xref: /openbmc/linux/drivers/scsi/aacraid/linit.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *   linit.c
28  *
29  * Abstract: Linux Driver entry module for Adaptec RAID Array Controller
30  */
31 
32 
33 #include <linux/compat.h>
34 #include <linux/blkdev.h>
35 #include <linux/completion.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/moduleparam.h>
41 #include <linux/pci.h>
42 #include <linux/aer.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/spinlock.h>
47 #include <linux/syscalls.h>
48 #include <linux/delay.h>
49 #include <linux/kthread.h>
50 
51 #include <scsi/scsi.h>
52 #include <scsi/scsi_cmnd.h>
53 #include <scsi/scsi_device.h>
54 #include <scsi/scsi_host.h>
55 #include <scsi/scsi_tcq.h>
56 #include <scsi/scsicam.h>
57 #include <scsi/scsi_eh.h>
58 
59 #include "aacraid.h"
60 
61 #define AAC_DRIVER_VERSION		"1.2.1"
62 #ifndef AAC_DRIVER_BRANCH
63 #define AAC_DRIVER_BRANCH		""
64 #endif
65 #define AAC_DRIVERNAME			"aacraid"
66 
67 #ifdef AAC_DRIVER_BUILD
68 #define _str(x) #x
69 #define str(x) _str(x)
70 #define AAC_DRIVER_FULL_VERSION	AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH
71 #else
72 #define AAC_DRIVER_FULL_VERSION	AAC_DRIVER_VERSION AAC_DRIVER_BRANCH
73 #endif
74 
75 MODULE_AUTHOR("Red Hat Inc and Adaptec");
76 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, "
77 		   "Adaptec Advanced Raid Products, "
78 		   "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(AAC_DRIVER_FULL_VERSION);
81 
82 static DEFINE_MUTEX(aac_mutex);
83 static LIST_HEAD(aac_devices);
84 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED;
85 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION;
86 
87 /*
88  * Because of the way Linux names scsi devices, the order in this table has
89  * become important.  Check for on-board Raid first, add-in cards second.
90  *
91  * Note: The last field is used to index into aac_drivers below.
92  */
93 static const struct pci_device_id aac_pci_tbl[] = {
94 	{ 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */
95 	{ 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */
96 	{ 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */
97 	{ 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
98 	{ 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */
99 	{ 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */
100 	{ 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
101 	{ 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */
102 	{ 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */
103 	{ 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */
104 	{ 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */
105 	{ 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */
106 	{ 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */
107 	{ 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */
108 	{ 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */
109 	{ 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */
110 
111 	{ 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */
112 	{ 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */
113 	{ 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
114 	{ 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
115 	{ 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
116 	{ 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */
117 	{ 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */
118 	{ 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */
119 	{ 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */
120 	{ 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */
121 	{ 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */
122 	{ 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */
123 	{ 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */
124 	{ 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */
125 	{ 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */
126 	{ 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */
127 	{ 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */
128 	{ 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */
129 	{ 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */
130 	{ 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */
131 	{ 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
132 	{ 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
133 	{ 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
134 	{ 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
135 	{ 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
136 	{ 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
137 	{ 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
138 	{ 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */
139 	{ 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */
140 	{ 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */
141 	{ 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */
142 	{ 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */
143 	{ 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */
144 	{ 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */
145 	{ 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */
146 	{ 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */
147 	{ 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */
148 	{ 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */
149 
150 	{ 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/
151 	{ 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/
152 	{ 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/
153 	{ 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */
154 	{ 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */
155 
156 	{ 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */
157 	{ 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */
158 	{ 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */
159 	{ 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */
160 	{ 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */
161 	{ 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */
162 	{ 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */
163 	{ 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */
164 	{ 0,}
165 };
166 MODULE_DEVICE_TABLE(pci, aac_pci_tbl);
167 
168 /*
169  * dmb - For now we add the number of channels to this structure.
170  * In the future we should add a fib that reports the number of channels
171  * for the card.  At that time we can remove the channels from here
172  */
173 static struct aac_driver_ident aac_drivers[] = {
174 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */
175 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */
176 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */
177 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
178 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */
179 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */
180 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
181 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */
182 	{ aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */
183 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "catapult        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */
184 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "tomcat          ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */
185 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2120S   ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },		      /* Adaptec 2120S (Crusader) */
186 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },		      /* Adaptec 2200S (Vulcan) */
187 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */
188 	{ aac_rx_init, "aacraid",  "Legend  ", "Legend S220     ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */
189 	{ aac_rx_init, "aacraid",  "Legend  ", "Legend S230     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */
190 
191 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3230S   ", 2 }, /* Adaptec 3230S (Harrier) */
192 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3240S   ", 2 }, /* Adaptec 3240S (Tornado) */
193 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020ZCR     ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
194 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025ZCR     ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
195 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
196 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */
197 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2820SA      ", 1 }, /* AAR-2820SA (Intruder) */
198 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2620SA      ", 1 }, /* AAR-2620SA (Intruder) */
199 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2420SA      ", 1 }, /* AAR-2420SA (Intruder) */
200 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9024RO       ", 2 }, /* ICP9024RO (Lancer) */
201 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9014RO       ", 1 }, /* ICP9014RO (Lancer) */
202 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9047MA       ", 1 }, /* ICP9047MA (Lancer) */
203 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9087MA       ", 1 }, /* ICP9087MA (Lancer) */
204 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP5445AU       ", 1 }, /* ICP5445AU (Hurricane44) */
205 	{ aac_rx_init, "aacraid",  "ICP     ", "ICP9085LI       ", 1 }, /* ICP9085LI (Marauder-X) */
206 	{ aac_rx_init, "aacraid",  "ICP     ", "ICP5085BR       ", 1 }, /* ICP5085BR (Marauder-E) */
207 	{ aac_rkt_init, "aacraid",  "ICP     ", "ICP9067MA       ", 1 }, /* ICP9067MA (Intruder-6) */
208 	{ NULL        , "aacraid",  "ADAPTEC ", "Themisto        ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */
209 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "Callisto        ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */
210 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020SA       ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
211 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025SA       ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
212 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
213 	{ aac_rx_init, "aacraid",  "DELL    ", "CERC SR2        ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
214 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
215 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
216 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2026ZCR     ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
217 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2610SA      ", 1 }, /* SATA 6Ch (Bearcat) */
218 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2240S       ", 1 }, /* ASR-2240S (SabreExpress) */
219 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4005        ", 1 }, /* ASR-4005 */
220 	{ aac_rx_init, "ServeRAID","IBM     ", "ServeRAID 8i    ", 1 }, /* IBM 8i (AvonPark) */
221 	{ aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */
222 	{ aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */
223 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4000        ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */
224 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4800SAS     ", 1 }, /* ASR-4800SAS (Marauder-X) */
225 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4805SAS     ", 1 }, /* ASR-4805SAS (Marauder-E) */
226 	{ aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-3800        ", 1 }, /* ASR-3800 (Hurricane44) */
227 
228 	{ aac_rx_init, "percraid", "DELL    ", "PERC 320/DC     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/
229 	{ aac_sa_init, "aacraid",  "ADAPTEC ", "Adaptec 5400S   ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
230 	{ aac_sa_init, "aacraid",  "ADAPTEC ", "AAC-364         ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
231 	{ aac_sa_init, "percraid", "DELL    ", "PERCRAID        ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */
232 	{ aac_sa_init, "hpnraid",  "HP      ", "NetRAID         ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */
233 
234 	{ aac_rx_init, "aacraid",  "DELL    ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */
235 	{ aac_rx_init, "aacraid",  "Legend  ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */
236 	{ aac_rx_init, "aacraid",  "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Catch All */
237 	{ aac_rkt_init, "aacraid", "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Rocket Catch All */
238 	{ aac_nark_init, "aacraid", "ADAPTEC ", "RAID           ", 2 }, /* Adaptec NEMER/ARK Catch All */
239 	{ aac_src_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */
240 	{ aac_srcv_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */
241 	{ aac_srcv_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */
242 };
243 
244 /**
245  *	aac_queuecommand	-	queue a SCSI command
246  *	@cmd:		SCSI command to queue
247  *	@done:		Function to call on command completion
248  *
249  *	Queues a command for execution by the associated Host Adapter.
250  *
251  *	TODO: unify with aac_scsi_cmd().
252  */
253 
254 static int aac_queuecommand(struct Scsi_Host *shost,
255 			    struct scsi_cmnd *cmd)
256 {
257 	int r = 0;
258 	cmd->SCp.phase = AAC_OWNER_LOWLEVEL;
259 	r = (aac_scsi_cmd(cmd) ? FAILED : 0);
260 	return r;
261 }
262 
263 /**
264  *	aac_info		-	Returns the host adapter name
265  *	@shost:		Scsi host to report on
266  *
267  *	Returns a static string describing the device in question
268  */
269 
270 static const char *aac_info(struct Scsi_Host *shost)
271 {
272 	struct aac_dev *dev = (struct aac_dev *)shost->hostdata;
273 	return aac_drivers[dev->cardtype].name;
274 }
275 
276 /**
277  *	aac_get_driver_ident
278  *	@devtype: index into lookup table
279  *
280  *	Returns a pointer to the entry in the driver lookup table.
