1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * linit.c 28 * 29 * Abstract: Linux Driver entry module for Adaptec RAID Array Controller 30 */ 31 32 33 #include <linux/compat.h> 34 #include <linux/blkdev.h> 35 #include <linux/completion.h> 36 #include <linux/init.h> 37 #include <linux/interrupt.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/moduleparam.h> 41 #include <linux/pci.h> 42 #include <linux/aer.h> 43 #include <linux/pci-aspm.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/spinlock.h> 47 #include <linux/syscalls.h> 48 #include <linux/delay.h> 49 #include <linux/kthread.h> 50 51 #include <scsi/scsi.h> 52 #include <scsi/scsi_cmnd.h> 53 #include <scsi/scsi_device.h> 54 #include <scsi/scsi_host.h> 55 #include <scsi/scsi_tcq.h> 56 #include <scsi/scsicam.h> 57 #include <scsi/scsi_eh.h> 58 59 #include "aacraid.h" 60 61 #define AAC_DRIVER_VERSION "1.2.1" 62 #ifndef AAC_DRIVER_BRANCH 63 #define AAC_DRIVER_BRANCH "" 64 #endif 65 #define AAC_DRIVERNAME "aacraid" 66 67 #ifdef AAC_DRIVER_BUILD 68 #define _str(x) #x 69 #define str(x) _str(x) 70 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH 71 #else 72 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH 73 #endif 74 75 MODULE_AUTHOR("Red Hat Inc and Adaptec"); 76 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, " 77 "Adaptec Advanced Raid Products, " 78 "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver"); 79 MODULE_LICENSE("GPL"); 80 MODULE_VERSION(AAC_DRIVER_FULL_VERSION); 81 82 static DEFINE_MUTEX(aac_mutex); 83 static LIST_HEAD(aac_devices); 84 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED; 85 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION; 86 87 /* 88 * Because of the way Linux names scsi devices, the order in this table has 89 * become important. Check for on-board Raid first, add-in cards second. 90 * 91 * Note: The last field is used to index into aac_drivers below. 92 */ 93 static const struct pci_device_id aac_pci_tbl[] = { 94 { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */ 95 { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */ 96 { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */ 97 { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 98 { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */ 99 { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 100 { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 101 { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 102 { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 103 { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */ 104 { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */ 105 { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */ 106 { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */ 107 { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */ 108 { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */ 109 { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */ 110 111 { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */ 112 { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */ 113 { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 114 { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 115 { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 116 { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */ 117 { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */ 118 { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */ 119 { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */ 120 { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */ 121 { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */ 122 { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */ 123 { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */ 124 { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */ 125 { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */ 126 { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */ 127 { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */ 128 { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */ 129 { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */ 130 { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */ 131 { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 132 { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 133 { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 134 { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 135 { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 136 { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 137 { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 138 { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */ 139 { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */ 140 { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */ 141 { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */ 142 { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */ 143 { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */ 144 { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 145 { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */ 146 { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */ 147 { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */ 148 { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */ 149 150 { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/ 151 { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/ 152 { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/ 153 { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */ 154 { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */ 155 156 { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */ 157 { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */ 158 { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */ 159 { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */ 160 { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */ 161 { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */ 162 { 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */ 163 { 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */ 164 { 0,} 165 }; 166 MODULE_DEVICE_TABLE(pci, aac_pci_tbl); 167 168 /* 169 * dmb - For now we add the number of channels to this structure. 