xref: /openbmc/linux/drivers/scsi/aacraid/commsup.c (revision b8d312aa)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Adaptec AAC series RAID controller driver
4  *	(c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  commsup.c
15  *
16  * Abstract: Contain all routines that are required for FSA host/adapter
17  *    communication.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/crash_dump.h>
23 #include <linux/types.h>
24 #include <linux/sched.h>
25 #include <linux/pci.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/interrupt.h>
33 #include <linux/bcd.h>
34 #include <scsi/scsi.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_device.h>
37 #include <scsi/scsi_cmnd.h>
38 
39 #include "aacraid.h"
40 
41 /**
42  *	fib_map_alloc		-	allocate the fib objects
43  *	@dev: Adapter to allocate for
44  *
45  *	Allocate and map the shared PCI space for the FIB blocks used to
46  *	talk to the Adaptec firmware.
47  */
48 
49 static int fib_map_alloc(struct aac_dev *dev)
50 {
51 	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
52 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
53 	else
54 		dev->max_cmd_size = dev->max_fib_size;
55 	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
56 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
57 	} else {
58 		dev->max_cmd_size = dev->max_fib_size;
59 	}
60 
61 	dprintk((KERN_INFO
62 	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
63 	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
64 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65 	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
66 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
67 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
68 		&dev->hw_fib_pa, GFP_KERNEL);
69 	if (dev->hw_fib_va == NULL)
70 		return -ENOMEM;
71 	return 0;
72 }
73 
74 /**
75  *	aac_fib_map_free		-	free the fib objects
76  *	@dev: Adapter to free
77  *
78  *	Free the PCI mappings and the memory allocated for FIB blocks
79  *	on this adapter.
80  */
81 
82 void aac_fib_map_free(struct aac_dev *dev)
83 {
84 	size_t alloc_size;
85 	size_t fib_size;
86 	int num_fibs;
87 
88 	if(!dev->hw_fib_va || !dev->max_cmd_size)
89 		return;
90 
91 	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
92 	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
93 	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
94 
95 	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
96 			  dev->hw_fib_pa);
97 
98 	dev->hw_fib_va = NULL;
99 	dev->hw_fib_pa = 0;
100 }
101 
102 void aac_fib_vector_assign(struct aac_dev *dev)
103 {
104 	u32 i = 0;
105 	u32 vector = 1;
106 	struct fib *fibptr = NULL;
107 
108 	for (i = 0, fibptr = &dev->fibs[i];
109 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
110 		i++, fibptr++) {
111 		if ((dev->max_msix == 1) ||
112 		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
113 			- dev->vector_cap))) {
114 			fibptr->vector_no = 0;
115 		} else {
116 			fibptr->vector_no = vector;
117 			vector++;
118 			if (vector == dev->max_msix)
119 				vector = 1;
120 		}
121 	}
122 }
123 
124 /**
125  *	aac_fib_setup	-	setup the fibs
126  *	@dev: Adapter to set up
127  *
128  *	Allocate the PCI space for the fibs, map it and then initialise the
129  *	fib area, the unmapped fib data and also the free list
130  */
131 
132 int aac_fib_setup(struct aac_dev * dev)
133 {
134 	struct fib *fibptr;
135 	struct hw_fib *hw_fib;
136 	dma_addr_t hw_fib_pa;
137 	int i;
138 	u32 max_cmds;
139 
140 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
141 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
142 		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
143 		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
144 		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
145 			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
146 	}
147 	if (i<0)
148 		return -ENOMEM;
149 
150 	memset(dev->hw_fib_va, 0,
151 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
152 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
153 
154 	/* 32 byte alignment for PMC */
155 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
156 	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
157 					(hw_fib_pa - dev->hw_fib_pa));
158 
159 	/* add Xport header */
160 	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
161 		sizeof(struct aac_fib_xporthdr));
162 	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
163 
164 	/*
165 	 *	Initialise the fibs
166 	 */
167 	for (i = 0, fibptr = &dev->fibs[i];
168 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
169 		i++, fibptr++)
170 	{
171 		fibptr->flags = 0;
172 		fibptr->size = sizeof(struct fib);
