1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * linit.c 28 * 29 * Abstract: Linux Driver entry module for Adaptec RAID Array Controller 30 */ 31 32 33 #include <linux/compat.h> 34 #include <linux/blkdev.h> 35 #include <linux/completion.h> 36 #include <linux/init.h> 37 #include <linux/interrupt.h> 38 #include <linux/kernel.h> 39 #include <linux/module.h> 40 #include <linux/moduleparam.h> 41 #include <linux/pci.h> 42 #include <linux/aer.h> 43 #include <linux/pci-aspm.h> 44 #include <linux/slab.h> 45 #include <linux/mutex.h> 46 #include <linux/spinlock.h> 47 #include <linux/syscalls.h> 48 #include <linux/delay.h> 49 #include <linux/kthread.h> 50 51 #include <scsi/scsi.h> 52 #include <scsi/scsi_cmnd.h> 53 #include <scsi/scsi_device.h> 54 #include <scsi/scsi_host.h> 55 #include <scsi/scsi_tcq.h> 56 #include <scsi/scsicam.h> 57 #include <scsi/scsi_eh.h> 58 59 #include "aacraid.h" 60 61 #define AAC_DRIVER_VERSION "1.2.1" 62 #ifndef AAC_DRIVER_BRANCH 63 #define AAC_DRIVER_BRANCH "" 64 #endif 65 #define AAC_DRIVERNAME "aacraid" 66 67 #ifdef AAC_DRIVER_BUILD 68 #define _str(x) #x 69 #define str(x) _str(x) 70 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH 71 #else 72 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH 73 #endif 74 75 MODULE_AUTHOR("Red Hat Inc and Adaptec"); 76 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, " 77 "Adaptec Advanced Raid Products, " 78 "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver"); 79 MODULE_LICENSE("GPL"); 80 MODULE_VERSION(AAC_DRIVER_FULL_VERSION); 81 82 static DEFINE_MUTEX(aac_mutex); 83 static LIST_HEAD(aac_devices); 84 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED; 85 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION; 86 87 /* 88 * Because of the way Linux names scsi devices, the order in this table has 89 * become important. Check for on-board Raid first, add-in cards second. 90 * 91 * Note: The last field is used to index into aac_drivers below. 92 */ 93 static const struct pci_device_id aac_pci_tbl[] = { 94 { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */ 95 { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */ 96 { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */ 97 { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 98 { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */ 99 { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 100 { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 101 { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 102 { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 103 { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */ 104 { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */ 105 { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */ 106 { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */ 107 { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */ 108 { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */ 109 { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */ 110 111 { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */ 112 { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */ 113 { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 114 { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 115 { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 116 { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */ 117 { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */ 118 { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */ 119 { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */ 120 { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */ 121 { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */ 122 { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */ 123 { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */ 124 { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */ 125 { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */ 126 { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */ 127 { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */ 128 { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */ 129 { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */ 130 { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */ 131 { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 132 { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 133 { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 134 { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 135 { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 136 { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 137 { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 138 { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */ 139 { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */ 140 { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */ 141 { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */ 142 { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */ 143 { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */ 144 { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 145 { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */ 146 { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */ 147 { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */ 148 { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */ 149 150 { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/ 151 { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/ 152 { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/ 153 { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */ 154 { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */ 155 156 { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */ 157 { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */ 158 { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */ 159 { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */ 160 { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */ 161 { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */ 162 { 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */ 163 { 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */ 164 { 0,} 165 }; 166 MODULE_DEVICE_TABLE(pci, aac_pci_tbl); 167 168 /* 169 * dmb - For now we add the number of channels to this structure. 170 * In the future we should add a fib that reports the number of channels 171 * for the card. At that time we can remove the channels from here 172 */ 173 static struct aac_driver_ident aac_drivers[] = { 174 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */ 175 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */ 176 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */ 177 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 178 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */ 179 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 180 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 181 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 182 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 183 { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */ 184 { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */ 185 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */ 186 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */ 187 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */ 188 { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */ 189 { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */ 190 191 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */ 192 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */ 193 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 194 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 195 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 196 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */ 197 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */ 198 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */ 199 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */ 200 { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */ 201 { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */ 202 { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */ 203 { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */ 204 { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */ 205 { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */ 206 { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */ 207 { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */ 208 { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */ 209 { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */ 210 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 211 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 212 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 213 { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 214 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 215 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 216 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 217 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */ 218 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */ 219 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */ 220 { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */ 221 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */ 222 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 223 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */ 224 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */ 225 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */ 226 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */ 227 228 { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/ 229 { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 230 { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 231 { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */ 232 { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */ 233 234 { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */ 235 { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */ 236 { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */ 237 { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */ 238 { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */ 239 { aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */ 240 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */ 241 { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */ 242 }; 243 244 /** 245 * aac_queuecommand - queue a SCSI command 246 * @cmd: SCSI command to queue 247 * @done: Function to call on command completion 248 * 249 * Queues a command for execution by the associated Host Adapter. 250 * 251 * TODO: unify with aac_scsi_cmd(). 252 */ 253 254 static int aac_queuecommand(struct Scsi_Host *shost, 255 struct scsi_cmnd *cmd) 256 { 257 int r = 0; 258 cmd->SCp.phase = AAC_OWNER_LOWLEVEL; 259 r = (aac_scsi_cmd(cmd) ? FAILED : 0); 260 return r; 261 } 262 263 /** 264 * aac_info - Returns the host adapter name 265 * @shost: Scsi host to report on 266 * 267 * Returns a static string describing the device in question 268 */ 269 270 static const char *aac_info(struct Scsi_Host *shost) 271 { 272 struct aac_dev *dev = (struct aac_dev *)shost->hostdata; 273 return aac_drivers[dev->cardtype].name; 274 } 275 276 /** 277 * aac_get_driver_ident 278 * @devtype: index into lookup table 279 * 280 * Returns a pointer to the entry in the driver lookup table. 281 */ 282 283 struct aac_driver_ident* aac_get_driver_ident(int devtype) 284 { 285 return &aac_drivers[devtype]; 286 } 287 288 /** 289 * aac_biosparm - return BIOS parameters for disk 290 * @sdev: The scsi device corresponding to the disk 291 * @bdev: the block device corresponding to the disk 292 * @capacity: the sector capacity of the disk 293 * @geom: geometry block to fill in 294 * 295 * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk. 296 * The default disk geometry is 64 heads, 32 sectors, and the appropriate 297 * number of cylinders so as not to exceed drive capacity. In order for 298 * disks equal to or larger than 1 GB to be addressable by the BIOS 299 * without exceeding the BIOS limitation of 1024 cylinders, Extended 300 * Translation should be enabled. With Extended Translation enabled, 301 * drives between 1 GB inclusive and 2 GB exclusive are given a disk 302 * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive 303 * are given a disk geometry of 255 heads and 63 sectors. However, if 304 * the BIOS detects that the Extended Translation setting does not match 305 * the geometry in the partition table, then the translation inferred 306 * from the partition table will be used by the BIOS, and a warning may 307 * be displayed. 308 */ 309 310 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev, 311 sector_t capacity, int *geom) 312 { 313 struct diskparm *param = (struct diskparm *)geom; 314 unsigned char *buf; 315 316 dprintk((KERN_DEBUG "aac_biosparm.\n")); 317 318 /* 319 * Assuming extended translation is enabled - #REVISIT# 320 */ 321 if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */ 322 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */ 323 param->heads = 255; 324 param->sectors = 63; 325 } else { 326 param->heads = 128; 327 param->sectors = 32; 328 } 329 } else { 330 param->heads = 64; 331 param->sectors = 32; 332 } 333 334 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 335 336 /* 337 * Read the first 1024 bytes from the disk device, if the boot 338 * sector partition table is valid, search for a partition table 339 * entry whose end_head matches one of the standard geometry 340 * translations ( 64/32, 128/32, 255/63 ). 341 */ 342 buf = scsi_bios_ptable(bdev); 343 if (!buf) 344 return 0; 345 if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) { 346 struct partition *first = (struct partition * )buf; 347 struct partition *entry = first; 348 int saved_cylinders = param->cylinders; 349 int num; 350 unsigned char end_head, end_sec; 351 352 for(num = 0; num < 4; num++) { 353 end_head = entry->end_head; 354 end_sec = entry->end_sector & 0x3f; 355 356 if(end_head == 63) { 357 param->heads = 64; 358 param->sectors = 32; 359 break; 360 } else if(end_head == 127) { 361 param->heads = 128; 362 param->sectors = 32; 363 break; 364 } else if(end_head == 254) { 365 param->heads = 255; 366 param->sectors = 63; 367 break; 368 } 369 entry++; 370 } 371 372 if (num == 4) { 373 end_head = first->end_head; 374 end_sec = first->end_sector & 0x3f; 375 } 376 377 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 378 if (num < 4 && end_sec == param->sectors) { 379 if (param->cylinders != saved_cylinders) 380 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n", 381 param->heads, param->sectors, num)); 382 } else if (end_head > 0 || end_sec > 0) { 383 dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n", 384 end_head + 1, end_sec, num)); 385 dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n", 386 param->heads, param->sectors)); 387 } 388 } 389 kfree(buf); 390 return 0; 391 } 392 393 /** 394 * aac_slave_configure - compute queue depths 395 * @sdev: SCSI device we are considering 396 * 397 * Selects queue depths for each target device based on the host adapter's 398 * total capacity and the queue depth supported by the target device. 399 * A queue depth of one automatically disables tagged queueing. 