xref: /openbmc/linux/drivers/scsi/aacraid/src.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  src.c
28  *
29  * Abstract: Hardware Device Interface for PMC SRC based controllers
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/completion.h>
42 #include <linux/time.h>
43 #include <linux/interrupt.h>
44 #include <scsi/scsi_host.h>
45 
46 #include "aacraid.h"
47 
48 static int aac_src_get_sync_status(struct aac_dev *dev);
49 
50 static irqreturn_t aac_src_intr_message(int irq, void *dev_id)
51 {
52 	struct aac_msix_ctx *ctx;
53 	struct aac_dev *dev;
54 	unsigned long bellbits, bellbits_shifted;
55 	int vector_no;
56 	int isFastResponse, mode;
57 	u32 index, handle;
58 
59 	ctx = (struct aac_msix_ctx *)dev_id;
60 	dev = ctx->dev;
61 	vector_no = ctx->vector_no;
62 
63 	if (dev->msi_enabled) {
64 		mode = AAC_INT_MODE_MSI;
65 		if (vector_no == 0) {
66 			bellbits = src_readl(dev, MUnit.ODR_MSI);
67 			if (bellbits & 0x40000)
68 				mode |= AAC_INT_MODE_AIF;
69 			if (bellbits & 0x1000)
70 				mode |= AAC_INT_MODE_SYNC;
71 		}
72 	} else {
73 		mode = AAC_INT_MODE_INTX;
74 		bellbits = src_readl(dev, MUnit.ODR_R);
75 		if (bellbits & PmDoorBellResponseSent) {
76 			bellbits = PmDoorBellResponseSent;
77 			src_writel(dev, MUnit.ODR_C, bellbits);
78 			src_readl(dev, MUnit.ODR_C);
79 		} else {
80 			bellbits_shifted = (bellbits >> SRC_ODR_SHIFT);
81 			src_writel(dev, MUnit.ODR_C, bellbits);
82 			src_readl(dev, MUnit.ODR_C);
83 
84 			if (bellbits_shifted & DoorBellAifPending)
85 				mode |= AAC_INT_MODE_AIF;
86 			else if (bellbits_shifted & OUTBOUNDDOORBELL_0)
87 				mode |= AAC_INT_MODE_SYNC;
88 		}
89 	}
90 
91 	if (mode & AAC_INT_MODE_SYNC) {
92 		unsigned long sflags;
93 		struct list_head *entry;
94 		int send_it = 0;
95 		extern int aac_sync_mode;
96 
97 		if (!aac_sync_mode && !dev->msi_enabled) {
98 			src_writel(dev, MUnit.ODR_C, bellbits);
99 			src_readl(dev, MUnit.ODR_C);
100 		}
101 
102 		if (dev->sync_fib) {
103 			if (dev->sync_fib->callback)
104 				dev->sync_fib->callback(dev->sync_fib->callback_data,
105 					dev->sync_fib);
106 			spin_lock_irqsave(&dev->sync_fib->event_lock, sflags);
107 			if (dev->sync_fib->flags & FIB_CONTEXT_FLAG_WAIT) {
108 				dev->management_fib_count--;
109 				up(&dev->sync_fib->event_wait);
110 			}
111 			spin_unlock_irqrestore(&dev->sync_fib->event_lock,
112 						sflags);
113 			spin_lock_irqsave(&dev->sync_lock, sflags);
114 			if (!list_empty(&dev->sync_fib_list)) {
115 				entry = dev->sync_fib_list.next;
116 				dev->sync_fib = list_entry(entry,
117 							   struct fib,
118 							   fiblink);
119 				list_del(entry);
120 				send_it = 1;
121 			} else {
122 				dev->sync_fib = NULL;
123 			}
124 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
125 			if (send_it) {
126 				aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
127 					(u32)dev->sync_fib->hw_fib_pa,
128 					0, 0, 0, 0, 0,
129 					NULL, NULL, NULL, NULL, NULL);
130 			}
131 		}
132 		if (!dev->msi_enabled)
133 			mode = 0;
134 
135 	}
136 
137 	if (mode & AAC_INT_MODE_AIF) {
138 		/* handle AIF */
139 		if (dev->sa_firmware) {
140 			u32 events = src_readl(dev, MUnit.SCR0);
141 
142 			aac_intr_normal(dev, events, 1, 0, NULL);
143 			writel(events, &dev->IndexRegs->Mailbox[0]);
144 			src_writel(dev, MUnit.IDR, 1 << 23);
145 		} else {
146 			if (dev->aif_thread && dev->fsa_dev)
147 				aac_intr_normal(dev, 0, 2, 0, NULL);
148 		}
149 		if (dev->msi_enabled)
150 			aac_src_access_devreg(dev, AAC_CLEAR_AIF_BIT);
151 		mode = 0;
152 	}
153 
154 	if (mode) {
155 		index = dev->host_rrq_idx[vector_no];
156 
157 		for (;;) {
158 			isFastResponse = 0;
159 			/* remove toggle bit (31) */
160 			handle = le32_to_cpu((dev->host_rrq[index])
161 				& 0x7fffffff);
162 			/* check fast response bits (30, 1) */
163 			if (handle & 0x40000000)
164 				isFastResponse = 1;
165 			handle &= 0x0000ffff;
166 			if (handle == 0)
167 				break;
168 			handle >>= 2;
169 			if (dev->msi_enabled && dev->max_msix > 1)
170 				atomic_dec(&dev->rrq_outstanding[vector_no]);
171 			aac_intr_normal(dev, handle, 0, isFastResponse, NULL);
172 			dev->host_rrq[index++] = 0;
173 			if (index == (vector_no + 1) * dev->vector_cap)
174 				index = vector_no * dev->vector_cap;
175 			dev->host_rrq_idx[vector_no] = index;
176 		}
177 		mode = 0;
178 	}
179 
180 	return IRQ_HANDLED;
181 }
182 
183 /**
184  *	aac_src_disable_interrupt	-	Disable interrupts
185  *	@dev: Adapter
186  */
187 
188 static void aac_src_disable_interrupt(struct aac_dev *dev)
189 {
190 	src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff);
191 }
192 
193 /**
194  *	aac_src_enable_interrupt_message	-	Enable interrupts
195  *	@dev: Adapter
196  */
197 
198 static void aac_src_enable_interrupt_message(struct aac_dev *dev)
199 {
200 	aac_src_access_devreg(dev, AAC_ENABLE_INTERRUPT);
201 }
202 
203 /**
204  *	src_sync_cmd	-	send a command and wait
205  *	@dev: Adapter
206  *	@command: Command to execute
207  *	@p1: first parameter
208  *	@ret: adapter status
209  *
210  *	This routine will send a synchronous command to the adapter and wait
211  *	for its	completion.
