1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * linit.c 15 * 16 * Abstract: Linux Driver entry module for Adaptec RAID Array Controller 17 */ 18 19 20 #include <linux/compat.h> 21 #include <linux/blkdev.h> 22 #include <linux/completion.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/moduleparam.h> 28 #include <linux/pci.h> 29 #include <linux/aer.h> 30 #include <linux/slab.h> 31 #include <linux/mutex.h> 32 #include <linux/spinlock.h> 33 #include <linux/syscalls.h> 34 #include <linux/delay.h> 35 #include <linux/kthread.h> 36 #include <linux/msdos_partition.h> 37 38 #include <scsi/scsi.h> 39 #include <scsi/scsi_cmnd.h> 40 #include <scsi/scsi_device.h> 41 #include <scsi/scsi_host.h> 42 #include <scsi/scsi_tcq.h> 43 #include <scsi/scsicam.h> 44 #include <scsi/scsi_eh.h> 45 46 #include "aacraid.h" 47 48 #define AAC_DRIVER_VERSION "1.2.1" 49 #ifndef AAC_DRIVER_BRANCH 50 #define AAC_DRIVER_BRANCH "" 51 #endif 52 #define AAC_DRIVERNAME "aacraid" 53 54 #ifdef AAC_DRIVER_BUILD 55 #define _str(x) #x 56 #define str(x) _str(x) 57 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH 58 #else 59 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH 60 #endif 61 62 MODULE_AUTHOR("Red Hat Inc and Adaptec"); 63 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, " 64 "Adaptec Advanced Raid Products, " 65 "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver"); 66 MODULE_LICENSE("GPL"); 67 MODULE_VERSION(AAC_DRIVER_FULL_VERSION); 68 69 static DEFINE_MUTEX(aac_mutex); 70 static LIST_HEAD(aac_devices); 71 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED; 72 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION; 73 74 /* 75 * Because of the way Linux names scsi devices, the order in this table has 76 * become important. Check for on-board Raid first, add-in cards second. 77 * 78 * Note: The last field is used to index into aac_drivers below. 79 */ 80 static const struct pci_device_id aac_pci_tbl[] = { 81 { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */ 82 { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */ 83 { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */ 84 { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 85 { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */ 86 { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 87 { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 88 { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 89 { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 90 { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */ 91 { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */ 92 { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */ 93 { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */ 94 { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */ 95 { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */ 96 { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */ 97 98 { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */ 99 { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */ 100 { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 101 { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 102 { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 103 { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */ 104 { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */ 105 { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */ 106 { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */ 107 { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */ 108 { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */ 109 { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */ 110 { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */ 111 { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */ 112 { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */ 113 { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */ 114 { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */ 115 { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */ 116 { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */ 117 { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */ 118 { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 119 { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 120 { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 121 { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 122 { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 123 { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 124 { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 125 { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */ 126 { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */ 127 { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */ 128 { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */ 129 { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */ 130 { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */ 131 { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 132 { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */ 133 { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */ 134 { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */ 135 { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */ 136 137 { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/ 138 { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/ 139 { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/ 140 { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */ 141 { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */ 142 143 { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */ 144 { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */ 145 { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */ 146 { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */ 147 { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */ 148 { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */ 149 { 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */ 150 { 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */ 151 { 0,} 152 }; 153 MODULE_DEVICE_TABLE(pci, aac_pci_tbl); 154 155 /* 156 * dmb - For now we add the number of channels to this structure. 157 * In the future we should add a fib that reports the number of channels 158 * for the card. At that time we can remove the channels from here 159 */ 160 static struct aac_driver_ident aac_drivers[] = { 161 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */ 162 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */ 163 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */ 164 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 165 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */ 166 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 167 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 168 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 169 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 170 { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */ 171 { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */ 172 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */ 173 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */ 174 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */ 175 { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */ 176 { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */ 177 178 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */ 179 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */ 180 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 181 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 182 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 183 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */ 184 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */ 