 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 11298 asc_dvc->tagqng_able = eep_config.tagqng_able; 11299 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 11300 asc_dvc->max_host_qng = eep_config.max_host_qng; 11301 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 11302 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID); 11303 asc_dvc->start_motor = eep_config.start_motor; 11304 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 11305 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 11306 asc_dvc->no_scam = eep_config.scam_tolerant; 11307 asc_dvc->cfg->serial1 = eep_config.serial_number_word1; 11308 asc_dvc->cfg->serial2 = eep_config.serial_number_word2; 11309 asc_dvc->cfg->serial3 = eep_config.serial_number_word3; 11310 11311 /* 11312 * For every Target ID if any of its 'sdtr_speed[1234]' bits 11313 * are set, then set an 'sdtr_able' bit for it. 11314 */ 11315 asc_dvc->sdtr_able = 0; 11316 for (tid = 0; tid <= ADV_MAX_TID; tid++) { 11317 if (tid == 0) { 11318 sdtr_speed = asc_dvc->sdtr_speed1; 11319 } else if (tid == 4) { 11320 sdtr_speed = asc_dvc->sdtr_speed2; 11321 } else if (tid == 8) { 11322 sdtr_speed = asc_dvc->sdtr_speed3; 11323 } else if (tid == 12) { 11324 sdtr_speed = asc_dvc->sdtr_speed4; 11325 } 11326 if (sdtr_speed & ADV_MAX_TID) { 11327 asc_dvc->sdtr_able |= (1 << tid); 11328 } 11329 sdtr_speed >>= 4; 11330 } 11331 11332 /* 11333 * Set the host maximum queuing (max. 253, min. 16) and the per device 11334 * maximum queuing (max. 63, min. 4). 11335 */ 11336 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 11337 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 11338 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 11339 /* If the value is zero, assume it is uninitialized. */ 11340 if (eep_config.max_host_qng == 0) { 11341 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 11342 } else { 11343 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 11344 } 11345 } 11346 11347 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 11348 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 11349 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 11350 /* If the value is zero, assume it is uninitialized. */ 11351 if (eep_config.max_dvc_qng == 0) { 11352 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 11353 } else { 11354 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 11355 } 11356 } 11357 11358 /* 11359 * If 'max_dvc_qng' is greater than 'max_host_qng', then 11360 * set 'max_dvc_qng' to 'max_host_qng'. 11361 */ 11362 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 11363 eep_config.max_dvc_qng = eep_config.max_host_qng; 11364 } 11365 11366 /* 11367 * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng' 11368 * values based on possibly adjusted EEPROM values. 11369 */ 11370 asc_dvc->max_host_qng = eep_config.max_host_qng; 11371 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 11372 11373 /* 11374 * If the EEPROM 'termination' field is set to automatic (0), then set 11375 * the ADV_DVC_CFG 'termination' field to automatic also. 11376 * 11377 * If the termination is specified with a non-zero 'termination' 11378 * value check that a legal value is set and set the ADV_DVC_CFG 11379 * 'termination' field appropriately. 11380 */ 11381 if (eep_config.termination_se == 0) { 11382 termination = 0; /* auto termination for SE */ 11383 } else { 11384 /* Enable manual control with low off / high off. */ 11385 if (eep_config.termination_se == 1) { 11386 termination = 0; 11387 11388 /* Enable manual control with low off / high on. */ 11389 } else if (eep_config.termination_se == 2) { 11390 termination = TERM_SE_HI; 11391 11392 /* Enable manual control with low on / high on. */ 11393 } else if (eep_config.termination_se == 3) { 11394 termination = TERM_SE; 11395 } else { 11396 /* 11397 * The EEPROM 'termination_se' field contains a bad value. 11398 * Use automatic termination instead. 11399 */ 11400 termination = 0; 11401 warn_code |= ASC_WARN_EEPROM_TERMINATION; 11402 } 11403 } 11404 11405 if (eep_config.termination_lvd == 0) { 11406 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 11407 } else { 11408 /* Enable manual control with low off / high off. */ 11409 if (eep_config.termination_lvd == 1) { 11410 asc_dvc->cfg->termination = termination; 11411 11412 /* Enable manual control with low off / high on. */ 11413 } else if (eep_config.termination_lvd == 2) { 11414 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 11415 11416 /* Enable manual control with low on / high on. */ 11417 } else if (eep_config.termination_lvd == 3) { 11418 asc_dvc->cfg->termination = termination | TERM_LVD; 11419 } else { 11420 /* 11421 * The EEPROM 'termination_lvd' field contains a bad value. 11422 * Use automatic termination instead. 11423 */ 11424 asc_dvc->cfg->termination = termination; 11425 warn_code |= ASC_WARN_EEPROM_TERMINATION; 11426 } 11427 } 11428 11429 return warn_code; 11430 } 11431 11432 /* 11433 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and 11434 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while 11435 * all of this is done. 11436 * 11437 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR. 11438 * 11439 * For a non-fatal error return a warning code. If there are no warnings 11440 * then 0 is returned. 11441 * 11442 * Note: Chip is stopped on entry. 11443 */ 11444 static int __devinit AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc) 11445 { 11446 AdvPortAddr iop_base; 11447 ushort warn_code; 11448 ADVEEP_38C1600_CONFIG eep_config; 11449 uchar tid, termination; 11450 ushort sdtr_speed = 0; 11451 11452 iop_base = asc_dvc->iop_base; 11453 11454 warn_code = 0; 11455 11456 /* 11457 * Read the board's EEPROM configuration. 11458 * 11459 * Set default values if a bad checksum is found. 11460 */ 11461 if (AdvGet38C1600EEPConfig(iop_base, &eep_config) != 11462 eep_config.check_sum) { 11463 struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc); 11464 warn_code |= ASC_WARN_EEPROM_CHKSUM; 11465 11466 /* 11467 * Set EEPROM default values. 