170 * In the future we should add a fib that reports the number of channels 171 * for the card. At that time we can remove the channels from here 172 */ 173 static struct aac_driver_ident aac_drivers[] = { 174 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */ 175 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */ 176 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */ 177 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 178 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */ 179 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 180 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 181 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 182 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 183 { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */ 184 { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */ 185 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */ 186 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */ 187 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */ 188 { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */ 189 { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */ 190 191 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */ 192 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */ 193 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 194 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 195 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 196 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */ 197 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */ 198 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */ 199 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */ 200 { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */ 201 { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */ 202 { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */ 203 { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */ 204 { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */ 205 { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */ 206 { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */ 207 { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */ 208 { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */ 209 { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */ 210 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 211 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 212 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 213 { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 214 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 215 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 216 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 217 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */ 218 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */ 219 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */ 220 { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */ 221 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */ 222 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 223 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */ 224 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */ 225 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */ 226 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */ 227 228 { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/ 229 { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 230 { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 231 { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */ 232 { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */ 233 234 { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */ 235 { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */ 236 { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */ 237 { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */ 238 { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */ 239 { aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */ 240 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */ 241 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */ 242 }; 243 244 /** 245 * aac_queuecommand - queue a SCSI command 246 * @cmd: SCSI command to queue 247 * @done: Function to call on command completion 248 * 249 * Queues a command for execution by the associated Host Adapter. 250 * 251 * TODO: unify with aac_scsi_cmd(). 252 */ 253 254 static int aac_queuecommand(struct Scsi_Host *shost, 255 struct scsi_cmnd *cmd) 256 { 257 int r = 0; 258 cmd->SCp.phase = AAC_OWNER_LOWLEVEL; 259 r = (aac_scsi_cmd(cmd) ? FAILED : 0); 260 return r; 261 } 262 263 /** 264 * aac_info - Returns the host adapter name 265 * @shost: Scsi host to report on 266 * 267 * Returns a static string describing the device in question 268 */ 269 270 static const char *aac_info(struct Scsi_Host *shost) 271 { 272 struct aac_dev *dev = (struct aac_dev *)shost->hostdata; 273 return aac_drivers[dev->cardtype].name; 274 } 275 276 /** 277 * aac_get_driver_ident 278 * @devtype: index into lookup table 279 * 280 * Returns a pointer to the entry in the driver lookup table. 281 */ 282 283 struct aac_driver_ident* aac_get_driver_ident(int devtype) 284 { 285 return &aac_drivers[devtype]; 286 } 287 288 /** 289 * aac_biosparm - return BIOS parameters for disk 290 * @sdev: The scsi device corresponding to the disk 291 * @bdev: the block device corresponding to the disk 292 * @capacity: the sector capacity of the disk 293 * @geom: geometry block to fill in 294 * 295 * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk. 296 * The default disk geometry is 64 heads, 32 sectors, and the appropriate 297 * number of cylinders so as not to exceed drive capacity. In order for 298 * disks equal to or larger than 1 GB to be addressable by the BIOS 299 * without exceeding the BIOS limitation of 1024 cylinders, Extended 300 * Translation should be enabled. With Extended Translation enabled, 301 * drives between 1 GB inclusive and 2 GB exclusive are given a disk 302 * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive 303 * are given a disk geometry of 255 heads and 63 sectors. However, if 304 * the BIOS detects that the Extended Translation setting does not match 305 * the geometry in the partition table, then the translation inferred 306 * from the partition table will be used by the BIOS, and a warning may 307 * be displayed. 308 */ 309 310 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev, 311 sector_t capacity, int *geom) 312 { 313 struct diskparm *param = (struct diskparm *)geom; 314 unsigned char *buf; 315 316 dprintk((KERN_DEBUG "aac_biosparm.\n")); 317 318 /* 319 * Assuming extended translation is enabled - #REVISIT# 320 */ 321 if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */ 322 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */ 323 param->heads = 255; 324 param->sectors = 63; 325 } else { 326 param->heads = 128; 327 param->sectors = 32; 328 } 329 } else { 330 param->heads = 64; 331 param->sectors = 32; 332 } 333 334 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 335 336 /* 337 * Read the first 1024 bytes from the disk device, if the boot 338 * sector partition table is valid, search for a partition table 339 * entry whose end_head matches one of the standard geometry 340 * translations ( 64/32, 128/32, 255/63 ). 341 */ 342 buf = scsi_bios_ptable(bdev); 343 if (!buf) 344 return 0; 345 if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) { 346 struct partition *first = (struct partition * )buf; 347 struct partition *entry = first; 348 int saved_cylinders = param->cylinders; 349 int num; 350 unsigned char end_head, end_sec; 351 352 for(num = 0; num < 4; num++) { 353 end_head = entry->end_head; 354 end_sec = entry->end_sector & 0x3f; 355 356 if(end_head == 63) { 357 param->heads = 64; 358 param->sectors = 32; 359 break; 360 } else if(end_head == 127) { 361 param->heads = 128; 362 param->sectors = 32; 363 break; 364 } else if(end_head == 254) { 365 param->heads = 255; 366 param->sectors = 63; 367 break; 368 } 369 entry++; 370 } 371 372 if (num == 4) { 373 end_head = first->end_head; 374 end_sec = first->end_sector & 0x3f; 375 } 376 377 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 378 if (num < 4 && end_sec == param->sectors) { 379 if (param->cylinders != saved_cylinders) 380 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n", 381 param->heads, param->sectors, num)); 382 } else if (end_head > 0 || end_sec > 0) { 383 dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n", 384 end_head + 1, end_sec, num)); 385 dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n", 386 param->heads, param->sectors)); 387 } 388 } 389 kfree(buf); 390 return 0; 391 } 392 393 /** 394 * aac_slave_configure - compute queue depths 395 * @sdev: SCSI device we are considering 396 * 397 * Selects queue depths for each target device based on the host adapter's 398 * total capacity and the queue depth supported by the target device. 