185 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */ 186 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */ 187 { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */ 188 { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */ 189 { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */ 190 { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */ 191 { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */ 192 { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */ 193 { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */ 194 { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */ 195 { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */ 196 { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */ 197 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 198 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 199 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 200 { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 201 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 202 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 203 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 204 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */ 205 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */ 206 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */ 207 { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */ 208 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */ 209 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 210 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */ 211 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */ 212 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */ 213 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */ 214 215 { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/ 216 { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 217 { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 218 { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */ 219 { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */ 220 221 { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */ 222 { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */ 223 { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */ 224 { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */ 225 { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */ 226 { aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */ 227 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */ 228 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */ 229 }; 230 231 /** 232 * aac_queuecommand - queue a SCSI command 233 * @shost: Scsi host to queue command on 234 * @cmd: SCSI command to queue 235 * 236 * Queues a command for execution by the associated Host Adapter. 237 * 238 * TODO: unify with aac_scsi_cmd(). 239 */ 240 241 static int aac_queuecommand(struct Scsi_Host *shost, 242 struct scsi_cmnd *cmd) 243 { 244 int r = 0; 245 cmd->SCp.phase = AAC_OWNER_LOWLEVEL; 246 r = (aac_scsi_cmd(cmd) ? FAILED : 0); 247 return r; 248 } 249 250 /** 251 * aac_info - Returns the host adapter name 252 * @shost: Scsi host to report on 253 * 254 * Returns a static string describing the device in question 255 */ 256 257 static const char *aac_info(struct Scsi_Host *shost) 258 { 259 struct aac_dev *dev = (struct aac_dev *)shost->hostdata; 260 return aac_drivers[dev->cardtype].name; 261 } 262 263 /** 264 * aac_get_driver_ident 265 * @devtype: index into lookup table 266 * 267 * Returns a pointer to the entry in the driver lookup table. 268 */ 269 270 struct aac_driver_ident* aac_get_driver_ident(int devtype) 271 { 272 return &aac_drivers[devtype]; 273 } 274 275 /** 276 * aac_biosparm - return BIOS parameters for disk 277 * @sdev: The scsi device corresponding to the disk 278 * @bdev: the block device corresponding to the disk 279 * @capacity: the sector capacity of the disk 280 * @geom: geometry block to fill in 281 * 282 * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk. 283 * The default disk geometry is 64 heads, 32 sectors, and the appropriate 284 * number of cylinders so as not to exceed drive capacity. In order for 285 * disks equal to or larger than 1 GB to be addressable by the BIOS 286 * without exceeding the BIOS limitation of 1024 cylinders, Extended 287 * Translation should be enabled. With Extended Translation enabled, 288 * drives between 1 GB inclusive and 2 GB exclusive are given a disk 289 * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive 290 * are given a disk geometry of 255 heads and 63 sectors. However, if 291 * the BIOS detects that the Extended Translation setting does not match 292 * the geometry in the partition table, then the translation inferred 293 * from the partition table will be used by the BIOS, and a warning may 294 * be displayed. 295 */ 296 297 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev, 298 sector_t capacity, int *geom) 299 { 300 struct diskparm *param = (struct diskparm *)geom; 301 unsigned char *buf; 302 303 dprintk((KERN_DEBUG "aac_biosparm.\n")); 304 305 /* 306 * Assuming extended translation is enabled - #REVISIT# 307 */ 308 if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */ 309 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */ 310 param->heads = 255; 311 param->sectors = 63; 312 } else { 313 param->heads = 128; 314 param->sectors = 32; 315 } 316 } else { 317 param->heads = 64; 318 param->sectors = 32; 319 } 320 321 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 322 323 /* 324 * Read the first 1024 bytes from the disk device, if the boot 325 * sector partition table is valid, search for a partition table 326 * entry whose end_head matches one of the standard geometry 327 * translations ( 64/32, 128/32, 255/63 ). 328 */ 329 buf = scsi_bios_ptable(bdev); 330 if (!buf) 331 return 0; 332 if (*(__le16 *)(buf + 0x40) == cpu_to_le16(MSDOS_LABEL_MAGIC)) { 333 struct msdos_partition *first = (struct msdos_partition *)buf; 334 struct msdos_partition *entry = first; 335 int saved_cylinders = param->cylinders; 336 int num; 337 unsigned char end_head, end_sec; 338 339 for(num = 0; num < 4; num++) { 340 end_head = entry->end_head; 341 end_sec = entry->end_sector & 0x3f; 342 343 if(end_head == 63) { 344 param->heads = 64; 345 param->sectors = 32; 346 break; 347 } else if(end_head == 127) { 348 param->heads = 128; 349 param->sectors = 32; 350 break; 351 } else if(end_head == 254) { 352 param->heads = 255; 353 param->sectors = 63; 354 break; 355 } 356 entry++; 357 } 358 359 if (num == 4) { 360 end_head = first->end_head; 361 end_sec = first->end_sector & 0x3f; 362 } 363 364 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 365 if (num < 4 && end_sec == param->sectors) { 366 if (param->cylinders != saved_cylinders) { 367 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n", 368 param->heads, param->sectors, num)); 369 } 370 } else if (end_head > 0 || end_sec > 0) { 371 dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n", 372 end_head + 1, end_sec, num)); 373 dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n", 374 param->heads, param->sectors)); 375 } 376 } 377 kfree(buf); 378 return 0; 379 } 380 381 /** 382 * aac_slave_configure - compute queue depths 383 * @sdev: SCSI device we are considering 384 * 385 * Selects queue depths for each target device based on the host adapter's 386 * total capacity and the queue depth supported by the target device. 387 * A queue depth of one automatically disables tagged queueing. 