281  */
282 
283 struct aac_driver_ident* aac_get_driver_ident(int devtype)
284 {
285 	return &aac_drivers[devtype];
286 }
287 
288 /**
289  *	aac_biosparm	-	return BIOS parameters for disk
290  *	@sdev: The scsi device corresponding to the disk
291  *	@bdev: the block device corresponding to the disk
292  *	@capacity: the sector capacity of the disk
293  *	@geom: geometry block to fill in
294  *
295  *	Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk.
296  *	The default disk geometry is 64 heads, 32 sectors, and the appropriate
297  *	number of cylinders so as not to exceed drive capacity.  In order for
298  *	disks equal to or larger than 1 GB to be addressable by the BIOS
299  *	without exceeding the BIOS limitation of 1024 cylinders, Extended
300  *	Translation should be enabled.   With Extended Translation enabled,
301  *	drives between 1 GB inclusive and 2 GB exclusive are given a disk
302  *	geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive
303  *	are given a disk geometry of 255 heads and 63 sectors.  However, if
304  *	the BIOS detects that the Extended Translation setting does not match
305  *	the geometry in the partition table, then the translation inferred
306  *	from the partition table will be used by the BIOS, and a warning may
307  *	be displayed.
308  */
309 
310 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev,
311 			sector_t capacity, int *geom)
312 {
313 	struct diskparm *param = (struct diskparm *)geom;
314 	unsigned char *buf;
315 
316 	dprintk((KERN_DEBUG "aac_biosparm.\n"));
317 
318 	/*
319 	 *	Assuming extended translation is enabled - #REVISIT#
320 	 */
321 	if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */
322 		if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */
323 			param->heads = 255;
324 			param->sectors = 63;
325 		} else {
326 			param->heads = 128;
327 			param->sectors = 32;
328 		}
329 	} else {
330 		param->heads = 64;
331 		param->sectors = 32;
332 	}
333 
334 	param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
335 
336 	/*
337 	 *	Read the first 1024 bytes from the disk device, if the boot
338 	 *	sector partition table is valid, search for a partition table
339 	 *	entry whose end_head matches one of the standard geometry
340 	 *	translations ( 64/32, 128/32, 255/63 ).
341 	 */
342 	buf = scsi_bios_ptable(bdev);
343 	if (!buf)
344 		return 0;
345 	if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) {
346 		struct partition *first = (struct partition * )buf;
347 		struct partition *entry = first;
348 		int saved_cylinders = param->cylinders;
349 		int num;
350 		unsigned char end_head, end_sec;
351 
352 		for(num = 0; num < 4; num++) {
353 			end_head = entry->end_head;
354 			end_sec = entry->end_sector & 0x3f;
355 
356 			if(end_head == 63) {
357 				param->heads = 64;
358 				param->sectors = 32;
359 				break;
360 			} else if(end_head == 127) {
361 				param->heads = 128;
362 				param->sectors = 32;
363 				break;
364 			} else if(end_head == 254) {
365 				param->heads = 255;
366 				param->sectors = 63;
367 				break;
368 			}
369 			entry++;
370 		}
371 
372 		if (num == 4) {
373 			end_head = first->end_head;
374 			end_sec = first->end_sector & 0x3f;
375 		}
376 
377 		param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
378 		if (num < 4 && end_sec == param->sectors) {
379 			if (param->cylinders != saved_cylinders)
380 				dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n",
381 					param->heads, param->sectors, num));
382 		} else if (end_head > 0 || end_sec > 0) {
383 			dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n",
384 				end_head + 1, end_sec, num));
385 			dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n",
386 					param->heads, param->sectors));
387 		}
388 	}
389 	kfree(buf);
390 	return 0;
391 }
392 
393 /**
394  *	aac_slave_configure		-	compute queue depths
395  *	@sdev:	SCSI device we are considering
396  *
397  *	Selects queue depths for each target device based on the host adapter's
398  *	total capacity and the queue depth supported by the target device.
399  *	A queue depth of one automatically disables tagged queueing.
400  */
401 
402 static int aac_slave_configure(struct scsi_device *sdev)
403 {
404 	struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
405 	int chn, tid;
406 	unsigned int depth = 0;
407 	unsigned int set_timeout = 0;
408 	bool set_qd_dev_type = false;
409 	u8 devtype = 0;
410 
411 	chn = aac_logical_to_phys(sdev_channel(sdev));
412 	tid = sdev_id(sdev);
413 	if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) {
414 		devtype = aac->hba_map[chn][tid].devtype;
415 
416 		if (devtype == AAC_DEVTYPE_NATIVE_RAW) {
417 			depth = aac->hba_map[chn][tid].qd_limit;
418 			set_timeout = 1;
419 			goto common_config;
420 		}
421 		if (devtype == AAC_DEVTYPE_ARC_RAW) {
422 			set_qd_dev_type = true;
423 			set_timeout = 1;
424 			goto common_config;
425 		}
426 	}
427 
428 	if (aac->jbod && (sdev->type == TYPE_DISK))
429 		sdev->removable = 1;
430 
431 	if (sdev->type == TYPE_DISK
432 	 && sdev_channel(sdev) != CONTAINER_CHANNEL
433 	 && (!aac->jbod || sdev->inq_periph_qual)
434 	 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) {
435 
436 		if (expose_physicals == 0)
437 			return -ENXIO;
438 
439 		if (expose_physicals < 0)
440 			sdev->no_uld_attach = 1;
441 	}
442 
443 	if (sdev->tagged_supported
444 	 &&  sdev->type == TYPE_DISK
445 	 &&  (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
446 	 && !sdev->no_uld_attach) {
447 
448 		struct scsi_device * dev;
449 		struct Scsi_Host *host = sdev->host;
450 		unsigned num_lsu = 0;
451 		unsigned num_one = 0;
452 		unsigned cid;
453 
454 		set_timeout = 1;
455 
456 		for (cid = 0; cid < aac->maximum_num_containers; ++cid)
457 			if (aac->fsa_dev[cid].valid)
458 				++num_lsu;
459 
460 		__shost_for_each_device(dev, host) {
461 			if (dev->tagged_supported
462 			 && dev->type == TYPE_DISK
463 			 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
464 			 && !dev->no_uld_attach) {
465 				if ((sdev_channel(dev) != CONTAINER_CHANNEL)
466 				 || !aac->fsa_dev[sdev_id(dev)].valid) {
467 					++num_lsu;
468 				}
469 			} else {
470 				++num_one;
471 			}
472 		}
473 
474 		if (num_lsu == 0)
475 			++num_lsu;
476 
477 		depth = (host->can_queue - num_one) / num_lsu;
478 
479 		if (sdev_channel(sdev) != NATIVE_CHANNEL)
480 			goto common_config;
481 
482 		set_qd_dev_type = true;
483 
484 	}
485 
486 common_config:
487 
488 	/*
489 	 * Check if SATA drive
490 	 */
491 	if (set_qd_dev_type) {
492 		if (strncmp(sdev->vendor, "ATA", 3) == 0)
493 			depth = 32;
494 		else
495 			depth = 64;
496 	}
497 
498 	/*
499 	 * Firmware has an individual device recovery time typically
500 	 * of 35 seconds, give us a margin.
501 	 */
502 	if (set_timeout && sdev->request_queue->rq_timeout < (45 * HZ))
503 		blk_queue_rq_timeout(sdev->request_queue, 45*HZ);
504 
505 	if (depth > 256)
506 		depth = 256;
507 	else if (depth < 1)
508 		depth = 1;
509 
510 	scsi_change_queue_depth(sdev, depth);
511 
512 	sdev->tagged_supported = 1;
513 
514 	return 0;
515 }
516 
517 /**
518  *	aac_change_queue_depth		-	alter queue depths
519  *	@sdev:	SCSI device we are considering
520  *	@depth:	desired queue depth
521  *
522  *	Alters queue depths for target device based on the host adapter's
523  *	total capacity and the queue depth supported by the target device.
