1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com> 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2007 Adaptec, Inc. (aacraid@adaptec.com) 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2, or (at your option) 13 * any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License 21 * along with this program; see the file COPYING. If not, write to 22 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 23 * 24 * Module Name: 25 * commsup.c 26 * 27 * Abstract: Contain all routines that are required for FSA host/adapter 28 * communication. 29 * 30 */ 31 32 #include <linux/kernel.h> 33 #include <linux/init.h> 34 #include <linux/types.h> 35 #include <linux/sched.h> 36 #include <linux/pci.h> 37 #include <linux/spinlock.h> 38 #include <linux/slab.h> 39 #include <linux/completion.h> 40 #include <linux/blkdev.h> 41 #include <linux/delay.h> 42 #include <linux/kthread.h> 43 #include <linux/interrupt.h> 44 #include <scsi/scsi.h> 45 #include <scsi/scsi_host.h> 46 #include <scsi/scsi_device.h> 47 #include <scsi/scsi_cmnd.h> 48 #include <asm/semaphore.h> 49 50 #include "aacraid.h" 51 52 /** 53 * fib_map_alloc - allocate the fib objects 54 * @dev: Adapter to allocate for 55 * 56 * Allocate and map the shared PCI space for the FIB blocks used to 57 * talk to the Adaptec firmware. 58 */ 59 60 static int fib_map_alloc(struct aac_dev *dev) 61 { 62 dprintk((KERN_INFO 63 "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n", 64 dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue, 65 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 66 if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size 67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 68 &dev->hw_fib_pa))==NULL) 69 return -ENOMEM; 70 return 0; 71 } 72 73 /** 74 * aac_fib_map_free - free the fib objects 75 * @dev: Adapter to free 76 * 77 * Free the PCI mappings and the memory allocated for FIB blocks 78 * on this adapter. 79 */ 80 81 void aac_fib_map_free(struct aac_dev *dev) 82 { 83 pci_free_consistent(dev->pdev, 84 dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), 85 dev->hw_fib_va, dev->hw_fib_pa); 86 dev->hw_fib_va = NULL; 87 dev->hw_fib_pa = 0; 88 } 89 90 /** 91 * aac_fib_setup - setup the fibs 92 * @dev: Adapter to set up 93 * 94 * Allocate the PCI space for the fibs, map it and then intialise the 95 * fib area, the unmapped fib data and also the free list 96 */ 97 98 int aac_fib_setup(struct aac_dev * dev) 99 { 100 struct fib *fibptr; 101 struct hw_fib *hw_fib; 102 dma_addr_t hw_fib_pa; 103 int i; 104 105 while (((i = fib_map_alloc(dev)) == -ENOMEM) 106 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 107 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1); 108 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB; 109 } 110 if (i<0) 111 return -ENOMEM; 112 113 hw_fib = dev->hw_fib_va; 114 hw_fib_pa = dev->hw_fib_pa; 115 memset(hw_fib, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 116 /* 117 * Initialise the fibs 118 */ 119 for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 120 { 121 fibptr->dev = dev; 122 fibptr->hw_fib_va = hw_fib; 123 fibptr->data = (void *) fibptr->hw_fib_va->data; 124 fibptr->next = fibptr+1; /* Forward chain the fibs */ 125 init_MUTEX_LOCKED(&fibptr->event_wait); 126 spin_lock_init(&fibptr->event_lock); 127 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 128 hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size); 129 fibptr->hw_fib_pa = hw_fib_pa; 130 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + dev->max_fib_size); 131 hw_fib_pa = hw_fib_pa + dev->max_fib_size; 132 } 133 /* 134 * Add the fib chain to the free list 135 */ 136 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 137 /* 138 * Enable this to debug out of queue space 139 */ 140 dev->free_fib = &dev->fibs[0]; 141 return 0; 142 } 143 144 /** 145 * aac_fib_alloc - allocate a fib 146 * @dev: Adapter to allocate the fib for 147 * 148 * Allocate a fib from the adapter fib pool. If the pool is empty we 149 * return NULL. 150 */ 151 152 struct fib *aac_fib_alloc(struct aac_dev *dev) 153 { 154 struct fib * fibptr; 155 unsigned long flags; 156 spin_lock_irqsave(&dev->fib_lock, flags); 157 fibptr = dev->free_fib; 158 if(!fibptr){ 159 spin_unlock_irqrestore(&dev->fib_lock, flags); 160 return fibptr; 161 } 162 dev->free_fib = fibptr->next; 163 spin_unlock_irqrestore(&dev->fib_lock, flags); 164 /* 165 * Set the proper node type code and node byte size 166 */ 167 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 168 fibptr->size = sizeof(struct fib); 169 /* 170 * Null out fields that depend on being zero at the start of 171 * each I/O 172 */ 173 fibptr->hw_fib_va->header.XferState = 0; 174 fibptr->callback = NULL; 175 fibptr->callback_data = NULL; 176 177 return fibptr; 178 } 179 180 /** 181 * aac_fib_free - free a fib 182 * @fibptr: fib to free up 183 * 184 * Frees up a fib and places it on the appropriate queue 185 */ 186 187 void aac_fib_free(struct fib *fibptr) 188 { 189 unsigned long flags; 190 191 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 192 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 193 aac_config.fib_timeouts++; 194 if (fibptr->hw_fib_va->header.XferState != 0) { 195 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 196 (void*)fibptr, 197 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 198 } 199 fibptr->next = fibptr->dev->free_fib; 200 fibptr->dev->free_fib = fibptr; 201 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 202 } 203 204 /** 205 * aac_fib_init - initialise a fib 206 * @fibptr: The fib to initialize 207 * 208 * Set up the generic fib fields ready for use 209 */ 210 211 void aac_fib_init(struct fib *fibptr) 212 { 213 struct hw_fib *hw_fib = fibptr->hw_fib_va; 214 215 hw_fib->header.StructType = FIB_MAGIC; 216 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 217 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 218 hw_fib->header.SenderFibAddress = 0; /* Filled in later if needed */ 219 hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 220 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 221 } 222 223 /** 224 * fib_deallocate - deallocate a fib 225 * @fibptr: fib to deallocate 226 * 227 * Will deallocate and return to the free pool the FIB pointed to by the 228 * caller. 