1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * linit.c 15 * 16 * Abstract: Linux Driver entry module for Adaptec RAID Array Controller 17 */ 18 19 20 #include <linux/compat.h> 21 #include <linux/blkdev.h> 22 #include <linux/blk-mq-pci.h> 23 #include <linux/completion.h> 24 #include <linux/init.h> 25 #include <linux/interrupt.h> 26 #include <linux/kernel.h> 27 #include <linux/module.h> 28 #include <linux/moduleparam.h> 29 #include <linux/pci.h> 30 #include <linux/slab.h> 31 #include <linux/mutex.h> 32 #include <linux/spinlock.h> 33 #include <linux/syscalls.h> 34 #include <linux/delay.h> 35 #include <linux/kthread.h> 36 #include <linux/msdos_partition.h> 37 38 #include <scsi/scsi.h> 39 #include <scsi/scsi_cmnd.h> 40 #include <scsi/scsi_device.h> 41 #include <scsi/scsi_host.h> 42 #include <scsi/scsi_tcq.h> 43 #include <scsi/scsicam.h> 44 #include <scsi/scsi_eh.h> 45 46 #include "aacraid.h" 47 48 #define AAC_DRIVER_VERSION "1.2.1" 49 #ifndef AAC_DRIVER_BRANCH 50 #define AAC_DRIVER_BRANCH "" 51 #endif 52 #define AAC_DRIVERNAME "aacraid" 53 54 #ifdef AAC_DRIVER_BUILD 55 #define _str(x) #x 56 #define str(x) _str(x) 57 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH 58 #else 59 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH 60 #endif 61 62 MODULE_AUTHOR("Red Hat Inc and Adaptec"); 63 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, " 64 "Adaptec Advanced Raid Products, " 65 "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver"); 66 MODULE_LICENSE("GPL"); 67 MODULE_VERSION(AAC_DRIVER_FULL_VERSION); 68 69 static DEFINE_MUTEX(aac_mutex); 70 static LIST_HEAD(aac_devices); 71 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED; 72 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION; 73 74 /* 75 * Because of the way Linux names scsi devices, the order in this table has 76 * become important. Check for on-board Raid first, add-in cards second. 77 * 78 * Note: The last field is used to index into aac_drivers below. 79 */ 80 static const struct pci_device_id aac_pci_tbl[] = { 81 { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */ 82 { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */ 83 { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */ 84 { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 85 { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */ 86 { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 87 { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 88 { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 89 { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 90 { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */ 91 { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */ 92 { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */ 93 { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */ 94 { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */ 95 { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */ 96 { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */ 97 98 { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */ 99 { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */ 100 { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 101 { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 102 { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 103 { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */ 104 { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */ 105 { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */ 106 { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */ 107 { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */ 108 { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */ 109 { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */ 110 { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */ 111 { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */ 112 { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */ 113 { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */ 114 { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */ 115 { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */ 116 { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */ 117 { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */ 118 { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 119 { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 120 { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 121 { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 122 { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 123 { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 124 { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 125 { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */ 126 { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */ 127 { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */ 128 { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */ 129 { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */ 130 { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */ 131 { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 132 { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */ 133 { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */ 134 { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */ 135 { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */ 136 137 { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/ 138 { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/ 139 { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/ 140 { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */ 141 { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */ 142 143 { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */ 144 { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */ 145 { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */ 146 { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */ 147 { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */ 148 { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */ 149 { 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */ 150 { 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */ 151 { 0,} 152 }; 153 MODULE_DEVICE_TABLE(pci, aac_pci_tbl); 154 155 /* 156 * dmb - For now we add the number of channels to this structure. 157 * In the future we should add a fib that reports the number of channels 158 * for the card. At that time we can remove the channels from here 159 */ 160 static struct aac_driver_ident aac_drivers[] = { 161 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */ 162 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */ 163 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */ 164 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 165 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */ 166 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 167 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 168 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 169 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 170 { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */ 171 { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */ 172 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */ 173 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */ 174 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */ 175 { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */ 176 { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */ 177 178 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */ 179 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */ 180 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 181 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 182 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 183 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */ 184 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */ 