xref: /openbmc/linux/drivers/scsi/aacraid/linit.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *   linit.c
28  *
29  * Abstract: Linux Driver entry module for Adaptec RAID Array Controller
30  */
31 
32 
33 #include <linux/compat.h>
34 #include <linux/blkdev.h>
35 #include <linux/completion.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/moduleparam.h>
41 #include <linux/pci.h>
42 #include <linux/aer.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/spinlock.h>
47 #include <linux/syscalls.h>
48 #include <linux/delay.h>
49 #include <linux/kthread.h>
50 
51 #include <scsi/scsi.h>
52 #include <scsi/scsi_cmnd.h>
53 #include <scsi/scsi_device.h>
54 #include <scsi/scsi_host.h>
55 #include <scsi/scsi_tcq.h>
56 #include <scsi/scsicam.h>
57 #include <scsi/scsi_eh.h>
58 
59 #include "aacraid.h"
60 
61 #define AAC_DRIVER_VERSION		"1.2.1"
62 #ifndef AAC_DRIVER_BRANCH
63 #define AAC_DRIVER_BRANCH		""
64 #endif
65 #define AAC_DRIVERNAME			"aacraid"
66 
67 #ifdef AAC_DRIVER_BUILD
68 #define _str(x) #x
69 #define str(x) _str(x)
70 #define AAC_DRIVER_FULL_VERSION	AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH
71 #else
72 #define AAC_DRIVER_FULL_VERSION	AAC_DRIVER_VERSION AAC_DRIVER_BRANCH
73 #endif
74 
75 MODULE_AUTHOR("Red Hat Inc and Adaptec");
76 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, "
77 		   "Adaptec Advanced Raid Products, "
78 		   "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(AAC_DRIVER_FULL_VERSION);
81 
82 static DEFINE_MUTEX(aac_mutex);
83 static LIST_HEAD(aac_devices);
84 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED;
85 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION;
86 
87 /*
88  * Because of the way Linux names scsi devices, the order in this table has
89  * become important.  Check for on-board Raid first, add-in cards second.
90  *
91  * Note: The last field is used to index into aac_drivers below.
92  */
93 static const struct pci_device_id aac_pci_tbl[] = {
94 	{ 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */
95 	{ 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */
96 	{ 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */
97 	{ 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
98 	{ 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */
99 	{ 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */
100 	{ 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
101 	{ 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */
102 	{ 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */
103 	{ 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */
104 	{ 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */
105 	{ 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */
106 	{ 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */
107 	{ 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */
108 	{ 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */
109 	{ 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */
110 
111 	{ 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */
112 	{ 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */
113 	{ 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
114 	{ 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
115 	{ 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
116 	{ 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */
117 	{ 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */
118 	{ 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */
119 	{ 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */
120 	{ 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */
121 	{ 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */
122 	{ 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */
123 	{ 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */
124 	{ 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */
125 	{ 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */
126 	{ 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */
127 	{ 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */
128 	{ 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */
129 	{ 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */
130 	{ 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */
131 	{ 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
132 	{ 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
133 	{ 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
134 	{ 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
135 	{ 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
136 	{ 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
137 	{ 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
138 	{ 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */
139 	{ 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */
140 	{ 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */
141 	{ 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */
142 	{ 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */
143 	{ 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */
144 	{ 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */
145 	{ 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */
146 	{ 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */
147 	{ 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */
148 	{ 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */
149 
150 	{ 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/
151 	{ 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/
152 	{ 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/
153 	{ 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */
154 	{ 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */
155 
156 	{ 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */
157 	{ 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */
158 	{ 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */
159 	{ 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */
160 	{ 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */
161 	{ 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */
162 	{ 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */
163 	{ 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */
164 	{ 0,}
165 };
166 MODULE_DEVICE_TABLE(pci, aac_pci_tbl);
167 
168 /*
169  * dmb - For now we add the number of channels to this structure.
170  * In the future we should add a fib that reports the number of channels
171  * for the card.  At that time we can remove the channels from here
172  */
173 static struct aac_driver_ident aac_drivers[] = {
174 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */
175 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */
176 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */
177 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
178 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */
179 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */
180 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
181 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */
182 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */
183 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "catapult        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */
184 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "tomcat          ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */
185 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2120S   ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },		      /* Adaptec 2120S (Crusader) */
186 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },		      /* Adaptec 2200S (Vulcan) */
187 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */
188 	{ aac_rx_init, "aacraid",  "Legend  ", "Legend S220     ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */
189 	{ aac_rx_init, "aacraid",  "Legend  ", "Legend S230     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */
190 
191 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3230S   ", 2 }, /* Adaptec 3230S (Harrier) */
192 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3240S   ", 2 }, /* Adaptec 3240S (Tornado) */
193 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020ZCR     ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
194 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025ZCR     ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
195 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
196 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */
197 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2820SA      ", 1 }, /* AAR-2820SA (Intruder) */
198 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2620SA      ", 1 }, /* AAR-2620SA (Intruder) */
199 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2420SA      ", 1 }, /* AAR-2420SA (Intruder) */
200 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9024RO       ", 2 }, /* ICP9024RO (Lancer) */
201 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9014RO       ", 1 }, /* ICP9014RO (Lancer) */
202 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9047MA       ", 1 }, /* ICP9047MA (Lancer) */
203 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9087MA       ", 1 }, /* ICP9087MA (Lancer) */
204 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP5445AU       ", 1 }, /* ICP5445AU (Hurricane44) */
205 	{ aac_rx_init, "aacraid",  "ICP     ", "ICP9085LI       ", 1 }, /* ICP9085LI (Marauder-X) */
206 	{ aac_rx_init, "aacraid",  "ICP     ", "ICP5085BR       ", 1 }, /* ICP5085BR (Marauder-E) */
207 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9067MA       ", 1 }, /* ICP9067MA (Intruder-6) */
208 	{ NULL        , "aacraid",  "ADAPTEC ", "Themisto        ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */
209 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "Callisto        ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */
210 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020SA       ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
211 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025SA       ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
212 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
213 	{ aac_rx_init, "aacraid",  "DELL    ", "CERC SR2        ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
214 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
215 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
216 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2026ZCR     ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
217 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2610SA      ", 1 }, /* SATA 6Ch (Bearcat) */
218 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2240S       ", 1 }, /* ASR-2240S (SabreExpress) */
219 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4005        ", 1 }, /* ASR-4005 */
220 	{ aac_rx_init, "ServeRAID","IBM     ", "ServeRAID 8i    ", 1 }, /* IBM 8i (AvonPark) */
221 	{ aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */
222 	{ aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */
223 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4000        ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */
224 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4800SAS     ", 1 }, /* ASR-4800SAS (Marauder-X) */
225 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4805SAS     ", 1 }, /* ASR-4805SAS (Marauder-E) */
226 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-3800        ", 1 }, /* ASR-3800 (Hurricane44) */
227 
228 	{ aac_rx_init, "percraid", "DELL    ", "PERC 320/DC     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/
229 	{ aac_sa_init, "aacraid",  "ADAPTEC ", "Adaptec 5400S   ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
230 	{ aac_sa_init, "aacraid",  "ADAPTEC ", "AAC-364         ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
231 	{ aac_sa_init, "percraid", "DELL    ", "PERCRAID        ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */
232 	{ aac_sa_init, "hpnraid",  "HP      ", "NetRAID         ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */
233 
234 	{ aac_rx_init, "aacraid",  "DELL    ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */
235 	{ aac_rx_init, "aacraid",  "Legend  ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */
236 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Catch All */
237 	{ aac_rkt_init, "aacraid", "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Rocket Catch All */
238 	{ aac_nark_init, "aacraid", "ADAPTEC ", "RAID           ", 2 }, /* Adaptec NEMER/ARK Catch All */
239 	{ aac_src_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */
240 	{ aac_srcv_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */
241 	{ aac_srcv_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */
242 };
243 
244 /**
245  *	aac_queuecommand	-	queue a SCSI command
246  *	@cmd:		SCSI command to queue
247  *	@done:		Function to call on command completion
248  *
249  *	Queues a command for execution by the associated Host Adapter.
250  *
251  *	TODO: unify with aac_scsi_cmd().
252  */
253 
254 static int aac_queuecommand(struct Scsi_Host *shost,
255 			    struct scsi_cmnd *cmd)
256 {
257 	int r = 0;
258 	cmd->SCp.phase = AAC_OWNER_LOWLEVEL;
259 	r = (aac_scsi_cmd(cmd) ? FAILED : 0);
260 	return r;
261 }
262 
263 /**
264  *	aac_info		-	Returns the host adapter name
265  *	@shost:		Scsi host to report on
266  *
267  *	Returns a static string describing the device in question
268  */
269 
270 static const char *aac_info(struct Scsi_Host *shost)
271 {
272 	struct aac_dev *dev = (struct aac_dev *)shost->hostdata;
273 	return aac_drivers[dev->cardtype].name;
274 }
275 
276 /**
277  *	aac_get_driver_ident
278  *	@devtype: index into lookup table
279  *
280  *	Returns a pointer to the entry in the driver lookup table.