524  */
525 
526 static int aac_change_queue_depth(struct scsi_device *sdev, int depth)
527 {
528 	struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
529 	int chn, tid, is_native_device = 0;
530 
531 	chn = aac_logical_to_phys(sdev_channel(sdev));
532 	tid = sdev_id(sdev);
533 	if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS &&
534 		aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW)
535 		is_native_device = 1;
536 
537 	if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
538 	    (sdev_channel(sdev) == CONTAINER_CHANNEL)) {
539 		struct scsi_device * dev;
540 		struct Scsi_Host *host = sdev->host;
541 		unsigned num = 0;
542 
543 		__shost_for_each_device(dev, host) {
544 			if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
545 			    (sdev_channel(dev) == CONTAINER_CHANNEL))
546 				++num;
547 			++num;
548 		}
549 		if (num >= host->can_queue)
550 			num = host->can_queue - 1;
551 		if (depth > (host->can_queue - num))
552 			depth = host->can_queue - num;
553 		if (depth > 256)
554 			depth = 256;
555 		else if (depth < 2)
556 			depth = 2;
557 		return scsi_change_queue_depth(sdev, depth);
558 	} else if (is_native_device) {
559 		scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit);
560 	} else {
561 		scsi_change_queue_depth(sdev, 1);
562 	}
563 	return sdev->queue_depth;
564 }
565 
566 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf)
567 {
568 	struct scsi_device *sdev = to_scsi_device(dev);
569 	struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
570 	if (sdev_channel(sdev) != CONTAINER_CHANNEL)
571 		return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach
572 		  ? "Hidden\n" :
573 		  ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : ""));
574 	return snprintf(buf, PAGE_SIZE, "%s\n",
575 	  get_container_type(aac->fsa_dev[sdev_id(sdev)].type));
576 }
577 
578 static struct device_attribute aac_raid_level_attr = {
579 	.attr = {
580 		.name = "level",
581 		.mode = S_IRUGO,
582 	},
583 	.show = aac_show_raid_level
584 };
585 
586 static ssize_t aac_show_unique_id(struct device *dev,
587 	     struct device_attribute *attr, char *buf)
588 {
589 	struct scsi_device *sdev = to_scsi_device(dev);
590 	struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
591 	unsigned char sn[16];
592 
593 	memset(sn, 0, sizeof(sn));
594 
595 	if (sdev_channel(sdev) == CONTAINER_CHANNEL)
596 		memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn));
597 
598 	return snprintf(buf, 16 * 2 + 2,
599 		"%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n",
600 		sn[0], sn[1], sn[2], sn[3],
601 		sn[4], sn[5], sn[6], sn[7],
602 		sn[8], sn[9], sn[10], sn[11],
603 		sn[12], sn[13], sn[14], sn[15]);
604 }
605 
606 static struct device_attribute aac_unique_id_attr = {
607 	.attr = {
608 		.name = "unique_id",
609 		.mode = 0444,
610 	},
611 	.show = aac_show_unique_id
612 };
613 
614 
615 
616 static struct device_attribute *aac_dev_attrs[] = {
617 	&aac_raid_level_attr,
618 	&aac_unique_id_attr,
619 	NULL,
620 };
621 
622 static int aac_ioctl(struct scsi_device *sdev, unsigned int cmd,
623 		     void __user *arg)
624 {
625 	struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
626 	if (!capable(CAP_SYS_RAWIO))
627 		return -EPERM;
628 	return aac_do_ioctl(dev, cmd, arg);
629 }
630 
631 static int get_num_of_incomplete_fibs(struct aac_dev *aac)
632 {
633 
634 	unsigned long flags;
635 	struct scsi_device *sdev = NULL;
636 	struct Scsi_Host *shost = aac->scsi_host_ptr;
637 	struct scsi_cmnd *scmnd = NULL;
638 	struct device *ctrl_dev;
639 
640 	int mlcnt  = 0;
641 	int llcnt  = 0;
642 	int ehcnt  = 0;
643 	int fwcnt  = 0;
644 	int krlcnt = 0;
645 
646 	__shost_for_each_device(sdev, shost) {
647 		spin_lock_irqsave(&sdev->list_lock, flags);
648 		list_for_each_entry(scmnd, &sdev->cmd_list, list) {
649 			switch (scmnd->SCp.phase) {
650 			case AAC_OWNER_FIRMWARE:
651 				fwcnt++;
652 				break;
653 			case AAC_OWNER_ERROR_HANDLER:
654 				ehcnt++;
655 				break;
656 			case AAC_OWNER_LOWLEVEL:
657 				llcnt++;
658 				break;
659 			case AAC_OWNER_MIDLEVEL:
660 				mlcnt++;
661 				break;
662 			default:
663 				krlcnt++;
664 				break;
665 			}
666 		}
667 		spin_unlock_irqrestore(&sdev->list_lock, flags);
668 	}
669 
670 	ctrl_dev = &aac->pdev->dev;
671 
672 	dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", mlcnt);
673 	dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", llcnt);
674 	dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", ehcnt);
675 	dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fwcnt);
676 	dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", krlcnt);
677 
678 	return mlcnt + llcnt + ehcnt + fwcnt;
679 }
680 
681 static int aac_eh_abort(struct scsi_cmnd* cmd)
682 {
683 	struct scsi_device * dev = cmd->device;
684 	struct Scsi_Host * host = dev->host;
685 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
686 	int count, found;
687 	u32 bus, cid;
688 	int ret = FAILED;
689 
690 	if (aac_adapter_check_health(aac))
691 		return ret;
692 
693 	bus = aac_logical_to_phys(scmd_channel(cmd));
694 	cid = scmd_id(cmd);
695 	if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
696 		struct fib *fib;
697 		struct aac_hba_tm_req *tmf;
698 		int status;
699 		u64 address;
700 
701 		pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n",
702 		 AAC_DRIVERNAME,
703 		 host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun);
704 
705 		found = 0;
706 		for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
707 			fib = &aac->fibs[count];
708 			if (*(u8 *)fib->hw_fib_va != 0 &&
709 				(fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
710 				(fib->callback_data == cmd)) {
711 				found = 1;
712 				break;
713 			}
714 		}
715 		if (!found)
716 			return ret;
717 
718 		/* start a HBA_TMF_ABORT_TASK TMF request */
719 		fib = aac_fib_alloc(aac);
720 		if (!fib)
721 			return ret;
722 
723 		tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
724 		memset(tmf, 0, sizeof(*tmf));
725 		tmf->tmf = HBA_TMF_ABORT_TASK;
726 		tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus;
727 		tmf->lun[1] = cmd->device->lun;
728 
729 		address = (u64)fib->hw_error_pa;
730 		tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
731 		tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
732 		tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
733 
734 		fib->hbacmd_size = sizeof(*tmf);
735 		cmd->SCp.sent_command = 0;
736 
737 		status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib,
738 				  (fib_callback) aac_hba_callback,
739 				  (void *) cmd);
740 
741 		/* Wait up to 15 secs for completion */
742 		for (count = 0; count < 15; ++count) {
743 			if (cmd->SCp.sent_command) {
744 				ret = SUCCESS;
745 				break;
746 			}
747 			msleep(1000);
748 		}
749 
750 		if (ret != SUCCESS)
751 			pr_err("%s: Host adapter abort request timed out\n",
752 			AAC_DRIVERNAME);
753 	} else {
754 		pr_err(
755 			"%s: Host adapter abort request.\n"
756 			"%s: Outstanding commands on (%d,%d,%d,%d):\n",
757 			AAC_DRIVERNAME, AAC_DRIVERNAME,
758 			host->host_no, sdev_channel(dev), sdev_id(dev),
759 			(int)dev->lun);
760 		switch (cmd->cmnd[0]) {
761 		case SERVICE_ACTION_IN_16:
762 			if (!(aac->raw_io_interface) ||
763 			    !(aac->raw_io_64) ||
764 			    ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
765 				break;
766 			/* fall through */
767 		case INQUIRY:
768 		case READ_CAPACITY:
769 			/*
770 			 * Mark associated FIB to not complete,
771 			 * eh handler does this
772 			 */
773 			for (count = 0;
774 				count < (host->can_queue + AAC_NUM_MGT_FIB);
775 				++count) {
776 				struct fib *fib = &aac->fibs[count];
777 
778 				if (fib->hw_fib_va->header.XferState &&
779 				(fib->flags & FIB_CONTEXT_FLAG) &&
780 				(fib->callback_data == cmd)) {
781 					fib->flags |=
782 						FIB_CONTEXT_FLAG_TIMED_OUT;
783 					cmd->SCp.phase =
784 						AAC_OWNER_ERROR_HANDLER;
785 					ret = SUCCESS;
786 				}
787 			}
788 			break;
789 		case TEST_UNIT_READY:
790 			/*
791 			 * Mark associated FIB to not complete,
792 			 * eh handler does this
793 			 */
794 			for (count = 0;
795 				count < (host->can_queue + AAC_NUM_MGT_FIB);
796 				++count) {
797 				struct scsi_cmnd *command;
798 				struct fib *fib = &aac->fibs[count];
799 
800 				command = fib->callback_data;
801 