185 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */ 186 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */ 187 { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */ 188 { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */ 189 { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */ 190 { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */ 191 { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */ 192 { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */ 193 { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */ 194 { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */ 195 { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */ 196 { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */ 197 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 198 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 199 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 200 { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 201 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 202 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 203 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 204 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */ 205 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */ 206 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */ 207 { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */ 208 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */ 209 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 210 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */ 211 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */ 212 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */ 213 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */ 214 215 { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/ 216 { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 217 { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 218 { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */ 219 { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */ 220 221 { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */ 222 { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */ 223 { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */ 224 { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */ 225 { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */ 226 { aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */ 227 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */ 228 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */ 229 }; 230 231 /** 232 * aac_queuecommand - queue a SCSI command 233 * @shost: Scsi host to queue command on 234 * @cmd: SCSI command to queue 235 * 236 * Queues a command for execution by the associated Host Adapter. 237 * 238 * TODO: unify with aac_scsi_cmd(). 239 */ 240 241 static int aac_queuecommand(struct Scsi_Host *shost, 242 struct scsi_cmnd *cmd) 243 { 244 aac_priv(cmd)->owner = AAC_OWNER_LOWLEVEL; 245 246 return aac_scsi_cmd(cmd) ? FAILED : 0; 247 } 248 249 /** 250 * aac_info - Returns the host adapter name 251 * @shost: Scsi host to report on 252 * 253 * Returns a static string describing the device in question 254 */ 255 256 static const char *aac_info(struct Scsi_Host *shost) 257 { 258 struct aac_dev *dev = (struct aac_dev *)shost->hostdata; 259 return aac_drivers[dev->cardtype].name; 260 } 261 262 /** 263 * aac_get_driver_ident 264 * @devtype: index into lookup table 265 * 266 * Returns a pointer to the entry in the driver lookup table. 267 */ 268 269 struct aac_driver_ident* aac_get_driver_ident(int devtype) 270 { 271 return &aac_drivers[devtype]; 272 } 273 274 /** 275 * aac_biosparm - return BIOS parameters for disk 276 * @sdev: The scsi device corresponding to the disk 277 * @bdev: the block device corresponding to the disk 278 * @capacity: the sector capacity of the disk 279 * @geom: geometry block to fill in 280 * 281 * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk. 282 * The default disk geometry is 64 heads, 32 sectors, and the appropriate 283 * number of cylinders so as not to exceed drive capacity. In order for 284 * disks equal to or larger than 1 GB to be addressable by the BIOS 285 * without exceeding the BIOS limitation of 1024 cylinders, Extended 286 * Translation should be enabled. With Extended Translation enabled, 287 * drives between 1 GB inclusive and 2 GB exclusive are given a disk 288 * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive 289 * are given a disk geometry of 255 heads and 63 sectors. However, if 290 * the BIOS detects that the Extended Translation setting does not match 291 * the geometry in the partition table, then the translation inferred 292 * from the partition table will be used by the BIOS, and a warning may 293 * be displayed. 294 */ 295 296 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev, 297 sector_t capacity, int *geom) 298 { 299 struct diskparm *param = (struct diskparm *)geom; 300 unsigned char *buf; 301 302 dprintk((KERN_DEBUG "aac_biosparm.\n")); 303 304 /* 305 * Assuming extended translation is enabled - #REVISIT# 306 */ 307 if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */ 308 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */ 309 param->heads = 255; 310 param->sectors = 63; 311 } else { 312 param->heads = 128; 313 param->sectors = 32; 314 } 315 } else { 316 param->heads = 64; 317 param->sectors = 32; 318 } 319 320 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 321 322 /* 323 * Read the first 1024 bytes from the disk device, if the boot 324 * sector partition table is valid, search for a partition table 325 * entry whose end_head matches one of the standard geometry 326 * translations ( 64/32, 128/32, 255/63 ). 327 */ 328 buf = scsi_bios_ptable(bdev); 329 if (!buf) 330 return 0; 331 if (*(__le16 *)(buf + 0x40) == cpu_to_le16(MSDOS_LABEL_MAGIC)) { 332 struct msdos_partition *first = (struct msdos_partition *)buf; 333 struct msdos_partition *entry = first; 334 int saved_cylinders = param->cylinders; 335 int num; 336 unsigned char end_head, end_sec; 337 338 for(num = 0; num < 4; num++) { 339 end_head = entry->end_head; 340 end_sec = entry->end_sector & 0x3f; 341 342 if(end_head == 63) { 343 param->heads = 64; 344 param->sectors = 32; 345 break; 346 } else if(end_head == 127) { 347 param->heads = 128; 348 param->sectors = 32; 349 break; 350 } else if(end_head == 254) { 351 param->heads = 255; 352 param->sectors = 63; 353 break; 354 } 355 entry++; 356 } 357 358 if (num == 4) { 359 end_head = first->end_head; 360 end_sec = first->end_sector & 0x3f; 361 } 362 363 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 364 if (num < 4 && end_sec == param->sectors) { 365 if (param->cylinders != saved_cylinders) { 366 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n", 367 param->heads, param->sectors, num)); 368 } 369 } else if (end_head > 0 || end_sec > 0) { 370 dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n", 371 end_head + 1, end_sec, num)); 372 dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n", 373 param->heads, param->sectors)); 374 } 375 } 376 kfree(buf); 377 return 0; 378 } 379 380 /** 381 * aac_slave_configure - compute queue depths 382 * @sdev: SCSI device we are considering 383 * 384 * Selects queue depths for each target device based on the host adapter's 385 * total capacity and the queue depth supported by the target device. 386 * A queue depth of one automatically disables tagged queueing. 