399 * A queue depth of one automatically disables tagged queueing. 400 */ 401 402 static int aac_slave_configure(struct scsi_device *sdev) 403 { 404 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 405 int chn, tid; 406 unsigned int depth = 0; 407 unsigned int set_timeout = 0; 408 409 chn = aac_logical_to_phys(sdev_channel(sdev)); 410 tid = sdev_id(sdev); 411 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && 412 aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 413 depth = aac->hba_map[chn][tid].qd_limit; 414 set_timeout = 1; 415 goto common_config; 416 } 417 418 419 if (aac->jbod && (sdev->type == TYPE_DISK)) 420 sdev->removable = 1; 421 422 if (sdev->type == TYPE_DISK 423 && sdev_channel(sdev) != CONTAINER_CHANNEL 424 && (!aac->jbod || sdev->inq_periph_qual) 425 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) { 426 427 if (expose_physicals == 0) 428 return -ENXIO; 429 430 if (expose_physicals < 0) 431 sdev->no_uld_attach = 1; 432 } 433 434 if (sdev->tagged_supported 435 && sdev->type == TYPE_DISK 436 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 437 && !sdev->no_uld_attach) { 438 439 struct scsi_device * dev; 440 struct Scsi_Host *host = sdev->host; 441 unsigned num_lsu = 0; 442 unsigned num_one = 0; 443 unsigned cid; 444 445 set_timeout = 1; 446 447 for (cid = 0; cid < aac->maximum_num_containers; ++cid) 448 if (aac->fsa_dev[cid].valid) 449 ++num_lsu; 450 451 __shost_for_each_device(dev, host) { 452 if (dev->tagged_supported 453 && dev->type == TYPE_DISK 454 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 455 && !dev->no_uld_attach) { 456 if ((sdev_channel(dev) != CONTAINER_CHANNEL) 457 || !aac->fsa_dev[sdev_id(dev)].valid) { 458 ++num_lsu; 459 } 460 } else { 461 ++num_one; 462 } 463 } 464 465 if (num_lsu == 0) 466 ++num_lsu; 467 468 depth = (host->can_queue - num_one) / num_lsu; 469 } 470 471 common_config: 472 /* 473 * Firmware has an individual device recovery time typically 474 * of 35 seconds, give us a margin. 475 */ 476 if (set_timeout && sdev->request_queue->rq_timeout < (45 * HZ)) 477 blk_queue_rq_timeout(sdev->request_queue, 45*HZ); 478 479 if (depth > 256) 480 depth = 256; 481 else if (depth < 1) 482 depth = 1; 483 484 scsi_change_queue_depth(sdev, depth); 485 486 sdev->tagged_supported = 1; 487 488 return 0; 489 } 490 491 /** 492 * aac_change_queue_depth - alter queue depths 493 * @sdev: SCSI device we are considering 494 * @depth: desired queue depth 495 * 496 * Alters queue depths for target device based on the host adapter's 497 * total capacity and the queue depth supported by the target device. 498 */ 499 500 static int aac_change_queue_depth(struct scsi_device *sdev, int depth) 501 { 502 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 503 int chn, tid, is_native_device = 0; 504 505 chn = aac_logical_to_phys(sdev_channel(sdev)); 506 tid = sdev_id(sdev); 507 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && 508 aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW) 509 is_native_device = 1; 510 511 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && 512 (sdev_channel(sdev) == CONTAINER_CHANNEL)) { 513 struct scsi_device * dev; 514 struct Scsi_Host *host = sdev->host; 515 unsigned num = 0; 516 517 __shost_for_each_device(dev, host) { 518 if (dev->tagged_supported && (dev->type == TYPE_DISK) && 519 (sdev_channel(dev) == CONTAINER_CHANNEL)) 520 ++num; 521 ++num; 522 } 523 if (num >= host->can_queue) 524 num = host->can_queue - 1; 525 if (depth > (host->can_queue - num)) 526 depth = host->can_queue - num; 527 if (depth > 256) 528 depth = 256; 529 else if (depth < 2) 530 depth = 2; 531 return scsi_change_queue_depth(sdev, depth); 532 } else if (is_native_device) { 533 scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit); 534 } else { 535 scsi_change_queue_depth(sdev, 1); 536 } 537 return sdev->queue_depth; 538 } 539 540 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) 541 { 542 struct scsi_device *sdev = to_scsi_device(dev); 543 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 544 if (sdev_channel(sdev) != CONTAINER_CHANNEL) 545 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach 546 ? "Hidden\n" : 547 ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : "")); 548 return snprintf(buf, PAGE_SIZE, "%s\n", 549 get_container_type(aac->fsa_dev[sdev_id(sdev)].type)); 550 } 551 552 static struct device_attribute aac_raid_level_attr = { 553 .attr = { 554 .name = "level", 555 .mode = S_IRUGO, 556 }, 557 .show = aac_show_raid_level 558 }; 559 560 static ssize_t aac_show_unique_id(struct device *dev, 561 struct device_attribute *attr, char *buf) 562 { 563 struct scsi_device *sdev = to_scsi_device(dev); 564 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 565 unsigned char sn[16]; 566 567 memset(sn, 0, sizeof(sn)); 568 569 if (sdev_channel(sdev) == CONTAINER_CHANNEL) 570 memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn)); 571 572 return snprintf(buf, 16 * 2 + 2, 573 "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n", 574 sn[0], sn[1], sn[2], sn[3], 575 sn[4], sn[5], sn[6], sn[7], 576 sn[8], sn[9], sn[10], sn[11], 577 sn[12], sn[13], sn[14], sn[15]); 578 } 579 580 static struct device_attribute aac_unique_id_attr = { 581 .attr = { 582 .name = "unique_id", 583 .mode = 0444, 584 }, 585 .show = aac_show_unique_id 586 }; 587 588 589 590 static struct device_attribute *aac_dev_attrs[] = { 591 &aac_raid_level_attr, 592 &aac_unique_id_attr, 593 NULL, 594 }; 595 596 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg) 597 { 598 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 599 if (!capable(CAP_SYS_RAWIO)) 600 return -EPERM; 601 return aac_do_ioctl(dev, cmd, arg); 602 } 603 604 static int aac_eh_abort(struct scsi_cmnd* cmd) 605 { 606 struct scsi_device * dev = cmd->device; 607 struct Scsi_Host * host = dev->host; 608 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 609 int count, found; 610 u32 bus, cid; 611 int ret = FAILED; 612 613 bus = aac_logical_to_phys(scmd_channel(cmd)); 614 cid = scmd_id(cmd); 615 if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 616 struct fib *fib; 617 struct aac_hba_tm_req *tmf; 618 int status; 619 u64 address; 620 __le32 managed_request_id; 621 622 pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n", 623 AAC_DRIVERNAME, 624 host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun); 625 626 found = 0; 627 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 628 