1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * commsup.c 15 * 16 * Abstract: Contain all routines that are required for FSA host/adapter 17 * communication. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/init.h> 22 #include <linux/crash_dump.h> 23 #include <linux/types.h> 24 #include <linux/sched.h> 25 #include <linux/pci.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/completion.h> 29 #include <linux/blkdev.h> 30 #include <linux/delay.h> 31 #include <linux/kthread.h> 32 #include <linux/interrupt.h> 33 #include <linux/bcd.h> 34 #include <scsi/scsi.h> 35 #include <scsi/scsi_host.h> 36 #include <scsi/scsi_device.h> 37 #include <scsi/scsi_cmnd.h> 38 39 #include "aacraid.h" 40 41 /** 42 * fib_map_alloc - allocate the fib objects 43 * @dev: Adapter to allocate for 44 * 45 * Allocate and map the shared PCI space for the FIB blocks used to 46 * talk to the Adaptec firmware. 47 */ 48 49 static int fib_map_alloc(struct aac_dev *dev) 50 { 51 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) 52 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 53 else 54 dev->max_cmd_size = dev->max_fib_size; 55 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { 56 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 57 } else { 58 dev->max_cmd_size = dev->max_fib_size; 59 } 60 61 dprintk((KERN_INFO 62 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", 63 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, 64 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 65 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, 66 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) 67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 68 &dev->hw_fib_pa, GFP_KERNEL); 69 if (dev->hw_fib_va == NULL) 70 return -ENOMEM; 71 return 0; 72 } 73 74 /** 75 * aac_fib_map_free - free the fib objects 76 * @dev: Adapter to free 77 * 78 * Free the PCI mappings and the memory allocated for FIB blocks 79 * on this adapter. 80 */ 81 82 void aac_fib_map_free(struct aac_dev *dev) 83 { 84 size_t alloc_size; 85 size_t fib_size; 86 int num_fibs; 87 88 if(!dev->hw_fib_va || !dev->max_cmd_size) 89 return; 90 91 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 92 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 93 alloc_size = fib_size * num_fibs + ALIGN32 - 1; 94 95 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, 96 dev->hw_fib_pa); 97 98 dev->hw_fib_va = NULL; 99 dev->hw_fib_pa = 0; 100 } 101 102 void aac_fib_vector_assign(struct aac_dev *dev) 103 { 104 u32 i = 0; 105 u32 vector = 1; 106 struct fib *fibptr = NULL; 107 108 for (i = 0, fibptr = &dev->fibs[i]; 109 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 110 i++, fibptr++) { 111 if ((dev->max_msix == 1) || 112 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) 113 - dev->vector_cap))) { 114 fibptr->vector_no = 0; 115 } else { 116 fibptr->vector_no = vector; 117 vector++; 118 if (vector == dev->max_msix) 119 vector = 1; 120 } 121 } 122 } 123 124 /** 125 * aac_fib_setup - setup the fibs 126 * @dev: Adapter to set up 127 * 128 * Allocate the PCI space for the fibs, map it and then initialise the 129 * fib area, the unmapped fib data and also the free list 130 */ 131 132 int aac_fib_setup(struct aac_dev * dev) 133 { 134 struct fib *fibptr; 135 struct hw_fib *hw_fib; 136 dma_addr_t hw_fib_pa; 137 int i; 138 u32 max_cmds; 139 140 while (((i = fib_map_alloc(dev)) == -ENOMEM) 141 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 142 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; 143 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; 144 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) 145 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); 146 } 147 if (i<0) 148 return -ENOMEM; 149 150 memset(dev->hw_fib_va, 0, 151 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * 152 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 153 154 /* 32 byte alignment for PMC */ 155 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 156 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 157 (hw_fib_pa - dev->hw_fib_pa)); 158 159 /* add Xport header */ 160 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 161 sizeof(struct aac_fib_xporthdr)); 162 hw_fib_pa += sizeof(struct aac_fib_xporthdr); 163 164 /* 165 * Initialise the fibs 166 */ 167 for (i = 0, fibptr = &dev->fibs[i]; 168 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 169 i++, fibptr++) 170 { 171 fibptr->flags = 0; 172 fibptr->size = sizeof(struct fib); 173 fibptr->dev = dev; 174 fibptr->hw_fib_va = hw_fib; 175 fibptr->data = (void *) fibptr->hw_fib_va->data; 176 fibptr->next = fibptr+1; /* Forward chain the fibs */ 177 init_completion(&fibptr->event_wait); 178 spin_lock_init(&fibptr->event_lock); 179 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 180 hw_fib->header.SenderSize = 181 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */ 182 fibptr->hw_fib_pa = hw_fib_pa; 183 fibptr->hw_sgl_pa = hw_fib_pa + 184 offsetof(struct aac_hba_cmd_req, sge[2]); 185 /* 186 * one element is for the ptr to the separate sg list, 187 * second element for 32 byte alignment 188 */ 189 fibptr->hw_error_pa = hw_fib_pa + 190 offsetof(struct aac_native_hba, resp.resp_bytes[0]); 191 192 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 193 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); 194 hw_fib_pa = hw_fib_pa + 195 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); 196 } 197 198 /* 199 *Assign vector numbers to fibs 200 */ 201 aac_fib_vector_assign(dev); 202 203 /* 204 * Add the fib chain to the free list 205 */ 206 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 207 /* 208 * Set 8 fibs aside for management tools 209 */ 210 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; 211 return 0; 212 } 213 214 /** 215 * aac_fib_alloc_tag-allocate a fib using tags 216 * @dev: Adapter to allocate the fib for 217 * 218 * Allocate a fib from the adapter fib pool using tags 219 * from the blk layer. 220 */ 221 222 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) 223 { 224 struct fib *fibptr; 225 226 fibptr = &dev->fibs[scmd->request->tag]; 227 /* 228 * Null out fields that depend on being zero at the start of 229 * each I/O 230 */ 231 fibptr->hw_fib_va->header.XferState = 0; 232 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 233 fibptr->callback_data = NULL; 234 fibptr->callback = NULL; 235 fibptr->flags = 0; 236 237 return fibptr; 238 } 239 240 /** 241 * aac_fib_alloc - allocate a fib 242 * @dev: Adapter to allocate the fib for 243 * 244 * Allocate a fib from the adapter fib pool. If the pool is empty we 245 * return NULL. 246 */ 247 248 struct fib *aac_fib_alloc(struct aac_dev *dev) 249 { 250 struct fib * fibptr; 251 unsigned long flags; 252 spin_lock_irqsave(&dev->fib_lock, flags); 253 fibptr = dev->free_fib; 254 if(!fibptr){ 255 spin_unlock_irqrestore(&dev->fib_lock, flags); 256 return fibptr; 257 } 258 dev->free_fib = fibptr->next; 259 spin_unlock_irqrestore(&dev->fib_lock, flags); 260 /* 261 * Set the proper node type code and node byte size 262 */ 263 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 264 fibptr->size = sizeof(struct fib); 265 /* 266 * Null out fields that depend on being zero at the start of 267 * each I/O 268 */ 269 fibptr->hw_fib_va->header.XferState = 0; 270 fibptr->flags = 0; 271 fibptr->callback = NULL; 272 fibptr->callback_data = NULL; 273 274 return fibptr; 275 } 276 277 /** 278 * aac_fib_free - free a fib 279 * @fibptr: fib to free up 280 * 281 * Frees up a fib and places it on the appropriate queue 282 */ 283 284 void aac_fib_free(struct fib *fibptr) 285 { 286 unsigned long flags; 287 288 if (fibptr->done == 2) 289 return; 290 291 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 292 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 293 aac_config.fib_timeouts++; 294 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 295 fibptr->hw_fib_va->header.XferState != 0) { 296 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 297 (void*)fibptr, 298 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 299 } 300 fibptr->next = fibptr->dev->free_fib; 301 fibptr->dev->free_fib = fibptr; 302 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 303 } 304 305 /** 306 * aac_fib_init - initialise a fib 307 * @fibptr: The fib to initialize 308 * 309 * Set up the generic fib fields ready for use 310 */ 311 312 void aac_fib_init(struct fib *fibptr) 313 { 314 struct hw_fib *hw_fib = fibptr->hw_fib_va; 315 316 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); 317 hw_fib->header.StructType = FIB_MAGIC; 318 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 319 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 320 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 321 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 322 } 323 324 /** 325 * fib_deallocate - deallocate a fib 326 * @fibptr: fib to deallocate 327 * 328 * Will deallocate and return to the free pool the FIB pointed to by the 329 * caller. 330 */ 331 332 static void fib_dealloc(struct fib * fibptr) 333 { 334 struct hw_fib *hw_fib = fibptr->hw_fib_va; 335 hw_fib->header.XferState = 0; 336 } 337 338 /* 339 * Commuication primitives define and support the queuing method we use to 340 * support host to adapter commuication. All queue accesses happen through 341 * these routines and are the only routines which have a knowledge of the 342 * how these queues are implemented. 