802 				if ((fib->hw_fib_va->header.XferState &
803 					cpu_to_le32
804 					(Async | NoResponseExpected)) &&
805 					(fib->flags & FIB_CONTEXT_FLAG) &&
806 					((command)) &&
807 					(command->device == cmd->device)) {
808 					fib->flags |=
809 						FIB_CONTEXT_FLAG_TIMED_OUT;
810 					command->SCp.phase =
811 						AAC_OWNER_ERROR_HANDLER;
812 					if (command == cmd)
813 						ret = SUCCESS;
814 				}
815 			}
816 			break;
817 		}
818 	}
819 	return ret;
820 }
821 
822 static u8 aac_eh_tmf_lun_reset_fib(struct aac_hba_map_info *info,
823 				   struct fib *fib, u64 tmf_lun)
824 {
825 	struct aac_hba_tm_req *tmf;
826 	u64 address;
827 
828 	/* start a HBA_TMF_LUN_RESET TMF request */
829 	tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
830 	memset(tmf, 0, sizeof(*tmf));
831 	tmf->tmf = HBA_TMF_LUN_RESET;
832 	tmf->it_nexus = info->rmw_nexus;
833 	int_to_scsilun(tmf_lun, (struct scsi_lun *)tmf->lun);
834 
835 	address = (u64)fib->hw_error_pa;
836 	tmf->error_ptr_hi = cpu_to_le32
837 		((u32)(address >> 32));
838 	tmf->error_ptr_lo = cpu_to_le32
839 		((u32)(address & 0xffffffff));
840 	tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
841 	fib->hbacmd_size = sizeof(*tmf);
842 
843 	return HBA_IU_TYPE_SCSI_TM_REQ;
844 }
845 
846 static u8 aac_eh_tmf_hard_reset_fib(struct aac_hba_map_info *info,
847 				    struct fib *fib)
848 {
849 	struct aac_hba_reset_req *rst;
850 	u64 address;
851 
852 	/* already tried, start a hard reset now */
853 	rst = (struct aac_hba_reset_req *)fib->hw_fib_va;
854 	memset(rst, 0, sizeof(*rst));
855 	rst->it_nexus = info->rmw_nexus;
856 
857 	address = (u64)fib->hw_error_pa;
858 	rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
859 	rst->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
860 	rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
861 	fib->hbacmd_size = sizeof(*rst);
862 
863        return HBA_IU_TYPE_SATA_REQ;
864 }
865 
866 void aac_tmf_callback(void *context, struct fib *fibptr)
867 {
868 	struct aac_hba_resp *err =
869 		&((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
870 	struct aac_hba_map_info *info = context;
871 	int res;
872 
873 	switch (err->service_response) {
874 	case HBA_RESP_SVCRES_TMF_REJECTED:
875 		res = -1;
876 		break;
877 	case HBA_RESP_SVCRES_TMF_LUN_INVALID:
878 		res = 0;
879 		break;
880 	case HBA_RESP_SVCRES_TMF_COMPLETE:
881 	case HBA_RESP_SVCRES_TMF_SUCCEEDED:
882 		res = 0;
883 		break;
884 	default:
885 		res = -2;
886 		break;
887 	}
888 	aac_fib_complete(fibptr);
889 
890 	info->reset_state = res;
891 }
892 
893 /*
894  *	aac_eh_dev_reset	- Device reset command handling
895  *	@scsi_cmd:	SCSI command block causing the reset
896  *
897  */
898 static int aac_eh_dev_reset(struct scsi_cmnd *cmd)
899 {
900 	struct scsi_device * dev = cmd->device;
901 	struct Scsi_Host * host = dev->host;
902 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
903 	struct aac_hba_map_info *info;
904 	int count;
905 	u32 bus, cid;
906 	struct fib *fib;
907 	int ret = FAILED;
908 	int status;
909 	u8 command;
910 
911 	bus = aac_logical_to_phys(scmd_channel(cmd));
912 	cid = scmd_id(cmd);
913 
914 	if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS)
915 		return FAILED;
916 
917 	info = &aac->hba_map[bus][cid];
918 
919 	if (info->devtype != AAC_DEVTYPE_NATIVE_RAW &&
920 	    info->reset_state > 0)
921 		return FAILED;
922 
923 	pr_err("%s: Host adapter reset request. SCSI hang ?\n",
924 	       AAC_DRIVERNAME);
925 
926 	fib = aac_fib_alloc(aac);
927 	if (!fib)
928 		return ret;
929 
930 	/* start a HBA_TMF_LUN_RESET TMF request */
931 	command = aac_eh_tmf_lun_reset_fib(info, fib, dev->lun);
932 
933 	info->reset_state = 1;
934 
935 	status = aac_hba_send(command, fib,
936 			      (fib_callback) aac_tmf_callback,
937 			      (void *) info);
938 
939 	/* Wait up to 15 seconds for completion */
940 	for (count = 0; count < 15; ++count) {
941 		if (info->reset_state == 0) {
942 			ret = info->reset_state == 0 ? SUCCESS : FAILED;
943 			break;
944 		}
945 		msleep(1000);
946 	}
947 
948 	return ret;
949 }
950 
951 /*
952  *	aac_eh_target_reset	- Target reset command handling
953  *	@scsi_cmd:	SCSI command block causing the reset
954  *
955  */
956 static int aac_eh_target_reset(struct scsi_cmnd *cmd)
957 {
958 	struct scsi_device * dev = cmd->device;
959 	struct Scsi_Host * host = dev->host;
960 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
961 	struct aac_hba_map_info *info;
962 	int count;
963 	u32 bus, cid;
964 	int ret = FAILED;
965 	struct fib *fib;
966 	int status;
967 	u8 command;
968 
969 	bus = aac_logical_to_phys(scmd_channel(cmd));
970 	cid = scmd_id(cmd);
971 
972 	if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS)
973 		return FAILED;
974 
975 	info = &aac->hba_map[bus][cid];
976 
977 	if (info->devtype != AAC_DEVTYPE_NATIVE_RAW &&
978 	    info->reset_state > 0)
979 		return FAILED;
980 
981 	pr_err("%s: Host adapter reset request. SCSI hang ?\n",
982 	       AAC_DRIVERNAME);
983 
984 	fib = aac_fib_alloc(aac);
985 	if (!fib)
986 		return ret;
987 
988 
989 	/* already tried, start a hard reset now */
990 	command = aac_eh_tmf_hard_reset_fib(info, fib);
991 
992 	info->reset_state = 2;
993 
994 	status = aac_hba_send(command, fib,
995 			      (fib_callback) aac_tmf_callback,
996 			      (void *) info);
997 
998 	/* Wait up to 15 seconds for completion */
999 	for (count = 0; count < 15; ++count) {
1000 		if (info->reset_state <= 0) {
1001 			ret = info->reset_state == 0 ? SUCCESS : FAILED;
1002 			break;
1003 		}
1004 		msleep(1000);
1005 	}
1006 
1007 	return ret;
1008 }
1009 
1010 /*
1011  *	aac_eh_bus_reset	- Bus reset command handling
1012  *	@scsi_cmd:	SCSI command block causing the reset
1013  *
1014  */
1015 static int aac_eh_bus_reset(struct scsi_cmnd* cmd)
1016 {
1017 	struct scsi_device * dev = cmd->device;
1018 	struct Scsi_Host * host = dev->host;
1019 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
1020 	int count;
1021 	u32 cmd_bus;
1022 	int status = 0;
1023 
1024 
1025 	cmd_bus = aac_logical_to_phys(scmd_channel(cmd));
1026 	/* Mark the assoc. FIB to not complete, eh handler does this */
1027 	for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
1028 		struct fib *fib = &aac->fibs[count];
1029 
1030 		if (fib->hw_fib_va->header.XferState &&
1031 		    (fib->flags & FIB_CONTEXT_FLAG) &&
1032 		    (fib->flags & FIB_CONTEXT_FLAG_SCSI_CMD)) {
1033 			struct aac_hba_map_info *info;
1034 			u32 bus, cid;
1035 
1036 			cmd = (struct scsi_cmnd *)fib->callback_data;
1037 			bus = aac_logical_to_phys(scmd_channel(cmd));
1038 			if (bus != cmd_bus)
1039 				continue;
1040 			cid = scmd_id(cmd);
1041 			info = &aac->hba_map[bus][cid];
1042 			if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS ||
1043 			    info->devtype != AAC_DEVTYPE_NATIVE_RAW) {
1044 				fib->flags |= FIB_CONTEXT_FLAG_EH_RESET;
1045 				cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1046 			}
1047 		}
1048 	}
1049 
1050 	pr_err("%s: Host adapter reset request. SCSI hang ?\n", AAC_DRIVERNAME);
1051 
1052 	/*
1053 	 * Check the health of the controller
1054 	 */
1055 	status = aac_adapter_check_health(aac);
1056 	if (status)
1057 		dev_err(&aac->pdev->dev, "Adapter health - %d\n", status);
1058 
1059 	count = get_num_of_incomplete_fibs(aac);
1060 	return (count == 0) ? SUCCESS : FAILED;
1061 }
1062 
1063 /*
1064  *	aac_eh_host_reset	- Host reset command handling
1065  *	@scsi_cmd:	SCSI command block causing the reset
1066  *
1067  */
1068 int aac_eh_host_reset(struct scsi_cmnd *cmd)
1069 {
1070 	struct scsi_device * dev = cmd->device;
1071 	struct Scsi_Host * host = dev->host;
1072 	struct aac_dev * aac = (struct aac_dev *)host->hostdata;
1073 	int ret = FAILED;
1074 	__le32 supported_options2 = 0;
1075 	bool is_mu_reset;
1076 	bool is_ignore_reset;
1077 	bool is_doorbell_reset;
1078 
1079 	/*
1080 	 * Check if reset is supported by the firmware
1081 	 */
1082 	supported_options2 = aac->supplement_adapter_info.supported_options2;
1083 	is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET;
1084 	is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET;
1085 	is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET;
1086 	/*
1087 	 * This adapter needs a blind reset, only do so for
1088 	 * Adapters that support a register, instead of a commanded,
1089 	 * reset.