11468 */ 11469 memcpy(&eep_config, &Default_38C1600_EEPROM_Config, 11470 sizeof(ADVEEP_38C1600_CONFIG)); 11471 11472 if (PCI_FUNC(pdev->devfn) != 0) { 11473 u8 ints; 11474 /* 11475 * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60 11476 * and old Mac system booting problem. The Expansion 11477 * ROM must be disabled in Function 1 for these systems 11478 */ 11479 eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE; 11480 /* 11481 * Clear the INTAB (bit 11) if the GPIO 0 input 11482 * indicates the Function 1 interrupt line is wired 11483 * to INTB. 11484 * 11485 * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input: 11486 * 1 - Function 1 interrupt line wired to INT A. 11487 * 0 - Function 1 interrupt line wired to INT B. 11488 * 11489 * Note: Function 0 is always wired to INTA. 11490 * Put all 5 GPIO bits in input mode and then read 11491 * their input values. 11492 */ 11493 AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0); 11494 ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA); 11495 if ((ints & 0x01) == 0) 11496 eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB; 11497 } 11498 11499 /* 11500 * Assume the 6 byte board serial number that was read from 11501 * EEPROM is correct even if the EEPROM checksum failed. 11502 */ 11503 eep_config.serial_number_word3 = 11504 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1); 11505 eep_config.serial_number_word2 = 11506 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2); 11507 eep_config.serial_number_word1 = 11508 AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3); 11509 11510 AdvSet38C1600EEPConfig(iop_base, &eep_config); 11511 } 11512 11513 /* 11514 * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the 11515 * EEPROM configuration that was read. 11516 * 11517 * This is the mapping of EEPROM fields to Adv Library fields. 11518 */ 11519 asc_dvc->wdtr_able = eep_config.wdtr_able; 11520 asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1; 11521 asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2; 11522 asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3; 11523 asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4; 11524 asc_dvc->ppr_able = 0; 11525 asc_dvc->tagqng_able = eep_config.tagqng_able; 11526 asc_dvc->cfg->disc_enable = eep_config.disc_enable; 11527 asc_dvc->max_host_qng = eep_config.max_host_qng; 11528 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 11529 asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID); 11530 asc_dvc->start_motor = eep_config.start_motor; 11531 asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay; 11532 asc_dvc->bios_ctrl = eep_config.bios_ctrl; 11533 asc_dvc->no_scam = eep_config.scam_tolerant; 11534 11535 /* 11536 * For every Target ID if any of its 'sdtr_speed[1234]' bits 11537 * are set, then set an 'sdtr_able' bit for it. 11538 */ 11539 asc_dvc->sdtr_able = 0; 11540 for (tid = 0; tid <= ASC_MAX_TID; tid++) { 11541 if (tid == 0) { 11542 sdtr_speed = asc_dvc->sdtr_speed1; 11543 } else if (tid == 4) { 11544 sdtr_speed = asc_dvc->sdtr_speed2; 11545 } else if (tid == 8) { 11546 sdtr_speed = asc_dvc->sdtr_speed3; 11547 } else if (tid == 12) { 11548 sdtr_speed = asc_dvc->sdtr_speed4; 11549 } 11550 if (sdtr_speed & ASC_MAX_TID) { 11551 asc_dvc->sdtr_able |= (1 << tid); 11552 } 11553 sdtr_speed >>= 4; 11554 } 11555 11556 /* 11557 * Set the host maximum queuing (max. 253, min. 16) and the per device 11558 * maximum queuing (max. 63, min. 4). 11559 */ 11560 if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) { 11561 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 11562 } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) { 11563 /* If the value is zero, assume it is uninitialized. */ 11564 if (eep_config.max_host_qng == 0) { 11565 eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG; 11566 } else { 11567 eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG; 11568 } 11569 } 11570 11571 if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) { 11572 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 11573 } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) { 11574 /* If the value is zero, assume it is uninitialized. */ 11575 if (eep_config.max_dvc_qng == 0) { 11576 eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG; 11577 } else { 11578 eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG; 11579 } 11580 } 11581 11582 /* 11583 * If 'max_dvc_qng' is greater than 'max_host_qng', then 11584 * set 'max_dvc_qng' to 'max_host_qng'. 11585 */ 11586 if (eep_config.max_dvc_qng > eep_config.max_host_qng) { 11587 eep_config.max_dvc_qng = eep_config.max_host_qng; 11588 } 11589 11590 /* 11591 * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng' 11592 * values based on possibly adjusted EEPROM values. 11593 */ 11594 asc_dvc->max_host_qng = eep_config.max_host_qng; 11595 asc_dvc->max_dvc_qng = eep_config.max_dvc_qng; 11596 11597 /* 11598 * If the EEPROM 'termination' field is set to automatic (0), then set 11599 * the ASC_DVC_CFG 'termination' field to automatic also. 11600 * 11601 * If the termination is specified with a non-zero 'termination' 11602 * value check that a legal value is set and set the ASC_DVC_CFG 11603 * 'termination' field appropriately. 11604 */ 11605 if (eep_config.termination_se == 0) { 11606 termination = 0; /* auto termination for SE */ 11607 } else { 11608 /* Enable manual control with low off / high off. */ 11609 if (eep_config.termination_se == 1) { 11610 termination = 0; 11611 11612 /* Enable manual control with low off / high on. */ 11613 } else if (eep_config.termination_se == 2) { 11614 termination = TERM_SE_HI; 11615 11616 /* Enable manual control with low on / high on. */ 11617 } else if (eep_config.termination_se == 3) { 11618 termination = TERM_SE; 11619 } else { 11620 /* 11621 * The EEPROM 'termination_se' field contains a bad value. 11622 * Use automatic termination instead. 11623 */ 11624 termination = 0; 11625 warn_code |= ASC_WARN_EEPROM_TERMINATION; 11626 } 11627 } 11628 11629 if (eep_config.termination_lvd == 0) { 11630 asc_dvc->cfg->termination = termination; /* auto termination for LVD */ 11631 } else { 11632 /* Enable manual control with low off / high off. */ 11633 if (eep_config.termination_lvd == 1) { 11634 asc_dvc->cfg->termination = termination; 11635 11636 /* Enable manual control with low off / high on. */ 11637 } else if (eep_config.termination_lvd == 2) { 11638 asc_dvc->cfg->termination = termination | TERM_LVD_HI; 11639 11640 /* Enable manual control with low on / high on. */ 11641 } else if (eep_config.termination_lvd == 3) { 11642 asc_dvc->cfg->termination = termination | TERM_LVD; 11643 } else { 11644 /* 11645 * The EEPROM 'termination_lvd' field contains a bad value. 11646 * Use automatic termination instead. 