343 */ 344 345 /** 346 * aac_get_entry - get a queue entry 347 * @dev: Adapter 348 * @qid: Queue Number 349 * @entry: Entry return 350 * @index: Index return 351 * @nonotify: notification control 352 * 353 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 354 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 355 * returned. 356 */ 357 358 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 359 { 360 struct aac_queue * q; 361 unsigned long idx; 362 363 /* 364 * All of the queues wrap when they reach the end, so we check 365 * to see if they have reached the end and if they have we just 366 * set the index back to zero. This is a wrap. You could or off 367 * the high bits in all updates but this is a bit faster I think. 368 */ 369 370 q = &dev->queues->queue[qid]; 371 372 idx = *index = le32_to_cpu(*(q->headers.producer)); 373 /* Interrupt Moderation, only interrupt for first two entries */ 374 if (idx != le32_to_cpu(*(q->headers.consumer))) { 375 if (--idx == 0) { 376 if (qid == AdapNormCmdQueue) 377 idx = ADAP_NORM_CMD_ENTRIES; 378 else 379 idx = ADAP_NORM_RESP_ENTRIES; 380 } 381 if (idx != le32_to_cpu(*(q->headers.consumer))) 382 *nonotify = 1; 383 } 384 385 if (qid == AdapNormCmdQueue) { 386 if (*index >= ADAP_NORM_CMD_ENTRIES) 387 *index = 0; /* Wrap to front of the Producer Queue. */ 388 } else { 389 if (*index >= ADAP_NORM_RESP_ENTRIES) 390 *index = 0; /* Wrap to front of the Producer Queue. */ 391 } 392 393 /* Queue is full */ 394 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 395 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 396 qid, atomic_read(&q->numpending)); 397 return 0; 398 } else { 399 *entry = q->base + *index; 400 return 1; 401 } 402 } 403 404 /** 405 * aac_queue_get - get the next free QE 406 * @dev: Adapter 407 * @index: Returned index 408 * @priority: Priority of fib 409 * @fib: Fib to associate with the queue entry 410 * @wait: Wait if queue full 411 * @fibptr: Driver fib object to go with fib 412 * @nonotify: Don't notify the adapter 413 * 414 * Gets the next free QE off the requested priorty adapter command 415 * queue and associates the Fib with the QE. The QE represented by 416 * index is ready to insert on the queue when this routine returns 417 * success. 418 */ 419 420 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 421 { 422 struct aac_entry * entry = NULL; 423 int map = 0; 424 425 if (qid == AdapNormCmdQueue) { 426 /* if no entries wait for some if caller wants to */ 427 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 428 printk(KERN_ERR "GetEntries failed\n"); 429 } 430 /* 431 * Setup queue entry with a command, status and fib mapped 432 */ 433 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 434 map = 1; 435 } else { 436 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 437 /* if no entries wait for some if caller wants to */ 438 } 439 /* 440 * Setup queue entry with command, status and fib mapped 441 */ 442 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 443 entry->addr = hw_fib->header.SenderFibAddress; 444 /* Restore adapters pointer to the FIB */ 445 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 446 map = 0; 447 } 448 /* 449 * If MapFib is true than we need to map the Fib and put pointers 450 * in the queue entry. 451 */ 452 if (map) 453 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 454 return 0; 455 } 456 457 /* 458 * Define the highest level of host to adapter communication routines. 459 * These routines will support host to adapter FS commuication. These 460 * routines have no knowledge of the commuication method used. This level 461 * sends and receives FIBs. This level has no knowledge of how these FIBs 462 * get passed back and forth. 463 */ 464 465 /** 466 * aac_fib_send - send a fib to the adapter 467 * @command: Command to send 468 * @fibptr: The fib 469 * @size: Size of fib data area 470 * @priority: Priority of Fib 471 * @wait: Async/sync select 472 * @reply: True if a reply is wanted 473 * @callback: Called with reply 474 * @callback_data: Passed to callback 475 * 476 * Sends the requested FIB to the adapter and optionally will wait for a 477 * response FIB. If the caller does not wish to wait for a response than 478 * an event to wait on must be supplied. This event will be set when a 479 * response FIB is received from the adapter. 480 */ 481 482 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 483 int priority, int wait, int reply, fib_callback callback, 484 void *callback_data) 485 { 486 struct aac_dev * dev = fibptr->dev; 487 struct hw_fib * hw_fib = fibptr->hw_fib_va; 488 unsigned long flags = 0; 489 unsigned long mflags = 0; 490 unsigned long sflags = 0; 491 492 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 493 return -EBUSY; 494 495 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) 496 return -EINVAL; 497 498 /* 499 * There are 5 cases with the wait and response requested flags. 500 * The only invalid cases are if the caller requests to wait and 501 * does not request a response and if the caller does not want a 502 * response and the Fib is not allocated from pool. If a response 503 * is not requested the Fib will just be deallocaed by the DPC 504 * routine when the response comes back from the adapter. No 505 * further processing will be done besides deleting the Fib. We 506 * will have a debug mode where the adapter can notify the host 507 * it had a problem and the host can log that fact. 508 */ 509 fibptr->flags = 0; 510 if (wait && !reply) { 511 return -EINVAL; 512 } else if (!wait && reply) { 513 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 514 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 515 } else if (!wait && !reply) { 516 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 517 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 518 } else if (wait && reply) { 519 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 520 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 521 } 522 /* 523 * Map the fib into 32bits by using the fib number 524 */ 525 526 hw_fib->header.SenderFibAddress = 527 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 528 529 /* use the same shifted value for handle to be compatible 530 * with the new native hba command handle 531 */ 532 hw_fib->header.Handle = 533 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 534 535 /* 536 * Set FIB state to indicate where it came from and if we want a 537 * response from the adapter. Also load the command from the 538 * caller. 539 * 540 * Map the hw fib pointer as a 32bit value 541 */ 542 hw_fib->header.Command = cpu_to_le16(command); 543 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 544 /* 545 * Set the size of the Fib we want to send to the adapter 546 */ 547 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 548 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 549 return -EMSGSIZE; 550 } 551 /* 552 * Get a queue entry connect the FIB to it and send an notify 553 * the adapter a command is ready. 554 */ 555 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 556 557 /* 558 * Fill in the Callback and CallbackContext if we are not 559 * going to wait. 560 */ 561 if (!wait) { 562 fibptr->callback = callback; 563 fibptr->callback_data = callback_data; 564 fibptr->flags = FIB_CONTEXT_FLAG; 565 } 566 567 fibptr->done = 0; 568 569 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 570 571 dprintk((KERN_DEBUG "Fib contents:.\n")); 572 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 573 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 574 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 575 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 576 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 577 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 578 579 if (!dev->queues) 580 return -EBUSY; 581 582 if (wait) { 583 584 spin_lock_irqsave(&dev->manage_lock, mflags); 585 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 586 printk(KERN_INFO "No management Fibs Available:%d\n", 587 dev->management_fib_count); 588 spin_unlock_irqrestore(&dev->manage_lock, mflags); 589 return -EBUSY; 590 } 591 dev->management_fib_count++; 592 spin_unlock_irqrestore(&dev->manage_lock, mflags); 593 spin_lock_irqsave(&fibptr->event_lock, flags); 594 } 595 596 if (dev->sync_mode) { 597 if (wait) 598 spin_unlock_irqrestore(&fibptr->event_lock, flags); 599 spin_lock_irqsave(&dev->sync_lock, sflags); 600 if (dev->sync_fib) { 601 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 602 spin_unlock_irqrestore(&dev->sync_lock, sflags); 603 } else { 604 dev->sync_fib = fibptr; 605 spin_unlock_irqrestore(&dev->sync_lock, sflags); 606 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 607 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 608 NULL, NULL, NULL, NULL, NULL); 609 } 610 if (wait) { 611 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 612 if (wait_for_completion_interruptible(&fibptr->event_wait)) { 613 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 614 return -EFAULT; 615 } 616 return 0; 617 } 618 return -EINPROGRESS; 619 } 620 621 if (aac_adapter_deliver(fibptr) != 0) { 622 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 623 if (wait) { 624 spin_unlock_irqrestore(&fibptr->event_lock, flags); 625 spin_lock_irqsave(&dev->manage_lock, mflags); 626 dev->management_fib_count--; 627 spin_unlock_irqrestore(&dev->manage_lock, mflags); 628 } 629 return -EBUSY; 630 } 631 632 633 /* 634 * If the caller wanted us to wait for response wait now. 635 */ 636 637 if (wait) { 638 spin_unlock_irqrestore(&fibptr->event_lock, flags); 639 /* Only set for first known interruptable command */ 640 if (wait < 0) { 641 /* 642 * *VERY* Dangerous to time out a command, the 643 * assumption is made that we have no hope of 644 * functioning because an interrupt routing or other 645 * hardware failure has occurred. 