173 		fibptr->dev = dev;
174 		fibptr->hw_fib_va = hw_fib;
175 		fibptr->data = (void *) fibptr->hw_fib_va->data;
176 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
177 		init_completion(&fibptr->event_wait);
178 		spin_lock_init(&fibptr->event_lock);
179 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
180 		hw_fib->header.SenderSize =
181 			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
182 		fibptr->hw_fib_pa = hw_fib_pa;
183 		fibptr->hw_sgl_pa = hw_fib_pa +
184 			offsetof(struct aac_hba_cmd_req, sge[2]);
185 		/*
186 		 * one element is for the ptr to the separate sg list,
187 		 * second element for 32 byte alignment
188 		 */
189 		fibptr->hw_error_pa = hw_fib_pa +
190 			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
191 
192 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
193 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
194 		hw_fib_pa = hw_fib_pa +
195 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
196 	}
197 
198 	/*
199 	 *Assign vector numbers to fibs
200 	 */
201 	aac_fib_vector_assign(dev);
202 
203 	/*
204 	 *	Add the fib chain to the free list
205 	 */
206 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
207 	/*
208 	*	Set 8 fibs aside for management tools
209 	*/
210 	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
211 	return 0;
212 }
213 
214 /**
215  *	aac_fib_alloc_tag-allocate a fib using tags
216  *	@dev: Adapter to allocate the fib for
217  *
218  *	Allocate a fib from the adapter fib pool using tags
219  *	from the blk layer.
220  */
221 
222 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
223 {
224 	struct fib *fibptr;
225 
226 	fibptr = &dev->fibs[scmd->request->tag];
227 	/*
228 	 *	Null out fields that depend on being zero at the start of
229 	 *	each I/O
230 	 */
231 	fibptr->hw_fib_va->header.XferState = 0;
232 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
233 	fibptr->callback_data = NULL;
234 	fibptr->callback = NULL;
235 
236 	return fibptr;
237 }
238 
239 /**
240  *	aac_fib_alloc	-	allocate a fib
241  *	@dev: Adapter to allocate the fib for
242  *
243  *	Allocate a fib from the adapter fib pool. If the pool is empty we
244  *	return NULL.
245  */
246 
247 struct fib *aac_fib_alloc(struct aac_dev *dev)
248 {
249 	struct fib * fibptr;
250 	unsigned long flags;
251 	spin_lock_irqsave(&dev->fib_lock, flags);
252 	fibptr = dev->free_fib;
253 	if(!fibptr){
254 		spin_unlock_irqrestore(&dev->fib_lock, flags);
255 		return fibptr;
256 	}
257 	dev->free_fib = fibptr->next;
258 	spin_unlock_irqrestore(&dev->fib_lock, flags);
259 	/*
260 	 *	Set the proper node type code and node byte size
261 	 */
262 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
263 	fibptr->size = sizeof(struct fib);
264 	/*
265 	 *	Null out fields that depend on being zero at the start of
266 	 *	each I/O
267 	 */
268 	fibptr->hw_fib_va->header.XferState = 0;
269 	fibptr->flags = 0;
270 	fibptr->callback = NULL;
271 	fibptr->callback_data = NULL;
272 
273 	return fibptr;
274 }
275 
276 /**
277  *	aac_fib_free	-	free a fib
278  *	@fibptr: fib to free up
279  *
280  *	Frees up a fib and places it on the appropriate queue
281  */
282 
283 void aac_fib_free(struct fib *fibptr)
284 {
285 	unsigned long flags;
286 
287 	if (fibptr->done == 2)
288 		return;
289 
290 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
291 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
292 		aac_config.fib_timeouts++;
293 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
294 		fibptr->hw_fib_va->header.XferState != 0) {
295 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
296 			 (void*)fibptr,
297 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
298 	}
299 	fibptr->next = fibptr->dev->free_fib;
300 	fibptr->dev->free_fib = fibptr;
301 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
302 }
303 
304 /**
305  *	aac_fib_init	-	initialise a fib
306  *	@fibptr: The fib to initialize
307  *
308  *	Set up the generic fib fields ready for use
309  */
310 
311 void aac_fib_init(struct fib *fibptr)
312 {
313 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
314 
315 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
316 	hw_fib->header.StructType = FIB_MAGIC;
317 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
318 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
319 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
320 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
321 }
322 
323 /**
324  *	fib_deallocate		-	deallocate a fib
325  *	@fibptr: fib to deallocate
326  *
327  *	Will deallocate and return to the free pool the FIB pointed to by the
328  *	caller.
