xref: /openbmc/linux/drivers/scsi/aacraid/commsup.c (revision c62d3cd0ddd629606a3830aa22e9dcc6c2a0d3bf)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *  commsup.c
28  *
29  * Abstract: Contain all routines that are required for FSA host/adapter
30  *    communication.
31  *
32  */
33 
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/crash_dump.h>
37 #include <linux/types.h>
38 #include <linux/sched.h>
39 #include <linux/pci.h>
40 #include <linux/spinlock.h>
41 #include <linux/slab.h>
42 #include <linux/completion.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/kthread.h>
46 #include <linux/interrupt.h>
47 #include <linux/semaphore.h>
48 #include <linux/bcd.h>
49 #include <scsi/scsi.h>
50 #include <scsi/scsi_host.h>
51 #include <scsi/scsi_device.h>
52 #include <scsi/scsi_cmnd.h>
53 
54 #include "aacraid.h"
55 
56 /**
57  *	fib_map_alloc		-	allocate the fib objects
58  *	@dev: Adapter to allocate for
59  *
60  *	Allocate and map the shared PCI space for the FIB blocks used to
61  *	talk to the Adaptec firmware.
62  */
63 
64 static int fib_map_alloc(struct aac_dev *dev)
65 {
66 	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
67 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
68 	else
69 		dev->max_cmd_size = dev->max_fib_size;
70 	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
71 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
72 	} else {
73 		dev->max_cmd_size = dev->max_fib_size;
74 	}
75 
76 	dprintk((KERN_INFO
77 	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
78 	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
79 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
80 	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
81 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
82 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
83 		&dev->hw_fib_pa, GFP_KERNEL);
84 	if (dev->hw_fib_va == NULL)
85 		return -ENOMEM;
86 	return 0;
87 }
88 
89 /**
90  *	aac_fib_map_free		-	free the fib objects
91  *	@dev: Adapter to free
92  *
93  *	Free the PCI mappings and the memory allocated for FIB blocks
94  *	on this adapter.
95  */
96 
97 void aac_fib_map_free(struct aac_dev *dev)
98 {
99 	size_t alloc_size;
100 	size_t fib_size;
101 	int num_fibs;
102 
103 	if(!dev->hw_fib_va || !dev->max_cmd_size)
104 		return;
105 
106 	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
107 	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
108 	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
109 
110 	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
111 			  dev->hw_fib_pa);
112 
113 	dev->hw_fib_va = NULL;
114 	dev->hw_fib_pa = 0;
115 }
116 
117 void aac_fib_vector_assign(struct aac_dev *dev)
118 {
119 	u32 i = 0;
120 	u32 vector = 1;
121 	struct fib *fibptr = NULL;
122 
123 	for (i = 0, fibptr = &dev->fibs[i];
124 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
125 		i++, fibptr++) {
126 		if ((dev->max_msix == 1) ||
127 		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
128 			- dev->vector_cap))) {
129 			fibptr->vector_no = 0;
130 		} else {
131 			fibptr->vector_no = vector;
132 			vector++;
133 			if (vector == dev->max_msix)
134 				vector = 1;
135 		}
136 	}
137 }
138 
139 /**
140  *	aac_fib_setup	-	setup the fibs
141  *	@dev: Adapter to set up
142  *
143  *	Allocate the PCI space for the fibs, map it and then initialise the
144  *	fib area, the unmapped fib data and also the free list
145  */
146 
147 int aac_fib_setup(struct aac_dev * dev)
148 {
149 	struct fib *fibptr;
150 	struct hw_fib *hw_fib;
151 	dma_addr_t hw_fib_pa;
152 	int i;
153 	u32 max_cmds;
154 
155 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
156 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
157 		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
158 		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
159 		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
160 			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
161 	}
162 	if (i<0)
163 		return -ENOMEM;
164 
165 	memset(dev->hw_fib_va, 0,
166 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
167 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
168 
169 	/* 32 byte alignment for PMC */
170 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
171 	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
172 					(hw_fib_pa - dev->hw_fib_pa));
173 
174 	/* add Xport header */
175 	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
176 		sizeof(struct aac_fib_xporthdr));
177 	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
178 
179 	/*
180 	 *	Initialise the fibs
181 	 */
182 	for (i = 0, fibptr = &dev->fibs[i];
183 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
184 		i++, fibptr++)
185 	{
186 		fibptr->flags = 0;
187 		fibptr->size = sizeof(struct fib);
188 		fibptr->dev = dev;
189 		fibptr->hw_fib_va = hw_fib;
190 		fibptr->data = (void *) fibptr->hw_fib_va->data;
191 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
192 		sema_init(&fibptr->event_wait, 0);
193 		spin_lock_init(&fibptr->event_lock);
194 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
195 		hw_fib->header.SenderSize =
196 			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
197 		fibptr->hw_fib_pa = hw_fib_pa;
198 		fibptr->hw_sgl_pa = hw_fib_pa +
199 			offsetof(struct aac_hba_cmd_req, sge[2]);
200 		/*
201 		 * one element is for the ptr to the separate sg list,
202 		 * second element for 32 byte alignment
203 		 */
204 		fibptr->hw_error_pa = hw_fib_pa +
205 			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
206 
207 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
208 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
209 		hw_fib_pa = hw_fib_pa +
210 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
211 	}
212 
213 	/*
214 	 *Assign vector numbers to fibs
215 	 */
216 	aac_fib_vector_assign(dev);
217 
218 	/*
219 	 *	Add the fib chain to the free list
220 	 */
221 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
222 	/*
223 	*	Set 8 fibs aside for management tools
224 	*/
225 	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
226 	return 0;
227 }
228 
229 /**
230  *	aac_fib_alloc_tag-allocate a fib using tags
231  *	@dev: Adapter to allocate the fib for
232  *
233  *	Allocate a fib from the adapter fib pool using tags
234  *	from the blk layer.
235  */
236 
237 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
238 {
239 	struct fib *fibptr;
240 
241 	fibptr = &dev->fibs[scmd->request->tag];
242 	/*
243 	 *	Null out fields that depend on being zero at the start of
244 	 *	each I/O
245 	 */
246 	fibptr->hw_fib_va->header.XferState = 0;
247 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
248 	fibptr->callback_data = NULL;
249 	fibptr->callback = NULL;
250 
251 	return fibptr;
252 }
253 
254 /**
255  *	aac_fib_alloc	-	allocate a fib
256  *	@dev: Adapter to allocate the fib for
257  *
258  *	Allocate a fib from the adapter fib pool. If the pool is empty we
259  *	return NULL.
260  */
261 
262 struct fib *aac_fib_alloc(struct aac_dev *dev)
263 {
264 	struct fib * fibptr;
265 	unsigned long flags;
266 	spin_lock_irqsave(&dev->fib_lock, flags);
267 	fibptr = dev->free_fib;
268 	if(!fibptr){
269 		spin_unlock_irqrestore(&dev->fib_lock, flags);
270 		return fibptr;
271 	}
272 	dev->free_fib = fibptr->next;
273 	spin_unlock_irqrestore(&dev->fib_lock, flags);
274 	/*
275 	 *	Set the proper node type code and node byte size
276 	 */
277 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
278 	fibptr->size = sizeof(struct fib);
279 	/*
280 	 *	Null out fields that depend on being zero at the start of
281 	 *	each I/O
282 	 */
283 	fibptr->hw_fib_va->header.XferState = 0;
284 	fibptr->flags = 0;
285 	fibptr->callback = NULL;
286 	fibptr->callback_data = NULL;
287 
288 	return fibptr;
289 }
290 
291 /**
292  *	aac_fib_free	-	free a fib
293  *	@fibptr: fib to free up
294  *
295  *	Frees up a fib and places it on the appropriate queue
296  */
297 
298 void aac_fib_free(struct fib *fibptr)
299 {
300 	unsigned long flags;
301 
302 	if (fibptr->done == 2)
303 		return;
304 
305 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
306 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
307 		aac_config.fib_timeouts++;
308 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
309 		fibptr->hw_fib_va->header.XferState != 0) {
310 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
311 			 (void*)fibptr,
312 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
313 	}
314 	fibptr->next = fibptr->dev->free_fib;
315 	fibptr->dev->free_fib = fibptr;
316 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
317 }
318 
319 /**
320  *	aac_fib_init	-	initialise a fib
321  *	@fibptr: The fib to initialize
322  *
323  *	Set up the generic fib fields ready for use
324  */
325 
326 void aac_fib_init(struct fib *fibptr)
327 {
328 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
329 
330 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
331 	hw_fib->header.StructType = FIB_MAGIC;
332 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
333 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
334 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
335 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
336 }
337 
338 /**
339  *	fib_deallocate		-	deallocate a fib
340  *	@fibptr: fib to deallocate
341  *
342  *	Will deallocate and return to the free pool the FIB pointed to by the
343  *	caller.
344  */
345 
346 static void fib_dealloc(struct fib * fibptr)
347 {
348 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
349 	hw_fib->header.XferState = 0;
350 }
351 
352 /*
353  *	Commuication primitives define and support the queuing method we use to
354  *	support host to adapter commuication. All queue accesses happen through
355  *	these routines and are the only routines which have a knowledge of the
356  *	 how these queues are implemented.
357  */
358 
359 /**
360  *	aac_get_entry		-	get a queue entry
361  *	@dev: Adapter
362  *	@qid: Queue Number
363  *	@entry: Entry return
364  *	@index: Index return
365  *	@nonotify: notification control
366  *
367  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
368  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
369  *	returned.
370  */
371 
372 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
373 {
374 	struct aac_queue * q;
375 	unsigned long idx;
376 
377 	/*
378 	 *	All of the queues wrap when they reach the end, so we check
379 	 *	to see if they have reached the end and if they have we just
380 	 *	set the index back to zero. This is a wrap. You could or off
381 	 *	the high bits in all updates but this is a bit faster I think.