387 */ 388 389 static int aac_slave_configure(struct scsi_device *sdev) 390 { 391 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 392 int chn, tid; 393 unsigned int depth = 0; 394 unsigned int set_timeout = 0; 395 int timeout = 0; 396 bool set_qd_dev_type = false; 397 u8 devtype = 0; 398 399 chn = aac_logical_to_phys(sdev_channel(sdev)); 400 tid = sdev_id(sdev); 401 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) { 402 devtype = aac->hba_map[chn][tid].devtype; 403 404 if (devtype == AAC_DEVTYPE_NATIVE_RAW) { 405 depth = aac->hba_map[chn][tid].qd_limit; 406 set_timeout = 1; 407 goto common_config; 408 } 409 if (devtype == AAC_DEVTYPE_ARC_RAW) { 410 set_qd_dev_type = true; 411 set_timeout = 1; 412 goto common_config; 413 } 414 } 415 416 if (aac->jbod && (sdev->type == TYPE_DISK)) 417 sdev->removable = 1; 418 419 if (sdev->type == TYPE_DISK 420 && sdev_channel(sdev) != CONTAINER_CHANNEL 421 && (!aac->jbod || sdev->inq_periph_qual) 422 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) { 423 424 if (expose_physicals == 0) 425 return -ENXIO; 426 427 if (expose_physicals < 0) 428 sdev->no_uld_attach = 1; 429 } 430 431 if (sdev->tagged_supported 432 && sdev->type == TYPE_DISK 433 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 434 && !sdev->no_uld_attach) { 435 436 struct scsi_device * dev; 437 struct Scsi_Host *host = sdev->host; 438 unsigned num_lsu = 0; 439 unsigned num_one = 0; 440 unsigned cid; 441 442 set_timeout = 1; 443 444 for (cid = 0; cid < aac->maximum_num_containers; ++cid) 445 if (aac->fsa_dev[cid].valid) 446 ++num_lsu; 447 448 __shost_for_each_device(dev, host) { 449 if (dev->tagged_supported 450 && dev->type == TYPE_DISK 451 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 452 && !dev->no_uld_attach) { 453 if ((sdev_channel(dev) != CONTAINER_CHANNEL) 454 || !aac->fsa_dev[sdev_id(dev)].valid) { 455 ++num_lsu; 456 } 457 } else { 458 ++num_one; 459 } 460 } 461 462 if (num_lsu == 0) 463 ++num_lsu; 464 465 depth = (host->can_queue - num_one) / num_lsu; 466 467 if (sdev_channel(sdev) != NATIVE_CHANNEL) 468 goto common_config; 469 470 set_qd_dev_type = true; 471 472 } 473 474 common_config: 475 476 /* 477 * Check if SATA drive 478 */ 479 if (set_qd_dev_type) { 480 if (strncmp(sdev->vendor, "ATA", 3) == 0) 481 depth = 32; 482 else 483 depth = 64; 484 } 485 486 /* 487 * Firmware has an individual device recovery time typically 488 * of 35 seconds, give us a margin. Thor devices can take longer in 489 * error recovery, hence different value. 490 */ 491 if (set_timeout) { 492 timeout = aac->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT; 493 blk_queue_rq_timeout(sdev->request_queue, timeout * HZ); 494 } 495 496 if (depth > 256) 497 depth = 256; 498 else if (depth < 1) 499 depth = 1; 500 501 scsi_change_queue_depth(sdev, depth); 502 503 sdev->tagged_supported = 1; 504 505 return 0; 506 } 507 508 static void aac_map_queues(struct Scsi_Host *shost) 509 { 510 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 511 512 blk_mq_pci_map_queues(&shost->tag_set.map[HCTX_TYPE_DEFAULT], 513 aac->pdev, 0); 514 aac->use_map_queue = true; 515 } 516 517 /** 518 * aac_change_queue_depth - alter queue depths 519 * @sdev: SCSI device we are considering 520 * @depth: desired queue depth 521 * 522 * Alters queue depths for target device based on the host adapter's 523 * total capacity and the queue depth supported by the target device. 524 */ 525 526 static int aac_change_queue_depth(struct scsi_device *sdev, int depth) 527 { 528 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 529 int chn, tid, is_native_device = 0; 530 531 chn = aac_logical_to_phys(sdev_channel(sdev)); 532 tid = sdev_id(sdev); 533 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && 534 aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW) 535 is_native_device = 1; 536 537 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && 538 (sdev_channel(sdev) == CONTAINER_CHANNEL)) { 539 struct scsi_device * dev; 540 struct Scsi_Host *host = sdev->host; 541 unsigned num = 0; 542 543 __shost_for_each_device(dev, host) { 544 if (dev->tagged_supported && (dev->type == TYPE_DISK) && 545 (sdev_channel(dev) == CONTAINER_CHANNEL)) 546 ++num; 547 ++num; 548 } 549 if (num >= host->can_queue) 550 num = host->can_queue - 1; 551 if (depth > (host->can_queue - num)) 552 depth = host->can_queue - num; 553 if (depth > 256) 554 depth = 256; 555 else if (depth < 2) 556 depth = 2; 557 return scsi_change_queue_depth(sdev, depth); 558 } else if (is_native_device) { 559 scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit); 560 } else { 561 scsi_change_queue_depth(sdev, 1); 562 } 563 return sdev->queue_depth; 564 } 565 566 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) 567 { 568 struct scsi_device *sdev = to_scsi_device(dev); 569 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 570 if (sdev_channel(sdev) != CONTAINER_CHANNEL) 571 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach 572 ? "Hidden\n" : 573 ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : "")); 574 return snprintf(buf, PAGE_SIZE, "%s\n", 575 get_container_type(aac->fsa_dev[sdev_id(sdev)].type)); 576 } 577 578 static struct device_attribute aac_raid_level_attr = { 579 .attr = { 580 .name = "level", 581 .mode = S_IRUGO, 582 }, 583 .show = aac_show_raid_level 584 }; 585 586 static ssize_t aac_show_unique_id(struct device *dev, 587 struct device_attribute *attr, char *buf) 588 { 589 struct scsi_device *sdev = to_scsi_device(dev); 590 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 591 unsigned char sn[16]; 592 593 memset(sn, 0, sizeof(sn)); 594 595 if (sdev_channel(sdev) == CONTAINER_CHANNEL) 596 memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn)); 597 598 return snprintf(buf, 16 * 2 + 2, 599 "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n", 600 sn[0], sn[1], sn[2], sn[3], 601 sn[4], sn[5], sn[6], sn[7], 602 sn[8], sn[9], sn[10], sn[11], 603 sn[12], sn[13], sn[14], sn[15]); 604 } 605 606 static struct device_attribute aac_unique_id_attr = { 607 .attr = { 608 .name = "unique_id", 609 .mode = 0444, 610 }, 611 .show = aac_show_unique_id 612 }; 613 614 615 616 static struct attribute *aac_dev_attrs[] = { 617 &aac_raid_level_attr.attr, 618 &aac_unique_id_attr.attr, 619 NULL, 620 }; 621 622 ATTRIBUTE_GROUPS(aac_dev); 623 624 static int aac_ioctl(struct scsi_device *sdev, unsigned int cmd, 625 void __user *arg) 626 { 627 int retval; 628 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 629 if (!capable(CAP_SYS_RAWIO)) 630 return -EPERM; 631 retval = aac_adapter_check_health(dev); 632 if (retval) 633 return -EBUSY; 634 return aac_do_ioctl(dev, cmd, arg); 635 } 636 637 struct fib_count_data { 638 int mlcnt; 639 int llcnt; 640 int ehcnt; 641 int fwcnt; 642 int krlcnt; 643 }; 644 645 static bool fib_count_iter(struct scsi_cmnd *scmnd, void *data) 646 { 647 struct fib_count_data *fib_count = data; 648 649 switch (aac_priv(scmnd)->owner) { 650 case AAC_OWNER_FIRMWARE: 651 fib_count->fwcnt++; 652 break; 653 case AAC_OWNER_ERROR_HANDLER: 654 fib_count->ehcnt++; 655 break; 656 case AAC_OWNER_LOWLEVEL: 657 fib_count->llcnt++; 658 break; 659 case AAC_OWNER_MIDLEVEL: 660 fib_count->mlcnt++; 661 break; 662 default: 663 fib_count->krlcnt++; 664 break; 665 } 666 return true; 667 } 668 669 /* Called during SCSI EH, so we don't need to block requests */ 670 static int get_num_of_incomplete_fibs(struct aac_dev *aac) 671 { 672 struct Scsi_Host *shost = aac->scsi_host_ptr; 673 struct device *ctrl_dev; 674 struct fib_count_data fcnt = { }; 675 676 scsi_host_busy_iter(shost, fib_count_iter, &fcnt); 677 678 ctrl_dev = &aac->pdev->dev; 679 680 dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", fcnt.mlcnt); 681 dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", fcnt.llcnt); 682 dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", fcnt.ehcnt); 683 dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fcnt.fwcnt); 684 dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", fcnt.krlcnt); 685 686 return fcnt.mlcnt + fcnt.llcnt + fcnt.ehcnt + fcnt.fwcnt; 687 } 688 689 static int aac_eh_abort(struct