xref: /openbmc/linux/drivers/scsi/aacraid/dpcsup.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Adaptec AAC series RAID controller driver
4  *	(c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  dpcsup.c
15  *
16  * Abstract: All DPC processing routines for the cyclone board occur here.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/types.h>
22 #include <linux/spinlock.h>
23 #include <linux/slab.h>
24 #include <linux/completion.h>
25 #include <linux/blkdev.h>
26 
27 #include "aacraid.h"
28 
29 /**
30  *	aac_response_normal	-	Handle command replies
31  *	@q: Queue to read from
32  *
33  *	This DPC routine will be run when the adapter interrupts us to let us
34  *	know there is a response on our normal priority queue. We will pull off
35  *	all QE there are and wake up all the waiters before exiting. We will
36  *	take a spinlock out on the queue before operating on it.
37  */
38 
39 unsigned int aac_response_normal(struct aac_queue * q)
40 {
41 	struct aac_dev * dev = q->dev;
42 	struct aac_entry *entry;
43 	struct hw_fib * hwfib;
44 	struct fib * fib;
45 	int consumed = 0;
46 	unsigned long flags, mflags;
47 
48 	spin_lock_irqsave(q->lock, flags);
49 	/*
50 	 *	Keep pulling response QEs off the response queue and waking
51 	 *	up the waiters until there are no more QEs. We then return
52 	 *	back to the system. If no response was requested we just
53 	 *	deallocate the Fib here and continue.
54 	 */
55 	while(aac_consumer_get(dev, q, &entry))
56 	{
57 		int fast;
58 		u32 index = le32_to_cpu(entry->addr);
59 		fast = index & 0x01;
60 		fib = &dev->fibs[index >> 2];
61 		hwfib = fib->hw_fib_va;
62 
63 		aac_consumer_free(dev, q, HostNormRespQueue);
64 		/*
65 		 *	Remove this fib from the Outstanding I/O queue.
66 		 *	But only if it has not already been timed out.
67 		 *
68 		 *	If the fib has been timed out already, then just
69 		 *	continue. The caller has already been notified that
70 		 *	the fib timed out.
71 		 */
72 		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
73 
74 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
75 			spin_unlock_irqrestore(q->lock, flags);
76 			aac_fib_complete(fib);
77 			aac_fib_free(fib);
78 			spin_lock_irqsave(q->lock, flags);
79 			continue;
80 		}
81 		spin_unlock_irqrestore(q->lock, flags);
82 
83 		if (fast) {
84 			/*
85 			 *	Doctor the fib
86 			 */
87 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
88 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
89 			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
90 		}
91 
92 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
93 
94 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
95 		{
96 			__le32 *pstatus = (__le32 *)hwfib->data;
97 			if (*pstatus & cpu_to_le32(0xffff0000))
98 				*pstatus = cpu_to_le32(ST_OK);
99 		}
100 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
101 		{
102 			if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) {
103 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
104 			} else {
105 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
106 			}
107 			/*
108 			 *	NOTE:  we cannot touch the fib after this
109 			 *	    call, because it may have been deallocated.
110 			 */
111 			fib->callback(fib->callback_data, fib);
112 		} else {
113 			unsigned long flagv;
114 			spin_lock_irqsave(&fib->event_lock, flagv);
115 			if (!fib->done) {
116 				fib->done = 1;
117 				complete(&fib->event_wait);
118 			}
119 			spin_unlock_irqrestore(&fib->event_lock, flagv);
120 
121 			spin_lock_irqsave(&dev->manage_lock, mflags);
122 			dev->management_fib_count--;
123 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
124 
125 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
126 			if (fib->done == 2) {
127 				spin_lock_irqsave(&fib->event_lock, flagv);
128 				fib->done = 0;
129 				spin_unlock_irqrestore(&fib->event_lock, flagv);
130 				aac_fib_complete(fib);
131 				aac_fib_free(fib);
132 			}
133 		}
134 		consumed++;
135 		spin_lock_irqsave(q->lock, flags);
136 	}
137 
138 	if (consumed > aac_config.peak_fibs)
139 		aac_config.peak_fibs = consumed;
140 	if (consumed == 0)
141 		aac_config.zero_fibs++;
142 
143 	spin_unlock_irqrestore(q->lock, flags);
144 	return 0;
145 }
146 
147 
148 /**
149  *	aac_command_normal	-	handle commands
150  *	@q: queue to process
151  *
152  *	This DPC routine will be queued when the adapter interrupts us to
153  *	let us know there is a command on our normal priority queue. We will
154  *	pull off all QE there are and wake up all the waiters before exiting.
155  *	We will take a spinlock out on the queue before operating on it.
156  */
157 
158 unsigned int aac_command_normal(struct aac_queue *q)
159 {
160 	struct aac_dev * dev = q->dev;
161 	struct aac_entry *entry;
162 	unsigned long flags;
163 
164 	spin_lock_irqsave(q->lock, flags);
165 
166 	/*
167 	 *	Keep pulling response QEs off the response queue and waking
168 	 *	up the waiters until there are no more QEs. We then return
169 	 *	back to the system.