382 	 */
383 
384 	q = &dev->queues->queue[qid];
385 
386 	idx = *index = le32_to_cpu(*(q->headers.producer));
387 	/* Interrupt Moderation, only interrupt for first two entries */
388 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
389 		if (--idx == 0) {
390 			if (qid == AdapNormCmdQueue)
391 				idx = ADAP_NORM_CMD_ENTRIES;
392 			else
393 				idx = ADAP_NORM_RESP_ENTRIES;
394 		}
395 		if (idx != le32_to_cpu(*(q->headers.consumer)))
396 			*nonotify = 1;
397 	}
398 
399 	if (qid == AdapNormCmdQueue) {
400 		if (*index >= ADAP_NORM_CMD_ENTRIES)
401 			*index = 0; /* Wrap to front of the Producer Queue. */
402 	} else {
403 		if (*index >= ADAP_NORM_RESP_ENTRIES)
404 			*index = 0; /* Wrap to front of the Producer Queue. */
405 	}
406 
407 	/* Queue is full */
408 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
409 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
410 				qid, atomic_read(&q->numpending));
411 		return 0;
412 	} else {
413 		*entry = q->base + *index;
414 		return 1;
415 	}
416 }
417 
418 /**
419  *	aac_queue_get		-	get the next free QE
420  *	@dev: Adapter
421  *	@index: Returned index
422  *	@priority: Priority of fib
423  *	@fib: Fib to associate with the queue entry
424  *	@wait: Wait if queue full
425  *	@fibptr: Driver fib object to go with fib
426  *	@nonotify: Don't notify the adapter
427  *
428  *	Gets the next free QE off the requested priorty adapter command
429  *	queue and associates the Fib with the QE. The QE represented by
430  *	index is ready to insert on the queue when this routine returns
431  *	success.
432  */
433 
434 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
435 {
436 	struct aac_entry * entry = NULL;
437 	int map = 0;
438 
439 	if (qid == AdapNormCmdQueue) {
440 		/*  if no entries wait for some if caller wants to */
441 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
442 			printk(KERN_ERR "GetEntries failed\n");
443 		}
444 		/*
445 		 *	Setup queue entry with a command, status and fib mapped
446 		 */
447 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
448 		map = 1;
449 	} else {
450 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
451 			/* if no entries wait for some if caller wants to */
452 		}
453 		/*
454 		 *	Setup queue entry with command, status and fib mapped
455 		 */
456 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
457 		entry->addr = hw_fib->header.SenderFibAddress;
458 			/* Restore adapters pointer to the FIB */
459 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
460 		map = 0;
461 	}
462 	/*
463 	 *	If MapFib is true than we need to map the Fib and put pointers
464 	 *	in the queue entry.
465 	 */
466 	if (map)
467 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
468 	return 0;
469 }
470 
471 /*
472  *	Define the highest level of host to adapter communication routines.
473  *	These routines will support host to adapter FS commuication. These
474  *	routines have no knowledge of the commuication method used. This level
475  *	sends and receives FIBs. This level has no knowledge of how these FIBs
476  *	get passed back and forth.
477  */
478 
479 /**
480  *	aac_fib_send	-	send a fib to the adapter
481  *	@command: Command to send
482  *	@fibptr: The fib
483  *	@size: Size of fib data area
484  *	@priority: Priority of Fib
485  *	@wait: Async/sync select
486  *	@reply: True if a reply is wanted
487  *	@callback: Called with reply
488  *	@callback_data: Passed to callback
489  *
490  *	Sends the requested FIB to the adapter and optionally will wait for a
491  *	response FIB. If the caller does not wish to wait for a response than
492  *	an event to wait on must be supplied. This event will be set when a
493  *	response FIB is received from the adapter.
494  */
495 
496 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
497 		int priority, int wait, int reply, fib_callback callback,
498 		void *callback_data)
499 {
500 	struct aac_dev * dev = fibptr->dev;
501 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
502 	unsigned long flags = 0;
503 	unsigned long mflags = 0;
504 	unsigned long sflags = 0;
505 
506 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
507 		return -EBUSY;
508 
509 	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
510 		return -EINVAL;
511 
512 	/*
513 	 *	There are 5 cases with the wait and response requested flags.
514 	 *	The only invalid cases are if the caller requests to wait and
515 	 *	does not request a response and if the caller does not want a
516 	 *	response and the Fib is not allocated from pool. If a response
517 	 *	is not requested the Fib will just be deallocaed by the DPC
518 	 *	routine when the response comes back from the adapter. No
519 	 *	further processing will be done besides deleting the Fib. We
520 	 *	will have a debug mode where the adapter can notify the host
521 	 *	it had a problem and the host can log that fact.
522 	 */
523 	fibptr->flags = 0;
524 	if (wait && !reply) {
525 		return -EINVAL;
526 	} else if (!wait && reply) {
527 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
528 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
529 	} else if (!wait && !reply) {
530 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
531 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
532 	} else if (wait && reply) {
533 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
534 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
535 	}
536 	/*
537 	 *	Map the fib into 32bits by using the fib number
538 	 */
539 
540 	hw_fib->header.SenderFibAddress =
541 		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
542 
543 	/* use the same shifted value for handle to be compatible
544 	 * with the new native hba command handle
545 	 */
546 	hw_fib->header.Handle =
547 		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
548 
549 	/*
550 	 *	Set FIB state to indicate where it came from and if we want a
551 	 *	response from the adapter. Also load the command from the
552 	 *	caller.
553 	 *
554 	 *	Map the hw fib pointer as a 32bit value
555 	 */
556 	hw_fib->header.Command = cpu_to_le16(command);
557 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
558 	/*
559 	 *	Set the size of the Fib we want to send to the adapter
560 	 */
561 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
562 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
563 		return -EMSGSIZE;
564 	}
565 	/*
566 	 *	Get a queue entry connect the FIB to it and send an notify
567 	 *	the adapter a command is ready.
568 	 */
569 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
570 
571 	/*
572 	 *	Fill in the Callback and CallbackContext if we are not
573 	 *	going to wait.
574 	 */
575 	if (!wait) {
576 		fibptr->callback = callback;
577 		fibptr->callback_data = callback_data;
578 		fibptr->flags = FIB_CONTEXT_FLAG;
579 	}
580 
581 	fibptr->done = 0;
582 
583 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
584 
585 	dprintk((KERN_DEBUG "Fib contents:.\n"));
586 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
587 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
588 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
589 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
590 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
591 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
592 
593 	if (!dev->queues)
594 		return -EBUSY;
595 
596 	if (wait) {
597 
598 		spin_lock_irqsave(&dev->manage_lock, mflags);
599 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
600 			printk(KERN_INFO "No management Fibs Available:%d\n",
601 						dev->management_fib_count);
602 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
603 			return -EBUSY;
604 		}
605 		dev->management_fib_count++;
606 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
607 		spin_lock_irqsave(&fibptr->event_lock, flags);
608 	}
609 
610 	if (dev->sync_mode) {
611 		if (wait)
612 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
613 		spin_lock_irqsave(&dev->sync_lock, sflags);
614 		if (dev->sync_fib) {
615 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
616 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
617 		} else {
618 			dev->sync_fib = fibptr;
619 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
620 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
621 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
622 				NULL, NULL, NULL, NULL, NULL);
623 		}
624 		if (wait) {
625 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
626 			if (down_interruptible(&fibptr->event_wait)) {
627 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
628 				return -EFAULT;
629 			}
630 			return 0;
631 		}
632 		return -EINPROGRESS;
633 	}
634 
635 	if (aac_adapter_deliver(fibptr) != 0) {
636 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
637 		if (wait) {
638 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
639 			spin_lock_irqsave(&dev->manage_lock, mflags);
640 			dev->management_fib_count--;
641 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
642 		}
643 		return -EBUSY;
644 	}
645 
646 
647 	/*
648 	 *	If the caller wanted us to wait for response wait now.
649 	 */
650 
651 	if (wait) {
652 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
653 		/* Only set for first known interruptable command */
654 		if (wait < 0) {
655 			/*
656 			 * *VERY* Dangerous to time out a command, the
657 			 * assumption is made that we have no hope of
658 			 * functioning because an interrupt routing or other
659 			 * hardware failure has occurred.