229 */ 230 231 static void fib_dealloc(struct fib * fibptr) 232 { 233 struct hw_fib *hw_fib = fibptr->hw_fib_va; 234 BUG_ON(hw_fib->header.StructType != FIB_MAGIC); 235 hw_fib->header.XferState = 0; 236 } 237 238 /* 239 * Commuication primitives define and support the queuing method we use to 240 * support host to adapter commuication. All queue accesses happen through 241 * these routines and are the only routines which have a knowledge of the 242 * how these queues are implemented. 243 */ 244 245 /** 246 * aac_get_entry - get a queue entry 247 * @dev: Adapter 248 * @qid: Queue Number 249 * @entry: Entry return 250 * @index: Index return 251 * @nonotify: notification control 252 * 253 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 254 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 255 * returned. 256 */ 257 258 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 259 { 260 struct aac_queue * q; 261 unsigned long idx; 262 263 /* 264 * All of the queues wrap when they reach the end, so we check 265 * to see if they have reached the end and if they have we just 266 * set the index back to zero. This is a wrap. You could or off 267 * the high bits in all updates but this is a bit faster I think. 268 */ 269 270 q = &dev->queues->queue[qid]; 271 272 idx = *index = le32_to_cpu(*(q->headers.producer)); 273 /* Interrupt Moderation, only interrupt for first two entries */ 274 if (idx != le32_to_cpu(*(q->headers.consumer))) { 275 if (--idx == 0) { 276 if (qid == AdapNormCmdQueue) 277 idx = ADAP_NORM_CMD_ENTRIES; 278 else 279 idx = ADAP_NORM_RESP_ENTRIES; 280 } 281 if (idx != le32_to_cpu(*(q->headers.consumer))) 282 *nonotify = 1; 283 } 284 285 if (qid == AdapNormCmdQueue) { 286 if (*index >= ADAP_NORM_CMD_ENTRIES) 287 *index = 0; /* Wrap to front of the Producer Queue. */ 288 } else { 289 if (*index >= ADAP_NORM_RESP_ENTRIES) 290 *index = 0; /* Wrap to front of the Producer Queue. */ 291 } 292 293 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */ 294 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 295 qid, q->numpending); 296 return 0; 297 } else { 298 *entry = q->base + *index; 299 return 1; 300 } 301 } 302 303 /** 304 * aac_queue_get - get the next free QE 305 * @dev: Adapter 306 * @index: Returned index 307 * @priority: Priority of fib 308 * @fib: Fib to associate with the queue entry 309 * @wait: Wait if queue full 310 * @fibptr: Driver fib object to go with fib 311 * @nonotify: Don't notify the adapter 312 * 313 * Gets the next free QE off the requested priorty adapter command 314 * queue and associates the Fib with the QE. The QE represented by 315 * index is ready to insert on the queue when this routine returns 316 * success. 317 */ 318 319 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 320 { 321 struct aac_entry * entry = NULL; 322 int map = 0; 323 324 if (qid == AdapNormCmdQueue) { 325 /* if no entries wait for some if caller wants to */ 326 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 327 { 328 printk(KERN_ERR "GetEntries failed\n"); 329 } 330 /* 331 * Setup queue entry with a command, status and fib mapped 332 */ 333 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 334 map = 1; 335 } else { 336 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 337 { 338 /* if no entries wait for some if caller wants to */ 339 } 340 /* 341 * Setup queue entry with command, status and fib mapped 342 */ 343 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 344 entry->addr = hw_fib->header.SenderFibAddress; 345 /* Restore adapters pointer to the FIB */ 346 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 347 map = 0; 348 } 349 /* 350 * If MapFib is true than we need to map the Fib and put pointers 351 * in the queue entry. 352 */ 353 if (map) 354 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 355 return 0; 356 } 357 358 /* 359 * Define the highest level of host to adapter communication routines. 360 * These routines will support host to adapter FS commuication. These 361 * routines have no knowledge of the commuication method used. This level 362 * sends and receives FIBs. This level has no knowledge of how these FIBs 363 * get passed back and forth. 364 */ 365 366 /** 367 * aac_fib_send - send a fib to the adapter 368 * @command: Command to send 369 * @fibptr: The fib 370 * @size: Size of fib data area 371 * @priority: Priority of Fib 372 * @wait: Async/sync select 373 * @reply: True if a reply is wanted 374 * @callback: Called with reply 375 * @callback_data: Passed to callback 376 * 377 * Sends the requested FIB to the adapter and optionally will wait for a 378 * response FIB. If the caller does not wish to wait for a response than 379 * an event to wait on must be supplied. This event will be set when a 380 * response FIB is received from the adapter. 381 */ 382 383 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 384 int priority, int wait, int reply, fib_callback callback, 385 void *callback_data) 386 { 387 struct aac_dev * dev = fibptr->dev; 388 struct hw_fib * hw_fib = fibptr->hw_fib_va; 389 unsigned long flags = 0; 390 unsigned long qflags; 391 392 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 393 return -EBUSY; 394 /* 395 * There are 5 cases with the wait and reponse requested flags. 396 * The only invalid cases are if the caller requests to wait and 397 * does not request a response and if the caller does not want a 398 * response and the Fib is not allocated from pool. If a response 399 * is not requesed the Fib will just be deallocaed by the DPC 400 * routine when the response comes back from the adapter. No 401 * further processing will be done besides deleting the Fib. We 402 * will have a debug mode where the adapter can notify the host 403 * it had a problem and the host can log that fact. 404 */ 405 if (wait && !reply) { 406 return -EINVAL; 407 } else if (!wait && reply) { 408 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 409 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 410 } else if (!wait && !reply) { 411 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 412 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 413 } else if (wait && reply) { 414 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 415 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 416 } 417 /* 418 * Map the fib into 32bits by using the fib number 419 */ 420 421 hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 422 hw_fib->header.SenderData = (u32)(fibptr - dev->fibs); 423 /* 424 * Set FIB state to indicate where it came from and if we want a 425 * response from the adapter. Also load the command from the 426 * caller. 