1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2, or (at your option) 14 * any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 19 * GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; see the file COPYING. If not, write to 23 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Module Name: 26 * linit.c 27 * 28 * Abstract: Linux Driver entry module for Adaptec RAID Array Controller 29 */ 30 31 32 #include <linux/compat.h> 33 #include <linux/blkdev.h> 34 #include <linux/completion.h> 35 #include <linux/init.h> 36 #include <linux/interrupt.h> 37 #include <linux/kernel.h> 38 #include <linux/module.h> 39 #include <linux/moduleparam.h> 40 #include <linux/pci.h> 41 #include <linux/slab.h> 42 #include <linux/mutex.h> 43 #include <linux/spinlock.h> 44 #include <linux/syscalls.h> 45 #include <linux/delay.h> 46 #include <linux/kthread.h> 47 48 #include <scsi/scsi.h> 49 #include <scsi/scsi_cmnd.h> 50 #include <scsi/scsi_device.h> 51 #include <scsi/scsi_host.h> 52 #include <scsi/scsi_tcq.h> 53 #include <scsi/scsicam.h> 54 #include <scsi/scsi_eh.h> 55 56 #include "aacraid.h" 57 58 #define AAC_DRIVER_VERSION "1.1-7" 59 #ifndef AAC_DRIVER_BRANCH 60 #define AAC_DRIVER_BRANCH "" 61 #endif 62 #define AAC_DRIVERNAME "aacraid" 63 64 #ifdef AAC_DRIVER_BUILD 65 #define _str(x) #x 66 #define str(x) _str(x) 67 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH 68 #else 69 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH 70 #endif 71 72 MODULE_AUTHOR("Red Hat Inc and Adaptec"); 73 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, " 74 "Adaptec Advanced Raid Products, " 75 "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver"); 76 MODULE_LICENSE("GPL"); 77 MODULE_VERSION(AAC_DRIVER_FULL_VERSION); 78 79 static DEFINE_MUTEX(aac_mutex); 80 static LIST_HEAD(aac_devices); 81 static int aac_cfg_major = -1; 82 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION; 83 84 /* 85 * Because of the way Linux names scsi devices, the order in this table has 86 * become important. Check for on-board Raid first, add-in cards second. 87 * 88 * Note: The last field is used to index into aac_drivers below. 89 */ 90 #ifdef DECLARE_PCI_DEVICE_TABLE 91 static DECLARE_PCI_DEVICE_TABLE(aac_pci_tbl) = { 92 #elif defined(__devinitconst) 93 static const struct pci_device_id aac_pci_tbl[] __devinitconst = { 94 #else 95 static const struct pci_device_id aac_pci_tbl[] __devinitdata = { 96 #endif 97 { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */ 98 { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */ 99 { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */ 100 { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 101 { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */ 102 { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 103 { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 104 { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 105 { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 106 { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */ 107 { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */ 108 { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */ 109 { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */ 110 { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */ 111 { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */ 112 { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */ 113 114 { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */ 115 { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */ 116 { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 117 { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 118 { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 119 { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */ 120 { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */ 121 { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */ 122 { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */ 123 { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */ 124 { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */ 125 { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */ 126 { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */ 127 { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */ 128 { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */ 129 { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */ 130 { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */ 131 { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */ 132 { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */ 133 { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */ 134 { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 135 { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 136 { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 137 { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 138 { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 139 { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 140 { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 141 { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */ 142 { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */ 143 { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */ 144 { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */ 145 { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */ 146 { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */ 147 { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 148 { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */ 149 { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */ 150 { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */ 