1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; see the file COPYING. If not, write to 23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Module Name: 26 * linit.c 27 * 28 * Abstract: Linux Driver entry module for Adaptec RAID Array Controller 29 */ 30 31 32 #include <linux/compat.h> 33 #include <linux/blkdev.h> 34 #include <linux/completion.h> 35 #include <linux/init.h> 36 #include <linux/interrupt.h> 37 #include <linux/kernel.h> 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/pci.h> 41 #include <linux/pci-aspm.h> 42 #include <linux/slab.h> 43 #include <linux/mutex.h> 44 #include <linux/spinlock.h> 45 #include <linux/syscalls.h> 46 #include <linux/delay.h> 47 #include <linux/kthread.h> 48 49 #include <scsi/scsi.h> 50 #include <scsi/scsi_cmnd.h> 51 #include <scsi/scsi_device.h> 52 #include <scsi/scsi_host.h> 53 #include <scsi/scsi_tcq.h> 54 #include <scsi/scsicam.h> 55 #include <scsi/scsi_eh.h> 56 57 #include "aacraid.h" 58 59 #define AAC_DRIVER_VERSION "1.2-1" 60 #ifndef AAC_DRIVER_BRANCH 61 #define AAC_DRIVER_BRANCH "" 62 #endif 63 #define AAC_DRIVERNAME "aacraid" 64 65 #ifdef AAC_DRIVER_BUILD 66 #define _str(x) #x 67 #define str(x) _str(x) 68 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH 69 #else 70 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH 71 #endif 72 73 MODULE_AUTHOR("Red Hat Inc and Adaptec"); 74 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, " 75 "Adaptec Advanced Raid Products, " 76 "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver"); 77 MODULE_LICENSE("GPL"); 78 MODULE_VERSION(AAC_DRIVER_FULL_VERSION); 79 80 static DEFINE_MUTEX(aac_mutex); 81 static LIST_HEAD(aac_devices); 82 static int aac_cfg_major = -1; 83 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION; 84 85 /* 86 * Because of the way Linux names scsi devices, the order in this table has 87 * become important. Check for on-board Raid first, add-in cards second. 88 * 89 * Note: The last field is used to index into aac_drivers below. 90 */ 91 static const struct pci_device_id aac_pci_tbl[] = { 92 { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */ 93 { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */ 94 { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */ 95 { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 96 { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */ 97 { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 98 { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 99 { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 100 { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 101 { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */ 102 { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */ 103 { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */ 104 { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */ 105 { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */ 106 { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */ 107 { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */ 108 109 { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */ 110 { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */ 111 { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 112 { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 113 { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 114 { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */ 115 { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */ 116 { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */ 117 { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */ 118 { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */ 119 { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */ 120 { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */ 121 { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */ 122 { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */ 123 { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */ 124 { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */ 125 { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */ 126 { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */ 127 { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */ 128 { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */ 129 { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 130 { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 131 { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 132 { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 133 { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 134 { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 135 { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 136 { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */ 137 { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */ 138 { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */ 139 { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */ 140 { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */ 141 { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */ 142 { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 143 { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */ 144 { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */ 145 { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */ 146 { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */ 147 148 { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/ 149 { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/ 150 { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/ 151 { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */ 152 { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */ 153 154 { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */ 155 { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */ 156 { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */ 157 { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */ 158 { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */ 159 { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */ 160 { 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */ 161 { 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */ 162 { 0x9005, 0x028f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 65 }, /* Adaptec PMC Series 9 */ 163 { 0,} 164 }; 165 MODULE_DEVICE_TABLE(pci, aac_pci_tbl); 166 167 /* 168 * dmb - For now we add the number of channels to this structure. 