scsi_cmnd* cmd) 690 { 691 struct aac_cmd_priv *cmd_priv = aac_priv(cmd); 692 struct scsi_device * dev = cmd->device; 693 struct Scsi_Host * host = dev->host; 694 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 695 int count, found; 696 u32 bus, cid; 697 int ret = FAILED; 698 699 if (aac_adapter_check_health(aac)) 700 return ret; 701 702 bus = aac_logical_to_phys(scmd_channel(cmd)); 703 cid = scmd_id(cmd); 704 if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 705 struct fib *fib; 706 struct aac_hba_tm_req *tmf; 707 int status; 708 u64 address; 709 710 pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n", 711 AAC_DRIVERNAME, 712 host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun); 713 714 found = 0; 715 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 716 fib = &aac->fibs[count]; 717 if (*(u8 *)fib->hw_fib_va != 0 && 718 (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 719 (fib->callback_data == cmd)) { 720 found = 1; 721 break; 722 } 723 } 724 if (!found) 725 return ret; 726 727 /* start a HBA_TMF_ABORT_TASK TMF request */ 728 fib = aac_fib_alloc(aac); 729 if (!fib) 730 return ret; 731 732 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 733 memset(tmf, 0, sizeof(*tmf)); 734 tmf->tmf = HBA_TMF_ABORT_TASK; 735 tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus; 736 tmf->lun[1] = cmd->device->lun; 737 738 address = (u64)fib->hw_error_pa; 739 tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 740 tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 741 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 742 743 fib->hbacmd_size = sizeof(*tmf); 744 cmd_priv->sent_command = 0; 745 746 status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib, 747 (fib_callback) aac_hba_callback, 748 (void *) cmd); 749 if (status != -EINPROGRESS) { 750 aac_fib_complete(fib); 751 aac_fib_free(fib); 752 return ret; 753 } 754 /* Wait up to 15 secs for completion */ 755 for (count = 0; count < 15; ++count) { 756 if (cmd_priv->sent_command) { 757 ret = SUCCESS; 758 break; 759 } 760 msleep(1000); 761 } 762 763 if (ret != SUCCESS) 764 pr_err("%s: Host adapter abort request timed out\n", 765 AAC_DRIVERNAME); 766 } else { 767 pr_err( 768 "%s: Host adapter abort request.\n" 769 "%s: Outstanding commands on (%d,%d,%d,%d):\n", 770 AAC_DRIVERNAME, AAC_DRIVERNAME, 771 host->host_no, sdev_channel(dev), sdev_id(dev), 772 (int)dev->lun); 773 switch (cmd->cmnd[0]) { 774 case SERVICE_ACTION_IN_16: 775 if (!(aac->raw_io_interface) || 776 !(aac->raw_io_64) || 777 ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 778 break; 779 fallthrough; 780 case INQUIRY: 781 case READ_CAPACITY: 782 /* 783 * Mark associated FIB to not complete, 784 * eh handler does this 785 */ 786 for (count = 0; 787 count < (host->can_queue + AAC_NUM_MGT_FIB); 788 ++count) { 789 struct fib *fib = &aac->fibs[count]; 790 791 if (fib->hw_fib_va->header.XferState && 792 (fib->flags & FIB_CONTEXT_FLAG) && 793 (fib->callback_data == cmd)) { 794 fib->flags |= 795 FIB_CONTEXT_FLAG_TIMED_OUT; 796 cmd_priv->owner = 797 AAC_OWNER_ERROR_HANDLER; 798 ret = SUCCESS; 799 } 800 } 801 break; 802 case TEST_UNIT_READY: 803 /* 804 * Mark associated FIB to not complete, 805 * eh handler does this 806 */ 807 for (count = 0; 808 count < (host->can_queue + AAC_NUM_MGT_FIB); 809 ++count) { 810 struct scsi_cmnd *command; 811 struct fib *fib = &aac->fibs[count]; 812 813 command = fib->callback_data; 814 815 if ((fib->hw_fib_va->header.XferState & 816 cpu_to_le32 817 (Async | NoResponseExpected)) && 818 (fib->flags & FIB_CONTEXT_FLAG) && 819 ((command)) && 820 (command->device == cmd->device)) { 821 fib->flags |= 822 FIB_CONTEXT_FLAG_TIMED_OUT; 823 aac_priv(command)->owner = 824 AAC_OWNER_ERROR_HANDLER; 825 if (command == cmd) 826 ret = SUCCESS; 827 } 828 } 829 break; 830 } 831 } 832 return ret; 833 } 834 835 static u8 aac_eh_tmf_lun_reset_fib(struct aac_hba_map_info *info, 836 struct fib *fib, u64 tmf_lun) 837 { 838 struct aac_hba_tm_req *tmf; 839 u64 address; 840 841 /* start a HBA_TMF_LUN_RESET TMF request */ 842 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 843 memset(tmf, 0, sizeof(*tmf)); 844 tmf->tmf = HBA_TMF_LUN_RESET; 845 tmf->it_nexus = info->rmw_nexus; 846 int_to_scsilun(tmf_lun, (struct scsi_lun *)tmf->lun); 847 848 address = (u64)fib->hw_error_pa; 849 tmf->error_ptr_hi = cpu_to_le32 850 ((u32)(address >> 32)); 851 tmf->error_ptr_lo = cpu_to_le32 852 ((u32)(address & 0xffffffff)); 853 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 854 fib->hbacmd_size = sizeof(*tmf); 855 856 return HBA_IU_TYPE_SCSI_TM_REQ; 857 } 858 859 static u8 aac_eh_tmf_hard_reset_fib(struct aac_hba_map_info *info, 860 struct fib *fib) 861 { 862 struct aac_hba_reset_req *rst; 863 u64 address; 864 865 /* already tried, start a hard reset now */ 866 rst = (struct aac_hba_reset_req *)fib->hw_fib_va; 867 memset(rst, 0, sizeof(*rst)); 868 rst->it_nexus = info->rmw_nexus; 869 870 address = (u64)fib->hw_error_pa; 871 rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 872 rst->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 873 rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 874 fib->hbacmd_size = sizeof(*rst); 875 876 return HBA_IU_TYPE_SATA_REQ; 877 } 878 879 static void aac_tmf_callback(void *context, struct fib *fibptr) 880 { 881 struct aac_hba_resp *err = 882 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 883 struct aac_hba_map_info *info = context; 884 int res; 885 886 switch (err->service_response) { 887 case HBA_RESP_SVCRES_TMF_REJECTED: 888 res = -1; 889 break; 890 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 891 res = 0; 892 break; 893 case HBA_RESP_SVCRES_TMF_COMPLETE: 894 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 895 res = 0; 896 break; 897 default: 898 res = -2; 899 break; 900 } 901 aac_fib_complete(fibptr); 902 903 info->reset_state = res; 904 } 905 906 /* 907 * aac_eh_dev_reset - Device reset command handling 908 * @scsi_cmd: SCSI command block causing the reset 909 * 910 */ 911 static int aac_eh_dev_reset(struct scsi_cmnd *cmd) 912 { 913 struct scsi_device * dev = cmd->device; 914 struct Scsi_Host * host = dev->host; 915 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 916 struct aac_hba_map_info *info; 917 int count; 918 u32 bus, cid; 919 struct fib *fib; 920 int ret = FAILED; 921 int status; 922 u8 command; 923 924 bus = aac_logical_to_phys(scmd_channel(cmd)); 925 cid = scmd_id(cmd); 926 927 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) 928 return FAILED; 929 930 info = &aac->hba_map[bus][cid]; 931 932 if (!(info->devtype == AAC_DEVTYPE_NATIVE_RAW && 933 !(info->reset_state > 0))) 934 return FAILED; 935 936 pr_err("%s: Host device reset request. SCSI hang ?\n", 937 AAC_DRIVERNAME); 938 939 fib = aac_fib_alloc(aac); 940 if (!fib) 941 return ret; 942 943 /* start a HBA_TMF_LUN_RESET TMF request */ 944 command = aac_eh_tmf_lun_reset_fib(info, fib, dev->lun); 945 946 info->reset_state = 1; 947 948 status = aac_hba_send(command, fib, 949 (fib_callback) aac_tmf_callback, 950 (void *) info); 951 if (status != -EINPROGRESS) { 952 info->reset_state = 0; 953 aac_fib_complete(fib); 954 aac_fib_free(fib); 955 return ret; 956 } 957 /* Wait up to 15 seconds for completion */ 958 for (count = 0; count < 15; ++count) { 959 if (info->reset_state == 0) { 960 ret = info->reset_state == 0 ? SUCCESS : FAILED; 961 break; 962 } 963 msleep(1000); 964 } 965 966 return ret; 967 } 968 969 /* 970 * aac_eh_target_reset - Target reset command handling 971 * @scsi_cmd: SCSI command block causing the reset 972 * 973 */ 974 static int aac_eh_target_reset(struct scsi_cmnd *cmd) 975 { 976 struct scsi_device * dev = cmd->device; 977 struct Scsi_Host * host = dev->host; 978 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 979 struct aac_hba_map_info *info; 980 int count; 981 u32 bus, cid; 982 int ret = FAILED; 983 struct fib *fib; 984 int status; 985 u8 command; 986 987 bus = aac_logical_to_phys(scmd_channel(cmd)); 988 cid = scmd_id(cmd); 989 990 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) 991 return FAILED; 992 993 info = &aac->hba_map[bus][cid]; 994 995 if (!