281  */
282 
283 struct aac_driver_ident* aac_get_driver_ident(int devtype)
284 {
285 	return &aac_drivers[devtype];
286 }
287 
288 /**
289  *	aac_biosparm	-	return BIOS parameters for disk
290  *	@sdev: The scsi device corresponding to the disk
291  *	@bdev: the block device corresponding to the disk
292  *	@capacity: the sector capacity of the disk
293  *	@geom: geometry block to fill in
294  *
295  *	Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk.
296  *	The default disk geometry is 64 heads, 32 sectors, and the appropriate
297  *	number of cylinders so as not to exceed drive capacity.  In order for
298  *	disks equal to or larger than 1 GB to be addressable by the BIOS
299  *	without exceeding the BIOS limitation of 1024 cylinders, Extended
300  *	Translation should be enabled.   With Extended Translation enabled,
301  *	drives between 1 GB inclusive and 2 GB exclusive are given a disk
302  *	geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive
303  *	are given a disk geometry of 255 heads and 63 sectors.  However, if
304  *	the BIOS detects that the Extended Translation setting does not match
305  *	the geometry in the partition table, then the translation inferred
306  *	from the partition table will be used by the BIOS, and a warning may
307  *	be displayed.
308  */
309 
310 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev,
311 			sector_t capacity, int *geom)
312 {
313 	struct diskparm *param = (struct diskparm *)geom;
314 	unsigned char *buf;
315 
316 	dprintk((KERN_DEBUG "aac_biosparm.\n"));
317 
318 	/*
319 	 *	Assuming extended translation is enabled - #REVISIT#
320 	 */
321 	if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */
322 		if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */
323 			param->heads = 255;
324 			param->sectors = 63;
325 		} else {
326 			param->heads = 128;
327 			param->sectors = 32;
328 		}
329 	} else {
330 		param->heads = 64;
331 		param->sectors = 32;
332 	}
333 
334 	param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
335 
336 	/*
337 	 *	Read the first 1024 bytes from the disk device, if the boot
338 	 *	sector partition table is valid, search for a partition table
339 	 *	entry whose end_head matches one of the standard geometry
340 	 *	translations ( 64/32, 128/32, 255/63 ).
341 	 */
342 	buf = scsi_bios_ptable(bdev);
343 	if (!buf)
344 		return 0;
345 	if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) {
346 		struct partition *first = (struct partition * )buf;
347 		struct partition *entry = first;
348 		int saved_cylinders = param->cylinders;
349 		int num;
350 		unsigned char end_head, end_sec;
351 
352 		for(num = 0; num < 4; num++) {
353 			end_head = entry->end_head;
354 			end_sec = entry->end_sector & 0x3f;
355 
356 			if(end_head == 63) {
357 				param->heads = 64;
358 				param->sectors = 32;
359 				break;
360 			} else if(end_head == 127) {
361 				param->heads = 128;
362 				param->sectors = 32;
363 				break;
364 			} else if(end_head == 254) {
365 				param->heads = 255;
366 				param->sectors = 63;
367 				break;
368 			}
369 			entry++;
370 		}
371 
372 		if (num == 4) {
373 			end_head = first->end_head;
374 			end_sec = first->end_sector & 0x3f;
375 		}
376 
377 		param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
378 		if (num < 4 && end_sec == param->sectors) {
379 			if (param->cylinders != saved_cylinders)
380 				dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n",
381 					param->heads, param->sectors, num));
382 		} else if (end_head > 0 || end_sec > 0) {
383 			dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n",
384 				end_head + 1, end_sec, num));
385 			dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n",
386 					param->heads, param->sectors));
387 		}
388 	}
389 	kfree(buf);
390 	return 0;
391 }
392 
393 /**
394  *	aac_slave_configure		-	compute queue depths
395  *	@sdev:	SCSI device we are considering
396  *
397  *	Selects queue depths for each target device based on the host adapter's
398  *	total capacity and the queue depth supported by the target device.
399  *	A queue depth of one automatically disables tagged queueing.
400  */
401 
402 static int aac_slave_configure(struct scsi_device *sdev)
403 {
404 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
405 	int chn, tid;
406 	unsigned int depth = 0;
407 	unsigned int set_timeout = 0;
408 	bool set_qd_dev_type = false;
409 	u8 devtype = 0;
410 
411 	chn = aac_logical_to_phys(sdev_channel(sdev));
412 	tid = sdev_id(sdev);
413 	if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) {
414 		devtype = aac->hba_map[chn][tid].devtype;
415 
416 		if (devtype == AAC_DEVTYPE_NATIVE_RAW)
417 			depth = aac->hba_map[chn][tid].qd_limit;
418 		else if (devtype == AAC_DEVTYPE_ARC_RAW)
419 			set_qd_dev_type = true;
420 
421 		set_timeout = 1;
422 		goto common_config;
423 	}
424 
425 	if (aac->jbod && (sdev->type == TYPE_DISK))
426 		sdev->removable = 1;
427 
428 	if (sdev->type == TYPE_DISK
429 	 && sdev_channel(sdev) != CONTAINER_CHANNEL
430 	 && (!aac->jbod || sdev->inq_periph_qual)
431 	 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) {
432 
433 		if (expose_physicals == 0)
434 			return -ENXIO;
435 
436 		if (expose_physicals < 0)
437 			sdev->no_uld_attach = 1;
438 	}
439 
440 	if (sdev->tagged_supported
441 	 &&  sdev->type == TYPE_DISK
442 	 &&  (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
443 	 && !sdev->no_uld_attach) {
444 
445 		struct scsi_device * dev;
446 		struct Scsi_Host *host = sdev->host;
447 		unsigned num_lsu = 0;
448 		unsigned num_one = 0;
449 		unsigned cid;
450 
451 		set_timeout = 1;
452 
453 		for (cid = 0; cid < aac->maximum_num_containers; ++cid)
454 			if (aac->fsa_dev[cid].valid)
455 				++num_lsu;
456 
457 		__shost_for_each_device(dev, host) {
458 			if (dev->tagged_supported
459 			 && dev->type == TYPE_DISK
460 			 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
461 			 && !dev->no_uld_attach) {
462 				if ((sdev_channel(dev) != CONTAINER_CHANNEL)
463 				 || !aac->fsa_dev[sdev_id(dev)].valid) {
464 					++num_lsu;
465 				}
466 			} else {
467 				++num_one;
468 			}
469 		}
470 
471 		if (num_lsu == 0)
472 			++num_lsu;
473 
474 		depth = (host->can_queue - num_one) / num_lsu;
475 
476 		if (sdev_channel(sdev) != NATIVE_CHANNEL)
477 			goto common_config;
478 
479 		set_qd_dev_type = true;
480 
481 	}
482 
483 common_config:
484 
485 	/*
486 	 * Check if SATA drive
487 	 */
488 	if (set_qd_dev_type) {
489 		if (strncmp(sdev->vendor, "ATA", 3) == 0)
490 			depth = 32;
491 		else
492 			depth = 64;
493 	}
494 
495 	/*
496 	 * Firmware has an individual device recovery time typically
497 	 * of 35 seconds, give us a margin.
498 	 */
499 	if (set_timeout && sdev->request_queue->rq_timeout < (45 * HZ))
500 		blk_queue_rq_timeout(sdev->request_queue, 45*HZ);
501 
502 	if (depth > 256)
503 		depth = 256;
504 	else if (depth < 1)
505 		depth = 1;
506 
507 	scsi_change_queue_depth(sdev, depth);
508 
509 	sdev->tagged_supported = 1;
510 
511 	return 0;
512 }
513 
514 /**
515  *	aac_change_queue_depth		-	alter queue depths
516  *	@sdev:	SCSI device we are considering
517  *	@depth:	desired queue depth
518  *
519  *	Alters queue depths for target device based on the host adapter's
520  *	total capacity and the queue depth supported by the target device.