169 * In the future we should add a fib that reports the number of channels 170 * for the card. At that time we can remove the channels from here 171 */ 172 static struct aac_driver_ident aac_drivers[] = { 173 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */ 174 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */ 175 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */ 176 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 177 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */ 178 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 179 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 180 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 181 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 182 { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */ 183 { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */ 184 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */ 185 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */ 186 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */ 187 { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */ 188 { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */ 189 190 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */ 191 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */ 192 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 193 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 194 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 195 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */ 196 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */ 197 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */ 198 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */ 199 { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */ 200 { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */ 201 { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */ 202 { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */ 203 { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */ 204 { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */ 205 { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */ 206 { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */ 207 { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */ 208 { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */ 209 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 210 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 211 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 212 { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 213 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 214 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 215 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 216 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */ 217 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */ 218 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */ 219 { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */ 220 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */ 221 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 222 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */ 223 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */ 224 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */ 225 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */ 226 227 { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/ 228 { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 229 { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 230 { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */ 231 { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */ 232 233 { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */ 234 { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */ 235 { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */ 236 { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */ 237 { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */ 238 { aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec PMC Series 6 (Tupelo) */ 239 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec PMC Series 7 (Denali) */ 240 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec PMC Series 8 */ 241 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2 } /* Adaptec PMC Series 9 */ 242 }; 243 244 /** 245 * aac_queuecommand - queue a SCSI command 246 * @cmd: SCSI command to queue 247 * @done: Function to call on command completion 248 * 249 * Queues a command for execution by the associated Host Adapter. 250 * 251 * TODO: unify with aac_scsi_cmd(). 252 */ 253 254 static int aac_queuecommand(struct Scsi_Host *shost, 255 struct scsi_cmnd *cmd) 256 { 257 int r = 0; 258 cmd->SCp.phase = AAC_OWNER_LOWLEVEL; 259 r = (aac_scsi_cmd(cmd) ? FAILED : 0); 260 return r; 261 } 262 263 /** 264 * aac_info - Returns the host adapter name 265 * @shost: Scsi host to report on 266 * 267 * Returns a static string describing the device in question 268 */ 269 270 static const char *aac_info(struct Scsi_Host *shost) 271 { 272 struct aac_dev *dev = (struct aac_dev *)shost->hostdata; 273 return aac_drivers[dev->cardtype].name; 274 } 275 276 /** 277 * aac_get_driver_ident 278 * @devtype: index into lookup table 279 * 280 * Returns a pointer to the entry in the driver lookup table. 