400 */ 401 402 static int aac_slave_configure(struct scsi_device *sdev) 403 { 404 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 405 int chn, tid; 406 unsigned int depth = 0; 407 unsigned int set_timeout = 0; 408 bool set_qd_dev_type = false; 409 u8 devtype = 0; 410 411 chn = aac_logical_to_phys(sdev_channel(sdev)); 412 tid = sdev_id(sdev); 413 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) { 414 devtype = aac->hba_map[chn][tid].devtype; 415 416 if (devtype == AAC_DEVTYPE_NATIVE_RAW) 417 depth = aac->hba_map[chn][tid].qd_limit; 418 else if (devtype == AAC_DEVTYPE_ARC_RAW) 419 set_qd_dev_type = true; 420 421 set_timeout = 1; 422 goto common_config; 423 } 424 425 if (aac->jbod && (sdev->type == TYPE_DISK)) 426 sdev->removable = 1; 427 428 if (sdev->type == TYPE_DISK 429 && sdev_channel(sdev) != CONTAINER_CHANNEL 430 && (!aac->jbod || sdev->inq_periph_qual) 431 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) { 432 433 if (expose_physicals == 0) 434 return -ENXIO; 435 436 if (expose_physicals < 0) 437 sdev->no_uld_attach = 1; 438 } 439 440 if (sdev->tagged_supported 441 && sdev->type == TYPE_DISK 442 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 443 && !sdev->no_uld_attach) { 444 445 struct scsi_device * dev; 446 struct Scsi_Host *host = sdev->host; 447 unsigned num_lsu = 0; 448 unsigned num_one = 0; 449 unsigned cid; 450 451 set_timeout = 1; 452 453 for (cid = 0; cid < aac->maximum_num_containers; ++cid) 454 if (aac->fsa_dev[cid].valid) 455 ++num_lsu; 456 457 __shost_for_each_device(dev, host) { 458 if (dev->tagged_supported 459 && dev->type == TYPE_DISK 460 && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) 461 && !dev->no_uld_attach) { 462 if ((sdev_channel(dev) != CONTAINER_CHANNEL) 463 || !aac->fsa_dev[sdev_id(dev)].valid) { 464 ++num_lsu; 465 } 466 } else { 467 ++num_one; 468 } 469 } 470 471 if (num_lsu == 0) 472 ++num_lsu; 473 474 depth = (host->can_queue - num_one) / num_lsu; 475 476 if (sdev_channel(sdev) != NATIVE_CHANNEL) 477 goto common_config; 478 479 set_qd_dev_type = true; 480 481 } 482 483 common_config: 484 485 /* 486 * Check if SATA drive 487 */ 488 if (set_qd_dev_type) { 489 if (strncmp(sdev->vendor, "ATA", 3) == 0) 490 depth = 32; 491 else 492 depth = 64; 493 } 494 495 /* 496 * Firmware has an individual device recovery time typically 497 * of 35 seconds, give us a margin. 498 */ 499 if (set_timeout && sdev->request_queue->rq_timeout < (45 * HZ)) 500 blk_queue_rq_timeout(sdev->request_queue, 45*HZ); 501 502 if (depth > 256) 503 depth = 256; 504 else if (depth < 1) 505 depth = 1; 506 507 scsi_change_queue_depth(sdev, depth); 508 509 sdev->tagged_supported = 1; 510 511 return 0; 512 } 513 514 /** 515 * aac_change_queue_depth - alter queue depths 516 * @sdev: SCSI device we are considering 517 * @depth: desired queue depth 518 * 519 * Alters queue depths for target device based on the host adapter's 520 * total capacity and the queue depth supported by the target device. 521 */ 522 523 static int aac_change_queue_depth(struct scsi_device *sdev, int depth) 524 { 525 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 526 int chn, tid, is_native_device = 0; 527 528 chn = aac_logical_to_phys(sdev_channel(sdev)); 529 tid = sdev_id(sdev); 530 if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && 531 aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW) 532 is_native_device = 1; 533 534 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && 535 (sdev_channel(sdev) == CONTAINER_CHANNEL)) { 536 struct scsi_device * dev; 537 struct Scsi_Host *host = sdev->host; 538 unsigned num = 0; 539 540 __shost_for_each_device(dev, host) { 541 if (dev->tagged_supported && (dev->type == TYPE_DISK) && 542 (sdev_channel(dev) == CONTAINER_CHANNEL)) 543 ++num; 544 ++num; 545 } 546 if (num >= host->can_queue) 547 num = host->can_queue - 1; 548 if (depth > (host->can_queue - num)) 549 depth = host->can_queue - num; 550 if (depth > 256) 551 depth = 256; 552 else if (depth < 2) 553 depth = 2; 554 return scsi_change_queue_depth(sdev, depth); 555 } else if (is_native_device) { 556 scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit); 557 } else { 558 scsi_change_queue_depth(sdev, 1); 559 } 560 return sdev->queue_depth; 561 } 562 563 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) 564 { 565 struct scsi_device *sdev = to_scsi_device(dev); 566 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 567 if (sdev_channel(sdev) != CONTAINER_CHANNEL) 568 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach 569 ? "Hidden\n" : 570 ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : "")); 571 return snprintf(buf, PAGE_SIZE, "%s\n", 572 get_container_type(aac->fsa_dev[sdev_id(sdev)].type)); 573 } 574 575 static struct device_attribute aac_raid_level_attr = { 576 .attr = { 577 .name = "level", 578 .mode = S_IRUGO, 579 }, 580 .show = aac_show_raid_level 581 }; 582 583 static ssize_t aac_show_unique_id(struct device *dev, 584 struct device_attribute *attr, char *buf) 585 { 586 struct scsi_device *sdev = to_scsi_device(dev); 587 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 588 unsigned char sn[16]; 589 590 memset(sn, 0, sizeof(sn)); 591 592 if (sdev_channel(sdev) == CONTAINER_CHANNEL) 593 memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn)); 594 595 return snprintf(buf, 16 * 2 + 2, 596 "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n", 597 sn[0], sn[1], sn[2], sn[3], 598 sn[4], sn[5], sn[6], sn[7], 599 sn[8], sn[9], sn[10], sn[11], 600 sn[12], sn[13], sn[14], sn[15]); 601 } 602 603 static struct device_attribute aac_unique_id_attr = { 604 .attr = { 605 .name = "unique_id", 606 .mode = 0444, 607 }, 608 .show = aac_show_unique_id 609 }; 610 611 612 613 static struct device_attribute *aac_dev_attrs[] = { 614 &aac_raid_level_attr, 615 &aac_unique_id_attr, 616 NULL, 617 }; 618 619 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg) 620 { 621 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 622 if (!capable(CAP_SYS_RAWIO)) 623 return -EPERM; 624 return aac_do_ioctl(dev, cmd, arg); 625 } 626 627 static int get_num_of_incomplete_fibs(struct aac_dev *aac) 628 { 629 630 unsigned long flags; 631 struct scsi_device *sdev = NULL; 632 struct Scsi_Host *shost = aac->scsi_host_ptr; 633 struct scsi_cmnd *scmnd = NULL; 634 struct device *ctrl_dev; 635 636 int mlcnt = 0; 637 int llcnt = 0; 638 int ehcnt = 0; 639 int fwcnt = 0; 640 int krlcnt = 0; 641 642 __shost_for_each_device(sdev, shost) { 643 spin_lock_irqsave(&sdev->list_lock, flags); 644 list_for_each_entry(scmnd, &sdev->cmd_list, list) { 645 switch (scmnd->SCp.phase) { 646 case AAC_OWNER_FIRMWARE: 647 fwcnt++; 648 break; 649 case AAC_OWNER_ERROR_HANDLER: 650 ehcnt++; 651 break; 652 case AAC_OWNER_LOWLEVEL: 653 llcnt++; 654 break; 655 case AAC_OWNER_MIDLEVEL: 656 mlcnt++; 657 break; 658 default: 659 krlcnt++; 660 break; 661 } 662 } 663 spin_unlock_irqrestore(&sdev->list_lock, flags); 664 } 665 666 ctrl_dev = &aac->pdev->dev; 667 668 dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", mlcnt); 669 dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", llcnt); 670 dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", ehcnt); 671 dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fwcnt); 672 dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", krlcnt); 673 674 return mlcnt + llcnt + ehcnt + fwcnt; 675 } 676 677 static int aac_eh_abort(struct scsi_cmnd* cmd) 678 { 679 struct scsi_device * dev = cmd->device; 680 struct Scsi_Host * host = dev->host; 681 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 682 int count, found; 683 u32 bus, cid; 684 int ret = FAILED; 685 686 bus = aac_logical_to_phys(scmd_channel(cmd)); 687 cid = scmd_id(cmd); 688 if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) { 689 struct fib *fib; 690 struct aac_hba_tm_req *tmf; 691 int status; 692 u64 address; 693 __le32 managed_request_id; 694 695 pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n", 696 AAC_DRIVERNAME, 697 host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun); 698 699 found = 0; 700 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 701 fib = &aac->fibs[count]; 702 if (*(u8 *)fib->hw_fib_va != 0 && 703 (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 704 (fib->callback_data == cmd)) { 705 found = 1; 706 managed_request_id = ((struct