646 */ 647 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ 648 while (!try_wait_for_completion(&fibptr->event_wait)) { 649 int blink; 650 if (time_is_before_eq_jiffies(timeout)) { 651 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 652 atomic_dec(&q->numpending); 653 if (wait == -1) { 654 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 655 "Usually a result of a PCI interrupt routing problem;\n" 656 "update mother board BIOS or consider utilizing one of\n" 657 "the SAFE mode kernel options (acpi, apic etc)\n"); 658 } 659 return -ETIMEDOUT; 660 } 661 662 if (unlikely(aac_pci_offline(dev))) 663 return -EFAULT; 664 665 if ((blink = aac_adapter_check_health(dev)) > 0) { 666 if (wait == -1) { 667 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 668 "Usually a result of a serious unrecoverable hardware problem\n", 669 blink); 670 } 671 return -EFAULT; 672 } 673 /* 674 * Allow other processes / CPUS to use core 675 */ 676 schedule(); 677 } 678 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) { 679 /* Do nothing ... satisfy 680 * wait_for_completion_interruptible must_check */ 681 } 682 683 spin_lock_irqsave(&fibptr->event_lock, flags); 684 if (fibptr->done == 0) { 685 fibptr->done = 2; /* Tell interrupt we aborted */ 686 spin_unlock_irqrestore(&fibptr->event_lock, flags); 687 return -ERESTARTSYS; 688 } 689 spin_unlock_irqrestore(&fibptr->event_lock, flags); 690 BUG_ON(fibptr->done == 0); 691 692 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 693 return -ETIMEDOUT; 694 return 0; 695 } 696 /* 697 * If the user does not want a response than return success otherwise 698 * return pending 699 */ 700 if (reply) 701 return -EINPROGRESS; 702 else 703 return 0; 704 } 705 706 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, 707 void *callback_data) 708 { 709 struct aac_dev *dev = fibptr->dev; 710 int wait; 711 unsigned long flags = 0; 712 unsigned long mflags = 0; 713 struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *) 714 fibptr->hw_fib_va; 715 716 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); 717 if (callback) { 718 wait = 0; 719 fibptr->callback = callback; 720 fibptr->callback_data = callback_data; 721 } else 722 wait = 1; 723 724 725 hbacmd->iu_type = command; 726 727 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { 728 /* bit1 of request_id must be 0 */ 729 hbacmd->request_id = 730 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 731 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD; 732 } else if (command != HBA_IU_TYPE_SCSI_TM_REQ) 733 return -EINVAL; 734 735 736 if (wait) { 737 spin_lock_irqsave(&dev->manage_lock, mflags); 738 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 739 spin_unlock_irqrestore(&dev->manage_lock, mflags); 740 return -EBUSY; 741 } 742 dev->management_fib_count++; 743 spin_unlock_irqrestore(&dev->manage_lock, mflags); 744 spin_lock_irqsave(&fibptr->event_lock, flags); 745 } 746 747 if (aac_adapter_deliver(fibptr) != 0) { 748 if (wait) { 749 spin_unlock_irqrestore(&fibptr->event_lock, flags); 750 spin_lock_irqsave(&dev->manage_lock, mflags); 751 dev->management_fib_count--; 752 spin_unlock_irqrestore(&dev->manage_lock, mflags); 753 } 754 return -EBUSY; 755 } 756 FIB_COUNTER_INCREMENT(aac_config.NativeSent); 757 758 if (wait) { 759 760 spin_unlock_irqrestore(&fibptr->event_lock, flags); 761 762 if (unlikely(aac_pci_offline(dev))) 763 return -EFAULT; 764 765 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 766 if (wait_for_completion_interruptible(&fibptr->event_wait)) 767 fibptr->done = 2; 768 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); 769 770 spin_lock_irqsave(&fibptr->event_lock, flags); 771 if ((fibptr->done == 0) || (fibptr->done == 2)) { 772 fibptr->done = 2; /* Tell interrupt we aborted */ 773 spin_unlock_irqrestore(&fibptr->event_lock, flags); 774 return -ERESTARTSYS; 775 } 776 spin_unlock_irqrestore(&fibptr->event_lock, flags); 777 WARN_ON(fibptr->done == 0); 778 779 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 780 return -ETIMEDOUT; 781 782 return 0; 783 } 784 785 return -EINPROGRESS; 786 } 787 788 /** 789 * aac_consumer_get - get the top of the queue 790 * @dev: Adapter 791 * @q: Queue 792 * @entry: Return entry 793 * 794 * Will return a pointer to the entry on the top of the queue requested that 795 * we are a consumer of, and return the address of the queue entry. It does 796 * not change the state of the queue. 797 */ 798 799 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 800 { 801 u32 index; 802 int status; 803 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 804 status = 0; 805 } else { 806 /* 807 * The consumer index must be wrapped if we have reached 808 * the end of the queue, else we just use the entry 809 * pointed to by the header index 810 */ 811 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 812 index = 0; 813 else 814 index = le32_to_cpu(*q->headers.consumer); 815 *entry = q->base + index; 816 status = 1; 817 } 818 return(status); 819 } 820 821 /** 822 * aac_consumer_free - free consumer entry 823 * @dev: Adapter 824 * @q: Queue 825 * @qid: Queue ident 826 * 827 * Frees up the current top of the queue we are a consumer of. If the 828 * queue was full notify the producer that the queue is no longer full. 829 */ 830 831 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 832 { 833 int wasfull = 0; 834 u32 notify; 835 836 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 837 wasfull = 1; 838 839 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 840 *q->headers.consumer = cpu_to_le32(1); 841 else 842 le32_add_cpu(q->headers.consumer, 1); 843 844 if (wasfull) { 845 switch (qid) { 846 847 case HostNormCmdQueue: 848 notify = HostNormCmdNotFull; 849 break; 850 case HostNormRespQueue: 851 notify = HostNormRespNotFull; 852 break; 853 default: 854 BUG(); 855 return; 856 } 857 aac_adapter_notify(dev, notify); 858 } 859 } 860 861 /** 862 * aac_fib_adapter_complete - complete adapter issued fib 863 * @fibptr: fib to complete 864 * @size: size of fib 865 * 866 * Will do all necessary work to complete a FIB that was sent from 867 * the adapter. 868 */ 869 870 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 871 { 872 struct hw_fib * hw_fib = fibptr->hw_fib_va; 873 struct aac_dev * dev = fibptr->dev; 874 struct aac_queue * q; 875 unsigned long nointr = 0; 876 unsigned long qflags; 877 878 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || 879 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 880 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { 881 kfree(hw_fib); 882 return 0; 883 } 884 885 if (hw_fib->header.XferState == 0) { 886 if (dev->comm_interface == AAC_COMM_MESSAGE) 887 kfree(hw_fib); 888 return 0; 889 } 890 /* 891 * If we plan to do anything check the structure type first. 892 */ 893 if (hw_fib->header.StructType != FIB_MAGIC && 894 hw_fib->header.StructType != FIB_MAGIC2 && 895 hw_fib->header.StructType != FIB_MAGIC2_64) { 896 if (dev->comm_interface == AAC_COMM_MESSAGE) 897 kfree(hw_fib); 898 return -EINVAL; 899 } 900 /* 901 * This block handles the case where the adapter had sent us a 902 * command and we have finished processing the command. We 903 * call completeFib when we are done processing the command 904 * and want to send a response back to the adapter. This will 905 * send the completed cdb to the adapter. 906 */ 907 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 908 if (dev->comm_interface == AAC_COMM_MESSAGE) { 909 kfree (hw_fib); 910 } else { 911 u32 index; 912 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 913 if (size) { 914 size += sizeof(struct aac_fibhdr); 915 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 916 return -EMSGSIZE; 917 hw_fib->header.Size = cpu_to_le16(size); 918 } 919 q = &dev->queues->queue[AdapNormRespQueue]; 920 spin_lock_irqsave(q->lock, qflags); 921 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 922 *(q->headers.producer) = cpu_to_le32(index + 1); 923 spin_unlock_irqrestore(q->lock, qflags); 924 if (!(nointr & (int)aac_config.irq_mod)) 925 aac_adapter_notify(dev, AdapNormRespQueue); 926 } 927 } else { 928 printk(KERN_WARNING "aac_fib_adapter_complete: " 929 "Unknown xferstate detected.\n"); 930 BUG(); 931 } 932 return 0; 933 } 934 935 /** 936 * aac_fib_complete - fib completion handler 937 * @fib: FIB to complete 938 * 939 * Will do all necessary work to complete a FIB. 940 */ 941 942 int aac_fib_complete(struct fib *fibptr) 943 { 944 struct hw_fib * hw_fib = fibptr->hw_fib_va; 945 946 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { 947 fib_dealloc(fibptr); 948 return 0; 949 } 950 951 /* 952 * Check for a fib which has already been completed or with a 953 * status wait timeout 954 */ 955 956 if (hw_fib->header.XferState == 0 || fibptr->done == 2) 957 return 0; 958 /* 959 * If we plan to do anything check the structure type first. 