1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * dpcsup.c 28 * 29 * Abstract: All DPC processing routines for the cyclone board occur here. 30 * 31 * 32 */ 33 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/types.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 42 #include "aacraid.h" 43 44 /** 45 * aac_response_normal - Handle command replies 46 * @q: Queue to read from 47 * 48 * This DPC routine will be run when the adapter interrupts us to let us 49 * know there is a response on our normal priority queue. We will pull off 50 * all QE there are and wake up all the waiters before exiting. We will 51 * take a spinlock out on the queue before operating on it. 52 */ 53 54 unsigned int aac_response_normal(struct aac_queue * q) 55 { 56 struct aac_dev * dev = q->dev; 57 struct aac_entry *entry; 58 struct hw_fib * hwfib; 59 struct fib * fib; 60 int consumed = 0; 61 unsigned long flags, mflags; 62 63 spin_lock_irqsave(q->lock, flags); 64 /* 65 * Keep pulling response QEs off the response queue and waking 66 * up the waiters until there are no more QEs. We then return 67 * back to the system. If no response was requested we just 68 * deallocate the Fib here and continue. 69 */ 70 while(aac_consumer_get(dev, q, &entry)) 71 { 72 int fast; 73 u32 index = le32_to_cpu(entry->addr); 74 fast = index & 0x01; 75 fib = &dev->fibs[index >> 2]; 76 hwfib = fib->hw_fib_va; 77 78 aac_consumer_free(dev, q, HostNormRespQueue); 79 /* 80 * Remove this fib from the Outstanding I/O queue. 81 * But only if it has not already been timed out. 82 * 83 * If the fib has been timed out already, then just 84 * continue. The caller has already been notified that 85 * the fib timed out. 86 */ 87 atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending); 88 89 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { 90 spin_unlock_irqrestore(q->lock, flags); 91 aac_fib_complete(fib); 92 aac_fib_free(fib); 93 spin_lock_irqsave(q->lock, flags); 94 continue; 95 } 96 spin_unlock_irqrestore(q->lock, flags); 97 98 if (fast) { 99 /* 100 * Doctor the fib 101 */ 102 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); 103 hwfib->header.XferState |= cpu_to_le32(AdapterProcessed); 104 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; 105 } 106 107 FIB_COUNTER_INCREMENT(aac_config.FibRecved); 108 109 if (hwfib->header.Command == cpu_to_le16(NuFileSystem)) 110 { 111 __le32 *pstatus = (__le32 *)hwfib->data; 112 if (*pstatus & cpu_to_le32(0xffff0000)) 113 *pstatus = cpu_to_le32(ST_OK); 114 } 115 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async)) 116 { 117 if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) 118 FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved); 119 else 120 FIB_COUNTER_INCREMENT(aac_config.AsyncRecved); 121 /* 122 * NOTE: we cannot touch the fib after this 123 * call, because it may have been deallocated. 124 */ 125 fib->callback(fib->callback_data, fib); 126 } else { 127 unsigned long flagv; 128 spin_lock_irqsave(&fib->event_lock, flagv); 129 if (!fib->done) { 130 fib->done = 1; 131 complete(&fib->event_wait); 132 } 133 spin_unlock_irqrestore(&fib->event_lock, flagv); 134 135 spin_lock_irqsave(&dev->manage_lock, mflags); 136 dev->management_fib_count--; 137 spin_unlock_irqrestore(&dev->manage_lock, mflags); 138 139 FIB_COUNTER_INCREMENT(aac_config.NormalRecved); 140 if (fib->done == 2) { 141 spin_lock_irqsave(&fib->event_lock, flagv); 142 fib->done = 0; 143 spin_unlock_irqrestore(&fib->event_lock, flagv); 144 aac_fib_complete(fib); 145 aac_fib_free(fib); 146 } 147 } 148 consumed++; 149 spin_lock_irqsave(q->lock, flags); 150 } 151 152 if (consumed > aac_config.peak_fibs) 153 aac_config.peak_fibs = consumed; 154 if (consumed == 0) 155 aac_config.zero_fibs++; 156 157 spin_unlock_irqrestore(q->lock, flags); 158 return 0; 159 } 160 161 162 /** 163 * aac_command_normal - handle commands 164 * @q: queue to process 165 * 166 * This DPC routine will be queued when the adapter interrupts us to 167 * let us know there is a command on our normal priority queue. We will 168 * pull off all QE there are and wake up all the waiters before exiting. 