660 			 */
661 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
662 			while (down_trylock(&fibptr->event_wait)) {
663 				int blink;
664 				if (time_is_before_eq_jiffies(timeout)) {
665 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
666 					atomic_dec(&q->numpending);
667 					if (wait == -1) {
668 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
669 						  "Usually a result of a PCI interrupt routing problem;\n"
670 						  "update mother board BIOS or consider utilizing one of\n"
671 						  "the SAFE mode kernel options (acpi, apic etc)\n");
672 					}
673 					return -ETIMEDOUT;
674 				}
675 
676 				if (unlikely(pci_channel_offline(dev->pdev)))
677 					return -EFAULT;
678 
679 				if ((blink = aac_adapter_check_health(dev)) > 0) {
680 					if (wait == -1) {
681 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
682 						  "Usually a result of a serious unrecoverable hardware problem\n",
683 						  blink);
684 					}
685 					return -EFAULT;
686 				}
687 				/*
688 				 * Allow other processes / CPUS to use core
689 				 */
690 				schedule();
691 			}
692 		} else if (down_interruptible(&fibptr->event_wait)) {
693 			/* Do nothing ... satisfy
694 			 * down_interruptible must_check */
695 		}
696 
697 		spin_lock_irqsave(&fibptr->event_lock, flags);
698 		if (fibptr->done == 0) {
699 			fibptr->done = 2; /* Tell interrupt we aborted */
700 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
701 			return -ERESTARTSYS;
702 		}
703 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
704 		BUG_ON(fibptr->done == 0);
705 
706 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
707 			return -ETIMEDOUT;
708 		return 0;
709 	}
710 	/*
711 	 *	If the user does not want a response than return success otherwise
712 	 *	return pending
713 	 */
714 	if (reply)
715 		return -EINPROGRESS;
716 	else
717 		return 0;
718 }
719 
720 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
721 		void *callback_data)
722 {
723 	struct aac_dev *dev = fibptr->dev;
724 	int wait;
725 	unsigned long flags = 0;
726 	unsigned long mflags = 0;
727 	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
728 			fibptr->hw_fib_va;
729 
730 	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
731 	if (callback) {
732 		wait = 0;
733 		fibptr->callback = callback;
734 		fibptr->callback_data = callback_data;
735 	} else
736 		wait = 1;
737 
738 
739 	hbacmd->iu_type = command;
740 
741 	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
742 		/* bit1 of request_id must be 0 */
743 		hbacmd->request_id =
744 			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
745 		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
746 	} else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
747 		return -EINVAL;
748 
749 
750 	if (wait) {
751 		spin_lock_irqsave(&dev->manage_lock, mflags);
752 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
753 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
754 			return -EBUSY;
755 		}
756 		dev->management_fib_count++;
757 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
758 		spin_lock_irqsave(&fibptr->event_lock, flags);
759 	}
760 
761 	if (aac_adapter_deliver(fibptr) != 0) {
762 		if (wait) {
763 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
764 			spin_lock_irqsave(&dev->manage_lock, mflags);
765 			dev->management_fib_count--;
766 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
767 		}
768 		return -EBUSY;
769 	}
770 	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
771 
772 	if (wait) {
773 
774 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
775 
776 		if (unlikely(pci_channel_offline(dev->pdev)))
777 			return -EFAULT;
778 
779 		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
780 		if (down_interruptible(&fibptr->event_wait))
781 			fibptr->done = 2;
782 		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
783 
784 		spin_lock_irqsave(&fibptr->event_lock, flags);
785 		if ((fibptr->done == 0) || (fibptr->done == 2)) {
786 			fibptr->done = 2; /* Tell interrupt we aborted */
787 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
788 			return -ERESTARTSYS;
789 		}
790 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
791 		WARN_ON(fibptr->done == 0);
792 
793 		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
794 			return -ETIMEDOUT;
795 
796 		return 0;
797 	}
798 
799 	return -EINPROGRESS;
800 }
801 
802 /**
803  *	aac_consumer_get	-	get the top of the queue
804  *	@dev: Adapter
805  *	@q: Queue
806  *	@entry: Return entry
807  *
808  *	Will return a pointer to the entry on the top of the queue requested that
809  *	we are a consumer of, and return the address of the queue entry. It does
810  *	not change the state of the queue.
811  */
812 
813 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
814 {
815 	u32 index;
816 	int status;
817 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
818 		status = 0;
819 	} else {
820 		/*
821 		 *	The consumer index must be wrapped if we have reached
822 		 *	the end of the queue, else we just use the entry
823 		 *	pointed to by the header index
824 		 */
825 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
826 			index = 0;
827 		else
828 			index = le32_to_cpu(*q->headers.consumer);
829 		*entry = q->base + index;
830 		status = 1;
831 	}
832 	return(status);
833 }
834 
835 /**
836  *	aac_consumer_free	-	free consumer entry
837  *	@dev: Adapter
838  *	@q: Queue
839  *	@qid: Queue ident
840  *
841  *	Frees up the current top of the queue we are a consumer of. If the
842  *	queue was full notify the producer that the queue is no longer full.
843  */
844 
845 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
846 {
847 	int wasfull = 0;
848 	u32 notify;
849 
850 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
851 		wasfull = 1;
852 
853 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
854 		*q->headers.consumer = cpu_to_le32(1);
855 	else
856 		le32_add_cpu(q->headers.consumer, 1);
857 
858 	if (wasfull) {
859 		switch (qid) {
860 
861 		case HostNormCmdQueue:
862 			notify = HostNormCmdNotFull;
863 			break;
864 		case HostNormRespQueue:
865 			notify = HostNormRespNotFull;
866 			break;
867 		default:
868 			BUG();
869 			return;
870 		}
871 		aac_adapter_notify(dev, notify);
872 	}
873 }
874 
875 /**
876  *	aac_fib_adapter_complete	-	complete adapter issued fib
877  *	@fibptr: fib to complete
878  *	@size: size of fib
879  *
880  *	Will do all necessary work to complete a FIB that was sent from
881  *	the adapter.
882  */
883 
884 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
885 {
886 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
887 	struct aac_dev * dev = fibptr->dev;
888 	struct aac_queue * q;
889 	unsigned long nointr = 0;
890 	unsigned long qflags;
891 
892 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
893 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
894 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
895 		kfree(hw_fib);
896 		return 0;
897 	}
898 
899 	if (hw_fib->header.XferState == 0) {
900 		if (dev->comm_interface == AAC_COMM_MESSAGE)
901 			kfree(hw_fib);
902 		return 0;
903 	}
904 	/*
905 	 *	If we plan to do anything check the structure type first.
906 	 */
907 	if (hw_fib->header.StructType != FIB_MAGIC &&
908 	    hw_fib->header.StructType != FIB_MAGIC2 &&
909 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
910 		if (dev->comm_interface == AAC_COMM_MESSAGE)
911 			kfree(hw_fib);
912 		return -EINVAL;
913 	}
914 	/*
915 	 *	This block handles the case where the adapter had sent us a
916 	 *	command and we have finished processing the command. We
917 	 *	call completeFib when we are done processing the command
918 	 *	and want to send a response back to the adapter. This will
919 	 *	send the completed cdb to the adapter.
920 	 */
921 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
922 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
923 			kfree (hw_fib);
924 		} else {
925 			u32 index;
926 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
927 			if (size) {
928 				size += sizeof(struct aac_fibhdr);
929 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
930 					return -EMSGSIZE;
931 				hw_fib->header.Size = cpu_to_le16(size);
932 			}
933 			q = &dev->queues->queue[AdapNormRespQueue];
934 			spin_lock_irqsave(q->lock, qflags);
935 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
936 			*(q->headers.producer) = cpu_to_le32(index + 1);
937 			spin_unlock_irqrestore(q->lock, qflags);
938 			if (!(nointr & (int)aac_config.irq_mod))
939 				aac_adapter_notify(dev, AdapNormRespQueue);
940 		}
941 	} else {
942 		printk(KERN_WARNING "aac_fib_adapter_complete: "
943 			"Unknown xferstate detected.\n");
944 		BUG();
945 	}
946 	return 0;
947 }
948 
949 /**
950  *	aac_fib_complete	-	fib completion handler
951  *	@fib: FIB to complete
952  *
953  *	Will do all necessary work to complete a FIB.
954  */
955 
956 int aac_fib_complete(struct fib *fibptr)
957 {
958 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
959 
960 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
961 		fib_dealloc(fibptr);
962 		return 0;
963 	}
964 
965 	/*
966 	 *	Check for a fib which has already been completed or with a
967 	 *	status wait timeout
968 	 */
969 
970 	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
971 		return 0;
972 	/*
973 	 *	If we plan to do anything check the structure type first.
974 	 */
975 
976 	if (hw_fib->header.StructType != FIB_MAGIC &&
977 	    hw_fib->header.StructType != FIB_MAGIC2 &&
978 	    hw_fib->header.StructType != FIB_MAGIC2_64)
979 		return -EINVAL;
980 	/*
981 	 *	This block completes a cdb which orginated on the host and we
982 	 *	just need to deallocate the cdb or reinit it. At this point the
983 	 *	command is complete that we had sent to the adapter and this
984 	 *	cdb could be reused.
985 	 */
986 
987 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
988 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
989 	{
990 		fib_dealloc(fibptr);
991 	}
992 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
993 	{
994 		/*
995 		 *	This handles the case when the host has aborted the I/O
996 		 *	to the adapter because the adapter is not responding
997 		 */
998 		fib_dealloc(fibptr);
999 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
1000 		fib_dealloc(fibptr);
1001 	} else {
1002 		BUG();
1003 	}
1004 	return 0;
1005 }
1006 
1007 /**
1008  *	aac_printf	-	handle printf from firmware
1009  *	@dev: Adapter
1010  *	@val: Message info
1011  *
1012  *	Print a message passed to us by the controller firmware on the
1013  *	Adaptec board
1014  */
1015 
1016 void aac_printf(struct aac_dev *dev, u32 val)
1017 {
1018 	char *cp = dev->printfbuf;
1019 	if (dev->printf_enabled)
1020 	{
1021 		int length = val & 0xffff;
1022 		int level = (val >> 16) & 0xffff;
1023 
1024 		/*
1025 		 *	The size of the printfbuf is set in port.c
1026 		 *	There is no variable or define for it
1027 		 */
1028 		if (length > 255)
1029 			length = 255;
1030 		if (cp[length] != 0)
1031 			cp[length] = 0;
1032 		if (level == LOG_AAC_HIGH_ERROR)
1033 			printk(KERN_WARNING "%s:%s", dev->name, cp);
1034 		else
1035 			printk(KERN_INFO "%s:%s", dev->name, cp);
1036 	}
1037 	memset(cp, 0, 256);
1038 }
1039 
1040 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1041 {
1042 	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1043 }
1044 
1045 
1046 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1047 {
1048 	switch (aac_aif_data(aifcmd, 1)) {
1049 	case AifBuCacheDataLoss:
1050 		if (aac_aif_data(aifcmd, 2))
1051 			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1052 			aac_aif_data(aifcmd, 2));
1053 		else
1054 			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1055 		break;
1056 	case AifBuCacheDataRecover:
1057 		if (aac_aif_data(aifcmd, 2))
1058 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1059 			aac_aif_data(aifcmd, 2));
1060 		else
1061 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1062 		break;
1063 	}
1064 }
1065 
1066 /**
1067  *	aac_handle_aif		-	Handle a message from the firmware
1068  *	@dev: Which adapter this fib is from
1069  *	@fibptr: Pointer to fibptr from adapter
1070  *
1071  *	This routine handles a driver notify fib from the adapter and
1072  *	dispatches it to the appropriate routine for handling.