281 */ 282 283 struct aac_driver_ident* aac_get_driver_ident(int devtype) 284 { 285 return &aac_drivers[devtype]; 286 } 287 288 /** 289 * aac_biosparm - return BIOS parameters for disk 290 * @sdev: The scsi device corresponding to the disk 291 * @bdev: the block device corresponding to the disk 292 * @capacity: the sector capacity of the disk 293 * @geom: geometry block to fill in 294 * 295 * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk. 296 * The default disk geometry is 64 heads, 32 sectors, and the appropriate 297 * number of cylinders so as not to exceed drive capacity. In order for 298 * disks equal to or larger than 1 GB to be addressable by the BIOS 299 * without exceeding the BIOS limitation of 1024 cylinders, Extended 300 * Translation should be enabled. With Extended Translation enabled, 301 * drives between 1 GB inclusive and 2 GB exclusive are given a disk 302 * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive 303 * are given a disk geometry of 255 heads and 63 sectors. However, if 304 * the BIOS detects that the Extended Translation setting does not match 305 * the geometry in the partition table, then the translation inferred 306 * from the partition table will be used by the BIOS, and a warning may 307 * be displayed. 308 */ 309 310 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev, 311 sector_t capacity, int *geom) 312 { 313 struct diskparm *param = (struct diskparm *)geom; 314 unsigned char *buf; 315 316 dprintk((KERN_DEBUG "aac_biosparm.\n")); 317 318 /* 319 * Assuming extended translation is enabled - #REVISIT# 320 */ 321 if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */ 322 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */ 323 param->heads = 255; 324 param->sectors = 63; 325 } else { 326 param->heads = 128; 327 param->sectors = 32; 328 } 329 } else { 330 param->heads = 64; 331 param->sectors = 32; 332 } 333 334 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 335 336 /* 337 * Read the first 1024 bytes from the disk device, if the boot 338 * sector partition table is valid, search for a partition table 339 * entry whose end_head matches one of the standard geometry 340 * translations ( 64/32, 128/32, 255/63 ). 341 */ 342 buf = scsi_bios_ptable(bdev); 343 if (!buf) 344 return 0; 345 if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) { 346 struct partition *first = (struct partition * )buf; 347 struct partition *entry = first; 348 int saved_cylinders = param->cylinders; 349 int num; 350 unsigned char end_head, end_sec; 351 352 for(num = 0; num < 4; num++) { 353 end_head = entry->end_head; 354 end_sec = entry->end_sector & 0x3f; 355 356 if(end_head == 63) { 357 param->heads = 64; 358 param->sectors = 32; 359 break; 360 } else if(end_head == 127) { 361 param->heads = 128; 362 param->sectors = 32; 363 break; 364 } else if(end_head == 254) { 365 param->heads = 255; 366 param->sectors = 63; 367 break; 368 } 369 entry++; 370 } 371 372 if (num == 4) { 373 end_head = first->end_head; 374 end_sec = first->end_sector & 0x3f; 375 } 376 377 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 378 if (num < 4 && end_sec == param->sectors) { 379 if (param->cylinders != saved_cylinders) 380 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n", 381 param->heads, param->sectors, num)); 382 } else if (end_head > 0 || end_sec > 0) { 383 dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n", 384 end_head + 1, end_sec, num)); 385 dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n", 386 param->heads, param->sectors)); 387 } 388 } 389 kfree(buf); 390 return 0; 391 } 392 393 /** 394 * aac_slave_configure - compute queue depths 395 * @sdev: SCSI device we are considering 396 * 397 * Selects queue depths for each target device based on the host adapter's 398 * total capacity and the queue depth supported by the target device. 399 * A queue depth of one automatically disables tagged queueing. 400 */ 401 402 static int aac_slave_configure(struct scsi_device *sdev) 403 { 404 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 405 if (aac->jbod && (sdev->type == TYPE_DISK)) 406 sdev->removable = 1; 407 if ((sdev->type == TYPE_DISK) && 408 (sdev_channel(sdev) != CONTAINER_CHANNEL) && 409 (!aac->jbod || sdev->inq_periph_qual) && 410 (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) { 411 if (expose_physicals == 0) 412 return -ENXIO; 413 if (expose_physicals < 0) 414 sdev->no_uld_attach = 1; 415 } 416 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && 417 (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) && 418 !sdev->no_uld_attach) { 419 struct scsi_device * dev; 420 struct Scsi_Host *host = sdev->host; 421 unsigned num_lsu = 0; 422 unsigned num_one = 0; 423 unsigned depth; 424 unsigned cid; 425 426 /* 427 * Firmware has an individual device recovery time typically 428 * of 35 seconds, give us a margin. 429 */ 430 if (sdev->request_queue->rq_timeout < (45 * HZ)) 431 blk_queue_rq_timeout(sdev->request_queue, 45*HZ); 432 for (cid = 0; cid < aac->maximum_num_containers; ++cid) 433 if (aac->fsa_dev[cid].valid) 434 ++num_lsu; 435 __shost_for_each_device(dev, host) { 436 if (dev->tagged_supported && (dev->type == TYPE_DISK) && 437 (!aac->raid_scsi_mode || 438 (sdev_channel(sdev) != 2)) && 439 !dev->no_uld_attach) { 440 if ((sdev_channel(dev) != CONTAINER_CHANNEL) 441 || !aac->fsa_dev[sdev_id(dev)].valid) 442 ++num_lsu; 443 } else 444 ++num_one; 445 } 446 if (num_lsu == 0) 447 ++num_lsu; 448 depth = (host->can_queue - num_one) / num_lsu; 449 if (depth > 256) 450 depth = 256; 451 else if (depth < 2) 452 depth = 2; 453 scsi_change_queue_depth(sdev, depth); 454 } else 455 scsi_change_queue_depth(sdev, 1); 456 457 return 0; 458 } 459 460 /** 461 * aac_change_queue_depth - alter queue depths 462 * @sdev: SCSI device we are considering 463 * @depth: desired queue depth 464 * 465 * Alters queue depths for target device based on the host adapter's 466 * total capacity and the queue depth supported by the target device. 