329  */
330 
331 static void fib_dealloc(struct fib * fibptr)
332 {
333 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
334 	hw_fib->header.XferState = 0;
335 }
336 
337 /*
338  *	Commuication primitives define and support the queuing method we use to
339  *	support host to adapter commuication. All queue accesses happen through
340  *	these routines and are the only routines which have a knowledge of the
341  *	 how these queues are implemented.
342  */
343 
344 /**
345  *	aac_get_entry		-	get a queue entry
346  *	@dev: Adapter
347  *	@qid: Queue Number
348  *	@entry: Entry return
349  *	@index: Index return
350  *	@nonotify: notification control
351  *
352  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
353  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
354  *	returned.
355  */
356 
357 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
358 {
359 	struct aac_queue * q;
360 	unsigned long idx;
361 
362 	/*
363 	 *	All of the queues wrap when they reach the end, so we check
364 	 *	to see if they have reached the end and if they have we just
365 	 *	set the index back to zero. This is a wrap. You could or off
366 	 *	the high bits in all updates but this is a bit faster I think.
367 	 */
368 
369 	q = &dev->queues->queue[qid];
370 
371 	idx = *index = le32_to_cpu(*(q->headers.producer));
372 	/* Interrupt Moderation, only interrupt for first two entries */
373 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
374 		if (--idx == 0) {
375 			if (qid == AdapNormCmdQueue)
376 				idx = ADAP_NORM_CMD_ENTRIES;
377 			else
378 				idx = ADAP_NORM_RESP_ENTRIES;
379 		}
380 		if (idx != le32_to_cpu(*(q->headers.consumer)))
381 			*nonotify = 1;
382 	}
383 
384 	if (qid == AdapNormCmdQueue) {
385 		if (*index >= ADAP_NORM_CMD_ENTRIES)
386 			*index = 0; /* Wrap to front of the Producer Queue. */
387 	} else {
388 		if (*index >= ADAP_NORM_RESP_ENTRIES)
389 			*index = 0; /* Wrap to front of the Producer Queue. */
390 	}
391 
392 	/* Queue is full */
393 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
394 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
395 				qid, atomic_read(&q->numpending));
396 		return 0;
397 	} else {
398 		*entry = q->base + *index;
399 		return 1;
400 	}
401 }
402 
403 /**
404  *	aac_queue_get		-	get the next free QE
405  *	@dev: Adapter
406  *	@index: Returned index
407  *	@priority: Priority of fib
408  *	@fib: Fib to associate with the queue entry
409  *	@wait: Wait if queue full
410  *	@fibptr: Driver fib object to go with fib
411  *	@nonotify: Don't notify the adapter
412  *
413  *	Gets the next free QE off the requested priorty adapter command
414  *	queue and associates the Fib with the QE. The QE represented by
415  *	index is ready to insert on the queue when this routine returns
416  *	success.
417  */
418 
419 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
420 {
421 	struct aac_entry * entry = NULL;
422 	int map = 0;
423 
424 	if (qid == AdapNormCmdQueue) {
425 		/*  if no entries wait for some if caller wants to */
426 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
427 			printk(KERN_ERR "GetEntries failed\n");
428 		}
429 		/*
430 		 *	Setup queue entry with a command, status and fib mapped
431 		 */
432 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
433 		map = 1;
434 	} else {
435 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
436 			/* if no entries wait for some if caller wants to */
437 		}
438 		/*
439 		 *	Setup queue entry with command, status and fib mapped
440 		 */
441 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
442 		entry->addr = hw_fib->header.SenderFibAddress;
443 			/* Restore adapters pointer to the FIB */
444 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
445 		map = 0;
446 	}
447 	/*
448 	 *	If MapFib is true than we need to map the Fib and put pointers
449 	 *	in the queue entry.