169 * We will take a spinlock out on the queue before operating on it. 170 */ 171 172 unsigned int aac_command_normal(struct aac_queue *q) 173 { 174 struct aac_dev * dev = q->dev; 175 struct aac_entry *entry; 176 unsigned long flags; 177 178 spin_lock_irqsave(q->lock, flags); 179 180 /* 181 * Keep pulling response QEs off the response queue and waking 182 * up the waiters until there are no more QEs. We then return 183 * back to the system. 184 */ 185 while(aac_consumer_get(dev, q, &entry)) 186 { 187 struct fib fibctx; 188 struct hw_fib * hw_fib; 189 u32 index; 190 struct fib *fib = &fibctx; 191 192 index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib); 193 hw_fib = &dev->aif_base_va[index]; 194 195 /* 196 * Allocate a FIB at all costs. For non queued stuff 197 * we can just use the stack so we are happy. We need 198 * a fib object in order to manage the linked lists 199 */ 200 if (dev->aif_thread) 201 if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL) 202 fib = &fibctx; 203 204 memset(fib, 0, sizeof(struct fib)); 205 INIT_LIST_HEAD(&fib->fiblink); 206 fib->type = FSAFS_NTC_FIB_CONTEXT; 207 fib->size = sizeof(struct fib); 208 fib->hw_fib_va = hw_fib; 209 fib->data = hw_fib->data; 210 fib->dev = dev; 211 212 213 if (dev->aif_thread && fib != &fibctx) { 214 list_add_tail(&fib->fiblink, &q->cmdq); 215 aac_consumer_free(dev, q, HostNormCmdQueue); 216 wake_up_interruptible(&q->cmdready); 217 } else { 218 aac_consumer_free(dev, q, HostNormCmdQueue); 219 spin_unlock_irqrestore(q->lock, flags); 220 /* 221 * Set the status of this FIB 222 */ 223 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 224 aac_fib_adapter_complete(fib, sizeof(u32)); 225 spin_lock_irqsave(q->lock, flags); 226 } 227 } 228 spin_unlock_irqrestore(q->lock, flags); 229 return 0; 230 } 231 232 /* 233 * 234 * aac_aif_callback 235 * @context: the context set in the fib - here it is scsi cmd 236 * @fibptr: pointer to the fib 237 * 238 * Handles the AIFs - new method (SRC) 239 * 240 */ 241 242 static void aac_aif_callback(void *context, struct fib * fibptr) 243 { 244 struct fib *fibctx; 245 struct aac_dev *dev; 246 struct aac_aifcmd *cmd; 247 int status; 248 249 fibctx = (struct fib *)context; 250 BUG_ON(fibptr == NULL); 251 dev = fibptr->dev; 252 253 if ((fibptr->hw_fib_va->header.XferState & 254 cpu_to_le32(NoMoreAifDataAvailable)) || 255 dev->sa_firmware) { 256 aac_fib_complete(fibptr); 257 aac_fib_free(fibptr); 258 return; 259 } 260 261 aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va); 262 263 aac_fib_init(fibctx); 264 cmd = (struct aac_aifcmd *) fib_data(fibctx); 265 cmd->command = cpu_to_le32(AifReqEvent); 266 267 status = aac_fib_send(AifRequest, 268 fibctx, 269 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr), 270 FsaNormal, 271 0, 1, 272 (fib_callback)aac_aif_callback, fibctx); 273 } 274 275 276 /** 277 * aac_intr_normal - Handle command replies 278 * @dev: Device 279 * @index: completion reference 280 * 281 * This DPC routine will be run when the adapter interrupts us to let us 282 * know there is a response on our normal priority queue. We will pull off 283 * all QE there are and wake up all the waiters before exiting. 284 */ 285 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif, 286 int isFastResponse, struct hw_fib *aif_fib) 287 { 288 unsigned long mflags; 289 dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index)); 290 if (isAif == 1) { /* AIF - common */ 291 struct hw_fib * hw_fib; 292 struct fib * fib; 293 struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue]; 294 unsigned long flags; 295 296 /* 297 * Allocate a FIB. For non queued stuff we can just use 298 * the stack so we are happy. We need a fib object in order to 299 * manage the linked lists. 