388 */ 389 390 static int aac_slave_configure(struct scsi_device *sdev) 391 { 392 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 393 int chn, tid; 394 unsigned int depth = 0; 395 unsigned int set_timeout = 0; 396 int timeout = 0; 397 bool set_qd_dev_type = false; 398 u8 devtype = 0; 399 400 chn = aac_logical_to_phys(sdev_channel(sdev)); 401 tid = sdev_id(sdev); 402 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) { 403 devtype = aac->hba_map[chn][tid].devtype; 404 405 if (devtype == AAC_DEVTYPE_NATIVE_RAW) { 406 depth = aac->hba_map[chn][tid].qd_limit; 407 set_timeout = 1; 408 goto common_config; 409 } 410 if (devtype == AAC_DEVTYPE_ARC_RAW) { 411 set_qd_dev_type = true; 412 set_timeout = 1; 413 goto common_config; 414 } 415 } 416 417 if (aac->jbod && (sdev->type == TYPE_DISK)) 418 sdev->removable = 1; 419 420 if (sdev->type == TYPE_DISK 421 && sdev_channel(sdev) != CONTAINER_CHANNEL 422 && (!aac->jbod || sdev->inq_periph_qual) 423 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) { 424 425 if (expose_physicals == 0) 426 return -ENXIO; 427 428 if (expose_physicals < 0) 429 sdev->no_uld_attach = 1; 430 } 431 432 if (sdev->tagged_supported 433 && sdev->type == TYPE_DISK 434 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 435 && !sdev->no_uld_attach) { 436 437 struct scsi_device * dev; 438 struct Scsi_Host *host = sdev->host; 439 unsigned num_lsu = 0; 440 unsigned num_one = 0; 441 unsigned cid; 442 443 set_timeout = 1; 444 445 for (cid = 0; cid < aac->maximum_num_containers; ++cid) 446 if (aac->fsa_dev[cid].valid) 447 ++num_lsu; 448 449 __shost_for_each_device(dev, host) { 450 if (dev->tagged_supported 451 && dev->type == TYPE_DISK 452 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 453 && !dev->no_uld_attach) { 454 if ((sdev_channel(dev) != CONTAINER_CHANNEL) 455 || !aac->fsa_dev[sdev_id(dev)].valid) { 456 ++num_lsu; 457 } 458 } else { 459 ++num_one; 460 } 461 } 462 463 if (num_lsu == 0) 464 ++num_lsu; 465 466 depth = (host->can_queue - num_one) / num_lsu; 467 468 if (sdev_channel(sdev) != NATIVE_CHANNEL) 469 goto common_config; 470 471 set_qd_dev_type = true; 472 473 } 474 475 common_config: 476 477 /* 478 * Check if SATA drive 479 */ 480 if (set_qd_dev_type) { 481 if (strncmp(sdev->vendor, "ATA", 3) == 0) 482 depth = 32; 483 else 484 depth = 64; 485 } 486 487 /* 488 * Firmware has an individual device recovery time typically 489 * of 35 seconds, give us a margin. Thor devices can take longer in 490 * error recovery, hence different value. 491 */ 492 if (set_timeout) { 493 timeout = aac->sa_firmware ? AAC_SA_TIMEOUT : AAC_ARC_TIMEOUT; 494 blk_queue_rq_timeout(sdev->request_queue, timeout * HZ); 495 } 496 497 if (depth > 256) 498 depth = 256; 499 else if (depth < 1) 500 depth = 1; 501 502 scsi_change_queue_depth(sdev, depth); 503 504 sdev->tagged_supported = 1; 505 506 return 0; 507 } 508 509 /** 510 * aac_change_queue_depth - alter queue depths 511 * @sdev: SCSI device we are considering 512 * @depth: desired queue depth 513 * 514 * Alters queue depths for target device based on the host adapter's 515 * total capacity and the queue depth supported by the target device. 516 */ 517 518 static int aac_change_queue_depth(struct scsi_device *sdev, int depth) 519 { 520 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 521 int chn, tid, is_native_device = 0; 522 523 chn = aac_logical_to_phys(sdev_channel(sdev)); 524 tid = sdev_id(sdev); 525 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && 526 aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW) 527 is_native_device = 1; 528 529 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && 530 (sdev_channel(sdev) == CONTAINER_CHANNEL)) { 531 struct scsi_device * dev; 532 struct Scsi_Host *host = sdev->host; 533 unsigned num = 0; 534 535 __shost_for_each_device(dev, host) { 536 if (dev->tagged_supported && (dev->type == TYPE_DISK) && 537 (sdev_channel(dev) == CONTAINER_CHANNEL)) 538 ++num; 539 ++num; 540 } 541 if (num >= host->can_queue) 542 num = host->can_queue - 1; 543 if (depth > (host->can_queue - num)) 544 depth = host->can_queue - num; 545 if (depth > 256) 546 depth = 256; 547 else if (depth < 2) 548 depth = 2; 549 return scsi_change_queue_depth(sdev, depth); 550 } else if (is_native_device) { 551 scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit); 552 } else { 553 scsi_change_queue_depth(sdev, 1); 554 } 555 return sdev->queue_depth; 556 } 557 558 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) 559 { 560 struct scsi_device *sdev = to_scsi_device(dev); 561 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 562 if (sdev_channel(sdev) != CONTAINER_CHANNEL) 563 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach 564 ? "Hidden\n" : 565 ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : "")); 566 return snprintf(buf, PAGE_SIZE, "%s\n", 567 get_container_type(aac->fsa_dev[sdev_id(sdev)].type)); 568 } 569 570 static struct device_attribute aac_raid_level_attr = { 571 .attr = { 572 .name = "level", 573 .mode = S_IRUGO, 574 }, 575 .show = aac_show_raid_level 576 }; 577 578 static ssize_t aac_show_unique_id(struct device *dev, 579 struct device_attribute *attr, char *buf) 580 { 581 struct scsi_device *sdev = to_scsi_device(dev); 582 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 583 unsigned char sn[16]; 584 585 memset(sn, 0, sizeof(sn)); 586 587 if (sdev_channel(sdev) == CONTAINER_CHANNEL) 588 memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn)); 589 590 return snprintf(buf, 16 * 2 + 2, 591 "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n", 592 sn[0], sn[1], sn[2], sn[3], 593 sn[4], sn[5], sn[6], sn[7], 594 sn[8], sn[9], sn[10], sn[11], 595 sn[12], sn[13], sn[14], sn[15]); 596 } 597 598 static struct device_attribute aac_unique_id_attr = { 599 .attr = { 600 .name = "unique_id", 601 .mode = 0444, 602 }, 603 .show = aac_show_unique_id 604 }; 605 606 607 608 static struct device_attribute *aac_dev_attrs[] = { 609 &aac_raid_level_attr, 610 &aac_unique_id_attr, 611 NULL, 612 }; 613 614 static int aac_ioctl(struct scsi_device *sdev, unsigned int cmd, 615 void __user *arg) 616 { 617 int retval; 618 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 619 if (!capable(CAP_SYS_RAWIO)) 620 return -EPERM; 621 retval = aac_adapter_check_health(dev); 622 if (retval) 623 return -EBUSY; 624 return aac_do_ioctl(dev, cmd, arg); 625 } 626 627 struct fib_count_data { 628 int mlcnt; 629 int llcnt; 630 int ehcnt; 631 int fwcnt; 632 int krlcnt; 633 }; 634 635 static bool fib_count_iter(struct scsi_cmnd *scmnd, void *data, bool reserved) 636 { 637 struct fib_count_data *fib_count = data; 638 639 switch (scmnd->SCp.phase) { 640 case AAC_OWNER_FIRMWARE: 641 fib_count->fwcnt++; 642 break; 643 case AAC_OWNER_ERROR_HANDLER: 644 fib_count->ehcnt++; 645 break; 646 case AAC_OWNER_LOWLEVEL: 647 fib_count->llcnt++; 648 break; 649 case AAC_OWNER_MIDLEVEL: 650 fib_count->mlcnt++; 651 break; 652 default: 653 fib_count->krlcnt++; 654 break; 655 } 656 return true; 657 } 658 659 /* Called during SCSI EH, so we don't need to block requests */ 660 static int get_num_of_incomplete_fibs(struct aac_dev *aac) 661 { 662 struct Scsi_Host *shost = aac->scsi_host_ptr; 663 struct device *ctrl_dev; 664 struct fib_count_data fcnt = { }; 665 666 scsi_host_busy_iter(shost, fib_count_iter, &fcnt); 667 668 ctrl_dev = &aac->pdev->dev; 669 670 dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", fcnt.mlcnt); 671 dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", fcnt.llcnt); 672 dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", fcnt.ehcnt); 673 dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fcnt.fwcnt); 674 dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", fcnt.krlcnt); 675 676 return fcnt.mlcnt + fcnt.llcnt + fcnt.ehcnt + fcnt.fwcnt; 677 } 678 679 static int aac_eh_abort(struct scsi_cmnd* cmd) 680 { 681 struct scsi_device * dev = cmd->device; 682 struct Scsi_Host * host = dev->host; 683 