960 */ 961 962 if (hw_fib->header.StructType != FIB_MAGIC && 963 hw_fib->header.StructType != FIB_MAGIC2 && 964 hw_fib->header.StructType != FIB_MAGIC2_64) 965 return -EINVAL; 966 /* 967 * This block completes a cdb which orginated on the host and we 968 * just need to deallocate the cdb or reinit it. At this point the 969 * command is complete that we had sent to the adapter and this 970 * cdb could be reused. 971 */ 972 973 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 974 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 975 { 976 fib_dealloc(fibptr); 977 } 978 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 979 { 980 /* 981 * This handles the case when the host has aborted the I/O 982 * to the adapter because the adapter is not responding 983 */ 984 fib_dealloc(fibptr); 985 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 986 fib_dealloc(fibptr); 987 } else { 988 BUG(); 989 } 990 return 0; 991 } 992 993 /** 994 * aac_printf - handle printf from firmware 995 * @dev: Adapter 996 * @val: Message info 997 * 998 * Print a message passed to us by the controller firmware on the 999 * Adaptec board 1000 */ 1001 1002 void aac_printf(struct aac_dev *dev, u32 val) 1003 { 1004 char *cp = dev->printfbuf; 1005 if (dev->printf_enabled) 1006 { 1007 int length = val & 0xffff; 1008 int level = (val >> 16) & 0xffff; 1009 1010 /* 1011 * The size of the printfbuf is set in port.c 1012 * There is no variable or define for it 1013 */ 1014 if (length > 255) 1015 length = 255; 1016 if (cp[length] != 0) 1017 cp[length] = 0; 1018 if (level == LOG_AAC_HIGH_ERROR) 1019 printk(KERN_WARNING "%s:%s", dev->name, cp); 1020 else 1021 printk(KERN_INFO "%s:%s", dev->name, cp); 1022 } 1023 memset(cp, 0, 256); 1024 } 1025 1026 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) 1027 { 1028 return le32_to_cpu(((__le32 *)aifcmd->data)[index]); 1029 } 1030 1031 1032 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) 1033 { 1034 switch (aac_aif_data(aifcmd, 1)) { 1035 case AifBuCacheDataLoss: 1036 if (aac_aif_data(aifcmd, 2)) 1037 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", 1038 aac_aif_data(aifcmd, 2)); 1039 else 1040 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); 1041 break; 1042 case AifBuCacheDataRecover: 1043 if (aac_aif_data(aifcmd, 2)) 1044 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", 1045 aac_aif_data(aifcmd, 2)); 1046 else 1047 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); 1048 break; 1049 } 1050 } 1051 1052 /** 1053 * aac_handle_aif - Handle a message from the firmware 1054 * @dev: Which adapter this fib is from 1055 * @fibptr: Pointer to fibptr from adapter 1056 * 1057 * This routine handles a driver notify fib from the adapter and 1058 * dispatches it to the appropriate routine for handling. 1059 */ 1060 1061 #define AIF_SNIFF_TIMEOUT (500*HZ) 1062 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 1063 { 1064 struct hw_fib * hw_fib = fibptr->hw_fib_va; 1065 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 1066 u32 channel, id, lun, container; 1067 struct scsi_device *device; 1068 enum { 1069 NOTHING, 1070 DELETE, 1071 ADD, 1072 CHANGE 1073 } device_config_needed = NOTHING; 1074 1075 /* Sniff for container changes */ 1076 1077 if (!dev || !dev->fsa_dev) 1078 return; 1079 container = channel = id = lun = (u32)-1; 1080 1081 /* 1082 * We have set this up to try and minimize the number of 1083 * re-configures that take place. As a result of this when 1084 * certain AIF's come in we will set a flag waiting for another 1085 * type of AIF before setting the re-config flag. 1086 */ 1087 switch (le32_to_cpu(aifcmd->command)) { 1088 case AifCmdDriverNotify: 1089 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1090 case AifRawDeviceRemove: 1091 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1092 if ((container >> 28)) { 1093 container = (u32)-1; 1094 break; 1095 } 1096 channel = (container >> 24) & 0xF; 1097 if (channel >= dev->maximum_num_channels) { 1098 container = (u32)-1; 1099 break; 1100 } 1101 id = container & 0xFFFF; 1102 if (id >= dev->maximum_num_physicals) { 1103 container = (u32)-1; 1104 break; 1105 } 1106 lun = (container >> 16) & 0xFF; 1107 container = (u32)-1; 1108 channel = aac_phys_to_logical(channel); 1109 device_config_needed = DELETE; 1110 break; 1111 1112 /* 1113 * Morph or Expand complete 1114 */ 1115 case AifDenMorphComplete: 1116 case AifDenVolumeExtendComplete: 1117 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1118 if (container >= dev->maximum_num_containers) 1119 break; 1120 1121 /* 1122 * Find the scsi_device associated with the SCSI 1123 * address. Make sure we have the right array, and if 1124 * so set the flag to initiate a new re-config once we 1125 * see an AifEnConfigChange AIF come through. 1126 */ 1127 1128 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 1129 device = scsi_device_lookup(dev->scsi_host_ptr, 1130 CONTAINER_TO_CHANNEL(container), 1131 CONTAINER_TO_ID(container), 1132 CONTAINER_TO_LUN(container)); 1133 if (device) { 1134 dev->fsa_dev[container].config_needed = CHANGE; 1135 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 1136 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1137 scsi_device_put(device); 1138 } 1139 } 1140 } 1141 1142 /* 1143 * If we are waiting on something and this happens to be 1144 * that thing then set the re-configure flag. 1145 */ 1146 if (container != (u32)-1) { 1147 if (container >= dev->maximum_num_containers) 1148 break; 1149 if ((dev->fsa_dev[container].config_waiting_on == 1150 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1151 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1152 dev->fsa_dev[container].config_waiting_on = 0; 1153 } else for (container = 0; 1154 container < dev->maximum_num_containers; ++container) { 1155 if ((dev->fsa_dev[container].config_waiting_on == 1156 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1157 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1158 dev->fsa_dev[container].config_waiting_on = 0; 1159 } 1160 break; 1161 1162 case AifCmdEventNotify: 1163 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1164 case AifEnBatteryEvent: 1165 dev->cache_protected = 1166 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 1167 break; 1168 /* 1169 * Add an Array. 1170 */ 1171 case AifEnAddContainer: 1172 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1173 if (container >= dev->maximum_num_containers) 1174 break; 1175 dev->fsa_dev[container].config_needed = ADD; 1176 dev->fsa_dev[container].config_waiting_on = 1177 AifEnConfigChange; 1178 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1179 break; 1180 1181 /* 1182 * Delete an Array. 1183 */ 1184 case AifEnDeleteContainer: 1185 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1186 if (container >= dev->maximum_num_containers) 1187 break; 1188 dev->fsa_dev[container].config_needed = DELETE; 1189 dev->fsa_dev[container].config_waiting_on = 1190 AifEnConfigChange; 1191 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1192 break; 1193 1194 /* 1195 * Container change detected. If we currently are not 1196 * waiting on something else, setup to wait on a Config Change. 1197 */ 1198 case AifEnContainerChange: 1199 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1200 if (container >= dev->maximum_num_containers) 1201 break; 1202 if (dev->fsa_dev[container].config_waiting_on && 1203 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1204 break; 1205 dev->fsa_dev[container].config_needed = CHANGE; 1206 dev->fsa_dev[container].config_waiting_on = 1207 AifEnConfigChange; 1208 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1209 break; 1210 1211 case AifEnConfigChange: 1212 break; 1213 1214 case AifEnAddJBOD: 1215 case AifEnDeleteJBOD: 1216 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1217 if ((container >> 28)) { 1218 container = (u32)-1; 1219 break; 1220 } 1221 channel = (container >> 24) & 0xF; 1222 if (channel >= dev->maximum_num_channels) { 1223 container = (u32)-1; 1224 break; 1225 } 1226 id = container & 0xFFFF; 1227 if (id >= dev->maximum_num_physicals) { 1228 container = (u32)-1; 1229 break; 1230 } 1231 lun = (container >> 16) & 0xFF; 1232 container = (u32)-1; 1233 channel = aac_phys_to_logical(channel); 1234 device_config_needed = 1235 (((__le32 *)aifcmd->data)[0] == 1236 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1237 if (device_config_needed == ADD) { 1238 device = scsi_device_lookup(dev->scsi_host_ptr, 1239 channel, 1240 id, 1241 lun); 1242 if (device) { 1243 scsi_remove_device(device); 1244 scsi_device_put(device); 1245 } 1246 } 1247 break; 1248 1249 case AifEnEnclosureManagement: 1250 /* 1251 * If in JBOD mode, automatic exposure of new 1252 * physical target to be suppressed until configured. 1253 */ 1254 if (dev->jbod) 1255 break; 1256 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1257 case EM_DRIVE_INSERTION: 1258 case EM_DRIVE_REMOVAL: 1259 case EM_SES_DRIVE_INSERTION: 1260 case EM_SES_DRIVE_REMOVAL: 1261 container = le32_to_cpu( 1262 ((__le32 *)aifcmd->data)[2]); 1263 if ((container >> 28)) { 1264 container = (u32)-1; 1265 break; 1266 } 1267 channel = (container >> 24) & 0xF; 1268 if (channel >= dev->maximum_num_channels) { 1269 container = (u32)-1; 1270 break; 1271 } 1272 id = container & 0xFFFF; 1273 lun = (container >> 16) & 0xFF; 1274 container = (u32)-1; 1275 if (id >= dev->maximum_num_physicals) { 1276 /* legacy dev_t ? */ 1277 if ((0x2000 <= id) || lun || channel || 1278 ((channel = (id >> 7) & 0x3F) >= 1279 dev->maximum_num_channels)) 1280 break; 1281 lun = (id >> 4) & 7; 1282 id &= 0xF; 1283 } 1284 channel = aac_phys_to_logical(channel); 1285 device_config_needed = 1286 ((((__le32 *)aifcmd->data)[3] 1287 == cpu_to_le32(EM_DRIVE_INSERTION)) || 1288 (((__le32 *)aifcmd->data)[3] 1289 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? 