467 */ 468 469 static int aac_change_queue_depth(struct scsi_device *sdev, int depth) 470 { 471 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && 472 (sdev_channel(sdev) == CONTAINER_CHANNEL)) { 473 struct scsi_device * dev; 474 struct Scsi_Host *host = sdev->host; 475 unsigned num = 0; 476 477 __shost_for_each_device(dev, host) { 478 if (dev->tagged_supported && (dev->type == TYPE_DISK) && 479 (sdev_channel(dev) == CONTAINER_CHANNEL)) 480 ++num; 481 ++num; 482 } 483 if (num >= host->can_queue) 484 num = host->can_queue - 1; 485 if (depth > (host->can_queue - num)) 486 depth = host->can_queue - num; 487 if (depth > 256) 488 depth = 256; 489 else if (depth < 2) 490 depth = 2; 491 return scsi_change_queue_depth(sdev, depth); 492 } 493 494 return scsi_change_queue_depth(sdev, 1); 495 } 496 497 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) 498 { 499 struct scsi_device *sdev = to_scsi_device(dev); 500 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 501 if (sdev_channel(sdev) != CONTAINER_CHANNEL) 502 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach 503 ? "Hidden\n" : 504 ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : "")); 505 return snprintf(buf, PAGE_SIZE, "%s\n", 506 get_container_type(aac->fsa_dev[sdev_id(sdev)].type)); 507 } 508 509 static struct device_attribute aac_raid_level_attr = { 510 .attr = { 511 .name = "level", 512 .mode = S_IRUGO, 513 }, 514 .show = aac_show_raid_level 515 }; 516 517 static struct device_attribute *aac_dev_attrs[] = { 518 &aac_raid_level_attr, 519 NULL, 520 }; 521 522 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg) 523 { 524 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 525 if (!capable(CAP_SYS_RAWIO)) 526 return -EPERM; 527 return aac_do_ioctl(dev, cmd, arg); 528 } 529 530 static int aac_eh_abort(struct scsi_cmnd* cmd) 531 { 532 struct scsi_device * dev = cmd->device; 533 struct Scsi_Host * host = dev->host; 534 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 535 int count; 536 int ret = FAILED; 537 538 printk(KERN_ERR "%s: Host adapter abort request (%d,%d,%d,%llu)\n", 539 AAC_DRIVERNAME, 540 host->host_no, sdev_channel(dev), sdev_id(dev), dev->lun); 541 switch (cmd->cmnd[0]) { 542 case SERVICE_ACTION_IN_16: 543 if (!(aac->raw_io_interface) || 544 !(aac->raw_io_64) || 545 ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 546 break; 547 case INQUIRY: 548 case READ_CAPACITY: 549 /* Mark associated FIB to not complete, eh handler does this */ 550 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 551 struct fib * fib = &aac->fibs[count]; 552 if (fib->hw_fib_va->header.XferState && 553 (fib->flags & FIB_CONTEXT_FLAG) && 554 (fib->callback_data == cmd)) { 555 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; 556 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; 557 ret = SUCCESS; 558 } 559 } 560 break; 561 case TEST_UNIT_READY: 562 /* Mark associated FIB to not complete, eh handler does this */ 563 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 564 struct scsi_cmnd * command; 565 struct fib * fib = &aac->fibs[count]; 566 if ((fib->hw_fib_va->header.XferState & cpu_to_le32(Async | NoResponseExpected)) && 567 (fib->flags & FIB_CONTEXT_FLAG) && 568 ((command = fib->callback_data)) && 569 (command->device == cmd->device)) { 570 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; 571 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 572 if (command == cmd) 573 ret = SUCCESS; 574 } 575 } 576 } 577 return ret; 578 } 579 580 /* 581 * aac_eh_reset - Reset command handling 582 * @scsi_cmd: SCSI command block causing the reset 583 * 584 */ 585 static int aac_eh_reset(struct scsi_cmnd* cmd) 586 { 587 struct scsi_device * dev = cmd->device; 588 struct Scsi_Host * host = dev->host; 589 struct scsi_cmnd * command; 590 int count; 591 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 592 unsigned long flags; 593 594 /* Mark the associated FIB to not complete, eh handler does this */ 595 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 596 struct fib * fib = &aac->fibs[count]; 597 if (fib->hw_fib_va->header.XferState && 598 (fib->flags & FIB_CONTEXT_FLAG) && 599 (fib->callback_data == cmd)) { 600 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; 601 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; 602 } 603 } 604 printk(KERN_ERR "%s: Host adapter reset request. SCSI hang ?\n", 605 AAC_DRIVERNAME); 606 607 if ((count = aac_check_health(aac))) 608 return count; 609 /* 610 * Wait for all commands to complete to this specific 611 * target (block maximum 60 seconds). 612 */ 613 for (count = 60; count; --count) { 614 int active = aac->in_reset; 615 616 if (active == 0) 617 __shost_for_each_device(dev, host) { 618 spin_lock_irqsave(&dev->list_lock, flags); 619 list_for_each_entry(command, &dev->cmd_list, list) { 620 if ((command != cmd) && 621 (command->SCp.phase == AAC_OWNER_FIRMWARE)) { 622 active++; 623 break; 624 } 625 } 626 spin_unlock_irqrestore(&dev->list_lock, flags); 627 if (active) 628 break; 629 630 } 631 /* 632 * We can exit If all the commands are complete 633 */ 634 if (active == 0) 635 return SUCCESS; 636 ssleep(1); 637 } 638 printk(KERN_ERR "%s: SCSI bus appears hung\n", AAC_DRIVERNAME); 639 /* 640 * This adapter needs a blind reset, only do so for Adapters that 641 * support a register, instead of a commanded, reset. 642 */ 643 if (((aac->supplement_adapter_info.SupportedOptions2 & 644 AAC_OPTION_MU_RESET) || 645 (aac->supplement_adapter_info.SupportedOptions2 & 646 AAC_OPTION_DOORBELL_RESET)) && 647 aac_check_reset && 648 ((aac_check_reset != 1) || 649 !(aac->supplement_adapter_info.SupportedOptions2 & 650 AAC_OPTION_IGNORE_RESET))) 651 aac_reset_adapter(aac, 2); /* Bypass wait for command quiesce */ 652 return SUCCESS; /* Cause an immediate retry of the command with a ten second delay after successful tur */ 653 } 654 655 /** 656 * aac_cfg_open - open a configuration file 657 * @inode: inode being opened 658 * @file: file handle attached 659 * 660 * Called when the configuration device is opened. Does the needed 661 * set up on the handle and then returns 662 * 663 * Bugs: This needs extending to check a given adapter is present 664 * so we can support hot plugging, and to ref count adapters. 