427 * 428 * Map the hw fib pointer as a 32bit value 429 */ 430 hw_fib->header.Command = cpu_to_le16(command); 431 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 432 fibptr->hw_fib_va->header.Flags = 0; /* 0 the flags field - internal only*/ 433 /* 434 * Set the size of the Fib we want to send to the adapter 435 */ 436 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 437 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 438 return -EMSGSIZE; 439 } 440 /* 441 * Get a queue entry connect the FIB to it and send an notify 442 * the adapter a command is ready. 443 */ 444 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 445 446 /* 447 * Fill in the Callback and CallbackContext if we are not 448 * going to wait. 449 */ 450 if (!wait) { 451 fibptr->callback = callback; 452 fibptr->callback_data = callback_data; 453 } 454 455 fibptr->done = 0; 456 fibptr->flags = 0; 457 458 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 459 460 dprintk((KERN_DEBUG "Fib contents:.\n")); 461 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 462 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 463 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 464 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 465 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 466 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 467 468 if (!dev->queues) 469 return -EBUSY; 470 471 if(wait) 472 spin_lock_irqsave(&fibptr->event_lock, flags); 473 aac_adapter_deliver(fibptr); 474 475 /* 476 * If the caller wanted us to wait for response wait now. 477 */ 478 479 if (wait) { 480 spin_unlock_irqrestore(&fibptr->event_lock, flags); 481 /* Only set for first known interruptable command */ 482 if (wait < 0) { 483 /* 484 * *VERY* Dangerous to time out a command, the 485 * assumption is made that we have no hope of 486 * functioning because an interrupt routing or other 487 * hardware failure has occurred. 488 */ 489 unsigned long count = 36000000L; /* 3 minutes */ 490 while (down_trylock(&fibptr->event_wait)) { 491 int blink; 492 if (--count == 0) { 493 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 494 spin_lock_irqsave(q->lock, qflags); 495 q->numpending--; 496 spin_unlock_irqrestore(q->lock, qflags); 497 if (wait == -1) { 498 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 499 "Usually a result of a PCI interrupt routing problem;\n" 500 "update mother board BIOS or consider utilizing one of\n" 501 "the SAFE mode kernel options (acpi, apic etc)\n"); 502 } 503 return -ETIMEDOUT; 504 } 505 if ((blink = aac_adapter_check_health(dev)) > 0) { 506 if (wait == -1) { 507 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 508 "Usually a result of a serious unrecoverable hardware problem\n", 509 blink); 510 } 511 return -EFAULT; 512 } 513 udelay(5); 514 } 515 } else 516 (void)down_interruptible(&fibptr->event_wait); 517 spin_lock_irqsave(&fibptr->event_lock, flags); 518 if (fibptr->done == 0) { 519 fibptr->done = 2; /* Tell interrupt we aborted */ 520 spin_unlock_irqrestore(&fibptr->event_lock, flags); 521 return -EINTR; 522 } 523 spin_unlock_irqrestore(&fibptr->event_lock, flags); 524 BUG_ON(fibptr->done == 0); 525 526 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 527 return -ETIMEDOUT; 528 return 0; 529 } 530 /* 531 * If the user does not want a response than return success otherwise 532 * return pending 533 */ 534 if (reply) 535 return -EINPROGRESS; 536 else 537 return 0; 538 } 539 540 /** 541 * aac_consumer_get - get the top of the queue 542 * @dev: Adapter 543 * @q: Queue 544 * @entry: Return entry 545 * 546 * Will return a pointer to the entry on the top of the queue requested that 547 * we are a consumer of, and return the address of the queue entry. It does 548 * not change the state of the queue. 549 */ 550 551 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 552 { 553 u32 index; 554 int status; 555 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 556 status = 0; 557 } else { 558 /* 559 * The consumer index must be wrapped if we have reached 560 * the end of the queue, else we just use the entry 561 * pointed to by the header index 562 */ 563 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 564 index = 0; 565 else 566 index = le32_to_cpu(*q->headers.consumer); 567 *entry = q->base + index; 568 status = 1; 569 } 570 return(status); 571 } 572 573 /** 574 * aac_consumer_free - free consumer entry 575 * @dev: Adapter 576 * @q: Queue 577 * @qid: Queue ident 578 * 579 * Frees up the current top of the queue we are a consumer of. If the 580 * queue was full notify the producer that the queue is no longer full. 581 */ 582 583 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 584 { 585 int wasfull = 0; 586 u32 notify; 587 588 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 589 wasfull = 1; 590 591 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 592 *q->headers.consumer = cpu_to_le32(1); 593 else 594 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1); 595 596 if (wasfull) { 597 switch (qid) { 598 599 case HostNormCmdQueue: 600 notify = HostNormCmdNotFull; 601 break; 602 case HostNormRespQueue: 603 notify = HostNormRespNotFull; 604 break; 605 default: 606 BUG(); 607 return; 608 } 609 aac_adapter_notify(dev, notify); 610 } 611 } 612 613 /** 614 * aac_fib_adapter_complete - complete adapter issued fib 615 * @fibptr: fib to complete 616 * @size: size of fib 617 * 618 * Will do all necessary work to complete a FIB that was sent from 619 * the adapter. 620 */ 621 622 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 623 { 624 struct hw_fib * hw_fib = fibptr->hw_fib_va; 625 struct aac_dev * dev = fibptr->dev; 626 struct aac_queue * q; 627 unsigned long nointr = 0; 628 unsigned long qflags; 629 630 if (hw_fib->header.XferState == 0) { 631 if (dev->comm_interface == AAC_COMM_MESSAGE) 632 kfree (hw_fib); 633 return 0; 634 } 635 /* 636 * If we plan to do anything check the structure type first. 