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 684 int count, found; 685 u32 bus, cid; 686 int ret = FAILED; 687 688 if (aac_adapter_check_health(aac)) 689 return ret; 690 691 bus = aac_logical_to_phys(scmd_channel(cmd)); 692 cid = scmd_id(cmd); 693 if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 694 struct fib *fib; 695 struct aac_hba_tm_req *tmf; 696 int status; 697 u64 address; 698 699 pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n", 700 AAC_DRIVERNAME, 701 host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun); 702 703 found = 0; 704 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 705 fib = &aac->fibs[count]; 706 if (*(u8 *)fib->hw_fib_va != 0 && 707 (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 708 (fib->callback_data == cmd)) { 709 found = 1; 710 break; 711 } 712 } 713 if (!found) 714 return ret; 715 716 /* start a HBA_TMF_ABORT_TASK TMF request */ 717 fib = aac_fib_alloc(aac); 718 if (!fib) 719 return ret; 720 721 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 722 memset(tmf, 0, sizeof(*tmf)); 723 tmf->tmf = HBA_TMF_ABORT_TASK; 724 tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus; 725 tmf->lun[1] = cmd->device->lun; 726 727 address = (u64)fib->hw_error_pa; 728 tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 729 tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 730 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 731 732 fib->hbacmd_size = sizeof(*tmf); 733 cmd->SCp.sent_command = 0; 734 735 status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib, 736 (fib_callback) aac_hba_callback, 737 (void *) cmd); 738 if (status != -EINPROGRESS) { 739 aac_fib_complete(fib); 740 aac_fib_free(fib); 741 return ret; 742 } 743 /* Wait up to 15 secs for completion */ 744 for (count = 0; count < 15; ++count) { 745 if (cmd->SCp.sent_command) { 746 ret = SUCCESS; 747 break; 748 } 749 msleep(1000); 750 } 751 752 if (ret != SUCCESS) 753 pr_err("%s: Host adapter abort request timed out\n", 754 AAC_DRIVERNAME); 755 } else { 756 pr_err( 757 "%s: Host adapter abort request.\n" 758 "%s: Outstanding commands on (%d,%d,%d,%d):\n", 759 AAC_DRIVERNAME, AAC_DRIVERNAME, 760 host->host_no, sdev_channel(dev), sdev_id(dev), 761 (int)dev->lun); 762 switch (cmd->cmnd[0]) { 763 case SERVICE_ACTION_IN_16: 764 if (!(aac->raw_io_interface) || 765 !(aac->raw_io_64) || 766 ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 767 break; 768 fallthrough; 769 case INQUIRY: 770 case READ_CAPACITY: 771 /* 772 * Mark associated FIB to not complete, 773 * eh handler does this 774 */ 775 for (count = 0; 776 count < (host->can_queue + AAC_NUM_MGT_FIB); 777 ++count) { 778 struct fib *fib = &aac->fibs[count]; 779 780 if (fib->hw_fib_va->header.XferState && 781 (fib->flags & FIB_CONTEXT_FLAG) && 782 (fib->callback_data == cmd)) { 783 fib->flags |= 784 FIB_CONTEXT_FLAG_TIMED_OUT; 785 cmd->SCp.phase = 786 AAC_OWNER_ERROR_HANDLER; 787 ret = SUCCESS; 788 } 789 } 790 break; 791 case TEST_UNIT_READY: 792 /* 793 * Mark associated FIB to not complete, 794 * eh handler does this 795 */ 796 for (count = 0; 797 count < (host->can_queue + AAC_NUM_MGT_FIB); 798 ++count) { 799 struct scsi_cmnd *command; 800 struct fib *fib = &aac->fibs[count]; 801 802 command = fib->callback_data; 803 804 if ((fib->hw_fib_va->header.XferState & 805 cpu_to_le32 806 (Async | NoResponseExpected)) && 807 (fib->flags & FIB_CONTEXT_FLAG) && 808 ((command)) && 809 (command->device == cmd->device)) { 810 fib->flags |= 811 FIB_CONTEXT_FLAG_TIMED_OUT; 812 command->SCp.phase = 813 AAC_OWNER_ERROR_HANDLER; 814 if (command == cmd) 815 ret = SUCCESS; 816 } 817 } 818 break; 819 } 820 } 821 return ret; 822 } 823 824 static u8 aac_eh_tmf_lun_reset_fib(struct aac_hba_map_info *info, 825 struct fib *fib, u64 tmf_lun) 826 { 827 struct aac_hba_tm_req *tmf; 828 u64 address; 829 830 /* start a HBA_TMF_LUN_RESET TMF request */ 831 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 832 memset(tmf, 0, sizeof(*tmf)); 833 tmf->tmf = HBA_TMF_LUN_RESET; 834 tmf->it_nexus = info->rmw_nexus; 835 int_to_scsilun(tmf_lun, (struct scsi_lun *)tmf->lun); 836 837 address = (u64)fib->hw_error_pa; 838 tmf->error_ptr_hi = cpu_to_le32 839 ((u32)(address >> 32)); 840 tmf->error_ptr_lo = cpu_to_le32 841 ((u32)(address & 0xffffffff)); 842 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 843 fib->hbacmd_size = sizeof(*tmf); 844 845 return HBA_IU_TYPE_SCSI_TM_REQ; 846 } 847 848 static u8 aac_eh_tmf_hard_reset_fib(struct aac_hba_map_info *info, 849 struct fib *fib) 850 { 851 struct aac_hba_reset_req *rst; 852 u64 address; 853 854 /* already tried, start a hard reset now */ 855 rst = (struct aac_hba_reset_req *)fib->hw_fib_va; 856 memset(rst, 0, sizeof(*rst)); 857 rst->it_nexus = info->rmw_nexus; 858 859 address = (u64)fib->hw_error_pa; 860 rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 861 rst->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 862 rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 863 fib->hbacmd_size = sizeof(*rst); 864 865 return HBA_IU_TYPE_SATA_REQ; 866 } 867 868 static void aac_tmf_callback(void *context, struct fib *fibptr) 869 { 870 struct aac_hba_resp *err = 871 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 872 struct aac_hba_map_info *info = context; 873 int res; 874 875 switch (err->service_response) { 876 case HBA_RESP_SVCRES_TMF_REJECTED: 877 res = -1; 878 break; 879 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 880 res = 0; 881 break; 882 case HBA_RESP_SVCRES_TMF_COMPLETE: 883 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 884 res = 0; 885 break; 886 default: 887 res = -2; 888 break; 889 } 890 aac_fib_complete(fibptr); 891 892 info->reset_state = res; 893 } 894 895 /* 896 * aac_eh_dev_reset - Device reset command handling 897 * @scsi_cmd: SCSI command block causing the reset 898 * 899 */ 900 static int aac_eh_dev_reset(struct scsi_cmnd *cmd) 901 { 902 struct scsi_device * dev = cmd->device; 903 struct Scsi_Host * host = dev->host; 904 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 905 struct aac_hba_map_info *info; 906 int count; 907 u32 bus, cid; 908 struct fib *fib; 909 int ret = FAILED; 910 int status; 911 u8 command; 912 913 bus = aac_logical_to_phys(scmd_channel(cmd)); 914 cid = scmd_id(cmd); 915 916 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) 917 return FAILED; 918 919 info = &aac->hba_map[bus][cid]; 920 921 if (!(info->devtype == AAC_DEVTYPE_NATIVE_RAW && 922 !(info->reset_state > 0))) 923 return FAILED; 924 925 pr_err("%s: Host device reset request. SCSI hang ?\n", 926 AAC_DRIVERNAME); 927 928 fib = aac_fib_alloc(aac); 929 if (!fib) 930 return ret; 931 932 /* start a HBA_TMF_LUN_RESET TMF request */ 933 command = aac_eh_tmf_lun_reset_fib(info, fib, dev->lun); 934 935 info->reset_state = 1; 936 937 status = aac_hba_send(command, fib, 938 (fib_callback) aac_tmf_callback, 939 (void *) info); 940 if (status != -EINPROGRESS) { 941 info->reset_state = 0; 942 aac_fib_complete(fib); 943 aac_fib_free(fib); 944 return ret; 945 } 946 /* Wait up to 15 seconds for completion */ 947 for (count = 0; count < 15; ++count) { 948 if (info->reset_state == 0) { 949 ret = info->reset_state == 0 ? SUCCESS : FAILED; 950 break; 951 } 952 msleep(1000); 953 } 954 955 return ret; 956 } 957 958 /* 959 * aac_eh_target_reset - Target reset command handling 960 * @scsi_cmd: SCSI command block causing the reset 961 * 962 */ 963 static int aac_eh_target_reset(struct scsi_cmnd *cmd) 964 { 965 struct scsi_device * dev = cmd->device; 966 struct Scsi_Host * host = dev->host; 967 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 968 struct aac_hba_map_info *info; 969 int count; 970 u32 bus, cid; 971 int ret = FAILED; 972 struct fib *fib; 973 int status; 974 u8 command; 975 976 bus = aac_logical_to_phys(scmd_channel(cmd)); 977 cid = scmd_id(cmd); 978 979 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) 980 return FAILED; 981 982 info = &aac->hba_map[bus][cid]; 983 984 if (!