(info->devtype == AAC_DEVTYPE_NATIVE_RAW && 996 !(info->reset_state > 0))) 997 return FAILED; 998 999 pr_err("%s: Host target reset request. SCSI hang ?\n", 1000 AAC_DRIVERNAME); 1001 1002 fib = aac_fib_alloc(aac); 1003 if (!fib) 1004 return ret; 1005 1006 1007 /* already tried, start a hard reset now */ 1008 command = aac_eh_tmf_hard_reset_fib(info, fib); 1009 1010 info->reset_state = 2; 1011 1012 status = aac_hba_send(command, fib, 1013 (fib_callback) aac_tmf_callback, 1014 (void *) info); 1015 1016 if (status != -EINPROGRESS) { 1017 info->reset_state = 0; 1018 aac_fib_complete(fib); 1019 aac_fib_free(fib); 1020 return ret; 1021 } 1022 1023 /* Wait up to 15 seconds for completion */ 1024 for (count = 0; count < 15; ++count) { 1025 if (info->reset_state <= 0) { 1026 ret = info->reset_state == 0 ? SUCCESS : FAILED; 1027 break; 1028 } 1029 msleep(1000); 1030 } 1031 1032 return ret; 1033 } 1034 1035 /* 1036 * aac_eh_bus_reset - Bus reset command handling 1037 * @scsi_cmd: SCSI command block causing the reset 1038 * 1039 */ 1040 static int aac_eh_bus_reset(struct scsi_cmnd* cmd) 1041 { 1042 struct scsi_device * dev = cmd->device; 1043 struct Scsi_Host * host = dev->host; 1044 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 1045 int count; 1046 u32 cmd_bus; 1047 int status = 0; 1048 1049 1050 cmd_bus = aac_logical_to_phys(scmd_channel(cmd)); 1051 /* Mark the assoc. FIB to not complete, eh handler does this */ 1052 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 1053 struct fib *fib = &aac->fibs[count]; 1054 1055 if (fib->hw_fib_va->header.XferState && 1056 (fib->flags & FIB_CONTEXT_FLAG) && 1057 (fib->flags & FIB_CONTEXT_FLAG_SCSI_CMD)) { 1058 struct aac_hba_map_info *info; 1059 u32 bus, cid; 1060 1061 cmd = (struct scsi_cmnd *)fib->callback_data; 1062 bus = aac_logical_to_phys(scmd_channel(cmd)); 1063 if (bus != cmd_bus) 1064 continue; 1065 cid = scmd_id(cmd); 1066 info = &aac->hba_map[bus][cid]; 1067 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS || 1068 info->devtype != AAC_DEVTYPE_NATIVE_RAW) { 1069 fib->flags |= FIB_CONTEXT_FLAG_EH_RESET; 1070 aac_priv(cmd)->owner = AAC_OWNER_ERROR_HANDLER; 1071 } 1072 } 1073 } 1074 1075 pr_err("%s: Host bus reset request. SCSI hang ?\n", AAC_DRIVERNAME); 1076 1077 /* 1078 * Check the health of the controller 1079 */ 1080 status = aac_adapter_check_health(aac); 1081 if (status) 1082 dev_err(&aac->pdev->dev, "Adapter health - %d\n", status); 1083 1084 count = get_num_of_incomplete_fibs(aac); 1085 return (count == 0) ? SUCCESS : FAILED; 1086 } 1087 1088 /* 1089 * aac_eh_host_reset - Host reset command handling 1090 * @scsi_cmd: SCSI command block causing the reset 1091 * 1092 */ 1093 static int aac_eh_host_reset(struct scsi_cmnd *cmd) 1094 { 1095 struct scsi_device * dev = cmd->device; 1096 struct Scsi_Host * host = dev->host; 1097 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 1098 int ret = FAILED; 1099 __le32 supported_options2 = 0; 1100 bool is_mu_reset; 1101 bool is_ignore_reset; 1102 bool is_doorbell_reset; 1103 1104 /* 1105 * Check if reset is supported by the firmware 1106 */ 1107 supported_options2 = aac->supplement_adapter_info.supported_options2; 1108 is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET; 1109 is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET; 1110 is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET; 1111 /* 1112 * This adapter needs a blind reset, only do so for 1113 * Adapters that support a register, instead of a commanded, 1114 * reset. 1115 */ 1116 if ((is_mu_reset || is_doorbell_reset) 1117 && aac_check_reset 1118 && (aac_check_reset != -1 || !is_ignore_reset)) { 1119 /* Bypass wait for command quiesce */ 1120 if (aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET) == 0) 1121 ret = SUCCESS; 1122 } 1123 /* 1124 * Reset EH state 1125 */ 1126 if (ret == SUCCESS) { 1127 int bus, cid; 1128 struct aac_hba_map_info *info; 1129 1130 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 1131 for (cid = 0; cid < AAC_MAX_TARGETS; cid++) { 1132 info = &aac->hba_map[bus][cid]; 1133 if (info->devtype == AAC_DEVTYPE_NATIVE_RAW) 1134 info->reset_state = 0; 1135 } 1136 } 1137 } 1138 return ret; 1139 } 1140 1141 /** 1142 * aac_cfg_open - open a configuration file 1143 * @inode: inode being opened 1144 * @file: file handle attached 1145 * 1146 * Called when the configuration device is opened. Does the needed 1147 * set up on the handle and then returns 1148 * 1149 * Bugs: This needs extending to check a given adapter is present 1150 * so we can support hot plugging, and to ref count adapters. 1151 */ 1152 1153 static int aac_cfg_open(struct inode *inode, struct file *file) 1154 { 1155 struct aac_dev *aac; 1156 unsigned minor_number = iminor(inode); 1157 int err = -ENODEV; 1158 1159 mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */ 1160 list_for_each_entry(aac, &aac_devices, entry) { 1161 if (aac->id == minor_number) { 1162 file->private_data = aac; 1163 err = 0; 1164 break; 1165 } 1166 } 1167 mutex_unlock(&aac_mutex); 1168 1169 return err; 1170 } 1171 1172 /** 1173 * aac_cfg_ioctl - AAC configuration request 1174 * @file: file handle 1175 * @cmd: ioctl command code 1176 * @arg: argument 1177 * 1178 * Handles a configuration ioctl. Currently this involves wrapping it 1179 * up and feeding it into the nasty windowsalike glue layer. 1180 * 1181 * Bugs: Needs locking against parallel ioctls lower down 1182 * Bugs: Needs to handle hot plugging 1183 */ 1184 1185 static long aac_cfg_ioctl(struct file *file, 1186 unsigned int cmd, unsigned long arg) 1187 { 1188 struct aac_dev *aac = (struct aac_dev *)file->private_data; 1189 1190 if (!capable(CAP_SYS_RAWIO)) 1191 return -EPERM; 1192 1193 return aac_do_ioctl(aac, cmd, (void __user *)arg); 1194 } 1195 1196 static ssize_t aac_show_model(struct device *device, 1197 struct device_attribute *attr, char *buf) 1198 { 1199 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1200 int len; 1201 1202 if (dev->supplement_adapter_info.adapter_type_text[0]) { 1203 char *cp = dev->supplement_adapter_info.adapter_type_text; 1204 while (*cp && *cp != ' ') 1205 ++cp; 1206 while (*cp == ' ') 1207 ++cp; 1208 len = snprintf(buf, PAGE_SIZE, "%s\n", cp); 1209 } else 1210 len = snprintf(buf, PAGE_SIZE, "%s\n", 1211 aac_drivers[dev->cardtype].model); 1212 return len; 1213 } 1214 1215 static ssize_t aac_show_vendor(struct device *device, 1216 struct device_attribute *attr, char *buf) 1217 { 1218 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1219 struct aac_supplement_adapter_info *sup_adap_info; 1220 int len; 1221 1222 sup_adap_info = &dev->supplement_adapter_info; 1223 if (sup_adap_info->adapter_type_text[0]) { 1224 char *cp = sup_adap_info->adapter_type_text; 1225 while (*cp && *cp != ' ') 1226 ++cp; 1227 len = snprintf(buf, PAGE_SIZE, "%.