aac_hba_cmd_req *) 707 fib->hw_fib_va)->request_id; 708 break; 709 } 710 } 711 if (!found) 712 return ret; 713 714 /* start a HBA_TMF_ABORT_TASK TMF request */ 715 fib = aac_fib_alloc(aac); 716 if (!fib) 717 return ret; 718 719 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 720 memset(tmf, 0, sizeof(*tmf)); 721 tmf->tmf = HBA_TMF_ABORT_TASK; 722 tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus; 723 tmf->lun[1] = cmd->device->lun; 724 725 address = (u64)fib->hw_error_pa; 726 tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 727 tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff)); 728 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 729 730 fib->hbacmd_size = sizeof(*tmf); 731 cmd->SCp.sent_command = 0; 732 733 status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib, 734 (fib_callback) aac_hba_callback, 735 (void *) cmd); 736 737 /* Wait up to 15 secs for completion */ 738 for (count = 0; count < 15; ++count) { 739 if (cmd->SCp.sent_command) { 740 ret = SUCCESS; 741 break; 742 } 743 msleep(1000); 744 } 745 746 if (ret != SUCCESS) 747 pr_err("%s: Host adapter abort request timed out\n", 748 AAC_DRIVERNAME); 749 } else { 750 pr_err( 751 "%s: Host adapter abort request.\n" 752 "%s: Outstanding commands on (%d,%d,%d,%d):\n", 753 AAC_DRIVERNAME, AAC_DRIVERNAME, 754 host->host_no, sdev_channel(dev), sdev_id(dev), 755 (int)dev->lun); 756 switch (cmd->cmnd[0]) { 757 case SERVICE_ACTION_IN_16: 758 if (!(aac->raw_io_interface) || 759 !(aac->raw_io_64) || 760 ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 761 break; 762 case INQUIRY: 763 case READ_CAPACITY: 764 /* 765 * Mark associated FIB to not complete, 766 * eh handler does this 767 */ 768 for (count = 0; 769 count < (host->can_queue + AAC_NUM_MGT_FIB); 770 ++count) { 771 struct fib *fib = &aac->fibs[count]; 772 773 if (fib->hw_fib_va->header.XferState && 774 (fib->flags & FIB_CONTEXT_FLAG) && 775 (fib->callback_data == cmd)) { 776 fib->flags |= 777 FIB_CONTEXT_FLAG_TIMED_OUT; 778 cmd->SCp.phase = 779 AAC_OWNER_ERROR_HANDLER; 780 ret = SUCCESS; 781 } 782 } 783 break; 784 case TEST_UNIT_READY: 785 /* 786 * Mark associated FIB to not complete, 787 * eh handler does this 788 */ 789 for (count = 0; 790 count < (host->can_queue + AAC_NUM_MGT_FIB); 791 ++count) { 792 struct scsi_cmnd *command; 793 struct fib *fib = &aac->fibs[count]; 794 795 command = fib->callback_data; 796 797 if ((fib->hw_fib_va->header.XferState & 798 cpu_to_le32 799 (Async | NoResponseExpected)) && 800 (fib->flags & FIB_CONTEXT_FLAG) && 801 ((command)) && 802 (command->device == cmd->device)) { 803 fib->flags |= 804 FIB_CONTEXT_FLAG_TIMED_OUT; 805 command->SCp.phase = 806 AAC_OWNER_ERROR_HANDLER; 807 if (command == cmd) 808 ret = SUCCESS; 809 } 810 } 811 break; 812 } 813 } 814 return ret; 815 } 816 817 static u8 aac_eh_tmf_lun_reset_fib(struct aac_hba_map_info *info, 818 struct fib *fib, u64 tmf_lun) 819 { 820 struct aac_hba_tm_req *tmf; 821 u64 address; 822 823 /* start a HBA_TMF_LUN_RESET TMF request */ 824 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va; 825 memset(tmf, 0, sizeof(*tmf)); 826 tmf->tmf = HBA_TMF_LUN_RESET; 827 tmf->it_nexus = info->rmw_nexus; 828 int_to_scsilun(tmf_lun, (struct scsi_lun *)tmf->lun); 829 830 address = (u64)fib->hw_error_pa; 831 tmf->error_ptr_hi = cpu_to_le32 832 ((u32)(address >> 32)); 833 tmf->error_ptr_lo = cpu_to_le32 834 ((u32)(address & 0xffffffff)); 835 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 836 fib->hbacmd_size = sizeof(*tmf); 837 838 return HBA_IU_TYPE_SCSI_TM_REQ; 839 } 840 841 static u8 aac_eh_tmf_hard_reset_fib(struct aac_hba_map_info *info, 842 struct fib *fib) 843 { 844 struct aac_hba_reset_req *rst; 845 u64 address; 846 847 /* already tried, start a hard reset now */ 848 rst = (struct aac_hba_reset_req *)fib->hw_fib_va; 849 memset(rst, 0, sizeof(*rst)); 850 rst->it_nexus = info->rmw_nexus; 851 852 address = (u64)fib->hw_error_pa; 853 rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32)); 854 rst->error_ptr_lo = cpu_to_le32 855 ((u32)(address & 0xffffffff)); 856 rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE); 857 fib->hbacmd_size = sizeof(*rst); 858 859 return HBA_IU_TYPE_SATA_REQ; 860 } 861 862 void aac_tmf_callback(void *context, struct fib *fibptr) 863 { 864 struct aac_hba_resp *err = 865 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err; 866 struct aac_hba_map_info *info = context; 867 int res; 868 869 switch (err->service_response) { 870 case HBA_RESP_SVCRES_TMF_REJECTED: 871 res = -1; 872 break; 873 case HBA_RESP_SVCRES_TMF_LUN_INVALID: 874 res = 0; 875 break; 876 case HBA_RESP_SVCRES_TMF_COMPLETE: 877 case HBA_RESP_SVCRES_TMF_SUCCEEDED: 878 res = 0; 879 break; 880 default: 881 res = -2; 882 break; 883 } 884 aac_fib_complete(fibptr); 885 886 info->reset_state = res; 887 } 888 889 /* 890 * aac_eh_dev_reset - Device reset command handling 891 * @scsi_cmd: SCSI command block causing the reset 892 * 893 */ 894 static int aac_eh_dev_reset(struct scsi_cmnd *cmd) 895 { 896 struct scsi_device * dev = cmd->device; 897 struct Scsi_Host * host = dev->host; 898 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 899 struct aac_hba_map_info *info; 900 int count; 901 u32 bus, cid; 902 struct fib *fib; 903 int ret = FAILED; 904 int status; 905 u8 command; 906 907 bus = aac_logical_to_phys(scmd_channel(cmd)); 908 cid = scmd_id(cmd); 909 910 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) 911 return FAILED; 912 913 info = &aac->hba_map[bus][cid]; 914 915 if (info->devtype != AAC_DEVTYPE_NATIVE_RAW && 916 info->reset_state > 0) 917 return FAILED; 918 919 pr_err("%s: Host adapter reset request. SCSI hang ?\n", 920 AAC_DRIVERNAME); 921 922 fib = aac_fib_alloc(aac); 923 if (!fib) 924 return ret; 925 926 /* start a HBA_TMF_LUN_RESET TMF request */ 927 command = aac_eh_tmf_lun_reset_fib(info, fib, dev->lun); 928 929 info->reset_state = 1; 930 931 status = aac_hba_send(command, fib, 932 (fib_callback) aac_tmf_callback, 933 (void *) info); 934 935 /* Wait up to 15 seconds for completion */ 936 for (count = 0; count < 15; ++count) { 937 if (info->reset_state == 0) { 938 ret = info->reset_state == 0 ? SUCCESS : FAILED; 939 break; 940 } 941 msleep(1000); 942 } 943 944 return ret; 945 } 946 947 /* 948 * aac_eh_target_reset - Target reset command handling 949 * @scsi_cmd: SCSI command block causing the reset 950 * 951 */ 952 static int aac_eh_target_reset(struct scsi_cmnd *cmd) 953 { 954 struct scsi_device * dev = cmd->device; 955 struct Scsi_Host * host = dev->host; 956 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 957 struct aac_hba_map_info *info; 958 int count; 959 u32 bus, cid; 960 int ret = FAILED; 961 struct fib *fib; 962 int status; 963 u8 command; 964 965 bus = aac_logical_to_phys(scmd_channel(cmd)); 966 cid = scmd_id(cmd); 967 968 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS) 969 return FAILED; 970 971 info = &aac->hba_map[bus][cid]; 972 973 if (info->devtype != AAC_DEVTYPE_NATIVE_RAW && 974 info->reset_state > 0) 975 return FAILED; 976 977 pr_err("%s: Host adapter reset request. SCSI hang ?