(info->devtype == AAC_DEVTYPE_NATIVE_RAW && 985 !(info->reset_state > 0))) 986 return FAILED; 987 988 pr_err("%s: Host target reset request. SCSI hang ?\n", 989 AAC_DRIVERNAME); 990 991 fib = aac_fib_alloc(aac); 992 if (!fib) 993 return ret; 994 995 996 /* already tried, start a hard reset now */ 997 command = aac_eh_tmf_hard_reset_fib(info, fib); 998 999 info->reset_state = 2; 1000 1001 status = aac_hba_send(command, fib, 1002 (fib_callback) aac_tmf_callback, 1003 (void *) info); 1004 1005 if (status != -EINPROGRESS) { 1006 info->reset_state = 0; 1007 aac_fib_complete(fib); 1008 aac_fib_free(fib); 1009 return ret; 1010 } 1011 1012 /* Wait up to 15 seconds for completion */ 1013 for (count = 0; count < 15; ++count) { 1014 if (info->reset_state <= 0) { 1015 ret = info->reset_state == 0 ? SUCCESS : FAILED; 1016 break; 1017 } 1018 msleep(1000); 1019 } 1020 1021 return ret; 1022 } 1023 1024 /* 1025 * aac_eh_bus_reset - Bus reset command handling 1026 * @scsi_cmd: SCSI command block causing the reset 1027 * 1028 */ 1029 static int aac_eh_bus_reset(struct scsi_cmnd* cmd) 1030 { 1031 struct scsi_device * dev = cmd->device; 1032 struct Scsi_Host * host = dev->host; 1033 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 1034 int count; 1035 u32 cmd_bus; 1036 int status = 0; 1037 1038 1039 cmd_bus = aac_logical_to_phys(scmd_channel(cmd)); 1040 /* Mark the assoc. FIB to not complete, eh handler does this */ 1041 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 1042 struct fib *fib = &aac->fibs[count]; 1043 1044 if (fib->hw_fib_va->header.XferState && 1045 (fib->flags & FIB_CONTEXT_FLAG) && 1046 (fib->flags & FIB_CONTEXT_FLAG_SCSI_CMD)) { 1047 struct aac_hba_map_info *info; 1048 u32 bus, cid; 1049 1050 cmd = (struct scsi_cmnd *)fib->callback_data; 1051 bus = aac_logical_to_phys(scmd_channel(cmd)); 1052 if (bus != cmd_bus) 1053 continue; 1054 cid = scmd_id(cmd); 1055 info = &aac->hba_map[bus][cid]; 1056 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS || 1057 info->devtype != AAC_DEVTYPE_NATIVE_RAW) { 1058 fib->flags |= FIB_CONTEXT_FLAG_EH_RESET; 1059 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1060 } 1061 } 1062 } 1063 1064 pr_err("%s: Host bus reset request. SCSI hang ?\n", AAC_DRIVERNAME); 1065 1066 /* 1067 * Check the health of the controller 1068 */ 1069 status = aac_adapter_check_health(aac); 1070 if (status) 1071 dev_err(&aac->pdev->dev, "Adapter health - %d\n", status); 1072 1073 count = get_num_of_incomplete_fibs(aac); 1074 return (count == 0) ? SUCCESS : FAILED; 1075 } 1076 1077 /* 1078 * aac_eh_host_reset - Host reset command handling 1079 * @scsi_cmd: SCSI command block causing the reset 1080 * 1081 */ 1082 static int aac_eh_host_reset(struct scsi_cmnd *cmd) 1083 { 1084 struct scsi_device * dev = cmd->device; 1085 struct Scsi_Host * host = dev->host; 1086 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 1087 int ret = FAILED; 1088 __le32 supported_options2 = 0; 1089 bool is_mu_reset; 1090 bool is_ignore_reset; 1091 bool is_doorbell_reset; 1092 1093 /* 1094 * Check if reset is supported by the firmware 1095 */ 1096 supported_options2 = aac->supplement_adapter_info.supported_options2; 1097 is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET; 1098 is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET; 1099 is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET; 1100 /* 1101 * This adapter needs a blind reset, only do so for 1102 * Adapters that support a register, instead of a commanded, 1103 * reset. 1104 */ 1105 if ((is_mu_reset || is_doorbell_reset) 1106 && aac_check_reset 1107 && (aac_check_reset != -1 || !is_ignore_reset)) { 1108 /* Bypass wait for command quiesce */ 1109 if (aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET) == 0) 1110 ret = SUCCESS; 1111 } 1112 /* 1113 * Reset EH state 1114 */ 1115 if (ret == SUCCESS) { 1116 int bus, cid; 1117 struct aac_hba_map_info *info; 1118 1119 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 1120 for (cid = 0; cid < AAC_MAX_TARGETS; cid++) { 1121 info = &aac->hba_map[bus][cid]; 1122 if (info->devtype == AAC_DEVTYPE_NATIVE_RAW) 1123 info->reset_state = 0; 1124 } 1125 } 1126 } 1127 return ret; 1128 } 1129 1130 /** 1131 * aac_cfg_open - open a configuration file 1132 * @inode: inode being opened 1133 * @file: file handle attached 1134 * 1135 * Called when the configuration device is opened. Does the needed 1136 * set up on the handle and then returns 1137 * 1138 * Bugs: This needs extending to check a given adapter is present 1139 * so we can support hot plugging, and to ref count adapters. 1140 */ 1141 1142 static int aac_cfg_open(struct inode *inode, struct file *file) 1143 { 1144 struct aac_dev *aac; 1145 unsigned minor_number = iminor(inode); 1146 int err = -ENODEV; 1147 1148 mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */ 1149 list_for_each_entry(aac, &aac_devices, entry) { 1150 if (aac->id == minor_number) { 1151 file->private_data = aac; 1152 err = 0; 1153 break; 1154 } 1155 } 1156 mutex_unlock(&aac_mutex); 1157 1158 return err; 1159 } 1160 1161 /** 1162 * aac_cfg_ioctl - AAC configuration request 1163 * @file: file handle 1164 * @cmd: ioctl command code 1165 * @arg: argument 1166 * 1167 * Handles a configuration ioctl. Currently this involves wrapping it 1168 * up and feeding it into the nasty windowsalike glue layer. 1169 * 1170 * Bugs: Needs locking against parallel ioctls lower down 1171 * Bugs: Needs to handle hot plugging 1172 */ 1173 1174 static long aac_cfg_ioctl(struct file *file, 1175 unsigned int cmd, unsigned long arg) 1176 { 1177 struct aac_dev *aac = (struct aac_dev *)file->private_data; 1178 1179 if (!capable(CAP_SYS_RAWIO)) 1180 return -EPERM; 1181 1182 return aac_do_ioctl(aac, cmd, (void __user *)arg); 1183 } 1184 1185 static ssize_t aac_show_model(struct device *device, 1186 struct device_attribute *attr, char *buf) 1187 { 1188 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1189 int len; 1190 1191 if (dev->supplement_adapter_info.adapter_type_text[0]) { 1192 char *cp = dev->supplement_adapter_info.adapter_type_text; 1193 while (*cp && *cp != ' ') 1194 ++cp; 1195 while (*cp == ' ') 1196 ++cp; 1197 len = snprintf(buf, PAGE_SIZE, "%s\n", cp); 1198 } else 1199 len = snprintf(buf, PAGE_SIZE, "%s\n", 1200 aac_drivers[dev->cardtype].model); 1201 return len; 1202 } 1203 1204 static ssize_t aac_show_vendor(struct device *device, 1205 struct device_attribute *attr, char *buf) 1206 { 1207 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1208 struct aac_supplement_adapter_info *sup_adap_info; 1209 int len; 1210 1211 sup_adap_info = &dev->supplement_adapter_info; 1212 if (sup_adap_info->adapter_type_text[0]) { 1213 char *cp = sup_adap_info->adapter_type_text; 1214 while (*cp && *cp != ' ') 1215 ++cp; 1216 len = snprintf(buf, PAGE_SIZE, "%.