1090 	 */
1091 	if ((is_mu_reset || is_doorbell_reset)
1092 	 && aac_check_reset
1093 	 && (aac_check_reset != -1 || !is_ignore_reset)) {
1094 		/* Bypass wait for command quiesce */
1095 		if (aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET) == 0)
1096 			ret = SUCCESS;
1097 	}
1098 	/*
1099 	 * Reset EH state
1100 	 */
1101 	if (ret == SUCCESS) {
1102 		int bus, cid;
1103 		struct aac_hba_map_info *info;
1104 
1105 		for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1106 			for (cid = 0; cid < AAC_MAX_TARGETS; cid++) {
1107 				info = &aac->hba_map[bus][cid];
1108 				if (info->devtype == AAC_DEVTYPE_NATIVE_RAW)
1109 					info->reset_state = 0;
1110 			}
1111 		}
1112 	}
1113 	return ret;
1114 }
1115 
1116 /**
1117  *	aac_cfg_open		-	open a configuration file
1118  *	@inode: inode being opened
1119  *	@file: file handle attached
1120  *
1121  *	Called when the configuration device is opened. Does the needed
1122  *	set up on the handle and then returns
1123  *
1124  *	Bugs: This needs extending to check a given adapter is present
1125  *	so we can support hot plugging, and to ref count adapters.
1126  */
1127 
1128 static int aac_cfg_open(struct inode *inode, struct file *file)
1129 {
1130 	struct aac_dev *aac;
1131 	unsigned minor_number = iminor(inode);
1132 	int err = -ENODEV;
1133 
1134 	mutex_lock(&aac_mutex);  /* BKL pushdown: nothing else protects this list */
1135 	list_for_each_entry(aac, &aac_devices, entry) {
1136 		if (aac->id == minor_number) {
1137 			file->private_data = aac;
1138 			err = 0;
1139 			break;
1140 		}
1141 	}
1142 	mutex_unlock(&aac_mutex);
1143 
1144 	return err;
1145 }
1146 
1147 /**
1148  *	aac_cfg_ioctl		-	AAC configuration request
1149  *	@inode: inode of device
1150  *	@file: file handle
1151  *	@cmd: ioctl command code
1152  *	@arg: argument
1153  *
1154  *	Handles a configuration ioctl. Currently this involves wrapping it
1155  *	up and feeding it into the nasty windowsalike glue layer.
1156  *
1157  *	Bugs: Needs locking against parallel ioctls lower down
1158  *	Bugs: Needs to handle hot plugging
1159  */
1160 
1161 static long aac_cfg_ioctl(struct file *file,
1162 		unsigned int cmd, unsigned long arg)
1163 {
1164 	struct aac_dev *aac = (struct aac_dev *)file->private_data;
1165 
1166 	if (!capable(CAP_SYS_RAWIO))
1167 		return -EPERM;
1168 
1169 	return aac_do_ioctl(aac, cmd, (void __user *)arg);
1170 }
1171 
1172 #ifdef CONFIG_COMPAT
1173 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg)
1174 {
1175 	long ret;
1176 	switch (cmd) {
1177 	case FSACTL_MINIPORT_REV_CHECK:
1178 	case FSACTL_SENDFIB:
1179 	case FSACTL_OPEN_GET_ADAPTER_FIB:
1180 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
1181 	case FSACTL_SEND_RAW_SRB:
1182 	case FSACTL_GET_PCI_INFO:
1183 	case FSACTL_QUERY_DISK:
1184 	case FSACTL_DELETE_DISK:
1185 	case FSACTL_FORCE_DELETE_DISK:
1186 	case FSACTL_GET_CONTAINERS:
1187 	case FSACTL_SEND_LARGE_FIB:
1188 		ret = aac_do_ioctl(dev, cmd, (void __user *)arg);
1189 		break;
1190 
1191 	case FSACTL_GET_NEXT_ADAPTER_FIB: {
1192 		struct fib_ioctl __user *f;
1193 
1194 		f = compat_alloc_user_space(sizeof(*f));
1195 		ret = 0;
1196 		if (clear_user(f, sizeof(*f)))
1197 			ret = -EFAULT;
1198 		if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32)))
1199 			ret = -EFAULT;
1200 		if (!ret)
1201 			ret = aac_do_ioctl(dev, cmd, f);
1202 		break;
1203 	}
1204 
1205 	default:
1206 		ret = -ENOIOCTLCMD;
1207 		break;
1208 	}
1209 	return ret;
1210 }
1211 
1212 static int aac_compat_ioctl(struct scsi_device *sdev, unsigned int cmd,
1213 			    void __user *arg)
1214 {
1215 	struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1216 	if (!capable(CAP_SYS_RAWIO))
1217 		return -EPERM;
1218 	return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg);
1219 }
1220 
1221 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1222 {
1223 	if (!capable(CAP_SYS_RAWIO))
1224 		return -EPERM;
1225 	return aac_compat_do_ioctl(file->private_data, cmd, arg);
1226 }
1227 #endif
1228 
1229 static ssize_t aac_show_model(struct device *device,
1230 			      struct device_attribute *attr, char *buf)
1231 {
1232 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1233 	int len;
1234 
1235 	if (dev->supplement_adapter_info.adapter_type_text[0]) {
1236 		char *cp = dev->supplement_adapter_info.adapter_type_text;
1237 		while (*cp && *cp != ' ')
1238 			++cp;
1239 		while (*cp == ' ')
1240 			++cp;
1241 		len = snprintf(buf, PAGE_SIZE, "%s\n", cp);
1242 	} else
1243 		len = snprintf(buf, PAGE_SIZE, "%s\n",
1244 		  aac_drivers[dev->cardtype].model);
1245 	return len;
1246 }
1247 
1248 static ssize_t aac_show_vendor(struct device *device,
1249 			       struct device_attribute *attr, char *buf)
1250 {
1251 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1252 	struct aac_supplement_adapter_info *sup_adap_info;
1253 	int len;
1254 
1255 	sup_adap_info = &dev->supplement_adapter_info;
1256 	if (sup_adap_info->adapter_type_text[0]) {
1257 		char *cp = sup_adap_info->adapter_type_text;
1258 		while (*cp && *cp != ' ')
1259 			++cp;
1260 		len = snprintf(buf, PAGE_SIZE, "%.*s\n",
1261 			(int)(cp - (char *)sup_adap_info->adapter_type_text),
1262 					sup_adap_info->adapter_type_text);
1263 	} else
1264 		len = snprintf(buf, PAGE_SIZE, "%s\n",
1265 			aac_drivers[dev->cardtype].vname);
1266 	return len;
1267 }
1268 
1269 static ssize_t aac_show_flags(struct device *cdev,
1270 			      struct device_attribute *attr, char *buf)
1271 {
1272 	int len = 0;
1273 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata;
1274 
1275 	if (nblank(dprintk(x)))
1276 		len = snprintf(buf, PAGE_SIZE, "dprintk\n");
1277 #ifdef AAC_DETAILED_STATUS_INFO
1278 	len += snprintf(buf + len, PAGE_SIZE - len,
1279 			"AAC_DETAILED_STATUS_INFO\n");
1280 #endif
1281 	if (dev->raw_io_interface && dev->raw_io_64)
1282 		len += snprintf(buf + len, PAGE_SIZE - len,
1283 				"SAI_READ_CAPACITY_16\n");
1284 	if (dev->jbod)
1285 		len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n");
1286 	if (dev->supplement_adapter_info.supported_options2 &
1287 		AAC_OPTION_POWER_MANAGEMENT)
1288 		len += snprintf(buf + len, PAGE_SIZE - len,
1289 				"SUPPORTED_POWER_MANAGEMENT\n");
1290 	if (dev->msi)
1291 		len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n");
1292 	return len;
1293 }
1294 
1295 static ssize_t aac_show_kernel_version(struct device *device,
1296 				       struct device_attribute *attr,
1297 				       char *buf)
1298 {
1299 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1300 	int len, tmp;
1301 
1302 	tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1303 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1304 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1305 	  le32_to_cpu(dev->adapter_info.kernelbuild));
1306 	return len;
1307 }
1308 
1309 static ssize_t aac_show_monitor_version(struct device *device,
1310 					struct device_attribute *attr,
1311 					char *buf)
1312 {
1313 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1314 	int len, tmp;
1315 
1316 	tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1317 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1318 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1319 	  le32_to_cpu(dev->adapter_info.monitorbuild));
1320 	return len;
1321 }
1322 
1323 static ssize_t aac_show_bios_version(struct device *device,
1324 				     struct device_attribute *attr,
1325 				     char *buf)
1326 {
1327 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1328 	int len, tmp;
1329 
1330 	tmp = le32_to_cpu(dev->adapter_info.biosrev);
1331 	len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1332 	  tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1333 	  le32_to_cpu(dev->adapter_info.biosbuild));
1334 	return len;
1335 }
1336 
1337 static ssize_t aac_show_driver_version(struct device *device,
1338 					struct device_attribute *attr,