*s\n", 1228 (int)(cp - (char *)sup_adap_info->adapter_type_text), 1229 sup_adap_info->adapter_type_text); 1230 } else 1231 len = snprintf(buf, PAGE_SIZE, "%s\n", 1232 aac_drivers[dev->cardtype].vname); 1233 return len; 1234 } 1235 1236 static ssize_t aac_show_flags(struct device *cdev, 1237 struct device_attribute *attr, char *buf) 1238 { 1239 int len = 0; 1240 struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata; 1241 1242 if (nblank(dprintk(x))) 1243 len = snprintf(buf, PAGE_SIZE, "dprintk\n"); 1244 #ifdef AAC_DETAILED_STATUS_INFO 1245 len += scnprintf(buf + len, PAGE_SIZE - len, 1246 "AAC_DETAILED_STATUS_INFO\n"); 1247 #endif 1248 if (dev->raw_io_interface && dev->raw_io_64) 1249 len += scnprintf(buf + len, PAGE_SIZE - len, 1250 "SAI_READ_CAPACITY_16\n"); 1251 if (dev->jbod) 1252 len += scnprintf(buf + len, PAGE_SIZE - len, 1253 "SUPPORTED_JBOD\n"); 1254 if (dev->supplement_adapter_info.supported_options2 & 1255 AAC_OPTION_POWER_MANAGEMENT) 1256 len += scnprintf(buf + len, PAGE_SIZE - len, 1257 "SUPPORTED_POWER_MANAGEMENT\n"); 1258 if (dev->msi) 1259 len += scnprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n"); 1260 return len; 1261 } 1262 1263 static ssize_t aac_show_kernel_version(struct device *device, 1264 struct device_attribute *attr, 1265 char *buf) 1266 { 1267 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1268 int len, tmp; 1269 1270 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 1271 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1272 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1273 le32_to_cpu(dev->adapter_info.kernelbuild)); 1274 return len; 1275 } 1276 1277 static ssize_t aac_show_monitor_version(struct device *device, 1278 struct device_attribute *attr, 1279 char *buf) 1280 { 1281 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1282 int len, tmp; 1283 1284 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 1285 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1286 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1287 le32_to_cpu(dev->adapter_info.monitorbuild)); 1288 return len; 1289 } 1290 1291 static ssize_t aac_show_bios_version(struct device *device, 1292 struct device_attribute *attr, 1293 char *buf) 1294 { 1295 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1296 int len, tmp; 1297 1298 tmp = le32_to_cpu(dev->adapter_info.biosrev); 1299 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1300 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1301 le32_to_cpu(dev->adapter_info.biosbuild)); 1302 return len; 1303 } 1304 1305 static ssize_t aac_show_driver_version(struct device *device, 1306 struct device_attribute *attr, 1307 char *buf) 1308 { 1309 return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version); 1310 } 1311 1312 static ssize_t aac_show_serial_number(struct device *device, 1313 struct device_attribute *attr, char *buf) 1314 { 1315 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1316 int len = 0; 1317 1318 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) 1319 len = snprintf(buf, 16, "%06X\n", 1320 le32_to_cpu(dev->adapter_info.serial[0])); 1321 if (len && 1322 !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[ 1323 sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len], 1324 buf, len-1)) 1325 len = snprintf(buf, 16, "%.*s\n", 1326 (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no), 1327 dev->supplement_adapter_info.mfg_pcba_serial_no); 1328 1329 return min(len, 16); 1330 } 1331 1332 static ssize_t aac_show_max_channel(struct device *device, 1333 struct device_attribute *attr, char *buf) 1334 { 1335 return snprintf(buf, PAGE_SIZE, "%d\n", 1336 class_to_shost(device)->max_channel); 1337 } 1338 1339 static ssize_t aac_show_max_id(struct device *device, 1340 struct device_attribute *attr, char *buf) 1341 { 1342 return snprintf(buf, PAGE_SIZE, "%d\n", 1343 class_to_shost(device)->max_id); 1344 } 1345 1346 static ssize_t aac_store_reset_adapter(struct device *device, 1347 struct device_attribute *attr, 1348 const char *buf, size_t count) 1349 { 1350 int retval = -EACCES; 1351 1352 if (!capable(CAP_SYS_ADMIN)) 1353 return retval; 1354 1355 retval = aac_reset_adapter(shost_priv(class_to_shost(device)), 1356 buf[0] == '!', IOP_HWSOFT_RESET); 1357 if (retval >= 0) 1358 retval = count; 1359 1360 return retval; 1361 } 1362 1363 static ssize_t aac_show_reset_adapter(struct device *device, 1364 struct device_attribute *attr, 1365 char *buf) 1366 { 1367 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1368 int len, tmp; 1369 1370 tmp = aac_adapter_check_health(dev); 1371 if ((tmp == 0) && dev->in_reset) 1372 tmp = -EBUSY; 1373 len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp); 1374 return len; 1375 } 1376 1377 static struct device_attribute aac_model = { 1378 .attr = { 1379 .name = "model", 1380 .mode = S_IRUGO, 1381 }, 1382 .show = aac_show_model, 1383 }; 1384 static struct device_attribute aac_vendor = { 1385 .attr = { 1386 .name = "vendor", 1387 .mode = S_IRUGO, 1388 }, 1389 .show = aac_show_vendor, 1390 }; 1391 static struct device_attribute aac_flags = { 1392 .attr = { 1393 .name = "flags", 1394 .mode = S_IRUGO, 1395 }, 1396 .show = aac_show_flags, 1397 }; 1398 static struct device_attribute aac_kernel_version = { 1399 .attr = { 1400 .name = "hba_kernel_version", 1401 .mode = S_IRUGO, 1402 }, 1403 .show = aac_show_kernel_version, 1404 }; 1405 static struct device_attribute aac_monitor_version = { 1406 .attr = { 1407 .name = "hba_monitor_version", 1408 .mode = S_IRUGO, 1409 }, 1410 .show = aac_show_monitor_version, 1411 }; 1412 static struct device_attribute aac_bios_version = { 1413 .attr = { 1414 .name = "hba_bios_version", 1415 .mode = S_IRUGO, 1416 }, 1417 .show = aac_show_bios_version, 1418 }; 1419 static struct device_attribute aac_lld_version = { 1420 .attr = { 1421 .name = "driver_version", 1422 .mode = 0444, 1423 }, 1424 .show = aac_show_driver_version, 1425 }; 1426 static struct device_attribute aac_serial_number = { 1427 .attr = { 1428 .name = "serial_number", 1429 .mode = S_IRUGO, 1430 }, 1431 .show = aac_show_serial_number, 1432 }; 1433 static struct device_attribute aac_max_channel = { 1434 .attr = { 1435 .name = "max_channel", 1436 .mode = S_IRUGO, 1437 }, 1438 .show = aac_show_max_channel, 1439 }; 1440 static struct device_attribute aac_max_id = { 1441 .attr = { 1442 .name = "max_id", 1443 .mode = S_IRUGO, 1444 }, 1445 .show = aac_show_max_id, 1446 }; 1447 static struct device_attribute aac_reset = { 1448 .attr = { 1449 .name = "reset_host", 1450 .mode = S_IWUSR|S_IRUGO, 1451 }, 1452 .store = aac_store_reset_adapter, 1453 .show = aac_show_reset_adapter, 1454 }; 1455 1456 static struct attribute *aac_host_attrs[] = { 1457 &aac_model.attr, 1458 &aac_vendor.attr, 1459 &aac_flags.attr, 1460 &aac_kernel_version.attr, 1461 &aac_monitor_version.attr, 1462 &aac_bios_version.attr, 1463 &aac_lld_version.attr, 1464 &aac_serial_number.attr, 1465 &aac_max_channel.attr, 1466 &aac_max_id.attr, 1467 &aac_reset.attr, 1468 NULL 1469 }; 1470 1471 ATTRIBUTE_GROUPS(aac_host); 1472 1473 ssize_t aac_get_serial_number(struct device *device, char *buf) 1474 { 1475 return aac_show_serial_number(device, &aac_serial_number, buf); 1476 } 1477 1478 static const struct file_operations aac_cfg_fops = { 1479 .owner = THIS_MODULE, 1480 .unlocked_ioctl = aac_cfg_ioctl, 1481 #ifdef CONFIG_COMPAT 1482 .compat_ioctl = aac_cfg_ioctl, 1483 #endif 1484 .open = aac_cfg_open, 1485 .llseek = noop_llseek, 1486 }; 1487 1488 static const struct scsi_host_template aac_driver_template = { 1489 .module = THIS_MODULE, 1490 .name = "AAC", 1491 .proc_name = AAC_DRIVERNAME, 1492 .info = aac_info, 1493 .ioctl = aac_ioctl, 1494 #ifdef CONFIG_COMPAT 1495 .compat_ioctl = aac_ioctl, 1496 #endif 1497 .queuecommand = aac_queuecommand, 1498 .bios_param = aac_biosparm, 1499 .shost_groups = aac_host_groups, 1500 .slave_configure = aac_slave_configure, 1501 .map_queues = aac_map_queues, 1502 .change_queue_depth = aac_change_queue_depth, 1503 .sdev_groups = aac_dev_groups, 1504 .eh_abort_handler = aac_eh_abort, 1505 .eh_device_reset_handler = aac_eh_dev_reset, 1506 .eh_target_reset_handler = aac_eh_target_reset, 1507 .eh_bus_reset_handler = aac_eh_bus_reset, 1508 .eh_host_reset_handler = aac_eh_host_reset, 1509 .can_queue = AAC_NUM_IO_FIB, 1510 .this_id = MAXIMUM_NUM_CONTAINERS, 1511 .sg_tablesize = 16, 1512 .max_sectors = 128, 1513 #if (AAC_NUM_IO_FIB > 256) 1514 .cmd_per_lun = 256, 1515 #else 1516 .cmd_per_lun = AAC_NUM_IO_FIB, 1517 #endif 1518 .emulated = 1, 1519 .no_write_same = 1, 1520 .cmd_size = sizeof(struct aac_cmd_priv), 1521 }; 1522 1523 static void __aac_shutdown(struct aac_dev * aac) 1524 { 1525 int i; 1526 1527 mutex_lock(&aac->ioctl_mutex); 1528 aac->adapter_shutdown = 1; 1529 mutex_unlock(&aac->ioctl_mutex); 1530 1531 if (aac->aif_thread) { 1532 int i; 1533 /* Clear out events first */ 1534 for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) { 1535 struct fib *fib = &aac->fibs[i]; 1536 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1537 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) 1538 complete(&fib->event_wait); 1539 } 1540 kthread_stop(aac->thread); 1541 aac->thread = NULL; 1542 } 1543 1544 aac_send_shutdown(aac); 1545 1546 aac_adapter_disable_int(aac); 1547 1548 if (aac_is_src(aac)) { 1549 if (aac->max_msix > 1) { 1550 for (i = 0; i < aac->max_msix; i++) { 1551 free_irq(pci_irq_vector(aac->pdev, i), 1552 &(aac->aac_msix[i])); 1553 } 1554 } else { 1555 free_irq(aac->pdev->irq, 1556 &(aac->aac_msix[0])); 1557 } 1558 } else { 1559 free_irq(aac->pdev->irq, aac); 1560 } 1561 if (aac->msi) 1562 pci_disable_msi(aac->pdev); 1563 else if (aac->max_msix > 1) 1564 pci_disable_msix(aac->pdev); 1565 } 1566 static void aac_init_char(void) 1567 { 1568 aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops); 1569 if (aac_cfg_major < 0) { 1570 pr_err("aacraid: unable to register \"aac\" device.\n"); 1571 } 1572 } 1573 1574 void aac_reinit_aif(struct aac_dev *aac, unsigned int index) 1575 { 1576 /* 1577 * Firmware may send a AIF messages very early and the Driver may have 1578 * ignored as it is not fully ready to process the messages. Send 1579 * AIF to firmware so that if there are any unprocessed events they 1580 * can be processed now. 1581 */ 1582 if (aac_drivers[index].quirks & AAC_QUIRK_SRC) 1583 aac_intr_normal(aac, 0, 2, 0, NULL); 1584 1585 } 1586 1587 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) 1588 { 1589 unsigned index = id->driver_data; 1590 struct Scsi_Host *shost; 1591 struct aac_dev *aac; 1592 struct list_head *insert = &aac_devices; 1593 int error; 1594 int unique_id = 0; 1595 u64 dmamask; 1596 int mask_bits = 0; 1597 extern int aac_sync_mode; 1598 1599 /* 1600 * Only series 7 needs freset. 1601 */ 1602 if (pdev->device == PMC_DEVICE_S7) 1603 pdev->needs_freset = 1; 1604 1605 list_for_each_entry(aac, &aac_devices, entry) { 1606 if (aac->id > unique_id) 1607 break; 1608 insert = &aac->entry; 1609 unique_id++; 1610 } 1611 1612 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | 1613 PCIE_LINK_STATE_CLKPM); 1614 1615 error = pci_enable_device(pdev); 1616 if (error) 1617 goto out; 1618 1619 if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) { 1620 error = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 1621 if (error) { 1622 dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed"); 1623 goto out_disable_pdev; 1624 } 1625 } 1626 1627 /* 1628 * If the quirk31 bit is set, the adapter needs adapter 1629 * to driver communication memory to be allocated below 2gig 1630 */ 1631 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) { 1632 dmamask = DMA_BIT_MASK(31); 1633 mask_bits = 31; 1634 } else { 1635 dmamask = DMA_BIT_MASK(32); 1636 mask_bits = 32; 1637 } 1638 1639 error = dma_set_coherent_mask(&pdev->dev, dmamask); 1640 if (error) { 1641 dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n" 1642 , mask_bits); 1643 goto out_disable_pdev; 1644 } 1645 1646 pci_set_master(pdev); 1647 1648 shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev)); 1649 if (!shost) { 1650 error = -ENOMEM; 1651 goto out_disable_pdev; 1652 } 1653 1654 shost->irq = pdev->irq; 1655 shost->unique_id = unique_id; 1656 shost->max_cmd_len = 16; 1657 1658 if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT) 1659 aac_init_char(); 1660 1661 aac = (struct aac_dev *)shost->hostdata; 1662 aac->base_start = pci_resource_start(pdev, 0); 1663 aac->scsi_host_ptr = shost; 1664 aac->pdev = pdev; 1665 aac->name = aac_driver_template.name; 1666 aac->id = shost->unique_id; 1667 aac->cardtype = index; 1668 INIT_LIST_HEAD(&aac->entry); 1669 1670 if (aac_reset_devices || reset_devices) 1671 aac->init_reset = true; 1672 1673 aac->fibs = kcalloc(shost->can_queue + AAC_NUM_MGT_FIB, 1674 sizeof(struct fib), 1675 GFP_KERNEL); 1676 if (!aac->fibs) { 1677 error = -ENOMEM; 1678 goto out_free_host; 1679 } 1680 1681 spin_lock_init(&aac->fib_lock); 1682 1683 mutex_init(&aac->ioctl_mutex); 1684 mutex_init(&aac->scan_mutex); 1685 1686 INIT_DELAYED_WORK(&aac->safw_rescan_work, aac_safw_rescan_worker); 1687 INIT_DELAYED_WORK(&aac->src_reinit_aif_worker, 1688 aac_src_reinit_aif_worker); 1689 /* 1690 * Map in the registers from the adapter. 1691 */ 1692 aac->base_size = AAC_MIN_FOOTPRINT_SIZE; 1693 if ((*aac_drivers[index].init)(aac)) { 1694 error = -ENODEV; 1695 goto out_unmap; 1696 } 1697 1698 if (aac->sync_mode) { 1699 if (aac_sync_mode) 1700 printk(KERN_INFO "%s%d: Sync. mode enforced " 1701 "by driver parameter. This will cause " 1702 "a significant performance decrease!\n", 1703 aac->name, 1704 aac->id); 1705 else 1706 printk(KERN_INFO "%s%d: Async. mode not supported " 1707 "by current driver, sync. mode enforced." 1708 "\nPlease update driver to get full performance.\n", 1709 aac->name, 1710 aac->id); 1711 } 1712 1713 /* 1714 * Start any kernel threads needed 1715 */ 1716 aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME); 1717 if (IS_ERR(aac->thread)) { 1718 printk(KERN_ERR "aacraid: Unable to create command thread.\n"); 1719 error = PTR_ERR(aac->thread); 1720 aac->thread = NULL; 1721 goto out_deinit; 1722 } 1723 1724 aac->maximum_num_channels = aac_drivers[index].channels; 1725 error = aac_get_adapter_info(aac); 1726 if (error < 0) 1727 goto out_deinit; 1728 1729 /* 1730 * Lets override negotiations and drop the maximum SG limit to 34 1731 */ 1732 if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && 1733 (shost->sg_tablesize > 34)) { 1734 shost->sg_tablesize = 34; 1735 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1736 } 1737 1738 if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) && 1739 (shost->sg_tablesize > 17)) { 1740 shost->sg_tablesize = 17; 1741 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1742 } 1743 1744 if (aac->adapter_info.options & AAC_OPT_NEW_COMM) 1745 shost->max_segment_size = shost->max_sectors << 9; 1746 else 1747 shost->max_segment_size = 65536; 1748 1749 /* 1750 * Firmware printf works only with older firmware. 1751 */ 1752 if (aac_drivers[index].quirks & AAC_QUIRK_34SG) 1753 aac->printf_enabled = 1; 1754 else 1755 aac->printf_enabled = 0; 1756 1757 /* 1758 * max channel will be the physical channels plus 1 virtual channel 1759 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL) 1760 * physical channels are address by their actual physical number+1 1761 */ 1762 if (aac->nondasd_support || expose_physicals || aac->jbod) 1763 shost->max_channel = aac->maximum_num_channels; 1764 else 1765 shost->max_channel = 0; 1766 1767 aac_get_config_status(aac, 0); 1768 aac_get_containers(aac); 1769 list_add(&aac->entry, insert); 1770 1771 shost->max_id = aac->maximum_num_containers; 1772 if (shost->max_id < aac->maximum_num_physicals) 1773 shost->max_id = aac->maximum_num_physicals; 1774 if (shost->max_id < MAXIMUM_NUM_CONTAINERS) 1775 shost->max_id = MAXIMUM_NUM_CONTAINERS; 1776 else 1777 shost->this_id = shost->max_id; 1778 1779 if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC) 1780 aac_intr_normal(aac, 0, 2, 0, NULL); 1781 1782 /* 1783 * dmb - we may need to move the setting of these parms somewhere else once 1784 * we get a fib that can report the actual numbers 1785 */ 1786 shost->max_lun = AAC_MAX_LUN; 1787 1788 pci_set_drvdata(pdev, shost); 1789 shost->nr_hw_queues = aac->max_msix; 1790 shost->host_tagset = 1; 1791 1792 error = scsi_add_host(shost, &pdev->dev); 1793 if (error) 1794 goto out_deinit; 1795 1796 aac_scan_host(aac); 1797 1798 pci_save_state(pdev); 1799 1800 return 0; 1801 1802 out_deinit: 1803 __aac_shutdown(aac); 1804 out_unmap: 1805 aac_fib_map_free(aac); 1806 if (aac->comm_addr) 1807 dma_free_coherent(&aac->pdev->dev, aac->comm_size, 1808 aac->comm_addr, aac->comm_phys); 1809 kfree(aac->queues); 1810 aac_adapter_ioremap(aac, 0); 1811 kfree(aac->fibs); 1812 kfree(aac->fsa_dev); 1813 out_free_host: 1814 scsi_host_put(shost); 1815 out_disable_pdev: 1816 pci_disable_device(pdev); 1817 out: 1818 return error; 1819 } 1820 1821 static void aac_release_resources(struct aac_dev *aac) 1822 { 1823 aac_adapter_disable_int(aac); 1824 aac_free_irq(aac); 1825 } 1826 1827 static int aac_acquire_resources(struct aac_dev *dev) 1828 { 1829 unsigned long status; 1830 /* 1831 * First clear out all interrupts. Then enable the one's that we 1832 * can handle. 