170 	 */
171 	while(aac_consumer_get(dev, q, &entry))
172 	{
173 		struct fib fibctx;
174 		struct hw_fib * hw_fib;
175 		u32 index;
176 		struct fib *fib = &fibctx;
177 
178 		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
179 		hw_fib = &dev->aif_base_va[index];
180 
181 		/*
182 		 *	Allocate a FIB at all costs. For non queued stuff
183 		 *	we can just use the stack so we are happy. We need
184 		 *	a fib object in order to manage the linked lists
185 		 */
186 		if (dev->aif_thread)
187 			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
188 				fib = &fibctx;
189 
190 		memset(fib, 0, sizeof(struct fib));
191 		INIT_LIST_HEAD(&fib->fiblink);
192 		fib->type = FSAFS_NTC_FIB_CONTEXT;
193 		fib->size = sizeof(struct fib);
194 		fib->hw_fib_va = hw_fib;
195 		fib->data = hw_fib->data;
196 		fib->dev = dev;
197 
198 
199 		if (dev->aif_thread && fib != &fibctx) {
200 		        list_add_tail(&fib->fiblink, &q->cmdq);
201 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
202 		        wake_up_interruptible(&q->cmdready);
203 		} else {
204 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
205 			spin_unlock_irqrestore(q->lock, flags);
206 			/*
207 			 *	Set the status of this FIB
208 			 */
209 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
210 			aac_fib_adapter_complete(fib, sizeof(u32));
211 			spin_lock_irqsave(q->lock, flags);
212 		}
213 	}
214 	spin_unlock_irqrestore(q->lock, flags);
215 	return 0;
216 }
217 
218 /*
219  *
220  * aac_aif_callback
221  * @context: the context set in the fib - here it is scsi cmd
222  * @fibptr: pointer to the fib
223  *
224  * Handles the AIFs - new method (SRC)
225  *
226  */
227 
228 static void aac_aif_callback(void *context, struct fib * fibptr)
229 {
230 	struct fib *fibctx;
231 	struct aac_dev *dev;
232 	struct aac_aifcmd *cmd;
233 
234 	fibctx = (struct fib *)context;
235 	BUG_ON(fibptr == NULL);
236 	dev = fibptr->dev;
237 
238 	if ((fibptr->hw_fib_va->header.XferState &
239 	    cpu_to_le32(NoMoreAifDataAvailable)) ||
240 		dev->sa_firmware) {
241 		aac_fib_complete(fibptr);
242 		aac_fib_free(fibptr);
243 		return;
244 	}
245 
246 	aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
247 
248 	aac_fib_init(fibctx);
249 	cmd = (struct aac_aifcmd *) fib_data(fibctx);
250 	cmd->command = cpu_to_le32(AifReqEvent);
251 
252 	aac_fib_send(AifRequest,
253 		fibctx,
254 		sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
255 		FsaNormal,
256 		0, 1,
257 		(fib_callback)aac_aif_callback, fibctx);
258 }
259 
260 
261 /*
262  *	aac_intr_normal	-	Handle command replies
263  *	@dev: Device
264  *	@index: completion reference
265  *
266  *	This DPC routine will be run when the adapter interrupts us to let us
267  *	know there is a response on our normal priority queue. We will pull off
268  *	all QE there are and wake up all the waiters before exiting.
269  */
270 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif,
271 	int isFastResponse, struct hw_fib *aif_fib)
272 {
273 	unsigned long mflags;
274 	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
275 	if (isAif == 1) {	/* AIF - common */
276 		struct hw_fib * hw_fib;
277 		struct fib * fib;
278 		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
279 		unsigned long flags;
280 
281 		/*
282 		 *	Allocate a FIB. For non queued stuff we can just use
283 		 * the stack so we are happy. We need a fib object in order to
284 		 * manage the linked lists.