11647 */ 11648 asc_dvc->cfg->termination = termination; 11649 warn_code |= ASC_WARN_EEPROM_TERMINATION; 11650 } 11651 } 11652 11653 return warn_code; 11654 } 11655 11656 /* 11657 * Initialize the ADV_DVC_VAR structure. 11658 * 11659 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR. 11660 * 11661 * For a non-fatal error return a warning code. If there are no warnings 11662 * then 0 is returned. 11663 */ 11664 static int __devinit 11665 AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost) 11666 { 11667 struct asc_board *board = shost_priv(shost); 11668 ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var; 11669 unsigned short warn_code = 0; 11670 AdvPortAddr iop_base = asc_dvc->iop_base; 11671 u16 cmd; 11672 int status; 11673 11674 asc_dvc->err_code = 0; 11675 11676 /* 11677 * Save the state of the PCI Configuration Command Register 11678 * "Parity Error Response Control" Bit. If the bit is clear (0), 11679 * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore 11680 * DMA parity errors. 11681 */ 11682 asc_dvc->cfg->control_flag = 0; 11683 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 11684 if ((cmd & PCI_COMMAND_PARITY) == 0) 11685 asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR; 11686 11687 asc_dvc->cfg->chip_version = 11688 AdvGetChipVersion(iop_base, asc_dvc->bus_type); 11689 11690 ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n", 11691 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1), 11692 (ushort)ADV_CHIP_ID_BYTE); 11693 11694 ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n", 11695 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0), 11696 (ushort)ADV_CHIP_ID_WORD); 11697 11698 /* 11699 * Reset the chip to start and allow register writes. 11700 */ 11701 if (AdvFindSignature(iop_base) == 0) { 11702 asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE; 11703 return ADV_ERROR; 11704 } else { 11705 /* 11706 * The caller must set 'chip_type' to a valid setting. 11707 */ 11708 if (asc_dvc->chip_type != ADV_CHIP_ASC3550 && 11709 asc_dvc->chip_type != ADV_CHIP_ASC38C0800 && 11710 asc_dvc->chip_type != ADV_CHIP_ASC38C1600) { 11711 asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE; 11712 return ADV_ERROR; 11713 } 11714 11715 /* 11716 * Reset Chip. 11717 */ 11718 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 11719 ADV_CTRL_REG_CMD_RESET); 11720 mdelay(100); 11721 AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, 11722 ADV_CTRL_REG_CMD_WR_IO_REG); 11723 11724 if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) { 11725 status = AdvInitFrom38C1600EEP(asc_dvc); 11726 } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) { 11727 status = AdvInitFrom38C0800EEP(asc_dvc); 11728 } else { 11729 status = AdvInitFrom3550EEP(asc_dvc); 11730 } 11731 warn_code |= status; 11732 } 11733 11734 if (warn_code != 0) 11735 shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code); 11736 11737 if (asc_dvc->err_code) 11738 shost_printk(KERN_ERR, shost, "error code 0x%x\n", 11739 asc_dvc->err_code); 11740 11741 return asc_dvc->err_code; 11742 } 11743 #endif 11744 11745 static struct scsi_host_template advansys_template = { 11746 .proc_name = DRV_NAME, 11747 #ifdef CONFIG_PROC_FS 11748 .proc_info = advansys_proc_info, 11749 #endif 11750 .name = DRV_NAME, 11751 .info = advansys_info, 11752 .queuecommand = advansys_queuecommand, 11753 .eh_bus_reset_handler = advansys_reset, 11754 .bios_param = advansys_biosparam, 11755 .slave_configure = advansys_slave_configure, 11756 /* 11757 * Because the driver may control an ISA adapter 'unchecked_isa_dma' 11758 * must be set. The flag will be cleared in advansys_board_found 11759 * for non-ISA adapters. 11760 */ 11761 .unchecked_isa_dma = 1, 11762 /* 11763 * All adapters controlled by this driver are capable of large 11764 * scatter-gather lists. According to the mid-level SCSI documentation 11765 * this obviates any performance gain provided by setting 11766 * 'use_clustering'. But empirically while CPU utilization is increased 11767 * by enabling clustering, I/O throughput increases as well. 11768 */ 11769 .use_clustering = ENABLE_CLUSTERING, 11770 }; 11771 11772 static int __devinit advansys_wide_init_chip(struct Scsi_Host *shost) 11773 { 11774 struct asc_board *board = shost_priv(shost); 11775 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 11776 int req_cnt = 0; 11777 adv_req_t *reqp = NULL; 11778 int sg_cnt = 0; 11779 adv_sgblk_t *sgp; 11780 int warn_code, err_code; 11781 11782 /* 11783 * Allocate buffer carrier structures. The total size 11784 * is about 4 KB, so allocate all at once. 11785 */ 11786 adv_dvc->carrier_buf = kmalloc(ADV_CARRIER_BUFSIZE, GFP_KERNEL); 11787 ASC_DBG(1, "carrier_buf 0x%p\n", adv_dvc->carrier_buf); 11788 11789 if (!adv_dvc->carrier_buf) 11790 goto kmalloc_failed; 11791 11792 /* 11793 * Allocate up to 'max_host_qng' request structures for the Wide 11794 * board. The total size is about 16 KB, so allocate all at once. 11795 * If the allocation fails decrement and try again. 11796 */ 11797 for (req_cnt = adv_dvc->max_host_qng; req_cnt > 0; req_cnt--) { 11798 reqp = kmalloc(sizeof(adv_req_t) * req_cnt, GFP_KERNEL); 11799 11800 ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", reqp, req_cnt, 11801 (ulong)sizeof(adv_req_t) * req_cnt); 11802 11803 if (reqp) 11804 break; 11805 } 11806 11807 if (!reqp) 11808 goto kmalloc_failed; 11809 11810 adv_dvc->orig_reqp = reqp; 11811 11812 /* 11813 * Allocate up to ADV_TOT_SG_BLOCK request structures for 11814 * the Wide board. Each structure is about 136 bytes. 11815 */ 11816 board->adv_sgblkp = NULL; 11817 for (sg_cnt = 0; sg_cnt < ADV_TOT_SG_BLOCK; sg_cnt++) { 11818 sgp = kmalloc(sizeof(adv_sgblk_t), GFP_KERNEL); 11819 11820 if (!sgp) 11821 break; 11822 11823 sgp->next_sgblkp = board->adv_sgblkp; 11824 board->adv_sgblkp = sgp; 11825 11826 } 11827 11828 ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", sg_cnt, sizeof(adv_sgblk_t), 11829 sizeof(adv_sgblk_t) * sg_cnt); 11830 11831 if (!board->adv_sgblkp) 11832 goto kmalloc_failed; 11833 11834 /* 11835 * Point 'adv_reqp' to the request structures and 11836 * link them together. 