xref: /openbmc/linux/drivers/scsi/aacraid/dpcsup.c (revision fcc8487d)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  dpcsup.c
28  *
29  * Abstract: All DPC processing routines for the cyclone board occur here.
30  *
31  *
32  */
33 
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <linux/semaphore.h>
42 
43 #include "aacraid.h"
44 
45 /**
46  *	aac_response_normal	-	Handle command replies
47  *	@q: Queue to read from
48  *
49  *	This DPC routine will be run when the adapter interrupts us to let us
50  *	know there is a response on our normal priority queue. We will pull off
51  *	all QE there are and wake up all the waiters before exiting. We will
52  *	take a spinlock out on the queue before operating on it.
53  */
54 
55 unsigned int aac_response_normal(struct aac_queue * q)
56 {
57 	struct aac_dev * dev = q->dev;
58 	struct aac_entry *entry;
59 	struct hw_fib * hwfib;
60 	struct fib * fib;
61 	int consumed = 0;
62 	unsigned long flags, mflags;
63 
64 	spin_lock_irqsave(q->lock, flags);
65 	/*
66 	 *	Keep pulling response QEs off the response queue and waking
67 	 *	up the waiters until there are no more QEs. We then return
68 	 *	back to the system. If no response was requesed we just
69 	 *	deallocate the Fib here and continue.
70 	 */
71 	while(aac_consumer_get(dev, q, &entry))
72 	{
73 		int fast;
74 		u32 index = le32_to_cpu(entry->addr);
75 		fast = index & 0x01;
76 		fib = &dev->fibs[index >> 2];
77 		hwfib = fib->hw_fib_va;
78 
79 		aac_consumer_free(dev, q, HostNormRespQueue);
80 		/*
81 		 *	Remove this fib from the Outstanding I/O queue.
82 		 *	But only if it has not already been timed out.
83 		 *
84 		 *	If the fib has been timed out already, then just
85 		 *	continue. The caller has already been notified that
86 		 *	the fib timed out.
87 		 */
88 		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
89 
90 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
91 			spin_unlock_irqrestore(q->lock, flags);
92 			aac_fib_complete(fib);
93 			aac_fib_free(fib);
94 			spin_lock_irqsave(q->lock, flags);
95 			continue;
96 		}
97 		spin_unlock_irqrestore(q->lock, flags);
98 
99 		if (fast) {
100 			/*
101 			 *	Doctor the fib
102 			 */
103 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
104 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
105 			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
106 		}
107 
108 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
109 
110 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
111 		{
112 			__le32 *pstatus = (__le32 *)hwfib->data;
113 			if (*pstatus & cpu_to_le32(0xffff0000))
114 				*pstatus = cpu_to_le32(ST_OK);
115 		}
116 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
117 		{
118 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
119 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
120 			else
121 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
122 			/*
123 			 *	NOTE:  we cannot touch the fib after this
124 			 *	    call, because it may have been deallocated.
125 			 */
126 			fib->callback(fib->callback_data, fib);
127 		} else {
128 			unsigned long flagv;
129 			spin_lock_irqsave(&fib->event_lock, flagv);
130 			if (!fib->done) {
131 				fib->done = 1;
132 				up(&fib->event_wait);
133 			}
134 			spin_unlock_irqrestore(&fib->event_lock, flagv);
135 
136 			spin_lock_irqsave(&dev->manage_lock, mflags);
137 			dev->management_fib_count--;
138 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
139 
140 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
141 			if (fib->done == 2) {
142 				spin_lock_irqsave(&fib->event_lock, flagv);
143 				fib->done = 0;
144 				spin_unlock_irqrestore(&fib->event_lock, flagv);
145 				aac_fib_complete(fib);
146 				aac_fib_free(fib);
147 			}
148 		}
149 		consumed++;
150 		spin_lock_irqsave(q->lock, flags);
151 	}
152 
153 	if (consumed > aac_config.peak_fibs)
154 		aac_config.peak_fibs = consumed;
155 	if (consumed == 0)
156 		aac_config.zero_fibs++;
157 
158 	spin_unlock_irqrestore(q->lock, flags);
159 	return 0;
160 }
161 
162 
163 /**
164  *	aac_command_normal	-	handle commands
165  *	@q: queue to process
166  *
167  *	This DPC routine will be queued when the adapter interrupts us to
168  *	let us know there is a command on our normal priority queue. We will
169  *	pull off all QE there are and wake up all the waiters before exiting.
170  *	We will take a spinlock out on the queue before operating on it.
171  */
172 
173 unsigned int aac_command_normal(struct aac_queue *q)
174 {
175 	struct aac_dev * dev = q->dev;
176 	struct aac_entry *entry;
177 	unsigned long flags;
178 
179 	spin_lock_irqsave(q->lock, flags);
180 
181 	/*
182 	 *	Keep pulling response QEs off the response queue and waking
183 	 *	up the waiters until there are no more QEs. We then return
184 	 *	back to the system.