1290 ADD : DELETE; 1291 break; 1292 } 1293 break; 1294 case AifBuManagerEvent: 1295 aac_handle_aif_bu(dev, aifcmd); 1296 break; 1297 } 1298 1299 /* 1300 * If we are waiting on something and this happens to be 1301 * that thing then set the re-configure flag. 1302 */ 1303 if (container != (u32)-1) { 1304 if (container >= dev->maximum_num_containers) 1305 break; 1306 if ((dev->fsa_dev[container].config_waiting_on == 1307 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1308 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1309 dev->fsa_dev[container].config_waiting_on = 0; 1310 } else for (container = 0; 1311 container < dev->maximum_num_containers; ++container) { 1312 if ((dev->fsa_dev[container].config_waiting_on == 1313 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1314 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1315 dev->fsa_dev[container].config_waiting_on = 0; 1316 } 1317 break; 1318 1319 case AifCmdJobProgress: 1320 /* 1321 * These are job progress AIF's. When a Clear is being 1322 * done on a container it is initially created then hidden from 1323 * the OS. When the clear completes we don't get a config 1324 * change so we monitor the job status complete on a clear then 1325 * wait for a container change. 1326 */ 1327 1328 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1329 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1330 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1331 for (container = 0; 1332 container < dev->maximum_num_containers; 1333 ++container) { 1334 /* 1335 * Stomp on all config sequencing for all 1336 * containers? 1337 */ 1338 dev->fsa_dev[container].config_waiting_on = 1339 AifEnContainerChange; 1340 dev->fsa_dev[container].config_needed = ADD; 1341 dev->fsa_dev[container].config_waiting_stamp = 1342 jiffies; 1343 } 1344 } 1345 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1346 ((__le32 *)aifcmd->data)[6] == 0 && 1347 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1348 for (container = 0; 1349 container < dev->maximum_num_containers; 1350 ++container) { 1351 /* 1352 * Stomp on all config sequencing for all 1353 * containers? 1354 */ 1355 dev->fsa_dev[container].config_waiting_on = 1356 AifEnContainerChange; 1357 dev->fsa_dev[container].config_needed = DELETE; 1358 dev->fsa_dev[container].config_waiting_stamp = 1359 jiffies; 1360 } 1361 } 1362 break; 1363 } 1364 1365 container = 0; 1366 retry_next: 1367 if (device_config_needed == NOTHING) { 1368 for (; container < dev->maximum_num_containers; ++container) { 1369 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1370 (dev->fsa_dev[container].config_needed != NOTHING) && 1371 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1372 device_config_needed = 1373 dev->fsa_dev[container].config_needed; 1374 dev->fsa_dev[container].config_needed = NOTHING; 1375 channel = CONTAINER_TO_CHANNEL(container); 1376 id = CONTAINER_TO_ID(container); 1377 lun = CONTAINER_TO_LUN(container); 1378 break; 1379 } 1380 } 1381 } 1382 if (device_config_needed == NOTHING) 1383 return; 1384 1385 /* 1386 * If we decided that a re-configuration needs to be done, 1387 * schedule it here on the way out the door, please close the door 1388 * behind you. 1389 */ 1390 1391 /* 1392 * Find the scsi_device associated with the SCSI address, 1393 * and mark it as changed, invalidating the cache. This deals 1394 * with changes to existing device IDs. 1395 */ 1396 1397 if (!dev || !dev->scsi_host_ptr) 1398 return; 1399 /* 1400 * force reload of disk info via aac_probe_container 1401 */ 1402 if ((channel == CONTAINER_CHANNEL) && 1403 (device_config_needed != NOTHING)) { 1404 if (dev->fsa_dev[container].valid == 1) 1405 dev->fsa_dev[container].valid = 2; 1406 aac_probe_container(dev, container); 1407 } 1408 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1409 if (device) { 1410 switch (device_config_needed) { 1411 case DELETE: 1412 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1413 scsi_remove_device(device); 1414 #else 1415 if (scsi_device_online(device)) { 1416 scsi_device_set_state(device, SDEV_OFFLINE); 1417 sdev_printk(KERN_INFO, device, 1418 "Device offlined - %s\n", 1419 (channel == CONTAINER_CHANNEL) ? 1420 "array deleted" : 1421 "enclosure services event"); 1422 } 1423 #endif 1424 break; 1425 case ADD: 1426 if (!scsi_device_online(device)) { 1427 sdev_printk(KERN_INFO, device, 1428 "Device online - %s\n", 1429 (channel == CONTAINER_CHANNEL) ? 1430 "array created" : 1431 "enclosure services event"); 1432 scsi_device_set_state(device, SDEV_RUNNING); 1433 } 1434 /* FALLTHRU */ 1435 case CHANGE: 1436 if ((channel == CONTAINER_CHANNEL) 1437 && (!dev->fsa_dev[container].valid)) { 1438 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1439 scsi_remove_device(device); 1440 #else 1441 if (!scsi_device_online(device)) 1442 break; 1443 scsi_device_set_state(device, SDEV_OFFLINE); 1444 sdev_printk(KERN_INFO, device, 1445 "Device offlined - %s\n", 1446 "array failed"); 1447 #endif 1448 break; 1449 } 1450 scsi_rescan_device(&device->sdev_gendev); 1451 1452 default: 1453 break; 1454 } 1455 scsi_device_put(device); 1456 device_config_needed = NOTHING; 1457 } 1458 if (device_config_needed == ADD) 1459 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1460 if (channel == CONTAINER_CHANNEL) { 1461 container++; 1462 device_config_needed = NOTHING; 1463 goto retry_next; 1464 } 1465 } 1466 1467 static void aac_schedule_bus_scan(struct aac_dev *aac) 1468 { 1469 if (aac->sa_firmware) 1470 aac_schedule_safw_scan_worker(aac); 1471 else 1472 aac_schedule_src_reinit_aif_worker(aac); 1473 } 1474 1475 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1476 { 1477 int index, quirks; 1478 int retval; 1479 struct Scsi_Host *host; 1480 struct scsi_device *dev; 1481 struct scsi_cmnd *command; 1482 struct scsi_cmnd *command_list; 1483 int jafo = 0; 1484 int bled; 1485 u64 dmamask; 1486 int num_of_fibs = 0; 1487 1488 /* 1489 * Assumptions: 1490 * - host is locked, unless called by the aacraid thread. 1491 * (a matter of convenience, due to legacy issues surrounding 1492 * eh_host_adapter_reset). 1493 * - in_reset is asserted, so no new i/o is getting to the 1494 * card. 1495 * - The card is dead, or will be very shortly ;-/ so no new 1496 * commands are completing in the interrupt service. 1497 */ 1498 host = aac->scsi_host_ptr; 1499 scsi_block_requests(host); 1500 aac_adapter_disable_int(aac); 1501 if (aac->thread && aac->thread->pid != current->pid) { 1502 spin_unlock_irq(host->host_lock); 1503 kthread_stop(aac->thread); 1504 aac->thread = NULL; 1505 jafo = 1; 1506 } 1507 1508 /* 1509 * If a positive health, means in a known DEAD PANIC 1510 * state and the adapter could be reset to `try again'. 1511 */ 1512 bled = forced ? 0 : aac_adapter_check_health(aac); 1513 retval = aac_adapter_restart(aac, bled, reset_type); 1514 1515 if (retval) 1516 goto out; 1517 1518 /* 1519 * Loop through the fibs, close the synchronous FIBS 1520 */ 1521 retval = 1; 1522 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 1523 for (index = 0; index < num_of_fibs; index++) { 1524 1525 struct fib *fib = &aac->fibs[index]; 1526 __le32 XferState = fib->hw_fib_va->header.XferState; 1527 bool is_response_expected = false; 1528 1529 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && 1530 (XferState & cpu_to_le32(ResponseExpected))) 1531 is_response_expected = true; 1532 1533 if (is_response_expected 1534 || fib->flags & FIB_CONTEXT_FLAG_WAIT) { 1535 unsigned long flagv; 1536 spin_lock_irqsave(&fib->event_lock, flagv); 1537 complete(&fib->event_wait); 1538 spin_unlock_irqrestore(&fib->event_lock, flagv); 1539 schedule(); 1540 retval = 0; 1541 } 1542 } 1543 /* Give some extra time for ioctls to complete. */ 1544 if (retval == 0) 1545 ssleep(2); 1546 index = aac->cardtype; 1547 1548 /* 1549 * Re-initialize the adapter, first free resources, then carefully 1550 * apply the initialization sequence to come back again. Only risk 1551 * is a change in Firmware dropping cache, it is assumed the caller 1552 * will ensure that i/o is queisced and the card is flushed in that 1553 * case. 1554 */ 1555 aac_free_irq(aac); 1556 aac_fib_map_free(aac); 1557 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1558 aac->comm_phys); 1559 aac->comm_addr = NULL; 1560 aac->comm_phys = 0; 1561 kfree(aac->queues); 1562 aac->queues = NULL; 1563 kfree(aac->fsa_dev); 1564 aac->fsa_dev = NULL; 1565 1566 dmamask = DMA_BIT_MASK(32); 1567 quirks = aac_get_driver_ident(index)->quirks; 1568 if (quirks & AAC_QUIRK_31BIT) 1569 retval = pci_set_dma_mask(aac->pdev, dmamask); 1570 else if (!