11837 */ 11838 req_cnt--; 11839 reqp[req_cnt].next_reqp = NULL; 11840 for (; req_cnt > 0; req_cnt--) { 11841 reqp[req_cnt - 1].next_reqp = &reqp[req_cnt]; 11842 } 11843 board->adv_reqp = &reqp[0]; 11844 11845 if (adv_dvc->chip_type == ADV_CHIP_ASC3550) { 11846 ASC_DBG(2, "AdvInitAsc3550Driver()\n"); 11847 warn_code = AdvInitAsc3550Driver(adv_dvc); 11848 } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) { 11849 ASC_DBG(2, "AdvInitAsc38C0800Driver()\n"); 11850 warn_code = AdvInitAsc38C0800Driver(adv_dvc); 11851 } else { 11852 ASC_DBG(2, "AdvInitAsc38C1600Driver()\n"); 11853 warn_code = AdvInitAsc38C1600Driver(adv_dvc); 11854 } 11855 err_code = adv_dvc->err_code; 11856 11857 if (warn_code || err_code) { 11858 shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error " 11859 "0x%x\n", warn_code, err_code); 11860 } 11861 11862 goto exit; 11863 11864 kmalloc_failed: 11865 shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n"); 11866 err_code = ADV_ERROR; 11867 exit: 11868 return err_code; 11869 } 11870 11871 static void advansys_wide_free_mem(struct asc_board *board) 11872 { 11873 struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var; 11874 kfree(adv_dvc->carrier_buf); 11875 adv_dvc->carrier_buf = NULL; 11876 kfree(adv_dvc->orig_reqp); 11877 adv_dvc->orig_reqp = board->adv_reqp = NULL; 11878 while (board->adv_sgblkp) { 11879 adv_sgblk_t *sgp = board->adv_sgblkp; 11880 board->adv_sgblkp = sgp->next_sgblkp; 11881 kfree(sgp); 11882 } 11883 } 11884 11885 static int __devinit advansys_board_found(struct Scsi_Host *shost, 11886 unsigned int iop, int bus_type) 11887 { 11888 struct pci_dev *pdev; 11889 struct asc_board *boardp = shost_priv(shost); 11890 ASC_DVC_VAR *asc_dvc_varp = NULL; 11891 ADV_DVC_VAR *adv_dvc_varp = NULL; 11892 int share_irq, warn_code, ret; 11893 11894 pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL; 11895 11896 if (ASC_NARROW_BOARD(boardp)) { 11897 ASC_DBG(1, "narrow board\n"); 11898 asc_dvc_varp = &boardp->dvc_var.asc_dvc_var; 11899 asc_dvc_varp->bus_type = bus_type; 11900 asc_dvc_varp->drv_ptr = boardp; 11901 asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg; 11902 asc_dvc_varp->iop_base = iop; 11903 } else { 11904 #ifdef CONFIG_PCI 11905 adv_dvc_varp = &boardp->dvc_var.adv_dvc_var; 11906 adv_dvc_varp->drv_ptr = boardp; 11907 adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg; 11908 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) { 11909 ASC_DBG(1, "wide board ASC-3550\n"); 11910 adv_dvc_varp->chip_type = ADV_CHIP_ASC3550; 11911 } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) { 11912 ASC_DBG(1, "wide board ASC-38C0800\n"); 11913 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800; 11914 } else { 11915 ASC_DBG(1, "wide board ASC-38C1600\n"); 11916 adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600; 11917 } 11918 11919 boardp->asc_n_io_port = pci_resource_len(pdev, 1); 11920 boardp->ioremap_addr = pci_ioremap_bar(pdev, 1); 11921 if (!boardp->ioremap_addr) { 11922 shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) " 11923 "returned NULL\n", 11924 (long)pci_resource_start(pdev, 1), 11925 boardp->asc_n_io_port); 11926 ret = -ENODEV; 11927 goto err_shost; 11928 } 11929 adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr; 11930 ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base); 11931 11932 /* 11933 * Even though it isn't used to access wide boards, other 11934 * than for the debug line below, save I/O Port address so 11935 * that it can be reported. 11936 */ 11937 boardp->ioport = iop; 11938 11939 ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n", 11940 (ushort)inp(iop + 1), (ushort)inpw(iop)); 11941 #endif /* CONFIG_PCI */ 11942 } 11943 11944 #ifdef CONFIG_PROC_FS 11945 /* 11946 * Allocate buffer for printing information from 11947 * /proc/scsi/advansys/[0...]. 11948 */ 11949 boardp->prtbuf = kmalloc(ASC_PRTBUF_SIZE, GFP_KERNEL); 11950 if (!boardp->prtbuf) { 11951 shost_printk(KERN_ERR, shost, "kmalloc(%d) returned NULL\n", 11952 ASC_PRTBUF_SIZE); 11953 ret = -ENOMEM; 11954 goto err_unmap; 11955 } 11956 #endif /* CONFIG_PROC_FS */ 11957 11958 if (ASC_NARROW_BOARD(boardp)) { 11959 /* 11960 * Set the board bus type and PCI IRQ before 11961 * calling AscInitGetConfig(). 11962 */ 11963 switch (asc_dvc_varp->bus_type) { 11964 #ifdef CONFIG_ISA 11965 case ASC_IS_ISA: 11966 shost->unchecked_isa_dma = TRUE; 11967 share_irq = 0; 11968 break; 11969 case ASC_IS_VL: 11970 shost->unchecked_isa_dma = FALSE; 11971 share_irq = 0; 11972 break; 11973 case ASC_IS_EISA: 11974 shost->unchecked_isa_dma = FALSE; 11975 share_irq = IRQF_SHARED; 11976 break; 11977 #endif /* CONFIG_ISA */ 11978 #ifdef CONFIG_PCI 11979 case ASC_IS_PCI: 11980 shost->unchecked_isa_dma = FALSE; 11981 share_irq = IRQF_SHARED; 11982 break; 11983 #endif /* CONFIG_PCI */ 11984 default: 11985 shost_printk(KERN_ERR, shost, "unknown adapter type: " 11986 "%d\n", asc_dvc_varp->bus_type); 11987 shost->unchecked_isa_dma = TRUE; 11988 share_irq = 0; 11989 break; 11990 } 11991 11992 /* 11993 * NOTE: AscInitGetConfig() may change the board's 11994 * bus_type value. The bus_type value should no 11995 * longer be used. If the bus_type field must be 11996 * referenced only use the bit-wise AND operator "&". 11997 */ 11998 ASC_DBG(2, "AscInitGetConfig()\n"); 11999 ret = AscInitGetConfig(shost) ? -ENODEV : 0; 12000 } else { 12001 #ifdef CONFIG_PCI 12002 /* 12003 * For Wide boards set PCI information before calling 12004 * AdvInitGetConfig(). 12005 */ 12006 shost->unchecked_isa_dma = FALSE; 12007 share_irq = IRQF_SHARED; 12008 ASC_DBG(2, "AdvInitGetConfig()\n"); 12009 12010 ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0; 12011 #endif /* CONFIG_PCI */ 12012 } 12013 12014 if (ret) 12015 goto err_free_proc; 12016 12017 /* 12018 * Save the EEPROM configuration so that it can be displayed 12019 * from /proc/scsi/advansys/[0...]. 12020 */ 12021 if (ASC_NARROW_BOARD(boardp)) { 12022 12023 ASCEEP_CONFIG *ep; 12024 12025 /* 12026 * Set the adapter's target id bit in the 'init_tidmask' field. 12027 */ 12028 boardp->init_tidmask |= 12029 ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id); 12030 12031 /* 12032 * Save EEPROM settings for the board. 