151 { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */ 152 153 { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/ 154 { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/ 155 { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/ 156 { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */ 157 { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */ 158 159 { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */ 160 { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */ 161 { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */ 162 { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */ 163 { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */ 164 { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Catch All */ 165 { 0,} 166 }; 167 MODULE_DEVICE_TABLE(pci, aac_pci_tbl); 168 169 /* 170 * dmb - For now we add the number of channels to this structure. 171 * In the future we should add a fib that reports the number of channels 172 * for the card. At that time we can remove the channels from here 173 */ 174 static struct aac_driver_ident aac_drivers[] = { 175 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */ 176 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */ 177 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */ 178 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */ 179 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */ 180 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */ 181 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */ 182 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */ 183 { aac_rx_init, "percraid", "DELL ", "PERCRAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */ 184 { aac_rx_init, "aacraid", "ADAPTEC ", "catapult ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */ 185 { aac_rx_init, "aacraid", "ADAPTEC ", "tomcat ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */ 186 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2120S ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2120S (Crusader) */ 187 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Adaptec 2200S (Vulcan) */ 188 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 2200S ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */ 189 { aac_rx_init, "aacraid", "Legend ", "Legend S220 ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */ 190 { aac_rx_init, "aacraid", "Legend ", "Legend S230 ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */ 191 192 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3230S ", 2 }, /* Adaptec 3230S (Harrier) */ 193 { aac_rx_init, "aacraid", "ADAPTEC ", "Adaptec 3240S ", 2 }, /* Adaptec 3240S (Tornado) */ 194 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020ZCR ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */ 195 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025ZCR ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */ 196 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */ 197 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */ 198 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2820SA ", 1 }, /* AAR-2820SA (Intruder) */ 199 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2620SA ", 1 }, /* AAR-2620SA (Intruder) */ 200 { aac_rkt_init, "aacraid", "ADAPTEC ", "AAR-2420SA ", 1 }, /* AAR-2420SA (Intruder) */ 201 { aac_rkt_init, "aacraid", "ICP ", "ICP9024RO ", 2 }, /* ICP9024RO (Lancer) */ 202 { aac_rkt_init, "aacraid", "ICP ", "ICP9014RO ", 1 }, /* ICP9014RO (Lancer) */ 203 { aac_rkt_init, "aacraid", "ICP ", "ICP9047MA ", 1 }, /* ICP9047MA (Lancer) */ 204 { aac_rkt_init, "aacraid", "ICP ", "ICP9087MA ", 1 }, /* ICP9087MA (Lancer) */ 205 { aac_rkt_init, "aacraid", "ICP ", "ICP5445AU ", 1 }, /* ICP5445AU (Hurricane44) */ 206 { aac_rx_init, "aacraid", "ICP ", "ICP9085LI ", 1 }, /* ICP9085LI (Marauder-X) */ 207 { aac_rx_init, "aacraid", "ICP ", "ICP5085BR ", 1 }, /* ICP5085BR (Marauder-E) */ 208 { aac_rkt_init, "aacraid", "ICP ", "ICP9067MA ", 1 }, /* ICP9067MA (Intruder-6) */ 209 { NULL , "aacraid", "ADAPTEC ", "Themisto ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */ 210 { aac_rkt_init, "aacraid", "ADAPTEC ", "Callisto ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */ 211 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2020SA ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */ 212 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2025SA ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */ 213 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */ 214 { aac_rx_init, "aacraid", "DELL ", "CERC SR2 ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */ 215 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */ 216 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */ 217 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2026ZCR ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */ 218 { aac_rx_init, "aacraid", "ADAPTEC ", "AAR-2610SA ", 1 }, /* SATA 6Ch (Bearcat) */ 219 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-2240S ", 1 }, /* ASR-2240S (SabreExpress) */ 220 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4005 ", 1 }, /* ASR-4005 */ 221 { aac_rx_init, "ServeRAID","IBM ", "ServeRAID 8i ", 1 }, /* IBM 8i (AvonPark) */ 222 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */ 223 { aac_rkt_init, "ServeRAID","IBM ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */ 224 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4000 ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */ 225 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4800SAS ", 1 }, /* ASR-4800SAS (Marauder-X) */ 226 { aac_rx_init, "aacraid", "ADAPTEC ", "ASR-4805SAS ", 1 }, /* ASR-4805SAS (Marauder-E) */ 227 { aac_rkt_init, "aacraid", "ADAPTEC ", "ASR-3800 ", 1 }, /* ASR-3800 (Hurricane44) */ 228 229 { aac_rx_init, "percraid", "DELL ", "PERC 320/DC ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/ 230 { aac_sa_init, "aacraid", "ADAPTEC ", "Adaptec 5400S ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 231 { aac_sa_init, "aacraid", "ADAPTEC ", "AAC-364 ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/ 232 { aac_sa_init, "percraid", "DELL ", "PERCRAID ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */ 233 { aac_sa_init, "hpnraid", "HP ", "NetRAID ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */ 234 235 { aac_rx_init, "aacraid", "DELL ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */ 236 { aac_rx_init, "aacraid", "Legend ", "RAID ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */ 237 { aac_rx_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Catch All */ 238 { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec Rocket Catch All */ 239 { aac_nark_init, "aacraid", "ADAPTEC ", "RAID ", 2 }, /* Adaptec NEMER/ARK Catch All */ 240 { aac_src_init, "aacraid", "ADAPTEC ", "RAID ", 2 } /* Adaptec PMC Catch All */ 241 }; 242 243 /** 244 * aac_queuecommand - queue a SCSI command 245 * @cmd: SCSI command to queue 246 * @done: Function to call on command completion 247 * 248 * Queues a command for execution by the associated Host Adapter. 249 * 250 * TODO: unify with aac_scsi_cmd(). 251 */ 252 253 static int aac_queuecommand_lck(struct scsi_cmnd *cmd, void (*done)(struct scsi_cmnd *)) 254 { 255 struct Scsi_Host *host = cmd->device->host; 256 struct aac_dev *dev = (struct aac_dev *)host->hostdata; 257 u32 count = 0; 258 cmd->scsi_done = done; 259 for (; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 260 struct fib * fib = &dev->fibs[count]; 261 struct scsi_cmnd * command; 262 if (fib->hw_fib_va->header.XferState && 263 ((command = fib->callback_data)) && 264 (command == cmd) && 265 (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) 266 return 0; /* Already owned by Adapter */ 267 } 268 cmd->SCp.phase = AAC_OWNER_LOWLEVEL; 269 return (aac_scsi_cmd(cmd) ? FAILED : 0); 270 } 271 272 static DEF_SCSI_QCMD(aac_queuecommand) 273 274 /** 275 * aac_info - Returns the host adapter name 276 * @shost: Scsi host to report on 277 * 278 * Returns a static string describing the device in question 279 */ 280 281 static const char *aac_info(struct Scsi_Host *shost) 282 { 283 struct aac_dev *dev = (struct aac_dev *)shost->hostdata; 284 return aac_drivers[dev->cardtype].name; 285 } 286 287 /** 288 * aac_get_driver_ident 289 * @devtype: index into lookup table 290 * 291 * Returns a pointer to the entry in the driver lookup table. 292 */ 293 294 struct aac_driver_ident* aac_get_driver_ident(int devtype) 295 { 296 return &aac_drivers[devtype]; 297 } 298 299 /** 300 * aac_biosparm - return BIOS parameters for disk 301 * @sdev: The scsi device corresponding to the disk 302 * @bdev: the block device corresponding to the disk 303 * @capacity: the sector capacity of the disk 304 * @geom: geometry block to fill in 305 * 306 * Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk. 307 * The default disk geometry is 64 heads, 32 sectors, and the appropriate 308 * number of cylinders so as not to exceed drive capacity. In order for 309 * disks equal to or larger than 1 GB to be addressable by the BIOS 310 * without exceeding the BIOS limitation of 1024 cylinders, Extended 311 * Translation should be enabled. With Extended Translation enabled, 312 * drives between 1 GB inclusive and 2 GB exclusive are given a disk 313 * geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive 314 * are given a disk geometry of 255 heads and 63 sectors. However, if 315 * the BIOS detects that the Extended Translation setting does not match 316 * the geometry in the partition table, then the translation inferred 317 * from the partition table will be used by the BIOS, and a warning may 318 * be displayed. 319 */ 320 321 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev, 322 sector_t capacity, int *geom) 323 { 324 struct diskparm *param = (struct diskparm *)geom; 325 unsigned char *buf; 326 327 dprintk((KERN_DEBUG "aac_biosparm.\n")); 328 329 /* 330 * Assuming extended translation is enabled - #REVISIT# 331 */ 332 if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */ 333 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */ 334 param->heads = 255; 335 param->sectors = 63; 336 } else { 337 param->heads = 128; 338 param->sectors = 32; 339 } 340 } else { 341 param->heads = 64; 342 param->sectors = 32; 343 } 344 345 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 346 347 /* 348 * Read the first 1024 bytes from the disk device, if the boot 349 * sector partition table is valid, search for a partition table 350 * entry whose end_head matches one of the standard geometry 351 * translations ( 64/32, 128/32, 255/63 ). 