212  */
213 
214 static int src_sync_cmd(struct aac_dev *dev, u32 command,
215 	u32 p1, u32 p2, u32 p3, u32 p4, u32 p5, u32 p6,
216 	u32 *status, u32 * r1, u32 * r2, u32 * r3, u32 * r4)
217 {
218 	unsigned long start;
219 	unsigned long delay;
220 	int ok;
221 
222 	/*
223 	 *	Write the command into Mailbox 0
224 	 */
225 	writel(command, &dev->IndexRegs->Mailbox[0]);
226 	/*
227 	 *	Write the parameters into Mailboxes 1 - 6
228 	 */
229 	writel(p1, &dev->IndexRegs->Mailbox[1]);
230 	writel(p2, &dev->IndexRegs->Mailbox[2]);
231 	writel(p3, &dev->IndexRegs->Mailbox[3]);
232 	writel(p4, &dev->IndexRegs->Mailbox[4]);
233 
234 	/*
235 	 *	Clear the synch command doorbell to start on a clean slate.
236 	 */
237 	if (!dev->msi_enabled)
238 		src_writel(dev,
239 			   MUnit.ODR_C,
240 			   OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT);
241 
242 	/*
243 	 *	Disable doorbell interrupts
244 	 */
245 	src_writel(dev, MUnit.OIMR, dev->OIMR = 0xffffffff);
246 
247 	/*
248 	 *	Force the completion of the mask register write before issuing
249 	 *	the interrupt.
250 	 */
251 	src_readl(dev, MUnit.OIMR);
252 
253 	/*
254 	 *	Signal that there is a new synch command
255 	 */
256 	src_writel(dev, MUnit.IDR, INBOUNDDOORBELL_0 << SRC_IDR_SHIFT);
257 
258 	if ((!dev->sync_mode || command != SEND_SYNCHRONOUS_FIB) &&
259 		!dev->in_soft_reset) {
260 		ok = 0;
261 		start = jiffies;
262 
263 		if (command == IOP_RESET_ALWAYS) {
264 			/* Wait up to 10 sec */
265 			delay = 10*HZ;
266 		} else {
267 			/* Wait up to 5 minutes */
268 			delay = 300*HZ;
269 		}
270 		while (time_before(jiffies, start+delay)) {
271 			udelay(5);	/* Delay 5 microseconds to let Mon960 get info. */
272 			/*
273 			 *	Mon960 will set doorbell0 bit when it has completed the command.
274 			 */
275 			if (aac_src_get_sync_status(dev) & OUTBOUNDDOORBELL_0) {
276 				/*
277 				 *	Clear the doorbell.
278 				 */
279 				if (dev->msi_enabled)
280 					aac_src_access_devreg(dev,
281 						AAC_CLEAR_SYNC_BIT);
282 				else
283 					src_writel(dev,
284 						MUnit.ODR_C,
285 						OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT);
286 				ok = 1;
287 				break;
288 			}
289 			/*
290 			 *	Yield the processor in case we are slow
291 			 */
292 			msleep(1);
293 		}
294 		if (unlikely(ok != 1)) {
295 			/*
296 			 *	Restore interrupt mask even though we timed out
297 			 */
298 			aac_adapter_enable_int(dev);
299 			return -ETIMEDOUT;
300 		}
301 		/*
302 		 *	Pull the synch status from Mailbox 0.
303 		 */
304 		if (status)
305 			*status = readl(&dev->IndexRegs->Mailbox[0]);
306 		if (r1)
307 			*r1 = readl(&dev->IndexRegs->Mailbox[1]);
308 		if (r2)
309 			*r2 = readl(&dev->IndexRegs->Mailbox[2]);
310 		if (r3)
311 			*r3 = readl(&dev->IndexRegs->Mailbox[3]);
312 		if (r4)
313 			*r4 = readl(&dev->IndexRegs->Mailbox[4]);
314 		if (command == GET_COMM_PREFERRED_SETTINGS)
315 			dev->max_msix =
316 				readl(&dev->IndexRegs->Mailbox[5]) & 0xFFFF;
317 		/*
318 		 *	Clear the synch command doorbell.
319 		 */
320 		if (!dev->msi_enabled)
321 			src_writel(dev,
322 				MUnit.ODR_C,
323 				OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT);
324 	}
325 
326 	/*
327 	 *	Restore interrupt mask
328 	 */
329 	aac_adapter_enable_int(dev);
330 	return 0;
331 }
332 
333 /**
334  *	aac_src_interrupt_adapter	-	interrupt adapter
335  *	@dev: Adapter
336  *
337  *	Send an interrupt to the i960 and breakpoint it.
338  */
339 
340 static void aac_src_interrupt_adapter(struct aac_dev *dev)
341 {
342 	src_sync_cmd(dev, BREAKPOINT_REQUEST,
343 		0, 0, 0, 0, 0, 0,
344 		NULL, NULL, NULL, NULL, NULL);
345 }
346 
347 /**
348  *	aac_src_notify_adapter		-	send an event to the adapter
349  *	@dev: Adapter
350  *	@event: Event to send
351  *
352  *	Notify the i960 that something it probably cares about has
353  *	happened.