1073  */
1074 
1075 #define AIF_SNIFF_TIMEOUT	(500*HZ)
1076 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1077 {
1078 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1079 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1080 	u32 channel, id, lun, container;
1081 	struct scsi_device *device;
1082 	enum {
1083 		NOTHING,
1084 		DELETE,
1085 		ADD,
1086 		CHANGE
1087 	} device_config_needed = NOTHING;
1088 
1089 	/* Sniff for container changes */
1090 
1091 	if (!dev || !dev->fsa_dev)
1092 		return;
1093 	container = channel = id = lun = (u32)-1;
1094 
1095 	/*
1096 	 *	We have set this up to try and minimize the number of
1097 	 * re-configures that take place. As a result of this when
1098 	 * certain AIF's come in we will set a flag waiting for another
1099 	 * type of AIF before setting the re-config flag.
1100 	 */
1101 	switch (le32_to_cpu(aifcmd->command)) {
1102 	case AifCmdDriverNotify:
1103 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1104 		case AifRawDeviceRemove:
1105 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1106 			if ((container >> 28)) {
1107 				container = (u32)-1;
1108 				break;
1109 			}
1110 			channel = (container >> 24) & 0xF;
1111 			if (channel >= dev->maximum_num_channels) {
1112 				container = (u32)-1;
1113 				break;
1114 			}
1115 			id = container & 0xFFFF;
1116 			if (id >= dev->maximum_num_physicals) {
1117 				container = (u32)-1;
1118 				break;
1119 			}
1120 			lun = (container >> 16) & 0xFF;
1121 			container = (u32)-1;
1122 			channel = aac_phys_to_logical(channel);
1123 			device_config_needed = DELETE;
1124 			break;
1125 
1126 		/*
1127 		 *	Morph or Expand complete
1128 		 */
1129 		case AifDenMorphComplete:
1130 		case AifDenVolumeExtendComplete:
1131 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1132 			if (container >= dev->maximum_num_containers)
1133 				break;
1134 
1135 			/*
1136 			 *	Find the scsi_device associated with the SCSI
1137 			 * address. Make sure we have the right array, and if
1138 			 * so set the flag to initiate a new re-config once we
1139 			 * see an AifEnConfigChange AIF come through.
1140 			 */
1141 
1142 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1143 				device = scsi_device_lookup(dev->scsi_host_ptr,
1144 					CONTAINER_TO_CHANNEL(container),
1145 					CONTAINER_TO_ID(container),
1146 					CONTAINER_TO_LUN(container));
1147 				if (device) {
1148 					dev->fsa_dev[container].config_needed = CHANGE;
1149 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1150 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1151 					scsi_device_put(device);
1152 				}
1153 			}
1154 		}
1155 
1156 		/*
1157 		 *	If we are waiting on something and this happens to be
1158 		 * that thing then set the re-configure flag.
1159 		 */
1160 		if (container != (u32)-1) {
1161 			if (container >= dev->maximum_num_containers)
1162 				break;
1163 			if ((dev->fsa_dev[container].config_waiting_on ==
1164 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1165 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1166 				dev->fsa_dev[container].config_waiting_on = 0;
1167 		} else for (container = 0;
1168 		    container < dev->maximum_num_containers; ++container) {
1169 			if ((dev->fsa_dev[container].config_waiting_on ==
1170 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1171 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1172 				dev->fsa_dev[container].config_waiting_on = 0;
1173 		}
1174 		break;
1175 
1176 	case AifCmdEventNotify:
1177 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1178 		case AifEnBatteryEvent:
1179 			dev->cache_protected =
1180 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1181 			break;
1182 		/*
1183 		 *	Add an Array.
1184 		 */
1185 		case AifEnAddContainer:
1186 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1187 			if (container >= dev->maximum_num_containers)
1188 				break;
1189 			dev->fsa_dev[container].config_needed = ADD;
1190 			dev->fsa_dev[container].config_waiting_on =
1191 				AifEnConfigChange;
1192 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1193 			break;
1194 
1195 		/*
1196 		 *	Delete an Array.
1197 		 */
1198 		case AifEnDeleteContainer:
1199 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200 			if (container >= dev->maximum_num_containers)
1201 				break;
1202 			dev->fsa_dev[container].config_needed = DELETE;
1203 			dev->fsa_dev[container].config_waiting_on =
1204 				AifEnConfigChange;
1205 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1206 			break;
1207 
1208 		/*
1209 		 *	Container change detected. If we currently are not
1210 		 * waiting on something else, setup to wait on a Config Change.
1211 		 */
1212 		case AifEnContainerChange:
1213 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1214 			if (container >= dev->maximum_num_containers)
1215 				break;
1216 			if (dev->fsa_dev[container].config_waiting_on &&
1217 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1218 				break;
1219 			dev->fsa_dev[container].config_needed = CHANGE;
1220 			dev->fsa_dev[container].config_waiting_on =
1221 				AifEnConfigChange;
1222 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1223 			break;
1224 
1225 		case AifEnConfigChange:
1226 			break;
1227 
1228 		case AifEnAddJBOD:
1229 		case AifEnDeleteJBOD:
1230 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1231 			if ((container >> 28)) {
1232 				container = (u32)-1;
1233 				break;
1234 			}
1235 			channel = (container >> 24) & 0xF;
1236 			if (channel >= dev->maximum_num_channels) {
1237 				container = (u32)-1;
1238 				break;
1239 			}
1240 			id = container & 0xFFFF;
1241 			if (id >= dev->maximum_num_physicals) {
1242 				container = (u32)-1;
1243 				break;
1244 			}
1245 			lun = (container >> 16) & 0xFF;
1246 			container = (u32)-1;
1247 			channel = aac_phys_to_logical(channel);
1248 			device_config_needed =
1249 			  (((__le32 *)aifcmd->data)[0] ==
1250 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1251 			if (device_config_needed == ADD) {
1252 				device = scsi_device_lookup(dev->scsi_host_ptr,
1253 					channel,
1254 					id,
1255 					lun);
1256 				if (device) {
1257 					scsi_remove_device(device);
1258 					scsi_device_put(device);
1259 				}
1260 			}
1261 			break;
1262 
1263 		case AifEnEnclosureManagement:
1264 			/*
1265 			 * If in JBOD mode, automatic exposure of new
1266 			 * physical target to be suppressed until configured.
1267 			 */
1268 			if (dev->jbod)
1269 				break;
1270 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1271 			case EM_DRIVE_INSERTION:
1272 			case EM_DRIVE_REMOVAL:
1273 			case EM_SES_DRIVE_INSERTION:
1274 			case EM_SES_DRIVE_REMOVAL:
1275 				container = le32_to_cpu(
1276 					((__le32 *)aifcmd->data)[2]);
1277 				if ((container >> 28)) {
1278 					container = (u32)-1;
1279 					break;
1280 				}
1281 				channel = (container >> 24) & 0xF;
1282 				if (channel >= dev->maximum_num_channels) {
1283 					container = (u32)-1;
1284 					break;
1285 				}
1286 				id = container & 0xFFFF;
1287 				lun = (container >> 16) & 0xFF;
1288 				container = (u32)-1;
1289 				if (id >= dev->maximum_num_physicals) {
1290 					/* legacy dev_t ? */
1291 					if ((0x2000 <= id) || lun || channel ||
1292 					  ((channel = (id >> 7) & 0x3F) >=
1293 					  dev->maximum_num_channels))
1294 						break;
1295 					lun = (id >> 4) & 7;
1296 					id &= 0xF;
1297 				}
1298 				channel = aac_phys_to_logical(channel);
1299 				device_config_needed =
1300 				  ((((__le32 *)aifcmd->data)[3]
1301 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1302 				    (((__le32 *)aifcmd->data)[3]
1303 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1304 				  ADD : DELETE;
1305 				break;
1306 			}
1307 			case AifBuManagerEvent:
1308 				aac_handle_aif_bu(dev, aifcmd);
1309 			break;
1310 		}
1311 
1312 		/*
1313 		 *	If we are waiting on something and this happens to be
1314 		 * that thing then set the re-configure flag.
1315 		 */
1316 		if (container != (u32)-1) {
1317 			if (container >= dev->maximum_num_containers)
1318 				break;
1319 			if ((dev->fsa_dev[container].config_waiting_on ==
1320 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1321 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1322 				dev->fsa_dev[container].config_waiting_on = 0;
1323 		} else for (container = 0;
1324 		    container < dev->maximum_num_containers; ++container) {
1325 			if ((dev->fsa_dev[container].config_waiting_on ==
1326 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1327 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1328 				dev->fsa_dev[container].config_waiting_on = 0;
1329 		}
1330 		break;
1331 
1332 	case AifCmdJobProgress:
1333 		/*
1334 		 *	These are job progress AIF's. When a Clear is being
1335 		 * done on a container it is initially created then hidden from
1336 		 * the OS. When the clear completes we don't get a config
1337 		 * change so we monitor the job status complete on a clear then
1338 		 * wait for a container change.
1339 		 */
1340 
1341 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1342 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1343 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1344 			for (container = 0;
1345 			    container < dev->maximum_num_containers;
1346 			    ++container) {
1347 				/*
1348 				 * Stomp on all config sequencing for all
1349 				 * containers?
1350 				 */
1351 				dev->fsa_dev[container].config_waiting_on =
1352 					AifEnContainerChange;
1353 				dev->fsa_dev[container].config_needed = ADD;
1354 				dev->fsa_dev[container].config_waiting_stamp =
1355 					jiffies;
1356 			}
1357 		}
1358 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1359 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1360 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1361 			for (container = 0;
1362 			    container < dev->maximum_num_containers;
1363 			    ++container) {
1364 				/*
1365 				 * Stomp on all config sequencing for all
1366 				 * containers?