fib = &aac->fibs[count]; 629 if (*(u8 *)fib->hw_fib_va != 0 && 630 (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 631 (fib->callback_data == cmd)) { 632 found = 1; 633 managed_request_id = ((struct aac_hba_cmd_req *) 634 fib->hw_fib_va)->request_id; 635 break; 636 } 637 } 638 if (!found) 639 return ret; 640 641 /* start a HBA_TMF_ABORT_TASK TMF request */ 642 fib = aac_fib_alloc(aac); 643 if (!fib) 644 return ret; 645 646 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 647 memset(tmf, 0, sizeof(*tmf)); 648 tmf->tmf = HBA_TMF_ABORT_TASK; 649 tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus; 650 tmf->lun[1] = cmd->device->lun; 651 652 address = (u64)fib->hw_error_pa; 653 tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 654 tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 655 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 656 657 fib->hbacmd_size = sizeof(*tmf); 658 cmd->SCp.sent_command = 0; 659 660 status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib, 661 (fib_callback) aac_hba_callback, 662 (void *) cmd); 663 664 /* Wait up to 2 minutes for completion */ 665 for (count = 0; count < 120; ++count) { 666 if (cmd->SCp.sent_command) { 667 ret = SUCCESS; 668 break; 669 } 670 msleep(1000); 671 } 672 673 if (ret != SUCCESS) 674 pr_err("%s: Host adapter abort request timed out\n", 675 AAC_DRIVERNAME); 676 } else { 677 pr_err( 678 "%s: Host adapter abort request.\n" 679 "%s: Outstanding commands on (%d,%d,%d,%d):\n", 680 AAC_DRIVERNAME, AAC_DRIVERNAME, 681 host->host_no, sdev_channel(dev), sdev_id(dev), 682 (int)dev->lun); 683 switch (cmd->cmnd[0]) { 684 case SERVICE_ACTION_IN_16: 685 if (!(aac->raw_io_interface) || 686 !(aac->raw_io_64) || 687 ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 688 break; 689 case INQUIRY: 690 case READ_CAPACITY: 691 /* 692 * Mark associated FIB to not complete, 693 * eh handler does this 694 */ 695 for (count = 0; 696 count < (host->can_queue + AAC_NUM_MGT_FIB); 697 ++count) { 698 struct fib *fib = &aac->fibs[count]; 699 700 if (fib->hw_fib_va->header.XferState && 701 (fib->flags & FIB_CONTEXT_FLAG) && 702 (fib->callback_data == cmd)) { 703 fib->flags |= 704 FIB_CONTEXT_FLAG_TIMED_OUT; 705 cmd->SCp.phase = 706 AAC_OWNER_ERROR_HANDLER; 707 ret = SUCCESS; 708 } 709 } 710 break; 711 case TEST_UNIT_READY: 712 /* 713 * Mark associated FIB to not complete, 714 * eh handler does this 715 */ 716 for (count = 0; 717 count < (host->can_queue + AAC_NUM_MGT_FIB); 718 ++count) { 719 struct scsi_cmnd *command; 720 struct fib *fib = &aac->fibs[count]; 721 722 command = fib->callback_data; 723 724 if ((fib->hw_fib_va->header.XferState & 725 cpu_to_le32 726 (Async | NoResponseExpected)) && 727 (fib->flags & FIB_CONTEXT_FLAG) && 728 ((command)) && 729 (command->device == cmd->device)) { 730 fib->flags |= 731 FIB_CONTEXT_FLAG_TIMED_OUT; 732 command->SCp.phase = 733 AAC_OWNER_ERROR_HANDLER; 734 if (command == cmd) 735 ret = SUCCESS; 736 } 737 } 738 break; 739 } 740 } 741 return ret; 742 } 743 744 /* 745 * aac_eh_reset - Reset command handling 746 * @scsi_cmd: SCSI command block causing the reset 747 * 748 */ 749 static int aac_eh_reset(struct scsi_cmnd* cmd) 750 { 751 struct scsi_device * dev = cmd->device; 752 struct Scsi_Host * host = dev->host; 753 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 754 int count; 755 u32 bus, cid; 756 int ret = FAILED; 757 758 bus = aac_logical_to_phys(scmd_channel(cmd)); 759 cid = scmd_id(cmd); 760 if (bus < AAC_MAX_BUSES && cid < AAC_MAX_TARGETS && 761 aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 762 struct fib *fib; 763 int status; 764 u64 address; 765 u8 command; 766 767 pr_err("%s: Host adapter reset request. SCSI hang ?\n", 768 AAC_DRIVERNAME); 769 770 fib = aac_fib_alloc(aac); 771 if (!fib) 772 return ret; 773 774 775 if (aac->hba_map[bus][cid].reset_state == 0) { 776 struct aac_hba_tm_req *tmf; 777 778 /* start a HBA_TMF_LUN_RESET TMF request */ 779 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 780 memset(tmf, 0, sizeof(*tmf)); 781 tmf->tmf = HBA_TMF_LUN_RESET; 782 tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus; 783 tmf->lun[1] = cmd->device->lun; 784 785 address = (u64)fib->hw_error_pa; 786 tmf->error_ptr_hi = cpu_to_le32 787 ((u32)(address >> 32)); 788 tmf->error_ptr_lo = cpu_to_le32 789 ((u32)(address & 0xffffffff)); 790 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 791 fib->hbacmd_size = sizeof(*tmf); 792 793 command = HBA_IU_TYPE_SCSI_TM_REQ; 794 aac->hba_map[bus][cid].reset_state++; 795 } else if (aac->hba_map[bus][cid].reset_state >= 1) { 796 struct aac_hba_reset_req *rst; 797 798 /* already tried, start a hard reset now */ 799 rst = (struct aac_hba_reset_req *)fib->hw_fib_va; 800 memset(rst, 0, sizeof(*rst)); 801 /* reset_type is already zero... */ 802 rst->it_nexus = aac->hba_map[bus][cid].rmw_nexus; 803 804 address = (u64)fib->hw_error_pa; 805 rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 806 rst->error_ptr_lo = cpu_to_le32 807 ((u32)(address & 0xffffffff)); 808 rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 809 fib->hbacmd_size = sizeof(*rst); 810 811 command = HBA_IU_TYPE_SATA_REQ; 812 aac->hba_map[bus][cid].reset_state = 0; 813 } 814 cmd->SCp.sent_command = 0; 815 816 status = aac_hba_send(command, fib, 817 (fib_callback) aac_hba_callback, 818 (void *) cmd); 819 820 /* Wait up to 2 minutes for completion */ 821 for (count = 0; count < 120; ++count) { 822 if (cmd->SCp.sent_command) { 823 ret = SUCCESS; 824 break; 825 } 826 msleep(1000); 827 } 828 829 if (ret != SUCCESS) 830 pr_err("%s: Host adapter reset request timed out\n", 831 AAC_DRIVERNAME); 832 } else { 833 struct scsi_cmnd *command; 834 unsigned long flags; 835 836 /* Mark the assoc. FIB to not complete, eh handler does this */ 837 for (count = 0; 838 count < (host->can_queue + AAC_NUM_MGT_FIB); 839 ++count) { 840 struct fib *fib = &aac->fibs[count]; 841 842 if (fib->hw_fib_va->header.XferState && 843 (fib->flags & FIB_CONTEXT_FLAG) && 844 (fib->callback_data == cmd)) { 845 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; 846 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; 847 } 848 } 849 850 pr_err("%s: Host adapter reset request. SCSI hang ?\n", 851 AAC_DRIVERNAME); 852 853 count = aac_check_health(aac); 854 if (count) 855 return count; 856 /* 857 * Wait for all commands to complete to this specific 858 * target (block maximum 60 seconds). 859 */ 860 for (count = 60; count; --count) { 861 int active = aac->in_reset; 862 863 if (active == 0) 864 __shost_for_each_device(dev, host) { 865 spin_lock_irqsave(&dev->list_lock, flags); 866 list_for_each_entry(command, &dev->cmd_list, 867 list) { 868 if ((command != cmd) && 869 (command->SCp.phase == 870 AAC_OWNER_FIRMWARE)) { 871 active++; 872 break; 873 } 874 } 875 spin_unlock_irqrestore(&dev->list_lock, flags); 876 if (active) 877 break; 878 879 } 880 /* 881 * We can exit If all the commands are complete 882 */ 883 if (active == 0) 884 return SUCCESS; 885 ssleep(1); 886 } 887 pr_err("%s: SCSI bus appears hung\n", AAC_DRIVERNAME); 888 889 /* 890 * This adapter needs a blind reset, only do so for 891 * Adapters that support a register, instead of a commanded, 892 * reset. 