*s\n", 1217 (int)(cp - (char *)sup_adap_info->adapter_type_text), 1218 sup_adap_info->adapter_type_text); 1219 } else 1220 len = snprintf(buf, PAGE_SIZE, "%s\n", 1221 aac_drivers[dev->cardtype].vname); 1222 return len; 1223 } 1224 1225 static ssize_t aac_show_flags(struct device *cdev, 1226 struct device_attribute *attr, char *buf) 1227 { 1228 int len = 0; 1229 struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata; 1230 1231 if (nblank(dprintk(x))) 1232 len = snprintf(buf, PAGE_SIZE, "dprintk\n"); 1233 #ifdef AAC_DETAILED_STATUS_INFO 1234 len += scnprintf(buf + len, PAGE_SIZE - len, 1235 "AAC_DETAILED_STATUS_INFO\n"); 1236 #endif 1237 if (dev->raw_io_interface && dev->raw_io_64) 1238 len += scnprintf(buf + len, PAGE_SIZE - len, 1239 "SAI_READ_CAPACITY_16\n"); 1240 if (dev->jbod) 1241 len += scnprintf(buf + len, PAGE_SIZE - len, 1242 "SUPPORTED_JBOD\n"); 1243 if (dev->supplement_adapter_info.supported_options2 & 1244 AAC_OPTION_POWER_MANAGEMENT) 1245 len += scnprintf(buf + len, PAGE_SIZE - len, 1246 "SUPPORTED_POWER_MANAGEMENT\n"); 1247 if (dev->msi) 1248 len += scnprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n"); 1249 return len; 1250 } 1251 1252 static ssize_t aac_show_kernel_version(struct device *device, 1253 struct device_attribute *attr, 1254 char *buf) 1255 { 1256 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1257 int len, tmp; 1258 1259 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 1260 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1261 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1262 le32_to_cpu(dev->adapter_info.kernelbuild)); 1263 return len; 1264 } 1265 1266 static ssize_t aac_show_monitor_version(struct device *device, 1267 struct device_attribute *attr, 1268 char *buf) 1269 { 1270 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1271 int len, tmp; 1272 1273 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 1274 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1275 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1276 le32_to_cpu(dev->adapter_info.monitorbuild)); 1277 return len; 1278 } 1279 1280 static ssize_t aac_show_bios_version(struct device *device, 1281 struct device_attribute *attr, 1282 char *buf) 1283 { 1284 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1285 int len, tmp; 1286 1287 tmp = le32_to_cpu(dev->adapter_info.biosrev); 1288 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1289 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1290 le32_to_cpu(dev->adapter_info.biosbuild)); 1291 return len; 1292 } 1293 1294 static ssize_t aac_show_driver_version(struct device *device, 1295 struct device_attribute *attr, 1296 char *buf) 1297 { 1298 return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version); 1299 } 1300 1301 static ssize_t aac_show_serial_number(struct device *device, 1302 struct device_attribute *attr, char *buf) 1303 { 1304 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1305 int len = 0; 1306 1307 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) 1308 len = snprintf(buf, 16, "%06X\n", 1309 le32_to_cpu(dev->adapter_info.serial[0])); 1310 if (len && 1311 !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[ 1312 sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len], 1313 buf, len-1)) 1314 len = snprintf(buf, 16, "%.*s\n", 1315 (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no), 1316 dev->supplement_adapter_info.mfg_pcba_serial_no); 1317 1318 return min(len, 16); 1319 } 1320 1321 static ssize_t aac_show_max_channel(struct device *device, 1322 struct device_attribute *attr, char *buf) 1323 { 1324 return snprintf(buf, PAGE_SIZE, "%d\n", 1325 class_to_shost(device)->max_channel); 1326 } 1327 1328 static ssize_t aac_show_max_id(struct device *device, 1329 struct device_attribute *attr, char *buf) 1330 { 1331 return snprintf(buf, PAGE_SIZE, "%d\n", 1332 class_to_shost(device)->max_id); 1333 } 1334 1335 static ssize_t aac_store_reset_adapter(struct device *device, 1336 struct device_attribute *attr, 1337 const char *buf, size_t count) 1338 { 1339 int retval = -EACCES; 1340 1341 if (!capable(CAP_SYS_ADMIN)) 1342 return retval; 1343 1344 retval = aac_reset_adapter(shost_priv(class_to_shost(device)), 1345 buf[0] == '!', IOP_HWSOFT_RESET); 1346 if (retval >= 0) 1347 retval = count; 1348 1349 return retval; 1350 } 1351 1352 static ssize_t aac_show_reset_adapter(struct device *device, 1353 struct device_attribute *attr, 1354 char *buf) 1355 { 1356 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1357 int len, tmp; 1358 1359 tmp = aac_adapter_check_health(dev); 1360 if ((tmp == 0) && dev->in_reset) 1361 tmp = -EBUSY; 1362 len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp); 1363 return len; 1364 } 1365 1366 static struct device_attribute aac_model = { 1367 .attr = { 1368 .name = "model", 1369 .mode = S_IRUGO, 1370 }, 1371 .show = aac_show_model, 1372 }; 1373 static struct device_attribute aac_vendor = { 1374 .attr = { 1375 .name = "vendor", 1376 .mode = S_IRUGO, 1377 }, 1378 .show = aac_show_vendor, 1379 }; 1380 static struct device_attribute aac_flags = { 1381 .attr = { 1382 .name = "flags", 1383 .mode = S_IRUGO, 1384 }, 1385 .show = aac_show_flags, 1386 }; 1387 static struct device_attribute aac_kernel_version = { 1388 .attr = { 1389 .name = "hba_kernel_version", 1390 .mode = S_IRUGO, 1391 }, 1392 .show = aac_show_kernel_version, 1393 }; 1394 static struct device_attribute aac_monitor_version = { 1395 .attr = { 1396 .name = "hba_monitor_version", 1397 .mode = S_IRUGO, 1398 }, 1399 .show = aac_show_monitor_version, 1400 }; 1401 static struct device_attribute aac_bios_version = { 1402 .attr = { 1403 .name = "hba_bios_version", 1404 .mode = S_IRUGO, 1405 }, 1406 .show = aac_show_bios_version, 1407 }; 1408 static struct device_attribute aac_lld_version = { 1409 .attr = { 1410 .name = "driver_version", 1411 .mode = 0444, 1412 }, 1413 .show = aac_show_driver_version, 1414 }; 1415 static struct device_attribute aac_serial_number = { 1416 .attr = { 1417 .name = "serial_number", 1418 .mode = S_IRUGO, 1419 }, 1420 .show = aac_show_serial_number, 1421 }; 1422 static struct device_attribute aac_max_channel = { 1423 .attr = { 1424 .name = "max_channel", 1425 .mode = S_IRUGO, 1426 }, 1427 .show = aac_show_max_channel, 1428 }; 1429 static struct device_attribute aac_max_id = { 1430 .attr = { 1431 .name = "max_id", 1432 .mode = S_IRUGO, 1433 }, 1434 .show = aac_show_max_id, 1435 }; 1436 static struct device_attribute aac_reset = { 1437 .attr = { 1438 .name = "reset_host", 1439 .mode = S_IWUSR|S_IRUGO, 1440 }, 1441 .store = aac_store_reset_adapter, 1442 .show = aac_show_reset_adapter, 1443 }; 1444 1445 static struct device_attribute *aac_attrs[] = { 1446 &aac_model, 1447 &aac_vendor, 1448 &aac_flags, 1449 &aac_kernel_version, 1450 &aac_monitor_version, 1451 &aac_bios_version, 1452 &aac_lld_version, 1453 &aac_serial_number, 1454 &aac_max_channel, 1455 &aac_max_id, 1456 &aac_reset, 1457 NULL 1458 }; 1459 1460 ssize_t aac_get_serial_number(struct device *device, char *buf) 1461 { 1462 return aac_show_serial_number(device, &aac_serial_number, buf); 1463 } 1464 1465 static const struct file_operations aac_cfg_fops = { 1466 .owner = THIS_MODULE, 1467 .unlocked_ioctl = aac_cfg_ioctl, 1468 #ifdef CONFIG_COMPAT 1469 .compat_ioctl = aac_cfg_ioctl, 1470 #endif 1471 .open = aac_cfg_open, 1472 .llseek = noop_llseek, 1473 }; 1474 1475 static struct scsi_host_template aac_driver_template = { 1476 .module = THIS_MODULE, 1477 .name = "AAC", 1478 .proc_name = AAC_DRIVERNAME, 1479 .info = aac_info, 1480 .ioctl = aac_ioctl, 1481 #ifdef CONFIG_COMPAT 1482 .compat_ioctl = aac_ioctl, 1483 #endif 1484 .queuecommand = aac_queuecommand, 1485 .bios_param = aac_biosparm, 1486 .shost_attrs = aac_attrs, 1487 .slave_configure = aac_slave_configure, 1488 .change_queue_depth = aac_change_queue_depth, 1489 .sdev_attrs = aac_dev_attrs, 1490 .eh_abort_handler = aac_eh_abort, 1491 .eh_device_reset_handler = aac_eh_dev_reset, 1492 .eh_target_reset_handler = aac_eh_target_reset, 1493 .eh_bus_reset_handler = aac_eh_bus_reset, 1494 .eh_host_reset_handler = aac_eh_host_reset, 1495 .can_queue = AAC_NUM_IO_FIB, 1496 .this_id = MAXIMUM_NUM_CONTAINERS, 1497 .sg_tablesize = 16, 1498 .max_sectors = 128, 1499 #if (AAC_NUM_IO_FIB > 256) 1500 .cmd_per_lun = 256, 1501 #else 1502 .cmd_per_lun = AAC_NUM_IO_FIB, 1503 #endif 1504 .emulated = 1, 1505 .no_write_same = 1, 1506 }; 1507 