185 	 */
186 	while(aac_consumer_get(dev, q, &entry))
187 	{
188 		struct fib fibctx;
189 		struct hw_fib * hw_fib;
190 		u32 index;
191 		struct fib *fib = &fibctx;
192 
193 		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
194 		hw_fib = &dev->aif_base_va[index];
195 
196 		/*
197 		 *	Allocate a FIB at all costs. For non queued stuff
198 		 *	we can just use the stack so we are happy. We need
199 		 *	a fib object in order to manage the linked lists
200 		 */
201 		if (dev->aif_thread)
202 			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
203 				fib = &fibctx;
204 
205 		memset(fib, 0, sizeof(struct fib));
206 		INIT_LIST_HEAD(&fib->fiblink);
207 		fib->type = FSAFS_NTC_FIB_CONTEXT;
208 		fib->size = sizeof(struct fib);
209 		fib->hw_fib_va = hw_fib;
210 		fib->data = hw_fib->data;
211 		fib->dev = dev;
212 
213 
214 		if (dev->aif_thread && fib != &fibctx) {
215 		        list_add_tail(&fib->fiblink, &q->cmdq);
216 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
217 		        wake_up_interruptible(&q->cmdready);
218 		} else {
219 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
220 			spin_unlock_irqrestore(q->lock, flags);
221 			/*
222 			 *	Set the status of this FIB
223 			 */
224 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
225 			aac_fib_adapter_complete(fib, sizeof(u32));
226 			spin_lock_irqsave(q->lock, flags);
227 		}
228 	}
229 	spin_unlock_irqrestore(q->lock, flags);
230 	return 0;
231 }
232 
233 /*
234  *
235  * aac_aif_callback
236  * @context: the context set in the fib - here it is scsi cmd
237  * @fibptr: pointer to the fib
238  *
239  * Handles the AIFs - new method (SRC)
240  *
241  */
242 
243 static void aac_aif_callback(void *context, struct fib * fibptr)
244 {
245 	struct fib *fibctx;
246 	struct aac_dev *dev;
247 	struct aac_aifcmd *cmd;
248 	int status;
249 
250 	fibctx = (struct fib *)context;
251 	BUG_ON(fibptr == NULL);
252 	dev = fibptr->dev;
253 
254 	if ((fibptr->hw_fib_va->header.XferState &
255 	    cpu_to_le32(NoMoreAifDataAvailable)) ||
256 		dev->sa_firmware) {
257 		aac_fib_complete(fibptr);
258 		aac_fib_free(fibptr);
259 		return;
260 	}
261 
262 	aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
263 
264 	aac_fib_init(fibctx);
265 	cmd = (struct aac_aifcmd *) fib_data(fibctx);
266 	cmd->command = cpu_to_le32(AifReqEvent);
267 
268 	status = aac_fib_send(AifRequest,
269 		fibctx,
270 		sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
271 		FsaNormal,
272 		0, 1,
273 		(fib_callback)aac_aif_callback, fibctx);
274 }
275 
276 
277 /**
278  *	aac_intr_normal	-	Handle command replies
279  *	@dev: Device
280  *	@index: completion reference
281  *
282  *	This DPC routine will be run when the adapter interrupts us to let us
283  *	know there is a response on our normal priority queue. We will pull off
284  *	all QE there are and wake up all the waiters before exiting.
285  */
286 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif,
287 	int isFastResponse, struct hw_fib *aif_fib)
288 {
289 	unsigned long mflags;
290 	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
291 	if (isAif == 1) {	/* AIF - common */
292 		struct hw_fib * hw_fib;
293 		struct fib * fib;
294 		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
295 		unsigned long flags;
296 
297 		/*
298 		 *	Allocate a FIB. For non queued stuff we can just use
299 		 * the stack so we are happy. We need a fib object in order to
300 		 * manage the linked lists.