637 */ 638 if ( hw_fib->header.StructType != FIB_MAGIC ) { 639 if (dev->comm_interface == AAC_COMM_MESSAGE) 640 kfree (hw_fib); 641 return -EINVAL; 642 } 643 /* 644 * This block handles the case where the adapter had sent us a 645 * command and we have finished processing the command. We 646 * call completeFib when we are done processing the command 647 * and want to send a response back to the adapter. This will 648 * send the completed cdb to the adapter. 649 */ 650 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 651 if (dev->comm_interface == AAC_COMM_MESSAGE) { 652 kfree (hw_fib); 653 } else { 654 u32 index; 655 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 656 if (size) { 657 size += sizeof(struct aac_fibhdr); 658 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 659 return -EMSGSIZE; 660 hw_fib->header.Size = cpu_to_le16(size); 661 } 662 q = &dev->queues->queue[AdapNormRespQueue]; 663 spin_lock_irqsave(q->lock, qflags); 664 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 665 *(q->headers.producer) = cpu_to_le32(index + 1); 666 spin_unlock_irqrestore(q->lock, qflags); 667 if (!(nointr & (int)aac_config.irq_mod)) 668 aac_adapter_notify(dev, AdapNormRespQueue); 669 } 670 } 671 else 672 { 673 printk(KERN_WARNING "aac_fib_adapter_complete: Unknown xferstate detected.\n"); 674 BUG(); 675 } 676 return 0; 677 } 678 679 /** 680 * aac_fib_complete - fib completion handler 681 * @fib: FIB to complete 682 * 683 * Will do all necessary work to complete a FIB. 684 */ 685 686 int aac_fib_complete(struct fib *fibptr) 687 { 688 struct hw_fib * hw_fib = fibptr->hw_fib_va; 689 690 /* 691 * Check for a fib which has already been completed 692 */ 693 694 if (hw_fib->header.XferState == 0) 695 return 0; 696 /* 697 * If we plan to do anything check the structure type first. 698 */ 699 700 if (hw_fib->header.StructType != FIB_MAGIC) 701 return -EINVAL; 702 /* 703 * This block completes a cdb which orginated on the host and we 704 * just need to deallocate the cdb or reinit it. At this point the 705 * command is complete that we had sent to the adapter and this 706 * cdb could be reused. 707 */ 708 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 709 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 710 { 711 fib_dealloc(fibptr); 712 } 713 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 714 { 715 /* 716 * This handles the case when the host has aborted the I/O 717 * to the adapter because the adapter is not responding 718 */ 719 fib_dealloc(fibptr); 720 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 721 fib_dealloc(fibptr); 722 } else { 723 BUG(); 724 } 725 return 0; 726 } 727 728 /** 729 * aac_printf - handle printf from firmware 730 * @dev: Adapter 731 * @val: Message info 732 * 733 * Print a message passed to us by the controller firmware on the 734 * Adaptec board 735 */ 736 737 void aac_printf(struct aac_dev *dev, u32 val) 738 { 739 char *cp = dev->printfbuf; 740 if (dev->printf_enabled) 741 { 742 int length = val & 0xffff; 743 int level = (val >> 16) & 0xffff; 744 745 /* 746 * The size of the printfbuf is set in port.c 747 * There is no variable or define for it 748 */ 749 if (length > 255) 750 length = 255; 751 if (cp[length] != 0) 752 cp[length] = 0; 753 if (level == LOG_AAC_HIGH_ERROR) 754 printk(KERN_WARNING "%s:%s", dev->name, cp); 755 else 756 printk(KERN_INFO "%s:%s", dev->name, cp); 757 } 758 memset(cp, 0, 256); 759 } 760 761 762 /** 763 * aac_handle_aif - Handle a message from the firmware 764 * @dev: Which adapter this fib is from 765 * @fibptr: Pointer to fibptr from adapter 766 * 767 * This routine handles a driver notify fib from the adapter and 768 * dispatches it to the appropriate routine for handling. 769 */ 770 771 #define AIF_SNIFF_TIMEOUT (30*HZ) 772 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 773 { 774 struct hw_fib * hw_fib = fibptr->hw_fib_va; 775 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 776 u32 container; 777 struct scsi_device *device; 778 enum { 779 NOTHING, 780 DELETE, 781 ADD, 782 CHANGE 783 } device_config_needed; 784 785 /* Sniff for container changes */ 786 787 if (!dev || !dev->fsa_dev) 788 return; 789 container = (u32)-1; 790 791 /* 792 * We have set this up to try and minimize the number of 793 * re-configures that take place. As a result of this when 794 * certain AIF's come in we will set a flag waiting for another 795 * type of AIF before setting the re-config flag. 796 */ 797 switch (le32_to_cpu(aifcmd->command)) { 798 case AifCmdDriverNotify: 799 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { 800 /* 801 * Morph or Expand complete 802 */ 803 case AifDenMorphComplete: 804 case AifDenVolumeExtendComplete: 805 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 806 if (container >= dev->maximum_num_containers) 807 break; 808 809 /* 810 * Find the scsi_device associated with the SCSI 811 * address. Make sure we have the right array, and if 812 * so set the flag to initiate a new re-config once we 813 * see an AifEnConfigChange AIF come through. 814 */ 815 816 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 817 device = scsi_device_lookup(dev->scsi_host_ptr, 818 CONTAINER_TO_CHANNEL(container), 819 CONTAINER_TO_ID(container), 820 CONTAINER_TO_LUN(container)); 821 if (device) { 822 dev->fsa_dev[container].config_needed = CHANGE; 823 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 824 dev->fsa_dev[container].config_waiting_stamp = jiffies; 825 scsi_device_put(device); 826 } 827 } 828 } 829 830 /* 831 * If we are waiting on something and this happens to be 832 * that thing then set the re-configure flag. 833 */ 834 if (container != (u32)-1) { 835 if (container >= dev->maximum_num_containers) 836 break; 837 if ((dev->fsa_dev[container].config_waiting_on == 838 le32_to_cpu(*(u32 *)aifcmd->data)) && 839 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 840 dev->fsa_dev[container].config_waiting_on = 0; 841 } else for (container = 0; 842 container < dev->maximum_num_containers; ++container) { 843 if ((dev->fsa_dev[container].config_waiting_on == 844 le32_to_cpu(*(u32 *)aifcmd->data)) && 845 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 846 dev->fsa_dev[container].config_waiting_on = 0; 847 } 848 break; 849 850 case AifCmdEventNotify: 851 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) { 852 /* 853 * Add an Array. 