xref: /openbmc/linux/drivers/scsi/aacraid/dpcsup.c (revision 176f011b)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  dpcsup.c
28  *
29  * Abstract: All DPC processing routines for the cyclone board occur here.
30  *
31  *
32  */
33 
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 
42 #include "aacraid.h"
43 
44 /**
45  *	aac_response_normal	-	Handle command replies
46  *	@q: Queue to read from
47  *
48  *	This DPC routine will be run when the adapter interrupts us to let us
49  *	know there is a response on our normal priority queue. We will pull off
50  *	all QE there are and wake up all the waiters before exiting. We will
51  *	take a spinlock out on the queue before operating on it.
52  */
53 
54 unsigned int aac_response_normal(struct aac_queue * q)
55 {
56 	struct aac_dev * dev = q->dev;
57 	struct aac_entry *entry;
58 	struct hw_fib * hwfib;
59 	struct fib * fib;
60 	int consumed = 0;
61 	unsigned long flags, mflags;
62 
63 	spin_lock_irqsave(q->lock, flags);
64 	/*
65 	 *	Keep pulling response QEs off the response queue and waking
66 	 *	up the waiters until there are no more QEs. We then return
67 	 *	back to the system. If no response was requested we just
68 	 *	deallocate the Fib here and continue.
69 	 */
70 	while(aac_consumer_get(dev, q, &entry))
71 	{
72 		int fast;
73 		u32 index = le32_to_cpu(entry->addr);
74 		fast = index & 0x01;
75 		fib = &dev->fibs[index >> 2];
76 		hwfib = fib->hw_fib_va;
77 
78 		aac_consumer_free(dev, q, HostNormRespQueue);
79 		/*
80 		 *	Remove this fib from the Outstanding I/O queue.
81 		 *	But only if it has not already been timed out.
82 		 *
83 		 *	If the fib has been timed out already, then just
84 		 *	continue. The caller has already been notified that
85 		 *	the fib timed out.
86 		 */
87 		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
88 
89 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
90 			spin_unlock_irqrestore(q->lock, flags);
91 			aac_fib_complete(fib);
92 			aac_fib_free(fib);
93 			spin_lock_irqsave(q->lock, flags);
94 			continue;
95 		}
96 		spin_unlock_irqrestore(q->lock, flags);
97 
98 		if (fast) {
99 			/*
100 			 *	Doctor the fib
101 			 */
102 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
103 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed);
104 			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
105 		}
106 
107 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
108 
109 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem))
110 		{
111 			__le32 *pstatus = (__le32 *)hwfib->data;
112 			if (*pstatus & cpu_to_le32(0xffff0000))
113 				*pstatus = cpu_to_le32(ST_OK);
114 		}
115 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))
116 		{
117 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected))
118 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved);
119 			else
120 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved);
121 			/*
122 			 *	NOTE:  we cannot touch the fib after this
123 			 *	    call, because it may have been deallocated.
124 			 */
125 			fib->callback(fib->callback_data, fib);
126 		} else {
127 			unsigned long flagv;
128 			spin_lock_irqsave(&fib->event_lock, flagv);
129 			if (!fib->done) {
130 				fib->done = 1;
131 				complete(&fib->event_wait);
132 			}
133 			spin_unlock_irqrestore(&fib->event_lock, flagv);
134 
135 			spin_lock_irqsave(&dev->manage_lock, mflags);
136 			dev->management_fib_count--;
137 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
138 
139 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
140 			if (fib->done == 2) {
141 				spin_lock_irqsave(&fib->event_lock, flagv);
142 				fib->done = 0;
143 				spin_unlock_irqrestore(&fib->event_lock, flagv);
144 				aac_fib_complete(fib);
145 				aac_fib_free(fib);
146 			}
147 		}
148 		consumed++;
149 		spin_lock_irqsave(q->lock, flags);
150 	}
151 
152 	if (consumed > aac_config.peak_fibs)
153 		aac_config.peak_fibs = consumed;
154 	if (consumed == 0)
155 		aac_config.zero_fibs++;
156 
157 	spin_unlock_irqrestore(q->lock, flags);
158 	return 0;
159 }
160 
161 
162 /**
163  *	aac_command_normal	-	handle commands
164  *	@q: queue to process
165  *
166  *	This DPC routine will be queued when the adapter interrupts us to
167  *	let us know there is a command on our normal priority queue. We will
168  *	pull off all QE there are and wake up all the waiters before exiting.
169  *	We will take a spinlock out on the queue before operating on it.
170  */
171 
172 unsigned int aac_command_normal(struct aac_queue *q)
173 {
174 	struct aac_dev * dev = q->dev;
175 	struct aac_entry *entry;
176 	unsigned long flags;
177 
178 	spin_lock_irqsave(q->lock, flags);
179 
180 	/*
181 	 *	Keep pulling response QEs off the response queue and waking
182 	 *	up the waiters until there are no more QEs. We then return
183 	 *	back to the system.