450 	 */
451 	if (map)
452 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
453 	return 0;
454 }
455 
456 /*
457  *	Define the highest level of host to adapter communication routines.
458  *	These routines will support host to adapter FS commuication. These
459  *	routines have no knowledge of the commuication method used. This level
460  *	sends and receives FIBs. This level has no knowledge of how these FIBs
461  *	get passed back and forth.
462  */
463 
464 /**
465  *	aac_fib_send	-	send a fib to the adapter
466  *	@command: Command to send
467  *	@fibptr: The fib
468  *	@size: Size of fib data area
469  *	@priority: Priority of Fib
470  *	@wait: Async/sync select
471  *	@reply: True if a reply is wanted
472  *	@callback: Called with reply
473  *	@callback_data: Passed to callback
474  *
475  *	Sends the requested FIB to the adapter and optionally will wait for a
476  *	response FIB. If the caller does not wish to wait for a response than
477  *	an event to wait on must be supplied. This event will be set when a
478  *	response FIB is received from the adapter.
479  */
480 
481 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
482 		int priority, int wait, int reply, fib_callback callback,
483 		void *callback_data)
484 {
485 	struct aac_dev * dev = fibptr->dev;
486 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
487 	unsigned long flags = 0;
488 	unsigned long mflags = 0;
489 	unsigned long sflags = 0;
490 
491 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
492 		return -EBUSY;
493 
494 	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
495 		return -EINVAL;
496 
497 	/*
498 	 *	There are 5 cases with the wait and response requested flags.
499 	 *	The only invalid cases are if the caller requests to wait and
500 	 *	does not request a response and if the caller does not want a
501 	 *	response and the Fib is not allocated from pool. If a response
502 	 *	is not requested the Fib will just be deallocaed by the DPC
503 	 *	routine when the response comes back from the adapter. No
504 	 *	further processing will be done besides deleting the Fib. We
505 	 *	will have a debug mode where the adapter can notify the host
506 	 *	it had a problem and the host can log that fact.
507 	 */
508 	fibptr->flags = 0;
509 	if (wait && !reply) {
510 		return -EINVAL;
511 	} else if (!wait && reply) {
512 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
513 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
514 	} else if (!wait && !reply) {
515 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
516 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
517 	} else if (wait && reply) {
518 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
519 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
520 	}
521 	/*
522 	 *	Map the fib into 32bits by using the fib number
523 	 */
524 
525 	hw_fib->header.SenderFibAddress =
526 		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
527 
528 	/* use the same shifted value for handle to be compatible
529 	 * with the new native hba command handle
530 	 */
531 	hw_fib->header.Handle =
532 		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
533 
534 	/*
535 	 *	Set FIB state to indicate where it came from and if we want a
536 	 *	response from the adapter. Also load the command from the
537 	 *	caller.
538 	 *
539 	 *	Map the hw fib pointer as a 32bit value
540 	 */
541 	hw_fib->header.Command = cpu_to_le16(command);
542 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
543 	/*
544 	 *	Set the size of the Fib we want to send to the adapter
545 	 */
546 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
547 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
548 		return -EMSGSIZE;
549 	}
550 	/*
551 	 *	Get a queue entry connect the FIB to it and send an notify
552 	 *	the adapter a command is ready.
553 	 */
554 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
555 
556 	/*
557 	 *	Fill in the Callback and CallbackContext if we are not
558 	 *	going to wait.