521  */
522 
523 static int aac_change_queue_depth(struct scsi_device *sdev, int depth)
524 {
525 	struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
526 	int chn, tid, is_native_device = 0;
527 
528 	chn = aac_logical_to_phys(sdev_channel(sdev));
529 	tid = sdev_id(sdev);
530 	if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS &&
531 		aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW)
532 		is_native_device = 1;
533 
534 	if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
535 	    (sdev_channel(sdev) == CONTAINER_CHANNEL)) {
536 		struct scsi_device * dev;
537 		struct Scsi_Host *host = sdev->host;
538 		unsigned num = 0;
539 
540 		__shost_for_each_device(dev, host) {
541 			if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
542 			    (sdev_channel(dev) == CONTAINER_CHANNEL))
543 				++num;
544 			++num;
545 		}
546 		if (num >= host->can_queue)
547 			num = host->can_queue - 1;
548 		if (depth > (host->can_queue - num))
549 			depth = host->can_queue - num;
550 		if (depth > 256)
551 			depth = 256;
552 		else if (depth < 2)
553 			depth = 2;
554 		return scsi_change_queue_depth(sdev, depth);
555 	} else if (is_native_device) {
556 		scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit);
557 	} else {
558 		scsi_change_queue_depth(sdev, 1);
559 	}
560 	return sdev->queue_depth;
561 }
562 
563 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf)
564 {
565 	struct scsi_device *sdev = to_scsi_device(dev);
566 	struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
567 	if (sdev_channel(sdev) != CONTAINER_CHANNEL)
568 		return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach
569 		  ? "Hidden\n" :
570 		  ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : ""));
571 	return snprintf(buf, PAGE_SIZE, "%s\n",
572 	  get_container_type(aac->fsa_dev[sdev_id(sdev)].type));
573 }
574 
575 static struct device_attribute aac_raid_level_attr = {
576 	.attr = {
577 		.name = "level",
578 		.mode = S_IRUGO,
579 	},
580 	.show = aac_show_raid_level
581 };
582 
583 static ssize_t aac_show_unique_id(struct device *dev,
584 	     struct device_attribute *attr, char *buf)
585 {
586 	struct scsi_device *sdev = to_scsi_device(dev);
587 	struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
588 	unsigned char sn[16];
589 
590 	memset(sn, 0, sizeof(sn));
591 
592 	if (sdev_channel(sdev) == CONTAINER_CHANNEL)
593 		memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn));
594 
595 	return snprintf(buf, 16 * 2 + 2,
596 		"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n",
597 		sn[0], sn[1], sn[2], sn[3],
598 		sn[4], sn[5], sn[6], sn[7],
599 		sn[8], sn[9], sn[10], sn[11],
600 		sn[12], sn[13], sn[14], sn[15]);
601 }
602 
603 static struct device_attribute aac_unique_id_attr = {
604 	.attr = {
605 		.name = "unique_id",
606 		.mode = 0444,
607 	},
608 	.show = aac_show_unique_id
609 };
610 
611 
612 
613 static struct device_attribute *aac_dev_attrs[] = {
614 	&aac_raid_level_attr,
615 	&aac_unique_id_attr,
616 	NULL,
617 };
618 
619 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg)
620 {
621 	struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
622 	if (!capable(CAP_SYS_RAWIO))
623 		return -EPERM;
624 	return aac_do_ioctl(dev, cmd, arg);
625 }
626 
627 static int get_num_of_incomplete_fibs(struct aac_dev *aac)
628 {
629 
630 	unsigned long flags;
631 	struct scsi_device *sdev = NULL;
632 	struct Scsi_Host *shost = aac->scsi_host_ptr;
633 	struct scsi_cmnd *scmnd = NULL;
634 	struct device *ctrl_dev;
635 
636 	int mlcnt  = 0;
637 	int llcnt  = 0;
638 	int ehcnt  = 0;
639 	int fwcnt  = 0;
640 	int krlcnt = 0;
641 
642 	__shost_for_each_device(sdev, shost) {
643 		spin_lock_irqsave(&sdev->list_lock, flags);
644 		list_for_each_entry(scmnd, &sdev->cmd_list, list) {
645 			switch (scmnd->SCp.phase) {
646 			case AAC_OWNER_FIRMWARE:
647 				fwcnt++;
648 				break;
649 			case AAC_OWNER_ERROR_HANDLER:
650 				ehcnt++;
651 				break;
652 			case AAC_OWNER_LOWLEVEL:
653 				llcnt++;
654 				break;
655 			case AAC_OWNER_MIDLEVEL:
656 				mlcnt++;
657 				break;
658 			default:
659 				krlcnt++;
660 				break;
661 			}
662 		}
663 		spin_unlock_irqrestore(&sdev->list_lock, flags);
664 	}
665 
666 	ctrl_dev = &aac->pdev->dev;
667 
668 	dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", mlcnt);
669 	dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", llcnt);
670 	dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", ehcnt);
671 	dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fwcnt);
672 	dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", krlcnt);
673 
674 	return mlcnt + llcnt + ehcnt + fwcnt;
675 }
676 
677 static int aac_eh_abort(struct scsi_cmnd* cmd)
678 {
679 	struct scsi_device * dev = cmd->device;
680 	struct Scsi_Host * host = dev->host;
681 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
682 	int count, found;
683 	u32 bus, cid;
684 	int ret = FAILED;
685 
686 	if (aac_adapter_check_health(aac))
687 		return ret;
688 
689 	bus = aac_logical_to_phys(scmd_channel(cmd));
690 	cid = scmd_id(cmd);
691 	if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
692 		struct fib *fib;
693 		struct aac_hba_tm_req *tmf;
694 		int status;
695 		u64 address;
696 
697 		pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n",
698 		 AAC_DRIVERNAME,
699 		 host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun);
700 
701 		found = 0;
702 		for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
703 			fib = &aac->fibs[count];
704 			if (*(u8 *)fib->hw_fib_va != 0 &&
705 				(fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
706 				(fib->callback_data == cmd)) {
707 				found = 1;
708 				break;
709 			}
710 		}
711 		if (!found)
712 			return ret;
713 
714 		/* start a HBA_TMF_ABORT_TASK TMF request */
715 		fib = aac_fib_alloc(aac);
716 		if (!fib)
717 			return ret;
718 
719 		tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
720 		memset(tmf, 0, sizeof(*tmf));
721 		tmf->tmf = HBA_TMF_ABORT_TASK;
722 		tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus;
723 		tmf->lun[1] = cmd->device->lun;
724 
725 		address = (u64)fib->hw_error_pa;
726 		tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
727 		tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
728 		tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
729 
730 		fib->hbacmd_size = sizeof(*tmf);
731 		cmd->SCp.sent_command = 0;
732 
733 		status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib,
734 				  (fib_callback) aac_hba_callback,
735 				  (void *) cmd);
736 
737 		/* Wait up to 15 secs for completion */
738 		for (count = 0; count < 15; ++count) {
739 			if (cmd->SCp.sent_command) {
740 				ret = SUCCESS;
741 				break;
742 			}
743 			msleep(1000);
744 		}
745 
746 		if (ret != SUCCESS)
747 			pr_err("%s: Host adapter abort request timed out\n",
748 			AAC_DRIVERNAME);
749 	} else {
750 		pr_err(
751 			"%s: Host adapter abort request.\n"
752 			"%s: Outstanding commands on (%d,%d,%d,%d):\n",
753 			AAC_DRIVERNAME, AAC_DRIVERNAME,
754 			host->host_no, sdev_channel(dev), sdev_id(dev),
755 			(int)dev->lun);
756 		switch (cmd->cmnd[0]) {
757 		case SERVICE_ACTION_IN_16:
758 			if (!(aac->raw_io_interface) ||
759 			    !(aac->raw_io_64) ||
760 			    ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
761 				break;
762 		case INQUIRY:
763 		case READ_CAPACITY:
764 			/*
765 			 * Mark associated FIB to not complete,
766 			 * eh handler does this
767 			 */
768 			for (count = 0;
769 				count < (host->can_queue + AAC_NUM_MGT_FIB);
770 				++count) {
771 				struct fib *fib = &aac->fibs[count];
772 
773 				if (fib->hw_fib_va->header.XferState &&
774 				(fib->flags & FIB_CONTEXT_FLAG) &&
775 				(fib->callback_data == cmd)) {
776 					fib->flags |=
777 						FIB_CONTEXT_FLAG_TIMED_OUT;
778 					cmd->SCp.phase =
779 						AAC_OWNER_ERROR_HANDLER;
780 					ret = SUCCESS;
781 				}
782 			}
783 			break;
784 		case TEST_UNIT_READY:
785 			/*
786 			 * Mark associated FIB to not complete,
787 			 * eh handler does this
788 			 */
789 			for (count = 0;
790 				count < (host->can_queue + AAC_NUM_MGT_FIB);
791 				++count) {
792 				struct scsi_cmnd *command;
793 				struct fib *fib = &aac->fibs[count];
794 
795 				command = fib->callback_data;
796 
797 				if ((fib->hw_fib_va->header.XferState &