12033 */ 12034 ep = &boardp->eep_config.asc_eep; 12035 12036 ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable; 12037 ep->disc_enable = asc_dvc_varp->cfg->disc_enable; 12038 ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled; 12039 ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed); 12040 ep->start_motor = asc_dvc_varp->start_motor; 12041 ep->cntl = asc_dvc_varp->dvc_cntl; 12042 ep->no_scam = asc_dvc_varp->no_scam; 12043 ep->max_total_qng = asc_dvc_varp->max_total_qng; 12044 ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id); 12045 /* 'max_tag_qng' is set to the same value for every device. */ 12046 ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0]; 12047 ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0]; 12048 ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1]; 12049 ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2]; 12050 ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3]; 12051 ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4]; 12052 ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5]; 12053 12054 /* 12055 * Modify board configuration. 12056 */ 12057 ASC_DBG(2, "AscInitSetConfig()\n"); 12058 ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0; 12059 if (ret) 12060 goto err_free_proc; 12061 } else { 12062 ADVEEP_3550_CONFIG *ep_3550; 12063 ADVEEP_38C0800_CONFIG *ep_38C0800; 12064 ADVEEP_38C1600_CONFIG *ep_38C1600; 12065 12066 /* 12067 * Save Wide EEP Configuration Information. 12068 */ 12069 if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) { 12070 ep_3550 = &boardp->eep_config.adv_3550_eep; 12071 12072 ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id; 12073 ep_3550->max_host_qng = adv_dvc_varp->max_host_qng; 12074 ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 12075 ep_3550->termination = adv_dvc_varp->cfg->termination; 12076 ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable; 12077 ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl; 12078 ep_3550->wdtr_able = adv_dvc_varp->wdtr_able; 12079 ep_3550->sdtr_able = adv_dvc_varp->sdtr_able; 12080 ep_3550->ultra_able = adv_dvc_varp->ultra_able; 12081 ep_3550->tagqng_able = adv_dvc_varp->tagqng_able; 12082 ep_3550->start_motor = adv_dvc_varp->start_motor; 12083 ep_3550->scsi_reset_delay = 12084 adv_dvc_varp->scsi_reset_wait; 12085 ep_3550->serial_number_word1 = 12086 adv_dvc_varp->cfg->serial1; 12087 ep_3550->serial_number_word2 = 12088 adv_dvc_varp->cfg->serial2; 12089 ep_3550->serial_number_word3 = 12090 adv_dvc_varp->cfg->serial3; 12091 } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) { 12092 ep_38C0800 = &boardp->eep_config.adv_38C0800_eep; 12093 12094 ep_38C0800->adapter_scsi_id = 12095 adv_dvc_varp->chip_scsi_id; 12096 ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng; 12097 ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 12098 ep_38C0800->termination_lvd = 12099 adv_dvc_varp->cfg->termination; 12100 ep_38C0800->disc_enable = 12101 adv_dvc_varp->cfg->disc_enable; 12102 ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl; 12103 ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able; 12104 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 12105 ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 12106 ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 12107 ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 12108 ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 12109 ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able; 12110 ep_38C0800->start_motor = adv_dvc_varp->start_motor; 12111 ep_38C0800->scsi_reset_delay = 12112 adv_dvc_varp->scsi_reset_wait; 12113 ep_38C0800->serial_number_word1 = 12114 adv_dvc_varp->cfg->serial1; 12115 ep_38C0800->serial_number_word2 = 12116 adv_dvc_varp->cfg->serial2; 12117 ep_38C0800->serial_number_word3 = 12118 adv_dvc_varp->cfg->serial3; 12119 } else { 12120 ep_38C1600 = &boardp->eep_config.adv_38C1600_eep; 12121 12122 ep_38C1600->adapter_scsi_id = 12123 adv_dvc_varp->chip_scsi_id; 12124 ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng; 12125 ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng; 12126 ep_38C1600->termination_lvd = 12127 adv_dvc_varp->cfg->termination; 12128 ep_38C1600->disc_enable = 12129 adv_dvc_varp->cfg->disc_enable; 12130 ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl; 12131 ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able; 12132 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 12133 ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1; 12134 ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2; 12135 ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3; 12136 ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4; 12137 ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able; 12138 ep_38C1600->start_motor = adv_dvc_varp->start_motor; 12139 ep_38C1600->scsi_reset_delay = 12140 adv_dvc_varp->scsi_reset_wait; 12141 ep_38C1600->serial_number_word1 = 12142 adv_dvc_varp->cfg->serial1; 12143 ep_38C1600->serial_number_word2 = 12144 adv_dvc_varp->cfg->serial2; 12145 ep_38C1600->serial_number_word3 = 12146 adv_dvc_varp->cfg->serial3; 12147 } 12148 12149 /* 12150 * Set the adapter's target id bit in the 'init_tidmask' field. 12151 */ 12152 boardp->init_tidmask |= 12153 ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id); 12154 } 12155 12156 /* 12157 * Channels are numbered beginning with 0. For AdvanSys one host 12158 * structure supports one channel. Multi-channel boards have a 12159 * separate host structure for each channel. 12160 */ 12161 shost->max_channel = 0; 12162 if (ASC_NARROW_BOARD(boardp)) { 12163 shost->max_id = ASC_MAX_TID + 1; 12164 shost->max_lun = ASC_MAX_LUN + 1; 12165 shost->max_cmd_len = ASC_MAX_CDB_LEN; 12166 12167 shost->io_port = asc_dvc_varp->iop_base; 12168 boardp->asc_n_io_port = ASC_IOADR_GAP; 12169 shost->this_id = asc_dvc_varp->cfg->chip_scsi_id; 12170 12171 /* Set maximum number of queues the adapter can handle. */ 12172 shost->can_queue = asc_dvc_varp->max_total_qng; 12173 } else { 12174 shost->max_id = ADV_MAX_TID + 1; 12175 shost->max_lun = ADV_MAX_LUN + 1; 12176 shost->max_cmd_len = ADV_MAX_CDB_LEN; 12177 12178 /* 12179 * Save the I/O Port address and length even though 12180 * I/O ports are not used to access Wide boards. 12181 * Instead the Wide boards are accessed with 12182 * PCI Memory Mapped I/O. 12183 */ 12184 shost->io_port = iop; 12185 12186 shost->this_id = adv_dvc_varp->chip_scsi_id; 12187 12188 /* Set maximum number of queues the adapter can handle. */ 12189 shost->can_queue = adv_dvc_varp->max_host_qng; 12190 } 12191 12192 /* 12193 * Following v1.3.89, 'cmd_per_lun' is no longer needed 12194 * and should be set to zero. 12195 * 12196 * But because of a bug introduced in v1.3.89 if the driver is 12197 * compiled as a module and 'cmd_per_lun' is zero, the Mid-Level 12198 * SCSI function 'allocate_device' will panic. To allow the driver 12199 * to work as a module in these kernels set 'cmd_per_lun' to 1. 