184 	 */
185 	while(aac_consumer_get(dev, q, &entry))
186 	{
187 		struct fib fibctx;
188 		struct hw_fib * hw_fib;
189 		u32 index;
190 		struct fib *fib = &fibctx;
191 
192 		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib);
193 		hw_fib = &dev->aif_base_va[index];
194 
195 		/*
196 		 *	Allocate a FIB at all costs. For non queued stuff
197 		 *	we can just use the stack so we are happy. We need
198 		 *	a fib object in order to manage the linked lists
199 		 */
200 		if (dev->aif_thread)
201 			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL)
202 				fib = &fibctx;
203 
204 		memset(fib, 0, sizeof(struct fib));
205 		INIT_LIST_HEAD(&fib->fiblink);
206 		fib->type = FSAFS_NTC_FIB_CONTEXT;
207 		fib->size = sizeof(struct fib);
208 		fib->hw_fib_va = hw_fib;
209 		fib->data = hw_fib->data;
210 		fib->dev = dev;
211 
212 
213 		if (dev->aif_thread && fib != &fibctx) {
214 		        list_add_tail(&fib->fiblink, &q->cmdq);
215 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
216 		        wake_up_interruptible(&q->cmdready);
217 		} else {
218 	 	        aac_consumer_free(dev, q, HostNormCmdQueue);
219 			spin_unlock_irqrestore(q->lock, flags);
220 			/*
221 			 *	Set the status of this FIB
222 			 */
223 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
224 			aac_fib_adapter_complete(fib, sizeof(u32));
225 			spin_lock_irqsave(q->lock, flags);
226 		}
227 	}
228 	spin_unlock_irqrestore(q->lock, flags);
229 	return 0;
230 }
231 
232 /*
233  *
234  * aac_aif_callback
235  * @context: the context set in the fib - here it is scsi cmd
236  * @fibptr: pointer to the fib
237  *
238  * Handles the AIFs - new method (SRC)
239  *
240  */
241 
242 static void aac_aif_callback(void *context, struct fib * fibptr)
243 {
244 	struct fib *fibctx;
245 	struct aac_dev *dev;
246 	struct aac_aifcmd *cmd;
247 	int status;
248 
249 	fibctx = (struct fib *)context;
250 	BUG_ON(fibptr == NULL);
251 	dev = fibptr->dev;
252 
253 	if ((fibptr->hw_fib_va->header.XferState &
254 	    cpu_to_le32(NoMoreAifDataAvailable)) ||
255 		dev->sa_firmware) {
256 		aac_fib_complete(fibptr);
257 		aac_fib_free(fibptr);
258 		return;
259 	}
260 
261 	aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va);
262 
263 	aac_fib_init(fibctx);
264 	cmd = (struct aac_aifcmd *) fib_data(fibctx);
265 	cmd->command = cpu_to_le32(AifReqEvent);
266 
267 	status = aac_fib_send(AifRequest,
268 		fibctx,
269 		sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
270 		FsaNormal,
271 		0, 1,
272 		(fib_callback)aac_aif_callback, fibctx);
273 }
274 
275 
276 /**
277  *	aac_intr_normal	-	Handle command replies
278  *	@dev: Device
279  *	@index: completion reference
280  *
281  *	This DPC routine will be run when the adapter interrupts us to let us
282  *	know there is a response on our normal priority queue. We will pull off
283  *	all QE there are and wake up all the waiters before exiting.
284  */
285 unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif,
286 	int isFastResponse, struct hw_fib *aif_fib)
287 {
288 	unsigned long mflags;
289 	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index));
290 	if (isAif == 1) {	/* AIF - common */
291 		struct hw_fib * hw_fib;
292 		struct fib * fib;
293 		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue];
294 		unsigned long flags;
295 
296 		/*
297 		 *	Allocate a FIB. For non queued stuff we can just use
298 		 * the stack so we are happy. We need a fib object in order to
299 		 * manage the linked lists.
300 		 */
301 		if ((!dev->aif_thread)
302 		 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC))))
303 			return 1;
304 		if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) {
305 			kfree (fib);
306 			return 1;
307 		}
308 		if (dev->sa_firmware) {
309 			fib->hbacmd_size = index;	/* store event type */
310 		} else if (aif_fib != NULL) {
311 			memcpy(hw_fib, aif_fib, sizeof(struct hw_fib));
312 		} else {
313 			memcpy(hw_fib, (struct hw_fib *)
314 				(((uintptr_t)(dev->regs.sa)) + index),
315 				sizeof(struct hw_fib));
316 		}
317 		INIT_LIST_HEAD(&fib->fiblink);
318 		fib->type = FSAFS_NTC_FIB_CONTEXT;
319 		fib->size = sizeof(struct fib);
320 		fib->hw_fib_va = hw_fib;
321 		fib->data = hw_fib->data;
322 		fib->dev = dev;
323 
324 		spin_lock_irqsave(q->lock, flags);
325 		list_add_tail(&fib->fiblink, &q->cmdq);
326 	        wake_up_interruptible(&q->cmdready);
327 		spin_unlock_irqrestore(q->lock, flags);
328 		return 1;
329 	} else if (isAif == 2) {	/* AIF - new (SRC) */
330 		struct fib *fibctx;
331 		struct aac_aifcmd *cmd;
332 
333 		fibctx = aac_fib_alloc(dev);
334 		if (!fibctx)
335 			return 1;
336 		aac_fib_init(fibctx);
337 
338 		cmd = (struct aac_aifcmd *) fib_data(fibctx);
339 		cmd->command = cpu_to_le32(AifReqEvent);
340 
341 		return aac_fib_send(AifRequest,
342 			fibctx,
343 			sizeof(struct hw_fib)-sizeof(struct aac_fibhdr),
344 			FsaNormal,
345 			0, 1,
346 			(fib_callback)aac_aif_callback, fibctx);
347 	} else {
348 		struct fib *fib = &dev->fibs[index];
349 		int start_callback = 0;
350 
351 		/*
352 		 *	Remove this fib from the Outstanding I/O queue.