1367 				 */
1368 				dev->fsa_dev[container].config_waiting_on =
1369 					AifEnContainerChange;
1370 				dev->fsa_dev[container].config_needed = DELETE;
1371 				dev->fsa_dev[container].config_waiting_stamp =
1372 					jiffies;
1373 			}
1374 		}
1375 		break;
1376 	}
1377 
1378 	container = 0;
1379 retry_next:
1380 	if (device_config_needed == NOTHING)
1381 	for (; container < dev->maximum_num_containers; ++container) {
1382 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1383 			(dev->fsa_dev[container].config_needed != NOTHING) &&
1384 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1385 			device_config_needed =
1386 				dev->fsa_dev[container].config_needed;
1387 			dev->fsa_dev[container].config_needed = NOTHING;
1388 			channel = CONTAINER_TO_CHANNEL(container);
1389 			id = CONTAINER_TO_ID(container);
1390 			lun = CONTAINER_TO_LUN(container);
1391 			break;
1392 		}
1393 	}
1394 	if (device_config_needed == NOTHING)
1395 		return;
1396 
1397 	/*
1398 	 *	If we decided that a re-configuration needs to be done,
1399 	 * schedule it here on the way out the door, please close the door
1400 	 * behind you.
1401 	 */
1402 
1403 	/*
1404 	 *	Find the scsi_device associated with the SCSI address,
1405 	 * and mark it as changed, invalidating the cache. This deals
1406 	 * with changes to existing device IDs.
1407 	 */
1408 
1409 	if (!dev || !dev->scsi_host_ptr)
1410 		return;
1411 	/*
1412 	 * force reload of disk info via aac_probe_container
1413 	 */
1414 	if ((channel == CONTAINER_CHANNEL) &&
1415 	  (device_config_needed != NOTHING)) {
1416 		if (dev->fsa_dev[container].valid == 1)
1417 			dev->fsa_dev[container].valid = 2;
1418 		aac_probe_container(dev, container);
1419 	}
1420 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1421 	if (device) {
1422 		switch (device_config_needed) {
1423 		case DELETE:
1424 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1425 			scsi_remove_device(device);
1426 #else
1427 			if (scsi_device_online(device)) {
1428 				scsi_device_set_state(device, SDEV_OFFLINE);
1429 				sdev_printk(KERN_INFO, device,
1430 					"Device offlined - %s\n",
1431 					(channel == CONTAINER_CHANNEL) ?
1432 						"array deleted" :
1433 						"enclosure services event");
1434 			}
1435 #endif
1436 			break;
1437 		case ADD:
1438 			if (!scsi_device_online(device)) {
1439 				sdev_printk(KERN_INFO, device,
1440 					"Device online - %s\n",
1441 					(channel == CONTAINER_CHANNEL) ?
1442 						"array created" :
1443 						"enclosure services event");
1444 				scsi_device_set_state(device, SDEV_RUNNING);
1445 			}
1446 			/* FALLTHRU */
1447 		case CHANGE:
1448 			if ((channel == CONTAINER_CHANNEL)
1449 			 && (!dev->fsa_dev[container].valid)) {
1450 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1451 				scsi_remove_device(device);
1452 #else
1453 				if (!scsi_device_online(device))
1454 					break;
1455 				scsi_device_set_state(device, SDEV_OFFLINE);
1456 				sdev_printk(KERN_INFO, device,
1457 					"Device offlined - %s\n",
1458 					"array failed");
1459 #endif
1460 				break;
1461 			}
1462 			scsi_rescan_device(&device->sdev_gendev);
1463 
1464 		default:
1465 			break;
1466 		}
1467 		scsi_device_put(device);
1468 		device_config_needed = NOTHING;
1469 	}
1470 	if (device_config_needed == ADD)
1471 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1472 	if (channel == CONTAINER_CHANNEL) {
1473 		container++;
1474 		device_config_needed = NOTHING;
1475 		goto retry_next;
1476 	}
1477 }
1478 
1479 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1480 {
1481 	int index, quirks;
1482 	int retval;
1483 	struct Scsi_Host *host;
1484 	struct scsi_device *dev;
1485 	struct scsi_cmnd *command;
1486 	struct scsi_cmnd *command_list;
1487 	int jafo = 0;
1488 	int bled;
1489 	u64 dmamask;
1490 	int num_of_fibs = 0;
1491 
1492 	/*
1493 	 * Assumptions:
1494 	 *	- host is locked, unless called by the aacraid thread.
1495 	 *	  (a matter of convenience, due to legacy issues surrounding
1496 	 *	  eh_host_adapter_reset).
1497 	 *	- in_reset is asserted, so no new i/o is getting to the
1498 	 *	  card.
1499 	 *	- The card is dead, or will be very shortly ;-/ so no new
1500 	 *	  commands are completing in the interrupt service.
1501 	 */
1502 	host = aac->scsi_host_ptr;
1503 	scsi_block_requests(host);
1504 	aac_adapter_disable_int(aac);
1505 	if (aac->thread && aac->thread->pid != current->pid) {
1506 		spin_unlock_irq(host->host_lock);
1507 		kthread_stop(aac->thread);
1508 		aac->thread = NULL;
1509 		jafo = 1;
1510 	}
1511 
1512 	/*
1513 	 *	If a positive health, means in a known DEAD PANIC
1514 	 * state and the adapter could be reset to `try again'.
1515 	 */
1516 	bled = forced ? 0 : aac_adapter_check_health(aac);
1517 	retval = aac_adapter_restart(aac, bled, reset_type);
1518 
1519 	if (retval)
1520 		goto out;
1521 
1522 	/*
1523 	 *	Loop through the fibs, close the synchronous FIBS
1524 	 */
1525 	retval = 1;
1526 	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1527 	for (index = 0; index <  num_of_fibs; index++) {
1528 
1529 		struct fib *fib = &aac->fibs[index];
1530 		__le32 XferState = fib->hw_fib_va->header.XferState;
1531 		bool is_response_expected = false;
1532 
1533 		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1534 		   (XferState & cpu_to_le32(ResponseExpected)))
1535 			is_response_expected = true;
1536 
1537 		if (is_response_expected
1538 		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1539 			unsigned long flagv;
1540 			spin_lock_irqsave(&fib->event_lock, flagv);
1541 			up(&fib->event_wait);
1542 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1543 			schedule();
1544 			retval = 0;
1545 		}
1546 	}
1547 	/* Give some extra time for ioctls to complete. */
1548 	if (retval == 0)
1549 		ssleep(2);
1550 	index = aac->cardtype;
1551 
1552 	/*
1553 	 * Re-initialize the adapter, first free resources, then carefully
1554 	 * apply the initialization sequence to come back again. Only risk
1555 	 * is a change in Firmware dropping cache, it is assumed the caller
1556 	 * will ensure that i/o is queisced and the card is flushed in that
1557 	 * case.
1558 	 */
1559 	aac_free_irq(aac);
1560 	aac_fib_map_free(aac);
1561 	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1562 			  aac->comm_phys);
1563 	aac->comm_addr = NULL;
1564 	aac->comm_phys = 0;
1565 	kfree(aac->queues);
1566 	aac->queues = NULL;
1567 	kfree(aac->fsa_dev);
1568 	aac->fsa_dev = NULL;
1569 
1570 	dmamask = DMA_BIT_MASK(32);
1571 	quirks = aac_get_driver_ident(index)->quirks;
1572 	if (quirks & AAC_QUIRK_31BIT)
1573 		retval = pci_set_dma_mask(aac->pdev, dmamask);
1574 	else if (!(quirks & AAC_QUIRK_SRC))
1575 		retval = pci_set_dma_mask(aac->pdev, dmamask);
1576 	else
1577 		retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1578 
1579 	if (quirks & AAC_QUIRK_31BIT && !retval) {
1580 		dmamask = DMA_BIT_MASK(31);
1581 		retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1582 	}
1583 
1584 	if (retval)
1585 		goto out;
1586 
1587 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1588 		goto out;
1589 
1590 	if (jafo) {
1591 		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1592 					  aac->name);
1593 		if (IS_ERR(aac->thread)) {
1594 			retval = PTR_ERR(aac->thread);
1595 			aac->thread = NULL;
1596 			goto out;
1597 		}
1598 	}
1599 	(void)aac_get_adapter_info(aac);
1600 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1601 		host->sg_tablesize = 34;
1602 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1603 	}
1604 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1605 		host->sg_tablesize = 17;
1606 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1607 	}
1608 	aac_get_config_status(aac, 1);
1609 	aac_get_containers(aac);
1610 	/*
1611 	 * This is where the assumption that the Adapter is quiesced
1612 	 * is important.