559 	 */
560 	if (!wait) {
561 		fibptr->callback = callback;
562 		fibptr->callback_data = callback_data;
563 		fibptr->flags = FIB_CONTEXT_FLAG;
564 	}
565 
566 	fibptr->done = 0;
567 
568 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
569 
570 	dprintk((KERN_DEBUG "Fib contents:.\n"));
571 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
572 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
573 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
574 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
575 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
576 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
577 
578 	if (!dev->queues)
579 		return -EBUSY;
580 
581 	if (wait) {
582 
583 		spin_lock_irqsave(&dev->manage_lock, mflags);
584 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
585 			printk(KERN_INFO "No management Fibs Available:%d\n",
586 						dev->management_fib_count);
587 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
588 			return -EBUSY;
589 		}
590 		dev->management_fib_count++;
591 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
592 		spin_lock_irqsave(&fibptr->event_lock, flags);
593 	}
594 
595 	if (dev->sync_mode) {
596 		if (wait)
597 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
598 		spin_lock_irqsave(&dev->sync_lock, sflags);
599 		if (dev->sync_fib) {
600 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
601 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
602 		} else {
603 			dev->sync_fib = fibptr;
604 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
605 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
606 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
607 				NULL, NULL, NULL, NULL, NULL);
608 		}
609 		if (wait) {
610 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
611 			if (wait_for_completion_interruptible(&fibptr->event_wait)) {
612 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
613 				return -EFAULT;
614 			}
615 			return 0;
616 		}
617 		return -EINPROGRESS;
618 	}
619 
620 	if (aac_adapter_deliver(fibptr) != 0) {
621 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
622 		if (wait) {
623 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
624 			spin_lock_irqsave(&dev->manage_lock, mflags);
625 			dev->management_fib_count--;
626 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
627 		}
628 		return -EBUSY;
629 	}
630 
631 
632 	/*
633 	 *	If the caller wanted us to wait for response wait now.
634 	 */
635 
636 	if (wait) {
637 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
638 		/* Only set for first known interruptable command */
639 		if (wait < 0) {
640 			/*
641 			 * *VERY* Dangerous to time out a command, the
642 			 * assumption is made that we have no hope of
643 			 * functioning because an interrupt routing or other
644 			 * hardware failure has occurred.
645 			 */
646 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
647 			while (!try_wait_for_completion(&fibptr->event_wait)) {
648 				int blink;
649 				if (time_is_before_eq_jiffies(timeout)) {
650 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
651 					atomic_dec(&q->numpending);
652 					if (wait == -1) {
653 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
654 						  "Usually a result of a PCI interrupt routing problem;\n"
655 						  "update mother board BIOS or consider utilizing one of\n"
656 						  "the SAFE mode kernel options (acpi, apic etc)\n");
657 					}
658 					return -ETIMEDOUT;
659 				}
660 
661 				if (unlikely(aac_pci_offline(dev)))
662 					return -EFAULT;
663 
664 				if ((blink = aac_adapter_check_health(dev)) > 0) {
665 					if (wait == -1) {
666 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
667 						  "Usually a result of a serious unrecoverable hardware problem\n",
668 						  blink);
669 					}
670 					return -EFAULT;
671 				}
672 				/*
673 				 * Allow other processes / CPUS to use core
674 				 */
675 				schedule();
676 			}
677 		} else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
678 			/* Do nothing ... satisfy
679 			 * wait_for_completion_interruptible must_check */
680 		}
681 
682 		spin_lock_irqsave(&fibptr->event_lock, flags);
683 		if (fibptr->done == 0) {
684 			fibptr->done = 2; /* Tell interrupt we aborted */
685 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
686 			return -ERESTARTSYS;
687 		}
688 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
689 		BUG_ON(fibptr->done == 0);
690 
691 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
692 			return -ETIMEDOUT;
693 		return 0;
694 	}
695 	/*
696 	 *	If the user does not want a response than return success otherwise
697 	 *	return pending
698 	 */