354  */
355 
356 static void aac_src_notify_adapter(struct aac_dev *dev, u32 event)
357 {
358 	switch (event) {
359 
360 	case AdapNormCmdQue:
361 		src_writel(dev, MUnit.ODR_C,
362 			INBOUNDDOORBELL_1 << SRC_ODR_SHIFT);
363 		break;
364 	case HostNormRespNotFull:
365 		src_writel(dev, MUnit.ODR_C,
366 			INBOUNDDOORBELL_4 << SRC_ODR_SHIFT);
367 		break;
368 	case AdapNormRespQue:
369 		src_writel(dev, MUnit.ODR_C,
370 			INBOUNDDOORBELL_2 << SRC_ODR_SHIFT);
371 		break;
372 	case HostNormCmdNotFull:
373 		src_writel(dev, MUnit.ODR_C,
374 			INBOUNDDOORBELL_3 << SRC_ODR_SHIFT);
375 		break;
376 	case FastIo:
377 		src_writel(dev, MUnit.ODR_C,
378 			INBOUNDDOORBELL_6 << SRC_ODR_SHIFT);
379 		break;
380 	case AdapPrintfDone:
381 		src_writel(dev, MUnit.ODR_C,
382 			INBOUNDDOORBELL_5 << SRC_ODR_SHIFT);
383 		break;
384 	default:
385 		BUG();
386 		break;
387 	}
388 }
389 
390 /**
391  *	aac_src_start_adapter		-	activate adapter
392  *	@dev:	Adapter
393  *
394  *	Start up processing on an i960 based AAC adapter
395  */
396 
397 static void aac_src_start_adapter(struct aac_dev *dev)
398 {
399 	union aac_init *init;
400 	int i;
401 
402 	 /* reset host_rrq_idx first */
403 	for (i = 0; i < dev->max_msix; i++) {
404 		dev->host_rrq_idx[i] = i * dev->vector_cap;
405 		atomic_set(&dev->rrq_outstanding[i], 0);
406 	}
407 	atomic_set(&dev->msix_counter, 0);
408 	dev->fibs_pushed_no = 0;
409 
410 	init = dev->init;
411 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
412 		init->r8.host_elapsed_seconds = cpu_to_le32(get_seconds());
413 		src_sync_cmd(dev, INIT_STRUCT_BASE_ADDRESS,
414 			lower_32_bits(dev->init_pa),
415 			upper_32_bits(dev->init_pa),
416 			sizeof(struct _r8) +
417 			(AAC_MAX_HRRQ - 1) * sizeof(struct _rrq),
418 			0, 0, 0, NULL, NULL, NULL, NULL, NULL);
419 	} else {
420 		init->r7.host_elapsed_seconds = cpu_to_le32(get_seconds());
421 		// We can only use a 32 bit address here
422 		src_sync_cmd(dev, INIT_STRUCT_BASE_ADDRESS,
423 			(u32)(ulong)dev->init_pa, 0, 0, 0, 0, 0,
424 			NULL, NULL, NULL, NULL, NULL);
425 	}
426 
427 }
428 
429 /**
430  *	aac_src_check_health
431  *	@dev: device to check if healthy
432  *
433  *	Will attempt to determine if the specified adapter is alive and
434  *	capable of handling requests, returning 0 if alive.
435  */
436 static int aac_src_check_health(struct aac_dev *dev)
437 {
438 	u32 status = src_readl(dev, MUnit.OMR);
439 
440 	/*
441 	 *	Check to see if the board panic'd.
442 	 */
443 	if (unlikely(status & KERNEL_PANIC))
444 		goto err_blink;
445 
446 	/*
447 	 *	Check to see if the board failed any self tests.
448 	 */
449 	if (unlikely(status & SELF_TEST_FAILED))
450 		goto err_out;
451 
452 	/*
453 	 *	Check to see if the board failed any self tests.
454 	 */
455 	if (unlikely(status & MONITOR_PANIC))
456 		goto err_out;
457 
458 	/*
459 	 *	Wait for the adapter to be up and running.
460 	 */
461 	if (unlikely(!(status & KERNEL_UP_AND_RUNNING)))
462 		return -3;
463 	/*
464 	 *	Everything is OK
465 	 */
466 	return 0;
467 
468 err_out:
469 	return -1;
470 
471 err_blink:
472 	return (status >> 16) & 0xFF;
473 }
474 
475 static inline u32 aac_get_vector(struct aac_dev *dev)
476 {
477 	return atomic_inc_return(&dev->msix_counter)%dev->max_msix;
478 }
479 
480 /**
481  *	aac_src_deliver_message
482  *	@fib: fib to issue
483  *
484  *	Will send a fib, returning 0 if successful.
485  */
486 static int aac_src_deliver_message(struct fib *fib)
487 {
488 	struct aac_dev *dev = fib->dev;
489 	struct aac_queue *q = &dev->queues->queue[AdapNormCmdQueue];
490 	u32 fibsize;
491 	dma_addr_t address;
492 	struct aac_fib_xporthdr *pFibX;
493 	int native_hba;
494 #if !defined(writeq)
495 	unsigned long flags;
496 #endif
497 
498 	u16 vector_no;
499 
500 	atomic_inc(&q->numpending);
501 
502 	native_hba = (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) ? 1 : 0;
503 
504 
505 	if (dev->msi_enabled && dev->max_msix > 1 &&
506 		(native_hba || fib->hw_fib_va->header.Command != AifRequest)) {
507 
508 		if ((dev->comm_interface == AAC_COMM_MESSAGE_TYPE3)
509 			&& dev->sa_firmware)
510 			vector_no = aac_get_vector(dev);
511 		else
512 			vector_no = fib->vector_no;
513 
514 		if (native_hba) {
515 			if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA_TMF) {
516 				struct aac_hba_tm_req *tm_req;
517 
518 				tm_req = (struct aac_hba_tm_req *)
519 						fib->hw_fib_va;
520 				if (tm_req->iu_type ==
521 					HBA_IU_TYPE_SCSI_TM_REQ) {
522 					((struct aac_hba_tm_req *)
523 						fib->hw_fib_va)->reply_qid
524 							= vector_no;
525 					((struct aac_hba_tm_req *)
526 						fib->hw_fib_va)->request_id
527 							+= (vector_no << 16);
528 				} else {
529 					((struct aac_hba_reset_req *)
530 						fib->hw_fib_va)->reply_qid
531 							= vector_no;
532 					((struct aac_hba_reset_req *)
533 						fib->hw_fib_va)->request_id
534 							+= (vector_no << 16);
535 				}
536 			} else {
537 				((struct aac_hba_cmd_req *)
538 					fib->hw_fib_va)->reply_qid
539 						= vector_no;
540 				((struct aac_hba_cmd_req *)
541 					fib->hw_fib_va)->request_id
542 						+= (vector_no << 16);
543 			}
544 		} else {