665 */ 666 667 static int aac_cfg_open(struct inode *inode, struct file *file) 668 { 669 struct aac_dev *aac; 670 unsigned minor_number = iminor(inode); 671 int err = -ENODEV; 672 673 mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */ 674 list_for_each_entry(aac, &aac_devices, entry) { 675 if (aac->id == minor_number) { 676 file->private_data = aac; 677 err = 0; 678 break; 679 } 680 } 681 mutex_unlock(&aac_mutex); 682 683 return err; 684 } 685 686 /** 687 * aac_cfg_ioctl - AAC configuration request 688 * @inode: inode of device 689 * @file: file handle 690 * @cmd: ioctl command code 691 * @arg: argument 692 * 693 * Handles a configuration ioctl. Currently this involves wrapping it 694 * up and feeding it into the nasty windowsalike glue layer. 695 * 696 * Bugs: Needs locking against parallel ioctls lower down 697 * Bugs: Needs to handle hot plugging 698 */ 699 700 static long aac_cfg_ioctl(struct file *file, 701 unsigned int cmd, unsigned long arg) 702 { 703 int ret; 704 struct aac_dev *aac; 705 aac = (struct aac_dev *)file->private_data; 706 if (!capable(CAP_SYS_RAWIO) || aac->adapter_shutdown) 707 return -EPERM; 708 mutex_lock(&aac_mutex); 709 ret = aac_do_ioctl(file->private_data, cmd, (void __user *)arg); 710 mutex_unlock(&aac_mutex); 711 712 return ret; 713 } 714 715 #ifdef CONFIG_COMPAT 716 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg) 717 { 718 long ret; 719 mutex_lock(&aac_mutex); 720 switch (cmd) { 721 case FSACTL_MINIPORT_REV_CHECK: 722 case FSACTL_SENDFIB: 723 case FSACTL_OPEN_GET_ADAPTER_FIB: 724 case FSACTL_CLOSE_GET_ADAPTER_FIB: 725 case FSACTL_SEND_RAW_SRB: 726 case FSACTL_GET_PCI_INFO: 727 case FSACTL_QUERY_DISK: 728 case FSACTL_DELETE_DISK: 729 case FSACTL_FORCE_DELETE_DISK: 730 case FSACTL_GET_CONTAINERS: 731 case FSACTL_SEND_LARGE_FIB: 732 ret = aac_do_ioctl(dev, cmd, (void __user *)arg); 733 break; 734 735 case FSACTL_GET_NEXT_ADAPTER_FIB: { 736 struct fib_ioctl __user *f; 737 738 f = compat_alloc_user_space(sizeof(*f)); 739 ret = 0; 740 if (clear_user(f, sizeof(*f))) 741 ret = -EFAULT; 742 if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32))) 743 ret = -EFAULT; 744 if (!ret) 745 ret = aac_do_ioctl(dev, cmd, f); 746 break; 747 } 748 749 default: 750 ret = -ENOIOCTLCMD; 751 break; 752 } 753 mutex_unlock(&aac_mutex); 754 return ret; 755 } 756 757 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg) 758 { 759 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 760 if (!capable(CAP_SYS_RAWIO)) 761 return -EPERM; 762 return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg); 763 } 764 765 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg) 766 { 767 if (!capable(CAP_SYS_RAWIO)) 768 return -EPERM; 769 return aac_compat_do_ioctl(file->private_data, cmd, arg); 770 } 771 #endif 772 773 static ssize_t aac_show_model(struct device *device, 774 struct device_attribute *attr, char *buf) 775 { 776 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 777 int len; 778 779 if (dev->supplement_adapter_info.AdapterTypeText[0]) { 780 char * cp = dev->supplement_adapter_info.AdapterTypeText; 781 while (*cp && *cp != ' ') 782 ++cp; 783 while (*cp == ' ') 784 ++cp; 785 len = snprintf(buf, PAGE_SIZE, "%s\n", cp); 786 } else 787 len = snprintf(buf, PAGE_SIZE, "%s\n", 788 aac_drivers[dev->cardtype].model); 789 return len; 790 } 791 792 static ssize_t aac_show_vendor(struct device *device, 793 struct device_attribute *attr, char *buf) 794 { 795 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 796 int len; 797 798 if (dev->supplement_adapter_info.AdapterTypeText[0]) { 799 char * cp = dev->supplement_adapter_info.AdapterTypeText; 800 while (*cp && *cp != ' ') 801 ++cp; 802 len = snprintf(buf, PAGE_SIZE, "%.*s\n", 803 (int)(cp - (char *)dev->supplement_adapter_info.AdapterTypeText), 804 dev->supplement_adapter_info.AdapterTypeText); 805 } else 806 len = snprintf(buf, PAGE_SIZE, "%s\n", 807 aac_drivers[dev->cardtype].vname); 808 return len; 809 } 810 811 static ssize_t aac_show_flags(struct device *cdev, 812 struct device_attribute *attr, char *buf) 813 { 814 int len = 0; 815 struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata; 816 817 if (nblank(dprintk(x))) 818 len = snprintf(buf, PAGE_SIZE, "dprintk\n"); 819 #ifdef AAC_DETAILED_STATUS_INFO 820 len += snprintf(buf + len, PAGE_SIZE - len, 821 "AAC_DETAILED_STATUS_INFO\n"); 822 #endif 823 if (dev->raw_io_interface && dev->raw_io_64) 824 len += snprintf(buf + len, PAGE_SIZE - len, 825 "SAI_READ_CAPACITY_16\n"); 826 if (dev->jbod) 827 len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n"); 828 if (dev->supplement_adapter_info.SupportedOptions2 & 829 AAC_OPTION_POWER_MANAGEMENT) 830 len += snprintf(buf + len, PAGE_SIZE - len, 831 "SUPPORTED_POWER_MANAGEMENT\n"); 832 if (dev->msi) 833 len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n"); 834 return len; 835 } 836 837 static ssize_t aac_show_kernel_version(struct device *device, 838 struct device_attribute *attr, 839 char *buf) 840 { 841 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 842 int len, tmp; 843 844 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 845 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 846 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 847 le32_to_cpu(dev->adapter_info.kernelbuild)); 848 return len; 849 } 850 851 static ssize_t aac_show_monitor_version(struct device *device, 852 struct device_attribute *attr, 853 char *buf) 854 { 855 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 856 int len, tmp; 857 858 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 859 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 860 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 861 le32_to_cpu(dev->adapter_info.monitorbuild)); 862 return len; 863 } 864 865 static ssize_t aac_show_bios_version(struct device *device, 866 struct device_attribute *attr, 867 char *buf) 868 { 869 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 870 int len, tmp; 871 872 tmp = le32_to_cpu(dev->adapter_info.biosrev); 873 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 874 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 875 le32_to_cpu(dev->adapter_info.biosbuild)); 876 return len; 877 } 878 879 static ssize_t aac_show_serial_number(struct device *device, 880 struct device_attribute *attr, char *buf) 881 { 882 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 883 int len = 0; 884 885 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) 886 len = snprintf(buf, 16, "%06X\n", 887 le32_to_cpu(dev->adapter_info.serial[0])); 888 if (len && 889 !memcmp(&dev->supplement_adapter_info.MfgPcbaSerialNo[ 890 sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo)-len], 891 buf, len-1)) 892 len = snprintf(buf, 16, "%.