854 */ 855 case AifEnAddContainer: 856 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 857 if (container >= dev->maximum_num_containers) 858 break; 859 dev->fsa_dev[container].config_needed = ADD; 860 dev->fsa_dev[container].config_waiting_on = 861 AifEnConfigChange; 862 dev->fsa_dev[container].config_waiting_stamp = jiffies; 863 break; 864 865 /* 866 * Delete an Array. 867 */ 868 case AifEnDeleteContainer: 869 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 870 if (container >= dev->maximum_num_containers) 871 break; 872 dev->fsa_dev[container].config_needed = DELETE; 873 dev->fsa_dev[container].config_waiting_on = 874 AifEnConfigChange; 875 dev->fsa_dev[container].config_waiting_stamp = jiffies; 876 break; 877 878 /* 879 * Container change detected. If we currently are not 880 * waiting on something else, setup to wait on a Config Change. 881 */ 882 case AifEnContainerChange: 883 container = le32_to_cpu(((u32 *)aifcmd->data)[1]); 884 if (container >= dev->maximum_num_containers) 885 break; 886 if (dev->fsa_dev[container].config_waiting_on && 887 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 888 break; 889 dev->fsa_dev[container].config_needed = CHANGE; 890 dev->fsa_dev[container].config_waiting_on = 891 AifEnConfigChange; 892 dev->fsa_dev[container].config_waiting_stamp = jiffies; 893 break; 894 895 case AifEnConfigChange: 896 break; 897 898 } 899 900 /* 901 * If we are waiting on something and this happens to be 902 * that thing then set the re-configure flag. 903 */ 904 if (container != (u32)-1) { 905 if (container >= dev->maximum_num_containers) 906 break; 907 if ((dev->fsa_dev[container].config_waiting_on == 908 le32_to_cpu(*(u32 *)aifcmd->data)) && 909 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 910 dev->fsa_dev[container].config_waiting_on = 0; 911 } else for (container = 0; 912 container < dev->maximum_num_containers; ++container) { 913 if ((dev->fsa_dev[container].config_waiting_on == 914 le32_to_cpu(*(u32 *)aifcmd->data)) && 915 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 916 dev->fsa_dev[container].config_waiting_on = 0; 917 } 918 break; 919 920 case AifCmdJobProgress: 921 /* 922 * These are job progress AIF's. When a Clear is being 923 * done on a container it is initially created then hidden from 924 * the OS. When the clear completes we don't get a config 925 * change so we monitor the job status complete on a clear then 926 * wait for a container change. 927 */ 928 929 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) 930 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5]) 931 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) { 932 for (container = 0; 933 container < dev->maximum_num_containers; 934 ++container) { 935 /* 936 * Stomp on all config sequencing for all 937 * containers? 938 */ 939 dev->fsa_dev[container].config_waiting_on = 940 AifEnContainerChange; 941 dev->fsa_dev[container].config_needed = ADD; 942 dev->fsa_dev[container].config_waiting_stamp = 943 jiffies; 944 } 945 } 946 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero)) 947 && (((u32 *)aifcmd->data)[6] == 0) 948 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) { 949 for (container = 0; 950 container < dev->maximum_num_containers; 951 ++container) { 952 /* 953 * Stomp on all config sequencing for all 954 * containers? 955 */ 956 dev->fsa_dev[container].config_waiting_on = 957 AifEnContainerChange; 958 dev->fsa_dev[container].config_needed = DELETE; 959 dev->fsa_dev[container].config_waiting_stamp = 960 jiffies; 961 } 962 } 963 break; 964 } 965 966 device_config_needed = NOTHING; 967 for (container = 0; container < dev->maximum_num_containers; 968 ++container) { 969 if ((dev->fsa_dev[container].config_waiting_on == 0) && 970 (dev->fsa_dev[container].config_needed != NOTHING) && 971 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 972 device_config_needed = 973 dev->fsa_dev[container].config_needed; 974 dev->fsa_dev[container].config_needed = NOTHING; 975 break; 976 } 977 } 978 if (device_config_needed == NOTHING) 979 return; 980 981 /* 982 * If we decided that a re-configuration needs to be done, 983 * schedule it here on the way out the door, please close the door 984 * behind you. 985 */ 986 987 /* 988 * Find the scsi_device associated with the SCSI address, 989 * and mark it as changed, invalidating the cache. This deals 990 * with changes to existing device IDs. 991 */ 992 993 if (!dev || !dev->scsi_host_ptr) 994 return; 995 /* 996 * force reload of disk info via aac_probe_container 997 */ 998 if ((device_config_needed == CHANGE) 999 && (dev->fsa_dev[container].valid == 1)) 1000 dev->fsa_dev[container].valid = 2; 1001 if ((device_config_needed == CHANGE) || 1002 (device_config_needed == ADD)) 1003 aac_probe_container(dev, container); 1004 device = scsi_device_lookup(dev->scsi_host_ptr, 1005 CONTAINER_TO_CHANNEL(container), 1006 CONTAINER_TO_ID(container), 1007 CONTAINER_TO_LUN(container)); 1008 if (device) { 1009 switch (device_config_needed) { 1010 case DELETE: 1011 case CHANGE: 1012 scsi_rescan_device(&device->sdev_gendev); 1013 1014 default: 1015 break; 1016 } 1017 scsi_device_put(device); 1018 } 1019 if (device_config_needed == ADD) { 1020 scsi_add_device(dev->scsi_host_ptr, 1021 CONTAINER_TO_CHANNEL(container), 1022 CONTAINER_TO_ID(container), 1023 CONTAINER_TO_LUN(container)); 1024 } 1025 1026 } 1027 1028 static int _aac_reset_adapter(struct aac_dev *aac, int forced) 1029 { 1030 int index, quirks; 1031 int retval; 1032 struct Scsi_Host *host; 1033 struct scsi_device *dev; 1034 struct scsi_cmnd *command; 1035 struct scsi_cmnd *command_list; 1036 int jafo = 0; 1037 1038 /* 1039 * Assumptions: 1040 * - host is locked, unless called by the aacraid thread. 1041 * (a matter of convenience, due to legacy issues surrounding 1042 * eh_host_adapter_reset). 1043 * - in_reset is asserted, so no new i/o is getting to the 1044 * card. 1045 * - The card is dead, or will be very shortly ;-/ so no new 1046 * commands are completing in the interrupt service. 