545 			fib->hw_fib_va->header.Handle += (vector_no << 16);
546 		}
547 	} else {
548 		vector_no = 0;
549 	}
550 
551 	atomic_inc(&dev->rrq_outstanding[vector_no]);
552 
553 	if (native_hba) {
554 		address = fib->hw_fib_pa;
555 		fibsize = (fib->hbacmd_size + 127) / 128 - 1;
556 		if (fibsize > 31)
557 			fibsize = 31;
558 		address |= fibsize;
559 #if defined(writeq)
560 		src_writeq(dev, MUnit.IQN_L, (u64)address);
561 #else
562 		spin_lock_irqsave(&fib->dev->iq_lock, flags);
563 		src_writel(dev, MUnit.IQN_H,
564 			upper_32_bits(address) & 0xffffffff);
565 		src_writel(dev, MUnit.IQN_L, address & 0xffffffff);
566 		spin_unlock_irqrestore(&fib->dev->iq_lock, flags);
567 #endif
568 	} else {
569 		if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
570 			dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
571 			/* Calculate the amount to the fibsize bits */
572 			fibsize = (le16_to_cpu(fib->hw_fib_va->header.Size)
573 				+ 127) / 128 - 1;
574 			/* New FIB header, 32-bit */
575 			address = fib->hw_fib_pa;
576 			fib->hw_fib_va->header.StructType = FIB_MAGIC2;
577 			fib->hw_fib_va->header.SenderFibAddress =
578 				cpu_to_le32((u32)address);
579 			fib->hw_fib_va->header.u.TimeStamp = 0;
580 			WARN_ON(upper_32_bits(address) != 0L);
581 		} else {
582 			/* Calculate the amount to the fibsize bits */
583 			fibsize = (sizeof(struct aac_fib_xporthdr) +
584 				le16_to_cpu(fib->hw_fib_va->header.Size)
585 				+ 127) / 128 - 1;
586 			/* Fill XPORT header */
587 			pFibX = (struct aac_fib_xporthdr *)
588 				((unsigned char *)fib->hw_fib_va -
589 				sizeof(struct aac_fib_xporthdr));
590 			pFibX->Handle = fib->hw_fib_va->header.Handle;
591 			pFibX->HostAddress =
592 				cpu_to_le64((u64)fib->hw_fib_pa);
593 			pFibX->Size = cpu_to_le32(
594 				le16_to_cpu(fib->hw_fib_va->header.Size));
595 			address = fib->hw_fib_pa -
596 				(u64)sizeof(struct aac_fib_xporthdr);
597 		}
598 		if (fibsize > 31)
599 			fibsize = 31;
600 		address |= fibsize;
601 
602 #if defined(writeq)
603 		src_writeq(dev, MUnit.IQ_L, (u64)address);
604 #else
605 		spin_lock_irqsave(&fib->dev->iq_lock, flags);
606 		src_writel(dev, MUnit.IQ_H,
607 			upper_32_bits(address) & 0xffffffff);
608 		src_writel(dev, MUnit.IQ_L, address & 0xffffffff);
609 		spin_unlock_irqrestore(&fib->dev->iq_lock, flags);
610 #endif
611 	}
612 	return 0;
613 }
614 
615 /**
616  *	aac_src_ioremap
617  *	@size: mapping resize request
618  *
619  */
620 static int aac_src_ioremap(struct aac_dev *dev, u32 size)
621 {
622 	if (!size) {
623 		iounmap(dev->regs.src.bar1);
624 		dev->regs.src.bar1 = NULL;
625 		iounmap(dev->regs.src.bar0);
626 		dev->base = dev->regs.src.bar0 = NULL;
627 		return 0;
628 	}
629 	dev->regs.src.bar1 = ioremap(pci_resource_start(dev->pdev, 2),
630 		AAC_MIN_SRC_BAR1_SIZE);
631 	dev->base = NULL;
632 	if (dev->regs.src.bar1 == NULL)
633 		return -1;
634 	dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size);
635 	if (dev->base == NULL) {
636 		iounmap(dev->regs.src.bar1);
637 		dev->regs.src.bar1 = NULL;
638 		return -1;
639 	}
640 	dev->IndexRegs = &((struct src_registers __iomem *)
641 		dev->base)->u.tupelo.IndexRegs;
642 	return 0;
643 }
644 
645 /**
646  *  aac_srcv_ioremap
647  *	@size: mapping resize request
648  *
649  */
650 static int aac_srcv_ioremap(struct aac_dev *dev, u32 size)
651 {
652 	if (!size) {
653 		iounmap(dev->regs.src.bar0);
654 		dev->base = dev->regs.src.bar0 = NULL;
655 		return 0;
656 	}
657 
658 	dev->regs.src.bar1 =
659 	ioremap(pci_resource_start(dev->pdev, 2), AAC_MIN_SRCV_BAR1_SIZE);
660 	dev->base = NULL;
661 	if (dev->regs.src.bar1 == NULL)
662 		return -1;
663 	dev->base = dev->regs.src.bar0 = ioremap(dev->base_start, size);
664 	if (dev->base == NULL) {
665 		iounmap(dev->regs.src.bar1);
666 		dev->regs.src.bar1 = NULL;
667 		return -1;
668 	}
669 	dev->IndexRegs = &((struct src_registers __iomem *)
670 		dev->base)->u.denali.IndexRegs;
671 	return 0;
672 }
673 
674 void aac_set_intx_mode(struct aac_dev *dev)
675 {
676 	if (dev->msi_enabled) {
677 		aac_src_access_devreg(dev, AAC_ENABLE_INTX);
678 		dev->msi_enabled = 0;
679 		msleep(5000); /* Delay 5 seconds */
680 	}
681 }
682 
683 static void aac_clear_omr(struct aac_dev *dev)
684 {
685 	u32 omr_value = 0;
686 
687 	omr_value = src_readl(dev, MUnit.OMR);
688 
689 	/*
690 	 * Check for PCI Errors or Kernel Panic
691 	 */
692 	if ((omr_value == INVALID_OMR) || (omr_value & KERNEL_PANIC))
693 		omr_value = 0;
694 
695 	/*
696 	 * Preserve MSIX Value if any
697 	 */
698 	src_writel(dev, MUnit.OMR, omr_value & AAC_INT_MODE_MSIX);
699 	src_readl(dev, MUnit.OMR);
700 }
701 
702 static void aac_dump_fw_fib_iop_reset(struct aac_dev *dev)
703 {
704 	__le32 supported_options3;
705 
706 	if (!aac_fib_dump)
707 		return;
708 
709 	supported_options3  = dev->supplement_adapter_info.supported_options3;
710 	if (!(supported_options3 & AAC_OPTION_SUPPORTED3_IOP_RESET_FIB_DUMP))
711 		return;
712 
713 	aac_adapter_sync_cmd(dev, IOP_RESET_FW_FIB_DUMP,
714 			0, 0, 0,  0, 0, 0, NULL, NULL, NULL, NULL, NULL);
715 }
716 
717 static bool aac_is_ctrl_up_and_running(struct aac_dev *dev)
718 {
719 	bool ctrl_up = true;
720 	unsigned long status, start;