893 */ 894 if (((aac->supplement_adapter_info.supported_options2 & 895 AAC_OPTION_MU_RESET) || 896 (aac->supplement_adapter_info.supported_options2 & 897 AAC_OPTION_DOORBELL_RESET)) && 898 aac_check_reset && 899 ((aac_check_reset != 1) || 900 !(aac->supplement_adapter_info.supported_options2 & 901 AAC_OPTION_IGNORE_RESET))) { 902 /* Bypass wait for command quiesce */ 903 aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET); 904 } 905 ret = SUCCESS; 906 } 907 /* 908 * Cause an immediate retry of the command with a ten second delay 909 * after successful tur 910 */ 911 return ret; 912 } 913 914 /** 915 * aac_cfg_open - open a configuration file 916 * @inode: inode being opened 917 * @file: file handle attached 918 * 919 * Called when the configuration device is opened. Does the needed 920 * set up on the handle and then returns 921 * 922 * Bugs: This needs extending to check a given adapter is present 923 * so we can support hot plugging, and to ref count adapters. 924 */ 925 926 static int aac_cfg_open(struct inode *inode, struct file *file) 927 { 928 struct aac_dev *aac; 929 unsigned minor_number = iminor(inode); 930 int err = -ENODEV; 931 932 mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */ 933 list_for_each_entry(aac, &aac_devices, entry) { 934 if (aac->id == minor_number) { 935 file->private_data = aac; 936 err = 0; 937 break; 938 } 939 } 940 mutex_unlock(&aac_mutex); 941 942 return err; 943 } 944 945 /** 946 * aac_cfg_ioctl - AAC configuration request 947 * @inode: inode of device 948 * @file: file handle 949 * @cmd: ioctl command code 950 * @arg: argument 951 * 952 * Handles a configuration ioctl. Currently this involves wrapping it 953 * up and feeding it into the nasty windowsalike glue layer. 954 * 955 * Bugs: Needs locking against parallel ioctls lower down 956 * Bugs: Needs to handle hot plugging 957 */ 958 959 static long aac_cfg_ioctl(struct file *file, 960 unsigned int cmd, unsigned long arg) 961 { 962 struct aac_dev *aac = (struct aac_dev *)file->private_data; 963 964 if (!capable(CAP_SYS_RAWIO)) 965 return -EPERM; 966 967 return aac_do_ioctl(aac, cmd, (void __user *)arg); 968 } 969 970 #ifdef CONFIG_COMPAT 971 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg) 972 { 973 long ret; 974 switch (cmd) { 975 case FSACTL_MINIPORT_REV_CHECK: 976 case FSACTL_SENDFIB: 977 case FSACTL_OPEN_GET_ADAPTER_FIB: 978 case FSACTL_CLOSE_GET_ADAPTER_FIB: 979 case FSACTL_SEND_RAW_SRB: 980 case FSACTL_GET_PCI_INFO: 981 case FSACTL_QUERY_DISK: 982 case FSACTL_DELETE_DISK: 983 case FSACTL_FORCE_DELETE_DISK: 984 case FSACTL_GET_CONTAINERS: 985 case FSACTL_SEND_LARGE_FIB: 986 ret = aac_do_ioctl(dev, cmd, (void __user *)arg); 987 break; 988 989 case FSACTL_GET_NEXT_ADAPTER_FIB: { 990 struct fib_ioctl __user *f; 991 992 f = compat_alloc_user_space(sizeof(*f)); 993 ret = 0; 994 if (clear_user(f, sizeof(*f))) 995 ret = -EFAULT; 996 if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32))) 997 ret = -EFAULT; 998 if (!ret) 999 ret = aac_do_ioctl(dev, cmd, f); 1000 break; 1001 } 1002 1003 default: 1004 ret = -ENOIOCTLCMD; 1005 break; 1006 } 1007 return ret; 1008 } 1009 1010 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg) 1011 { 1012 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 1013 if (!capable(CAP_SYS_RAWIO)) 1014 return -EPERM; 1015 return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg); 1016 } 1017 1018 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1019 { 1020 if (!capable(CAP_SYS_RAWIO)) 1021 return -EPERM; 1022 return aac_compat_do_ioctl(file->private_data, cmd, arg); 1023 } 1024 #endif 1025 1026 static ssize_t aac_show_model(struct device *device, 1027 struct device_attribute *attr, char *buf) 1028 { 1029 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1030 int len; 1031 1032 if (dev->supplement_adapter_info.adapter_type_text[0]) { 1033 char *cp = dev->supplement_adapter_info.adapter_type_text; 1034 while (*cp && *cp != ' ') 1035 ++cp; 1036 while (*cp == ' ') 1037 ++cp; 1038 len = snprintf(buf, PAGE_SIZE, "%s\n", cp); 1039 } else 1040 len = snprintf(buf, PAGE_SIZE, "%s\n", 1041 aac_drivers[dev->cardtype].model); 1042 return len; 1043 } 1044 1045 static ssize_t aac_show_vendor(struct device *device, 1046 struct device_attribute *attr, char *buf) 1047 { 1048 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1049 struct aac_supplement_adapter_info *sup_adap_info; 1050 int len; 1051 1052 sup_adap_info = &dev->supplement_adapter_info; 1053 if (sup_adap_info->adapter_type_text[0]) { 1054 char *cp = sup_adap_info->adapter_type_text; 1055 while (*cp && *cp != ' ') 1056 ++cp; 1057 len = snprintf(buf, PAGE_SIZE, "%.*s\n", 1058 (int)(cp - (char *)sup_adap_info->adapter_type_text), 1059 sup_adap_info->adapter_type_text); 1060 } else 1061 len = snprintf(buf, PAGE_SIZE, "%s\n", 1062 aac_drivers[dev->cardtype].vname); 1063 return len; 1064 } 1065 1066 static ssize_t aac_show_flags(struct device *cdev, 1067 struct device_attribute *attr, char *buf) 1068 { 1069 int len = 0; 1070 struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata; 1071 1072 if (nblank(dprintk(x))) 1073 len = snprintf(buf, PAGE_SIZE, "dprintk\n"); 1074 #ifdef AAC_DETAILED_STATUS_INFO 1075 len += snprintf(buf + len, PAGE_SIZE - len, 1076 "AAC_DETAILED_STATUS_INFO\n"); 1077 #endif 1078 if (dev->raw_io_interface && dev->raw_io_64) 1079 len += snprintf(buf + len, PAGE_SIZE - len, 1080 "SAI_READ_CAPACITY_16\n"); 1081 if (dev->jbod) 1082 len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n"); 1083 if (dev->supplement_adapter_info.supported_options2 & 1084 AAC_OPTION_POWER_MANAGEMENT) 1085 len += snprintf(buf + len, PAGE_SIZE - len, 1086 "SUPPORTED_POWER_MANAGEMENT\n"); 1087 if (dev->msi) 1088 len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n"); 1089 return len; 1090 } 1091 1092 static ssize_t aac_show_kernel_version(struct device *device, 1093 struct device_attribute *attr, 1094 char *buf) 1095 { 1096 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1097 int len, tmp; 1098 1099 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 1100 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1101 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1102 le32_to_cpu(dev->adapter_info.kernelbuild)); 1103 return len; 1104 } 1105 1106 static ssize_t aac_show_monitor_version(struct device *device, 1107 struct device_attribute *attr, 1108 char *buf) 1109 { 1110 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1111 int len, tmp; 1112 1113 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 1114 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1115 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1116 le32_to_cpu(dev->adapter_info.monitorbuild)); 1117 return len; 1118 } 1119 1120 static ssize_t aac_show_bios_version(struct device *device, 1121 struct device_attribute *attr, 1122 char *buf) 1123 { 1124 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1125 int len, tmp; 1126 1127 tmp = le32_to_cpu(dev->adapter_info.biosrev); 1128 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1129 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1130 le32_to_cpu(dev->adapter_info.biosbuild)); 1131 return len; 1132 } 1133 1134 static ssize_t aac_show_driver_version(struct device *device, 1135 struct device_attribute *attr, 1136 char *buf) 1137 { 1138 return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version); 1139 } 1140 1141 static ssize_t aac_show_serial_number(struct device *device, 1142 struct device_attribute *attr, char *buf) 1143 { 1144 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1145 int len = 0; 1146 1147 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) 1148 len = snprintf(buf, 16, "%06X\n", 1149 le32_to_cpu(dev->adapter_info.serial[0])); 1150 if (len && 1151 !