1047 */ 1048 host = aac->scsi_host_ptr; 1049 scsi_block_requests(host); 1050 aac_adapter_disable_int(aac); 1051 if (aac->thread->pid != current->pid) { 1052 spin_unlock_irq(host->host_lock); 1053 kthread_stop(aac->thread); 1054 jafo = 1; 1055 } 1056 1057 /* 1058 * If a positive health, means in a known DEAD PANIC 1059 * state and the adapter could be reset to `try again'. 1060 */ 1061 retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac)); 1062 1063 if (retval) 1064 goto out; 1065 1066 /* 1067 * Loop through the fibs, close the synchronous FIBS 1068 */ 1069 for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) { 1070 struct fib *fib = &aac->fibs[index]; 1071 if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) && 1072 (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) { 1073 unsigned long flagv; 1074 spin_lock_irqsave(&fib->event_lock, flagv); 1075 up(&fib->event_wait); 1076 spin_unlock_irqrestore(&fib->event_lock, flagv); 1077 schedule(); 1078 retval = 0; 1079 } 1080 } 1081 /* Give some extra time for ioctls to complete. */ 1082 if (retval == 0) 1083 ssleep(2); 1084 index = aac->cardtype; 1085 1086 /* 1087 * Re-initialize the adapter, first free resources, then carefully 1088 * apply the initialization sequence to come back again. Only risk 1089 * is a change in Firmware dropping cache, it is assumed the caller 1090 * will ensure that i/o is queisced and the card is flushed in that 1091 * case. 1092 */ 1093 aac_fib_map_free(aac); 1094 pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys); 1095 aac->comm_addr = NULL; 1096 aac->comm_phys = 0; 1097 kfree(aac->queues); 1098 aac->queues = NULL; 1099 free_irq(aac->pdev->irq, aac); 1100 kfree(aac->fsa_dev); 1101 aac->fsa_dev = NULL; 1102 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) { 1103 if (((retval = pci_set_dma_mask(aac->pdev, DMA_31BIT_MASK))) || 1104 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_31BIT_MASK)))) 1105 goto out; 1106 } else { 1107 if (((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) || 1108 ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_32BIT_MASK)))) 1109 goto out; 1110 } 1111 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1112 goto out; 1113 if (aac_get_driver_ident(index)->quirks & AAC_QUIRK_31BIT) 1114 if ((retval = pci_set_dma_mask(aac->pdev, DMA_32BIT_MASK))) 1115 goto out; 1116 if (jafo) { 1117 aac->thread = kthread_run(aac_command_thread, aac, aac->name); 1118 if (IS_ERR(aac->thread)) { 1119 retval = PTR_ERR(aac->thread); 1120 goto out; 1121 } 1122 } 1123 (void)aac_get_adapter_info(aac); 1124 quirks = aac_get_driver_ident(index)->quirks; 1125 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1126 host->sg_tablesize = 34; 1127 host->max_sectors = (host->sg_tablesize * 8) + 112; 1128 } 1129 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1130 host->sg_tablesize = 17; 1131 host->max_sectors = (host->sg_tablesize * 8) + 112; 1132 } 1133 aac_get_config_status(aac, 1); 1134 aac_get_containers(aac); 1135 /* 1136 * This is where the assumption that the Adapter is quiesced 1137 * is important. 1138 */ 1139 command_list = NULL; 1140 __shost_for_each_device(dev, host) { 1141 unsigned long flags; 1142 spin_lock_irqsave(&dev->list_lock, flags); 1143 list_for_each_entry(command, &dev->cmd_list, list) 1144 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1145 command->SCp.buffer = (struct scatterlist *)command_list; 1146 command_list = command; 1147 } 1148 spin_unlock_irqrestore(&dev->list_lock, flags); 1149 } 1150 while ((command = command_list)) { 1151 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1152 command->SCp.buffer = NULL; 1153 command->result = DID_OK << 16 1154 | COMMAND_COMPLETE << 8 1155 | SAM_STAT_TASK_SET_FULL; 1156 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1157 command->scsi_done(command); 1158 } 1159 retval = 0; 1160 1161 out: 1162 aac->in_reset = 0; 1163 scsi_unblock_requests(host); 1164 if (jafo) { 1165 spin_lock_irq(host->host_lock); 1166 } 1167 return retval; 1168 } 1169 1170 int aac_reset_adapter(struct aac_dev * aac, int forced) 1171 { 1172 unsigned long flagv = 0; 1173 int retval; 1174 struct Scsi_Host * host; 1175 1176 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1177 return -EBUSY; 1178 1179 if (aac->in_reset) { 1180 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1181 return -EBUSY; 1182 } 1183 aac->in_reset = 1; 1184 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1185 1186 /* 1187 * Wait for all commands to complete to this specific 1188 * target (block maximum 60 seconds). Although not necessary, 1189 * it does make us a good storage citizen. 1190 */ 1191 host = aac->scsi_host_ptr; 1192 scsi_block_requests(host); 1193 if (forced < 2) for (retval = 60; retval; --retval) { 1194 struct scsi_device * dev; 1195 struct scsi_cmnd * command; 1196 int active = 0; 1197 1198 __shost_for_each_device(dev, host) { 1199 spin_lock_irqsave(&dev->list_lock, flagv); 1200 list_for_each_entry(command, &dev->cmd_list, list) { 1201 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1202 active++; 1203 break; 1204 } 1205 } 1206 spin_unlock_irqrestore(&dev->list_lock, flagv); 1207 if (active) 1208 break; 1209 1210 } 1211 /* 1212 * We can exit If all the commands are complete 1213 */ 1214 if (active == 0) 1215 break; 1216 ssleep(1); 1217 } 1218 1219 /* Quiesce build, flush cache, write through mode */ 1220 aac_send_shutdown(aac); 1221 spin_lock_irqsave(host->host_lock, flagv); 1222 retval = _aac_reset_adapter(aac, forced); 1223 spin_unlock_irqrestore(host->host_lock, flagv); 1224 1225 if (retval == -ENODEV) { 1226 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1227 struct fib * fibctx = aac_fib_alloc(aac); 1228 if (fibctx) { 1229 struct aac_pause *cmd; 1230 int status; 1231 1232 aac_fib_init(fibctx); 1233 1234 cmd = (struct aac_pause *) fib_data(fibctx); 1235 1236 cmd->command = cpu_to_le32(VM_ContainerConfig); 1237 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1238 cmd->timeout = cpu_to_le32(1); 1239 cmd->min = cpu_to_le32(1); 1240 cmd->noRescan = cpu_to_le32(1); 1241 cmd->count = cpu_to_le32(0); 1242 1243 status = aac_fib_send(ContainerCommand, 1244 fibctx, 1245 sizeof(struct aac_pause), 1246 FsaNormal, 1247 -2 /* Timeout silently */, 1, 1248 NULL, NULL); 