300 */ 301 if ((!dev->aif_thread) 302 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC)))) 303 return 1; 304 if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) { 305 kfree (fib); 306 return 1; 307 } 308 if (dev->sa_firmware) { 309 fib->hbacmd_size = index; /* store event type */ 310 } else if (aif_fib != NULL) { 311 memcpy(hw_fib, aif_fib, sizeof(struct hw_fib)); 312 } else { 313 memcpy(hw_fib, (struct hw_fib *) 314 (((uintptr_t)(dev->regs.sa)) + index), 315 sizeof(struct hw_fib)); 316 } 317 INIT_LIST_HEAD(&fib->fiblink); 318 fib->type = FSAFS_NTC_FIB_CONTEXT; 319 fib->size = sizeof(struct fib); 320 fib->hw_fib_va = hw_fib; 321 fib->data = hw_fib->data; 322 fib->dev = dev; 323 324 spin_lock_irqsave(q->lock, flags); 325 list_add_tail(&fib->fiblink, &q->cmdq); 326 wake_up_interruptible(&q->cmdready); 327 spin_unlock_irqrestore(q->lock, flags); 328 return 1; 329 } else if (isAif == 2) { /* AIF - new (SRC) */ 330 struct fib *fibctx; 331 struct aac_aifcmd *cmd; 332 333 fibctx = aac_fib_alloc(dev); 334 if (!fibctx) 335 return 1; 336 aac_fib_init(fibctx); 337 338 cmd = (struct aac_aifcmd *) fib_data(fibctx); 339 cmd->command = cpu_to_le32(AifReqEvent); 340 341 return aac_fib_send(AifRequest, 342 fibctx, 343 sizeof(struct hw_fib)-sizeof(struct aac_fibhdr), 344 FsaNormal, 345 0, 1, 346 (fib_callback)aac_aif_callback, fibctx); 347 } else { 348 struct fib *fib = &dev->fibs[index]; 349 int start_callback = 0; 350 351 /* 352 * Remove this fib from the Outstanding I/O queue. 353 * But only if it has not already been timed out. 354 * 355 * If the fib has been timed out already, then just 356 * continue. The caller has already been notified that 357 * the fib timed out. 358 */ 359 atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending); 360 361 if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { 362 aac_fib_complete(fib); 363 aac_fib_free(fib); 364 return 0; 365 } 366 367 FIB_COUNTER_INCREMENT(aac_config.FibRecved); 368 369 if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { 370 371 if (isFastResponse) 372 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; 373 374 if (fib->callback) { 375 start_callback = 1; 376 } else { 377 unsigned long flagv; 378 int completed = 0; 379 380 dprintk((KERN_INFO "event_wait up\n")); 381 spin_lock_irqsave(&fib->event_lock, flagv); 382 if (fib->done == 2) { 383 fib->done = 1; 384 completed = 1; 385 } else { 386 fib->done = 1; 387 complete(&fib->event_wait); 388 } 389 spin_unlock_irqrestore(&fib->event_lock, flagv); 390 391 spin_lock_irqsave(&dev->manage_lock, mflags); 392 dev->management_fib_count--; 393 spin_unlock_irqrestore(&dev->manage_lock, 394 mflags); 395 396 FIB_COUNTER_INCREMENT(aac_config.NativeRecved); 397 if (completed) 398 aac_fib_complete(fib); 399 } 400 } else { 401 struct hw_fib *hwfib = fib->hw_fib_va; 402 403 if (isFastResponse) { 404 /* Doctor the fib */ 405 *(__le32 *)hwfib->data = cpu_to_le32(ST_OK); 406 hwfib->header.XferState |= 407 cpu_to_le32(AdapterProcessed); 408 fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; 409 } 410 411 if (hwfib->header.Command == 412 cpu_to_le16(NuFileSystem)) { 413 __le32 *pstatus = (__le32 *)hwfib->data; 414 415 if (*pstatus & cpu_to_le32(0xffff0000)) 416 *pstatus = cpu_to_le32(ST_OK); 417 } 418 if (hwfib->header.XferState & 419 cpu_to_le32(NoResponseExpected | Async)) { 420 if (hwfib->header.XferState & cpu_to_le32( 421 NoResponseExpected)) 422 FIB_COUNTER_INCREMENT( 423 aac_config.NoResponseRecved); 424 else 425 FIB_COUNTER_INCREMENT( 426 aac_config.AsyncRecved); 427 start_callback = 1; 428 } else { 429 unsigned long flagv; 430 int completed = 0; 431 432 dprintk((KERN_INFO "event_wait up\n")); 433 spin_lock_irqsave(&fib->event_lock, flagv); 434 if (fib->done == 2) { 435 fib->done = 1; 436 completed = 1; 437 } else { 438 fib->done = 1; 439 complete(&fib->event_wait); 440 } 441 spin_unlock_irqrestore(&fib->event_lock, flagv); 442 443 spin_lock_irqsave(&dev->manage_lock, mflags); 444 dev->management_fib_count--; 445 spin_unlock_irqrestore(&dev->manage_lock, 446 mflags); 447 448 FIB_COUNTER_INCREMENT(aac_config.NormalRecved); 449 if (completed) 450 aac_fib_complete(fib); 451 } 452 } 453 454 455 if (start_callback) { 456 /* 457 * NOTE: we cannot touch the fib after this 458 * call, because it may have been deallocated. 459 */ 460 if (likely(fib->callback && fib->callback_data)) { 461 fib->callback(fib->callback_data, fib); 462 } else { 463 aac_fib_complete(fib); 464 aac_fib_free(fib); 465 } 466 467 } 468 return 0; 469 } 470 } 471