1339 					char *buf)
1340 {
1341 	return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version);
1342 }
1343 
1344 static ssize_t aac_show_serial_number(struct device *device,
1345 			       struct device_attribute *attr, char *buf)
1346 {
1347 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1348 	int len = 0;
1349 
1350 	if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
1351 		len = snprintf(buf, 16, "%06X\n",
1352 		  le32_to_cpu(dev->adapter_info.serial[0]));
1353 	if (len &&
1354 	  !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[
1355 	    sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len],
1356 	  buf, len-1))
1357 		len = snprintf(buf, 16, "%.*s\n",
1358 		  (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no),
1359 		  dev->supplement_adapter_info.mfg_pcba_serial_no);
1360 
1361 	return min(len, 16);
1362 }
1363 
1364 static ssize_t aac_show_max_channel(struct device *device,
1365 				    struct device_attribute *attr, char *buf)
1366 {
1367 	return snprintf(buf, PAGE_SIZE, "%d\n",
1368 	  class_to_shost(device)->max_channel);
1369 }
1370 
1371 static ssize_t aac_show_max_id(struct device *device,
1372 			       struct device_attribute *attr, char *buf)
1373 {
1374 	return snprintf(buf, PAGE_SIZE, "%d\n",
1375 	  class_to_shost(device)->max_id);
1376 }
1377 
1378 static ssize_t aac_store_reset_adapter(struct device *device,
1379 				       struct device_attribute *attr,
1380 				       const char *buf, size_t count)
1381 {
1382 	int retval = -EACCES;
1383 
1384 	if (!capable(CAP_SYS_ADMIN))
1385 		return retval;
1386 
1387 	retval = aac_reset_adapter(shost_priv(class_to_shost(device)),
1388 					buf[0] == '!', IOP_HWSOFT_RESET);
1389 	if (retval >= 0)
1390 		retval = count;
1391 
1392 	return retval;
1393 }
1394 
1395 static ssize_t aac_show_reset_adapter(struct device *device,
1396 				      struct device_attribute *attr,
1397 				      char *buf)
1398 {
1399 	struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1400 	int len, tmp;
1401 
1402 	tmp = aac_adapter_check_health(dev);
1403 	if ((tmp == 0) && dev->in_reset)
1404 		tmp = -EBUSY;
1405 	len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp);
1406 	return len;
1407 }
1408 
1409 static struct device_attribute aac_model = {
1410 	.attr = {
1411 		.name = "model",
1412 		.mode = S_IRUGO,
1413 	},
1414 	.show = aac_show_model,
1415 };
1416 static struct device_attribute aac_vendor = {
1417 	.attr = {
1418 		.name = "vendor",
1419 		.mode = S_IRUGO,
1420 	},
1421 	.show = aac_show_vendor,
1422 };
1423 static struct device_attribute aac_flags = {
1424 	.attr = {
1425 		.name = "flags",
1426 		.mode = S_IRUGO,
1427 	},
1428 	.show = aac_show_flags,
1429 };
1430 static struct device_attribute aac_kernel_version = {
1431 	.attr = {
1432 		.name = "hba_kernel_version",
1433 		.mode = S_IRUGO,
1434 	},
1435 	.show = aac_show_kernel_version,
1436 };
1437 static struct device_attribute aac_monitor_version = {
1438 	.attr = {
1439 		.name = "hba_monitor_version",
1440 		.mode = S_IRUGO,
1441 	},
1442 	.show = aac_show_monitor_version,
1443 };
1444 static struct device_attribute aac_bios_version = {
1445 	.attr = {
1446 		.name = "hba_bios_version",
1447 		.mode = S_IRUGO,
1448 	},
1449 	.show = aac_show_bios_version,
1450 };
1451 static struct device_attribute aac_lld_version = {
1452 	.attr = {
1453 		.name = "driver_version",
1454 		.mode = 0444,
1455 	},
1456 	.show = aac_show_driver_version,
1457 };
1458 static struct device_attribute aac_serial_number = {
1459 	.attr = {
1460 		.name = "serial_number",
1461 		.mode = S_IRUGO,
1462 	},
1463 	.show = aac_show_serial_number,
1464 };
1465 static struct device_attribute aac_max_channel = {
1466 	.attr = {
1467 		.name = "max_channel",
1468 		.mode = S_IRUGO,
1469 	},
1470 	.show = aac_show_max_channel,
1471 };
1472 static struct device_attribute aac_max_id = {
1473 	.attr = {
1474 		.name = "max_id",
1475 		.mode = S_IRUGO,
1476 	},
1477 	.show = aac_show_max_id,
1478 };
1479 static struct device_attribute aac_reset = {
1480 	.attr = {
1481 		.name = "reset_host",
1482 		.mode = S_IWUSR|S_IRUGO,
1483 	},
1484 	.store = aac_store_reset_adapter,
1485 	.show = aac_show_reset_adapter,
1486 };
1487 
1488 static struct device_attribute *aac_attrs[] = {
1489 	&aac_model,
1490 	&aac_vendor,
1491 	&aac_flags,
1492 	&aac_kernel_version,
1493 	&aac_monitor_version,
1494 	&aac_bios_version,
1495 	&aac_lld_version,
1496 	&aac_serial_number,
1497 	&aac_max_channel,
1498 	&aac_max_id,
1499 	&aac_reset,
1500 	NULL
1501 };
1502 
1503 ssize_t aac_get_serial_number(struct device *device, char *buf)
1504 {
1505 	return aac_show_serial_number(device, &aac_serial_number, buf);
1506 }
1507 
1508 static const struct file_operations aac_cfg_fops = {
1509 	.owner		= THIS_MODULE,
1510 	.unlocked_ioctl	= aac_cfg_ioctl,
1511 #ifdef CONFIG_COMPAT
1512 	.compat_ioctl   = aac_compat_cfg_ioctl,
1513 #endif
1514 	.open		= aac_cfg_open,
1515 	.llseek		= noop_llseek,
1516 };
1517 
1518 static struct scsi_host_template aac_driver_template = {
1519 	.module				= THIS_MODULE,
1520 	.name				= "AAC",
1521 	.proc_name			= AAC_DRIVERNAME,
1522 	.info				= aac_info,
1523 	.ioctl				= aac_ioctl,
1524 #ifdef CONFIG_COMPAT
1525 	.compat_ioctl			= aac_compat_ioctl,
1526 #endif
1527 	.queuecommand			= aac_queuecommand,
1528 	.bios_param			= aac_biosparm,
1529 	.shost_attrs			= aac_attrs,
1530 	.slave_configure		= aac_slave_configure,
1531 	.change_queue_depth		= aac_change_queue_depth,
1532 	.sdev_attrs			= aac_dev_attrs,
1533 	.eh_abort_handler		= aac_eh_abort,
1534 	.eh_device_reset_handler	= aac_eh_dev_reset,
1535 	.eh_target_reset_handler	= aac_eh_target_reset,
1536 	.eh_bus_reset_handler		= aac_eh_bus_reset,
1537 	.eh_host_reset_handler		= aac_eh_host_reset,
1538 	.can_queue			= AAC_NUM_IO_FIB,
1539 	.this_id			= MAXIMUM_NUM_CONTAINERS,
1540 	.sg_tablesize			= 16,
1541 	.max_sectors			= 128,
1542 #if (AAC_NUM_IO_FIB > 256)
1543 	.cmd_per_lun			= 256,
1544 #else
1545 	.cmd_per_lun			= AAC_NUM_IO_FIB,
1546 #endif
1547 	.emulated			= 1,
1548 	.no_write_same			= 1,
1549 };
1550 
1551 static void __aac_shutdown(struct aac_dev * aac)
1552 {
1553 	int i;
1554 
1555 	mutex_lock(&aac->ioctl_mutex);
1556 	aac->adapter_shutdown = 1;
1557 	mutex_unlock(&aac->ioctl_mutex);
1558 
1559 	if (aac->aif_thread) {
1560 		int i;
1561 		/* Clear out events first */
1562 		for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) {
1563 			struct fib *fib = &aac->fibs[i];
1564 			if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1565 			    (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected)))
1566 				complete(&fib->event_wait);
1567 		}
1568 		kthread_stop(aac->thread);
1569 		aac->thread = NULL;
1570 	}
1571 
1572 	aac_send_shutdown(aac);
1573 
1574 	aac_adapter_disable_int(aac);
1575 
1576 	if (aac_is_src(aac)) {
1577 		if (aac->max_msix > 1) {
1578 			for (i = 0; i < aac->max_msix; i++) {
1579 				free_irq(pci_irq_vector(aac->pdev, i),
1580 					 &(aac->aac_msix[i]));
1581 			}
1582 		} else {
1583 			free_irq(aac->pdev->irq,
1584 				 &(aac->aac_msix[0]));
1585 		}
1586 	} else {
1587 		free_irq(aac->pdev->irq, aac);
1588 	}
1589 	if (aac->msi)
1590 		pci_disable_msi(aac->pdev);
1591 	else if (aac->max_msix > 1)
1592 		pci_disable_msix(aac->pdev);
1593 }
1594 static void aac_init_char(void)
1595 {
1596 	aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops);
1597 	if (aac_cfg_major < 0) {
1598 		pr_err("aacraid: unable to register \"aac\" device.\n");
1599 	}
1600 }
1601 
1602 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
1603 {
1604 	unsigned index = id->driver_data;
1605 	struct Scsi_Host *shost;
1606 	struct aac_dev *aac;
1607 	struct list_head *insert = &aac_devices;
1608 	int error = -ENODEV;
1609 	int unique_id = 0;
1610 	u64 dmamask;
1611 	int mask_bits = 0;
1612 	extern int aac_sync_mode;
1613 
1614 	/*
1615 	 * Only series 7 needs freset.