(quirks & AAC_QUIRK_SRC)) 1571 retval = pci_set_dma_mask(aac->pdev, dmamask); 1572 else 1573 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1574 1575 if (quirks & AAC_QUIRK_31BIT && !retval) { 1576 dmamask = DMA_BIT_MASK(31); 1577 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1578 } 1579 1580 if (retval) 1581 goto out; 1582 1583 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1584 goto out; 1585 1586 if (jafo) { 1587 aac->thread = kthread_run(aac_command_thread, aac, "%s", 1588 aac->name); 1589 if (IS_ERR(aac->thread)) { 1590 retval = PTR_ERR(aac->thread); 1591 aac->thread = NULL; 1592 goto out; 1593 } 1594 } 1595 (void)aac_get_adapter_info(aac); 1596 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1597 host->sg_tablesize = 34; 1598 host->max_sectors = (host->sg_tablesize * 8) + 112; 1599 } 1600 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1601 host->sg_tablesize = 17; 1602 host->max_sectors = (host->sg_tablesize * 8) + 112; 1603 } 1604 aac_get_config_status(aac, 1); 1605 aac_get_containers(aac); 1606 /* 1607 * This is where the assumption that the Adapter is quiesced 1608 * is important. 1609 */ 1610 command_list = NULL; 1611 __shost_for_each_device(dev, host) { 1612 unsigned long flags; 1613 spin_lock_irqsave(&dev->list_lock, flags); 1614 list_for_each_entry(command, &dev->cmd_list, list) 1615 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1616 command->SCp.buffer = (struct scatterlist *)command_list; 1617 command_list = command; 1618 } 1619 spin_unlock_irqrestore(&dev->list_lock, flags); 1620 } 1621 while ((command = command_list)) { 1622 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1623 command->SCp.buffer = NULL; 1624 command->result = DID_OK << 16 1625 | COMMAND_COMPLETE << 8 1626 | SAM_STAT_TASK_SET_FULL; 1627 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1628 command->scsi_done(command); 1629 } 1630 /* 1631 * Any Device that was already marked offline needs to be marked 1632 * running 1633 */ 1634 __shost_for_each_device(dev, host) { 1635 if (!scsi_device_online(dev)) 1636 scsi_device_set_state(dev, SDEV_RUNNING); 1637 } 1638 retval = 0; 1639 1640 out: 1641 aac->in_reset = 0; 1642 scsi_unblock_requests(host); 1643 1644 /* 1645 * Issue bus rescan to catch any configuration that might have 1646 * occurred 1647 */ 1648 if (!retval && !is_kdump_kernel()) { 1649 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n"); 1650 aac_schedule_bus_scan(aac); 1651 } 1652 1653 if (jafo) { 1654 spin_lock_irq(host->host_lock); 1655 } 1656 return retval; 1657 } 1658 1659 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1660 { 1661 unsigned long flagv = 0; 1662 int retval; 1663 struct Scsi_Host * host; 1664 int bled; 1665 1666 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1667 return -EBUSY; 1668 1669 if (aac->in_reset) { 1670 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1671 return -EBUSY; 1672 } 1673 aac->in_reset = 1; 1674 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1675 1676 /* 1677 * Wait for all commands to complete to this specific 1678 * target (block maximum 60 seconds). Although not necessary, 1679 * it does make us a good storage citizen. 1680 */ 1681 host = aac->scsi_host_ptr; 1682 scsi_block_requests(host); 1683 1684 /* Quiesce build, flush cache, write through mode */ 1685 if (forced < 2) 1686 aac_send_shutdown(aac); 1687 spin_lock_irqsave(host->host_lock, flagv); 1688 bled = forced ? forced : 1689 (aac_check_reset != 0 && aac_check_reset != 1); 1690 retval = _aac_reset_adapter(aac, bled, reset_type); 1691 spin_unlock_irqrestore(host->host_lock, flagv); 1692 1693 if ((forced < 2) && (retval == -ENODEV)) { 1694 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1695 struct fib * fibctx = aac_fib_alloc(aac); 1696 if (fibctx) { 1697 struct aac_pause *cmd; 1698 int status; 1699 1700 aac_fib_init(fibctx); 1701 1702 cmd = (struct aac_pause *) fib_data(fibctx); 1703 1704 cmd->command = cpu_to_le32(VM_ContainerConfig); 1705 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1706 cmd->timeout = cpu_to_le32(1); 1707 cmd->min = cpu_to_le32(1); 1708 cmd->noRescan = cpu_to_le32(1); 1709 cmd->count = cpu_to_le32(0); 1710 1711 status = aac_fib_send(ContainerCommand, 1712 fibctx, 1713 sizeof(struct aac_pause), 1714 FsaNormal, 1715 -2 /* Timeout silently */, 1, 1716 NULL, NULL); 1717 1718 if (status >= 0) 1719 aac_fib_complete(fibctx); 1720 /* FIB should be freed only after getting 1721 * the response from the F/W */ 1722 if (status != -ERESTARTSYS) 1723 aac_fib_free(fibctx); 1724 } 1725 } 1726 1727 return retval; 1728 } 1729 1730 int aac_check_health(struct aac_dev * aac) 1731 { 1732 int BlinkLED; 1733 unsigned long time_now, flagv = 0; 1734 struct list_head * entry; 1735 1736 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1737 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1738 return 0; 1739 1740 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1741 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1742 return 0; /* OK */ 1743 } 1744 1745 aac->in_reset = 1; 1746 1747 /* Fake up an AIF: 1748 * aac_aifcmd.command = AifCmdEventNotify = 1 1749 * aac_aifcmd.seqnum = 0xFFFFFFFF 1750 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1751 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1752 * aac.aifcmd.data[2] = AifHighPriority = 3 1753 * aac.aifcmd.data[3] = BlinkLED 1754 */ 1755 1756 time_now = jiffies/HZ; 1757 entry = aac->fib_list.next; 1758 1759 /* 1760 * For each Context that is on the 1761 * fibctxList, make a copy of the 1762 * fib, and then set the event to wake up the 1763 * thread that is waiting for it. 1764 */ 1765 while (entry != &aac->fib_list) { 1766 /* 1767 * Extract the fibctx 1768 */ 1769 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1770 struct hw_fib * hw_fib; 1771 struct fib * fib; 1772 /* 1773 * Check if the queue is getting 1774 * backlogged 1775 */ 1776 if (fibctx->count > 20) { 1777 /* 1778 * It's *not* jiffies folks, 1779 * but jiffies / HZ, so do not 1780 * panic ... 1781 */ 1782 u32 time_last = fibctx->jiffies; 1783 /* 1784 * Has it been > 2 minutes 1785 * since the last read off 1786 * the queue? 1787 */ 1788 if ((time_now - time_last) > aif_timeout) { 1789 entry = entry->next; 1790 aac_close_fib_context(aac, fibctx); 1791 continue; 1792 } 1793 } 1794 /* 1795 * Warning: no sleep allowed while 1796 * holding spinlock 1797 */ 1798 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1799 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1800 if (fib && hw_fib) { 1801 struct aac_aifcmd * aif; 1802 1803 fib->hw_fib_va = hw_fib; 1804 fib->dev = aac; 1805 aac_fib_init(fib); 1806 fib->type = FSAFS_NTC_FIB_CONTEXT; 1807 fib->size = sizeof (struct fib); 1808 fib->data = hw_fib->data; 1809 aif = (struct aac_aifcmd *)hw_fib->data; 1810 aif->command = cpu_to_le32(AifCmdEventNotify); 1811 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1812 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1813 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1814 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1815 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1816 1817 /* 1818 * Put the FIB onto the 1819 * fibctx's fibs 1820 */ 1821 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1822 fibctx->count++; 1823 /* 1824 * Set the event to wake up the 1825 * thread that will waiting. 1826 */ 1827 complete(&fibctx->completion); 1828 } else { 1829 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1830 kfree(fib); 1831 kfree(hw_fib); 1832 } 1833 entry = entry->next; 1834 } 1835 1836 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1837 1838 if (BlinkLED < 0) { 1839 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", 1840 aac->name, BlinkLED); 1841 goto out; 1842 } 1843 1844 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1845 1846 out: 1847 aac->in_reset = 0; 1848 return BlinkLED; 1849 } 1850 1851 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target) 1852 { 1853 return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers; 1854 } 1855 1856 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev, 1857 int bus, 1858 int target) 1859 { 1860 if (bus != CONTAINER_CHANNEL) 1861 bus = aac_phys_to_logical(bus); 1862 1863 return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0); 1864 } 1865 1866 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target) 1867 { 1868 if (bus != CONTAINER_CHANNEL) 1869 bus = aac_phys_to_logical(bus); 1870 1871 return scsi_add_device(dev->scsi_host_ptr, bus, target, 0); 1872 } 1873 1874 static void aac_put_safw_scsi_device(struct scsi_device *sdev) 1875 { 1876 if (sdev) 1877 scsi_device_put(sdev); 1878 } 1879 1880 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target) 1881 { 1882 struct scsi_device *sdev; 1883 1884 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1885 scsi_remove_device(sdev); 1886 aac_put_safw_scsi_device(sdev); 1887 } 1888 1889 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev, 1890 int bus, int target) 1891 { 1892 return dev->hba_map[bus][target].scan_counter == dev->scan_counter; 1893 } 1894 1895 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target) 1896 { 1897 if (is_safw_raid_volume(dev, bus, target)) 1898 return dev->fsa_dev[target].valid; 1899 else 1900 return aac_is_safw_scan_count_equal(dev, bus, target); 1901 } 1902 1903 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target) 1904 { 1905 int is_exposed = 0; 1906 struct scsi_device *sdev; 1907 1908 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1909 if (sdev) 1910 is_exposed = 1; 1911 aac_put_safw_scsi_device(sdev); 1912 1913 return