*s\n", 893 (int)sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo), 894 dev->supplement_adapter_info.MfgPcbaSerialNo); 895 896 return min(len, 16); 897 } 898 899 static ssize_t aac_show_max_channel(struct device *device, 900 struct device_attribute *attr, char *buf) 901 { 902 return snprintf(buf, PAGE_SIZE, "%d\n", 903 class_to_shost(device)->max_channel); 904 } 905 906 static ssize_t aac_show_max_id(struct device *device, 907 struct device_attribute *attr, char *buf) 908 { 909 return snprintf(buf, PAGE_SIZE, "%d\n", 910 class_to_shost(device)->max_id); 911 } 912 913 static ssize_t aac_store_reset_adapter(struct device *device, 914 struct device_attribute *attr, 915 const char *buf, size_t count) 916 { 917 int retval = -EACCES; 918 919 if (!capable(CAP_SYS_ADMIN)) 920 return retval; 921 retval = aac_reset_adapter((struct aac_dev*)class_to_shost(device)->hostdata, buf[0] == '!'); 922 if (retval >= 0) 923 retval = count; 924 return retval; 925 } 926 927 static ssize_t aac_show_reset_adapter(struct device *device, 928 struct device_attribute *attr, 929 char *buf) 930 { 931 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 932 int len, tmp; 933 934 tmp = aac_adapter_check_health(dev); 935 if ((tmp == 0) && dev->in_reset) 936 tmp = -EBUSY; 937 len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp); 938 return len; 939 } 940 941 static struct device_attribute aac_model = { 942 .attr = { 943 .name = "model", 944 .mode = S_IRUGO, 945 }, 946 .show = aac_show_model, 947 }; 948 static struct device_attribute aac_vendor = { 949 .attr = { 950 .name = "vendor", 951 .mode = S_IRUGO, 952 }, 953 .show = aac_show_vendor, 954 }; 955 static struct device_attribute aac_flags = { 956 .attr = { 957 .name = "flags", 958 .mode = S_IRUGO, 959 }, 960 .show = aac_show_flags, 961 }; 962 static struct device_attribute aac_kernel_version = { 963 .attr = { 964 .name = "hba_kernel_version", 965 .mode = S_IRUGO, 966 }, 967 .show = aac_show_kernel_version, 968 }; 969 static struct device_attribute aac_monitor_version = { 970 .attr = { 971 .name = "hba_monitor_version", 972 .mode = S_IRUGO, 973 }, 974 .show = aac_show_monitor_version, 975 }; 976 static struct device_attribute aac_bios_version = { 977 .attr = { 978 .name = "hba_bios_version", 979 .mode = S_IRUGO, 980 }, 981 .show = aac_show_bios_version, 982 }; 983 static struct device_attribute aac_serial_number = { 984 .attr = { 985 .name = "serial_number", 986 .mode = S_IRUGO, 987 }, 988 .show = aac_show_serial_number, 989 }; 990 static struct device_attribute aac_max_channel = { 991 .attr = { 992 .name = "max_channel", 993 .mode = S_IRUGO, 994 }, 995 .show = aac_show_max_channel, 996 }; 997 static struct device_attribute aac_max_id = { 998 .attr = { 999 .name = "max_id", 1000 .mode = S_IRUGO, 1001 }, 1002 .show = aac_show_max_id, 1003 }; 1004 static struct device_attribute aac_reset = { 1005 .attr = { 1006 .name = "reset_host", 1007 .mode = S_IWUSR|S_IRUGO, 1008 }, 1009 .store = aac_store_reset_adapter, 1010 .show = aac_show_reset_adapter, 1011 }; 1012 1013 static struct device_attribute *aac_attrs[] = { 1014 &aac_model, 1015 &aac_vendor, 1016 &aac_flags, 1017 &aac_kernel_version, 1018 &aac_monitor_version, 1019 &aac_bios_version, 1020 &aac_serial_number, 1021 &aac_max_channel, 1022 &aac_max_id, 1023 &aac_reset, 1024 NULL 1025 }; 1026 1027 ssize_t aac_get_serial_number(struct device *device, char *buf) 1028 { 1029 return aac_show_serial_number(device, &aac_serial_number, buf); 1030 } 1031 1032 static const struct file_operations aac_cfg_fops = { 1033 .owner = THIS_MODULE, 1034 .unlocked_ioctl = aac_cfg_ioctl, 1035 #ifdef CONFIG_COMPAT 1036 .compat_ioctl = aac_compat_cfg_ioctl, 1037 #endif 1038 .open = aac_cfg_open, 1039 .llseek = noop_llseek, 1040 }; 1041 1042 static struct scsi_host_template aac_driver_template = { 1043 .module = THIS_MODULE, 1044 .name = "AAC", 1045 .proc_name = AAC_DRIVERNAME, 1046 .info = aac_info, 1047 .ioctl = aac_ioctl, 1048 #ifdef CONFIG_COMPAT 1049 .compat_ioctl = aac_compat_ioctl, 1050 #endif 1051 .queuecommand = aac_queuecommand, 1052 .bios_param = aac_biosparm, 1053 .shost_attrs = aac_attrs, 1054 .slave_configure = aac_slave_configure, 1055 .change_queue_depth = aac_change_queue_depth, 1056 .sdev_attrs = aac_dev_attrs, 1057 .eh_abort_handler = aac_eh_abort, 1058 .eh_host_reset_handler = aac_eh_reset, 1059 .can_queue = AAC_NUM_IO_FIB, 1060 .this_id = MAXIMUM_NUM_CONTAINERS, 1061 .sg_tablesize = 16, 1062 .max_sectors = 128, 1063 #if (AAC_NUM_IO_FIB > 256) 1064 .cmd_per_lun = 256, 1065 #else 1066 .cmd_per_lun = AAC_NUM_IO_FIB, 1067 #endif 1068 .use_clustering = ENABLE_CLUSTERING, 1069 .emulated = 1, 1070 .no_write_same = 1, 1071 }; 1072 1073 static void __aac_shutdown(struct aac_dev * aac) 1074 { 1075 int i; 1076 int cpu; 1077 1078 if (aac->aif_thread) { 1079 int i; 1080 /* Clear out events first */ 1081 for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) { 1082 struct fib *fib = &aac->fibs[i]; 1083 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1084 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) 1085 up(&fib->event_wait); 1086 } 1087 kthread_stop(aac->thread); 1088 } 1089 aac_send_shutdown(aac); 1090 aac_adapter_disable_int(aac); 1091 cpu = cpumask_first(cpu_online_mask); 1092 if (aac->pdev->device == PMC_DEVICE_S6 || 1093 aac->pdev->device == PMC_DEVICE_S7 || 1094 aac->pdev->device == PMC_DEVICE_S8 || 1095 aac->pdev->device == PMC_DEVICE_S9) { 1096 if (aac->max_msix > 1) { 1097 for (i = 0; i < aac->max_msix; i++) { 1098 if (irq_set_affinity_hint( 1099 