721 	bool is_up = false;
722 
723 	start = jiffies;
724 	do {
725 		schedule();
726 		status = src_readl(dev, MUnit.OMR);
727 
728 		if (status == 0xffffffff)
729 			status = 0;
730 
731 		if (status & KERNEL_BOOTING) {
732 			start = jiffies;
733 			continue;
734 		}
735 
736 		if (time_after(jiffies, start+HZ*SOFT_RESET_TIME)) {
737 			ctrl_up = false;
738 			break;
739 		}
740 
741 		is_up = status & KERNEL_UP_AND_RUNNING;
742 
743 	} while (!is_up);
744 
745 	return ctrl_up;
746 }
747 
748 static void aac_notify_fw_of_iop_reset(struct aac_dev *dev)
749 {
750 	aac_adapter_sync_cmd(dev, IOP_RESET_ALWAYS, 0, 0, 0, 0, 0, 0, NULL,
751 						NULL, NULL, NULL, NULL);
752 }
753 
754 static void aac_send_iop_reset(struct aac_dev *dev)
755 {
756 	aac_dump_fw_fib_iop_reset(dev);
757 
758 	aac_notify_fw_of_iop_reset(dev);
759 
760 	aac_set_intx_mode(dev);
761 
762 	aac_clear_omr(dev);
763 
764 	src_writel(dev, MUnit.IDR, IOP_SRC_RESET_MASK);
765 
766 	msleep(5000);
767 }
768 
769 static void aac_send_hardware_soft_reset(struct aac_dev *dev)
770 {
771 	u_int32_t val;
772 
773 	aac_clear_omr(dev);
774 	val = readl(((char *)(dev->base) + IBW_SWR_OFFSET));
775 	val |= 0x01;
776 	writel(val, ((char *)(dev->base) + IBW_SWR_OFFSET));
777 	msleep_interruptible(20000);
778 }
779 
780 static int aac_src_restart_adapter(struct aac_dev *dev, int bled, u8 reset_type)
781 {
782 	bool is_ctrl_up;
783 	int ret = 0;
784 
785 	if (bled < 0)
786 		goto invalid_out;
787 
788 	if (bled)
789 		dev_err(&dev->pdev->dev, "adapter kernel panic'd %x.\n", bled);
790 
791 	/*
792 	 * When there is a BlinkLED, IOP_RESET has not effect
793 	 */
794 	if (bled >= 2 && dev->sa_firmware && reset_type & HW_IOP_RESET)
795 		reset_type &= ~HW_IOP_RESET;
796 
797 	dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
798 
799 	dev_err(&dev->pdev->dev, "Controller reset type is %d\n", reset_type);
800 
801 	if (reset_type & HW_IOP_RESET) {
802 		dev_info(&dev->pdev->dev, "Issuing IOP reset\n");
803 		aac_send_iop_reset(dev);
804 
805 		/*
806 		 * Creates a delay or wait till up and running comes thru
807 		 */
808 		is_ctrl_up = aac_is_ctrl_up_and_running(dev);
809 		if (!is_ctrl_up)
810 			dev_err(&dev->pdev->dev, "IOP reset failed\n");
811 		else {
812 			dev_info(&dev->pdev->dev, "IOP reset succeeded\n");
813 			goto set_startup;
814 		}
815 	}
816 
817 	if (!dev->sa_firmware) {
818 		dev_err(&dev->pdev->dev, "ARC Reset attempt failed\n");
819 		ret = -ENODEV;
820 		goto out;
821 	}
822 
823 	if (reset_type & HW_SOFT_RESET) {
824 		dev_info(&dev->pdev->dev, "Issuing SOFT reset\n");
825 		aac_send_hardware_soft_reset(dev);
826 		dev->msi_enabled = 0;
827 
828 		is_ctrl_up = aac_is_ctrl_up_and_running(dev);
829 		if (!is_ctrl_up) {
830 			dev_err(&dev->pdev->dev, "SOFT reset failed\n");
831 			ret = -ENODEV;
832 			goto out;
833 		} else
834 			dev_info(&dev->pdev->dev, "SOFT reset succeeded\n");
835 	}
836 
837 set_startup:
838 	if (startup_timeout < 300)
839 		startup_timeout = 300;
840 
841 out:
842 	return ret;
843 
844 invalid_out:
845 	if (src_readl(dev, MUnit.OMR) & KERNEL_PANIC)
846 		ret = -ENODEV;
847 goto out;
848 }
849 
850 /**
851  *	aac_src_select_comm	-	Select communications method
852  *	@dev: Adapter
853  *	@comm: communications method
854  */
855 static int aac_src_select_comm(struct aac_dev *dev, int comm)
856 {
857 	switch (comm) {
858 	case AAC_COMM_MESSAGE:
859 		dev->a_ops.adapter_intr = aac_src_intr_message;
860 		dev->a_ops.adapter_deliver = aac_src_deliver_message;
861 		break;
862 	default:
863 		return 1;
864 	}
865 	return 0;
866 }
867 
868 /**
869  *  aac_src_init	-	initialize an Cardinal Frey Bar card
870  *  @dev: device to configure
871  *
872  */
873 
874 int aac_src_init(struct aac_dev *dev)
875 {
876 	unsigned long start;
877 	unsigned long status;
878 	int restart = 0;
879 	int instance = dev->id;
880 	const char *name = dev->name;
881 
882 	dev->a_ops.adapter_ioremap = aac_src_ioremap;
883 	dev->a_ops.adapter_comm = aac_src_select_comm;
884 
885 	dev->base_size = AAC_MIN_SRC_BAR0_SIZE;
886 	if (aac_adapter_ioremap(dev, dev->base_size)) {
887 		printk(KERN_WARNING "%s: unable to map adapter.\n", name);
888 		goto error_iounmap;
889 	}
890 
891 	/* Failure to reset here is an option ... */
892 	dev->a_ops.adapter_sync_cmd = src_sync_cmd;
893 	dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
894 
895 	if (dev->init_reset) {
896 		dev->init_reset = false;
897 		if (!aac_src_restart_adapter(dev, 0, IOP_HWSOFT_RESET))
898 			++restart;
899 	}
900 
901 	/*
902 	 *	Check to see if the board panic'd while booting.
903 	 */
904 	status = src_readl(dev, MUnit.OMR);
905 	if (status & KERNEL_PANIC) {
906 		if (aac_src_restart_adapter(dev,
907 			aac_src_check_health(dev), IOP_HWSOFT_RESET))
908 			goto error_iounmap;
909 		++restart;
910 	}
911 	/*
912 	 *	Check to see if the board failed any self tests.
913 	 */
914 	status = src_readl(dev, MUnit.OMR);
915 	if (status & SELF_TEST_FAILED) {
916 		printk(KERN_ERR "%s%d: adapter self-test failed.\n",
917 			dev->name, instance);
918 		goto error_iounmap;
919 	}
920 	/*
921 	 *	Check to see if the monitor panic'd while booting.