12200 * 12201 * Note: This is wrong. cmd_per_lun should be set to the depth 12202 * you want on untagged devices always. 12203 #ifdef MODULE 12204 */ 12205 shost->cmd_per_lun = 1; 12206 /* #else 12207 shost->cmd_per_lun = 0; 12208 #endif */ 12209 12210 /* 12211 * Set the maximum number of scatter-gather elements the 12212 * adapter can handle. 12213 */ 12214 if (ASC_NARROW_BOARD(boardp)) { 12215 /* 12216 * Allow two commands with 'sg_tablesize' scatter-gather 12217 * elements to be executed simultaneously. This value is 12218 * the theoretical hardware limit. It may be decreased 12219 * below. 12220 */ 12221 shost->sg_tablesize = 12222 (((asc_dvc_varp->max_total_qng - 2) / 2) * 12223 ASC_SG_LIST_PER_Q) + 1; 12224 } else { 12225 shost->sg_tablesize = ADV_MAX_SG_LIST; 12226 } 12227 12228 /* 12229 * The value of 'sg_tablesize' can not exceed the SCSI 12230 * mid-level driver definition of SG_ALL. SG_ALL also 12231 * must not be exceeded, because it is used to define the 12232 * size of the scatter-gather table in 'struct asc_sg_head'. 12233 */ 12234 if (shost->sg_tablesize > SG_ALL) { 12235 shost->sg_tablesize = SG_ALL; 12236 } 12237 12238 ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize); 12239 12240 /* BIOS start address. */ 12241 if (ASC_NARROW_BOARD(boardp)) { 12242 shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base, 12243 asc_dvc_varp->bus_type); 12244 } else { 12245 /* 12246 * Fill-in BIOS board variables. The Wide BIOS saves 12247 * information in LRAM that is used by the driver. 12248 */ 12249 AdvReadWordLram(adv_dvc_varp->iop_base, 12250 BIOS_SIGNATURE, boardp->bios_signature); 12251 AdvReadWordLram(adv_dvc_varp->iop_base, 12252 BIOS_VERSION, boardp->bios_version); 12253 AdvReadWordLram(adv_dvc_varp->iop_base, 12254 BIOS_CODESEG, boardp->bios_codeseg); 12255 AdvReadWordLram(adv_dvc_varp->iop_base, 12256 BIOS_CODELEN, boardp->bios_codelen); 12257 12258 ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n", 12259 boardp->bios_signature, boardp->bios_version); 12260 12261 ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n", 12262 boardp->bios_codeseg, boardp->bios_codelen); 12263 12264 /* 12265 * If the BIOS saved a valid signature, then fill in 12266 * the BIOS code segment base address. 12267 */ 12268 if (boardp->bios_signature == 0x55AA) { 12269 /* 12270 * Convert x86 realmode code segment to a linear 12271 * address by shifting left 4. 12272 */ 12273 shost->base = ((ulong)boardp->bios_codeseg << 4); 12274 } else { 12275 shost->base = 0; 12276 } 12277 } 12278 12279 /* 12280 * Register Board Resources - I/O Port, DMA, IRQ 12281 */ 12282 12283 /* Register DMA Channel for Narrow boards. */ 12284 shost->dma_channel = NO_ISA_DMA; /* Default to no ISA DMA. */ 12285 #ifdef CONFIG_ISA 12286 if (ASC_NARROW_BOARD(boardp)) { 12287 /* Register DMA channel for ISA bus. */ 12288 if (asc_dvc_varp->bus_type & ASC_IS_ISA) { 12289 shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel; 12290 ret = request_dma(shost->dma_channel, DRV_NAME); 12291 if (ret) { 12292 shost_printk(KERN_ERR, shost, "request_dma() " 12293 "%d failed %d\n", 12294 shost->dma_channel, ret); 12295 goto err_free_proc; 12296 } 12297 AscEnableIsaDma(shost->dma_channel); 12298 } 12299 } 12300 #endif /* CONFIG_ISA */ 12301 12302 /* Register IRQ Number. */ 12303 ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost); 12304 12305 ret = request_irq(boardp->irq, advansys_interrupt, share_irq, 12306 DRV_NAME, shost); 12307 12308 if (ret) { 12309 if (ret == -EBUSY) { 12310 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 12311 "already in use\n", boardp->irq); 12312 } else if (ret == -EINVAL) { 12313 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 12314 "not valid\n", boardp->irq); 12315 } else { 12316 shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x " 12317 "failed with %d\n", boardp->irq, ret); 12318 } 12319 goto err_free_dma; 12320 } 12321 12322 /* 12323 * Initialize board RISC chip and enable interrupts. 12324 */ 12325 if (ASC_NARROW_BOARD(boardp)) { 12326 ASC_DBG(2, "AscInitAsc1000Driver()\n"); 12327 12328 asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL); 12329 if (!asc_dvc_varp->overrun_buf) { 12330 ret = -ENOMEM; 12331 goto err_free_irq; 12332 } 12333 warn_code = AscInitAsc1000Driver(asc_dvc_varp); 12334 12335 if (warn_code || asc_dvc_varp->err_code) { 12336 shost_printk(KERN_ERR, shost, "error: init_state 0x%x, " 12337 "warn 0x%x, error 0x%x\n", 12338 asc_dvc_varp->init_state, warn_code, 12339 asc_dvc_varp->err_code); 12340 if (!asc_dvc_varp->overrun_dma) { 12341 ret = -ENODEV; 12342 goto err_free_mem; 12343 } 12344 } 12345 } else { 12346 if (advansys_wide_init_chip(shost)) { 12347 ret = -ENODEV; 12348 goto err_free_mem; 12349 } 12350 } 12351 12352 ASC_DBG_PRT_SCSI_HOST(2, shost); 12353 12354 ret = scsi_add_host(shost, boardp->dev); 12355 if (ret) 12356 goto err_free_mem; 12357 12358 scsi_scan_host(shost); 12359 return 0; 12360 12361 err_free_mem: 12362 if (ASC_NARROW_BOARD(boardp)) { 12363 if (asc_dvc_varp->overrun_dma) 12364 dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma, 12365 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 12366 kfree(asc_dvc_varp->overrun_buf); 12367 } else 12368 advansys_wide_free_mem(boardp); 12369 err_free_irq: 12370 free_irq(boardp->irq, shost); 12371 err_free_dma: 12372 #ifdef CONFIG_ISA 12373 if (shost->dma_channel != NO_ISA_DMA) 12374 free_dma(shost->dma_channel); 12375 #endif 12376 err_free_proc: 12377 kfree(boardp->prtbuf); 12378 err_unmap: 12379 if (boardp->ioremap_addr) 12380 iounmap(boardp->ioremap_addr); 12381 err_shost: 12382 return ret; 12383 } 12384 12385 /* 12386 * advansys_release() 12387 * 12388 * Release resources allocated for a single AdvanSys adapter. 