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[ 1152 sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len], 1153 buf, len-1)) 1154 len = snprintf(buf, 16, "%.*s\n", 1155 (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no), 1156 dev->supplement_adapter_info.mfg_pcba_serial_no); 1157 1158 return min(len, 16); 1159 } 1160 1161 static ssize_t aac_show_max_channel(struct device *device, 1162 struct device_attribute *attr, char *buf) 1163 { 1164 return snprintf(buf, PAGE_SIZE, "%d\n", 1165 class_to_shost(device)->max_channel); 1166 } 1167 1168 static ssize_t aac_show_max_id(struct device *device, 1169 struct device_attribute *attr, char *buf) 1170 { 1171 return snprintf(buf, PAGE_SIZE, "%d\n", 1172 class_to_shost(device)->max_id); 1173 } 1174 1175 static ssize_t aac_store_reset_adapter(struct device *device, 1176 struct device_attribute *attr, 1177 const char *buf, size_t count) 1178 { 1179 int retval = -EACCES; 1180 int bled = 0; 1181 struct aac_dev *aac; 1182 1183 1184 if (!capable(CAP_SYS_ADMIN)) 1185 return retval; 1186 1187 aac = (struct aac_dev *)class_to_shost(device)->hostdata; 1188 bled = buf[0] == '!' ? 1:0; 1189 retval = aac_reset_adapter(aac, bled, IOP_HWSOFT_RESET); 1190 if (retval >= 0) 1191 retval = count; 1192 return retval; 1193 } 1194 1195 static ssize_t aac_show_reset_adapter(struct device *device, 1196 struct device_attribute *attr, 1197 char *buf) 1198 { 1199 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1200 int len, tmp; 1201 1202 tmp = aac_adapter_check_health(dev); 1203 if ((tmp == 0) && dev->in_reset) 1204 tmp = -EBUSY; 1205 len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp); 1206 return len; 1207 } 1208 1209 static struct device_attribute aac_model = { 1210 .attr = { 1211 .name = "model", 1212 .mode = S_IRUGO, 1213 }, 1214 .show = aac_show_model, 1215 }; 1216 static struct device_attribute aac_vendor = { 1217 .attr = { 1218 .name = "vendor", 1219 .mode = S_IRUGO, 1220 }, 1221 .show = aac_show_vendor, 1222 }; 1223 static struct device_attribute aac_flags = { 1224 .attr = { 1225 .name = "flags", 1226 .mode = S_IRUGO, 1227 }, 1228 .show = aac_show_flags, 1229 }; 1230 static struct device_attribute aac_kernel_version = { 1231 .attr = { 1232 .name = "hba_kernel_version", 1233 .mode = S_IRUGO, 1234 }, 1235 .show = aac_show_kernel_version, 1236 }; 1237 static struct device_attribute aac_monitor_version = { 1238 .attr = { 1239 .name = "hba_monitor_version", 1240 .mode = S_IRUGO, 1241 }, 1242 .show = aac_show_monitor_version, 1243 }; 1244 static struct device_attribute aac_bios_version = { 1245 .attr = { 1246 .name = "hba_bios_version", 1247 .mode = S_IRUGO, 1248 }, 1249 .show = aac_show_bios_version, 1250 }; 1251 static struct device_attribute aac_lld_version = { 1252 .attr = { 1253 .name = "driver_version", 1254 .mode = 0444, 1255 }, 1256 .show = aac_show_driver_version, 1257 }; 1258 static struct device_attribute aac_serial_number = { 1259 .attr = { 1260 .name = "serial_number", 1261 .mode = S_IRUGO, 1262 }, 1263 .show = aac_show_serial_number, 1264 }; 1265 static struct device_attribute aac_max_channel = { 1266 .attr = { 1267 .name = "max_channel", 1268 .mode = S_IRUGO, 1269 }, 1270 .show = aac_show_max_channel, 1271 }; 1272 static struct device_attribute aac_max_id = { 1273 .attr = { 1274 .name = "max_id", 1275 .mode = S_IRUGO, 1276 }, 1277 .show = aac_show_max_id, 1278 }; 1279 static struct device_attribute aac_reset = { 1280 .attr = { 1281 .name = "reset_host", 1282 .mode = S_IWUSR|S_IRUGO, 1283 }, 1284 .store = aac_store_reset_adapter, 1285 .show = aac_show_reset_adapter, 1286 }; 1287 1288 static struct device_attribute *aac_attrs[] = { 1289 &aac_model, 1290 &aac_vendor, 1291 &aac_flags, 1292 &aac_kernel_version, 1293 &aac_monitor_version, 1294 &aac_bios_version, 1295 &aac_lld_version, 1296 &aac_serial_number, 1297 &aac_max_channel, 1298 &aac_max_id, 1299 &aac_reset, 1300 NULL 1301 }; 1302 1303 ssize_t aac_get_serial_number(struct device *device, char *buf) 1304 { 1305 return aac_show_serial_number(device, &aac_serial_number, buf); 1306 } 1307 1308 static const struct file_operations aac_cfg_fops = { 1309 .owner = THIS_MODULE, 1310 .unlocked_ioctl = aac_cfg_ioctl, 1311 #ifdef CONFIG_COMPAT 1312 .compat_ioctl = aac_compat_cfg_ioctl, 1313 #endif 1314 .open = aac_cfg_open, 1315 .llseek = noop_llseek, 1316 }; 1317 1318 static struct scsi_host_template aac_driver_template = { 1319 .module = THIS_MODULE, 1320 .name = "AAC", 1321 .proc_name = AAC_DRIVERNAME, 1322 .info = aac_info, 1323 .ioctl = aac_ioctl, 1324 #ifdef CONFIG_COMPAT 1325 .compat_ioctl = aac_compat_ioctl, 1326 #endif 1327 .queuecommand = aac_queuecommand, 1328 .bios_param = aac_biosparm, 1329 .shost_attrs = aac_attrs, 1330 .slave_configure = aac_slave_configure, 1331 .change_queue_depth = aac_change_queue_depth, 1332 .sdev_attrs = aac_dev_attrs, 1333 .eh_abort_handler = aac_eh_abort, 1334 .eh_host_reset_handler = aac_eh_reset, 1335 .can_queue = AAC_NUM_IO_FIB, 1336 .this_id = MAXIMUM_NUM_CONTAINERS, 1337 .sg_tablesize = 16, 1338 .max_sectors = 128, 1339 #if (AAC_NUM_IO_FIB > 256) 1340 .cmd_per_lun = 256, 1341 #else 1342 .cmd_per_lun = AAC_NUM_IO_FIB, 1343 #endif 1344 .use_clustering = ENABLE_CLUSTERING, 1345 .emulated = 1, 1346 .no_write_same = 1, 1347 }; 1348 1349 static void __aac_shutdown(struct aac_dev * aac) 1350 { 1351 int i; 1352 1353 aac->adapter_shutdown = 1; 1354 aac_send_shutdown(aac); 1355 1356 if (aac->aif_thread) { 1357 int i; 1358 /* Clear out events first */ 1359 for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) { 1360 struct fib *fib = &aac->fibs[i]; 1361 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1362 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) 1363 up(&fib->event_wait); 1364 } 1365 kthread_stop(aac->thread); 1366 } 1367 aac_adapter_disable_int(aac); 1368 if (aac->pdev->device == PMC_DEVICE_S6 || 1369 aac->pdev->device == PMC_DEVICE_S7 || 1370 aac->pdev->device == PMC_DEVICE_S8 || 1371 aac->pdev->device == PMC_DEVICE_S9) { 1372 if (aac->max_msix > 1) { 1373 for (i = 0; i < aac->max_msix; i++) { 1374 free_irq(pci_irq_vector(aac->pdev, i), 1375 &(aac->aac_msix[i])); 1376 } 1377 } else { 1378 free_irq(aac->pdev->irq, 1379 &(aac->aac_msix[0])); 1380 } 1381 } else { 1382 free_irq(aac->pdev->irq, aac); 1383 } 1384 if (aac->msi) 1385 pci_disable_msi(aac->pdev); 1386 else if (aac->max_msix > 1) 1387 pci_disable_msix(aac->pdev); 1388 } 1389 static void aac_init_char(void) 1390 { 1391 aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops); 1392 if (aac_cfg_major < 0) { 1393 pr_err("aacraid: unable to register \"aac\" device.