922 	 */
923 	if (status & MONITOR_PANIC) {
924 		printk(KERN_ERR "%s%d: adapter monitor panic.\n",
925 			dev->name, instance);
926 		goto error_iounmap;
927 	}
928 	start = jiffies;
929 	/*
930 	 *	Wait for the adapter to be up and running. Wait up to 3 minutes
931 	 */
932 	while (!((status = src_readl(dev, MUnit.OMR)) &
933 		KERNEL_UP_AND_RUNNING)) {
934 		if ((restart &&
935 		  (status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) ||
936 		  time_after(jiffies, start+HZ*startup_timeout)) {
937 			printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n",
938 					dev->name, instance, status);
939 			goto error_iounmap;
940 		}
941 		if (!restart &&
942 		  ((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) ||
943 		  time_after(jiffies, start + HZ *
944 		  ((startup_timeout > 60)
945 		    ? (startup_timeout - 60)
946 		    : (startup_timeout / 2))))) {
947 			if (likely(!aac_src_restart_adapter(dev,
948 				aac_src_check_health(dev), IOP_HWSOFT_RESET)))
949 				start = jiffies;
950 			++restart;
951 		}
952 		msleep(1);
953 	}
954 	if (restart && aac_commit)
955 		aac_commit = 1;
956 	/*
957 	 *	Fill in the common function dispatch table.
958 	 */
959 	dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter;
960 	dev->a_ops.adapter_disable_int = aac_src_disable_interrupt;
961 	dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
962 	dev->a_ops.adapter_notify = aac_src_notify_adapter;
963 	dev->a_ops.adapter_sync_cmd = src_sync_cmd;
964 	dev->a_ops.adapter_check_health = aac_src_check_health;
965 	dev->a_ops.adapter_restart = aac_src_restart_adapter;
966 	dev->a_ops.adapter_start = aac_src_start_adapter;
967 
968 	/*
969 	 *	First clear out all interrupts.  Then enable the one's that we
970 	 *	can handle.
971 	 */
972 	aac_adapter_comm(dev, AAC_COMM_MESSAGE);
973 	aac_adapter_disable_int(dev);
974 	src_writel(dev, MUnit.ODR_C, 0xffffffff);
975 	aac_adapter_enable_int(dev);
976 
977 	if (aac_init_adapter(dev) == NULL)
978 		goto error_iounmap;
979 	if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE1)
980 		goto error_iounmap;
981 
982 	dev->msi = !pci_enable_msi(dev->pdev);
983 
984 	dev->aac_msix[0].vector_no = 0;
985 	dev->aac_msix[0].dev = dev;
986 
987 	if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
988 			IRQF_SHARED, "aacraid", &(dev->aac_msix[0]))  < 0) {
989 
990 		if (dev->msi)
991 			pci_disable_msi(dev->pdev);
992 
993 		printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
994 			name, instance);
995 		goto error_iounmap;
996 	}
997 	dev->dbg_base = pci_resource_start(dev->pdev, 2);
998 	dev->dbg_base_mapped = dev->regs.src.bar1;
999 	dev->dbg_size = AAC_MIN_SRC_BAR1_SIZE;
1000 	dev->a_ops.adapter_enable_int = aac_src_enable_interrupt_message;
1001 
1002 	aac_adapter_enable_int(dev);
1003 
1004 	if (!dev->sync_mode) {
1005 		/*
1006 		 * Tell the adapter that all is configured, and it can
1007 		 * start accepting requests
1008 		 */
1009 		aac_src_start_adapter(dev);
1010 	}
1011 	return 0;
1012 
1013 error_iounmap:
1014 
1015 	return -1;
1016 }
1017 
1018 static int aac_src_wait_sync(struct aac_dev *dev, int *status)
1019 {
1020 	unsigned long start = jiffies;
1021 	unsigned long usecs = 0;
1022 	int delay = 5 * HZ;
1023 	int rc = 1;
1024 
1025 	while (time_before(jiffies, start+delay)) {
1026 		/*
1027 		 * Delay 5 microseconds to let Mon960 get info.
1028 		 */
1029 		udelay(5);
1030 
1031 		/*
1032 		 * Mon960 will set doorbell0 bit when it has completed the
1033 		 * command.
1034 		 */
1035 		if (aac_src_get_sync_status(dev) & OUTBOUNDDOORBELL_0) {
1036 			/*
1037 			 * Clear: the doorbell.
1038 			 */
1039 			if (dev->msi_enabled)
1040 				aac_src_access_devreg(dev, AAC_CLEAR_SYNC_BIT);
1041 			else
1042 				src_writel(dev, MUnit.ODR_C,
1043 					OUTBOUNDDOORBELL_0 << SRC_ODR_SHIFT);
1044 			rc = 0;
1045 
1046 			break;
1047 		}
1048 
1049 		/*
1050 		 * Yield the processor in case we are slow
1051 		 */
1052 		usecs = 1 * USEC_PER_MSEC;
1053 		usleep_range(usecs, usecs + 50);
1054 	}
1055 	/*
1056 	 * Pull the synch status from Mailbox 0.
1057 	 */
1058 	if (status && !rc) {
1059 		status[0] = readl(&dev->IndexRegs->Mailbox[0]);
1060 		status[1] = readl(&dev->IndexRegs->Mailbox[1]);
1061 		status[2] = readl(&dev->IndexRegs->Mailbox[2]);
1062 		status[3] = readl(&dev->IndexRegs->Mailbox[3]);
1063 		status[4] = readl(&dev->IndexRegs->Mailbox[4]);
1064 	}
1065 
1066 	return rc;
1067 }
1068 
1069 /**
1070  *  aac_src_soft_reset	-	perform soft reset to speed up
1071  *  access
1072  *
1073  *  Assumptions: That the controller is in a state where we can
1074  *  bring it back to life with an init struct. We can only use
1075  *  fast sync commands, as the timeout is 5 seconds.