699 	if (reply)
700 		return -EINPROGRESS;
701 	else
702 		return 0;
703 }
704 
705 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
706 		void *callback_data)
707 {
708 	struct aac_dev *dev = fibptr->dev;
709 	int wait;
710 	unsigned long flags = 0;
711 	unsigned long mflags = 0;
712 	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
713 			fibptr->hw_fib_va;
714 
715 	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
716 	if (callback) {
717 		wait = 0;
718 		fibptr->callback = callback;
719 		fibptr->callback_data = callback_data;
720 	} else
721 		wait = 1;
722 
723 
724 	hbacmd->iu_type = command;
725 
726 	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
727 		/* bit1 of request_id must be 0 */
728 		hbacmd->request_id =
729 			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
730 		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
731 	} else if (command != HBA_IU_TYPE_SCSI_TM_REQ)
732 		return -EINVAL;
733 
734 
735 	if (wait) {
736 		spin_lock_irqsave(&dev->manage_lock, mflags);
737 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
738 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
739 			return -EBUSY;
740 		}
741 		dev->management_fib_count++;
742 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
743 		spin_lock_irqsave(&fibptr->event_lock, flags);
744 	}
745 
746 	if (aac_adapter_deliver(fibptr) != 0) {
747 		if (wait) {
748 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
749 			spin_lock_irqsave(&dev->manage_lock, mflags);
750 			dev->management_fib_count--;
751 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
752 		}
753 		return -EBUSY;
754 	}
755 	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
756 
757 	if (wait) {
758 
759 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
760 
761 		if (unlikely(aac_pci_offline(dev)))
762 			return -EFAULT;
763 
764 		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
765 		if (wait_for_completion_interruptible(&fibptr->event_wait))
766 			fibptr->done = 2;
767 		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
768 
769 		spin_lock_irqsave(&fibptr->event_lock, flags);
770 		if ((fibptr->done == 0) || (fibptr->done == 2)) {
771 			fibptr->done = 2; /* Tell interrupt we aborted */
772 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
773 			return -ERESTARTSYS;
774 		}
775 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
776 		WARN_ON(fibptr->done == 0);
777 
778 		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
779 			return -ETIMEDOUT;
780 
781 		return 0;
782 	}
783 
784 	return -EINPROGRESS;
785 }
786 
787 /**
788  *	aac_consumer_get	-	get the top of the queue
789  *	@dev: Adapter
790  *	@q: Queue
791  *	@entry: Return entry
792  *
793  *	Will return a pointer to the entry on the top of the queue requested that
794  *	we are a consumer of, and return the address of the queue entry. It does
795  *	not change the state of the queue.
796  */
797 
798 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
799 {
800 	u32 index;
801 	int status;
802 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
803 		status = 0;
804 	} else {
805 		/*
806 		 *	The consumer index must be wrapped if we have reached
807 		 *	the end of the queue, else we just use the entry
808 		 *	pointed to by the header index
809 		 */
810 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
811 			index = 0;
812 		else
813 			index = le32_to_cpu(*q->headers.consumer);
814 		*entry = q->base + index;
815 		status = 1;
816 	}
817 	return(status);
818 }
819 
820 /**
821  *	aac_consumer_free	-	free consumer entry
822  *	@dev: Adapter
823  *	@q: Queue
824  *	@qid: Queue ident
825  *
826  *	Frees up the current top of the queue we are a consumer of. If the
827  *	queue was full notify the producer that the queue is no longer full.
828  */
829 
830 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
831 {
832 	int wasfull = 0;
833 	u32 notify;
834 
835 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
836 		wasfull = 1;
837 
838 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
839 		*q->headers.consumer = cpu_to_le32(1);
840 	else
841 		le32_add_cpu(q->headers.consumer, 1);
842 
843 	if (wasfull) {
844 		switch (qid) {
845 
846 		case HostNormCmdQueue:
847 			notify = HostNormCmdNotFull;
848 			break;
849 		case HostNormRespQueue:
850 			notify = HostNormRespNotFull;
851 			break;
852 		default:
853 			BUG();
854 			return;
855 		}
856 		aac_adapter_notify(dev, notify);
857 	}
858 }
859 
860 /**
861  *	aac_fib_adapter_complete	-	complete adapter issued fib
862  *	@fibptr: fib to complete
863  *	@size: size of fib
864  *
865  *	Will do all necessary work to complete a FIB that was sent from
866  *	the adapter.