352 */ 353 buf = scsi_bios_ptable(bdev); 354 if (!buf) 355 return 0; 356 if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) { 357 struct partition *first = (struct partition * )buf; 358 struct partition *entry = first; 359 int saved_cylinders = param->cylinders; 360 int num; 361 unsigned char end_head, end_sec; 362 363 for(num = 0; num < 4; num++) { 364 end_head = entry->end_head; 365 end_sec = entry->end_sector & 0x3f; 366 367 if(end_head == 63) { 368 param->heads = 64; 369 param->sectors = 32; 370 break; 371 } else if(end_head == 127) { 372 param->heads = 128; 373 param->sectors = 32; 374 break; 375 } else if(end_head == 254) { 376 param->heads = 255; 377 param->sectors = 63; 378 break; 379 } 380 entry++; 381 } 382 383 if (num == 4) { 384 end_head = first->end_head; 385 end_sec = first->end_sector & 0x3f; 386 } 387 388 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors); 389 if (num < 4 && end_sec == param->sectors) { 390 if (param->cylinders != saved_cylinders) 391 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n", 392 param->heads, param->sectors, num)); 393 } else if (end_head > 0 || end_sec > 0) { 394 dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n", 395 end_head + 1, end_sec, num)); 396 dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n", 397 param->heads, param->sectors)); 398 } 399 } 400 kfree(buf); 401 return 0; 402 } 403 404 /** 405 * aac_slave_configure - compute queue depths 406 * @sdev: SCSI device we are considering 407 * 408 * Selects queue depths for each target device based on the host adapter's 409 * total capacity and the queue depth supported by the target device. 410 * A queue depth of one automatically disables tagged queueing. 411 */ 412 413 static int aac_slave_configure(struct scsi_device *sdev) 414 { 415 struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata; 416 if (aac->jbod && (sdev->type == TYPE_DISK)) 417 sdev->removable = 1; 418 if ((sdev->type == TYPE_DISK) && 419 (sdev_channel(sdev) != CONTAINER_CHANNEL) && 420 (!aac->jbod || sdev->inq_periph_qual) && 421 (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) { 422 if (expose_physicals == 0) 423 return -ENXIO; 424 if (expose_physicals < 0) 425 sdev->no_uld_attach = 1; 426 } 427 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && 428 (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2)) && 429 !sdev->no_uld_attach) { 430 struct scsi_device * dev; 431 struct Scsi_Host *host = sdev->host; 432 unsigned num_lsu = 0; 433 unsigned num_one = 0; 434 unsigned depth; 435 unsigned cid; 436 437 /* 438 * Firmware has an individual device recovery time typically 439 * of 35 seconds, give us a margin. 440 */ 441 if (sdev->request_queue->rq_timeout < (45 * HZ)) 442 blk_queue_rq_timeout(sdev->request_queue, 45*HZ); 443 for (cid = 0; cid < aac->maximum_num_containers; ++cid) 444 if (aac->fsa_dev[cid].valid) 445 ++num_lsu; 446 __shost_for_each_device(dev, host) { 447 if (dev->tagged_supported && (dev->type == TYPE_DISK) && 448 (!aac->raid_scsi_mode || 449 (sdev_channel(sdev) != 2)) && 450 !dev->no_uld_attach) { 451 if ((sdev_channel(dev) != CONTAINER_CHANNEL) 452 || !aac->fsa_dev[sdev_id(dev)].valid) 453 ++num_lsu; 454 } else 455 ++num_one; 456 } 457 if (num_lsu == 0) 458 ++num_lsu; 459 depth = (host->can_queue - num_one) / num_lsu; 460 if (depth > 256) 461 depth = 256; 462 else if (depth < 2) 463 depth = 2; 464 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth); 465 } else 466 scsi_adjust_queue_depth(sdev, 0, 1); 467 468 return 0; 469 } 470 471 /** 472 * aac_change_queue_depth - alter queue depths 473 * @sdev: SCSI device we are considering 474 * @depth: desired queue depth 475 * 476 * Alters queue depths for target device based on the host adapter's 477 * total capacity and the queue depth supported by the target device. 478 */ 479 480 static int aac_change_queue_depth(struct scsi_device *sdev, int depth, 481 int reason) 482 { 483 if (reason != SCSI_QDEPTH_DEFAULT) 484 return -EOPNOTSUPP; 485 486 if (sdev->tagged_supported && (sdev->type == TYPE_DISK) && 487 (sdev_channel(sdev) == CONTAINER_CHANNEL)) { 488 struct scsi_device * dev; 489 struct Scsi_Host *host = sdev->host; 490 unsigned num = 0; 491 492 __shost_for_each_device(dev, host) { 493 if (dev->tagged_supported && (dev->type == TYPE_DISK) && 494 (sdev_channel(dev) == CONTAINER_CHANNEL)) 495 ++num; 496 ++num; 497 } 498 if (num >= host->can_queue) 499 num = host->can_queue - 1; 500 if (depth > (host->can_queue - num)) 501 depth = host->can_queue - num; 502 if (depth > 256) 503 depth = 256; 504 else if (depth < 2) 505 depth = 2; 506 scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, depth); 507 } else 508 scsi_adjust_queue_depth(sdev, 0, 1); 509 return sdev->queue_depth; 510 } 511 512 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf) 513 { 514 struct scsi_device *sdev = to_scsi_device(dev); 515 struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata); 516 if (sdev_channel(sdev) != CONTAINER_CHANNEL) 517 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach 518 ? "Hidden\n" : 519 ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : "")); 520 return snprintf(buf, PAGE_SIZE, "%s\n", 521 get_container_type(aac->fsa_dev[sdev_id(sdev)].type)); 522 } 523 524 static struct device_attribute aac_raid_level_attr = { 525 .attr = { 526 .name = "level", 527 .mode = S_IRUGO, 528 }, 529 .show = aac_show_raid_level 530 }; 531 532 static struct device_attribute *aac_dev_attrs[] = { 533 &aac_raid_level_attr, 534 NULL, 535 }; 536 537 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg) 538 { 539 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 540 if (!capable(CAP_SYS_RAWIO)) 541 return -EPERM; 542 return aac_do_ioctl(dev, cmd, arg); 543 } 544 545 static int aac_eh_abort(struct scsi_cmnd* cmd) 546 { 547 struct scsi_device * dev = cmd->device; 548 struct Scsi_Host * host = dev->host; 549 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 550 int count; 551 int ret = FAILED; 552 553 printk(KERN_ERR "%s: Host adapter abort request (%d,%d,%d,%d)\n", 554 AAC_DRIVERNAME, 555 host->host_no, sdev_channel(dev), sdev_id(dev), dev->lun); 556 switch (cmd->cmnd[0]) { 557 case SERVICE_ACTION_IN: 558 if (!(aac->raw_io_interface) || 559 !