1613 	 */
1614 	command_list = NULL;
1615 	__shost_for_each_device(dev, host) {
1616 		unsigned long flags;
1617 		spin_lock_irqsave(&dev->list_lock, flags);
1618 		list_for_each_entry(command, &dev->cmd_list, list)
1619 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1620 				command->SCp.buffer = (struct scatterlist *)command_list;
1621 				command_list = command;
1622 			}
1623 		spin_unlock_irqrestore(&dev->list_lock, flags);
1624 	}
1625 	while ((command = command_list)) {
1626 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1627 		command->SCp.buffer = NULL;
1628 		command->result = DID_OK << 16
1629 		  | COMMAND_COMPLETE << 8
1630 		  | SAM_STAT_TASK_SET_FULL;
1631 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1632 		command->scsi_done(command);
1633 	}
1634 	/*
1635 	 * Any Device that was already marked offline needs to be marked
1636 	 * running
1637 	 */
1638 	__shost_for_each_device(dev, host) {
1639 		if (!scsi_device_online(dev))
1640 			scsi_device_set_state(dev, SDEV_RUNNING);
1641 	}
1642 	retval = 0;
1643 
1644 out:
1645 	aac->in_reset = 0;
1646 	scsi_unblock_requests(host);
1647 
1648 	/*
1649 	 * Issue bus rescan to catch any configuration that might have
1650 	 * occurred
1651 	 */
1652 	if (!retval && !is_kdump_kernel()) {
1653 		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1654 		aac_schedule_safw_scan_worker(aac);
1655 	}
1656 
1657 	if (jafo) {
1658 		spin_lock_irq(host->host_lock);
1659 	}
1660 	return retval;
1661 }
1662 
1663 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1664 {
1665 	unsigned long flagv = 0;
1666 	int retval;
1667 	struct Scsi_Host * host;
1668 	int bled;
1669 
1670 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1671 		return -EBUSY;
1672 
1673 	if (aac->in_reset) {
1674 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1675 		return -EBUSY;
1676 	}
1677 	aac->in_reset = 1;
1678 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1679 
1680 	/*
1681 	 * Wait for all commands to complete to this specific
1682 	 * target (block maximum 60 seconds). Although not necessary,
1683 	 * it does make us a good storage citizen.
1684 	 */
1685 	host = aac->scsi_host_ptr;
1686 	scsi_block_requests(host);
1687 
1688 	/* Quiesce build, flush cache, write through mode */
1689 	if (forced < 2)
1690 		aac_send_shutdown(aac);
1691 	spin_lock_irqsave(host->host_lock, flagv);
1692 	bled = forced ? forced :
1693 			(aac_check_reset != 0 && aac_check_reset != 1);
1694 	retval = _aac_reset_adapter(aac, bled, reset_type);
1695 	spin_unlock_irqrestore(host->host_lock, flagv);
1696 
1697 	if ((forced < 2) && (retval == -ENODEV)) {
1698 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1699 		struct fib * fibctx = aac_fib_alloc(aac);
1700 		if (fibctx) {
1701 			struct aac_pause *cmd;
1702 			int status;
1703 
1704 			aac_fib_init(fibctx);
1705 
1706 			cmd = (struct aac_pause *) fib_data(fibctx);
1707 
1708 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1709 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1710 			cmd->timeout = cpu_to_le32(1);
1711 			cmd->min = cpu_to_le32(1);
1712 			cmd->noRescan = cpu_to_le32(1);
1713 			cmd->count = cpu_to_le32(0);
1714 
1715 			status = aac_fib_send(ContainerCommand,
1716 			  fibctx,
1717 			  sizeof(struct aac_pause),
1718 			  FsaNormal,
1719 			  -2 /* Timeout silently */, 1,
1720 			  NULL, NULL);
1721 
1722 			if (status >= 0)
1723 				aac_fib_complete(fibctx);
1724 			/* FIB should be freed only after getting
1725 			 * the response from the F/W */
1726 			if (status != -ERESTARTSYS)
1727 				aac_fib_free(fibctx);
1728 		}
1729 	}
1730 
1731 	return retval;
1732 }
1733 
1734 int aac_check_health(struct aac_dev * aac)
1735 {
1736 	int BlinkLED;
1737 	unsigned long time_now, flagv = 0;
1738 	struct list_head * entry;
1739 
1740 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1741 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1742 		return 0;
1743 
1744 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1745 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1746 		return 0; /* OK */
1747 	}
1748 
1749 	aac->in_reset = 1;
1750 
1751 	/* Fake up an AIF:
1752 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1753 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1754 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1755 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1756 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1757 	 *	aac.aifcmd.data[3] = BlinkLED
1758 	 */
1759 
1760 	time_now = jiffies/HZ;
1761 	entry = aac->fib_list.next;
1762 
1763 	/*
1764 	 * For each Context that is on the
1765 	 * fibctxList, make a copy of the
1766 	 * fib, and then set the event to wake up the
1767 	 * thread that is waiting for it.
1768 	 */
1769 	while (entry != &aac->fib_list) {
1770 		/*
1771 		 * Extract the fibctx
1772 		 */
1773 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1774 		struct hw_fib * hw_fib;
1775 		struct fib * fib;
1776 		/*
1777 		 * Check if the queue is getting
1778 		 * backlogged
1779 		 */
1780 		if (fibctx->count > 20) {
1781 			/*
1782 			 * It's *not* jiffies folks,
1783 			 * but jiffies / HZ, so do not
1784 			 * panic ...
1785 			 */
1786 			u32 time_last = fibctx->jiffies;
1787 			/*
1788 			 * Has it been > 2 minutes
1789 			 * since the last read off
1790 			 * the queue?
1791 			 */
1792 			if ((time_now - time_last) > aif_timeout) {
1793 				entry = entry->next;
1794 				aac_close_fib_context(aac, fibctx);
1795 				continue;
1796 			}
1797 		}
1798 		/*
1799 		 * Warning: no sleep allowed while
1800 		 * holding spinlock
1801 		 */
1802 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1803 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1804 		if (fib && hw_fib) {
1805 			struct aac_aifcmd * aif;
1806 
1807 			fib->hw_fib_va = hw_fib;
1808 			fib->dev = aac;
1809 			aac_fib_init(fib);
1810 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1811 			fib->size = sizeof (struct fib);
1812 			fib->data = hw_fib->data;
1813 			aif = (struct aac_aifcmd *)hw_fib->data;
1814 			aif->command = cpu_to_le32(AifCmdEventNotify);
1815 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1816 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1817 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1818 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1819 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1820 
1821 			/*
1822 			 * Put the FIB onto the
1823 			 * fibctx's fibs
1824 			 */
1825 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1826 			fibctx->count++;
1827 			/*
1828 			 * Set the event to wake up the
1829 			 * thread that will waiting.
1830 			 */
1831 			up(&fibctx->wait_sem);
1832 		} else {
1833 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1834 			kfree(fib);
1835 			kfree(hw_fib);
1836 		}
1837 		entry = entry->next;
1838 	}
1839 
1840 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1841 
1842 	if (BlinkLED < 0) {
1843 		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1844 				aac->name, BlinkLED);
1845 		goto out;
1846 	}
1847 
1848 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1849 
1850 out:
1851 	aac->in_reset = 0;
1852 	return BlinkLED;
1853 }
1854 
1855 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1856 {
1857 	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1858 }
1859 
1860 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1861 								int bus,
1862 								int target)
1863 {
1864 	if (bus != CONTAINER_CHANNEL)
1865 		bus = aac_phys_to_logical(bus);
1866 
1867 	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1868 }
1869 
1870 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1871 {
1872 	if (bus != CONTAINER_CHANNEL)
1873 		bus = aac_phys_to_logical(bus);
1874 
1875 	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1876 }
1877 
1878 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1879 {
1880 	if (sdev)
1881 		scsi_device_put(sdev);
1882 }
1883 
1884 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1885 {
1886 	struct scsi_device *sdev;
1887 
1888 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1889 	scsi_remove_device(sdev);
1890 	aac_put_safw_scsi_device(sdev);
1891 }
1892 
1893 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1894 	int bus, int target)
1895 {
1896 	return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1897 }
1898 
1899 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1900 {
1901 	if (is_safw_raid_volume(dev, bus, target))
1902 		return dev->fsa_dev[target].valid;
1903 	else
1904 		return aac_is_safw_scan_count_equal(dev, bus, target);
1905 }
1906 
1907 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1908 {
1909 	int is_exposed = 0;
1910 	struct scsi_device *sdev;
1911 
1912 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1913 	if (sdev)
1914 		is_exposed = 1;
1915 	aac_put_safw_scsi_device(sdev);
1916 
1917 	return is_exposed;
1918 }
1919 
1920 static int aac_update_safw_host_devices(struct aac_dev *dev)
1921 {
1922 	int i;
1923 	int bus;
1924 	int target;
1925 	int is_exposed = 0;
1926 	int rcode = 0;
1927 
1928 	rcode = aac_setup_safw_adapter(dev);
1929 	if (unlikely(rcode < 0)) {
1930 		goto out;
1931 	}
1932 
1933 	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1934 
1935 		bus = get_bus_number(i);
1936 		target = get_target_number(i);
1937 
1938 		is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1939 
1940 		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1941 			aac_add_safw_device(dev, bus, target);
1942 		else if (!aac_is_safw_target_valid(dev, bus, target) &&
1943 								is_exposed)
1944 			aac_remove_safw_device(dev, bus, target);
1945 	}
1946 out:
1947 	return rcode;
1948 }
1949 
1950 static int aac_scan_safw_host(struct aac_dev *dev)
1951 {
1952 	int rcode = 0;
1953 
1954 	rcode = aac_update_safw_host_devices(dev);
1955 	if (rcode)
1956 		aac_schedule_safw_scan_worker(dev);
1957 
1958 	return rcode;
1959 }
1960 
1961 int aac_scan_host(struct aac_dev *dev)
1962 {
1963 	int rcode = 0;
1964 
1965 	mutex_lock(&dev->scan_mutex);
1966 	if (dev->sa_firmware)
1967 		rcode = aac_scan_safw_host(dev);
1968 	else
1969 		scsi_scan_host(dev->scsi_host_ptr);
1970 	mutex_unlock(&dev->scan_mutex);
1971 
1972 	return rcode;
1973 }
1974 
1975 /**
1976  *	aac_handle_sa_aif	Handle a message from the firmware
1977  *	@dev: Which adapter this fib is from
1978  *	@fibptr: Pointer to fibptr from adapter
1979  *
1980  *	This routine handles a driver notify fib from the adapter and
1981  *	dispatches it to the appropriate routine for handling.