1508 static void __aac_shutdown(struct aac_dev * aac) 1509 { 1510 int i; 1511 1512 mutex_lock(&aac->ioctl_mutex); 1513 aac->adapter_shutdown = 1; 1514 mutex_unlock(&aac->ioctl_mutex); 1515 1516 if (aac->aif_thread) { 1517 int i; 1518 /* Clear out events first */ 1519 for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) { 1520 struct fib *fib = &aac->fibs[i]; 1521 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1522 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) 1523 complete(&fib->event_wait); 1524 } 1525 kthread_stop(aac->thread); 1526 aac->thread = NULL; 1527 } 1528 1529 aac_send_shutdown(aac); 1530 1531 aac_adapter_disable_int(aac); 1532 1533 if (aac_is_src(aac)) { 1534 if (aac->max_msix > 1) { 1535 for (i = 0; i < aac->max_msix; i++) { 1536 free_irq(pci_irq_vector(aac->pdev, i), 1537 &(aac->aac_msix[i])); 1538 } 1539 } else { 1540 free_irq(aac->pdev->irq, 1541 &(aac->aac_msix[0])); 1542 } 1543 } else { 1544 free_irq(aac->pdev->irq, aac); 1545 } 1546 if (aac->msi) 1547 pci_disable_msi(aac->pdev); 1548 else if (aac->max_msix > 1) 1549 pci_disable_msix(aac->pdev); 1550 } 1551 static void aac_init_char(void) 1552 { 1553 aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops); 1554 if (aac_cfg_major < 0) { 1555 pr_err("aacraid: unable to register \"aac\" device.\n"); 1556 } 1557 } 1558 1559 void aac_reinit_aif(struct aac_dev *aac, unsigned int index) 1560 { 1561 /* 1562 * Firmware may send a AIF messages very early and the Driver may have 1563 * ignored as it is not fully ready to process the messages. Send 1564 * AIF to firmware so that if there are any unprocessed events they 1565 * can be processed now. 1566 */ 1567 if (aac_drivers[index].quirks & AAC_QUIRK_SRC) 1568 aac_intr_normal(aac, 0, 2, 0, NULL); 1569 1570 } 1571 1572 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) 1573 { 1574 unsigned index = id->driver_data; 1575 struct Scsi_Host *shost; 1576 struct aac_dev *aac; 1577 struct list_head *insert = &aac_devices; 1578 int error; 1579 int unique_id = 0; 1580 u64 dmamask; 1581 int mask_bits = 0; 1582 extern int aac_sync_mode; 1583 1584 /* 1585 * Only series 7 needs freset. 1586 */ 1587 if (pdev->device == PMC_DEVICE_S7) 1588 pdev->needs_freset = 1; 1589 1590 list_for_each_entry(aac, &aac_devices, entry) { 1591 if (aac->id > unique_id) 1592 break; 1593 insert = &aac->entry; 1594 unique_id++; 1595 } 1596 1597 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | 1598 PCIE_LINK_STATE_CLKPM); 1599 1600 error = pci_enable_device(pdev); 1601 if (error) 1602 goto out; 1603 1604 if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) { 1605 error = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)); 1606 if (error) { 1607 dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed"); 1608 goto out_disable_pdev; 1609 } 1610 } 1611 1612 /* 1613 * If the quirk31 bit is set, the adapter needs adapter 1614 * to driver communication memory to be allocated below 2gig 1615 */ 1616 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) { 1617 dmamask = DMA_BIT_MASK(31); 1618 mask_bits = 31; 1619 } else { 1620 dmamask = DMA_BIT_MASK(32); 1621 mask_bits = 32; 1622 } 1623 1624 error = dma_set_coherent_mask(&pdev->dev, dmamask); 1625 if (error) { 1626 dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n" 1627 , mask_bits); 1628 goto out_disable_pdev; 1629 } 1630 1631 pci_set_master(pdev); 1632 1633 shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev)); 1634 if (!shost) { 1635 error = -ENOMEM; 1636 goto out_disable_pdev; 1637 } 1638 1639 shost->irq = pdev->irq; 1640 shost->unique_id = unique_id; 1641 shost->max_cmd_len = 16; 1642 1643 if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT) 1644 aac_init_char(); 1645 1646 aac = (struct aac_dev *)shost->hostdata; 1647 aac->base_start = pci_resource_start(pdev, 0); 1648 aac->scsi_host_ptr = shost; 1649 aac->pdev = pdev; 1650 aac->name = aac_driver_template.name; 1651 aac->id = shost->unique_id; 1652 aac->cardtype = index; 1653 INIT_LIST_HEAD(&aac->entry); 1654 1655 if (aac_reset_devices || reset_devices) 1656 aac->init_reset = true; 1657 1658 aac->fibs = kcalloc(shost->can_queue + AAC_NUM_MGT_FIB, 1659 sizeof(struct fib), 1660 GFP_KERNEL); 1661 if (!aac->fibs) { 1662 error = -ENOMEM; 1663 goto out_free_host; 1664 } 1665 1666 spin_lock_init(&aac->fib_lock); 1667 1668 mutex_init(&aac->ioctl_mutex); 1669 mutex_init(&aac->scan_mutex); 1670 1671 INIT_DELAYED_WORK(&aac->safw_rescan_work, aac_safw_rescan_worker); 1672 INIT_DELAYED_WORK(&aac->src_reinit_aif_worker, 1673 aac_src_reinit_aif_worker); 1674 /* 1675 * Map in the registers from the adapter. 1676 */ 1677 aac->base_size = AAC_MIN_FOOTPRINT_SIZE; 1678 if ((*aac_drivers[index].init)(aac)) { 1679 error = -ENODEV; 1680 goto out_unmap; 1681 } 1682 1683 if (aac->sync_mode) { 1684 if (aac_sync_mode) 1685 printk(KERN_INFO "%s%d: Sync. mode enforced " 1686 "by driver parameter. This will cause " 1687 "a significant performance decrease!\n", 1688 aac->name, 1689 aac->id); 1690 else 1691 printk(KERN_INFO "%s%d: Async. mode not supported " 1692 "by current driver, sync. mode enforced." 1693 "\nPlease update driver to get full performance.\n", 1694 aac->name, 1695 aac->id); 1696 } 1697 1698 /* 1699 * Start any kernel threads needed 1700 */ 1701 aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME); 1702 if (IS_ERR(aac->thread)) { 1703 printk(KERN_ERR "aacraid: Unable to create command thread.\n"); 1704 error = PTR_ERR(aac->thread); 1705 aac->thread = NULL; 1706 goto out_deinit; 1707 } 1708 1709 aac->maximum_num_channels = aac_drivers[index].channels; 1710 error = aac_get_adapter_info(aac); 1711 if (error < 0) 1712 goto out_deinit; 1713 1714 /* 1715 * Lets override negotiations and drop the maximum SG limit to 34 1716 */ 1717 if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && 1718 (shost->sg_tablesize > 34)) { 1719 shost->sg_tablesize = 34; 1720 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1721 } 1722 1723 if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) && 1724 (shost->sg_tablesize > 17)) { 1725 shost->sg_tablesize = 17; 1726 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1727 } 1728 1729 if (aac->adapter_info.options & AAC_OPT_NEW_COMM) 1730 shost->max_segment_size = shost->max_sectors << 9; 1731 else 1732 shost->max_segment_size = 65536; 1733 1734 /* 1735 * Firmware printf works only with older firmware. 1736 */ 1737 if (aac_drivers[index].quirks & AAC_QUIRK_34SG) 1738 aac->printf_enabled = 1; 1739 else 1740 aac->printf_enabled = 0; 1741 1742 /* 1743 * max channel will be the physical channels plus 1 virtual channel 1744 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL) 1745 * physical channels are address by their actual physical number+1 1746 */ 1747 if (aac->nondasd_support || expose_physicals || aac->jbod) 1748 shost->max_channel = aac->maximum_num_channels; 1749 else 1750 shost->max_channel = 0; 1751 1752 aac_get_config_status(aac, 0); 1753 aac_get_containers(aac); 1754 list_add(&aac->entry, insert); 1755 1756 shost->max_id = aac->maximum_num_containers; 1757 if (shost->max_id < aac->maximum_num_physicals) 1758 shost->max_id = aac->maximum_num_physicals; 1759 if (shost->max_id < MAXIMUM_NUM_CONTAINERS) 1760 shost->max_id = MAXIMUM_NUM_CONTAINERS; 1761 else 1762 shost->this_id = shost->max_id; 1763 1764 if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC) 1765 aac_intr_normal(aac, 0, 2, 0, NULL); 1766 1767 /* 1768 * dmb - we may need to move the setting of these parms somewhere else once 1769 * we get a fib that can report the actual numbers 1770 */ 1771 shost->max_lun = AAC_MAX_LUN; 1772 1773 pci_set_drvdata(pdev, shost); 1774 1775 error = scsi_add_host(shost, &pdev->dev); 1776 if (error) 1777 goto out_deinit; 1778 1779 aac_scan_host(aac); 1780 1781 pci_enable_pcie_error_reporting(pdev); 1782 pci_save_state(pdev); 1783 1784 return 0; 1785 1786 out_deinit: 1787 __aac_shutdown(aac); 1788 out_unmap: 1789 aac_fib_map_free(aac); 1790 if (aac->comm_addr) 1791 dma_free_coherent(&aac->pdev->dev, aac->comm_size, 1792 aac->comm_addr, aac->comm_phys); 1793 kfree(aac->queues); 1794 aac_adapter_ioremap(aac, 0); 1795 kfree(aac->fibs); 1796 kfree(aac->fsa_dev); 1797 out_free_host: 1798 scsi_host_put(shost); 1799 out_disable_pdev: 1800 pci_disable_device(pdev); 1801 out: 1802 return error; 1803 } 1804 1805 static void aac_release_resources(struct aac_dev *aac) 1806 { 1807 aac_adapter_disable_int(aac); 1808 aac_free_irq(aac); 1809 } 1810 1811 static int aac_acquire_resources(struct aac_dev *dev) 1812 { 1813 unsigned long status; 1814 /* 1815 * First clear out all interrupts. Then enable the one's that we 1816 * can handle. 