867  */
868 
869 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
870 {
871 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
872 	struct aac_dev * dev = fibptr->dev;
873 	struct aac_queue * q;
874 	unsigned long nointr = 0;
875 	unsigned long qflags;
876 
877 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
878 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
879 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
880 		kfree(hw_fib);
881 		return 0;
882 	}
883 
884 	if (hw_fib->header.XferState == 0) {
885 		if (dev->comm_interface == AAC_COMM_MESSAGE)
886 			kfree(hw_fib);
887 		return 0;
888 	}
889 	/*
890 	 *	If we plan to do anything check the structure type first.
891 	 */
892 	if (hw_fib->header.StructType != FIB_MAGIC &&
893 	    hw_fib->header.StructType != FIB_MAGIC2 &&
894 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
895 		if (dev->comm_interface == AAC_COMM_MESSAGE)
896 			kfree(hw_fib);
897 		return -EINVAL;
898 	}
899 	/*
900 	 *	This block handles the case where the adapter had sent us a
901 	 *	command and we have finished processing the command. We
902 	 *	call completeFib when we are done processing the command
903 	 *	and want to send a response back to the adapter. This will
904 	 *	send the completed cdb to the adapter.
905 	 */
906 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
907 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
908 			kfree (hw_fib);
909 		} else {
910 			u32 index;
911 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
912 			if (size) {
913 				size += sizeof(struct aac_fibhdr);
914 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
915 					return -EMSGSIZE;
916 				hw_fib->header.Size = cpu_to_le16(size);
917 			}
918 			q = &dev->queues->queue[AdapNormRespQueue];
919 			spin_lock_irqsave(q->lock, qflags);
920 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
921 			*(q->headers.producer) = cpu_to_le32(index + 1);
922 			spin_unlock_irqrestore(q->lock, qflags);
923 			if (!(nointr & (int)aac_config.irq_mod))
924 				aac_adapter_notify(dev, AdapNormRespQueue);
925 		}
926 	} else {
927 		printk(KERN_WARNING "aac_fib_adapter_complete: "
928 			"Unknown xferstate detected.\n");
929 		BUG();
930 	}
931 	return 0;
932 }
933 
934 /**
935  *	aac_fib_complete	-	fib completion handler
936  *	@fib: FIB to complete
937  *
938  *	Will do all necessary work to complete a FIB.
939  */
940 
941 int aac_fib_complete(struct fib *fibptr)
942 {
943 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
944 
945 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
946 		fib_dealloc(fibptr);
947 		return 0;
948 	}
949 
950 	/*
951 	 *	Check for a fib which has already been completed or with a
952 	 *	status wait timeout
953 	 */
954 
955 	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
956 		return 0;
957 	/*
958 	 *	If we plan to do anything check the structure type first.
959 	 */
960 
961 	if (hw_fib->header.StructType != FIB_MAGIC &&
962 	    hw_fib->header.StructType != FIB_MAGIC2 &&
963 	    hw_fib->header.StructType != FIB_MAGIC2_64)
964 		return -EINVAL;
965 	/*
966 	 *	This block completes a cdb which orginated on the host and we
967 	 *	just need to deallocate the cdb or reinit it. At this point the
968 	 *	command is complete that we had sent to the adapter and this
969 	 *	cdb could be reused.