1616 	 */
1617 	if (pdev->device == PMC_DEVICE_S7)
1618 		pdev->needs_freset = 1;
1619 
1620 	list_for_each_entry(aac, &aac_devices, entry) {
1621 		if (aac->id > unique_id)
1622 			break;
1623 		insert = &aac->entry;
1624 		unique_id++;
1625 	}
1626 
1627 	pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 |
1628 			       PCIE_LINK_STATE_CLKPM);
1629 
1630 	error = pci_enable_device(pdev);
1631 	if (error)
1632 		goto out;
1633 	error = -ENODEV;
1634 
1635 	if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) {
1636 		error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1637 		if (error) {
1638 			dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed");
1639 			goto out_disable_pdev;
1640 		}
1641 	}
1642 
1643 	/*
1644 	 * If the quirk31 bit is set, the adapter needs adapter
1645 	 * to driver communication memory to be allocated below 2gig
1646 	 */
1647 	if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) {
1648 		dmamask = DMA_BIT_MASK(31);
1649 		mask_bits = 31;
1650 	} else {
1651 		dmamask = DMA_BIT_MASK(32);
1652 		mask_bits = 32;
1653 	}
1654 
1655 	error = pci_set_consistent_dma_mask(pdev, dmamask);
1656 	if (error) {
1657 		dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n"
1658 				, mask_bits);
1659 		goto out_disable_pdev;
1660 	}
1661 
1662 	pci_set_master(pdev);
1663 
1664 	shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev));
1665 	if (!shost)
1666 		goto out_disable_pdev;
1667 
1668 	shost->irq = pdev->irq;
1669 	shost->unique_id = unique_id;
1670 	shost->max_cmd_len = 16;
1671 	shost->use_cmd_list = 1;
1672 
1673 	if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT)
1674 		aac_init_char();
1675 
1676 	aac = (struct aac_dev *)shost->hostdata;
1677 	aac->base_start = pci_resource_start(pdev, 0);
1678 	aac->scsi_host_ptr = shost;
1679 	aac->pdev = pdev;
1680 	aac->name = aac_driver_template.name;
1681 	aac->id = shost->unique_id;
1682 	aac->cardtype = index;
1683 	INIT_LIST_HEAD(&aac->entry);
1684 
1685 	if (aac_reset_devices || reset_devices)
1686 		aac->init_reset = true;
1687 
1688 	aac->fibs = kcalloc(shost->can_queue + AAC_NUM_MGT_FIB,
1689 			    sizeof(struct fib),
1690 			    GFP_KERNEL);
1691 	if (!aac->fibs)
1692 		goto out_free_host;
1693 	spin_lock_init(&aac->fib_lock);
1694 
1695 	mutex_init(&aac->ioctl_mutex);
1696 	mutex_init(&aac->scan_mutex);
1697 
1698 	INIT_DELAYED_WORK(&aac->safw_rescan_work, aac_safw_rescan_worker);
1699 	/*
1700 	 *	Map in the registers from the adapter.
1701 	 */
1702 	aac->base_size = AAC_MIN_FOOTPRINT_SIZE;
1703 	if ((*aac_drivers[index].init)(aac)) {
1704 		error = -ENODEV;
1705 		goto out_unmap;
1706 	}
1707 
1708 	if (aac->sync_mode) {
1709 		if (aac_sync_mode)
1710 			printk(KERN_INFO "%s%d: Sync. mode enforced "
1711 				"by driver parameter. This will cause "
1712 				"a significant performance decrease!\n",
1713 				aac->name,
1714 				aac->id);
1715 		else
1716 			printk(KERN_INFO "%s%d: Async. mode not supported "
1717 				"by current driver, sync. mode enforced."
1718 				"\nPlease update driver to get full performance.\n",
1719 				aac->name,
1720 				aac->id);
1721 	}
1722 
1723 	/*
1724 	 *	Start any kernel threads needed
1725 	 */
1726 	aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME);
1727 	if (IS_ERR(aac->thread)) {
1728 		printk(KERN_ERR "aacraid: Unable to create command thread.\n");
1729 		error = PTR_ERR(aac->thread);
1730 		aac->thread = NULL;
1731 		goto out_deinit;
1732 	}
1733 
1734 	aac->maximum_num_channels = aac_drivers[index].channels;
1735 	error = aac_get_adapter_info(aac);
1736 	if (error < 0)
1737 		goto out_deinit;
1738 
1739 	/*
1740 	 * Lets override negotiations and drop the maximum SG limit to 34
1741 	 */
1742 	if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) &&
1743 			(shost->sg_tablesize > 34)) {
1744 		shost->sg_tablesize = 34;
1745 		shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1746 	}
1747 
1748 	if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) &&
1749 			(shost->sg_tablesize > 17)) {
1750 		shost->sg_tablesize = 17;
1751 		shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1752 	}
1753 
1754 	if (aac->adapter_info.options & AAC_OPT_NEW_COMM)
1755 		shost->max_segment_size = shost->max_sectors << 9;
1756 	else
1757 		shost->max_segment_size = 65536;
1758 
1759 	/*
1760 	 * Firmware printf works only with older firmware.
1761 	 */
1762 	if (aac_drivers[index].quirks & AAC_QUIRK_34SG)
1763 		aac->printf_enabled = 1;
1764 	else
1765 		aac->printf_enabled = 0;
1766 
1767 	/*
1768 	 * max channel will be the physical channels plus 1 virtual channel
1769 	 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL)
1770 	 * physical channels are address by their actual physical number+1
1771 	 */
1772 	if (aac->nondasd_support || expose_physicals || aac->jbod)
1773 		shost->max_channel = aac->maximum_num_channels;
1774 	else
1775 		shost->max_channel = 0;
1776 
1777 	aac_get_config_status(aac, 0);
1778 	aac_get_containers(aac);
1779 	list_add(&aac->entry, insert);
1780 
1781 	shost->max_id = aac->maximum_num_containers;
1782 	if (shost->max_id < aac->maximum_num_physicals)
1783 		shost->max_id = aac->maximum_num_physicals;
1784 	if (shost->max_id < MAXIMUM_NUM_CONTAINERS)
1785 		shost->max_id = MAXIMUM_NUM_CONTAINERS;
1786 	else
1787 		shost->this_id = shost->max_id;
1788 
1789 	if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC)
1790 		aac_intr_normal(aac, 0, 2, 0, NULL);
1791 
1792 	/*
1793 	 * dmb - we may need to move the setting of these parms somewhere else once
1794 	 * we get a fib that can report the actual numbers
1795 	 */
1796 	shost->max_lun = AAC_MAX_LUN;
1797 
1798 	pci_set_drvdata(pdev, shost);
1799 
1800 	error = scsi_add_host(shost, &pdev->dev);
1801 	if (error)
1802 		goto out_deinit;
1803 
1804 	aac_scan_host(aac);
1805 
1806 	pci_enable_pcie_error_reporting(pdev);
1807 	pci_save_state(pdev);
1808 
1809 	return 0;
1810 
1811  out_deinit:
1812 	__aac_shutdown(aac);
1813  out_unmap:
1814 	aac_fib_map_free(aac);
1815 	if (aac->comm_addr)
1816 		dma_free_coherent(&aac->pdev->dev, aac->comm_size,
1817 				  aac->comm_addr, aac->comm_phys);
1818 	kfree(aac->queues);
1819 	aac_adapter_ioremap(aac, 0);
1820 	kfree(aac->fibs);
1821 	kfree(aac->fsa_dev);
1822  out_free_host:
1823 	scsi_host_put(shost);
1824  out_disable_pdev:
1825 	pci_disable_device(pdev);
1826  out:
1827 	return error;
1828 }
1829 
1830 static void aac_release_resources(struct aac_dev *aac)
1831 {
1832 	aac_adapter_disable_int(aac);
1833 	aac_free_irq(aac);
1834 }
1835 
1836 static int aac_acquire_resources(struct aac_dev *dev)
1837 {
1838 	unsigned long status;
1839 	/*
1840 	 *	First clear out all interrupts.  Then enable the one's that we
1841 	 *	can handle.
1842 	 */
1843 	while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING)
1844 		|| status == 0xffffffff)
1845 			msleep(20);
1846 
1847 	aac_adapter_disable_int(dev);
1848 	aac_adapter_enable_int(dev);
1849 
1850 
1851 	if (aac_is_src(dev))
1852 		aac_define_int_mode(dev);
1853 
1854 	if (dev->msi_enabled)
1855 		aac_src_access_devreg(dev, AAC_ENABLE_MSIX);
1856 
1857 	if (aac_acquire_irq(dev))
1858 		goto error_iounmap;
1859 
1860 	aac_adapter_enable_int(dev);
1861 
1862 	/*max msix may change  after EEH
1863 	 * Re-assign vectors to fibs
1864 	 */
1865 	aac_fib_vector_assign(dev);
1866 
1867 	if (!dev->sync_mode) {
1868 		/* After EEH recovery or suspend resume, max_msix count
1869 		 * may change, therefore updating in init as well.