12389 */ 12390 static int advansys_release(struct Scsi_Host *shost) 12391 { 12392 struct asc_board *board = shost_priv(shost); 12393 ASC_DBG(1, "begin\n"); 12394 scsi_remove_host(shost); 12395 free_irq(board->irq, shost); 12396 #ifdef CONFIG_ISA 12397 if (shost->dma_channel != NO_ISA_DMA) { 12398 ASC_DBG(1, "free_dma()\n"); 12399 free_dma(shost->dma_channel); 12400 } 12401 #endif 12402 if (ASC_NARROW_BOARD(board)) { 12403 dma_unmap_single(board->dev, 12404 board->dvc_var.asc_dvc_var.overrun_dma, 12405 ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE); 12406 kfree(board->dvc_var.asc_dvc_var.overrun_buf); 12407 } else { 12408 iounmap(board->ioremap_addr); 12409 advansys_wide_free_mem(board); 12410 } 12411 kfree(board->prtbuf); 12412 scsi_host_put(shost); 12413 ASC_DBG(1, "end\n"); 12414 return 0; 12415 } 12416 12417 #define ASC_IOADR_TABLE_MAX_IX 11 12418 12419 static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = { 12420 0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190, 12421 0x0210, 0x0230, 0x0250, 0x0330 12422 }; 12423 12424 /* 12425 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw. It decodes as: 12426 * 00: 10 12427 * 01: 11 12428 * 10: 12 12429 * 11: 15 12430 */ 12431 static unsigned int __devinit advansys_isa_irq_no(PortAddr iop_base) 12432 { 12433 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 12434 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10; 12435 if (chip_irq == 13) 12436 chip_irq = 15; 12437 return chip_irq; 12438 } 12439 12440 static int __devinit advansys_isa_probe(struct device *dev, unsigned int id) 12441 { 12442 int err = -ENODEV; 12443 PortAddr iop_base = _asc_def_iop_base[id]; 12444 struct Scsi_Host *shost; 12445 struct asc_board *board; 12446 12447 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 12448 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 12449 return -ENODEV; 12450 } 12451 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 12452 if (!AscFindSignature(iop_base)) 12453 goto release_region; 12454 if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT)) 12455 goto release_region; 12456 12457 err = -ENOMEM; 12458 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 12459 if (!shost) 12460 goto release_region; 12461 12462 board = shost_priv(shost); 12463 board->irq = advansys_isa_irq_no(iop_base); 12464 board->dev = dev; 12465 12466 err = advansys_board_found(shost, iop_base, ASC_IS_ISA); 12467 if (err) 12468 goto free_host; 12469 12470 dev_set_drvdata(dev, shost); 12471 return 0; 12472 12473 free_host: 12474 scsi_host_put(shost); 12475 release_region: 12476 release_region(iop_base, ASC_IOADR_GAP); 12477 return err; 12478 } 12479 12480 static int __devexit advansys_isa_remove(struct device *dev, unsigned int id) 12481 { 12482 int ioport = _asc_def_iop_base[id]; 12483 advansys_release(dev_get_drvdata(dev)); 12484 release_region(ioport, ASC_IOADR_GAP); 12485 return 0; 12486 } 12487 12488 static struct isa_driver advansys_isa_driver = { 12489 .probe = advansys_isa_probe, 12490 .remove = __devexit_p(advansys_isa_remove), 12491 .driver = { 12492 .owner = THIS_MODULE, 12493 .name = DRV_NAME, 12494 }, 12495 }; 12496 12497 /* 12498 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw. It decodes as: 12499 * 000: invalid 12500 * 001: 10 12501 * 010: 11 12502 * 011: 12 12503 * 100: invalid 12504 * 101: 14 12505 * 110: 15 12506 * 111: invalid 12507 */ 12508 static unsigned int __devinit advansys_vlb_irq_no(PortAddr iop_base) 12509 { 12510 unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base); 12511 unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9; 12512 if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15)) 12513 return 0; 12514 return chip_irq; 12515 } 12516 12517 static int __devinit advansys_vlb_probe(struct device *dev, unsigned int id) 12518 { 12519 int err = -ENODEV; 12520 PortAddr iop_base = _asc_def_iop_base[id]; 12521 struct Scsi_Host *shost; 12522 struct asc_board *board; 12523 12524 if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) { 12525 ASC_DBG(1, "I/O port 0x%x busy\n", iop_base); 12526 return -ENODEV; 12527 } 12528 ASC_DBG(1, "probing I/O port 0x%x\n", iop_base); 12529 if (!AscFindSignature(iop_base)) 12530 goto release_region; 12531 /* 12532 * I don't think this condition can actually happen, but the old 12533 * driver did it, and the chances of finding a VLB setup in 2007 12534 * to do testing with is slight to none. 12535 */ 12536 if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL) 12537 goto release_region; 12538 12539 err = -ENOMEM; 12540 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 12541 if (!shost) 12542 goto release_region; 12543 12544 board = shost_priv(shost); 12545 board->irq = advansys_vlb_irq_no(iop_base); 12546 board->dev = dev; 12547 12548 err = advansys_board_found(shost, iop_base, ASC_IS_VL); 12549 if (err) 12550 goto free_host; 12551 12552 dev_set_drvdata(dev, shost); 12553 return 0; 12554 12555 free_host: 12556 scsi_host_put(shost); 12557 release_region: 12558 release_region(iop_base, ASC_IOADR_GAP); 12559 return -ENODEV; 12560 } 12561 12562 static struct isa_driver advansys_vlb_driver = { 12563 .probe = advansys_vlb_probe, 12564 .remove = __devexit_p(advansys_isa_remove), 12565 .driver = { 12566 .owner = THIS_MODULE, 12567 .name = "advansys_vlb", 12568 }, 12569 }; 12570 12571 static struct eisa_device_id advansys_eisa_table[] __devinitdata = { 12572 { "ABP7401" }, 12573 { "ABP7501" }, 12574 { "" } 12575 }; 12576 12577 MODULE_DEVICE_TABLE(eisa, advansys_eisa_table); 12578 12579 /* 12580 * EISA is a little more tricky than PCI; each EISA device may have two 12581 * channels, and this driver is written to make each channel its own Scsi_Host 12582 */ 12583 struct eisa_scsi_data { 12584 struct Scsi_Host *host[2]; 12585 }; 12586 12587 /* 12588 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw. It decodes as: 12589 * 000: 10 12590 * 001: 11 12591 * 010: 12 12592 * 011: invalid 12593 * 100: 14 12594 * 101: 15 12595 * 110: invalid 12596 * 111: invalid 12597 */ 12598 static unsigned int __devinit advansys_eisa_irq_no(struct eisa_device *edev) 12599 { 12600 unsigned short cfg_lsw = inw(edev->base_addr + 0xc86); 12601 unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10; 12602 if ((chip_irq == 13) || (chip_irq > 15)) 12603 return 0; 12604 return chip_irq; 12605 } 12606 12607 static int __devinit advansys_eisa_probe(struct device *dev) 12608 { 12609 int i, ioport, irq = 0; 12610 int err; 12611 struct eisa_device *edev = to_eisa_device(dev); 12612 struct eisa_scsi_data *data; 12613 12614 err = -ENOMEM; 12615 data = kzalloc(sizeof(*data), GFP_KERNEL); 12616 if (!data) 12617 goto fail; 12618 ioport = edev->base_addr + 0xc30; 12619 12620 err = -ENODEV; 12621 for (i = 0; i < 2; i++, ioport += 0x20) { 12622 struct asc_board *board; 12623 struct Scsi_Host *shost; 12624 if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) { 12625 printk(KERN_WARNING "Region %x-%x busy\n", ioport, 12626 ioport + ASC_IOADR_GAP - 1); 12627 continue; 12628 } 12629 if (!AscFindSignature(ioport)) { 12630 release_region(ioport, ASC_IOADR_GAP); 12631 continue; 12632 } 12633 