xref: /openbmc/linux/drivers/scsi/aacraid/dpcsup.c (revision 1da177e4)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.	<alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  dpcsup.c
26  *
27  * Abstract: All DPC processing routines for the cyclone board occur here.
28  *
29  *
30  */
31 
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <asm/semaphore.h>
42 
43 #include "aacraid.h"
44 
45 /**
46  *	aac_response_normal	-	Handle command replies
47  *	@q: Queue to read from
48  *
49  *	This DPC routine will be run when the adapter interrupts us to let us
50  *	know there is a response on our normal priority queue. We will pull off
51  *	all QE there are and wake up all the waiters before exiting. We will
52  *	take a spinlock out on the queue before operating on it.
53  */
54 
55 unsigned int aac_response_normal(struct aac_queue * q)
56 {
57 	struct aac_dev * dev = q->dev;
58 	struct aac_entry *entry;
59 	struct hw_fib * hwfib;
60 	struct fib * fib;
61 	int consumed = 0;
62 	unsigned long flags;
63 
64 	spin_lock_irqsave(q->lock, flags);
65 	/*
66 	 *	Keep pulling response QEs off the response queue and waking
67 	 *	up the waiters until there are no more QEs. We then return
68 	 *	back to the system. If no response was requesed we just
69 	 *	deallocate the Fib here and continue.
70 	 */
71 	while(aac_consumer_get(dev, q, &entry))
72 	{
73 		int fast;
74 		u32 index = le32_to_cpu(entry->addr);
75 		fast = index & 0x01;
76 		fib = &dev->fibs[index >> 1];
77 		hwfib = fib->hw_fib;
78 
79 		aac_consumer_free(dev, q, HostNormRespQueue);
80 		/*
81 		 *	Remove this fib from the Outstanding I/O queue.
82 		 *	But only if it has not already been timed out.
83 		 *
84 		 *	If the fib has been timed out already, then just
85 		 *	continue. The caller has already been notified that
86 		 *	the fib timed out.
87 		 */
88 		if (!(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
89 			list_del(&fib->queue);
90 			dev->queues->queue[AdapNormCmdQueue].numpending--;
91 		} else {
92 			printk(KERN_WARNING "aacraid: FIB timeout (%x).\n", fib->flags);
93 			printk(KERN_DEBUG"aacraid: hwfib=%p fib index=%i fib=%p\n",hwfib, hwfib->header.SenderData,fib);
94 			continue;
95 		}
96 		spin_unlock_irqrestore(q->lock, flags);
97 
98 		if (fast) {
99 			/*
100 			 *	Doctor the fib
101 			 */
102 			*(u32 *)hwfib->data = cpu_to_le32(ST_OK);
103 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
104 		}
105 
106 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
107 
108 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
109 		{
110 			u32 *pstatus = (u32 *)hwfib->data;
111 			if (*pstatus & cpu_to_le32(0xffff0000))
112 				*pstatus = cpu_to_le32(ST_OK);
113 		}
114 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
115 		{
116 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
117 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
118 			else
119 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
120 			/*
121 			 *	NOTE:  we cannot touch the fib after this
122 			 *	    call, because it may have been deallocated.
123 			 */
124 			fib->callback(fib->callback_data, fib);
125 		} else {
126 			unsigned long flagv;
127 			spin_lock_irqsave(&fib->event_lock, flagv);
128 			fib->done = 1;
129 			up(&fib->event_wait);
130 			spin_unlock_irqrestore(&fib->event_lock, flagv);
131 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
132 		}
133 		consumed++;
134 		spin_lock_irqsave(q->lock, flags);
135 	}
136 
137 	if (consumed > aac_config.peak_fibs)
138 		aac_config.peak_fibs = consumed;
139 	if (consumed == 0)
140 		aac_config.zero_fibs++;
141 
142 	spin_unlock_irqrestore(q->lock, flags);
143 	return 0;
144 }
145 
146 
147 /**
148  *	aac_command_normal	-	handle commands
149  *	@q: queue to process
150  *
151  *	This DPC routine will be queued when the adapter interrupts us to
152  *	let us know there is a command on our normal priority queue. We will
153  *	pull off all QE there are and wake up all the waiters before exiting.
154  *	We will take a spinlock out on the queue before operating on it.
155  */
156 
157 unsigned int aac_command_normal(struct aac_queue *q)
158 {
159 	struct aac_dev * dev = q->dev;
160 	struct aac_entry *entry;
161 	unsigned long flags;
162 
163 	spin_lock_irqsave(q->lock, flags);
164 
165 	/*
166 	 *	Keep pulling response QEs off the response queue and waking
167 	 *	up the waiters until there are no more QEs. We then return
168 	 *	back to the system.
169 	 */
170 	while(aac_consumer_get(dev, q, &entry))
171 	{
172 		struct fib fibctx;
173 		struct hw_fib * hw_fib;
174 		u32 index;
175 		struct fib *fib = &fibctx;
176 
177 		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
178 		hw_fib = &dev->aif_base_va[index];
179 
180 		/*
181 		 *	Allocate a FIB at all costs. For non queued stuff
182 		 *	we can just use the stack so we are happy. We need
183 		 *	a fib object in order to manage the linked lists
184 		 */
185 		if (dev->aif_thread)
186 			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
187 				fib = &fibctx;
188 
189 		memset(fib, 0, sizeof(struct fib));
190 		INIT_LIST_HEAD(&fib->fiblink);
191 		fib->type = FSAFS_NTC_FIB_CONTEXT;
192 		fib->size = sizeof(struct fib);
193 		fib->hw_fib = hw_fib;
194 		fib->data = hw_fib->data;
195 		fib->dev = dev;
196 
197 
198 		if (dev->aif_thread && fib != &fibctx) {
199 		        list_add_tail(&fib->fiblink, &q->cmdq);
200 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
201 		        wake_up_interruptible(&q->cmdready);
202 		} else {
203 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
204 			spin_unlock_irqrestore(q->lock, flags);
205 			/*
206 			 *	Set the status of this FIB
207 			 */
208 			*(u32 *)hw_fib->data = cpu_to_le32(ST_OK);
209 			fib_adapter_complete(fib, sizeof(u32));
210 			spin_lock_irqsave(q->lock, flags);
211 		}
212 	}
213 	spin_unlock_irqrestore(q->lock, flags);
214 	return 0;
215 }
216