\n", 978 AAC_DRIVERNAME); 979 980 fib = aac_fib_alloc(aac); 981 if (!fib) 982 return ret; 983 984 985 /* already tried, start a hard reset now */ 986 command = aac_eh_tmf_hard_reset_fib(info, fib); 987 988 info->reset_state = 2; 989 990 status = aac_hba_send(command, fib, 991 (fib_callback) aac_tmf_callback, 992 (void *) info); 993 994 /* Wait up to 15 seconds for completion */ 995 for (count = 0; count < 15; ++count) { 996 if (info->reset_state <= 0) { 997 ret = info->reset_state == 0 ? SUCCESS : FAILED; 998 break; 999 } 1000 msleep(1000); 1001 } 1002 1003 return ret; 1004 } 1005 1006 /* 1007 * aac_eh_bus_reset - Bus reset command handling 1008 * @scsi_cmd: SCSI command block causing the reset 1009 * 1010 */ 1011 static int aac_eh_bus_reset(struct scsi_cmnd* cmd) 1012 { 1013 struct scsi_device * dev = cmd->device; 1014 struct Scsi_Host * host = dev->host; 1015 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 1016 int count; 1017 u32 cmd_bus; 1018 int status = 0; 1019 1020 1021 cmd_bus = aac_logical_to_phys(scmd_channel(cmd)); 1022 /* Mark the assoc. FIB to not complete, eh handler does this */ 1023 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 1024 struct fib *fib = &aac->fibs[count]; 1025 1026 if (fib->hw_fib_va->header.XferState && 1027 (fib->flags & FIB_CONTEXT_FLAG) && 1028 (fib->flags & FIB_CONTEXT_FLAG_SCSI_CMD)) { 1029 struct aac_hba_map_info *info; 1030 u32 bus, cid; 1031 1032 cmd = (struct scsi_cmnd *)fib->callback_data; 1033 bus = aac_logical_to_phys(scmd_channel(cmd)); 1034 if (bus != cmd_bus) 1035 continue; 1036 cid = scmd_id(cmd); 1037 info = &aac->hba_map[bus][cid]; 1038 if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS || 1039 info->devtype != AAC_DEVTYPE_NATIVE_RAW) { 1040 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; 1041 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1042 } 1043 } 1044 } 1045 1046 pr_err("%s: Host adapter reset request. SCSI hang ?\n", AAC_DRIVERNAME); 1047 1048 /* 1049 * Check the health of the controller 1050 */ 1051 status = aac_adapter_check_health(aac); 1052 if (status) 1053 dev_err(&aac->pdev->dev, "Adapter health - %d\n", status); 1054 1055 count = get_num_of_incomplete_fibs(aac); 1056 return (count == 0) ? SUCCESS : FAILED; 1057 } 1058 1059 /* 1060 * aac_eh_host_reset - Host reset command handling 1061 * @scsi_cmd: SCSI command block causing the reset 1062 * 1063 */ 1064 int aac_eh_host_reset(struct scsi_cmnd *cmd) 1065 { 1066 struct scsi_device * dev = cmd->device; 1067 struct Scsi_Host * host = dev->host; 1068 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 1069 int ret = FAILED; 1070 __le32 supported_options2 = 0; 1071 bool is_mu_reset; 1072 bool is_ignore_reset; 1073 bool is_doorbell_reset; 1074 1075 /* 1076 * Check if reset is supported by the firmware 1077 */ 1078 supported_options2 = aac->supplement_adapter_info.supported_options2; 1079 is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET; 1080 is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET; 1081 is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET; 1082 /* 1083 * This adapter needs a blind reset, only do so for 1084 * Adapters that support a register, instead of a commanded, 1085 * reset. 1086 */ 1087 if ((is_mu_reset || is_doorbell_reset) 1088 && aac_check_reset 1089 && (aac_check_reset != -1 || !is_ignore_reset)) { 1090 /* Bypass wait for command quiesce */ 1091 if (aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET) == 0) 1092 ret = SUCCESS; 1093 } 1094 /* 1095 * Reset EH state 1096 */ 1097 if (ret == SUCCESS) { 1098 int bus, cid; 1099 struct aac_hba_map_info *info; 1100 1101 for (bus = 0; bus < AAC_MAX_BUSES; bus++) { 1102 for (cid = 0; cid < AAC_MAX_TARGETS; cid++) { 1103 info = &aac->hba_map[bus][cid]; 1104 if (info->devtype == AAC_DEVTYPE_NATIVE_RAW) 1105 info->reset_state = 0; 1106 } 1107 } 1108 } 1109 return ret; 1110 } 1111 1112 /** 1113 * aac_cfg_open - open a configuration file 1114 * @inode: inode being opened 1115 * @file: file handle attached 1116 * 1117 * Called when the configuration device is opened. Does the needed 1118 * set up on the handle and then returns 1119 * 1120 * Bugs: This needs extending to check a given adapter is present 1121 * so we can support hot plugging, and to ref count adapters. 1122 */ 1123 1124 static int aac_cfg_open(struct inode *inode, struct file *file) 1125 { 1126 struct aac_dev *aac; 1127 unsigned minor_number = iminor(inode); 1128 int err = -ENODEV; 1129 1130 mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */ 1131 list_for_each_entry(aac, &aac_devices, entry) { 1132 if (aac->id == minor_number) { 1133 file->private_data = aac; 1134 err = 0; 1135 break; 1136 } 1137 } 1138 mutex_unlock(&aac_mutex); 1139 1140 return err; 1141 } 1142 1143 /** 1144 * aac_cfg_ioctl - AAC configuration request 1145 * @inode: inode of device 1146 * @file: file handle 1147 * @cmd: ioctl command code 1148 * @arg: argument 1149 * 1150 * Handles a configuration ioctl. Currently this involves wrapping it 1151 * up and feeding it into the nasty windowsalike glue layer. 1152 * 1153 * Bugs: Needs locking against parallel ioctls lower down 1154 * Bugs: Needs to handle hot plugging 1155 */ 1156 1157 static long aac_cfg_ioctl(struct file *file, 1158 unsigned int cmd, unsigned long arg) 1159 { 1160 struct aac_dev *aac = (struct aac_dev *)file->private_data; 1161 1162 if (!capable(CAP_SYS_RAWIO)) 1163 return -EPERM; 1164 1165 return aac_do_ioctl(aac, cmd, (void __user *)arg); 1166 } 1167 1168 #ifdef CONFIG_COMPAT 1169 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg) 1170 { 1171 long ret; 1172 switch (cmd) { 1173 case FSACTL_MINIPORT_REV_CHECK: 1174 case FSACTL_SENDFIB: 1175 case FSACTL_OPEN_GET_ADAPTER_FIB: 1176 case FSACTL_CLOSE_GET_ADAPTER_FIB: 1177 case FSACTL_SEND_RAW_SRB: 1178 case FSACTL_GET_PCI_INFO: 1179 case FSACTL_QUERY_DISK: 1180 case FSACTL_DELETE_DISK: 1181 case FSACTL_FORCE_DELETE_DISK: 1182 case FSACTL_GET_CONTAINERS: 1183 case FSACTL_SEND_LARGE_FIB: 1184 ret = aac_do_ioctl(dev, cmd, (void __user *)arg); 1185 break; 1186 1187 case FSACTL_GET_NEXT_ADAPTER_FIB: { 1188 struct fib_ioctl __user *f; 1189 1190 f = compat_alloc_user_space(sizeof(*f)); 1191 ret = 0; 1192 if (clear_user(f, sizeof(*f))) 1193 ret = -EFAULT; 1194 if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32))) 1195 ret = -EFAULT; 1196 if (!ret) 1197 ret = aac_do_ioctl(dev, cmd, f); 1198 break; 1199 } 1200 1201 default: 1202 ret = -ENOIOCTLCMD; 1203 break; 1204 } 1205 return ret; 1206 } 1207 1208 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg) 1209 { 1210 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 1211 if (!capable(CAP_SYS_RAWIO)) 1212 return -EPERM; 1213 return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg); 1214 } 1215 1216 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1217 { 1218 if (!capable(CAP_SYS_RAWIO)) 1219 return -EPERM; 1220 return aac_compat_do_ioctl(file->private_data, cmd, arg); 1221 } 1222 #endif 1223 1224 static ssize_t aac_show_model(struct device *device, 1225 struct device_attribute *attr, char *buf) 1226 { 1227 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1228 int len; 1229 1230 if (dev->supplement_adapter_info.adapter_type_text[0]) { 1231 char *cp = dev->supplement_adapter_info.adapter_type_text; 1232 while (*cp && *cp != ' ') 1233 ++cp; 1234 while (*cp == ' ') 1235 ++cp; 1236 len = snprintf(buf, PAGE_SIZE, "%s\n", cp); 1237 } else 1238 len = snprintf(buf, PAGE_SIZE, "%s\n", 1239 aac_drivers[dev->cardtype].model); 1240 return len; 1241 } 1242 1243 static ssize_t aac_show_vendor(struct device *device, 1244 struct device_attribute *attr, char *buf) 1245 { 1246 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1247 struct aac_supplement_adapter_info *sup_adap_info; 1248 int len; 1249 1250 sup_adap_info = &dev->supplement_adapter_info; 1251 if (sup_adap_info->adapter_type_text[0]) { 1252 char *cp = sup_adap_info->adapter_type_text; 1253 while (*cp && *cp != ' ') 1254 ++cp; 1255 len = snprintf(buf, PAGE_SIZE, "%.