353 		 *	But only if it has not already been timed out.
354 		 *
355 		 *	If the fib has been timed out already, then just
356 		 *	continue. The caller has already been notified that
357 		 *	the fib timed out.
358 		 */
359 		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending);
360 
361 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) {
362 			aac_fib_complete(fib);
363 			aac_fib_free(fib);
364 			return 0;
365 		}
366 
367 		FIB_COUNTER_INCREMENT(aac_config.FibRecved);
368 
369 		if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
370 
371 			if (isFastResponse)
372 				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
373 
374 			if (fib->callback) {
375 				start_callback = 1;
376 			} else {
377 				unsigned long flagv;
378 				int completed = 0;
379 
380 				dprintk((KERN_INFO "event_wait up\n"));
381 				spin_lock_irqsave(&fib->event_lock, flagv);
382 				if (fib->done == 2) {
383 					fib->done = 1;
384 					completed = 1;
385 				} else {
386 					fib->done = 1;
387 					complete(&fib->event_wait);
388 				}
389 				spin_unlock_irqrestore(&fib->event_lock, flagv);
390 
391 				spin_lock_irqsave(&dev->manage_lock, mflags);
392 				dev->management_fib_count--;
393 				spin_unlock_irqrestore(&dev->manage_lock,
394 					mflags);
395 
396 				FIB_COUNTER_INCREMENT(aac_config.NativeRecved);
397 				if (completed)
398 					aac_fib_complete(fib);
399 			}
400 		} else {
401 			struct hw_fib *hwfib = fib->hw_fib_va;
402 
403 			if (isFastResponse) {
404 				/* Doctor the fib */
405 				*(__le32 *)hwfib->data = cpu_to_le32(ST_OK);
406 				hwfib->header.XferState |=
407 					cpu_to_le32(AdapterProcessed);
408 				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP;
409 			}
410 
411 			if (hwfib->header.Command ==
412 				cpu_to_le16(NuFileSystem)) {
413 				__le32 *pstatus = (__le32 *)hwfib->data;
414 
415 				if (*pstatus & cpu_to_le32(0xffff0000))
416 					*pstatus = cpu_to_le32(ST_OK);
417 			}
418 			if (hwfib->header.XferState &
419 				cpu_to_le32(NoResponseExpected | Async)) {
420 				if (hwfib->header.XferState & cpu_to_le32(
421 					NoResponseExpected))
422 					FIB_COUNTER_INCREMENT(
423 						aac_config.NoResponseRecved);
424 				else
425 					FIB_COUNTER_INCREMENT(
426 						aac_config.AsyncRecved);
427 				start_callback = 1;
428 			} else {
429 				unsigned long flagv;
430 				int completed = 0;
431 
432 				dprintk((KERN_INFO "event_wait up\n"));
433 				spin_lock_irqsave(&fib->event_lock, flagv);
434 				if (fib->done == 2) {
435 					fib->done = 1;
436 					completed = 1;
437 				} else {
438 					fib->done = 1;
439 					complete(&fib->event_wait);
440 				}
441 				spin_unlock_irqrestore(&fib->event_lock, flagv);
442 
443 				spin_lock_irqsave(&dev->manage_lock, mflags);
444 				dev->management_fib_count--;
445 				spin_unlock_irqrestore(&dev->manage_lock,
446 					mflags);
447 
448 				FIB_COUNTER_INCREMENT(aac_config.NormalRecved);
449 				if (completed)
450 					aac_fib_complete(fib);
451 			}
452 		}
453 
454 
455 		if (start_callback) {
456 			/*
457 			 * NOTE:  we cannot touch the fib after this
458 			 *  call, because it may have been deallocated.
459 			 */
460 			if (likely(fib->callback && fib->callback_data)) {
461 				fib->callback(fib->callback_data, fib);
462 			} else {
463 				aac_fib_complete(fib);
464 				aac_fib_free(fib);
465 			}
466 
467 		}
468 		return 0;
469 	}
470 }
471