\n"); 1394 } 1395 } 1396 1397 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) 1398 { 1399 unsigned index = id->driver_data; 1400 struct Scsi_Host *shost; 1401 struct aac_dev *aac; 1402 struct list_head *insert = &aac_devices; 1403 int error = -ENODEV; 1404 int unique_id = 0; 1405 u64 dmamask; 1406 extern int aac_sync_mode; 1407 1408 /* 1409 * Only series 7 needs freset. 1410 */ 1411 if (pdev->device == PMC_DEVICE_S7) 1412 pdev->needs_freset = 1; 1413 1414 list_for_each_entry(aac, &aac_devices, entry) { 1415 if (aac->id > unique_id) 1416 break; 1417 insert = &aac->entry; 1418 unique_id++; 1419 } 1420 1421 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | 1422 PCIE_LINK_STATE_CLKPM); 1423 1424 error = pci_enable_device(pdev); 1425 if (error) 1426 goto out; 1427 error = -ENODEV; 1428 1429 /* 1430 * If the quirk31 bit is set, the adapter needs adapter 1431 * to driver communication memory to be allocated below 2gig 1432 */ 1433 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) 1434 dmamask = DMA_BIT_MASK(31); 1435 else 1436 dmamask = DMA_BIT_MASK(32); 1437 1438 if (pci_set_dma_mask(pdev, dmamask) || 1439 pci_set_consistent_dma_mask(pdev, dmamask)) 1440 goto out_disable_pdev; 1441 1442 pci_set_master(pdev); 1443 1444 shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev)); 1445 if (!shost) 1446 goto out_disable_pdev; 1447 1448 shost->irq = pdev->irq; 1449 shost->unique_id = unique_id; 1450 shost->max_cmd_len = 16; 1451 shost->use_cmd_list = 1; 1452 1453 if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT) 1454 aac_init_char(); 1455 1456 aac = (struct aac_dev *)shost->hostdata; 1457 aac->base_start = pci_resource_start(pdev, 0); 1458 aac->scsi_host_ptr = shost; 1459 aac->pdev = pdev; 1460 aac->name = aac_driver_template.name; 1461 aac->id = shost->unique_id; 1462 aac->cardtype = index; 1463 INIT_LIST_HEAD(&aac->entry); 1464 1465 aac->fibs = kzalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL); 1466 if (!aac->fibs) 1467 goto out_free_host; 1468 spin_lock_init(&aac->fib_lock); 1469 1470 mutex_init(&aac->ioctl_mutex); 1471 /* 1472 * Map in the registers from the adapter. 1473 */ 1474 aac->base_size = AAC_MIN_FOOTPRINT_SIZE; 1475 if ((*aac_drivers[index].init)(aac)) 1476 goto out_unmap; 1477 1478 if (aac->sync_mode) { 1479 if (aac_sync_mode) 1480 printk(KERN_INFO "%s%d: Sync. mode enforced " 1481 "by driver parameter. This will cause " 1482 "a significant performance decrease!\n", 1483 aac->name, 1484 aac->id); 1485 else 1486 printk(KERN_INFO "%s%d: Async. mode not supported " 1487 "by current driver, sync. mode enforced." 1488 "\nPlease update driver to get full performance.\n", 1489 aac->name, 1490 aac->id); 1491 } 1492 1493 /* 1494 * Start any kernel threads needed 1495 */ 1496 aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME); 1497 if (IS_ERR(aac->thread)) { 1498 printk(KERN_ERR "aacraid: Unable to create command thread.\n"); 1499 error = PTR_ERR(aac->thread); 1500 aac->thread = NULL; 1501 goto out_deinit; 1502 } 1503 1504 /* 1505 * If we had set a smaller DMA mask earlier, set it to 4gig 1506 * now since the adapter can dma data to at least a 4gig 1507 * address space. 1508 */ 1509 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) 1510 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) 1511 goto out_deinit; 1512 1513 aac->maximum_num_channels = aac_drivers[index].channels; 1514 error = aac_get_adapter_info(aac); 1515 if (error < 0) 1516 goto out_deinit; 1517 1518 /* 1519 * Lets override negotiations and drop the maximum SG limit to 34 1520 */ 1521 if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && 1522 (shost->sg_tablesize > 34)) { 1523 shost->sg_tablesize = 34; 1524 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1525 } 1526 1527 if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) && 1528 (shost->sg_tablesize > 17)) { 1529 shost->sg_tablesize = 17; 1530 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1531 } 1532 1533 error = pci_set_dma_max_seg_size(pdev, 1534 (aac->adapter_info.options & AAC_OPT_NEW_COMM) ? 1535 (shost->max_sectors << 9) : 65536); 1536 if (error) 1537 goto out_deinit; 1538 1539 /* 1540 * Firmware printf works only with older firmware. 1541 */ 1542 if (aac_drivers[index].quirks & AAC_QUIRK_34SG) 1543 aac->printf_enabled = 1; 1544 else 1545 aac->printf_enabled = 0; 1546 1547 /* 1548 * max channel will be the physical channels plus 1 virtual channel 1549 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL) 1550 * physical channels are address by their actual physical number+1 1551 */ 1552 if (aac->nondasd_support || expose_physicals || aac->jbod) 1553 shost->max_channel = aac->maximum_num_channels; 1554 else 1555 shost->max_channel = 0; 1556 1557 aac_get_config_status(aac, 0); 1558 aac_get_containers(aac); 1559 list_add(&aac->entry, insert); 1560 1561 shost->max_id = aac->maximum_num_containers; 1562 if (shost->max_id < aac->maximum_num_physicals) 1563 shost->max_id = aac->maximum_num_physicals; 1564 if (shost->max_id < MAXIMUM_NUM_CONTAINERS) 1565 shost->max_id = MAXIMUM_NUM_CONTAINERS; 1566 else 1567 shost->this_id = shost->max_id; 1568 1569 if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC) 1570 aac_intr_normal(aac, 0, 2, 0, NULL); 1571 1572 /* 1573 * dmb - we may need to move the setting of these parms somewhere else once 1574 * we get a fib that can report the actual numbers 1575 */ 1576 shost->max_lun = AAC_MAX_LUN; 1577 1578 pci_set_drvdata(pdev, shost); 1579 1580 error = scsi_add_host(shost, &pdev->dev); 1581 if (error) 1582 goto out_deinit; 1583 scsi_scan_host(shost); 1584 1585 pci_enable_pcie_error_reporting(pdev); 1586 pci_save_state(pdev); 1587 1588 return 0; 1589 1590 out_deinit: 1591 __aac_shutdown(aac); 1592 out_unmap: 1593 aac_fib_map_free(aac); 1594 if (aac->comm_addr) 1595 dma_free_coherent(&aac->pdev->dev, aac->comm_size, 1596 aac->comm_addr, aac->comm_phys); 1597 kfree(aac->queues); 1598 aac_adapter_ioremap(aac, 0); 1599 kfree(aac->fibs); 1600 kfree(aac->fsa_dev); 1601 out_free_host: 1602 scsi_host_put(shost); 1603 out_disable_pdev: 1604 pci_disable_device(pdev); 1605 out: 1606 return error; 1607 } 1608 1609 static void aac_release_resources(struct aac_dev *aac) 1610 { 1611 aac_adapter_disable_int(aac); 1612 aac_free_irq(aac); 1613 } 1614 1615 static int aac_acquire_resources(struct aac_dev *dev) 1616 { 1617 unsigned long status; 1618 /* 1619 * First clear out all interrupts. Then enable the one's that we 1620 * can handle. 