*s\n", 1256 (int)(cp - (char *)sup_adap_info->adapter_type_text), 1257 sup_adap_info->adapter_type_text); 1258 } else 1259 len = snprintf(buf, PAGE_SIZE, "%s\n", 1260 aac_drivers[dev->cardtype].vname); 1261 return len; 1262 } 1263 1264 static ssize_t aac_show_flags(struct device *cdev, 1265 struct device_attribute *attr, char *buf) 1266 { 1267 int len = 0; 1268 struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata; 1269 1270 if (nblank(dprintk(x))) 1271 len = snprintf(buf, PAGE_SIZE, "dprintk\n"); 1272 #ifdef AAC_DETAILED_STATUS_INFO 1273 len += snprintf(buf + len, PAGE_SIZE - len, 1274 "AAC_DETAILED_STATUS_INFO\n"); 1275 #endif 1276 if (dev->raw_io_interface && dev->raw_io_64) 1277 len += snprintf(buf + len, PAGE_SIZE - len, 1278 "SAI_READ_CAPACITY_16\n"); 1279 if (dev->jbod) 1280 len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n"); 1281 if (dev->supplement_adapter_info.supported_options2 & 1282 AAC_OPTION_POWER_MANAGEMENT) 1283 len += snprintf(buf + len, PAGE_SIZE - len, 1284 "SUPPORTED_POWER_MANAGEMENT\n"); 1285 if (dev->msi) 1286 len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n"); 1287 return len; 1288 } 1289 1290 static ssize_t aac_show_kernel_version(struct device *device, 1291 struct device_attribute *attr, 1292 char *buf) 1293 { 1294 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1295 int len, tmp; 1296 1297 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 1298 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1299 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1300 le32_to_cpu(dev->adapter_info.kernelbuild)); 1301 return len; 1302 } 1303 1304 static ssize_t aac_show_monitor_version(struct device *device, 1305 struct device_attribute *attr, 1306 char *buf) 1307 { 1308 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1309 int len, tmp; 1310 1311 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 1312 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1313 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1314 le32_to_cpu(dev->adapter_info.monitorbuild)); 1315 return len; 1316 } 1317 1318 static ssize_t aac_show_bios_version(struct device *device, 1319 struct device_attribute *attr, 1320 char *buf) 1321 { 1322 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1323 int len, tmp; 1324 1325 tmp = le32_to_cpu(dev->adapter_info.biosrev); 1326 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 1327 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 1328 le32_to_cpu(dev->adapter_info.biosbuild)); 1329 return len; 1330 } 1331 1332 static ssize_t aac_show_driver_version(struct device *device, 1333 struct device_attribute *attr, 1334 char *buf) 1335 { 1336 return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version); 1337 } 1338 1339 static ssize_t aac_show_serial_number(struct device *device, 1340 struct device_attribute *attr, char *buf) 1341 { 1342 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1343 int len = 0; 1344 1345 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) 1346 len = snprintf(buf, 16, "%06X\n", 1347 le32_to_cpu(dev->adapter_info.serial[0])); 1348 if (len && 1349 !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[ 1350 sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len], 1351 buf, len-1)) 1352 len = snprintf(buf, 16, "%.*s\n", 1353 (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no), 1354 dev->supplement_adapter_info.mfg_pcba_serial_no); 1355 1356 return min(len, 16); 1357 } 1358 1359 static ssize_t aac_show_max_channel(struct device *device, 1360 struct device_attribute *attr, char *buf) 1361 { 1362 return snprintf(buf, PAGE_SIZE, "%d\n", 1363 class_to_shost(device)->max_channel); 1364 } 1365 1366 static ssize_t aac_show_max_id(struct device *device, 1367 struct device_attribute *attr, char *buf) 1368 { 1369 return snprintf(buf, PAGE_SIZE, "%d\n", 1370 class_to_shost(device)->max_id); 1371 } 1372 1373 static ssize_t aac_store_reset_adapter(struct device *device, 1374 struct device_attribute *attr, 1375 const char *buf, size_t count) 1376 { 1377 int retval = -EACCES; 1378 int bled = 0; 1379 struct aac_dev *aac; 1380 1381 1382 if (!capable(CAP_SYS_ADMIN)) 1383 return retval; 1384 1385 aac = (struct aac_dev *)class_to_shost(device)->hostdata; 1386 bled = buf[0] == '!' ? 1:0; 1387 retval = aac_reset_adapter(aac, bled, IOP_HWSOFT_RESET); 1388 if (retval >= 0) 1389 retval = count; 1390 return retval; 1391 } 1392 1393 static ssize_t aac_show_reset_adapter(struct device *device, 1394 struct device_attribute *attr, 1395 char *buf) 1396 { 1397 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 1398 int len, tmp; 1399 1400 tmp = aac_adapter_check_health(dev); 1401 if ((tmp == 0) && dev->in_reset) 1402 tmp = -EBUSY; 1403 len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp); 1404 return len; 1405 } 1406 1407 static struct device_attribute aac_model = { 1408 .attr = { 1409 .name = "model", 1410 .mode = S_IRUGO, 1411 }, 1412 .show = aac_show_model, 1413 }; 1414 static struct device_attribute aac_vendor = { 1415 .attr = { 1416 .name = "vendor", 1417 .mode = S_IRUGO, 1418 }, 1419 .show = aac_show_vendor, 1420 }; 1421 static struct device_attribute aac_flags = { 1422 .attr = { 1423 .name = "flags", 1424 .mode = S_IRUGO, 1425 }, 1426 .show = aac_show_flags, 1427 }; 1428 static struct device_attribute aac_kernel_version = { 1429 .attr = { 1430 .name = "hba_kernel_version", 1431 .mode = S_IRUGO, 1432 }, 1433 .show = aac_show_kernel_version, 1434 }; 1435 static struct device_attribute aac_monitor_version = { 1436 .attr = { 1437 .name = "hba_monitor_version", 1438 .mode = S_IRUGO, 1439 }, 1440 .show = aac_show_monitor_version, 1441 }; 1442 static struct device_attribute aac_bios_version = { 1443 .attr = { 1444 .name = "hba_bios_version", 1445 .mode = S_IRUGO, 1446 }, 1447 .show = aac_show_bios_version, 1448 }; 1449 static struct device_attribute aac_lld_version = { 1450 .attr = { 1451 .name = "driver_version", 1452 .mode = 0444, 1453 }, 1454 .show = aac_show_driver_version, 1455 }; 1456 static struct device_attribute aac_serial_number = { 1457 .attr = { 1458 .name = "serial_number", 1459 .mode = S_IRUGO, 1460 }, 1461 .show = aac_show_serial_number, 1462 }; 1463 static struct device_attribute aac_max_channel = { 1464 .attr = { 1465 .name = "max_channel", 1466 .mode = S_IRUGO, 1467 }, 1468 .show = aac_show_max_channel, 1469 }; 1470 static struct device_attribute aac_max_id = { 1471 .attr = { 1472 .name = "max_id", 1473 .mode = S_IRUGO, 1474 }, 1475 .show = aac_show_max_id, 1476 }; 1477 static struct device_attribute aac_reset = { 1478 .attr = { 1479 .name = "reset_host", 1480 .mode = S_IWUSR|S_IRUGO, 1481 }, 1482 .store = aac_store_reset_adapter, 1483 .show = aac_show_reset_adapter, 1484 }; 1485 1486 static struct device_attribute *aac_attrs[] = { 1487 &aac_model, 1488 &aac_vendor, 1489 &aac_flags, 1490 &aac_kernel_version, 1491 &aac_monitor_version, 1492 &aac_bios_version, 1493 &aac_lld_version, 1494 &aac_serial_number, 1495 &aac_max_channel, 1496 &aac_max_id, 1497 &aac_reset, 1498 NULL 1499 }; 1500 1501 ssize_t aac_get_serial_number(struct device *device, char *buf) 1502 { 1503 return aac_show_serial_number(device, &aac_serial_number, buf); 1504 } 1505 1506 static const struct file_operations aac_cfg_fops = { 1507 .owner = THIS_MODULE, 1508 .unlocked_ioctl = aac_cfg_ioctl, 1509 #ifdef CONFIG_COMPAT 1510 .compat_ioctl = aac_compat_cfg_ioctl, 1511 #endif 1512 .open = aac_cfg_open, 1513 .llseek = noop_llseek, 1514 }; 1515 1516 static struct scsi_host_template aac_driver_template = { 1517 .module = THIS_MODULE, 1518 .name = "AAC", 1519 .proc_name = AAC_DRIVERNAME, 1520 .info = aac_info, 1521 .ioctl = aac_ioctl, 1522 #ifdef CONFIG_COMPAT 1523 .compat_ioctl = aac_compat_ioctl, 1524 #endif 1525 .queuecommand = aac_queuecommand, 1526 .bios_param = aac_biosparm, 1527 .shost_attrs = aac_attrs, 1528 .slave_configure = aac_slave_configure, 1529 .change_queue_depth = aac_change_queue_depth, 1530 .sdev_attrs = aac_dev_attrs, 1531 .eh_abort_handler = aac_eh_abort, 1532 .eh_device_reset_handler = aac_eh_dev_reset, 1533 .eh_target_reset_handler = aac_eh_target_reset, 1534 .eh_bus_reset_handler = aac_eh_bus_reset, 1535 .eh_host_reset_handler = aac_eh_host_reset, 1536 .can_queue = AAC_NUM_IO_FIB, 1537 .this_id = MAXIMUM_NUM_CONTAINERS, 1538 .sg_tablesize = 16, 1539 .max_sectors = 128, 1540 #if (AAC_NUM_IO_FIB > 256) 1541 .cmd_per_lun = 256, 1542 #else 1543 .cmd_per_lun = AAC_NUM_IO_FIB, 1544 #endif 1545 .use_clustering = ENABLE_CLUSTERING, 1546 .emulated = 1, 1547 .no_write_same = 1, 1548 }; 1549 1550 static void __aac_shutdown(struct aac_dev * aac) 1551 { 1552 int i; 1553 1554 mutex_lock(&aac->ioctl_mutex); 1555 aac->adapter_shutdown = 1; 1556 mutex_unlock(&aac->ioctl_mutex); 1557 1558 if (aac->aif_thread) { 1559 int i; 1560 /* Clear out events first */ 1561 for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) { 1562 struct fib *fib = &aac->fibs[i]; 1563 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1564 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) 1565 up(&fib->event_wait); 1566 } 1567 kthread_stop(aac->thread); 1568 } 1569 1570 aac_send_shutdown(aac); 1571 1572 aac_adapter_disable_int(aac); 1573 1574 if (aac_is_src(aac)) { 1575 if (aac->max_msix > 1) { 1576 for (i = 0; i < aac->max_msix; i++) { 1577 free_irq(pci_irq_vector(aac->pdev, i), 1578 &(aac->aac_msix[i])); 1579 } 1580 } else { 1581 free_irq(aac->pdev->irq, 1582 &(aac->aac_msix[0])); 1583 } 1584 } else { 1585 free_irq(aac->pdev->irq, aac); 1586 } 1587 if (aac->msi) 1588 pci_disable_msi(aac->pdev); 1589 else if (aac->max_msix > 1) 1590 pci_disable_msix(aac->pdev); 1591 } 1592 static void aac_init_char(void) 1593 { 1594 aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops); 1595 if (aac_cfg_major < 0) { 1596 pr_err("aacraid: unable to register \"aac\" device.\n"); 1597 } 1598 } 1599 1600 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id) 1601 { 1602 unsigned index = id->driver_data; 1603 struct Scsi_Host *shost; 1604 struct aac_dev *aac; 1605 struct list_head *insert = &aac_devices; 1606 int error = -ENODEV; 1607 int unique_id = 0; 1608 u64 dmamask; 1609 int mask_bits = 0; 1610 extern int aac_sync_mode; 1611 1612 /* 1613 * Only series 7 needs freset. 1614 */ 1615 if (pdev->device == PMC_DEVICE_S7) 1616 pdev->needs_freset = 1; 1617 1618 list_for_each_entry(aac, &aac_devices, entry) { 1619 if (aac->id > unique_id) 1620 break; 1621 insert = &aac->entry; 1622 unique_id++; 1623 } 1624 1625 pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 | 1626 PCIE_LINK_STATE_CLKPM); 1627 1628 error = pci_enable_device(pdev); 1629 if (error) 1630 goto out; 1631 error = -ENODEV; 1632 1633 if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) { 1634 error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); 1635 if (error) { 1636 dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed"); 1637 goto out_disable_pdev; 1638 } 1639 } 1640 1641 /* 1642 * If the quirk31 bit is set, the adapter needs adapter 1643 * to driver communication memory to be allocated below 2gig 1644 */ 1645 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) { 1646 dmamask = DMA_BIT_MASK(31); 1647 mask_bits = 31; 1648 } else { 1649 dmamask = DMA_BIT_MASK(32); 1650 mask_bits = 32; 1651 } 1652 1653 error = pci_set_consistent_dma_mask(pdev, dmamask); 1654 if (error) { 1655 dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n" 1656 , mask_bits); 1657 goto out_disable_pdev; 1658 } 1659 1660 pci_set_master(pdev); 1661 1662 shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev)); 1663 if (!shost) 1664 goto out_disable_pdev; 1665 1666 shost->irq = pdev->irq; 1667 shost->unique_id = unique_id; 1668 shost->max_cmd_len = 16; 1669 shost->use_cmd_list = 1; 1670 1671 if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT) 1672 aac_init_char(); 1673 1674 aac = (struct aac_dev *)shost->hostdata; 1675 aac->base_start = pci_resource_start(pdev, 0); 1676 aac->scsi_host_ptr = shost; 1677 aac->pdev = pdev; 1678 aac->name = aac_driver_template.name; 1679 aac->id = shost->unique_id; 1680 aac->cardtype = index; 1681 INIT_LIST_HEAD(&aac->entry); 1682 1683 aac->fibs = kzalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL); 1684 if (!aac->fibs) 1685 goto out_free_host; 1686 spin_lock_init(&aac->fib_lock); 1687 1688 mutex_init(&aac->ioctl_mutex); 1689 /* 1690 * Map in the registers from the adapter. 1691 */ 1692 aac->base_size = AAC_MIN_FOOTPRINT_SIZE; 1693 if ((*aac_drivers[index].init)(aac)) 1694 goto out_unmap; 1695 1696 if (aac->sync_mode) { 1697 if (aac_sync_mode) 1698 printk(KERN_INFO "%s%d: Sync. mode enforced " 1699 "by driver parameter. This will cause " 1700 "a significant performance decrease!\n", 1701 aac->name, 1702 aac->id); 1703 else 1704 printk(KERN_INFO "%s%d: Async. mode not supported " 1705 "by current driver, sync. mode enforced." 1706 "\nPlease update driver to get full performance.\n", 1707 aac->name, 1708 aac->id); 1709 } 1710 1711 /* 1712 * Start any kernel threads needed 1713 */ 1714 aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME); 1715 if (IS_ERR(aac->thread)) { 1716 printk(KERN_ERR "aacraid: Unable to create command thread.\n"); 1717 error = PTR_ERR(aac->thread); 1718 aac->thread = NULL; 1719 goto out_deinit; 1720 } 1721 1722 aac->maximum_num_channels = aac_drivers[index].channels; 1723 error = aac_get_adapter_info(aac); 1724 if (error < 0) 1725 goto out_deinit; 1726 1727 /* 1728 * Lets override negotiations and drop the maximum SG limit to 34 1729 */ 1730 if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && 1731 (shost->sg_tablesize > 34)) { 1732 shost->sg_tablesize = 34; 1733 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1734 } 1735 1736 if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) && 1737 (shost->sg_tablesize > 17)) { 1738 shost->sg_tablesize = 17; 1739 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1740 } 1741 1742 error = pci_set_dma_max_seg_size(pdev, 1743 (aac->adapter_info.options & AAC_OPT_NEW_COMM) ? 1744 (shost->max_sectors << 9) : 65536); 1745 if (error) 1746 goto out_deinit; 1747 1748 /* 1749 * Firmware printf works only with older firmware. 1750 */ 1751 if (aac_drivers[index].quirks & AAC_QUIRK_34SG) 1752 aac->printf_enabled = 1; 1753 else 1754 aac->printf_enabled = 0; 1755 1756 /* 1757 * max channel will be the physical channels plus 1 virtual channel 1758 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL) 1759 * physical channels are address by their actual physical number+1 1760 */ 1761 if (aac->nondasd_support || expose_physicals || aac->jbod) 1762 shost->max_channel = aac->maximum_num_channels; 1763 else 1764 shost->max_channel = 0; 1765 1766 aac_get_config_status(aac, 0); 1767 aac_get_containers(aac); 1768 list_add(&aac->entry, insert); 1769 1770 shost->max_id = aac->maximum_num_containers; 1771 if (shost->max_id < aac->maximum_num_physicals) 1772 shost->max_id = aac->maximum_num_physicals; 1773 if (shost->max_id < MAXIMUM_NUM_CONTAINERS) 1774 shost->max_id = MAXIMUM_NUM_CONTAINERS; 1775 else 1776 shost->this_id = shost->max_id; 1777 1778 if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC) 1779 aac_intr_normal(aac, 0, 2, 0, NULL); 1780 1781 /* 1782 * dmb - we may need to move the setting of these parms somewhere else once 1783 * we get a fib that can report the actual numbers 1784 */ 1785 shost->max_lun = AAC_MAX_LUN; 1786 1787 pci_set_drvdata(pdev, shost); 1788 1789 error = scsi_add_host(shost, &pdev->dev); 1790 if (error) 1791 goto out_deinit; 1792 scsi_scan_host(shost); 1793 1794 pci_enable_pcie_error_reporting(pdev); 1795 pci_save_state(pdev); 1796 1797 return 0; 1798 1799 out_deinit: 1800 __aac_shutdown(aac); 1801 out_unmap: 1802 aac_fib_map_free(aac); 1803 if (aac->comm_addr) 1804 dma_free_coherent(&aac->pdev->dev, aac->comm_size, 1805 aac->comm_addr, aac->comm_phys); 1806 kfree(aac->queues); 1807 aac_adapter_ioremap(aac, 0); 1808 kfree(aac->fibs); 1809 kfree(aac->fsa_dev); 1810 out_free_host: 1811 scsi_host_put(shost); 1812 out_disable_pdev: 1813 pci_disable_device(pdev); 1814 out: 1815 return error; 1816 } 1817 1818 static void aac_release_resources(struct aac_dev *aac) 1819 { 1820 aac_adapter_disable_int(aac); 1821 aac_free_irq(aac); 1822 } 1823 1824 static int aac_acquire_resources(struct aac_dev *dev) 1825 { 1826 unsigned long status; 1827 /* 1828 * First clear out all interrupts. Then enable the one's that we 1829 * can handle. 