1249 1250 if (status >= 0) 1251 aac_fib_complete(fibctx); 1252 aac_fib_free(fibctx); 1253 } 1254 } 1255 1256 return retval; 1257 } 1258 1259 int aac_check_health(struct aac_dev * aac) 1260 { 1261 int BlinkLED; 1262 unsigned long time_now, flagv = 0; 1263 struct list_head * entry; 1264 struct Scsi_Host * host; 1265 1266 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1267 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1268 return 0; 1269 1270 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1271 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1272 return 0; /* OK */ 1273 } 1274 1275 aac->in_reset = 1; 1276 1277 /* Fake up an AIF: 1278 * aac_aifcmd.command = AifCmdEventNotify = 1 1279 * aac_aifcmd.seqnum = 0xFFFFFFFF 1280 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1281 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1282 * aac.aifcmd.data[2] = AifHighPriority = 3 1283 * aac.aifcmd.data[3] = BlinkLED 1284 */ 1285 1286 time_now = jiffies/HZ; 1287 entry = aac->fib_list.next; 1288 1289 /* 1290 * For each Context that is on the 1291 * fibctxList, make a copy of the 1292 * fib, and then set the event to wake up the 1293 * thread that is waiting for it. 1294 */ 1295 while (entry != &aac->fib_list) { 1296 /* 1297 * Extract the fibctx 1298 */ 1299 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1300 struct hw_fib * hw_fib; 1301 struct fib * fib; 1302 /* 1303 * Check if the queue is getting 1304 * backlogged 1305 */ 1306 if (fibctx->count > 20) { 1307 /* 1308 * It's *not* jiffies folks, 1309 * but jiffies / HZ, so do not 1310 * panic ... 1311 */ 1312 u32 time_last = fibctx->jiffies; 1313 /* 1314 * Has it been > 2 minutes 1315 * since the last read off 1316 * the queue? 1317 */ 1318 if ((time_now - time_last) > aif_timeout) { 1319 entry = entry->next; 1320 aac_close_fib_context(aac, fibctx); 1321 continue; 1322 } 1323 } 1324 /* 1325 * Warning: no sleep allowed while 1326 * holding spinlock 1327 */ 1328 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1329 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1330 if (fib && hw_fib) { 1331 struct aac_aifcmd * aif; 1332 1333 fib->hw_fib_va = hw_fib; 1334 fib->dev = aac; 1335 aac_fib_init(fib); 1336 fib->type = FSAFS_NTC_FIB_CONTEXT; 1337 fib->size = sizeof (struct fib); 1338 fib->data = hw_fib->data; 1339 aif = (struct aac_aifcmd *)hw_fib->data; 1340 aif->command = cpu_to_le32(AifCmdEventNotify); 1341 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1342 aif->data[0] = cpu_to_le32(AifEnExpEvent); 1343 aif->data[1] = cpu_to_le32(AifExeFirmwarePanic); 1344 aif->data[2] = cpu_to_le32(AifHighPriority); 1345 aif->data[3] = cpu_to_le32(BlinkLED); 1346 1347 /* 1348 * Put the FIB onto the 1349 * fibctx's fibs 1350 */ 1351 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1352 fibctx->count++; 1353 /* 1354 * Set the event to wake up the 1355 * thread that will waiting. 1356 */ 1357 up(&fibctx->wait_sem); 1358 } else { 1359 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1360 kfree(fib); 1361 kfree(hw_fib); 1362 } 1363 entry = entry->next; 1364 } 1365 1366 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1367 1368 if (BlinkLED < 0) { 1369 printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED); 1370 goto out; 1371 } 1372 1373 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1374 1375 if (!check_reset || (aac->supplement_adapter_info.SupportedOptions2 & 1376 le32_to_cpu(AAC_OPTION_IGNORE_RESET))) 1377 goto out; 1378 host = aac->scsi_host_ptr; 1379 if (aac->thread->pid != current->pid) 1380 spin_lock_irqsave(host->host_lock, flagv); 1381 BlinkLED = _aac_reset_adapter(aac, 0); 1382 if (aac->thread->pid != current->pid) 1383 spin_unlock_irqrestore(host->host_lock, flagv); 1384 return BlinkLED; 1385 1386 out: 1387 aac->in_reset = 0; 1388 return BlinkLED; 1389 } 1390 1391 1392 /** 1393 * aac_command_thread - command processing thread 1394 * @dev: Adapter to monitor 1395 * 1396 * Waits on the commandready event in it's queue. When the event gets set 1397 * it will pull FIBs off it's queue. It will continue to pull FIBs off 1398 * until the queue is empty. When the queue is empty it will wait for 1399 * more FIBs. 1400 */ 1401 1402 int aac_command_thread(void *data) 1403 { 1404 struct aac_dev *dev = data; 1405 struct hw_fib *hw_fib, *hw_newfib; 1406 struct fib *fib, *newfib; 1407 struct aac_fib_context *fibctx; 1408 unsigned long flags; 1409 DECLARE_WAITQUEUE(wait, current); 1410 unsigned long next_jiffies = jiffies + HZ; 1411 unsigned long next_check_jiffies = next_jiffies; 1412 long difference = HZ; 1413 1414 /* 1415 * We can only have one thread per adapter for AIF's. 1416 */ 1417 if (dev->aif_thread) 1418 return -EINVAL; 1419 1420 /* 1421 * Let the DPC know it has a place to send the AIF's to. 1422 */ 1423 dev->aif_thread = 1; 1424 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1425 set_current_state(TASK_INTERRUPTIBLE); 1426 dprintk ((KERN_INFO "aac_command_thread start\n")); 1427 while(1) 1428 { 1429 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1430 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 1431 struct list_head *entry; 1432 struct aac_aifcmd * aifcmd; 1433 1434 set_current_state(TASK_RUNNING); 1435 1436 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 1437 list_del(entry); 1438 1439 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1440 fib = list_entry(entry, struct fib, fiblink); 1441 /* 1442 * We will process the FIB here or pass it to a 1443 * worker thread that is TBD. We Really can't 1444 * do anything at this point since we don't have 1445 * anything defined for this thread to do. 1446 */ 1447 hw_fib = fib->hw_fib_va; 1448 memset(fib, 0, sizeof(struct fib)); 1449 fib->type = FSAFS_NTC_FIB_CONTEXT; 1450 fib->size = sizeof( struct fib ); 1451 fib->hw_fib_va = hw_fib; 1452 fib->data = hw_fib->data; 1453 fib->dev = dev; 1454 /* 1455 * We only handle AifRequest fibs from the adapter. 