1076  *
1077  *  @dev: device to configure
1078  *
1079  */
1080 
1081 static int aac_src_soft_reset(struct aac_dev *dev)
1082 {
1083 	u32 status_omr = src_readl(dev, MUnit.OMR);
1084 	u32 status[5];
1085 	int rc = 1;
1086 	int state = 0;
1087 	char *state_str[7] = {
1088 		"GET_ADAPTER_PROPERTIES Failed",
1089 		"GET_ADAPTER_PROPERTIES timeout",
1090 		"SOFT_RESET not supported",
1091 		"DROP_IO Failed",
1092 		"DROP_IO timeout",
1093 		"Check Health failed"
1094 	};
1095 
1096 	if (status_omr == INVALID_OMR)
1097 		return 1;       // pcie hosed
1098 
1099 	if (!(status_omr & KERNEL_UP_AND_RUNNING))
1100 		return 1;       // not up and running
1101 
1102 	/*
1103 	 * We go into soft reset mode to allow us to handle response
1104 	 */
1105 	dev->in_soft_reset = 1;
1106 	dev->msi_enabled = status_omr & AAC_INT_MODE_MSIX;
1107 
1108 	/* Get adapter properties */
1109 	rc = aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES, 0, 0, 0,
1110 		0, 0, 0, status+0, status+1, status+2, status+3, status+4);
1111 	if (rc)
1112 		goto out;
1113 
1114 	state++;
1115 	if (aac_src_wait_sync(dev, status)) {
1116 		rc = 1;
1117 		goto out;
1118 	}
1119 
1120 	state++;
1121 	if (!(status[1] & le32_to_cpu(AAC_OPT_EXTENDED) &&
1122 		(status[4] & le32_to_cpu(AAC_EXTOPT_SOFT_RESET)))) {
1123 		rc = 2;
1124 		goto out;
1125 	}
1126 
1127 	if ((status[1] & le32_to_cpu(AAC_OPT_EXTENDED)) &&
1128 		(status[4] & le32_to_cpu(AAC_EXTOPT_SA_FIRMWARE)))
1129 		dev->sa_firmware = 1;
1130 
1131 	state++;
1132 	rc = aac_adapter_sync_cmd(dev, DROP_IO, 0, 0, 0, 0, 0, 0,
1133 		 status+0, status+1, status+2, status+3, status+4);
1134 
1135 	if (rc)
1136 		goto out;
1137 
1138 	state++;
1139 	if (aac_src_wait_sync(dev, status)) {
1140 		rc = 3;
1141 		goto out;
1142 	}
1143 
1144 	if (status[1])
1145 		dev_err(&dev->pdev->dev, "%s: %d outstanding I/O pending\n",
1146 			__func__, status[1]);
1147 
1148 	state++;
1149 	rc = aac_src_check_health(dev);
1150 
1151 out:
1152 	dev->in_soft_reset = 0;
1153 	dev->msi_enabled = 0;
1154 	if (rc)
1155 		dev_err(&dev->pdev->dev, "%s: %s status = %d", __func__,
1156 			state_str[state], rc);
1157 
1158 return rc;
1159 }
1160 /**
1161  *  aac_srcv_init	-	initialize an SRCv card
1162  *  @dev: device to configure
1163  *
1164  */
1165 
1166 int aac_srcv_init(struct aac_dev *dev)
1167 {
1168 	unsigned long start;
1169 	unsigned long status;
1170 	int restart = 0;
1171 	int instance = dev->id;
1172 	const char *name = dev->name;
1173 
1174 	dev->a_ops.adapter_ioremap = aac_srcv_ioremap;
1175 	dev->a_ops.adapter_comm = aac_src_select_comm;
1176 
1177 	dev->base_size = AAC_MIN_SRCV_BAR0_SIZE;
1178 	if (aac_adapter_ioremap(dev, dev->base_size)) {
1179 		printk(KERN_WARNING "%s: unable to map adapter.\n", name);
1180 		goto error_iounmap;
1181 	}
1182 
1183 	/* Failure to reset here is an option ... */
1184 	dev->a_ops.adapter_sync_cmd = src_sync_cmd;
1185 	dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
1186 
1187 	if (dev->init_reset) {
1188 		dev->init_reset = false;
1189 		if (aac_src_soft_reset(dev)) {
1190 			aac_src_restart_adapter(dev, 0, IOP_HWSOFT_RESET);
1191 			++restart;
1192 		}
1193 	}
1194 
1195 	/*
1196 	 *	Check to see if flash update is running.
1197 	 *	Wait for the adapter to be up and running. Wait up to 5 minutes
1198 	 */
1199 	status = src_readl(dev, MUnit.OMR);
1200 	if (status & FLASH_UPD_PENDING) {
1201 		start = jiffies;
1202 		do {
1203 			status = src_readl(dev, MUnit.OMR);
1204 			if (time_after(jiffies, start+HZ*FWUPD_TIMEOUT)) {
1205 				printk(KERN_ERR "%s%d: adapter flash update failed.\n",
1206 					dev->name, instance);
1207 				goto error_iounmap;
1208 			}
1209 		} while (!(status & FLASH_UPD_SUCCESS) &&
1210 			 !(status & FLASH_UPD_FAILED));
1211 		/* Delay 10 seconds.
1212 		 * Because right now FW is doing a soft reset,
1213 		 * do not read scratch pad register at this time
1214 		 */
1215 		ssleep(10);
1216 	}
1217 	/*
1218 	 *	Check to see if the board panic'd while booting.
1219 	 */
1220 	status = src_readl(dev, MUnit.OMR);
1221 	if (status & KERNEL_PANIC) {
1222 		if (aac_src_restart_adapter(dev,
1223 			aac_src_check_health(dev), IOP_HWSOFT_RESET))
1224 			goto error_iounmap;
1225 		++restart;
1226 	}
1227 	/*
1228 	 *	Check to see if the board failed any self tests.
1229 	 */
1230 	status = src_readl(dev, MUnit.OMR);
1231 	if (status & SELF_TEST_FAILED) {
1232 		printk(KERN_ERR "%s%d: adapter self-test failed.\n", dev->name, instance);
1233 		goto error_iounmap;
1234 	}
1235 	/*
1236 	 *	Check to see if the monitor panic'd while booting.
1237 	 */
1238 	if (status & MONITOR_PANIC) {
1239 		printk(KERN_ERR "%s%d: adapter monitor panic.\n", dev->name, instance);
1240 		goto error_iounmap;
1241 	}
1242 
1243 	start = jiffies;
1244 	/*
1245 	 *	Wait for the adapter to be up and running. Wait up to 3 minutes
1246 	 */
1247 	do {
1248 		status = src_readl(dev, MUnit.OMR);
1249 		if (status == INVALID_OMR)
1250 			status = 0;
1251 
1252 		if ((restart &&
1253 		  (status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC))) ||
1254 		  time_after(jiffies, start+HZ*startup_timeout)) {
1255 			printk(KERN_ERR "%s%d: adapter kernel failed to start, init status = %lx.\n",
1256 					dev->name, instance, status);
1257 			goto error_iounmap;
1258 		}
1259 		if (!restart &&
1260 		  ((status & (KERNEL_PANIC|SELF_TEST_FAILED|MONITOR_PANIC)) ||
1261 		  time_after(jiffies, start + HZ *
1262 		  ((startup_timeout > 60)
1263 		    ? (startup_timeout - 60)
1264 		    : (startup_timeout / 2))))) {
1265 			if (likely(!aac_src_restart_adapter(dev,
1266 				aac_src_check_health(dev), IOP_HWSOFT_RESET)))
1267 				start = jiffies;
1268 			++restart;
1269 		}
1270 		msleep(1);
1271 	} while (!(status & KERNEL_UP_AND_RUNNING));
1272 
1273 	if (restart && aac_commit)
1274 		aac_commit = 1;
1275 	/*
1276 	 *	Fill in the common function dispatch table.