1830 */ 1831 while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING) 1832 || status == 0xffffffff) 1833 msleep(20); 1834 1835 aac_adapter_disable_int(dev); 1836 aac_adapter_enable_int(dev); 1837 1838 1839 if (aac_is_src(dev)) 1840 aac_define_int_mode(dev); 1841 1842 if (dev->msi_enabled) 1843 aac_src_access_devreg(dev, AAC_ENABLE_MSIX); 1844 1845 if (aac_acquire_irq(dev)) 1846 goto error_iounmap; 1847 1848 aac_adapter_enable_int(dev); 1849 1850 /*max msix may change after EEH 1851 * Re-assign vectors to fibs 1852 */ 1853 aac_fib_vector_assign(dev); 1854 1855 if (!dev->sync_mode) { 1856 /* After EEH recovery or suspend resume, max_msix count 1857 * may change, therefore updating in init as well. 1858 */ 1859 dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix); 1860 aac_adapter_start(dev); 1861 } 1862 return 0; 1863 1864 error_iounmap: 1865 return -1; 1866 1867 } 1868 1869 #if (defined(CONFIG_PM)) 1870 static int aac_suspend(struct pci_dev *pdev, pm_message_t state) 1871 { 1872 1873 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1874 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1875 1876 scsi_block_requests(shost); 1877 aac_send_shutdown(aac); 1878 1879 aac_release_resources(aac); 1880 1881 pci_set_drvdata(pdev, shost); 1882 pci_save_state(pdev); 1883 pci_disable_device(pdev); 1884 pci_set_power_state(pdev, pci_choose_state(pdev, state)); 1885 1886 return 0; 1887 } 1888 1889 static int aac_resume(struct pci_dev *pdev) 1890 { 1891 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1892 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1893 int r; 1894 1895 pci_set_power_state(pdev, PCI_D0); 1896 pci_enable_wake(pdev, PCI_D0, 0); 1897 pci_restore_state(pdev); 1898 r = pci_enable_device(pdev); 1899 1900 if (r) 1901 goto fail_device; 1902 1903 pci_set_master(pdev); 1904 if (aac_acquire_resources(aac)) 1905 goto fail_device; 1906 /* 1907 * reset this flag to unblock ioctl() as it was set at 1908 * aac_send_shutdown() to block ioctls from upperlayer 1909 */ 1910 aac->adapter_shutdown = 0; 1911 scsi_unblock_requests(shost); 1912 1913 return 0; 1914 1915 fail_device: 1916 printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id); 1917 scsi_host_put(shost); 1918 pci_disable_device(pdev); 1919 return -ENODEV; 1920 } 1921 #endif 1922 1923 static void aac_shutdown(struct pci_dev *dev) 1924 { 1925 struct Scsi_Host *shost = pci_get_drvdata(dev); 1926 scsi_block_requests(shost); 1927 __aac_shutdown((struct aac_dev *)shost->hostdata); 1928 } 1929 1930 static void aac_remove_one(struct pci_dev *pdev) 1931 { 1932 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1933 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1934 1935 scsi_remove_host(shost); 1936 1937 __aac_shutdown(aac); 1938 aac_fib_map_free(aac); 1939 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1940 aac->comm_phys); 1941 kfree(aac->queues); 1942 1943 aac_adapter_ioremap(aac, 0); 1944 1945 kfree(aac->fibs); 1946 kfree(aac->fsa_dev); 1947 1948 list_del(&aac->entry); 1949 scsi_host_put(shost); 1950 pci_disable_device(pdev); 1951 if (list_empty(&aac_devices)) { 1952 unregister_chrdev(aac_cfg_major, "aac"); 1953 aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT; 1954 } 1955 } 1956 1957 static void aac_flush_ios(struct aac_dev *aac) 1958 { 1959 int i; 1960 struct scsi_cmnd *cmd; 1961 1962 for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) { 1963 cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data; 1964 if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) { 1965 scsi_dma_unmap(cmd); 1966 1967 if (aac->handle_pci_error) 1968 cmd->result = DID_NO_CONNECT << 16; 1969 else 1970 cmd->result = DID_RESET << 16; 1971 1972 cmd->scsi_done(cmd); 1973 } 1974 } 1975 } 1976 1977 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev, 1978 enum pci_channel_state error) 1979 { 1980 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1981 struct aac_dev *aac = shost_priv(shost); 1982 1983 dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error); 1984 1985 switch (error) { 1986 case pci_channel_io_normal: 1987 return PCI_ERS_RESULT_CAN_RECOVER; 1988 case pci_channel_io_frozen: 1989 aac->handle_pci_error = 1; 1990 1991 scsi_block_requests(aac->scsi_host_ptr); 1992 aac_flush_ios(aac); 1993 aac_release_resources(aac); 1994 1995 pci_disable_pcie_error_reporting(pdev); 1996 aac_adapter_ioremap(aac, 0); 1997 1998 return PCI_ERS_RESULT_NEED_RESET; 1999 case pci_channel_io_perm_failure: 2000 aac->handle_pci_error = 1; 2001 2002 aac_flush_ios(aac); 2003 return PCI_ERS_RESULT_DISCONNECT; 2004 } 2005 2006 return PCI_ERS_RESULT_NEED_RESET; 2007 } 2008 2009 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev) 2010 { 2011 dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n"); 2012 return PCI_ERS_RESULT_NEED_RESET; 2013 } 2014 2015 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev) 2016 { 2017 dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n"); 2018 pci_restore_state(pdev); 2019 if (pci_enable_device(pdev)) { 2020 dev_warn(&pdev->dev, 2021 "aacraid: failed to enable slave\n"); 2022 goto fail_device; 2023 } 2024 2025 pci_set_master(pdev); 2026 2027 if (pci_enable_device_mem(pdev)) { 2028 dev_err(&pdev->dev, "pci_enable_device_mem failed\n"); 2029 goto fail_device; 2030 } 2031 2032 return PCI_ERS_RESULT_RECOVERED; 2033 2034 fail_device: 2035 dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n"); 2036 return PCI_ERS_RESULT_DISCONNECT; 2037 } 2038 2039 2040 static void aac_pci_resume(struct pci_dev *pdev) 2041 { 2042 struct Scsi_Host *shost = pci_get_drvdata(pdev); 2043 struct scsi_device *sdev = NULL; 2044 struct aac_dev *aac = (struct aac_dev *)shost_priv(shost); 2045 2046 pci_cleanup_aer_uncorrect_error_status(pdev); 2047 2048 if (aac_adapter_ioremap(aac, aac->base_size)) { 2049 2050 dev_err(&pdev->dev, "aacraid: ioremap failed\n"); 2051 /* remap failed, go back ... */ 2052 aac->comm_interface = AAC_COMM_PRODUCER; 2053 if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) { 2054 dev_warn(&pdev->dev, 2055 "aacraid: unable to map adapter.\n"); 2056 2057 return; 2058 } 2059 } 2060 2061 msleep(10000); 2062 2063 aac_acquire_resources(aac); 2064 2065 /* 2066 * reset this flag to unblock ioctl() as it was set 2067 * at aac_send_shutdown() to block ioctls from upperlayer 2068 */ 2069 aac->adapter_shutdown = 0; 2070 aac->handle_pci_error = 0; 2071 2072 shost_for_each_device(sdev, shost) 2073 if (sdev->sdev_state == SDEV_OFFLINE) 2074 sdev->sdev_state = SDEV_RUNNING; 2075 scsi_unblock_requests(aac->scsi_host_ptr); 2076 scsi_scan_host(aac->scsi_host_ptr); 2077 pci_save_state(pdev); 2078 2079 dev_err(&pdev->dev, "aacraid: PCI error - resume\n"); 2080 } 2081 2082 static struct pci_error_handlers aac_pci_err_handler = { 2083 .error_detected = aac_pci_error_detected, 2084 .mmio_enabled = aac_pci_mmio_enabled, 2085 .slot_reset = aac_pci_slot_reset, 2086 .resume = aac_pci_resume, 2087 }; 2088 2089 static struct pci_driver aac_pci_driver = { 2090 .name = AAC_DRIVERNAME, 2091 .id_table = aac_pci_tbl, 2092 .probe = aac_probe_one, 2093 .remove = aac_remove_one, 2094 #if (defined(CONFIG_PM)) 2095 .suspend = aac_suspend, 2096 .resume = aac_resume, 2097 #endif 2098 .shutdown = aac_shutdown, 2099 .err_handler = &aac_pci_err_handler, 2100 }; 2101 2102 static int __init aac_init(void) 2103 { 2104 int error; 2105 2106 printk(KERN_INFO "Adaptec %s driver %s\n", 2107 AAC_DRIVERNAME, aac_driver_version); 2108 2109 error = pci_register_driver(&aac_pci_driver); 2110 if (error < 0) 2111 return error; 2112 2113 aac_init_char(); 2114 2115 2116 return 0; 2117 } 2118 2119 static void __exit aac_exit(void) 2120 { 2121 if (aac_cfg_major > -1) 2122 unregister_chrdev(aac_cfg_major, "aac"); 2123 pci_unregister_driver(&aac_pci_driver); 2124 } 2125 2126 module_init(aac_init); 2127 module_exit(aac_exit); 2128