1833 */ 1834 while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING) 1835 || status == 0xffffffff) 1836 msleep(20); 1837 1838 aac_adapter_disable_int(dev); 1839 aac_adapter_enable_int(dev); 1840 1841 1842 if (aac_is_src(dev)) 1843 aac_define_int_mode(dev); 1844 1845 if (dev->msi_enabled) 1846 aac_src_access_devreg(dev, AAC_ENABLE_MSIX); 1847 1848 if (aac_acquire_irq(dev)) 1849 goto error_iounmap; 1850 1851 aac_adapter_enable_int(dev); 1852 1853 /*max msix may change after EEH 1854 * Re-assign vectors to fibs 1855 */ 1856 aac_fib_vector_assign(dev); 1857 1858 if (!dev->sync_mode) { 1859 /* After EEH recovery or suspend resume, max_msix count 1860 * may change, therefore updating in init as well. 1861 */ 1862 dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix); 1863 aac_adapter_start(dev); 1864 } 1865 return 0; 1866 1867 error_iounmap: 1868 return -1; 1869 1870 } 1871 1872 static int __maybe_unused aac_suspend(struct device *dev) 1873 { 1874 struct Scsi_Host *shost = dev_get_drvdata(dev); 1875 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1876 1877 scsi_host_block(shost); 1878 aac_cancel_rescan_worker(aac); 1879 aac_send_shutdown(aac); 1880 1881 aac_release_resources(aac); 1882 1883 return 0; 1884 } 1885 1886 static int __maybe_unused aac_resume(struct device *dev) 1887 { 1888 struct Scsi_Host *shost = dev_get_drvdata(dev); 1889 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1890 1891 if (aac_acquire_resources(aac)) 1892 goto fail_device; 1893 /* 1894 * reset this flag to unblock ioctl() as it was set at 1895 * aac_send_shutdown() to block ioctls from upperlayer 1896 */ 1897 aac->adapter_shutdown = 0; 1898 scsi_host_unblock(shost, SDEV_RUNNING); 1899 1900 return 0; 1901 1902 fail_device: 1903 printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id); 1904 scsi_host_put(shost); 1905 return -ENODEV; 1906 } 1907 1908 static void aac_shutdown(struct pci_dev *dev) 1909 { 1910 struct Scsi_Host *shost = pci_get_drvdata(dev); 1911 1912 scsi_host_block(shost); 1913 __aac_shutdown((struct aac_dev *)shost->hostdata); 1914 } 1915 1916 static void aac_remove_one(struct pci_dev *pdev) 1917 { 1918 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1919 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1920 1921 aac_cancel_rescan_worker(aac); 1922 aac->use_map_queue = false; 1923 scsi_remove_host(shost); 1924 1925 __aac_shutdown(aac); 1926 aac_fib_map_free(aac); 1927 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1928 aac->comm_phys); 1929 kfree(aac->queues); 1930 1931 aac_adapter_ioremap(aac, 0); 1932 1933 kfree(aac->fibs); 1934 kfree(aac->fsa_dev); 1935 1936 list_del(&aac->entry); 1937 scsi_host_put(shost); 1938 pci_disable_device(pdev); 1939 if (list_empty(&aac_devices)) { 1940 unregister_chrdev(aac_cfg_major, "aac"); 1941 aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT; 1942 } 1943 } 1944 1945 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev, 1946 pci_channel_state_t error) 1947 { 1948 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1949 struct aac_dev *aac = shost_priv(shost); 1950 1951 dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error); 1952 1953 switch (error) { 1954 case pci_channel_io_normal: 1955 return PCI_ERS_RESULT_CAN_RECOVER; 1956 case pci_channel_io_frozen: 1957 aac->handle_pci_error = 1; 1958 1959 scsi_host_block(shost); 1960 aac_cancel_rescan_worker(aac); 1961 scsi_host_complete_all_commands(shost, DID_NO_CONNECT); 1962 aac_release_resources(aac); 1963 1964 aac_adapter_ioremap(aac, 0); 1965 1966 return PCI_ERS_RESULT_NEED_RESET; 1967 case pci_channel_io_perm_failure: 1968 aac->handle_pci_error = 1; 1969 1970 scsi_host_complete_all_commands(shost, DID_NO_CONNECT); 1971 return PCI_ERS_RESULT_DISCONNECT; 1972 } 1973 1974 return PCI_ERS_RESULT_NEED_RESET; 1975 } 1976 1977 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev) 1978 { 1979 dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n"); 1980 return PCI_ERS_RESULT_NEED_RESET; 1981 } 1982 1983 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev) 1984 { 1985 dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n"); 1986 pci_restore_state(pdev); 1987 if (pci_enable_device(pdev)) { 1988 dev_warn(&pdev->dev, 1989 "aacraid: failed to enable slave\n"); 1990 goto fail_device; 1991 } 1992 1993 pci_set_master(pdev); 1994 1995 if (pci_enable_device_mem(pdev)) { 1996 dev_err(&pdev->dev, "pci_enable_device_mem failed\n"); 1997 goto fail_device; 1998 } 1999 2000 return PCI_ERS_RESULT_RECOVERED; 2001 2002 fail_device: 2003 dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n"); 2004 return PCI_ERS_RESULT_DISCONNECT; 2005 } 2006 2007 2008 static void aac_pci_resume(struct pci_dev *pdev) 2009 { 2010 struct Scsi_Host *shost = pci_get_drvdata(pdev); 2011 struct aac_dev *aac = (struct aac_dev *)shost_priv(shost); 2012 2013 if (aac_adapter_ioremap(aac, aac->base_size)) { 2014 2015 dev_err(&pdev->dev, "aacraid: ioremap failed\n"); 2016 /* remap failed, go back ... */ 2017 aac->comm_interface = AAC_COMM_PRODUCER; 2018 if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) { 2019 dev_warn(&pdev->dev, 2020 "aacraid: unable to map adapter.\n"); 2021 2022 return; 2023 } 2024 } 2025 2026 msleep(10000); 2027 2028 aac_acquire_resources(aac); 2029 2030 /* 2031 * reset this flag to unblock ioctl() as it was set 2032 * at aac_send_shutdown() to block ioctls from upperlayer 2033 */ 2034 aac->adapter_shutdown = 0; 2035 aac->handle_pci_error = 0; 2036 2037 scsi_host_unblock(shost, SDEV_RUNNING); 2038 aac_scan_host(aac); 2039 pci_save_state(pdev); 2040 2041 dev_err(&pdev->dev, "aacraid: PCI error - resume\n"); 2042 } 2043 2044 static struct pci_error_handlers aac_pci_err_handler = { 2045 .error_detected = aac_pci_error_detected, 2046 .mmio_enabled = aac_pci_mmio_enabled, 2047 .slot_reset = aac_pci_slot_reset, 2048 .resume = aac_pci_resume, 2049 }; 2050 2051 static SIMPLE_DEV_PM_OPS(aac_pm_ops, aac_suspend, aac_resume); 2052 2053 static struct pci_driver aac_pci_driver = { 2054 .name = AAC_DRIVERNAME, 2055 .id_table = aac_pci_tbl, 2056 .probe = aac_probe_one, 2057 .remove = aac_remove_one, 2058 .driver.pm = &aac_pm_ops, 2059 .shutdown = aac_shutdown, 2060 .err_handler = &aac_pci_err_handler, 2061 }; 2062 2063 static int __init aac_init(void) 2064 { 2065 int error; 2066 2067 printk(KERN_INFO "Adaptec %s driver %s\n", 2068 AAC_DRIVERNAME, aac_driver_version); 2069 2070 error = pci_register_driver(&aac_pci_driver); 2071 if (error < 0) 2072 return error; 2073 2074 aac_init_char(); 2075 2076 2077 return 0; 2078 } 2079 2080 static void __exit aac_exit(void) 2081 { 2082 if (aac_cfg_major > -1) 2083 unregister_chrdev(aac_cfg_major, "aac"); 2084 pci_unregister_driver(&aac_pci_driver); 2085 } 2086 2087 module_init(aac_init); 2088 module_exit(aac_exit); 2089