285 		 */
286 		if ((!dev->aif_thread)
287 		 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
288 			return 1;
289 		if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
290 			kfree (fib);
291 			return 1;
292 		}
293 		if (dev->sa_firmware) {
294 			fib->hbacmd_size = index;	/* store event type */
295 		} else if (aif_fib != NULL) {
296 			memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
297 		} else {
298 			memcpy(hw_fib, (struct hw_fib *)
299 				(((uintptr_t)(dev->regs.sa)) + index),
300 				sizeof(struct hw_fib));
301 		}
302 		INIT_LIST_HEAD(&fib->fiblink);
303 		fib->type = FSAFS_NTC_FIB_CONTEXT;
304 		fib->size = sizeof(struct fib);
305 		fib->hw_fib_va = hw_fib;
306 		fib->data = hw_fib->data;
307 		fib->dev = dev;
308 
309 		spin_lock_irqsave(q->lock, flags);
310 		list_add_tail(&fib->fiblink, &q->cmdq);
311 	        wake_up_interruptible(&q->cmdready);
312 		spin_unlock_irqrestore(q->lock, flags);
313 		return 1;
314 	} else if (isAif == 2) {	/* AIF - new (SRC) */
315 		struct fib *fibctx;
316 		struct aac_aifcmd *cmd;
317 
318 		fibctx = aac_fib_alloc(dev);
319 		if (!fibctx)
320 			return 1;
321 		aac_fib_init(fibctx);
322 
323 		cmd = (struct aac_aifcmd *) fib_data(fibctx);
324 		cmd->command = cpu_to_le32(AifReqEvent);
325 
326 		return aac_fib_send(AifRequest,
327 			fibctx,
328 			sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
329 			FsaNormal,
330 			0, 1,
331 			(fib_callback)aac_aif_callback, fibctx);
332 	} else {
333 		struct fib *fib = &dev->fibs[index];
334 		int start_callback = 0;
335 
336 		/*
337 		 *	Remove this fib from the Outstanding I/O queue.
338 		 *	But only if it has not already been timed out.
339 		 *
340 		 *	If the fib has been timed out already, then just
341 		 *	continue. The caller has already been notified that
342 		 *	the fib timed out.
343 		 */
344 		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
345 
346 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
347 			aac_fib_complete(fib);
348 			aac_fib_free(fib);
349 			return 0;
350 		}
351 
352 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
353 
354 		if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
355 
356 			if (isFastResponse)
357 				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
358 
359 			if (fib->callback) {
360 				start_callback = 1;
361 			} else {
362 				unsigned long flagv;
363 				int completed = 0;
364 
365 				dprintk((KERN_INFO "event_wait up\n"));
366 				spin_lock_irqsave(&fib->event_lock, flagv);
367 				if (fib->done == 2) {
368 					fib->done = 1;
369 					completed = 1;
370 				} else {
371 					fib->done = 1;
372 					complete(&fib->event_wait);
373 				}
374 				spin_unlock_irqrestore(&fib->event_lock, flagv);
375 
376 				spin_lock_irqsave(&dev->manage_lock, mflags);
377 				dev->management_fib_count--;
378 				spin_unlock_irqrestore(&dev->manage_lock,
379 					mflags);
380 
381 				FIB_COUNTER_INCREMENT(aac_config.NativeRecved);
382 				if (completed)
383 					aac_fib_complete(fib);
384 			}
385 		} else {
386 			struct hw_fib *hwfib = fib->hw_fib_va;
387 
388 			if (isFastResponse) {
389 				/* Doctor the fib */
390 				*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
391 				hwfib->header.XferState |=
392 					cpu_to_le32(AdapterProcessed);
393 				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
394 			}
395 
396 			if (hwfib->header.Command ==
397 				cpu_to_le16(NuFileSystem)) {
398 				__le32 *pstatus = (__le32 *)hwfib->data;
399 
400 				if (*pstatus & cpu_to_le32(0xffff0000))
401 					*pstatus = cpu_to_le32(ST_OK);
402 			}
403 			if (hwfib->header.XferState &
404 				cpu_to_le32(NoResponseExpected | Async)) {
405 				if (hwfib->header.XferState & cpu_to_le32(
406 					NoResponseExpected)) {
407 					FIB_COUNTER_INCREMENT(
408 						aac_config.NoResponseRecved);
409 				} else {
410 					FIB_COUNTER_INCREMENT(
411 						aac_config.AsyncRecved);
412 				}
413 				start_callback = 1;
414 			} else {
415 				unsigned long flagv;
416 				int completed = 0;
417 
418 				dprintk((KERN_INFO "event_wait up\n"));
419 				spin_lock_irqsave(&fib->event_lock, flagv);
420 				if (fib->done == 2) {
421 					fib->done = 1;
422 					completed = 1;
423 				} else {
424 					fib->done = 1;
425 					complete(&fib->event_wait);
426 				}
427 				spin_unlock_irqrestore(&fib->event_lock, flagv);
428 
429 				spin_lock_irqsave(&dev->manage_lock, mflags);
430 				dev->management_fib_count--;
431 				spin_unlock_irqrestore(&dev->manage_lock,
432 					mflags);
433 
434 				FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
435 				if (completed)
436 					aac_fib_complete(fib);
437 			}
438 		}
439 
440 
441 		if (start_callback) {
442 			/*
443 			 * NOTE:  we cannot touch the fib after this
444 			 *  call, because it may have been deallocated.
445 			 */
446 			if (likely(fib->callback && fib->callback_data)) {
447 				fib->callback(fib->callback_data, fib);
448 			} else {
449 				aac_fib_complete(fib);
450 				aac_fib_free(fib);
451 			}
452 
453 		}
454 		return 0;
455 	}
456 }
457