(aac->raw_io_64) || 560 ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16)) 561 break; 562 case INQUIRY: 563 case READ_CAPACITY: 564 /* Mark associated FIB to not complete, eh handler does this */ 565 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 566 struct fib * fib = &aac->fibs[count]; 567 if (fib->hw_fib_va->header.XferState && 568 (fib->flags & FIB_CONTEXT_FLAG) && 569 (fib->callback_data == cmd)) { 570 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; 571 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; 572 ret = SUCCESS; 573 } 574 } 575 break; 576 case TEST_UNIT_READY: 577 /* Mark associated FIB to not complete, eh handler does this */ 578 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 579 struct scsi_cmnd * command; 580 struct fib * fib = &aac->fibs[count]; 581 if ((fib->hw_fib_va->header.XferState & cpu_to_le32(Async | NoResponseExpected)) && 582 (fib->flags & FIB_CONTEXT_FLAG) && 583 ((command = fib->callback_data)) && 584 (command->device == cmd->device)) { 585 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; 586 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 587 if (command == cmd) 588 ret = SUCCESS; 589 } 590 } 591 } 592 return ret; 593 } 594 595 /* 596 * aac_eh_reset - Reset command handling 597 * @scsi_cmd: SCSI command block causing the reset 598 * 599 */ 600 static int aac_eh_reset(struct scsi_cmnd* cmd) 601 { 602 struct scsi_device * dev = cmd->device; 603 struct Scsi_Host * host = dev->host; 604 struct scsi_cmnd * command; 605 int count; 606 struct aac_dev * aac = (struct aac_dev *)host->hostdata; 607 unsigned long flags; 608 609 /* Mark the associated FIB to not complete, eh handler does this */ 610 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) { 611 struct fib * fib = &aac->fibs[count]; 612 if (fib->hw_fib_va->header.XferState && 613 (fib->flags & FIB_CONTEXT_FLAG) && 614 (fib->callback_data == cmd)) { 615 fib->flags |= FIB_CONTEXT_FLAG_TIMED_OUT; 616 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER; 617 } 618 } 619 printk(KERN_ERR "%s: Host adapter reset request. SCSI hang ?\n", 620 AAC_DRIVERNAME); 621 622 if ((count = aac_check_health(aac))) 623 return count; 624 /* 625 * Wait for all commands to complete to this specific 626 * target (block maximum 60 seconds). 627 */ 628 for (count = 60; count; --count) { 629 int active = aac->in_reset; 630 631 if (active == 0) 632 __shost_for_each_device(dev, host) { 633 spin_lock_irqsave(&dev->list_lock, flags); 634 list_for_each_entry(command, &dev->cmd_list, list) { 635 if ((command != cmd) && 636 (command->SCp.phase == AAC_OWNER_FIRMWARE)) { 637 active++; 638 break; 639 } 640 } 641 spin_unlock_irqrestore(&dev->list_lock, flags); 642 if (active) 643 break; 644 645 } 646 /* 647 * We can exit If all the commands are complete 648 */ 649 if (active == 0) 650 return SUCCESS; 651 ssleep(1); 652 } 653 printk(KERN_ERR "%s: SCSI bus appears hung\n", AAC_DRIVERNAME); 654 /* 655 * This adapter needs a blind reset, only do so for Adapters that 656 * support a register, instead of a commanded, reset. 657 */ 658 if (((aac->supplement_adapter_info.SupportedOptions2 & 659 AAC_OPTION_MU_RESET) || 660 (aac->supplement_adapter_info.SupportedOptions2 & 661 AAC_OPTION_DOORBELL_RESET)) && 662 aac_check_reset && 663 ((aac_check_reset != 1) || 664 !(aac->supplement_adapter_info.SupportedOptions2 & 665 AAC_OPTION_IGNORE_RESET))) 666 aac_reset_adapter(aac, 2); /* Bypass wait for command quiesce */ 667 return SUCCESS; /* Cause an immediate retry of the command with a ten second delay after successful tur */ 668 } 669 670 /** 671 * aac_cfg_open - open a configuration file 672 * @inode: inode being opened 673 * @file: file handle attached 674 * 675 * Called when the configuration device is opened. Does the needed 676 * set up on the handle and then returns 677 * 678 * Bugs: This needs extending to check a given adapter is present 679 * so we can support hot plugging, and to ref count adapters. 680 */ 681 682 static int aac_cfg_open(struct inode *inode, struct file *file) 683 { 684 struct aac_dev *aac; 685 unsigned minor_number = iminor(inode); 686 int err = -ENODEV; 687 688 mutex_lock(&aac_mutex); /* BKL pushdown: nothing else protects this list */ 689 list_for_each_entry(aac, &aac_devices, entry) { 690 if (aac->id == minor_number) { 691 file->private_data = aac; 692 err = 0; 693 break; 694 } 695 } 696 mutex_unlock(&aac_mutex); 697 698 return err; 699 } 700 701 /** 702 * aac_cfg_ioctl - AAC configuration request 703 * @inode: inode of device 704 * @file: file handle 705 * @cmd: ioctl command code 706 * @arg: argument 707 * 708 * Handles a configuration ioctl. Currently this involves wrapping it 709 * up and feeding it into the nasty windowsalike glue layer. 710 * 711 * Bugs: Needs locking against parallel ioctls lower down 712 * Bugs: Needs to handle hot plugging 713 */ 714 715 static long aac_cfg_ioctl(struct file *file, 716 unsigned int cmd, unsigned long arg) 717 { 718 int ret; 719 if (!capable(CAP_SYS_RAWIO)) 720 return -EPERM; 721 mutex_lock(&aac_mutex); 722 ret = aac_do_ioctl(file->private_data, cmd, (void __user *)arg); 723 mutex_unlock(&aac_mutex); 724 725 return ret; 726 } 727 728 #ifdef CONFIG_COMPAT 729 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg) 730 { 731 long ret; 732 mutex_lock(&aac_mutex); 733 switch (cmd) { 734 case FSACTL_MINIPORT_REV_CHECK: 735 case FSACTL_SENDFIB: 736 case FSACTL_OPEN_GET_ADAPTER_FIB: 737 case FSACTL_CLOSE_GET_ADAPTER_FIB: 738 case FSACTL_SEND_RAW_SRB: 739 case FSACTL_GET_PCI_INFO: 740 case FSACTL_QUERY_DISK: 741 case FSACTL_DELETE_DISK: 742 case FSACTL_FORCE_DELETE_DISK: 743 case