798 					cpu_to_le32
799 					(Async | NoResponseExpected)) &&
800 					(fib->flags & FIB_CONTEXT_FLAG) &&
801 					((command)) &&
802 					(command->device == cmd->device)) {
803 					fib->flags |=
804 						FIB_CONTEXT_FLAG_TIMED_OUT;
805 					command->SCp.phase =
806 						AAC_OWNER_ERROR_HANDLER;
807 					if (command == cmd)
808 						ret = SUCCESS;
809 				}
810 			}
811 			break;
812 		}
813 	}
814 	return ret;
815 }
816 
817 static u8 aac_eh_tmf_lun_reset_fib(struct aac_hba_map_info *info,
818 				   struct fib *fib, u64 tmf_lun)
819 {
820 	struct aac_hba_tm_req *tmf;
821 	u64 address;
822 
823 	/* start a HBA_TMF_LUN_RESET TMF request */
824 	tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
825 	memset(tmf, 0, sizeof(*tmf));
826 	tmf->tmf = HBA_TMF_LUN_RESET;
827 	tmf->it_nexus = info->rmw_nexus;
828 	int_to_scsilun(tmf_lun, (struct scsi_lun *)tmf->lun);
829 
830 	address = (u64)fib->hw_error_pa;
831 	tmf->error_ptr_hi = cpu_to_le32
832 		((u32)(address >> 32));
833 	tmf->error_ptr_lo = cpu_to_le32
834 		((u32)(address & 0xffffffff));
835 	tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
836 	fib->hbacmd_size = sizeof(*tmf);
837 
838 	return HBA_IU_TYPE_SCSI_TM_REQ;
839 }
840 
841 static u8 aac_eh_tmf_hard_reset_fib(struct aac_hba_map_info *info,
842 				    struct fib *fib)
843 {
844 	struct aac_hba_reset_req *rst;
845 	u64 address;
846 
847 	/* already tried, start a hard reset now */
848 	rst = (struct aac_hba_reset_req *)fib->hw_fib_va;
849 	memset(rst, 0, sizeof(*rst));
850 	rst->it_nexus = info->rmw_nexus;
851 
852 	address = (u64)fib->hw_error_pa;
853 	rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
854 	rst->error_ptr_lo = cpu_to_le32
855 		((u32)(address & 0xffffffff));
856 	rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
857 	fib->hbacmd_size = sizeof(*rst);
858 
859        return HBA_IU_TYPE_SATA_REQ;
860 }
861 
862 void aac_tmf_callback(void *context, struct fib *fibptr)
863 {
864 	struct aac_hba_resp *err =
865 		&((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
866 	struct aac_hba_map_info *info = context;
867 	int res;
868 
869 	switch (err->service_response) {
870 	case HBA_RESP_SVCRES_TMF_REJECTED:
871 		res = -1;
872 		break;
873 	case HBA_RESP_SVCRES_TMF_LUN_INVALID:
874 		res = 0;
875 		break;
876 	case HBA_RESP_SVCRES_TMF_COMPLETE:
877 	case HBA_RESP_SVCRES_TMF_SUCCEEDED:
878 		res = 0;
879 		break;
880 	default:
881 		res = -2;
882 		break;
883 	}
884 	aac_fib_complete(fibptr);
885 
886 	info->reset_state = res;
887 }
888 
889 /*
890  *	aac_eh_dev_reset	- Device reset command handling
891  *	@scsi_cmd:	SCSI command block causing the reset
892  *
893  */
894 static int aac_eh_dev_reset(struct scsi_cmnd *cmd)
895 {
896 	struct scsi_device * dev = cmd->device;
897 	struct Scsi_Host * host = dev->host;
898 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
899 	struct aac_hba_map_info *info;
900 	int count;
901 	u32 bus, cid;
902 	struct fib *fib;
903 	int ret = FAILED;
904 	int status;
905 	u8 command;
906 
907 	bus = aac_logical_to_phys(scmd_channel(cmd));
908 	cid = scmd_id(cmd);
909 
910 	if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS)
911 		return FAILED;
912 
913 	info = &aac->hba_map[bus][cid];
914 
915 	if (info->devtype != AAC_DEVTYPE_NATIVE_RAW &&
916 	    info->reset_state > 0)
917 		return FAILED;
918 
919 	pr_err("%s: Host adapter reset request. SCSI hang ?\n",
920 	       AAC_DRIVERNAME);
921 
922 	fib = aac_fib_alloc(aac);
923 	if (!fib)
924 		return ret;
925 
926 	/* start a HBA_TMF_LUN_RESET TMF request */
927 	command = aac_eh_tmf_lun_reset_fib(info, fib, dev->lun);
928 
929 	info->reset_state = 1;
930 
931 	status = aac_hba_send(command, fib,
932 			      (fib_callback) aac_tmf_callback,
933 			      (void *) info);
934 
935 	/* Wait up to 15 seconds for completion */
936 	for (count = 0; count < 15; ++count) {
937 		if (info->reset_state == 0) {
938 			ret = info->reset_state == 0 ? SUCCESS : FAILED;
939 			break;
940 		}
941 		msleep(1000);
942 	}
943 
944 	return ret;
945 }
946 
947 /*
948  *	aac_eh_target_reset	- Target reset command handling
949  *	@scsi_cmd:	SCSI command block causing the reset
950  *
951  */
952 static int aac_eh_target_reset(struct scsi_cmnd *cmd)
953 {
954 	struct scsi_device * dev = cmd->device;
955 	struct Scsi_Host * host = dev->host;
956 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
957 	struct aac_hba_map_info *info;
958 	int count;
959 	u32 bus, cid;
960 	int ret = FAILED;
961 	struct fib *fib;
962 	int status;
963 	u8 command;
964 
965 	bus = aac_logical_to_phys(scmd_channel(cmd));
966 	cid = scmd_id(cmd);
967 
968 	if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS)
969 		return FAILED;
970 
971 	info = &aac->hba_map[bus][cid];
972 
973 	if (info->devtype != AAC_DEVTYPE_NATIVE_RAW &&
974 	    info->reset_state > 0)
975 		return FAILED;
976 
977 	pr_err("%s: Host adapter reset request. SCSI hang ?\n",
978 	       AAC_DRIVERNAME);
979 
980 	fib = aac_fib_alloc(aac);
981 	if (!fib)
982 		return ret;
983 
984 
985 	/* already tried, start a hard reset now */
986 	command = aac_eh_tmf_hard_reset_fib(info, fib);
987 
988 	info->reset_state = 2;
989 
990 	status = aac_hba_send(command, fib,
991 			      (fib_callback) aac_tmf_callback,
992 			      (void *) info);
993 
994 	/* Wait up to 15 seconds for completion */
995 	for (count = 0; count < 15; ++count) {
996 		if (info->reset_state <= 0) {
997 			ret = info->reset_state == 0 ? SUCCESS : FAILED;
998 			break;
999 		}
1000 		msleep(1000);
1001 	}
1002 
1003 	return ret;
1004 }
1005 
1006 /*
1007  *	aac_eh_bus_reset	- Bus reset command handling
1008  *	@scsi_cmd:	SCSI command block causing the reset
1009  *
1010  */
1011 static int aac_eh_bus_reset(struct scsi_cmnd* cmd)
1012 {
1013 	struct scsi_device * dev = cmd->device;
1014 	struct Scsi_Host * host = dev->host;
1015 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
1016 	int count;
1017 	u32 cmd_bus;
1018 	int status = 0;
1019 
1020 
1021 	cmd_bus = aac_logical_to_phys(scmd_channel(cmd));
1022 	/* Mark the assoc. FIB to not complete, eh handler does this */
1023 	for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
1024 		struct fib *fib = &aac->fibs[count];
1025 
1026 		if (fib->hw_fib_va->header.XferState &&
1027 		    (fib->flags & FIB_CONTEXT_FLAG) &&
1028 		    (fib->flags & FIB_CONTEXT_FLAG_SCSI_CMD)) {
1029 			struct aac_hba_map_info *info;
1030 			u32 bus, cid;
1031 
1032 			cmd = (struct scsi_cmnd *)fib->callback_data;
1033 			bus = aac_logical_to_phys(scmd_channel(cmd));
1034 			if (bus != cmd_bus)
1035 				continue;
1036 			cid = scmd_id(cmd);
1037 			info = &aac->hba_map[bus][cid];
1038 			if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS ||
1039 			    info->devtype != AAC_DEVTYPE_NATIVE_RAW) {
1040 				fib->flags |= FIB_CONTEXT_FLAG_EH_RESET;
1041 				cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1042 			}
1043 		}
1044 	}
1045 
1046 	pr_err("%s: Host adapter reset request. SCSI hang ?\n", AAC_DRIVERNAME);
1047 
1048 	/*
1049 	 * Check the health of the controller
1050 	 */
1051 	status = aac_adapter_check_health(aac);
1052 	if (status)
1053 		dev_err(&aac->pdev->dev, "Adapter health - %d\n", status);
1054 
1055 	count = get_num_of_incomplete_fibs(aac);
1056 	return (count == 0) ? SUCCESS : FAILED;
1057 }
1058 
1059 /*
1060  *	aac_eh_host_reset	- Host reset command handling
1061  *	@scsi_cmd:	SCSI command block causing the reset
1062  *
1063  */
1064 int aac_eh_host_reset(struct scsi_cmnd *cmd)
1065 {
1066 	struct scsi_device * dev = cmd->device;
1067 	struct Scsi_Host * host = dev->host;
1068 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
1069 	int ret = FAILED;
1070 	__le32 supported_options2 = 0;
1071 	bool is_mu_reset;
1072 	bool is_ignore_reset;
1073 	bool is_doorbell_reset;
1074 
1075 	/*
1076 	 * Check if reset is supported by the firmware
1077 	 */
1078 	supported_options2 = aac->supplement_adapter_info.supported_options2;
1079 	is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET;
1080 	is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET;
1081 	is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET;
1082 	/*
1083 	 * This adapter needs a blind reset, only do so for
1084 	 * Adapters that support a register, instead of a commanded,
1085 	 * reset.