1277 	 */
1278 	dev->a_ops.adapter_interrupt = aac_src_interrupt_adapter;
1279 	dev->a_ops.adapter_disable_int = aac_src_disable_interrupt;
1280 	dev->a_ops.adapter_enable_int = aac_src_disable_interrupt;
1281 	dev->a_ops.adapter_notify = aac_src_notify_adapter;
1282 	dev->a_ops.adapter_sync_cmd = src_sync_cmd;
1283 	dev->a_ops.adapter_check_health = aac_src_check_health;
1284 	dev->a_ops.adapter_restart = aac_src_restart_adapter;
1285 	dev->a_ops.adapter_start = aac_src_start_adapter;
1286 
1287 	/*
1288 	 *	First clear out all interrupts.  Then enable the one's that we
1289 	 *	can handle.
1290 	 */
1291 	aac_adapter_comm(dev, AAC_COMM_MESSAGE);
1292 	aac_adapter_disable_int(dev);
1293 	src_writel(dev, MUnit.ODR_C, 0xffffffff);
1294 	aac_adapter_enable_int(dev);
1295 
1296 	if (aac_init_adapter(dev) == NULL)
1297 		goto error_iounmap;
1298 	if ((dev->comm_interface != AAC_COMM_MESSAGE_TYPE2) &&
1299 		(dev->comm_interface != AAC_COMM_MESSAGE_TYPE3))
1300 		goto error_iounmap;
1301 	if (dev->msi_enabled)
1302 		aac_src_access_devreg(dev, AAC_ENABLE_MSIX);
1303 
1304 	if (aac_acquire_irq(dev))
1305 		goto error_iounmap;
1306 
1307 	dev->dbg_base = pci_resource_start(dev->pdev, 2);
1308 	dev->dbg_base_mapped = dev->regs.src.bar1;
1309 	dev->dbg_size = AAC_MIN_SRCV_BAR1_SIZE;
1310 	dev->a_ops.adapter_enable_int = aac_src_enable_interrupt_message;
1311 
1312 	aac_adapter_enable_int(dev);
1313 
1314 	if (!dev->sync_mode) {
1315 		/*
1316 		 * Tell the adapter that all is configured, and it can
1317 		 * start accepting requests
1318 		 */
1319 		aac_src_start_adapter(dev);
1320 	}
1321 	return 0;
1322 
1323 error_iounmap:
1324 
1325 	return -1;
1326 }
1327 
1328 void aac_src_access_devreg(struct aac_dev *dev, int mode)
1329 {
1330 	u_int32_t val;
1331 
1332 	switch (mode) {
1333 	case AAC_ENABLE_INTERRUPT:
1334 		src_writel(dev,
1335 			   MUnit.OIMR,
1336 			   dev->OIMR = (dev->msi_enabled ?
1337 					AAC_INT_ENABLE_TYPE1_MSIX :
1338 					AAC_INT_ENABLE_TYPE1_INTX));
1339 		break;
1340 
1341 	case AAC_DISABLE_INTERRUPT:
1342 		src_writel(dev,
1343 			   MUnit.OIMR,
1344 			   dev->OIMR = AAC_INT_DISABLE_ALL);
1345 		break;
1346 
1347 	case AAC_ENABLE_MSIX:
1348 		/* set bit 6 */
1349 		val = src_readl(dev, MUnit.IDR);
1350 		val |= 0x40;
1351 		src_writel(dev,  MUnit.IDR, val);
1352 		src_readl(dev, MUnit.IDR);
1353 		/* unmask int. */
1354 		val = PMC_ALL_INTERRUPT_BITS;
1355 		src_writel(dev, MUnit.IOAR, val);
1356 		val = src_readl(dev, MUnit.OIMR);
1357 		src_writel(dev,
1358 			   MUnit.OIMR,
1359 			   val & (~(PMC_GLOBAL_INT_BIT2 | PMC_GLOBAL_INT_BIT0)));
1360 		break;
1361 
1362 	case AAC_DISABLE_MSIX:
1363 		/* reset bit 6 */
1364 		val = src_readl(dev, MUnit.IDR);
1365 		val &= ~0x40;
1366 		src_writel(dev, MUnit.IDR, val);
1367 		src_readl(dev, MUnit.IDR);
1368 		break;
1369 
1370 	case AAC_CLEAR_AIF_BIT:
1371 		/* set bit 5 */
1372 		val = src_readl(dev, MUnit.IDR);
1373 		val |= 0x20;
1374 		src_writel(dev, MUnit.IDR, val);
1375 		src_readl(dev, MUnit.IDR);
1376 		break;
1377 
1378 	case AAC_CLEAR_SYNC_BIT:
1379 		/* set bit 4 */
1380 		val = src_readl(dev, MUnit.IDR);
1381 		val |= 0x10;
1382 		src_writel(dev, MUnit.IDR, val);
1383 		src_readl(dev, MUnit.IDR);
1384 		break;
1385 
1386 	case AAC_ENABLE_INTX:
1387 		/* set bit 7 */
1388 		val = src_readl(dev, MUnit.IDR);
1389 		val |= 0x80;
1390 		src_writel(dev, MUnit.IDR, val);
1391 		src_readl(dev, MUnit.IDR);
1392 		/* unmask int. */
1393 		val = PMC_ALL_INTERRUPT_BITS;
1394 		src_writel(dev, MUnit.IOAR, val);
1395 		src_readl(dev, MUnit.IOAR);
1396 		val = src_readl(dev, MUnit.OIMR);
1397 		src_writel(dev, MUnit.OIMR,
1398 				val & (~(PMC_GLOBAL_INT_BIT2)));
1399 		break;
1400 
1401 	default:
1402 		break;
1403 	}
1404 }
1405 
1406 static int aac_src_get_sync_status(struct aac_dev *dev)
1407 {
1408 	int msix_val = 0;
1409 	int legacy_val = 0;
1410 
1411 	msix_val = src_readl(dev, MUnit.ODR_MSI) & SRC_MSI_READ_MASK ? 1 : 0;
1412 
1413 	if (!dev->msi_enabled) {
1414 		/*
1415 		 * if Legacy int status indicates cmd is not complete
1416 		 * sample MSIx register to see if it indiactes cmd complete,
1417 		 * if yes set the controller in MSIx mode and consider cmd
1418 		 * completed
1419 		 */
1420 		legacy_val = src_readl(dev, MUnit.ODR_R) >> SRC_ODR_SHIFT;
1421 		if (!(legacy_val & 1) && msix_val)
1422 			dev->msi_enabled = 1;
1423 		return legacy_val;
1424 	}
1425 
1426 	return msix_val;
1427 }
1428