FSACTL_GET_CONTAINERS: 744 case FSACTL_SEND_LARGE_FIB: 745 ret = aac_do_ioctl(dev, cmd, (void __user *)arg); 746 break; 747 748 case FSACTL_GET_NEXT_ADAPTER_FIB: { 749 struct fib_ioctl __user *f; 750 751 f = compat_alloc_user_space(sizeof(*f)); 752 ret = 0; 753 if (clear_user(f, sizeof(*f))) 754 ret = -EFAULT; 755 if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32))) 756 ret = -EFAULT; 757 if (!ret) 758 ret = aac_do_ioctl(dev, cmd, f); 759 break; 760 } 761 762 default: 763 ret = -ENOIOCTLCMD; 764 break; 765 } 766 mutex_unlock(&aac_mutex); 767 return ret; 768 } 769 770 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg) 771 { 772 struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata; 773 return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg); 774 } 775 776 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg) 777 { 778 if (!capable(CAP_SYS_RAWIO)) 779 return -EPERM; 780 return aac_compat_do_ioctl(file->private_data, cmd, arg); 781 } 782 #endif 783 784 static ssize_t aac_show_model(struct device *device, 785 struct device_attribute *attr, char *buf) 786 { 787 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 788 int len; 789 790 if (dev->supplement_adapter_info.AdapterTypeText[0]) { 791 char * cp = dev->supplement_adapter_info.AdapterTypeText; 792 while (*cp && *cp != ' ') 793 ++cp; 794 while (*cp == ' ') 795 ++cp; 796 len = snprintf(buf, PAGE_SIZE, "%s\n", cp); 797 } else 798 len = snprintf(buf, PAGE_SIZE, "%s\n", 799 aac_drivers[dev->cardtype].model); 800 return len; 801 } 802 803 static ssize_t aac_show_vendor(struct device *device, 804 struct device_attribute *attr, char *buf) 805 { 806 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 807 int len; 808 809 if (dev->supplement_adapter_info.AdapterTypeText[0]) { 810 char * cp = dev->supplement_adapter_info.AdapterTypeText; 811 while (*cp && *cp != ' ') 812 ++cp; 813 len = snprintf(buf, PAGE_SIZE, "%.*s\n", 814 (int)(cp - (char *)dev->supplement_adapter_info.AdapterTypeText), 815 dev->supplement_adapter_info.AdapterTypeText); 816 } else 817 len = snprintf(buf, PAGE_SIZE, "%s\n", 818 aac_drivers[dev->cardtype].vname); 819 return len; 820 } 821 822 static ssize_t aac_show_flags(struct device *cdev, 823 struct device_attribute *attr, char *buf) 824 { 825 int len = 0; 826 struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata; 827 828 if (nblank(dprintk(x))) 829 len = snprintf(buf, PAGE_SIZE, "dprintk\n"); 830 #ifdef AAC_DETAILED_STATUS_INFO 831 len += snprintf(buf + len, PAGE_SIZE - len, 832 "AAC_DETAILED_STATUS_INFO\n"); 833 #endif 834 if (dev->raw_io_interface && dev->raw_io_64) 835 len += snprintf(buf + len, PAGE_SIZE - len, 836 "SAI_READ_CAPACITY_16\n"); 837 if (dev->jbod) 838 len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n"); 839 if (dev->supplement_adapter_info.SupportedOptions2 & 840 AAC_OPTION_POWER_MANAGEMENT) 841 len += snprintf(buf + len, PAGE_SIZE - len, 842 "SUPPORTED_POWER_MANAGEMENT\n"); 843 if (dev->msi) 844 len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n"); 845 return len; 846 } 847 848 static ssize_t aac_show_kernel_version(struct device *device, 849 struct device_attribute *attr, 850 char *buf) 851 { 852 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 853 int len, tmp; 854 855 tmp = le32_to_cpu(dev->adapter_info.kernelrev); 856 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 857 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 858 le32_to_cpu(dev->adapter_info.kernelbuild)); 859 return len; 860 } 861 862 static ssize_t aac_show_monitor_version(struct device *device, 863 struct device_attribute *attr, 864 char *buf) 865 { 866 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 867 int len, tmp; 868 869 tmp = le32_to_cpu(dev->adapter_info.monitorrev); 870 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 871 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 872 le32_to_cpu(dev->adapter_info.monitorbuild)); 873 return len; 874 } 875 876 static ssize_t aac_show_bios_version(struct device *device, 877 struct device_attribute *attr, 878 char *buf) 879 { 880 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 881 int len, tmp; 882 883 tmp = le32_to_cpu(dev->adapter_info.biosrev); 884 len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n", 885 tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff, 886 le32_to_cpu(dev->adapter_info.biosbuild)); 887 return len; 888 } 889 890 static ssize_t aac_show_serial_number(struct device *device, 891 struct device_attribute *attr, char *buf) 892 { 893 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 894 int len = 0; 895 896 if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0) 897 len = snprintf(buf, PAGE_SIZE, "%06X\n", 898 le32_to_cpu(dev->adapter_info.serial[0])); 899 if (len && 900 !memcmp(&dev->supplement_adapter_info.MfgPcbaSerialNo[ 901 sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo)-len], 902 buf, len-1)) 903 len = snprintf(buf, PAGE_SIZE, "%.