1086 	 */
1087 	if ((is_mu_reset || is_doorbell_reset)
1088 	 && aac_check_reset
1089 	 && (aac_check_reset != -1 || !is_ignore_reset)) {
1090 		/* Bypass wait for command quiesce */
1091 		if (aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET) == 0)
1092 			ret = SUCCESS;
1093 	}
1094 	/*
1095 	 * Reset EH state
1096 	 */
1097 	if (ret == SUCCESS) {
1098 		int bus, cid;
1099 		struct aac_hba_map_info *info;
1100 
1101 		for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1102 			for (cid = 0; cid < AAC_MAX_TARGETS; cid++) {
1103 				info = &aac->hba_map[bus][cid];
1104 				if (info->devtype == AAC_DEVTYPE_NATIVE_RAW)
1105 					info->reset_state = 0;
1106 			}
1107 		}
1108 	}
1109 	return ret;
1110 }
1111 
1112 /**
1113  *	aac_cfg_open		-	open a configuration file
1114  *	@inode: inode being opened
1115  *	@file: file handle attached
1116  *
1117  *	Called when the configuration device is opened. Does the needed
1118  *	set up on the handle and then returns
1119  *
1120  *	Bugs: This needs extending to check a given adapter is present
1121  *	so we can support hot plugging, and to ref count adapters.
1122  */
1123 
1124 static int aac_cfg_open(struct inode *inode, struct file *file)
1125 {
1126 	struct aac_dev *aac;
1127 	unsigned minor_number = iminor(inode);
1128 	int err = -ENODEV;
1129 
1130 	mutex_lock(&aac_mutex);  /* BKL pushdown: nothing else protects this list */
1131 	list_for_each_entry(aac, &aac_devices, entry) {
1132 		if (aac->id == minor_number) {
1133 			file->private_data = aac;
1134 			err = 0;
1135 			break;
1136 		}
1137 	}
1138 	mutex_unlock(&aac_mutex);
1139 
1140 	return err;
1141 }
1142 
1143 /**
1144  *	aac_cfg_ioctl		-	AAC configuration request
1145  *	@inode: inode of device
1146  *	@file: file handle
1147  *	@cmd: ioctl command code
1148  *	@arg: argument
1149  *
1150  *	Handles a configuration ioctl. Currently this involves wrapping it
1151  *	up and feeding it into the nasty windowsalike glue layer.
1152  *
1153  *	Bugs: Needs locking against parallel ioctls lower down
1154  *	Bugs: Needs to handle hot plugging
1155  */
1156 
1157 static long aac_cfg_ioctl(struct file *file,
1158 		unsigned int cmd, unsigned long arg)
1159 {
1160 	struct aac_dev *aac = (struct aac_dev *)file->private_data;
1161 
1162 	if (!capable(CAP_SYS_RAWIO))
1163 		return -EPERM;
1164 
1165 	return aac_do_ioctl(aac, cmd, (void __user *)arg);
1166 }
1167 
1168 #ifdef CONFIG_COMPAT
1169 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg)
1170 {
1171 	long ret;
1172 	switch (cmd) {
1173 	case FSACTL_MINIPORT_REV_CHECK:
1174 	case FSACTL_SENDFIB:
1175 	case FSACTL_OPEN_GET_ADAPTER_FIB:
1176 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
1177 	case FSACTL_SEND_RAW_SRB:
1178 	case FSACTL_GET_PCI_INFO:
1179 	case FSACTL_QUERY_DISK:
1180 	case FSACTL_DELETE_DISK:
1181 	case FSACTL_FORCE_DELETE_DISK:
1182 	case FSACTL_GET_CONTAINERS:
1183 	case FSACTL_SEND_LARGE_FIB:
1184 		ret = aac_do_ioctl(dev, cmd, (void __user *)arg);
1185 		break;
1186 
1187 	case FSACTL_GET_NEXT_ADAPTER_FIB: {
1188 		struct fib_ioctl __user *f;
1189 
1190 		f = compat_alloc_user_space(sizeof(*f));
1191 		ret = 0;
1192 		if (clear_user(f, sizeof(*f)))
1193 			ret = -EFAULT;
1194 		if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32)))
1195 			ret = -EFAULT;
1196 		if (!ret)
1197 			ret = aac_do_ioctl(dev, cmd, f);
1198 		break;
1199 	}
1200 
1201 	default:
1202 		ret = -ENOIOCTLCMD;
1203 		break;
1204 	}
1205 	return ret;
1206 }
1207 
1208 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg)
1209 {
1210 	struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1211 	if (!capable(CAP_SYS_RAWIO))
1212 		return -EPERM;
1213 	return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg);
1214 }
1215 
1216 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1217 {
1218 	if (!capable(CAP_SYS_RAWIO))
1219 		return -EPERM;
1220 	return aac_compat_do_ioctl(file->private_data, cmd, arg);
1221 }
1222 #endif
1223 
1224 static ssize_t aac_show_model(struct device *device,
1225 			      struct device_attribute *attr, char *buf)
1226 {
1227 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1228 	int len;
1229 
1230 	if (dev->supplement_adapter_info.adapter_type_text[0]) {
1231 		char *cp = dev->supplement_adapter_info.adapter_type_text;
1232 		while (*cp && *cp != ' ')
1233 			++cp;
1234 		while (*cp == ' ')
1235 			++cp;
1236 		len = snprintf(buf, PAGE_SIZE, "%s\n", cp);
1237 	} else
1238 		len = snprintf(buf, PAGE_SIZE, "%s\n",
1239 		  aac_drivers[dev->cardtype].model);
1240 	return len;
1241 }
1242 
1243 static ssize_t aac_show_vendor(struct device *device,
1244 			       struct device_attribute *attr, char *buf)
1245 {
1246 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1247 	struct aac_supplement_adapter_info *sup_adap_info;
1248 	int len;
1249 
1250 	sup_adap_info = &dev->supplement_adapter_info;
1251 	if (sup_adap_info->adapter_type_text[0]) {
1252 		char *cp = sup_adap_info->adapter_type_text;
1253 		while (*cp && *cp != ' ')
1254 			++cp;
1255 		len = snprintf(buf, PAGE_SIZE, "%.*s\n",
1256 			(int)(cp - (char *)sup_adap_info->adapter_type_text),
1257 					sup_adap_info->adapter_type_text);
1258 	} else
1259 		len = snprintf(buf, PAGE_SIZE, "%s\n",
1260 			aac_drivers[dev->cardtype].vname);
1261 	return len;
1262 }
1263 
1264 static ssize_t aac_show_flags(struct device *cdev,
1265 			      struct device_attribute *attr, char *buf)
1266 {
1267 	int len = 0;
1268 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata;
1269 
1270 	if (nblank(dprintk(x)))
1271 		len = snprintf(buf, PAGE_SIZE, "dprintk\n");
1272 #ifdef AAC_DETAILED_STATUS_INFO
1273 	len += snprintf(buf + len, PAGE_SIZE - len,
1274 			"AAC_DETAILED_STATUS_INFO\n");
1275 #endif
1276 	if (dev->raw_io_interface && dev->raw_io_64)
1277 		len += snprintf(buf + len, PAGE_SIZE - len,
1278 				"SAI_READ_CAPACITY_16\n");
1279 	if (dev->jbod)
1280 		len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n");
1281 	if (dev->supplement_adapter_info.supported_options2 &
1282 		AAC_OPTION_POWER_MANAGEMENT)
1283 		len += snprintf(buf + len, PAGE_SIZE - len,
1284 				"SUPPORTED_POWER_MANAGEMENT\n");
1285 	if (dev->msi)
1286 		len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n");
1287 	return len;
1288 }
1289 
1290 static ssize_t aac_show_kernel_version(struct device *device,
1291 				       struct device_attribute *attr,
1292 				       char *buf)
1293 {
1294 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1295 	int len, tmp;
1296 
1297 	tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1298 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1299 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1300 	  le32_to_cpu(dev->adapter_info.kernelbuild));
1301 	return len;
1302 }
1303 
1304 static ssize_t aac_show_monitor_version(struct device *device,
1305 					struct device_attribute *attr,
1306 					char *buf)
1307 {
1308 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1309 	int len, tmp;
1310 
1311 	tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1312 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1313 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1314 	  le32_to_cpu(dev->adapter_info.monitorbuild));
1315 	return len;
1316 }
1317 
1318 static ssize_t aac_show_bios_version(struct device *device,
1319 				     struct device_attribute *attr,
1320 				     char *buf)
1321 {
1322 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1323 	int len, tmp;
1324 
1325 	tmp = le32_to_cpu(dev->adapter_info.biosrev);
1326 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1327 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1328 	  le32_to_cpu(dev->adapter_info.biosbuild));
1329 	return len;
1330 }
1331 
1332 static ssize_t aac_show_driver_version(struct device *device,
1333 					struct device_attribute *attr,
1334 					char *buf)
1335 {