is_exposed; 1914 } 1915 1916 static int aac_update_safw_host_devices(struct aac_dev *dev) 1917 { 1918 int i; 1919 int bus; 1920 int target; 1921 int is_exposed = 0; 1922 int rcode = 0; 1923 1924 rcode = aac_setup_safw_adapter(dev); 1925 if (unlikely(rcode < 0)) { 1926 goto out; 1927 } 1928 1929 for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) { 1930 1931 bus = get_bus_number(i); 1932 target = get_target_number(i); 1933 1934 is_exposed = aac_is_safw_device_exposed(dev, bus, target); 1935 1936 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed) 1937 aac_add_safw_device(dev, bus, target); 1938 else if (!aac_is_safw_target_valid(dev, bus, target) && 1939 is_exposed) 1940 aac_remove_safw_device(dev, bus, target); 1941 } 1942 out: 1943 return rcode; 1944 } 1945 1946 static int aac_scan_safw_host(struct aac_dev *dev) 1947 { 1948 int rcode = 0; 1949 1950 rcode = aac_update_safw_host_devices(dev); 1951 if (rcode) 1952 aac_schedule_safw_scan_worker(dev); 1953 1954 return rcode; 1955 } 1956 1957 int aac_scan_host(struct aac_dev *dev) 1958 { 1959 int rcode = 0; 1960 1961 mutex_lock(&dev->scan_mutex); 1962 if (dev->sa_firmware) 1963 rcode = aac_scan_safw_host(dev); 1964 else 1965 scsi_scan_host(dev->scsi_host_ptr); 1966 mutex_unlock(&dev->scan_mutex); 1967 1968 return rcode; 1969 } 1970 1971 void aac_src_reinit_aif_worker(struct work_struct *work) 1972 { 1973 struct aac_dev *dev = container_of(to_delayed_work(work), 1974 struct aac_dev, src_reinit_aif_worker); 1975 1976 wait_event(dev->scsi_host_ptr->host_wait, 1977 !scsi_host_in_recovery(dev->scsi_host_ptr)); 1978 aac_reinit_aif(dev, dev->cardtype); 1979 } 1980 1981 /** 1982 * aac_handle_sa_aif Handle a message from the firmware 1983 * @dev: Which adapter this fib is from 1984 * @fibptr: Pointer to fibptr from adapter 1985 * 1986 * This routine handles a driver notify fib from the adapter and 1987 * dispatches it to the appropriate routine for handling. 1988 */ 1989 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) 1990 { 1991 int i; 1992 u32 events = 0; 1993 1994 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) 1995 events = SA_AIF_HOTPLUG; 1996 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) 1997 events = SA_AIF_HARDWARE; 1998 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) 1999 events = SA_AIF_PDEV_CHANGE; 2000 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) 2001 events = SA_AIF_LDEV_CHANGE; 2002 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) 2003 events = SA_AIF_BPSTAT_CHANGE; 2004 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) 2005 events = SA_AIF_BPCFG_CHANGE; 2006 2007 switch (events) { 2008 case SA_AIF_HOTPLUG: 2009 case SA_AIF_HARDWARE: 2010 case SA_AIF_PDEV_CHANGE: 2011 case SA_AIF_LDEV_CHANGE: 2012 case SA_AIF_BPCFG_CHANGE: 2013 2014 aac_scan_host(dev); 2015 2016 break; 2017 2018 case SA_AIF_BPSTAT_CHANGE: 2019 /* currently do nothing */ 2020 break; 2021 } 2022 2023 for (i = 1; i <= 10; ++i) { 2024 events = src_readl(dev, MUnit.IDR); 2025 if (events & (1<<23)) { 2026 pr_warn(" AIF not cleared by firmware - %d/%d)\n", 2027 i, 10); 2028 ssleep(1); 2029 } 2030 } 2031 } 2032 2033 static int get_fib_count(struct aac_dev *dev) 2034 { 2035 unsigned int num = 0; 2036 struct list_head *entry; 2037 unsigned long flagv; 2038 2039 /* 2040 * Warning: no sleep allowed while 2041 * holding spinlock. We take the estimate 2042 * and pre-allocate a set of fibs outside the 2043 * lock. 2044 */ 2045 num = le32_to_cpu(dev->init->r7.adapter_fibs_size) 2046 / sizeof(struct hw_fib); /* some extra */ 2047 spin_lock_irqsave(&dev->fib_lock, flagv); 2048 entry = dev->fib_list.next; 2049 while (entry != &dev->fib_list) { 2050 entry = entry->next; 2051 ++num; 2052 } 2053 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2054 2055 return num; 2056 } 2057 2058 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, 2059 struct fib **fib_pool, 2060 unsigned int num) 2061 { 2062 struct hw_fib **hw_fib_p; 2063 struct fib **fib_p; 2064 2065 hw_fib_p = hw_fib_pool; 2066 fib_p = fib_pool; 2067 while (hw_fib_p < &hw_fib_pool[num]) { 2068 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); 2069 if (!(*(hw_fib_p++))) { 2070 --hw_fib_p; 2071 break; 2072 } 2073 2074 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); 2075 if (!(*(fib_p++))) { 2076 kfree(*(--hw_fib_p)); 2077 break; 2078 } 2079 } 2080 2081 /* 2082 * Get the actual number of allocated fibs 2083 */ 2084 num = hw_fib_p - hw_fib_pool; 2085 return num; 2086 } 2087 2088 static void wakeup_fibctx_threads(struct aac_dev *dev, 2089 struct hw_fib **hw_fib_pool, 2090 struct fib **fib_pool, 2091 struct fib *fib, 2092 struct hw_fib *hw_fib, 2093 unsigned int num) 2094 { 2095 unsigned long flagv; 2096 struct list_head *entry; 2097 struct hw_fib **hw_fib_p; 2098 struct fib **fib_p; 2099 u32 time_now, time_last; 2100 struct hw_fib *hw_newfib; 2101 struct fib *newfib; 2102 struct aac_fib_context *fibctx; 2103 2104 time_now = jiffies/HZ; 2105 spin_lock_irqsave(&dev->fib_lock, flagv); 2106 entry = dev->fib_list.next; 2107 /* 2108 * For each Context that is on the 2109 * fibctxList, make a copy of the 2110 * fib, and then set the event to wake up the 2111 * thread that is waiting for it. 2112 */ 2113 2114 hw_fib_p = hw_fib_pool; 2115 fib_p = fib_pool; 2116 while (entry != &dev->fib_list) { 2117 /* 2118 * Extract the fibctx 2119 */ 2120 fibctx = list_entry(entry, struct aac_fib_context, 2121 next); 2122 /* 2123 * Check if the queue is getting 2124 * backlogged 2125 */ 2126 if (fibctx->count > 20) { 2127 /* 2128 * It's *not* jiffies folks, 2129 * but jiffies / HZ so do not 2130 * panic ... 2131 */ 2132 time_last = fibctx->jiffies; 2133 /* 2134 * Has it been > 2 minutes 2135 * since the last read off 2136 * the queue? 2137 */ 2138 if ((time_now - time_last) > aif_timeout) { 2139 entry = entry->next; 2140 aac_close_fib_context(dev, fibctx); 2141 continue; 2142 } 2143 } 2144 /* 2145 * Warning: no sleep allowed while 2146 * holding spinlock 2147 */ 2148 if (hw_fib_p >= &hw_fib_pool[num]) { 2149 pr_warn("aifd: didn't allocate NewFib\n"); 2150 entry = entry->next; 2151 continue; 2152 } 2153 2154 hw_newfib = *hw_fib_p; 2155 *(hw_fib_p++) = NULL; 2156 newfib = *fib_p; 2157 *(fib_p++) = NULL; 2158 /* 2159 * Make the copy of the FIB 2160 */ 2161 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 2162 memcpy(newfib, fib, sizeof(struct fib)); 2163 newfib->hw_fib_va = hw_newfib; 2164 /* 2165 * Put the FIB onto the 2166 * fibctx's fibs 2167 */ 2168 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 2169 fibctx->count++; 2170 /* 2171 * Set the event to wake up the 2172 * thread that is waiting. 2173 */ 2174 complete(&fibctx->completion); 2175 2176 entry = entry->next; 2177 } 2178 /* 2179 * Set the status of this FIB 2180 */ 2181 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2182 aac_fib_adapter_complete(fib, sizeof(u32)); 2183 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2184 2185 } 2186 2187 static void aac_process_events(struct aac_dev *dev) 2188 { 2189 struct hw_fib *hw_fib; 2190 struct fib *fib; 2191 unsigned long flags; 2192 spinlock_t *t_lock; 2193 2194 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2195 spin_lock_irqsave(t_lock, flags); 2196 2197 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 2198 struct list_head *entry; 2199 struct aac_aifcmd *aifcmd; 2200 unsigned int num; 2201 struct hw_fib **hw_fib_pool, **hw_fib_p; 2202 struct fib **fib_pool, **fib_p; 2203 2204 set_current_state(TASK_RUNNING); 2205 2206 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 2207 list_del(entry); 2208 2209 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2210 spin_unlock_irqrestore(t_lock, flags); 2211 2212 fib = list_entry(entry, struct fib, fiblink); 2213 hw_fib = fib->hw_fib_va; 2214 if (dev->sa_firmware) { 2215 /* Thor AIF */ 2216 aac_handle_sa_aif(dev, fib); 2217 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2218 goto free_fib; 2219 } 2220 /* 2221 * We will process the FIB here or pass it to a 2222 * worker thread that is TBD. We Really can't 2223 * do anything at this point since we don't have 2224 * anything defined for this thread to do. 2225 */ 2226 memset(fib, 0, sizeof(struct fib)); 2227 fib->type = FSAFS_NTC_FIB_CONTEXT; 2228 fib->size = sizeof(struct fib); 2229 fib->hw_fib_va = hw_fib; 2230 fib->data = hw_fib->data; 2231 fib->dev = dev; 2232 /* 2233 * We only handle AifRequest fibs from the adapter. 