1870 		 */
1871 		dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix);
1872 		aac_adapter_start(dev);
1873 	}
1874 	return 0;
1875 
1876 error_iounmap:
1877 	return -1;
1878 
1879 }
1880 
1881 #if (defined(CONFIG_PM))
1882 static int aac_suspend(struct pci_dev *pdev, pm_message_t state)
1883 {
1884 
1885 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1886 	struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1887 
1888 	scsi_block_requests(shost);
1889 	aac_cancel_safw_rescan_worker(aac);
1890 	aac_send_shutdown(aac);
1891 
1892 	aac_release_resources(aac);
1893 
1894 	pci_set_drvdata(pdev, shost);
1895 	pci_save_state(pdev);
1896 	pci_disable_device(pdev);
1897 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
1898 
1899 	return 0;
1900 }
1901 
1902 static int aac_resume(struct pci_dev *pdev)
1903 {
1904 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1905 	struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1906 	int r;
1907 
1908 	pci_set_power_state(pdev, PCI_D0);
1909 	pci_enable_wake(pdev, PCI_D0, 0);
1910 	pci_restore_state(pdev);
1911 	r = pci_enable_device(pdev);
1912 
1913 	if (r)
1914 		goto fail_device;
1915 
1916 	pci_set_master(pdev);
1917 	if (aac_acquire_resources(aac))
1918 		goto fail_device;
1919 	/*
1920 	* reset this flag to unblock ioctl() as it was set at
1921 	* aac_send_shutdown() to block ioctls from upperlayer
1922 	*/
1923 	aac->adapter_shutdown = 0;
1924 	scsi_unblock_requests(shost);
1925 
1926 	return 0;
1927 
1928 fail_device:
1929 	printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id);
1930 	scsi_host_put(shost);
1931 	pci_disable_device(pdev);
1932 	return -ENODEV;
1933 }
1934 #endif
1935 
1936 static void aac_shutdown(struct pci_dev *dev)
1937 {
1938 	struct Scsi_Host *shost = pci_get_drvdata(dev);
1939 	scsi_block_requests(shost);
1940 	__aac_shutdown((struct aac_dev *)shost->hostdata);
1941 }
1942 
1943 static void aac_remove_one(struct pci_dev *pdev)
1944 {
1945 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1946 	struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1947 
1948 	aac_cancel_safw_rescan_worker(aac);
1949 	scsi_remove_host(shost);
1950 
1951 	__aac_shutdown(aac);
1952 	aac_fib_map_free(aac);
1953 	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1954 			  aac->comm_phys);
1955 	kfree(aac->queues);
1956 
1957 	aac_adapter_ioremap(aac, 0);
1958 
1959 	kfree(aac->fibs);
1960 	kfree(aac->fsa_dev);
1961 
1962 	list_del(&aac->entry);
1963 	scsi_host_put(shost);
1964 	pci_disable_device(pdev);
1965 	if (list_empty(&aac_devices)) {
1966 		unregister_chrdev(aac_cfg_major, "aac");
1967 		aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT;
1968 	}
1969 }
1970 
1971 static void aac_flush_ios(struct aac_dev *aac)
1972 {
1973 	int i;
1974 	struct scsi_cmnd *cmd;
1975 
1976 	for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) {
1977 		cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data;
1978 		if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) {
1979 			scsi_dma_unmap(cmd);
1980 
1981 			if (aac->handle_pci_error)
1982 				cmd->result = DID_NO_CONNECT << 16;
1983 			else
1984 				cmd->result = DID_RESET << 16;
1985 
1986 			cmd->scsi_done(cmd);
1987 		}
1988 	}
1989 }
1990 
1991 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev,
1992 					enum pci_channel_state error)
1993 {
1994 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
1995 	struct aac_dev *aac = shost_priv(shost);
1996 
1997 	dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error);
1998 
1999 	switch (error) {
2000 	case pci_channel_io_normal:
2001 		return PCI_ERS_RESULT_CAN_RECOVER;
2002 	case pci_channel_io_frozen:
2003 		aac->handle_pci_error = 1;
2004 
2005 		scsi_block_requests(aac->scsi_host_ptr);
2006 		aac_cancel_safw_rescan_worker(aac);
2007 		aac_flush_ios(aac);
2008 		aac_release_resources(aac);
2009 
2010 		pci_disable_pcie_error_reporting(pdev);
2011 		aac_adapter_ioremap(aac, 0);
2012 
2013 		return PCI_ERS_RESULT_NEED_RESET;
2014 	case pci_channel_io_perm_failure:
2015 		aac->handle_pci_error = 1;
2016 
2017 		aac_flush_ios(aac);
2018 		return PCI_ERS_RESULT_DISCONNECT;
2019 	}
2020 
2021 	return PCI_ERS_RESULT_NEED_RESET;
2022 }
2023 
2024 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev)
2025 {
2026 	dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n");
2027 	return PCI_ERS_RESULT_NEED_RESET;
2028 }
2029 
2030 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev)
2031 {
2032 	dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n");
2033 	pci_restore_state(pdev);
2034 	if (pci_enable_device(pdev)) {
2035 		dev_warn(&pdev->dev,
2036 			"aacraid: failed to enable slave\n");
2037 		goto fail_device;
2038 	}
2039 
2040 	pci_set_master(pdev);
2041 
2042 	if (pci_enable_device_mem(pdev)) {
2043 		dev_err(&pdev->dev, "pci_enable_device_mem failed\n");
2044 		goto fail_device;
2045 	}
2046 
2047 	return PCI_ERS_RESULT_RECOVERED;
2048 
2049 fail_device:
2050 	dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n");
2051 	return PCI_ERS_RESULT_DISCONNECT;
2052 }
2053 
2054 
2055 static void aac_pci_resume(struct pci_dev *pdev)
2056 {
2057 	struct Scsi_Host *shost = pci_get_drvdata(pdev);
2058 	struct scsi_device *sdev = NULL;
2059 	struct aac_dev *aac = (struct aac_dev *)shost_priv(shost);
2060 
2061 	if (aac_adapter_ioremap(aac, aac->base_size)) {
2062 
2063 		dev_err(&pdev->dev, "aacraid: ioremap failed\n");
2064 		/* remap failed, go back ... */
2065 		aac->comm_interface = AAC_COMM_PRODUCER;
2066 		if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) {
2067 			dev_warn(&pdev->dev,
2068 				"aacraid: unable to map adapter.\n");
2069 
2070 			return;
2071 		}
2072 	}
2073 
2074 	msleep(10000);
2075 
2076 	aac_acquire_resources(aac);
2077 
2078 	/*
2079 	 * reset this flag to unblock ioctl() as it was set
2080 	 * at aac_send_shutdown() to block ioctls from upperlayer
2081 	 */
2082 	aac->adapter_shutdown = 0;
2083 	aac->handle_pci_error = 0;
2084 
2085 	shost_for_each_device(sdev, shost)
2086 		if (sdev->sdev_state == SDEV_OFFLINE)
2087 			sdev->sdev_state = SDEV_RUNNING;
2088 	scsi_unblock_requests(aac->scsi_host_ptr);
2089 	aac_scan_host(aac);
2090 	pci_save_state(pdev);
2091 
2092 	dev_err(&pdev->dev, "aacraid: PCI error - resume\n");
2093 }
2094 
2095 static struct pci_error_handlers aac_pci_err_handler = {
2096 	.error_detected		= aac_pci_error_detected,
2097 	.mmio_enabled		= aac_pci_mmio_enabled,
2098 	.slot_reset		= aac_pci_slot_reset,
2099 	.resume			= aac_pci_resume,
2100 };
2101 
2102 static struct pci_driver aac_pci_driver = {
2103 	.name		= AAC_DRIVERNAME,
2104 	.id_table	= aac_pci_tbl,
2105 	.probe		= aac_probe_one,
2106 	.remove		= aac_remove_one,
2107 #if (defined(CONFIG_PM))
2108 	.suspend	= aac_suspend,
2109 	.resume		= aac_resume,
2110 #endif
2111 	.shutdown	= aac_shutdown,
2112 	.err_handler    = &aac_pci_err_handler,
2113 };
2114 
2115 static int __init aac_init(void)
2116 {
2117 	int error;
2118 
2119 	printk(KERN_INFO "Adaptec %s driver %s\n",
2120 	  AAC_DRIVERNAME, aac_driver_version);
2121 
2122 	error = pci_register_driver(&aac_pci_driver);
2123 	if (error < 0)
2124 		return error;
2125 
2126 	aac_init_char();
2127 
2128 
2129 	return 0;
2130 }
2131 
2132 static void __exit aac_exit(void)
2133 {
2134 	if (aac_cfg_major > -1)
2135 		unregister_chrdev(aac_cfg_major, "aac");
2136 	pci_unregister_driver(&aac_pci_driver);
2137 }
2138 
2139 module_init(aac_init);
2140 module_exit(aac_exit);
2141