1336 	return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version);
1337 }
1338 
1339 static ssize_t aac_show_serial_number(struct device *device,
1340 			       struct device_attribute *attr, char *buf)
1341 {
1342 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1343 	int len = 0;
1344 
1345 	if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
1346 		len = snprintf(buf, 16, "%06X\n",
1347 		  le32_to_cpu(dev->adapter_info.serial[0]));
1348 	if (len &&
1349 	  !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[
1350 	    sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len],
1351 	  buf, len-1))
1352 		len = snprintf(buf, 16, "%.*s\n",
1353 		  (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no),
1354 		  dev->supplement_adapter_info.mfg_pcba_serial_no);
1355 
1356 	return min(len, 16);
1357 }
1358 
1359 static ssize_t aac_show_max_channel(struct device *device,
1360 				    struct device_attribute *attr, char *buf)
1361 {
1362 	return snprintf(buf, PAGE_SIZE, "%d\n",
1363 	  class_to_shost(device)->max_channel);
1364 }
1365 
1366 static ssize_t aac_show_max_id(struct device *device,
1367 			       struct device_attribute *attr, char *buf)
1368 {
1369 	return snprintf(buf, PAGE_SIZE, "%d\n",
1370 	  class_to_shost(device)->max_id);
1371 }
1372 
1373 static ssize_t aac_store_reset_adapter(struct device *device,
1374 				       struct device_attribute *attr,
1375 				       const char *buf, size_t count)
1376 {
1377 	int retval = -EACCES;
1378 
1379 	if (!capable(CAP_SYS_ADMIN))
1380 		return retval;
1381 
1382 	retval = aac_reset_adapter(shost_priv(class_to_shost(device)),
1383 					buf[0] == '!', IOP_HWSOFT_RESET);
1384 	if (retval >= 0)
1385 		retval = count;
1386 
1387 	return retval;
1388 }
1389 
1390 static ssize_t aac_show_reset_adapter(struct device *device,
1391 				      struct device_attribute *attr,
1392 				      char *buf)
1393 {
1394 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1395 	int len, tmp;
1396 
1397 	tmp = aac_adapter_check_health(dev);
1398 	if ((tmp == 0) && dev->in_reset)
1399 		tmp = -EBUSY;
1400 	len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp);
1401 	return len;
1402 }
1403 
1404 static struct device_attribute aac_model = {
1405 	.attr = {
1406 		.name = "model",
1407 		.mode = S_IRUGO,
1408 	},
1409 	.show = aac_show_model,
1410 };
1411 static struct device_attribute aac_vendor = {
1412 	.attr = {
1413 		.name = "vendor",
1414 		.mode = S_IRUGO,
1415 	},
1416 	.show = aac_show_vendor,
1417 };
1418 static struct device_attribute aac_flags = {
1419 	.attr = {
1420 		.name = "flags",
1421 		.mode = S_IRUGO,
1422 	},
1423 	.show = aac_show_flags,
1424 };
1425 static struct device_attribute aac_kernel_version = {
1426 	.attr = {
1427 		.name = "hba_kernel_version",
1428 		.mode = S_IRUGO,
1429 	},
1430 	.show = aac_show_kernel_version,
1431 };
1432 static struct device_attribute aac_monitor_version = {
1433 	.attr = {
1434 		.name = "hba_monitor_version",
1435 		.mode = S_IRUGO,
1436 	},
1437 	.show = aac_show_monitor_version,
1438 };
1439 static struct device_attribute aac_bios_version = {
1440 	.attr = {
1441 		.name = "hba_bios_version",
1442 		.mode = S_IRUGO,
1443 	},
1444 	.show = aac_show_bios_version,
1445 };
1446 static struct device_attribute aac_lld_version = {
1447 	.attr = {
1448 		.name = "driver_version",
1449 		.mode = 0444,
1450 	},
1451 	.show = aac_show_driver_version,
1452 };
1453 static struct device_attribute aac_serial_number = {
1454 	.attr = {
1455 		.name = "serial_number",
1456 		.mode = S_IRUGO,
1457 	},
1458 	.show = aac_show_serial_number,
1459 };
1460 static struct device_attribute aac_max_channel = {
1461 	.attr = {
1462 		.name = "max_channel",
1463 		.mode = S_IRUGO,
1464 	},
1465 	.show = aac_show_max_channel,
1466 };
1467 static struct device_attribute aac_max_id = {
1468 	.attr = {
1469 		.name = "max_id",
1470 		.mode = S_IRUGO,
1471 	},
1472 	.show = aac_show_max_id,
1473 };
1474 static struct device_attribute aac_reset = {
1475 	.attr = {
1476 		.name = "reset_host",
1477 		.mode = S_IWUSR|S_IRUGO,
1478 	},
1479 	.store = aac_store_reset_adapter,
1480 	.show = aac_show_reset_adapter,
1481 };
1482 
1483 static struct device_attribute *aac_attrs[] = {
1484 	&aac_model,
1485 	&aac_vendor,
1486 	&aac_flags,
1487 	&aac_kernel_version,
1488 	&aac_monitor_version,
1489 	&aac_bios_version,
1490 	&aac_lld_version,
1491 	&aac_serial_number,
1492 	&aac_max_channel,
1493 	&aac_max_id,
1494 	&aac_reset,
1495 	NULL
1496 };
1497 
1498 ssize_t aac_get_serial_number(struct device *device, char *buf)
1499 {
1500 	return aac_show_serial_number(device, &aac_serial_number, buf);
1501 }
1502 
1503 static const struct file_operations aac_cfg_fops = {
1504 	.owner		= THIS_MODULE,
1505 	.unlocked_ioctl	= aac_cfg_ioctl,
1506 #ifdef CONFIG_COMPAT
1507 	.compat_ioctl   = aac_compat_cfg_ioctl,
1508 #endif
1509 	.open		= aac_cfg_open,
1510 	.llseek		= noop_llseek,
1511 };
1512 
1513 static struct scsi_host_template aac_driver_template = {
1514 	.module				= THIS_MODULE,
1515 	.name				= "AAC",
1516 	.proc_name			= AAC_DRIVERNAME,
1517 	.info				= aac_info,
1518 	.ioctl				= aac_ioctl,
1519 #ifdef CONFIG_COMPAT
1520 	.compat_ioctl			= aac_compat_ioctl,
1521 #endif
1522 	.queuecommand			= aac_queuecommand,
1523 	.bios_param			= aac_biosparm,
1524 	.shost_attrs			= aac_attrs,
1525 	.slave_configure		= aac_slave_configure,
1526 	.change_queue_depth		= aac_change_queue_depth,
1527 	.sdev_attrs			= aac_dev_attrs,
1528 	.eh_abort_handler		= aac_eh_abort,
1529 	.eh_device_reset_handler	= aac_eh_dev_reset,
1530 	.eh_target_reset_handler	= aac_eh_target_reset,
1531 	.eh_bus_reset_handler		= aac_eh_bus_reset,
1532 	.eh_host_reset_handler		= aac_eh_host_reset,
1533 	.can_queue			= AAC_NUM_IO_FIB,
1534 	.this_id			= MAXIMUM_NUM_CONTAINERS,
1535 	.sg_tablesize			= 16,
1536 	.max_sectors			= 128,
1537 #if (AAC_NUM_IO_FIB > 256)
1538 	.cmd_per_lun			= 256,
1539 #else
1540 	.cmd_per_lun			= AAC_NUM_IO_FIB,
1541 #endif
1542 	.use_clustering			= ENABLE_CLUSTERING,
1543 	.emulated			= 1,
1544 	.no_write_same			= 1,
1545 };
1546 
1547 static void __aac_shutdown(struct aac_dev * aac)
1548 {
1549 	int i;
1550 
1551 	mutex_lock(&aac->ioctl_mutex);
1552 	aac->adapter_shutdown = 1;
1553 	mutex_unlock(&aac->ioctl_mutex);
1554 
1555 	if (aac->aif_thread) {
1556 		int i;
1557 		/* Clear out events first */
1558 		for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) {
1559 			struct fib *fib = &aac->fibs[i];
1560 			if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1561 			    (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected)))
1562 				up(&fib->event_wait);
1563 		}
1564 		kthread_stop(aac->thread);
1565 		aac->thread = NULL;
1566 	}
1567 
1568 	aac_send_shutdown(aac);
1569 
1570 	aac_adapter_disable_int(aac);
1571 
1572 	if (aac_is_src(aac)) {
1573 		if (aac->max_msix > 1) {
1574 			for (i = 0; i < aac->max_msix; i++) {
1575 				free_irq(pci_irq_vector(aac->pdev, i),
1576 					 &(aac->aac_msix[i]));
1577 			}
1578 		} else {
1579 			free_irq(aac->pdev->irq,
1580 				 &(aac->aac_msix[0]));
1581 		}
1582 	} else {
1583 		free_irq(aac->pdev->irq, aac);
1584 	}
1585 	if (aac->msi)
1586 		pci_disable_msi(aac->pdev);
1587 	else if (aac->max_msix > 1)
1588 		pci_disable_msix(aac->pdev);
1589 }
1590 static void aac_init_char(void)
1591 {
1592 	aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops);
1593 	if (aac_cfg_major < 0) {
1594 		pr_err("aacraid: unable to register \"aac\" device.\n");
1595 	}
1596 }
1597 
1598 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
1599 {
1600 	unsigned index = id->driver_data;
1601 	struct Scsi_Host *shost;
1602 	struct aac_dev *aac;
1603 	struct list_head *insert = &aac_devices;
1604 	int error = -ENODEV;
1605 	int unique_id = 0;
1606 	u64 dmamask;
1607 	int mask_bits = 0;
1608 	extern int aac_sync_mode;
1609 
1610 	/*
1611 	 * Only series 7 needs freset.