12634 /* 12635 * I don't know why we need to do this for EISA chips, but 12636 * not for any others. It looks to be equivalent to 12637 * AscGetChipCfgMsw, but I may have overlooked something, 12638 * so I'm not converting it until I get an EISA board to 12639 * test with. 12640 */ 12641 inw(ioport + 4); 12642 12643 if (!irq) 12644 irq = advansys_eisa_irq_no(edev); 12645 12646 err = -ENOMEM; 12647 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 12648 if (!shost) 12649 goto release_region; 12650 12651 board = shost_priv(shost); 12652 board->irq = irq; 12653 board->dev = dev; 12654 12655 err = advansys_board_found(shost, ioport, ASC_IS_EISA); 12656 if (!err) { 12657 data->host[i] = shost; 12658 continue; 12659 } 12660 12661 scsi_host_put(shost); 12662 release_region: 12663 release_region(ioport, ASC_IOADR_GAP); 12664 break; 12665 } 12666 12667 if (err) 12668 goto free_data; 12669 dev_set_drvdata(dev, data); 12670 return 0; 12671 12672 free_data: 12673 kfree(data->host[0]); 12674 kfree(data->host[1]); 12675 kfree(data); 12676 fail: 12677 return err; 12678 } 12679 12680 static __devexit int advansys_eisa_remove(struct device *dev) 12681 { 12682 int i; 12683 struct eisa_scsi_data *data = dev_get_drvdata(dev); 12684 12685 for (i = 0; i < 2; i++) { 12686 int ioport; 12687 struct Scsi_Host *shost = data->host[i]; 12688 if (!shost) 12689 continue; 12690 ioport = shost->io_port; 12691 advansys_release(shost); 12692 release_region(ioport, ASC_IOADR_GAP); 12693 } 12694 12695 kfree(data); 12696 return 0; 12697 } 12698 12699 static struct eisa_driver advansys_eisa_driver = { 12700 .id_table = advansys_eisa_table, 12701 .driver = { 12702 .name = DRV_NAME, 12703 .probe = advansys_eisa_probe, 12704 .remove = __devexit_p(advansys_eisa_remove), 12705 } 12706 }; 12707 12708 /* PCI Devices supported by this driver */ 12709 static struct pci_device_id advansys_pci_tbl[] __devinitdata = { 12710 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A, 12711 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12712 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940, 12713 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12714 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U, 12715 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12716 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW, 12717 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12718 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1, 12719 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12720 {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1, 12721 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 12722 {} 12723 }; 12724 12725 MODULE_DEVICE_TABLE(pci, advansys_pci_tbl); 12726 12727 static void __devinit advansys_set_latency(struct pci_dev *pdev) 12728 { 12729 if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) || 12730 (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) { 12731 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0); 12732 } else { 12733 u8 latency; 12734 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency); 12735 if (latency < 0x20) 12736 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20); 12737 } 12738 } 12739 12740 static int __devinit 12741 advansys_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 12742 { 12743 int err, ioport; 12744 struct Scsi_Host *shost; 12745 struct asc_board *board; 12746 12747 err = pci_enable_device(pdev); 12748 if (err) 12749 goto fail; 12750 err = pci_request_regions(pdev, DRV_NAME); 12751 if (err) 12752 goto disable_device; 12753 pci_set_master(pdev); 12754 advansys_set_latency(pdev); 12755 12756 err = -ENODEV; 12757 if (pci_resource_len(pdev, 0) == 0) 12758 goto release_region; 12759 12760 ioport = pci_resource_start(pdev, 0); 12761 12762 err = -ENOMEM; 12763 shost = scsi_host_alloc(&advansys_template, sizeof(*board)); 12764 if (!shost) 12765 goto release_region; 12766 12767 board = shost_priv(shost); 12768 board->irq = pdev->irq; 12769 board->dev = &pdev->dev; 12770 12771 if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW || 12772 pdev->device == PCI_DEVICE_ID_38C0800_REV1 || 12773 pdev->device == PCI_DEVICE_ID_38C1600_REV1) { 12774 board->flags |= ASC_IS_WIDE_BOARD; 12775 } 12776 12777 err = advansys_board_found(shost, ioport, ASC_IS_PCI); 12778 if (err) 12779 goto free_host; 12780 12781 pci_set_drvdata(pdev, shost); 12782 return 0; 12783 12784 free_host: 12785 scsi_host_put(shost); 12786 release_region: 12787 pci_release_regions(pdev); 12788 disable_device: 12789 pci_disable_device(pdev); 12790 fail: 12791 return err; 12792 } 12793 12794 static void __devexit advansys_pci_remove(struct pci_dev *pdev) 12795 { 12796 advansys_release(pci_get_drvdata(pdev)); 12797 pci_release_regions(pdev); 12798 pci_disable_device(pdev); 12799 } 12800 12801 static struct pci_driver advansys_pci_driver = { 12802 .name = DRV_NAME, 12803 .id_table = advansys_pci_tbl, 12804 .probe = advansys_pci_probe, 12805 .remove = __devexit_p(advansys_pci_remove), 12806 }; 12807 12808 static int __init advansys_init(void) 12809 { 12810 int error; 12811 12812 error = isa_register_driver(&advansys_isa_driver, 12813 ASC_IOADR_TABLE_MAX_IX); 12814 if (error) 12815 goto fail; 12816 12817 error = isa_register_driver(&advansys_vlb_driver, 12818 ASC_IOADR_TABLE_MAX_IX); 12819 if (error) 12820 goto unregister_isa; 12821 12822 error = eisa_driver_register(&advansys_eisa_driver); 12823 if (error) 12824 goto unregister_vlb; 12825 12826 error = pci_register_driver(&advansys_pci_driver); 12827 if (error) 12828 goto unregister_eisa; 12829 12830 return 0; 12831 12832 unregister_eisa: 12833 eisa_driver_unregister(&advansys_eisa_driver); 12834 unregister_vlb: 12835 isa_unregister_driver(&advansys_vlb_driver); 12836 unregister_isa: 12837 isa_unregister_driver(&advansys_isa_driver); 12838 fail: 12839 return error; 12840 } 12841 12842 static void __exit advansys_exit(void) 12843 { 12844 pci_unregister_driver(&advansys_pci_driver); 12845 eisa_driver_unregister(&advansys_eisa_driver); 12846 isa_unregister_driver(&advansys_vlb_driver); 12847 isa_unregister_driver(&advansys_isa_driver); 12848 } 12849 12850 module_init(advansys_init); 12851 module_exit(advansys_exit); 12852 12853 MODULE_LICENSE("GPL"); 12854 MODULE_FIRMWARE("advansys/mcode.bin"); 12855 MODULE_FIRMWARE("advansys/3550.bin"); 12856 MODULE_FIRMWARE("advansys/38C0800.bin"); 12857 MODULE_FIRMWARE("advansys/38C1600.bin"); 12858