1982  */
1983 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1984 {
1985 	int i;
1986 	u32 events = 0;
1987 
1988 	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1989 		events = SA_AIF_HOTPLUG;
1990 	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1991 		events = SA_AIF_HARDWARE;
1992 	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1993 		events = SA_AIF_PDEV_CHANGE;
1994 	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1995 		events = SA_AIF_LDEV_CHANGE;
1996 	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1997 		events = SA_AIF_BPSTAT_CHANGE;
1998 	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1999 		events = SA_AIF_BPCFG_CHANGE;
2000 
2001 	switch (events) {
2002 	case SA_AIF_HOTPLUG:
2003 	case SA_AIF_HARDWARE:
2004 	case SA_AIF_PDEV_CHANGE:
2005 	case SA_AIF_LDEV_CHANGE:
2006 	case SA_AIF_BPCFG_CHANGE:
2007 
2008 		aac_scan_host(dev);
2009 
2010 		break;
2011 
2012 	case SA_AIF_BPSTAT_CHANGE:
2013 		/* currently do nothing */
2014 		break;
2015 	}
2016 
2017 	for (i = 1; i <= 10; ++i) {
2018 		events = src_readl(dev, MUnit.IDR);
2019 		if (events & (1<<23)) {
2020 			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2021 				i, 10);
2022 			ssleep(1);
2023 		}
2024 	}
2025 }
2026 
2027 static int get_fib_count(struct aac_dev *dev)
2028 {
2029 	unsigned int num = 0;
2030 	struct list_head *entry;
2031 	unsigned long flagv;
2032 
2033 	/*
2034 	 * Warning: no sleep allowed while
2035 	 * holding spinlock. We take the estimate
2036 	 * and pre-allocate a set of fibs outside the
2037 	 * lock.
2038 	 */
2039 	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2040 			/ sizeof(struct hw_fib); /* some extra */
2041 	spin_lock_irqsave(&dev->fib_lock, flagv);
2042 	entry = dev->fib_list.next;
2043 	while (entry != &dev->fib_list) {
2044 		entry = entry->next;
2045 		++num;
2046 	}
2047 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2048 
2049 	return num;
2050 }
2051 
2052 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2053 						struct fib **fib_pool,
2054 						unsigned int num)
2055 {
2056 	struct hw_fib **hw_fib_p;
2057 	struct fib **fib_p;
2058 
2059 	hw_fib_p = hw_fib_pool;
2060 	fib_p = fib_pool;
2061 	while (hw_fib_p < &hw_fib_pool[num]) {
2062 		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2063 		if (!(*(hw_fib_p++))) {
2064 			--hw_fib_p;
2065 			break;
2066 		}
2067 
2068 		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2069 		if (!(*(fib_p++))) {
2070 			kfree(*(--hw_fib_p));
2071 			break;
2072 		}
2073 	}
2074 
2075 	/*
2076 	 * Get the actual number of allocated fibs
2077 	 */
2078 	num = hw_fib_p - hw_fib_pool;
2079 	return num;
2080 }
2081 
2082 static void wakeup_fibctx_threads(struct aac_dev *dev,
2083 						struct hw_fib **hw_fib_pool,
2084 						struct fib **fib_pool,
2085 						struct fib *fib,
2086 						struct hw_fib *hw_fib,
2087 						unsigned int num)
2088 {
2089 	unsigned long flagv;
2090 	struct list_head *entry;
2091 	struct hw_fib **hw_fib_p;
2092 	struct fib **fib_p;
2093 	u32 time_now, time_last;
2094 	struct hw_fib *hw_newfib;
2095 	struct fib *newfib;
2096 	struct aac_fib_context *fibctx;
2097 
2098 	time_now = jiffies/HZ;
2099 	spin_lock_irqsave(&dev->fib_lock, flagv);
2100 	entry = dev->fib_list.next;
2101 	/*
2102 	 * For each Context that is on the
2103 	 * fibctxList, make a copy of the
2104 	 * fib, and then set the event to wake up the
2105 	 * thread that is waiting for it.
2106 	 */
2107 
2108 	hw_fib_p = hw_fib_pool;
2109 	fib_p = fib_pool;
2110 	while (entry != &dev->fib_list) {
2111 		/*
2112 		 * Extract the fibctx
2113 		 */
2114 		fibctx = list_entry(entry, struct aac_fib_context,
2115 				next);
2116 		/*
2117 		 * Check if the queue is getting
2118 		 * backlogged
2119 		 */
2120 		if (fibctx->count > 20) {
2121 			/*
2122 			 * It's *not* jiffies folks,
2123 			 * but jiffies / HZ so do not
2124 			 * panic ...
2125 			 */
2126 			time_last = fibctx->jiffies;
2127 			/*
2128 			 * Has it been > 2 minutes
2129 			 * since the last read off
2130 			 * the queue?
2131 			 */
2132 			if ((time_now - time_last) > aif_timeout) {
2133 				entry = entry->next;
2134 				aac_close_fib_context(dev, fibctx);
2135 				continue;
2136 			}
2137 		}
2138 		/*
2139 		 * Warning: no sleep allowed while
2140 		 * holding spinlock
2141 		 */
2142 		if (hw_fib_p >= &hw_fib_pool[num]) {
2143 			pr_warn("aifd: didn't allocate NewFib\n");
2144 			entry = entry->next;
2145 			continue;
2146 		}
2147 
2148 		hw_newfib = *hw_fib_p;
2149 		*(hw_fib_p++) = NULL;
2150 		newfib = *fib_p;
2151 		*(fib_p++) = NULL;
2152 		/*
2153 		 * Make the copy of the FIB
2154 		 */
2155 		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2156 		memcpy(newfib, fib, sizeof(struct fib));
2157 		newfib->hw_fib_va = hw_newfib;
2158 		/*
2159 		 * Put the FIB onto the
2160 		 * fibctx's fibs
2161 		 */
2162 		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2163 		fibctx->count++;
2164 		/*
2165 		 * Set the event to wake up the
2166 		 * thread that is waiting.
2167 		 */
2168 		up(&fibctx->wait_sem);
2169 
2170 		entry = entry->next;
2171 	}
2172 	/*
2173 	 *	Set the status of this FIB
2174 	 */
2175 	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2176 	aac_fib_adapter_complete(fib, sizeof(u32));
2177 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2178 
2179 }
2180 
2181 static void aac_process_events(struct aac_dev *dev)
2182 {
2183 	struct hw_fib *hw_fib;
2184 	struct fib *fib;
2185 	unsigned long flags;
2186 	spinlock_t *t_lock;
2187 
2188 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2189 	spin_lock_irqsave(t_lock, flags);
2190 
2191 	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2192 		struct list_head *entry;
2193 		struct aac_aifcmd *aifcmd;
2194 		unsigned int  num;
2195 		struct hw_fib **hw_fib_pool, **hw_fib_p;
2196 		struct fib **fib_pool, **fib_p;
2197 
2198 		set_current_state(TASK_RUNNING);
2199 
2200 		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2201 		list_del(entry);
2202 
2203 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2204 		spin_unlock_irqrestore(t_lock, flags);
2205 
2206 		fib = list_entry(entry, struct fib, fiblink);
2207 		hw_fib = fib->hw_fib_va;
2208 		if (dev->sa_firmware) {
2209 			/* Thor AIF */
2210 			aac_handle_sa_aif(dev, fib);
2211 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2212 			goto free_fib;
2213 		}
2214 		/*
2215 		 *	We will process the FIB here or pass it to a
2216 		 *	worker thread that is TBD. We Really can't
2217 		 *	do anything at this point since we don't have
2218 		 *	anything defined for this thread to do.
2219 		 */
2220 		memset(fib, 0, sizeof(struct fib));
2221 		fib->type = FSAFS_NTC_FIB_CONTEXT;
2222 		fib->size = sizeof(struct fib);
2223 		fib->hw_fib_va = hw_fib;
2224 		fib->data = hw_fib->data;
2225 		fib->dev = dev;
2226 		/*
2227 		 *	We only handle AifRequest fibs from the adapter.