*s\n", 904 (int)sizeof(dev->supplement_adapter_info.MfgPcbaSerialNo), 905 dev->supplement_adapter_info.MfgPcbaSerialNo); 906 return len; 907 } 908 909 static ssize_t aac_show_max_channel(struct device *device, 910 struct device_attribute *attr, char *buf) 911 { 912 return snprintf(buf, PAGE_SIZE, "%d\n", 913 class_to_shost(device)->max_channel); 914 } 915 916 static ssize_t aac_show_max_id(struct device *device, 917 struct device_attribute *attr, char *buf) 918 { 919 return snprintf(buf, PAGE_SIZE, "%d\n", 920 class_to_shost(device)->max_id); 921 } 922 923 static ssize_t aac_store_reset_adapter(struct device *device, 924 struct device_attribute *attr, 925 const char *buf, size_t count) 926 { 927 int retval = -EACCES; 928 929 if (!capable(CAP_SYS_ADMIN)) 930 return retval; 931 retval = aac_reset_adapter((struct aac_dev*)class_to_shost(device)->hostdata, buf[0] == '!'); 932 if (retval >= 0) 933 retval = count; 934 return retval; 935 } 936 937 static ssize_t aac_show_reset_adapter(struct device *device, 938 struct device_attribute *attr, 939 char *buf) 940 { 941 struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata; 942 int len, tmp; 943 944 tmp = aac_adapter_check_health(dev); 945 if ((tmp == 0) && dev->in_reset) 946 tmp = -EBUSY; 947 len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp); 948 return len; 949 } 950 951 static struct device_attribute aac_model = { 952 .attr = { 953 .name = "model", 954 .mode = S_IRUGO, 955 }, 956 .show = aac_show_model, 957 }; 958 static struct device_attribute aac_vendor = { 959 .attr = { 960 .name = "vendor", 961 .mode = S_IRUGO, 962 }, 963 .show = aac_show_vendor, 964 }; 965 static struct device_attribute aac_flags = { 966 .attr = { 967 .name = "flags", 968 .mode = S_IRUGO, 969 }, 970 .show = aac_show_flags, 971 }; 972 static struct device_attribute aac_kernel_version = { 973 .attr = { 974 .name = "hba_kernel_version", 975 .mode = S_IRUGO, 976 }, 977 .show = aac_show_kernel_version, 978 }; 979 static struct device_attribute aac_monitor_version = { 980 .attr = { 981 .name = "hba_monitor_version", 982 .mode = S_IRUGO, 983 }, 984 .show = aac_show_monitor_version, 985 }; 986 static struct device_attribute aac_bios_version = { 987 .attr = { 988 .name = "hba_bios_version", 989 .mode = S_IRUGO, 990 }, 991 .show = aac_show_bios_version, 992 }; 993 static struct device_attribute aac_serial_number = { 994 .attr = { 995 .name = "serial_number", 996 .mode = S_IRUGO, 997 }, 998 .show = aac_show_serial_number, 999 }; 1000 static struct device_attribute aac_max_channel = { 1001 .attr = { 1002 .name = "max_channel", 1003 .mode = S_IRUGO, 1004 }, 1005 .show = aac_show_max_channel, 1006 }; 1007 static struct device_attribute aac_max_id = { 1008 .attr = { 1009 .name = "max_id", 1010 .mode = S_IRUGO, 1011 }, 1012 .show = aac_show_max_id, 1013 }; 1014 static struct device_attribute aac_reset = { 1015 .attr = { 1016 .name = "reset_host", 1017 .mode = S_IWUSR|S_IRUGO, 1018 }, 1019 .store = aac_store_reset_adapter, 1020 .show = aac_show_reset_adapter, 1021 }; 1022 1023 static struct device_attribute *aac_attrs[] = { 1024 &aac_model, 1025 &aac_vendor, 1026 &aac_flags, 1027 &aac_kernel_version, 1028 &aac_monitor_version, 1029 &aac_bios_version, 1030 &aac_serial_number, 1031 &aac_max_channel, 1032 &aac_max_id, 1033 &aac_reset, 1034 NULL 1035 }; 1036 1037 ssize_t aac_get_serial_number(struct device *device, char *buf) 1038 { 1039 return aac_show_serial_number(device, &aac_serial_number, buf); 1040 } 1041 1042 static const struct file_operations aac_cfg_fops = { 1043 .owner = THIS_MODULE, 1044 .unlocked_ioctl = aac_cfg_ioctl, 1045 #ifdef CONFIG_COMPAT 1046 .compat_ioctl = aac_compat_cfg_ioctl, 1047 #endif 1048 .open = aac_cfg_open, 1049 .llseek = noop_llseek, 1050 }; 1051 1052 static struct scsi_host_template aac_driver_template = { 1053 .module = THIS_MODULE, 1054 .name = "AAC", 1055 .proc_name = AAC_DRIVERNAME, 1056 .info = aac_info, 1057 .ioctl = aac_ioctl, 1058 #ifdef CONFIG_COMPAT 1059 .compat_ioctl = aac_compat_ioctl, 1060 #endif 1061 .queuecommand = aac_queuecommand, 1062 .bios_param = aac_biosparm, 1063 .shost_attrs = aac_attrs, 1064 .slave_configure = aac_slave_configure, 1065 .change_queue_depth = aac_change_queue_depth, 1066 .sdev_attrs = aac_dev_attrs, 1067 .eh_abort_handler = aac_eh_abort, 1068 .eh_host_reset_handler = aac_eh_reset, 1069 .can_queue = AAC_NUM_IO_FIB, 1070 .this_id = MAXIMUM_NUM_CONTAINERS, 1071 .sg_tablesize = 16, 1072 .max_sectors = 128, 1073 #if (AAC_NUM_IO_FIB > 256) 1074 .cmd_per_lun = 256, 1075 #else 1076 .cmd_per_lun = AAC_NUM_IO_FIB, 1077 #endif 1078 .use_clustering = ENABLE_CLUSTERING, 1079 .emulated = 1, 1080 }; 1081 1082 static void __aac_shutdown(struct aac_dev * aac) 1083 { 1084 if (aac->aif_thread) 1085 kthread_stop(aac->thread); 1086 aac_send_shutdown(aac); 1087 aac_adapter_disable_int(aac); 1088 free_irq(aac->pdev->irq, aac); 1089 if (aac->msi) 1090 pci_disable_msi(aac->pdev); 1091 } 1092 1093 static int __devinit aac_probe_one(struct pci_dev *pdev, 1094 const struct pci_device_id *id) 1095 { 1096 unsigned index = id->driver_data; 1097 struct Scsi_Host *shost; 1098 struct aac_dev *aac; 1099 struct list_head *insert = &aac_devices; 1100 int error = -ENODEV; 1101 int unique_id = 0; 1102 u64 dmamask; 1103 1104 list_for_each_entry(aac, &aac_devices, entry) { 1105 if (aac->id > unique_id) 1106 break; 1107 insert = &aac->entry; 1108 unique_id++; 1109 } 1110 1111 error = pci_enable_device(pdev); 1112 if (error) 1113 goto out; 1114 error = -ENODEV; 1115 1116 /* 1117 * If the quirk31 bit is set, the adapter needs adapter 1118 * to driver communication memory to be allocated below 2gig 1119 */ 1120 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) 1121 dmamask = DMA_BIT_MASK(31); 1122 else 1123 dmamask = DMA_BIT_MASK(32); 1124 1125 if (pci_set_dma_mask(pdev, dmamask) || 1126 pci_set_consistent_dma_mask(pdev, dmamask)) 1127 goto out_disable_pdev; 1128 1129 pci_set_master(pdev); 1130 1131 shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev)); 1132 if (!shost) 1133 goto out_disable_pdev; 1134 1135 shost->irq = pdev->irq; 1136 shost->base = pci_resource_start(pdev, 0); 1137 shost->unique_id = unique_id; 1138 shost->max_cmd_len = 16; 1139 1140 aac = (struct aac_dev *)shost->hostdata; 1141 aac->scsi_host_ptr = shost; 1142 aac->pdev = pdev; 1143 aac->name = aac_driver_template.name; 1144 aac->id = shost->unique_id; 1145 aac->cardtype = index; 1146 INIT_LIST_HEAD(&aac->entry); 1147 1148 aac->fibs = kmalloc(sizeof(struct fib) * (shost->can_queue + AAC_NUM_MGT_FIB), GFP_KERNEL); 1149 if (!aac->fibs) 1150 goto out_free_host; 1151 spin_lock_init(&aac->fib_lock); 1152 1153 /* 1154 * Map in the registers from the adapter. 