1612 	 */
1613 	if (pdev->device == PMC_DEVICE_S7)
1614 		pdev->needs_freset = 1;
1615 
1616 	list_for_each_entry(aac, &aac_devices, entry) {
1617 		if (aac->id > unique_id)
1618 			break;
1619 		insert = &aac->entry;
1620 		unique_id++;
1621 	}
1622 
1623 	pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 |
1624 			       PCIE_LINK_STATE_CLKPM);
1625 
1626 	error = pci_enable_device(pdev);
1627 	if (error)
1628 		goto out;
1629 	error = -ENODEV;
1630 
1631 	if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) {
1632 		error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1633 		if (error) {
1634 			dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed");
1635 			goto out_disable_pdev;
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * If the quirk31 bit is set, the adapter needs adapter
1641 	 * to driver communication memory to be allocated below 2gig
1642 	 */
1643 	if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) {
1644 		dmamask = DMA_BIT_MASK(31);
1645 		mask_bits = 31;
1646 	} else {
1647 		dmamask = DMA_BIT_MASK(32);
1648 		mask_bits = 32;
1649 	}
1650 
1651 	error = pci_set_consistent_dma_mask(pdev, dmamask);
1652 	if (error) {
1653 		dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n"
1654 				, mask_bits);
1655 		goto out_disable_pdev;
1656 	}
1657 
1658 	pci_set_master(pdev);
1659 
1660 	shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev));
1661 	if (!shost)
1662 		goto out_disable_pdev;
1663 
1664 	shost->irq = pdev->irq;
1665 	shost->unique_id = unique_id;
1666 	shost->max_cmd_len = 16;
1667 	shost->use_cmd_list = 1;
1668 
1669 	if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT)
1670 		aac_init_char();
1671 
1672 	aac = (struct aac_dev *)shost->hostdata;
1673 	aac->base_start = pci_resource_start(pdev, 0);
1674 	aac->scsi_host_ptr = shost;
1675 	aac->pdev = pdev;
1676 	aac->name = aac_driver_template.name;
1677 	aac->id = shost->unique_id;
1678 	aac->cardtype = index;
1679 	INIT_LIST_HEAD(&aac->entry);
1680 
1681 	if (aac_reset_devices || reset_devices)
1682 		aac->init_reset = true;
1683 
1684 	aac->fibs = kcalloc(shost->can_queue + AAC_NUM_MGT_FIB,
1685 			    sizeof(struct fib),
1686 			    GFP_KERNEL);
1687 	if (!aac->fibs)
1688 		goto out_free_host;
1689 	spin_lock_init(&aac->fib_lock);
1690 
1691 	mutex_init(&aac->ioctl_mutex);
1692 	mutex_init(&aac->scan_mutex);
1693 
1694 	INIT_DELAYED_WORK(&aac->safw_rescan_work, aac_safw_rescan_worker);
1695 	/*
1696 	 *	Map in the registers from the adapter.
1697 	 */
1698 	aac->base_size = AAC_MIN_FOOTPRINT_SIZE;
1699 	if ((*aac_drivers[index].init)(aac)) {
1700 		error = -ENODEV;
1701 		goto out_unmap;
1702 	}
1703 
1704 	if (aac->sync_mode) {
1705 		if (aac_sync_mode)
1706 			printk(KERN_INFO "%s%d: Sync. mode enforced "
1707 				"by driver parameter. This will cause "
1708 				"a significant performance decrease!\n",
1709 				aac->name,
1710 				aac->id);
1711 		else
1712 			printk(KERN_INFO "%s%d: Async. mode not supported "
1713 				"by current driver, sync. mode enforced."
1714 				"\nPlease update driver to get full performance.\n",
1715 				aac->name,
1716 				aac->id);
1717 	}
1718 
1719 	/*
1720 	 *	Start any kernel threads needed
1721 	 */
1722 	aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME);
1723 	if (IS_ERR(aac->thread)) {
1724 		printk(KERN_ERR "aacraid: Unable to create command thread.\n");
1725 		error = PTR_ERR(aac->thread);
1726 		aac->thread = NULL;
1727 		goto out_deinit;
1728 	}
1729 
1730 	aac->maximum_num_channels = aac_drivers[index].channels;
1731 	error = aac_get_adapter_info(aac);
1732 	if (error < 0)
1733 		goto out_deinit;
1734 
1735 	/*
1736 	 * Lets override negotiations and drop the maximum SG limit to 34
1737 	 */
1738 	if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) &&
1739 			(shost->sg_tablesize > 34)) {
1740 		shost->sg_tablesize = 34;
1741 		shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1742 	}
1743 
1744 	if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) &&
1745 			(shost->sg_tablesize > 17)) {
1746 		shost->sg_tablesize = 17;
1747 		shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1748 	}
1749 
1750 	error = dma_set_max_seg_size(&pdev->dev,
1751 		(aac->adapter_info.options & AAC_OPT_NEW_COMM) ?
1752 			(shost->max_sectors << 9) : 65536);
1753 	if (error)
1754 		goto out_deinit;
1755 
1756 	/*
1757 	 * Firmware printf works only with older firmware.
1758 	 */
1759 	if (aac_drivers[index].quirks & AAC_QUIRK_34SG)
1760 		aac->printf_enabled = 1;
1761 	else
1762 		aac->printf_enabled = 0;
1763 
1764 	/*
1765 	 * max channel will be the physical channels plus 1 virtual channel
1766 	 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL)
1767 	 * physical channels are address by their actual physical number+1
1768 	 */
1769 	if (aac->nondasd_support || expose_physicals || aac->jbod)
1770 		shost->max_channel = aac->maximum_num_channels;
1771 	else
1772 		shost->max_channel = 0;
1773 
1774 	aac_get_config_status(aac, 0);
1775 	aac_get_containers(aac);
1776 	list_add(&aac->entry, insert);
1777 
1778 	shost->max_id = aac->maximum_num_containers;
1779 	if (shost->max_id < aac->maximum_num_physicals)
1780 		shost->max_id = aac->maximum_num_physicals;
1781 	if (shost->max_id < MAXIMUM_NUM_CONTAINERS)
1782 		shost->max_id = MAXIMUM_NUM_CONTAINERS;
1783 	else
1784 		shost->this_id = shost->max_id;
1785 
1786 	if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC)
1787 		aac_intr_normal(aac, 0, 2, 0, NULL);
1788 
1789 	/*
1790 	 * dmb - we may need to move the setting of these parms somewhere else once
1791 	 * we get a fib that can report the actual numbers
1792 	 */
1793 	shost->max_lun = AAC_MAX_LUN;
1794 
1795 	pci_set_drvdata(pdev, shost);
1796 
1797 	error = scsi_add_host(shost, &pdev->dev);
1798 	if (error)
1799 		goto out_deinit;
1800 
1801 	aac_scan_host(aac);
1802 
1803 	pci_enable_pcie_error_reporting(pdev);
1804 	pci_save_state(pdev);
1805 
1806 	return 0;
1807 
1808  out_deinit:
1809 	__aac_shutdown(aac);
1810  out_unmap:
1811 	aac_fib_map_free(aac);
1812 	if (aac->comm_addr)
1813 		dma_free_coherent(&aac->pdev->dev, aac->comm_size,
1814 				  aac->comm_addr, aac->comm_phys);
1815 	kfree(aac->queues);
1816 	aac_adapter_ioremap(aac, 0);
1817 	kfree(aac->fibs);
1818 	kfree(aac->fsa_dev);
1819  out_free_host:
1820 	scsi_host_put(shost);
1821  out_disable_pdev:
1822 	pci_disable_device(pdev);
1823  out:
1824 	return error;
1825 }
1826 
1827 static void aac_release_resources(struct aac_dev *aac)
1828 {
1829 	aac_adapter_disable_int(aac);
1830 	aac_free_irq(aac);
1831 }
1832 
1833 static int aac_acquire_resources(struct aac_dev *dev)
1834 {
1835 	unsigned long status;
1836 	/*
1837 	 *	First clear out all interrupts.  Then enable the one's that we
1838 	 *	can handle.
1839 	 */
1840 	while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING)
1841 		|| status == 0xffffffff)
1842 			msleep(20);
1843 
1844 	aac_adapter_disable_int(dev);
1845 	aac_adapter_enable_int(dev);
1846 
1847 
1848 	if (aac_is_src(dev))
1849 		aac_define_int_mode(dev);
1850 
1851 	if (dev->msi_enabled)
1852 		aac_src_access_devreg(dev, AAC_ENABLE_MSIX);
1853 
1854 	if (aac_acquire_irq(dev))
1855 		goto error_iounmap;
1856 
1857 	aac_adapter_enable_int(dev);
1858 
1859 	/*max msix may change  after EEH
1860 	 * Re-assign vectors to fibs
1861 	 */
1862 	aac_fib_vector_assign(dev);
1863 
1864 	if (!dev->sync_mode) {
1865 		/* After EEH recovery or suspend resume, max_msix count
1866 		 * may change, therefore updating in init as well.