aac->msixentry[i].vector, 1100 NULL)) { 1101 printk(KERN_ERR "%s%d: Failed to reset IRQ affinity for cpu %d\n", 1102 aac->name, 1103 aac->id, 1104 cpu); 1105 } 1106 cpu = cpumask_next(cpu, 1107 cpu_online_mask); 1108 free_irq(aac->msixentry[i].vector, 1109 &(aac->aac_msix[i])); 1110 } 1111 } else { 1112 free_irq(aac->pdev->irq, 1113 &(aac->aac_msix[0])); 1114 } 1115 } else { 1116 free_irq(aac->pdev->irq, aac); 1117 } 1118 if (aac->msi) 1119 pci_disable_msi(aac->pdev); 1120 else if (aac->max_msix > 1) 1121 pci_disable_msix(aac->pdev); 1122 } 1123 1124 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) 1125 { 1126 unsigned index = id->driver_data; 1127 struct Scsi_Host *shost; 1128 struct aac_dev *aac; 1129 struct list_head *insert = &aac_devices; 1130 int error = -ENODEV; 1131 int unique_id = 0; 1132 u64 dmamask; 1133 extern int aac_sync_mode; 1134 1135 list_for_each_entry(aac, &aac_devices, entry) { 1136 if (aac->id > unique_id) 1137 break; 1138 insert = &aac->entry; 1139 unique_id++; 1140 } 1141 1142 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | 1143 PCIE_LINK_STATE_CLKPM); 1144 1145 error = pci_enable_device(pdev); 1146 if (error) 1147 goto out; 1148 error = -ENODEV; 1149 1150 /* 1151 * If the quirk31 bit is set, the adapter needs adapter 1152 * to driver communication memory to be allocated below 2gig 1153 */ 1154 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) 1155 dmamask = DMA_BIT_MASK(31); 1156 else 1157 dmamask = DMA_BIT_MASK(32); 1158 1159 if (pci_set_dma_mask(pdev, dmamask) || 1160 pci_set_consistent_dma_mask(pdev, dmamask)) 1161 goto out_disable_pdev; 1162 1163 pci_set_master(pdev); 1164 1165 shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev)); 1166 if (!shost) 1167 goto out_disable_pdev; 1168 1169 shost->irq = pdev->irq; 1170 shost->unique_id = unique_id; 1171 shost->max_cmd_len = 16; 1172 shost->use_cmd_list = 1; 1173 1174 aac = (struct aac_dev *)shost->hostdata; 1175 aac->base_start = pci_resource_start(pdev, 0); 1176 aac->scsi_host_ptr = shost; 1177 aac->pdev = pdev; 1178 aac->name = aac_driver_template.name; 1179 aac->id = shost->unique_id; 1180 aac->cardtype = index; 1181 INIT_LIST_HEAD(&aac->entry); 1182 1183 aac->fibs = kzalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL); 1184 if (!aac->fibs) 1185 goto out_free_host; 1186 spin_lock_init(&aac->fib_lock); 1187 1188 /* 1189 * Map in the registers from the adapter. 1190 */ 1191 aac->base_size = AAC_MIN_FOOTPRINT_SIZE; 1192 if ((*aac_drivers[index].init)(aac)) 1193 goto out_unmap; 1194 1195 if (aac->sync_mode) { 1196 if (aac_sync_mode) 1197 printk(KERN_INFO "%s%d: Sync. mode enforced " 1198 "by driver parameter. This will cause " 1199 "a significant performance decrease!\n", 1200 aac->name, 1201 aac->id); 1202 else 1203 printk(KERN_INFO "%s%d: Async. mode not supported " 1204 "by current driver, sync. mode enforced." 1205 "\nPlease update driver to get full performance.\n", 1206 aac->name, 1207 aac->id); 1208 } 1209 1210 /* 1211 * Start any kernel threads needed 1212 */ 1213 aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME); 1214 if (IS_ERR(aac->thread)) { 1215 printk(KERN_ERR "aacraid: Unable to create command thread.\n"); 1216 error = PTR_ERR(aac->thread); 1217 aac->thread = NULL; 1218 goto out_deinit; 1219 } 1220 1221 /* 1222 * If we had set a smaller DMA mask earlier, set it to 4gig 1223 * now since the adapter can dma data to at least a 4gig 1224 * address space. 1225 */ 1226 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) 1227 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) 1228 goto out_deinit; 1229 1230 aac->maximum_num_channels = aac_drivers[index].channels; 1231 error = aac_get_adapter_info(aac); 1232 if (error < 0) 1233 goto out_deinit; 1234 1235 /* 1236 * Lets override negotiations and drop the maximum SG limit to 34 1237 */ 1238 if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && 1239 (shost->sg_tablesize > 34)) { 1240 shost->sg_tablesize = 34; 1241 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1242 } 1243 1244 if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) && 1245 (shost->sg_tablesize > 17)) { 1246 shost->sg_tablesize = 17; 1247 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1248 } 1249 1250 error = pci_set_dma_max_seg_size(pdev, 1251 (aac->adapter_info.options & AAC_OPT_NEW_COMM) ? 1252 (shost->max_sectors << 9) : 65536); 1253 if (error) 1254 goto out_deinit; 1255 1256 /* 1257 * Firmware printf works only with older firmware. 1258 */ 1259 if (aac_drivers[index].quirks & AAC_QUIRK_34SG) 1260 aac->printf_enabled = 1; 1261 else 1262 aac->printf_enabled = 0; 1263 1264 /* 1265 * max channel will be the physical channels plus 1 virtual channel 1266 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL) 1267 * physical channels are address by their actual physical number+1 1268 */ 1269 if (aac->nondasd_support || expose_physicals || aac->jbod) 1270 shost->max_channel = aac->maximum_num_channels; 1271 else 1272 shost->max_channel = 0; 1273 1274 aac_get_config_status(aac, 0); 1275 aac_get_containers(aac); 1276 list_add(&aac->entry, insert); 1277 1278 shost->max_id = aac->maximum_num_containers; 1279 if (shost->max_id < aac->maximum_num_physicals) 1280 shost->max_id = aac->maximum_num_physicals; 1281 if (shost->max_id < MAXIMUM_NUM_CONTAINERS) 1282 shost->max_id = MAXIMUM_NUM_CONTAINERS; 1283 else 1284 shost->this_id = shost->max_id; 1285 1286 /* 1287 * dmb - we may need to move the setting of these parms somewhere else once 1288 * we get a fib that can report the actual numbers 1289 */ 1290 shost->max_lun = AAC_MAX_LUN; 1291 1292 pci_set_drvdata(pdev, shost); 1293 1294 error = scsi_add_host(shost, &pdev->dev); 1295 if (error) 1296 goto out_deinit; 1297 scsi_scan_host(shost); 1298 1299 return 0; 1300 1301 out_deinit: 1302 __aac_shutdown(aac); 1303 out_unmap: 1304 aac_fib_map_free(aac); 1305 if (aac->comm_addr) 1306 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, 1307 aac->comm_phys); 1308 kfree(aac->queues); 1309 aac_adapter_ioremap(aac, 0); 1310 