2234 */ 2235 2236 aifcmd = (struct aac_aifcmd *) hw_fib->data; 2237 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 2238 /* Handle Driver Notify Events */ 2239 aac_handle_aif(dev, fib); 2240 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2241 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2242 goto free_fib; 2243 } 2244 /* 2245 * The u32 here is important and intended. We are using 2246 * 32bit wrapping time to fit the adapter field 2247 */ 2248 2249 /* Sniff events */ 2250 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) 2251 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { 2252 aac_handle_aif(dev, fib); 2253 } 2254 2255 /* 2256 * get number of fibs to process 2257 */ 2258 num = get_fib_count(dev); 2259 if (!num) 2260 goto free_fib; 2261 2262 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), 2263 GFP_KERNEL); 2264 if (!hw_fib_pool) 2265 goto free_fib; 2266 2267 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); 2268 if (!fib_pool) 2269 goto free_hw_fib_pool; 2270 2271 /* 2272 * Fill up fib pointer pools with actual fibs 2273 * and hw_fibs 2274 */ 2275 num = fillup_pools(dev, hw_fib_pool, fib_pool, num); 2276 if (!num) 2277 goto free_mem; 2278 2279 /* 2280 * wakeup the thread that is waiting for 2281 * the response from fw (ioctl) 2282 */ 2283 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, 2284 fib, hw_fib, num); 2285 2286 free_mem: 2287 /* Free up the remaining resources */ 2288 hw_fib_p = hw_fib_pool; 2289 fib_p = fib_pool; 2290 while (hw_fib_p < &hw_fib_pool[num]) { 2291 kfree(*hw_fib_p); 2292 kfree(*fib_p); 2293 ++fib_p; 2294 ++hw_fib_p; 2295 } 2296 kfree(fib_pool); 2297 free_hw_fib_pool: 2298 kfree(hw_fib_pool); 2299 free_fib: 2300 kfree(fib); 2301 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2302 spin_lock_irqsave(t_lock, flags); 2303 } 2304 /* 2305 * There are no more AIF's 2306 */ 2307 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2308 spin_unlock_irqrestore(t_lock, flags); 2309 } 2310 2311 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, 2312 u32 datasize) 2313 { 2314 struct aac_srb *srbcmd; 2315 struct sgmap64 *sg64; 2316 dma_addr_t addr; 2317 char *dma_buf; 2318 struct fib *fibptr; 2319 int ret = -ENOMEM; 2320 u32 vbus, vid; 2321 2322 fibptr = aac_fib_alloc(dev); 2323 if (!fibptr) 2324 goto out; 2325 2326 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, 2327 GFP_KERNEL); 2328 if (!dma_buf) 2329 goto fib_free_out; 2330 2331 aac_fib_init(fibptr); 2332 2333 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); 2334 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); 2335 2336 srbcmd = (struct aac_srb *)fib_data(fibptr); 2337 2338 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 2339 srbcmd->channel = cpu_to_le32(vbus); 2340 srbcmd->id = cpu_to_le32(vid); 2341 srbcmd->lun = 0; 2342 srbcmd->flags = cpu_to_le32(SRB_DataOut); 2343 srbcmd->timeout = cpu_to_le32(10); 2344 srbcmd->retry_limit = 0; 2345 srbcmd->cdb_size = cpu_to_le32(12); 2346 srbcmd->count = cpu_to_le32(datasize); 2347 2348 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 2349 srbcmd->cdb[0] = BMIC_OUT; 2350 srbcmd->cdb[6] = WRITE_HOST_WELLNESS; 2351 memcpy(dma_buf, (char *)wellness_str, datasize); 2352 2353 sg64 = (struct sgmap64 *)&srbcmd->sg; 2354 sg64->count = cpu_to_le32(1); 2355 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); 2356 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 2357 sg64->sg[0].count = cpu_to_le32(datasize); 2358 2359 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb), 2360 FsaNormal, 1, 1, NULL, NULL); 2361 2362 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); 2363 2364 /* 2365 * Do not set XferState to zero unless 2366 * receives a response from F/W 2367 */ 2368 if (ret >= 0) 2369 aac_fib_complete(fibptr); 2370 2371 /* 2372 * FIB should be freed only after 2373 * getting the response from the F/W 2374 */ 2375 if (ret != -ERESTARTSYS) 2376 goto fib_free_out; 2377 2378 out: 2379 return ret; 2380 fib_free_out: 2381 aac_fib_free(fibptr); 2382 goto out; 2383 } 2384 2385 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now) 2386 { 2387 struct tm cur_tm; 2388 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; 2389 u32 datasize = sizeof(wellness_str); 2390 time64_t local_time; 2391 int ret = -ENODEV; 2392 2393 if (!dev->sa_firmware) 2394 goto out; 2395 2396 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60)); 2397 time64_to_tm(local_time, 0, &cur_tm); 2398 cur_tm.tm_mon += 1; 2399 cur_tm.tm_year += 1900; 2400 wellness_str[8] = bin2bcd(cur_tm.tm_hour); 2401 wellness_str[9] = bin2bcd(cur_tm.tm_min); 2402 wellness_str[10] = bin2bcd(cur_tm.tm_sec); 2403 wellness_str[12] = bin2bcd(cur_tm.tm_mon); 2404 wellness_str[13] = bin2bcd(cur_tm.tm_mday); 2405 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); 2406 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); 2407 2408 ret = aac_send_wellness_command(dev, wellness_str, datasize); 2409 2410 out: 2411 return ret; 2412 } 2413 2414 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now) 2415 { 2416 int ret = -ENOMEM; 2417 struct fib *fibptr; 2418 __le32 *info; 2419 2420 fibptr = aac_fib_alloc(dev); 2421 if (!fibptr) 2422 goto out; 2423 2424 aac_fib_init(fibptr); 2425 info = (__le32 *)fib_data(fibptr); 2426 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */ 2427 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, 2428 1, 1, NULL, NULL); 2429 2430 /* 2431 * Do not set XferState to zero unless 2432 * receives a response from F/W 2433 */ 2434 if (ret >= 0) 2435 aac_fib_complete(fibptr); 2436 2437 /* 2438 * FIB should be freed only after 2439 * getting the response from the F/W 2440 */ 2441 if (ret != -ERESTARTSYS) 2442 aac_fib_free(fibptr); 2443 2444 out: 2445 return ret; 2446 } 2447 2448 /** 2449 * aac_command_thread - command processing thread 2450 * @dev: Adapter to monitor 2451 * 2452 * Waits on the commandready event in it's queue. When the event gets set 2453 * it will pull FIBs off it's queue. It will continue to pull FIBs off 2454 * until the queue is empty. When the queue is empty it will wait for 2455 * more FIBs. 2456 */ 2457 2458 int aac_command_thread(void *data) 2459 { 2460 struct aac_dev *dev = data; 2461 DECLARE_WAITQUEUE(wait, current); 2462 unsigned long next_jiffies = jiffies + HZ; 2463 unsigned long next_check_jiffies = next_jiffies; 2464 long difference = HZ; 2465 2466 /* 2467 * We can only have one thread per adapter for AIF's. 2468 */ 2469 if (dev->aif_thread) 2470 return -EINVAL; 2471 2472 /* 2473 * Let the DPC know it has a place to send the AIF's to. 2474 */ 2475 dev->aif_thread = 1; 2476 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2477 set_current_state(TASK_INTERRUPTIBLE); 2478 dprintk ((KERN_INFO "aac_command_thread start\n")); 2479 while (1) { 2480 2481 aac_process_events(dev); 2482 2483 /* 2484 * Background activity 2485 */ 2486 if ((time_before(next_check_jiffies,next_jiffies)) 2487 && ((difference = next_check_jiffies - jiffies) <= 0)) { 2488 next_check_jiffies = next_jiffies; 2489 if (aac_adapter_check_health(dev) == 0) { 2490 difference = ((long)(unsigned)check_interval) 2491 * HZ; 2492 next_check_jiffies = jiffies + difference; 2493 } else if (!dev->queues) 2494 break; 2495 } 2496 if (!time_before(next_check_jiffies,next_jiffies) 2497 && ((difference = next_jiffies - jiffies) <= 0)) { 2498 struct timespec64 now; 2499 int ret; 2500 2501 /* Don't even try to talk to adapter if its sick */ 2502 ret = aac_adapter_check_health(dev); 2503 if (ret || !dev->queues) 2504 break; 2505 next_check_jiffies = jiffies 2506 + ((long)(unsigned)check_interval) 2507 * HZ; 2508 ktime_get_real_ts64(&now); 2509 2510 /* Synchronize our watches */ 2511 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec) 2512 && (now.tv_nsec > (NSEC_PER_SEC / HZ))) 2513 difference = HZ + HZ / 2 - 2514 now.tv_nsec / (NSEC_PER_SEC / HZ); 2515 else { 2516 if (now.tv_nsec > NSEC_PER_SEC / 2) 2517 ++now.tv_sec; 2518 2519 if (dev->sa_firmware) 2520 ret = 2521 aac_send_safw_hostttime(dev, &now); 2522 else 2523 ret = aac_send_hosttime(dev, &now); 2524 2525 difference = (long)(unsigned)update_interval*HZ; 2526 } 2527 next_jiffies = jiffies + difference; 2528 if (time_before(next_check_jiffies,next_jiffies)) 2529 difference = next_check_jiffies - jiffies; 2530 } 2531 if (difference <= 0) 2532 difference = 1; 2533 set_current_state(TASK_INTERRUPTIBLE); 2534 2535 if (kthread_should_stop()) 2536 break; 2537 2538 /* 2539 * we probably want usleep_range() here instead of the 2540 * jiffies computation 2541 */ 2542 schedule_timeout(difference); 2543 2544 if (kthread_should_stop()) 2545 break; 2546 } 2547 if (dev->queues) 2548 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2549 dev->aif_thread = 0; 2550 return 0; 2551 } 2552 2553 int aac_acquire_irq(struct aac_dev *dev) 2554 { 2555 int i; 2556 int j; 2557 int ret = 0; 2558 2559 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 2560 for (i = 0; i < dev->max_msix; i++) { 2561 dev->aac_msix[i].vector_no = i; 2562 dev->aac_msix[i].dev = dev; 2563 if (request_irq(pci_irq_vector(dev->pdev, i), 2564 dev->a_ops.adapter_intr, 2565 0, "aacraid", &(dev->aac_msix[i]))) { 2566 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 2567 dev->name, dev->id, i); 2568 for (j = 0 ; j < i ; j++) 2569 free_irq(pci_irq_vector(dev->pdev, j), 2570 &(dev->aac_msix[j])); 2571 pci_disable_msix(dev->pdev); 2572 ret = -1; 2573 } 2574 } 2575 } else { 2576 dev->aac_msix[0].vector_no = 0; 2577 dev->aac_msix[0].dev = dev; 2578 2579 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 2580 IRQF_SHARED, "aacraid", 2581 &(dev->aac_msix[0])) < 0) { 2582 if (dev->msi) 2583 pci_disable_msi(dev->pdev); 2584 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 2585 dev->name, dev->id); 2586 ret = -1; 2587 } 2588 } 2589 return ret; 2590 } 2591 2592 void aac_free_irq(struct aac_dev *dev) 2593 { 2594 int i; 2595 2596 if (aac_is_src(dev)) { 2597 if (dev->max_msix > 1) { 2598 for (i = 0; i < dev->max_msix; i++) 2599 free_irq(pci_irq_vector(dev->pdev, i), 2600 &(dev->aac_msix[i])); 2601 } else { 2602 free_irq(dev->pdev->irq, &(dev->aac_msix[0])); 2603 } 2604 } else { 2605 free_irq(dev->pdev->irq, dev); 2606 } 2607 if (dev->msi) 2608 pci_disable_msi(dev->pdev); 2609 else if (dev->max_msix > 1) 2610 pci_disable_msix(dev->pdev); 2611 } 2612