1867 		 */
1868 		dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix);
1869 		aac_adapter_start(dev);
1870 	}
1871 	return 0;
1872 
1873 error_iounmap:
1874 	return -1;
1875 
1876 }
1877 
1878 #if (defined(CONFIG_PM))
1879 static int aac_suspend(struct pci_dev *pdev, pm_message_t state)
1880 {
1881 
1882 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1883 	struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1884 
1885 	scsi_block_requests(shost);
1886 	aac_cancel_safw_rescan_worker(aac);
1887 	aac_send_shutdown(aac);
1888 
1889 	aac_release_resources(aac);
1890 
1891 	pci_set_drvdata(pdev, shost);
1892 	pci_save_state(pdev);
1893 	pci_disable_device(pdev);
1894 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
1895 
1896 	return 0;
1897 }
1898 
1899 static int aac_resume(struct pci_dev *pdev)
1900 {
1901 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1902 	struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1903 	int r;
1904 
1905 	pci_set_power_state(pdev, PCI_D0);
1906 	pci_enable_wake(pdev, PCI_D0, 0);
1907 	pci_restore_state(pdev);
1908 	r = pci_enable_device(pdev);
1909 
1910 	if (r)
1911 		goto fail_device;
1912 
1913 	pci_set_master(pdev);
1914 	if (aac_acquire_resources(aac))
1915 		goto fail_device;
1916 	/*
1917 	* reset this flag to unblock ioctl() as it was set at
1918 	* aac_send_shutdown() to block ioctls from upperlayer
1919 	*/
1920 	aac->adapter_shutdown = 0;
1921 	scsi_unblock_requests(shost);
1922 
1923 	return 0;
1924 
1925 fail_device:
1926 	printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id);
1927 	scsi_host_put(shost);
1928 	pci_disable_device(pdev);
1929 	return -ENODEV;
1930 }
1931 #endif
1932 
1933 static void aac_shutdown(struct pci_dev *dev)
1934 {
1935 	struct Scsi_Host *shost = pci_get_drvdata(dev);
1936 	scsi_block_requests(shost);
1937 	__aac_shutdown((struct aac_dev *)shost->hostdata);
1938 }
1939 
1940 static void aac_remove_one(struct pci_dev *pdev)
1941 {
1942 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1943 	struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1944 
1945 	aac_cancel_safw_rescan_worker(aac);
1946 	scsi_remove_host(shost);
1947 
1948 	__aac_shutdown(aac);
1949 	aac_fib_map_free(aac);
1950 	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1951 			  aac->comm_phys);
1952 	kfree(aac->queues);
1953 
1954 	aac_adapter_ioremap(aac, 0);
1955 
1956 	kfree(aac->fibs);
1957 	kfree(aac->fsa_dev);
1958 
1959 	list_del(&aac->entry);
1960 	scsi_host_put(shost);
1961 	pci_disable_device(pdev);
1962 	if (list_empty(&aac_devices)) {
1963 		unregister_chrdev(aac_cfg_major, "aac");
1964 		aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT;
1965 	}
1966 }
1967 
1968 static void aac_flush_ios(struct aac_dev *aac)
1969 {
1970 	int i;
1971 	struct scsi_cmnd *cmd;
1972 
1973 	for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) {
1974 		cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data;
1975 		if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) {
1976 			scsi_dma_unmap(cmd);
1977 
1978 			if (aac->handle_pci_error)
1979 				cmd->result = DID_NO_CONNECT << 16;
1980 			else
1981 				cmd->result = DID_RESET << 16;
1982 
1983 			cmd->scsi_done(cmd);
1984 		}
1985 	}
1986 }
1987 
1988 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev,
1989 					enum pci_channel_state error)
1990 {
1991 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1992 	struct aac_dev *aac = shost_priv(shost);
1993 
1994 	dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error);
1995 
1996 	switch (error) {
1997 	case pci_channel_io_normal:
1998 		return PCI_ERS_RESULT_CAN_RECOVER;
1999 	case pci_channel_io_frozen:
2000 		aac->handle_pci_error = 1;
2001 
2002 		scsi_block_requests(aac->scsi_host_ptr);
2003 		aac_cancel_safw_rescan_worker(aac);
2004 		aac_flush_ios(aac);
2005 		aac_release_resources(aac);
2006 
2007 		pci_disable_pcie_error_reporting(pdev);
2008 		aac_adapter_ioremap(aac, 0);
2009 
2010 		return PCI_ERS_RESULT_NEED_RESET;
2011 	case pci_channel_io_perm_failure:
2012 		aac->handle_pci_error = 1;
2013 
2014 		aac_flush_ios(aac);
2015 		return PCI_ERS_RESULT_DISCONNECT;
2016 	}
2017 
2018 	return PCI_ERS_RESULT_NEED_RESET;
2019 }
2020 
2021 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev)
2022 {
2023 	dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n");
2024 	return PCI_ERS_RESULT_NEED_RESET;
2025 }
2026 
2027 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev)
2028 {
2029 	dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n");
2030 	pci_restore_state(pdev);
2031 	if (pci_enable_device(pdev)) {
2032 		dev_warn(&pdev->dev,
2033 			"aacraid: failed to enable slave\n");
2034 		goto fail_device;
2035 	}
2036 
2037 	pci_set_master(pdev);
2038 
2039 	if (pci_enable_device_mem(pdev)) {
2040 		dev_err(&pdev->dev, "pci_enable_device_mem failed\n");
2041 		goto fail_device;
2042 	}
2043 
2044 	return PCI_ERS_RESULT_RECOVERED;
2045 
2046 fail_device:
2047 	dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n");
2048 	return PCI_ERS_RESULT_DISCONNECT;
2049 }
2050 
2051 
2052 static void aac_pci_resume(struct pci_dev *pdev)
2053 {
2054 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
2055 	struct scsi_device *sdev = NULL;
2056 	struct aac_dev *aac = (struct aac_dev *)shost_priv(shost);
2057 
2058 	if (aac_adapter_ioremap(aac, aac->base_size)) {
2059 
2060 		dev_err(&pdev->dev, "aacraid: ioremap failed\n");
2061 		/* remap failed, go back ... */
2062 		aac->comm_interface = AAC_COMM_PRODUCER;
2063 		if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) {
2064 			dev_warn(&pdev->dev,
2065 				"aacraid: unable to map adapter.\n");
2066 
2067 			return;
2068 		}
2069 	}
2070 
2071 	msleep(10000);
2072 
2073 	aac_acquire_resources(aac);
2074 
2075 	/*
2076 	 * reset this flag to unblock ioctl() as it was set
2077 	 * at aac_send_shutdown() to block ioctls from upperlayer
2078 	 */
2079 	aac->adapter_shutdown = 0;
2080 	aac->handle_pci_error = 0;
2081 
2082 	shost_for_each_device(sdev, shost)
2083 		if (sdev->sdev_state == SDEV_OFFLINE)
2084 			sdev->sdev_state = SDEV_RUNNING;
2085 	scsi_unblock_requests(aac->scsi_host_ptr);
2086 	aac_scan_host(aac);
2087 	pci_save_state(pdev);
2088 
2089 	dev_err(&pdev->dev, "aacraid: PCI error - resume\n");
2090 }
2091 
2092 static struct pci_error_handlers aac_pci_err_handler = {
2093 	.error_detected		= aac_pci_error_detected,
2094 	.mmio_enabled		= aac_pci_mmio_enabled,
2095 	.slot_reset		= aac_pci_slot_reset,
2096 	.resume			= aac_pci_resume,
2097 };
2098 
2099 static struct pci_driver aac_pci_driver = {
2100 	.name		= AAC_DRIVERNAME,
2101 	.id_table	= aac_pci_tbl,
2102 	.probe		= aac_probe_one,
2103 	.remove		= aac_remove_one,
2104 #if (defined(CONFIG_PM))
2105 	.suspend	= aac_suspend,
2106 	.resume		= aac_resume,
2107 #endif
2108 	.shutdown	= aac_shutdown,
2109 	.err_handler    = &aac_pci_err_handler,
2110 };
2111 
2112 static int __init aac_init(void)
2113 {
2114 	int error;
2115 
2116 	printk(KERN_INFO "Adaptec %s driver %s\n",
2117 	  AAC_DRIVERNAME, aac_driver_version);
2118 
2119 	error = pci_register_driver(&aac_pci_driver);
2120 	if (error < 0)
2121 		return error;
2122 
2123 	aac_init_char();
2124 
2125 
2126 	return 0;
2127 }
2128 
2129 static void __exit aac_exit(void)
2130 {
2131 	if (aac_cfg_major > -1)
2132 		unregister_chrdev(aac_cfg_major, "aac");
2133 	pci_unregister_driver(&aac_pci_driver);
2134 }
2135 
2136 module_init(aac_init);
2137 module_exit(aac_exit);
2138