1155 */ 1156 aac->base_size = AAC_MIN_FOOTPRINT_SIZE; 1157 if ((*aac_drivers[index].init)(aac)) 1158 goto out_unmap; 1159 1160 /* 1161 * Start any kernel threads needed 1162 */ 1163 aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME); 1164 if (IS_ERR(aac->thread)) { 1165 printk(KERN_ERR "aacraid: Unable to create command thread.\n"); 1166 error = PTR_ERR(aac->thread); 1167 goto out_deinit; 1168 } 1169 1170 /* 1171 * If we had set a smaller DMA mask earlier, set it to 4gig 1172 * now since the adapter can dma data to at least a 4gig 1173 * address space. 1174 */ 1175 if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) 1176 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) 1177 goto out_deinit; 1178 1179 aac->maximum_num_channels = aac_drivers[index].channels; 1180 error = aac_get_adapter_info(aac); 1181 if (error < 0) 1182 goto out_deinit; 1183 1184 /* 1185 * Lets override negotiations and drop the maximum SG limit to 34 1186 */ 1187 if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) && 1188 (shost->sg_tablesize > 34)) { 1189 shost->sg_tablesize = 34; 1190 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1191 } 1192 1193 if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) && 1194 (shost->sg_tablesize > 17)) { 1195 shost->sg_tablesize = 17; 1196 shost->max_sectors = (shost->sg_tablesize * 8) + 112; 1197 } 1198 1199 error = pci_set_dma_max_seg_size(pdev, 1200 (aac->adapter_info.options & AAC_OPT_NEW_COMM) ? 1201 (shost->max_sectors << 9) : 65536); 1202 if (error) 1203 goto out_deinit; 1204 1205 /* 1206 * Firmware printf works only with older firmware. 1207 */ 1208 if (aac_drivers[index].quirks & AAC_QUIRK_34SG) 1209 aac->printf_enabled = 1; 1210 else 1211 aac->printf_enabled = 0; 1212 1213 /* 1214 * max channel will be the physical channels plus 1 virtual channel 1215 * all containers are on the virtual channel 0 (CONTAINER_CHANNEL) 1216 * physical channels are address by their actual physical number+1 1217 */ 1218 if (aac->nondasd_support || expose_physicals || aac->jbod) 1219 shost->max_channel = aac->maximum_num_channels; 1220 else 1221 shost->max_channel = 0; 1222 1223 aac_get_config_status(aac, 0); 1224 aac_get_containers(aac); 1225 list_add(&aac->entry, insert); 1226 1227 shost->max_id = aac->maximum_num_containers; 1228 if (shost->max_id < aac->maximum_num_physicals) 1229 shost->max_id = aac->maximum_num_physicals; 1230 if (shost->max_id < MAXIMUM_NUM_CONTAINERS) 1231 shost->max_id = MAXIMUM_NUM_CONTAINERS; 1232 else 1233 shost->this_id = shost->max_id; 1234 1235 /* 1236 * dmb - we may need to move the setting of these parms somewhere else once 1237 * we get a fib that can report the actual numbers 1238 */ 1239 shost->max_lun = AAC_MAX_LUN; 1240 1241 pci_set_drvdata(pdev, shost); 1242 1243 error = scsi_add_host(shost, &pdev->dev); 1244 if (error) 1245 goto out_deinit; 1246 scsi_scan_host(shost); 1247 1248 return 0; 1249 1250 out_deinit: 1251 __aac_shutdown(aac); 1252 out_unmap: 1253 aac_fib_map_free(aac); 1254 if (aac->comm_addr) 1255 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, 1256 aac->comm_phys); 1257 kfree(aac->queues); 1258 aac_adapter_ioremap(aac, 0); 1259 kfree(aac->fibs); 1260 kfree(aac->fsa_dev); 1261 out_free_host: 1262 scsi_host_put(shost); 1263 out_disable_pdev: 1264 pci_disable_device(pdev); 1265 out: 1266 return error; 1267 } 1268 1269 static void aac_shutdown(struct pci_dev *dev) 1270 { 1271 struct Scsi_Host *shost = pci_get_drvdata(dev); 1272 scsi_block_requests(shost); 1273 __aac_shutdown((struct aac_dev *)shost->hostdata); 1274 } 1275 1276 static void __devexit aac_remove_one(struct pci_dev *pdev) 1277 { 1278 struct Scsi_Host *shost = pci_get_drvdata(pdev); 1279 struct aac_dev *aac = (struct aac_dev *)shost->hostdata; 1280 1281 scsi_remove_host(shost); 1282 1283 __aac_shutdown(aac); 1284 aac_fib_map_free(aac); 1285 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, 1286 aac->comm_phys); 1287 kfree(aac->queues); 1288 1289 aac_adapter_ioremap(aac, 0); 1290 1291 kfree(aac->fibs); 1292 kfree(aac->fsa_dev); 1293 1294 list_del(&aac->entry); 1295 scsi_host_put(shost); 1296 pci_disable_device(pdev); 1297 if (list_empty(&aac_devices)) { 1298 unregister_chrdev(aac_cfg_major, "aac"); 1299 aac_cfg_major = -1; 1300 } 1301 } 1302 1303 static struct pci_driver aac_pci_driver = { 1304 .name = AAC_DRIVERNAME, 1305 .id_table = aac_pci_tbl, 1306 .probe = aac_probe_one, 1307 .remove = __devexit_p(aac_remove_one), 1308 .shutdown = aac_shutdown, 1309 }; 1310 1311 static int __init aac_init(void) 1312 { 1313 int error; 1314 1315 printk(KERN_INFO "Adaptec %s driver %s\n", 1316 AAC_DRIVERNAME, aac_driver_version); 1317 1318 error = pci_register_driver(&aac_pci_driver); 1319 if (error < 0) 1320 return error; 1321 1322 aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops); 1323 if (aac_cfg_major < 0) { 1324 printk(KERN_WARNING 1325 "aacraid: unable to register \"aac\" device.\n"); 1326 } 1327 1328 return 0; 1329 } 1330 1331 static void __exit aac_exit(void) 1332 { 1333 if (aac_cfg_major > -1) 1334 unregister_chrdev(aac_cfg_major, "aac"); 1335 pci_unregister_driver(&aac_pci_driver); 1336 } 1337 1338 module_init(aac_init); 1339 module_exit(aac_exit); 1340