1621 */ 1622 while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING) 1623 || status == 0xffffffff) 1624 msleep(20); 1625 1626 aac_adapter_disable_int(dev); 1627 aac_adapter_enable_int(dev); 1628 1629 1630 if ((dev->pdev->device == PMC_DEVICE_S7 || 1631 dev->pdev->device == PMC_DEVICE_S8 || 1632 dev->pdev->device == PMC_DEVICE_S9)) 1633 aac_define_int_mode(dev); 1634 1635 if (dev->msi_enabled) 1636 aac_src_access_devreg(dev, AAC_ENABLE_MSIX); 1637 1638 if (aac_acquire_irq(dev)) 1639 goto error_iounmap; 1640 1641 aac_adapter_enable_int(dev); 1642 1643 /*max msix may change after EEH 1644 * Re-assign vectors to fibs 1645 */ 1646 aac_fib_vector_assign(dev); 1647 1648 if (!dev->sync_mode) { 1649 /* After EEH recovery or suspend resume, max_msix count 1650 * may change, therefore updating in init as well. 1651 */ 1652 dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix); 1653 aac_adapter_start(dev); 1654 } 1655 return 0; 1656 1657 error_iounmap: 1658 return -1; 1659 1660 } 1661 1662 #if (defined(CONFIG_PM)) 1663 static int aac_suspend(struct pci_dev *pdev, pm_message_t state) 1664 { 1665 1666 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1667 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1668 1669 scsi_block_requests(shost); 1670 aac_send_shutdown(aac); 1671 1672 aac_release_resources(aac); 1673 1674 pci_set_drvdata(pdev, shost); 1675 pci_save_state(pdev); 1676 pci_disable_device(pdev); 1677 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 1678 1679 return 0; 1680 } 1681 1682 static int aac_resume(struct pci_dev *pdev) 1683 { 1684 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1685 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1686 int r; 1687 1688 pci_set_power_state(pdev, PCI_D0); 1689 pci_enable_wake(pdev, PCI_D0, 0); 1690 pci_restore_state(pdev); 1691 r = pci_enable_device(pdev); 1692 1693 if (r) 1694 goto fail_device; 1695 1696 pci_set_master(pdev); 1697 if (aac_acquire_resources(aac)) 1698 goto fail_device; 1699 /* 1700 * reset this flag to unblock ioctl() as it was set at 1701 * aac_send_shutdown() to block ioctls from upperlayer 1702 */ 1703 aac->adapter_shutdown = 0; 1704 scsi_unblock_requests(shost); 1705 1706 return 0; 1707 1708 fail_device: 1709 printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id); 1710 scsi_host_put(shost); 1711 pci_disable_device(pdev); 1712 return -ENODEV; 1713 } 1714 #endif 1715 1716 static void aac_shutdown(struct pci_dev *dev) 1717 { 1718 struct Scsi_Host *shost = pci_get_drvdata(dev); 1719 scsi_block_requests(shost); 1720 __aac_shutdown((struct aac_dev *)shost->hostdata); 1721 } 1722 1723 static void aac_remove_one(struct pci_dev *pdev) 1724 { 1725 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1726 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1727 1728 scsi_remove_host(shost); 1729 1730 __aac_shutdown(aac); 1731 aac_fib_map_free(aac); 1732 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1733 aac->comm_phys); 1734 kfree(aac->queues); 1735 1736 aac_adapter_ioremap(aac, 0); 1737 1738 kfree(aac->fibs); 1739 kfree(aac->fsa_dev); 1740 1741 list_del(&aac->entry); 1742 scsi_host_put(shost); 1743 pci_disable_device(pdev); 1744 if (list_empty(&aac_devices)) { 1745 unregister_chrdev(aac_cfg_major, "aac"); 1746 aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT; 1747 } 1748 } 1749 1750 static void aac_flush_ios(struct aac_dev *aac) 1751 { 1752 int i; 1753 struct scsi_cmnd *cmd; 1754 1755 for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) { 1756 cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data; 1757 if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) { 1758 scsi_dma_unmap(cmd); 1759 1760 if (aac->handle_pci_error) 1761 cmd->result = DID_NO_CONNECT << 16; 1762 else 1763 cmd->result = DID_RESET << 16; 1764 1765 cmd->scsi_done(cmd); 1766 } 1767 } 1768 } 1769 1770 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev, 1771 enum pci_channel_state error) 1772 { 1773 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1774 struct aac_dev *aac = shost_priv(shost); 1775 1776 dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error); 1777 1778 switch (error) { 1779 case pci_channel_io_normal: 1780 return PCI_ERS_RESULT_CAN_RECOVER; 1781 case pci_channel_io_frozen: 1782 aac->handle_pci_error = 1; 1783 1784 scsi_block_requests(aac->scsi_host_ptr); 1785 aac_flush_ios(aac); 1786 aac_release_resources(aac); 1787 1788 pci_disable_pcie_error_reporting(pdev); 1789 aac_adapter_ioremap(aac, 0); 1790 1791 return PCI_ERS_RESULT_NEED_RESET; 1792 case pci_channel_io_perm_failure: 1793 aac->handle_pci_error = 1; 1794 1795 aac_flush_ios(aac); 1796 return PCI_ERS_RESULT_DISCONNECT; 1797 } 1798 1799 return PCI_ERS_RESULT_NEED_RESET; 1800 } 1801 1802 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev) 1803 { 1804 dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n"); 1805 return PCI_ERS_RESULT_NEED_RESET; 1806 } 1807 1808 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev) 1809 { 1810 dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n"); 1811 pci_restore_state(pdev); 1812 if (pci_enable_device(pdev)) { 1813 dev_warn(&pdev->dev, 1814 "aacraid: failed to enable slave\n"); 1815 goto fail_device; 1816 } 1817 1818 pci_set_master(pdev); 1819 1820 if (pci_enable_device_mem(pdev)) { 1821 dev_err(&pdev->dev, "pci_enable_device_mem failed\n"); 1822 goto fail_device; 1823 } 1824 1825 return PCI_ERS_RESULT_RECOVERED; 1826 1827 fail_device: 1828 dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n"); 1829 return PCI_ERS_RESULT_DISCONNECT; 1830 } 1831 1832 1833 static void aac_pci_resume(struct pci_dev *pdev) 1834 { 1835 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1836 struct scsi_device *sdev = NULL; 1837 struct aac_dev *aac = (struct aac_dev *)shost_priv(shost); 1838 1839 pci_cleanup_aer_uncorrect_error_status(pdev); 1840 1841 if (aac_adapter_ioremap(aac, aac->base_size)) { 1842 1843 dev_err(&pdev->dev, "aacraid: ioremap failed\n"); 1844 /* remap failed, go back ... */ 1845 aac->comm_interface = AAC_COMM_PRODUCER; 1846 if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) { 1847 dev_warn(&pdev->dev, 1848 "aacraid: unable to map adapter.\n"); 1849 1850 return; 1851 } 1852 } 1853 1854 msleep(10000); 1855 1856 aac_acquire_resources(aac); 1857 1858 /* 1859 * reset this flag to unblock ioctl() as it was set 1860 * at aac_send_shutdown() to block ioctls from upperlayer 1861 */ 1862 aac->adapter_shutdown = 0; 1863 aac->handle_pci_error = 0; 1864 1865 shost_for_each_device(sdev, shost) 1866 if (sdev->sdev_state == SDEV_OFFLINE) 1867 sdev->sdev_state = SDEV_RUNNING; 1868 scsi_unblock_requests(aac->scsi_host_ptr); 1869 scsi_scan_host(aac->scsi_host_ptr); 1870 pci_save_state(pdev); 1871 1872 dev_err(&pdev->dev, "aacraid: PCI error - resume\n"); 1873 } 1874 1875 static struct pci_error_handlers aac_pci_err_handler = { 1876 .error_detected = aac_pci_error_detected, 1877 .mmio_enabled = aac_pci_mmio_enabled, 1878 .slot_reset = aac_pci_slot_reset, 1879 .resume = aac_pci_resume, 1880 }; 1881 1882 static struct pci_driver aac_pci_driver = { 1883 .name = AAC_DRIVERNAME, 1884 .id_table = aac_pci_tbl, 1885 .probe = aac_probe_one, 1886 .remove = aac_remove_one, 1887 #if (defined(CONFIG_PM)) 1888 .suspend = aac_suspend, 1889 .resume = aac_resume, 1890 #endif 1891 .shutdown = aac_shutdown, 1892 .err_handler = &aac_pci_err_handler, 1893 }; 1894 1895 static int __init aac_init(void) 1896 { 1897 int error; 1898 1899 printk(KERN_INFO "Adaptec %s driver %s\n", 1900 AAC_DRIVERNAME, aac_driver_version); 1901 1902 error = pci_register_driver(&aac_pci_driver); 1903 if (error < 0) 1904 return error; 1905 1906 aac_init_char(); 1907 1908 1909 return 0; 1910 } 1911 1912 static void __exit aac_exit(void) 1913 { 1914 if (aac_cfg_major > -1) 1915 unregister_chrdev(aac_cfg_major, "aac"); 1916 pci_unregister_driver(&aac_pci_driver); 1917 } 1918 1919 module_init(aac_init); 1920 module_exit(aac_exit); 1921