1456 */ 1457 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1458 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1459 /* Handle Driver Notify Events */ 1460 aac_handle_aif(dev, fib); 1461 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1462 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 1463 } else { 1464 struct list_head *entry; 1465 /* The u32 here is important and intended. We are using 1466 32bit wrapping time to fit the adapter field */ 1467 1468 u32 time_now, time_last; 1469 unsigned long flagv; 1470 unsigned num; 1471 struct hw_fib ** hw_fib_pool, ** hw_fib_p; 1472 struct fib ** fib_pool, ** fib_p; 1473 1474 /* Sniff events */ 1475 if ((aifcmd->command == 1476 cpu_to_le32(AifCmdEventNotify)) || 1477 (aifcmd->command == 1478 cpu_to_le32(AifCmdJobProgress))) { 1479 aac_handle_aif(dev, fib); 1480 } 1481 1482 time_now = jiffies/HZ; 1483 1484 /* 1485 * Warning: no sleep allowed while 1486 * holding spinlock. We take the estimate 1487 * and pre-allocate a set of fibs outside the 1488 * lock. 1489 */ 1490 num = le32_to_cpu(dev->init->AdapterFibsSize) 1491 / sizeof(struct hw_fib); /* some extra */ 1492 spin_lock_irqsave(&dev->fib_lock, flagv); 1493 entry = dev->fib_list.next; 1494 while (entry != &dev->fib_list) { 1495 entry = entry->next; 1496 ++num; 1497 } 1498 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1499 hw_fib_pool = NULL; 1500 fib_pool = NULL; 1501 if (num 1502 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL))) 1503 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) { 1504 hw_fib_p = hw_fib_pool; 1505 fib_p = fib_pool; 1506 while (hw_fib_p < &hw_fib_pool[num]) { 1507 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) { 1508 --hw_fib_p; 1509 break; 1510 } 1511 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) { 1512 kfree(*(--hw_fib_p)); 1513 break; 1514 } 1515 } 1516 if ((num = hw_fib_p - hw_fib_pool) == 0) { 1517 kfree(fib_pool); 1518 fib_pool = NULL; 1519 kfree(hw_fib_pool); 1520 hw_fib_pool = NULL; 1521 } 1522 } else { 1523 kfree(hw_fib_pool); 1524 hw_fib_pool = NULL; 1525 } 1526 spin_lock_irqsave(&dev->fib_lock, flagv); 1527 entry = dev->fib_list.next; 1528 /* 1529 * For each Context that is on the 1530 * fibctxList, make a copy of the 1531 * fib, and then set the event to wake up the 1532 * thread that is waiting for it. 1533 */ 1534 hw_fib_p = hw_fib_pool; 1535 fib_p = fib_pool; 1536 while (entry != &dev->fib_list) { 1537 /* 1538 * Extract the fibctx 1539 */ 1540 fibctx = list_entry(entry, struct aac_fib_context, next); 1541 /* 1542 * Check if the queue is getting 1543 * backlogged 1544 */ 1545 if (fibctx->count > 20) 1546 { 1547 /* 1548 * It's *not* jiffies folks, 1549 * but jiffies / HZ so do not 1550 * panic ... 1551 */ 1552 time_last = fibctx->jiffies; 1553 /* 1554 * Has it been > 2 minutes 1555 * since the last read off 1556 * the queue? 1557 */ 1558 if ((time_now - time_last) > aif_timeout) { 1559 entry = entry->next; 1560 aac_close_fib_context(dev, fibctx); 1561 continue; 1562 } 1563 } 1564 /* 1565 * Warning: no sleep allowed while 1566 * holding spinlock 1567 */ 1568 if (hw_fib_p < &hw_fib_pool[num]) { 1569 hw_newfib = *hw_fib_p; 1570 *(hw_fib_p++) = NULL; 1571 newfib = *fib_p; 1572 *(fib_p++) = NULL; 1573 /* 1574 * Make the copy of the FIB 1575 */ 1576 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 1577 memcpy(newfib, fib, sizeof(struct fib)); 1578 newfib->hw_fib_va = hw_newfib; 1579 /* 1580 * Put the FIB onto the 1581 * fibctx's fibs 1582 */ 1583 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 1584 fibctx->count++; 1585 /* 1586 * Set the event to wake up the 1587 * thread that is waiting. 1588 */ 1589 up(&fibctx->wait_sem); 1590 } else { 1591 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1592 } 1593 entry = entry->next; 1594 } 1595 /* 1596 * Set the status of this FIB 1597 */ 1598 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1599 aac_fib_adapter_complete(fib, sizeof(u32)); 1600 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1601 /* Free up the remaining resources */ 1602 hw_fib_p = hw_fib_pool; 1603 fib_p = fib_pool; 1604 while (hw_fib_p < &hw_fib_pool[num]) { 1605 kfree(*hw_fib_p); 1606 kfree(*fib_p); 1607 ++fib_p; 1608 ++hw_fib_p; 1609 } 1610 kfree(hw_fib_pool); 1611 kfree(fib_pool); 1612 } 1613 kfree(fib); 1614 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags); 1615 } 1616 /* 1617 * There are no more AIF's 1618 */ 1619 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags); 1620 1621 /* 1622 * Background activity 1623 */ 1624 if ((time_before(next_check_jiffies,next_jiffies)) 1625 && ((difference = next_check_jiffies - jiffies) <= 0)) { 1626 next_check_jiffies = next_jiffies; 1627 if (aac_check_health(dev) == 0) { 1628 difference = ((long)(unsigned)check_interval) 1629 * HZ; 1630 next_check_jiffies = jiffies + difference; 1631 } else if (!dev->queues) 1632 break; 1633 } 1634 if (!time_before(next_check_jiffies,next_jiffies) 1635 && ((difference = next_jiffies - jiffies) <= 0)) { 1636 struct timeval now; 1637 int ret; 1638 1639 /* Don't even try to talk to adapter if its sick */ 1640 ret = aac_check_health(dev); 1641 if (!ret && !dev->queues) 1642 break; 1643 next_check_jiffies = jiffies 1644 + ((long)(unsigned)check_interval) 1645 * HZ; 1646 do_gettimeofday(&now); 1647 1648 /* Synchronize our watches */ 1649 if (((1000000 - (1000000 / HZ)) > now.tv_usec) 1650 && (now.tv_usec > (1000000 / HZ))) 1651 difference = (((1000000 - now.tv_usec) * HZ) 1652 + 500000) / 1000000; 1653 else if (ret == 0) { 1654 struct fib *fibptr; 1655 1656 if ((fibptr = aac_fib_alloc(dev))) { 1657 u32 * info; 1658 1659 aac_fib_init(fibptr); 1660 1661 info = (u32 *) fib_data(fibptr); 1662 if (now.tv_usec > 500000) 1663 ++now.tv_sec; 1664 1665 *info = cpu_to_le32(now.tv_sec); 1666 1667 (void)aac_fib_send(SendHostTime, 1668 fibptr, 1669 sizeof(*info), 1670 FsaNormal, 1671 1, 1, 1672 NULL, 1673 NULL); 1674 aac_fib_complete(fibptr); 1675 aac_fib_free(fibptr); 1676 } 1677 difference = (long)(unsigned)update_interval*HZ; 1678 } else { 1679 /* retry shortly */ 1680 difference = 10 * HZ; 1681 } 1682 next_jiffies = jiffies + difference; 1683 if (time_before(next_check_jiffies,next_jiffies)) 1684 difference = next_check_jiffies - jiffies; 1685 } 1686 if (difference <= 0) 1687 difference = 1; 1688 set_current_state(TASK_INTERRUPTIBLE); 1689 schedule_timeout(difference); 1690 1691 if (kthread_should_stop()) 1692 break; 1693 } 1694 if (dev->queues) 1695 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 1696 dev->aif_thread = 0; 1697 return 0; 1698 } 1699