2228 		 */
2229 
2230 		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2231 		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2232 			/* Handle Driver Notify Events */
2233 			aac_handle_aif(dev, fib);
2234 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2235 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2236 			goto free_fib;
2237 		}
2238 		/*
2239 		 * The u32 here is important and intended. We are using
2240 		 * 32bit wrapping time to fit the adapter field
2241 		 */
2242 
2243 		/* Sniff events */
2244 		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2245 		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2246 			aac_handle_aif(dev, fib);
2247 		}
2248 
2249 		/*
2250 		 * get number of fibs to process
2251 		 */
2252 		num = get_fib_count(dev);
2253 		if (!num)
2254 			goto free_fib;
2255 
2256 		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2257 						GFP_KERNEL);
2258 		if (!hw_fib_pool)
2259 			goto free_fib;
2260 
2261 		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2262 		if (!fib_pool)
2263 			goto free_hw_fib_pool;
2264 
2265 		/*
2266 		 * Fill up fib pointer pools with actual fibs
2267 		 * and hw_fibs
2268 		 */
2269 		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2270 		if (!num)
2271 			goto free_mem;
2272 
2273 		/*
2274 		 * wakeup the thread that is waiting for
2275 		 * the response from fw (ioctl)
2276 		 */
2277 		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2278 							    fib, hw_fib, num);
2279 
2280 free_mem:
2281 		/* Free up the remaining resources */
2282 		hw_fib_p = hw_fib_pool;
2283 		fib_p = fib_pool;
2284 		while (hw_fib_p < &hw_fib_pool[num]) {
2285 			kfree(*hw_fib_p);
2286 			kfree(*fib_p);
2287 			++fib_p;
2288 			++hw_fib_p;
2289 		}
2290 		kfree(fib_pool);
2291 free_hw_fib_pool:
2292 		kfree(hw_fib_pool);
2293 free_fib:
2294 		kfree(fib);
2295 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2296 		spin_lock_irqsave(t_lock, flags);
2297 	}
2298 	/*
2299 	 *	There are no more AIF's
2300 	 */
2301 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2302 	spin_unlock_irqrestore(t_lock, flags);
2303 }
2304 
2305 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2306 							u32 datasize)
2307 {
2308 	struct aac_srb *srbcmd;
2309 	struct sgmap64 *sg64;
2310 	dma_addr_t addr;
2311 	char *dma_buf;
2312 	struct fib *fibptr;
2313 	int ret = -ENOMEM;
2314 	u32 vbus, vid;
2315 
2316 	fibptr = aac_fib_alloc(dev);
2317 	if (!fibptr)
2318 		goto out;
2319 
2320 	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2321 				     GFP_KERNEL);
2322 	if (!dma_buf)
2323 		goto fib_free_out;
2324 
2325 	aac_fib_init(fibptr);
2326 
2327 	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2328 	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2329 
2330 	srbcmd = (struct aac_srb *)fib_data(fibptr);
2331 
2332 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2333 	srbcmd->channel = cpu_to_le32(vbus);
2334 	srbcmd->id = cpu_to_le32(vid);
2335 	srbcmd->lun = 0;
2336 	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2337 	srbcmd->timeout = cpu_to_le32(10);
2338 	srbcmd->retry_limit = 0;
2339 	srbcmd->cdb_size = cpu_to_le32(12);
2340 	srbcmd->count = cpu_to_le32(datasize);
2341 
2342 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2343 	srbcmd->cdb[0] = BMIC_OUT;
2344 	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2345 	memcpy(dma_buf, (char *)wellness_str, datasize);
2346 
2347 	sg64 = (struct sgmap64 *)&srbcmd->sg;
2348 	sg64->count = cpu_to_le32(1);
2349 	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2350 	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2351 	sg64->sg[0].count = cpu_to_le32(datasize);
2352 
2353 	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2354 				FsaNormal, 1, 1, NULL, NULL);
2355 
2356 	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2357 
2358 	/*
2359 	 * Do not set XferState to zero unless
2360 	 * receives a response from F/W
2361 	 */
2362 	if (ret >= 0)
2363 		aac_fib_complete(fibptr);
2364 
2365 	/*
2366 	 * FIB should be freed only after
2367 	 * getting the response from the F/W
2368 	 */
2369 	if (ret != -ERESTARTSYS)
2370 		goto fib_free_out;
2371 
2372 out:
2373 	return ret;
2374 fib_free_out:
2375 	aac_fib_free(fibptr);
2376 	goto out;
2377 }
2378 
2379 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2380 {
2381 	struct tm cur_tm;
2382 	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2383 	u32 datasize = sizeof(wellness_str);
2384 	time64_t local_time;
2385 	int ret = -ENODEV;
2386 
2387 	if (!dev->sa_firmware)
2388 		goto out;
2389 
2390 	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2391 	time64_to_tm(local_time, 0, &cur_tm);
2392 	cur_tm.tm_mon += 1;
2393 	cur_tm.tm_year += 1900;
2394 	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2395 	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2396 	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2397 	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2398 	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2399 	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2400 	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2401 
2402 	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2403 
2404 out:
2405 	return ret;
2406 }
2407 
2408 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2409 {
2410 	int ret = -ENOMEM;
2411 	struct fib *fibptr;
2412 	__le32 *info;
2413 
2414 	fibptr = aac_fib_alloc(dev);
2415 	if (!fibptr)
2416 		goto out;
2417 
2418 	aac_fib_init(fibptr);
2419 	info = (__le32 *)fib_data(fibptr);
2420 	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2421 	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2422 					1, 1, NULL, NULL);
2423 
2424 	/*
2425 	 * Do not set XferState to zero unless
2426 	 * receives a response from F/W
2427 	 */
2428 	if (ret >= 0)
2429 		aac_fib_complete(fibptr);
2430 
2431 	/*
2432 	 * FIB should be freed only after
2433 	 * getting the response from the F/W
2434 	 */
2435 	if (ret != -ERESTARTSYS)
2436 		aac_fib_free(fibptr);
2437 
2438 out:
2439 	return ret;
2440 }
2441 
2442 /**
2443  *	aac_command_thread	-	command processing thread
2444  *	@dev: Adapter to monitor
2445  *
2446  *	Waits on the commandready event in it's queue. When the event gets set
2447  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2448  *	until the queue is empty. When the queue is empty it will wait for
2449  *	more FIBs.
2450  */
2451 
2452 int aac_command_thread(void *data)
2453 {
2454 	struct aac_dev *dev = data;
2455 	DECLARE_WAITQUEUE(wait, current);
2456 	unsigned long next_jiffies = jiffies + HZ;
2457 	unsigned long next_check_jiffies = next_jiffies;
2458 	long difference = HZ;
2459 
2460 	/*
2461 	 *	We can only have one thread per adapter for AIF's.
2462 	 */
2463 	if (dev->aif_thread)
2464 		return -EINVAL;
2465 
2466 	/*
2467 	 *	Let the DPC know it has a place to send the AIF's to.
2468 	 */
2469 	dev->aif_thread = 1;
2470 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2471 	set_current_state(TASK_INTERRUPTIBLE);
2472 	dprintk ((KERN_INFO "aac_command_thread start\n"));
2473 	while (1) {
2474 
2475 		aac_process_events(dev);
2476 
2477 		/*
2478 		 *	Background activity
2479 		 */
2480 		if ((time_before(next_check_jiffies,next_jiffies))
2481 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2482 			next_check_jiffies = next_jiffies;
2483 			if (aac_adapter_check_health(dev) == 0) {
2484 				difference = ((long)(unsigned)check_interval)
2485 					   * HZ;
2486 				next_check_jiffies = jiffies + difference;
2487 			} else if (!dev->queues)
2488 				break;
2489 		}
2490 		if (!time_before(next_check_jiffies,next_jiffies)
2491 		 && ((difference = next_jiffies - jiffies) <= 0)) {
2492 			struct timespec64 now;
2493 			int ret;
2494 
2495 			/* Don't even try to talk to adapter if its sick */
2496 			ret = aac_adapter_check_health(dev);
2497 			if (ret || !dev->queues)
2498 				break;
2499 			next_check_jiffies = jiffies
2500 					   + ((long)(unsigned)check_interval)
2501 					   * HZ;
2502 			ktime_get_real_ts64(&now);
2503 
2504 			/* Synchronize our watches */
2505 			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2506 			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2507 				difference = HZ + HZ / 2 -
2508 					     now.tv_nsec / (NSEC_PER_SEC / HZ);
2509 			else {
2510 				if (now.tv_nsec > NSEC_PER_SEC / 2)
2511 					++now.tv_sec;
2512 
2513 				if (dev->sa_firmware)
2514 					ret =
2515 					aac_send_safw_hostttime(dev, &now);
2516 				else
2517 					ret = aac_send_hosttime(dev, &now);
2518 
2519 				difference = (long)(unsigned)update_interval*HZ;
2520 			}
2521 			next_jiffies = jiffies + difference;
2522 			if (time_before(next_check_jiffies,next_jiffies))
2523 				difference = next_check_jiffies - jiffies;
2524 		}
2525 		if (difference <= 0)
2526 			difference = 1;
2527 		set_current_state(TASK_INTERRUPTIBLE);
2528 
2529 		if (kthread_should_stop())
2530 			break;
2531 
2532 		/*
2533 		 * we probably want usleep_range() here instead of the
2534 		 * jiffies computation
2535 		 */
2536 		schedule_timeout(difference);
2537 
2538 		if (kthread_should_stop())
2539 			break;
2540 	}
2541 	if (dev->queues)
2542 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2543 	dev->aif_thread = 0;
2544 	return 0;
2545 }
2546 
2547 int aac_acquire_irq(struct aac_dev *dev)
2548 {
2549 	int i;
2550 	int j;
2551 	int ret = 0;
2552 
2553 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2554 		for (i = 0; i < dev->max_msix; i++) {
2555 			dev->aac_msix[i].vector_no = i;
2556 			dev->aac_msix[i].dev = dev;
2557 			if (request_irq(pci_irq_vector(dev->pdev, i),
2558 					dev->a_ops.adapter_intr,
2559 					0, "aacraid", &(dev->aac_msix[i]))) {
2560 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2561 						dev->name, dev->id, i);
2562 				for (j = 0 ; j < i ; j++)
2563 					free_irq(pci_irq_vector(dev->pdev, j),
2564 						 &(dev->aac_msix[j]));
2565 				pci_disable_msix(dev->pdev);
2566 				ret = -1;
2567 			}
2568 		}
2569 	} else {
2570 		dev->aac_msix[0].vector_no = 0;
2571 		dev->aac_msix[0].dev = dev;
2572 
2573 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2574 			IRQF_SHARED, "aacraid",
2575 			&(dev->aac_msix[0])) < 0) {
2576 			if (dev->msi)
2577 				pci_disable_msi(dev->pdev);
2578 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2579 					dev->name, dev->id);
2580 			ret = -1;
2581 		}
2582 	}
2583 	return ret;
2584 }
2585 
2586 void aac_free_irq(struct aac_dev *dev)
2587 {
2588 	int i;
2589 	int cpu;
2590 
2591 	cpu = cpumask_first(cpu_online_mask);
2592 	if (aac_is_src(dev)) {
2593 		if (dev->max_msix > 1) {
2594 			for (i = 0; i < dev->max_msix; i++)
2595 				free_irq(pci_irq_vector(dev->pdev, i),
2596 					 &(dev->aac_msix[i]));
2597 		} else {
2598 			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2599 		}
2600 	} else {
2601 		free_irq(dev->pdev->irq, dev);
2602 	}
2603 	if (dev->msi)
2604 		pci_disable_msi(dev->pdev);
2605 	else if (dev->max_msix > 1)
2606 		pci_disable_msix(dev->pdev);
2607 }
2608