301 		 */
302 		if ((!dev->aif_thread)
303 		 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
304 			return 1;
305 		if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
306 			kfree (fib);
307 			return 1;
308 		}
309 		if (dev->sa_firmware) {
310 			fib->hbacmd_size = index;	/* store event type */
311 		} else if (aif_fib != NULL) {
312 			memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
313 		} else {
314 			memcpy(hw_fib, (struct hw_fib *)
315 				(((uintptr_t)(dev->regs.sa)) + index),
316 				sizeof(struct hw_fib));
317 		}
318 		INIT_LIST_HEAD(&fib->fiblink);
319 		fib->type = FSAFS_NTC_FIB_CONTEXT;
320 		fib->size = sizeof(struct fib);
321 		fib->hw_fib_va = hw_fib;
322 		fib->data = hw_fib->data;
323 		fib->dev = dev;
324 
325 		spin_lock_irqsave(q->lock, flags);
326 		list_add_tail(&fib->fiblink, &q->cmdq);
327 	        wake_up_interruptible(&q->cmdready);
328 		spin_unlock_irqrestore(q->lock, flags);
329 		return 1;
330 	} else if (isAif == 2) {	/* AIF - new (SRC) */
331 		struct fib *fibctx;
332 		struct aac_aifcmd *cmd;
333 
334 		fibctx = aac_fib_alloc(dev);
335 		if (!fibctx)
336 			return 1;
337 		aac_fib_init(fibctx);
338 
339 		cmd = (struct aac_aifcmd *) fib_data(fibctx);
340 		cmd->command = cpu_to_le32(AifReqEvent);
341 
342 		return aac_fib_send(AifRequest,
343 			fibctx,
344 			sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
345 			FsaNormal,
346 			0, 1,
347 			(fib_callback)aac_aif_callback, fibctx);
348 	} else {
349 		struct fib *fib = &dev->fibs[index];
350 		int start_callback = 0;
351 
352 		/*
353 		 *	Remove this fib from the Outstanding I/O queue.
354 		 *	But only if it has not already been timed out.
355 		 *
356 		 *	If the fib has been timed out already, then just
357 		 *	continue. The caller has already been notified that
358 		 *	the fib timed out.
359 		 */
360 		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
361 
362 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
363 			aac_fib_complete(fib);
364 			aac_fib_free(fib);
365 			return 0;
366 		}
367 
368 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
369 
370 		if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
371 
372 			if (isFastResponse)
373 				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
374 
375 			if (fib->callback) {
376 				start_callback = 1;
377 			} else {
378 				unsigned long flagv;
379 				int complete = 0;
380 
381 				dprintk((KERN_INFO "event_wait up\n"));
382 				spin_lock_irqsave(&fib->event_lock, flagv);
383 				if (fib->done == 2) {
384 					fib->done = 1;
385 					complete = 1;
386 				} else {
387 					fib->done = 1;
388 					up(&fib->event_wait);
389 				}
390 				spin_unlock_irqrestore(&fib->event_lock, flagv);
391 
392 				spin_lock_irqsave(&dev->manage_lock, mflags);
393 				dev->management_fib_count--;
394 				spin_unlock_irqrestore(&dev->manage_lock,
395 					mflags);
396 
397 				FIB_COUNTER_INCREMENT(aac_config.NativeRecved);
398 				if (complete)
399 					aac_fib_complete(fib);
400 			}
401 		} else {
402 			struct hw_fib *hwfib = fib->hw_fib_va;
403 
404 			if (isFastResponse) {
405 				/* Doctor the fib */
406 				*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
407 				hwfib->header.XferState |=
408 					cpu_to_le32(AdapterProcessed);
409 				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
410 			}
411 
412 			if (hwfib->header.Command ==
413 				cpu_to_le16(NuFileSystem)) {
414 				__le32 *pstatus = (__le32 *)hwfib->data;
415 
416 				if (*pstatus & cpu_to_le32(0xffff0000))
417 					*pstatus = cpu_to_le32(ST_OK);
418 			}
419 			if (hwfib->header.XferState &
420 				cpu_to_le32(NoResponseExpected | Async)) {
421 				if (hwfib->header.XferState & cpu_to_le32(
422 					NoResponseExpected))
423 					FIB_COUNTER_INCREMENT(
424 						aac_config.NoResponseRecved);
425 				else
426 					FIB_COUNTER_INCREMENT(
427 						aac_config.AsyncRecved);
428 				start_callback = 1;
429 			} else {
430 				unsigned long flagv;
431 				int complete = 0;
432 
433 				dprintk((KERN_INFO "event_wait up\n"));
434 				spin_lock_irqsave(&fib->event_lock, flagv);
435 				if (fib->done == 2) {
436 					fib->done = 1;
437 					complete = 1;
438 				} else {
439 					fib->done = 1;
440 					up(&fib->event_wait);
441 				}
442 				spin_unlock_irqrestore(&fib->event_lock, flagv);
443 
444 				spin_lock_irqsave(&dev->manage_lock, mflags);
445 				dev->management_fib_count--;
446 				spin_unlock_irqrestore(&dev->manage_lock,
447 					mflags);
448 
449 				FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
450 				if (complete)
451 					aac_fib_complete(fib);
452 			}
453 		}
454 
455 
456 		if (start_callback) {
457 			/*
458 			 * NOTE:  we cannot touch the fib after this
459 			 *  call, because it may have been deallocated.
460 			 */
461 			if (likely(fib->callback && fib->callback_data)) {
462 				fib->callback(fib->callback_data, fib);
463 			} else {
464 				aac_fib_complete(fib);
465 				aac_fib_free(fib);
466 			}
467 
468 		}
469 		return 0;
470 	}
471 }
472