1817 */ 1818 while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING) 1819 || status == 0xffffffff) 1820 msleep(20); 1821 1822 aac_adapter_disable_int(dev); 1823 aac_adapter_enable_int(dev); 1824 1825 1826 if (aac_is_src(dev)) 1827 aac_define_int_mode(dev); 1828 1829 if (dev->msi_enabled) 1830 aac_src_access_devreg(dev, AAC_ENABLE_MSIX); 1831 1832 if (aac_acquire_irq(dev)) 1833 goto error_iounmap; 1834 1835 aac_adapter_enable_int(dev); 1836 1837 /*max msix may change after EEH 1838 * Re-assign vectors to fibs 1839 */ 1840 aac_fib_vector_assign(dev); 1841 1842 if (!dev->sync_mode) { 1843 /* After EEH recovery or suspend resume, max_msix count 1844 * may change, therefore updating in init as well. 1845 */ 1846 dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix); 1847 aac_adapter_start(dev); 1848 } 1849 return 0; 1850 1851 error_iounmap: 1852 return -1; 1853 1854 } 1855 1856 static int __maybe_unused aac_suspend(struct device *dev) 1857 { 1858 struct Scsi_Host *shost = dev_get_drvdata(dev); 1859 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1860 1861 scsi_host_block(shost); 1862 aac_cancel_rescan_worker(aac); 1863 aac_send_shutdown(aac); 1864 1865 aac_release_resources(aac); 1866 1867 return 0; 1868 } 1869 1870 static int __maybe_unused aac_resume(struct device *dev) 1871 { 1872 struct Scsi_Host *shost = dev_get_drvdata(dev); 1873 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1874 1875 if (aac_acquire_resources(aac)) 1876 goto fail_device; 1877 /* 1878 * reset this flag to unblock ioctl() as it was set at 1879 * aac_send_shutdown() to block ioctls from upperlayer 1880 */ 1881 aac->adapter_shutdown = 0; 1882 scsi_host_unblock(shost, SDEV_RUNNING); 1883 1884 return 0; 1885 1886 fail_device: 1887 printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id); 1888 scsi_host_put(shost); 1889 return -ENODEV; 1890 } 1891 1892 static void aac_shutdown(struct pci_dev *dev) 1893 { 1894 struct Scsi_Host *shost = pci_get_drvdata(dev); 1895 1896 scsi_host_block(shost); 1897 __aac_shutdown((struct aac_dev *)shost->hostdata); 1898 } 1899 1900 static void aac_remove_one(struct pci_dev *pdev) 1901 { 1902 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1903 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1904 1905 aac_cancel_rescan_worker(aac); 1906 scsi_remove_host(shost); 1907 1908 __aac_shutdown(aac); 1909 aac_fib_map_free(aac); 1910 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1911 aac->comm_phys); 1912 kfree(aac->queues); 1913 1914 aac_adapter_ioremap(aac, 0); 1915 1916 kfree(aac->fibs); 1917 kfree(aac->fsa_dev); 1918 1919 list_del(&aac->entry); 1920 scsi_host_put(shost); 1921 pci_disable_device(pdev); 1922 if (list_empty(&aac_devices)) { 1923 unregister_chrdev(aac_cfg_major, "aac"); 1924 aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT; 1925 } 1926 } 1927 1928 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev, 1929 pci_channel_state_t error) 1930 { 1931 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1932 struct aac_dev *aac = shost_priv(shost); 1933 1934 dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error); 1935 1936 switch (error) { 1937 case pci_channel_io_normal: 1938 return PCI_ERS_RESULT_CAN_RECOVER; 1939 case pci_channel_io_frozen: 1940 aac->handle_pci_error = 1; 1941 1942 scsi_host_block(shost); 1943 aac_cancel_rescan_worker(aac); 1944 scsi_host_complete_all_commands(shost, DID_NO_CONNECT); 1945 aac_release_resources(aac); 1946 1947 pci_disable_pcie_error_reporting(pdev); 1948 aac_adapter_ioremap(aac, 0); 1949 1950 return PCI_ERS_RESULT_NEED_RESET; 1951 case pci_channel_io_perm_failure: 1952 aac->handle_pci_error = 1; 1953 1954 scsi_host_complete_all_commands(shost, DID_NO_CONNECT); 1955 return PCI_ERS_RESULT_DISCONNECT; 1956 } 1957 1958 return PCI_ERS_RESULT_NEED_RESET; 1959 } 1960 1961 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev) 1962 { 1963 dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n"); 1964 return PCI_ERS_RESULT_NEED_RESET; 1965 } 1966 1967 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev) 1968 { 1969 dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n"); 1970 pci_restore_state(pdev); 1971 if (pci_enable_device(pdev)) { 1972 dev_warn(&pdev->dev, 1973 "aacraid: failed to enable slave\n"); 1974 goto fail_device; 1975 } 1976 1977 pci_set_master(pdev); 1978 1979 if (pci_enable_device_mem(pdev)) { 1980 dev_err(&pdev->dev, "pci_enable_device_mem failed\n"); 1981 goto fail_device; 1982 } 1983 1984 return PCI_ERS_RESULT_RECOVERED; 1985 1986 fail_device: 1987 dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n"); 1988 return PCI_ERS_RESULT_DISCONNECT; 1989 } 1990 1991 1992 static void aac_pci_resume(struct pci_dev *pdev) 1993 { 1994 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1995 struct aac_dev *aac = (struct aac_dev *)shost_priv(shost); 1996 1997 if (aac_adapter_ioremap(aac, aac->base_size)) { 1998 1999 dev_err(&pdev->dev, "aacraid: ioremap failed\n"); 2000 /* remap failed, go back ... */ 2001 aac->comm_interface = AAC_COMM_PRODUCER; 2002 if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) { 2003 dev_warn(&pdev->dev, 2004 "aacraid: unable to map adapter.\n"); 2005 2006 return; 2007 } 2008 } 2009 2010 msleep(10000); 2011 2012 aac_acquire_resources(aac); 2013 2014 /* 2015 * reset this flag to unblock ioctl() as it was set 2016 * at aac_send_shutdown() to block ioctls from upperlayer 2017 */ 2018 aac->adapter_shutdown = 0; 2019 aac->handle_pci_error = 0; 2020 2021 scsi_host_unblock(shost, SDEV_RUNNING); 2022 aac_scan_host(aac); 2023 pci_save_state(pdev); 2024 2025 dev_err(&pdev->dev, "aacraid: PCI error - resume\n"); 2026 } 2027 2028 static struct pci_error_handlers aac_pci_err_handler = { 2029 .error_detected = aac_pci_error_detected, 2030 .mmio_enabled = aac_pci_mmio_enabled, 2031 .slot_reset = aac_pci_slot_reset, 2032 .resume = aac_pci_resume, 2033 }; 2034 2035 static SIMPLE_DEV_PM_OPS(aac_pm_ops, aac_suspend, aac_resume); 2036 2037 static struct pci_driver aac_pci_driver = { 2038 .name = AAC_DRIVERNAME, 2039 .id_table = aac_pci_tbl, 2040 .probe = aac_probe_one, 2041 .remove = aac_remove_one, 2042 .driver.pm = &aac_pm_ops, 2043 .shutdown = aac_shutdown, 2044 .err_handler = &aac_pci_err_handler, 2045 }; 2046 2047 static int __init aac_init(void) 2048 { 2049 int error; 2050 2051 printk(KERN_INFO "Adaptec %s driver %s\n", 2052 AAC_DRIVERNAME, aac_driver_version); 2053 2054 error = pci_register_driver(&aac_pci_driver); 2055 if (error < 0) 2056 return error; 2057 2058 aac_init_char(); 2059 2060 2061 return 0; 2062 } 2063 2064 static void __exit aac_exit(void) 2065 { 2066 if (aac_cfg_major > -1) 2067 unregister_chrdev(aac_cfg_major, "aac"); 2068 pci_unregister_driver(&aac_pci_driver); 2069 } 2070 2071 module_init(aac_init); 2072 module_exit(aac_exit); 2073