kfree(aac->fibs); 1311 kfree(aac->fsa_dev); 1312 out_free_host: 1313 scsi_host_put(shost); 1314 out_disable_pdev: 1315 pci_disable_device(pdev); 1316 out: 1317 return error; 1318 } 1319 1320 #if (defined(CONFIG_PM)) 1321 void aac_release_resources(struct aac_dev *aac) 1322 { 1323 int i; 1324 1325 aac_adapter_disable_int(aac); 1326 if (aac->pdev->device == PMC_DEVICE_S6 || 1327 aac->pdev->device == PMC_DEVICE_S7 || 1328 aac->pdev->device == PMC_DEVICE_S8 || 1329 aac->pdev->device == PMC_DEVICE_S9) { 1330 if (aac->max_msix > 1) { 1331 for (i = 0; i < aac->max_msix; i++) 1332 free_irq(aac->msixentry[i].vector, 1333 &(aac->aac_msix[i])); 1334 } else { 1335 free_irq(aac->pdev->irq, &(aac->aac_msix[0])); 1336 } 1337 } else { 1338 free_irq(aac->pdev->irq, aac); 1339 } 1340 if (aac->msi) 1341 pci_disable_msi(aac->pdev); 1342 else if (aac->max_msix > 1) 1343 pci_disable_msix(aac->pdev); 1344 1345 } 1346 1347 static int aac_acquire_resources(struct aac_dev *dev) 1348 { 1349 int i, j; 1350 int instance = dev->id; 1351 const char *name = dev->name; 1352 unsigned long status; 1353 /* 1354 * First clear out all interrupts. Then enable the one's that we 1355 * can handle. 1356 */ 1357 while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING) 1358 || status == 0xffffffff) 1359 msleep(20); 1360 1361 aac_adapter_disable_int(dev); 1362 aac_adapter_enable_int(dev); 1363 1364 1365 if ((dev->pdev->device == PMC_DEVICE_S7 || 1366 dev->pdev->device == PMC_DEVICE_S8 || 1367 dev->pdev->device == PMC_DEVICE_S9)) 1368 aac_define_int_mode(dev); 1369 1370 if (dev->msi_enabled) 1371 aac_src_access_devreg(dev, AAC_ENABLE_MSIX); 1372 1373 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 1374 for (i = 0; i < dev->max_msix; i++) { 1375 dev->aac_msix[i].vector_no = i; 1376 dev->aac_msix[i].dev = dev; 1377 1378 if (request_irq(dev->msixentry[i].vector, 1379 dev->a_ops.adapter_intr, 1380 0, "aacraid", &(dev->aac_msix[i]))) { 1381 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 1382 name, instance, i); 1383 for (j = 0 ; j < i ; j++) 1384 free_irq(dev->msixentry[j].vector, 1385 &(dev->aac_msix[j])); 1386 pci_disable_msix(dev->pdev); 1387 goto error_iounmap; 1388 } 1389 } 1390 } else { 1391 dev->aac_msix[0].vector_no = 0; 1392 dev->aac_msix[0].dev = dev; 1393 1394 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 1395 IRQF_SHARED, "aacraid", 1396 &(dev->aac_msix[0])) < 0) { 1397 if (dev->msi) 1398 pci_disable_msi(dev->pdev); 1399 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 1400 name, instance); 1401 goto error_iounmap; 1402 } 1403 } 1404 1405 aac_adapter_enable_int(dev); 1406 1407 if (!dev->sync_mode) 1408 aac_adapter_start(dev); 1409 return 0; 1410 1411 error_iounmap: 1412 return -1; 1413 1414 } 1415 static int aac_suspend(struct pci_dev *pdev, pm_message_t state) 1416 { 1417 1418 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1419 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1420 1421 scsi_block_requests(shost); 1422 aac_send_shutdown(aac); 1423 1424 aac_release_resources(aac); 1425 1426 pci_set_drvdata(pdev, shost); 1427 pci_save_state(pdev); 1428 pci_disable_device(pdev); 1429 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 1430 1431 return 0; 1432 } 1433 1434 static int aac_resume(struct pci_dev *pdev) 1435 { 1436 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1437 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1438 int r; 1439 1440 pci_set_power_state(pdev, PCI_D0); 1441 pci_enable_wake(pdev, PCI_D0, 0); 1442 pci_restore_state(pdev); 1443 r = pci_enable_device(pdev); 1444 1445 if (r) 1446 goto fail_device; 1447 1448 pci_set_master(pdev); 1449 if (aac_acquire_resources(aac)) 1450 goto fail_device; 1451 /* 1452 * reset this flag to unblock ioctl() as it was set at 1453 * aac_send_shutdown() to block ioctls from upperlayer 1454 */ 1455 aac->adapter_shutdown = 0; 1456 scsi_unblock_requests(shost); 1457 1458 return 0; 1459 1460 fail_device: 1461 printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id); 1462 scsi_host_put(shost); 1463 pci_disable_device(pdev); 1464 return -ENODEV; 1465 } 1466 #endif 1467 1468 static void aac_shutdown(struct pci_dev *dev) 1469 { 1470 struct Scsi_Host *shost = pci_get_drvdata(dev); 1471 scsi_block_requests(shost); 1472 __aac_shutdown((struct aac_dev *)shost->hostdata); 1473 } 1474 1475 static void aac_remove_one(struct pci_dev *pdev) 1476 { 1477 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1478 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1479 1480 scsi_remove_host(shost); 1481 1482 __aac_shutdown(aac); 1483 aac_fib_map_free(aac); 1484 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, 1485 aac->comm_phys); 1486 kfree(aac->queues); 1487 1488 aac_adapter_ioremap(aac, 0); 1489 1490 kfree(aac->fibs); 1491 kfree(aac->fsa_dev); 1492 1493 list_del(&aac->entry); 1494 scsi_host_put(shost); 1495 pci_disable_device(pdev); 1496 if (list_empty(&aac_devices)) { 1497 unregister_chrdev(aac_cfg_major, "aac"); 1498 aac_cfg_major = -1; 1499 } 1500 } 1501 1502 static struct pci_driver aac_pci_driver = { 1503 .name = AAC_DRIVERNAME, 1504 .id_table = aac_pci_tbl, 1505 .probe = aac_probe_one, 1506 .remove = aac_remove_one, 1507 #if (defined(CONFIG_PM)) 1508 .suspend = aac_suspend, 1509 .resume = aac_resume, 1510 #endif 1511 .shutdown = aac_shutdown, 1512 }; 1513 1514 static int __init aac_init(void) 1515 { 1516 int error; 1517 1518 printk(KERN_INFO "Adaptec %s driver %s\n", 1519 AAC_DRIVERNAME, aac_driver_version); 1520 1521 error = pci_register_driver(&aac_pci_driver); 1522 if (error < 0) 1523 return error; 1524 1525 aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops); 1526 if (aac_cfg_major < 0) { 1527 printk(KERN_WARNING 1528 "aacraid: unable to register \"aac\" device.\n"); 1529 } 1530 1531 return 0; 1532 } 1533 1534 static void __exit aac_exit(void) 1535 { 1536 if (aac_cfg_major > -1) 1537 unregister_chrdev(aac_cfg_major, "aac"); 1538 pci_unregister_driver(&aac_pci_driver); 1539 } 1540 1541 module_init(aac_init); 1542 module_exit(aac_exit); 1543