970 	 */
971 
972 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
973 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
974 	{
975 		fib_dealloc(fibptr);
976 	}
977 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
978 	{
979 		/*
980 		 *	This handles the case when the host has aborted the I/O
981 		 *	to the adapter because the adapter is not responding
982 		 */
983 		fib_dealloc(fibptr);
984 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
985 		fib_dealloc(fibptr);
986 	} else {
987 		BUG();
988 	}
989 	return 0;
990 }
991 
992 /**
993  *	aac_printf	-	handle printf from firmware
994  *	@dev: Adapter
995  *	@val: Message info
996  *
997  *	Print a message passed to us by the controller firmware on the
998  *	Adaptec board
999  */
1000 
1001 void aac_printf(struct aac_dev *dev, u32 val)
1002 {
1003 	char *cp = dev->printfbuf;
1004 	if (dev->printf_enabled)
1005 	{
1006 		int length = val & 0xffff;
1007 		int level = (val >> 16) & 0xffff;
1008 
1009 		/*
1010 		 *	The size of the printfbuf is set in port.c
1011 		 *	There is no variable or define for it
1012 		 */
1013 		if (length > 255)
1014 			length = 255;
1015 		if (cp[length] != 0)
1016 			cp[length] = 0;
1017 		if (level == LOG_AAC_HIGH_ERROR)
1018 			printk(KERN_WARNING "%s:%s", dev->name, cp);
1019 		else
1020 			printk(KERN_INFO "%s:%s", dev->name, cp);
1021 	}
1022 	memset(cp, 0, 256);
1023 }
1024 
1025 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1026 {
1027 	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1028 }
1029 
1030 
1031 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1032 {
1033 	switch (aac_aif_data(aifcmd, 1)) {
1034 	case AifBuCacheDataLoss:
1035 		if (aac_aif_data(aifcmd, 2))
1036 			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1037 			aac_aif_data(aifcmd, 2));
1038 		else
1039 			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1040 		break;
1041 	case AifBuCacheDataRecover:
1042 		if (aac_aif_data(aifcmd, 2))
1043 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1044 			aac_aif_data(aifcmd, 2));
1045 		else
1046 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1047 		break;
1048 	}
1049 }
1050 
1051 /**
1052  *	aac_handle_aif		-	Handle a message from the firmware
1053  *	@dev: Which adapter this fib is from
1054  *	@fibptr: Pointer to fibptr from adapter
1055  *
1056  *	This routine handles a driver notify fib from the adapter and
1057  *	dispatches it to the appropriate routine for handling.
1058  */
1059 
1060 #define AIF_SNIFF_TIMEOUT	(500*HZ)
1061 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1062 {
1063 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1064 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1065 	u32 channel, id, lun, container;
1066 	struct scsi_device *device;
1067 	enum {
1068 		NOTHING,
1069 		DELETE,
1070 		ADD,
1071 		CHANGE
1072 	} device_config_needed = NOTHING;
1073 
1074 	/* Sniff for container changes */
1075 
1076 	if (!dev || !dev->fsa_dev)
1077 		return;
1078 	container = channel = id = lun = (u32)-1;
1079 
1080 	/*
1081 	 *	We have set this up to try and minimize the number of
1082 	 * re-configures that take place. As a result of this when
1083 	 * certain AIF's come in we will set a flag waiting for another
1084 	 * type of AIF before setting the re-config flag.
1085 	 */
1086 	switch (le32_to_cpu(aifcmd->command)) {
1087 	case AifCmdDriverNotify:
1088 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1089 		case AifRawDeviceRemove:
1090 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1091 			if ((container >> 28)) {
1092 				container = (u32)-1;
1093 				break;
1094 			}
1095 			channel = (container >> 24) & 0xF;
1096 			if (channel >= dev->maximum_num_channels) {
1097 				container = (u32)-1;
1098 				break;
1099 			}
1100 			id = container & 0xFFFF;
1101 			if (id >= dev->maximum_num_physicals) {
1102 				container = (u32)-1;
1103 				break;
1104 			}
1105 			lun = (container >> 16) & 0xFF;
1106 			container = (u32)-1;
1107 			channel = aac_phys_to_logical(channel);
1108 			device_config_needed = DELETE;
1109 			break;
1110 
1111 		/*
1112 		 *	Morph or Expand complete
1113 		 */
1114 		case AifDenMorphComplete:
1115 		case AifDenVolumeExtendComplete:
1116 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1117 			if (container >= dev->maximum_num_containers)
1118 				break;
1119 
1120 			/*
1121 			 *	Find the scsi_device associated with the SCSI
1122 			 * address. Make sure we have the right array, and if
1123 			 * so set the flag to initiate a new re-config once we
1124 			 * see an AifEnConfigChange AIF come through.
1125 			 */
1126 
1127 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1128 				device = scsi_device_lookup(dev->scsi_host_ptr,
1129 					CONTAINER_TO_CHANNEL(container),
1130 					CONTAINER_TO_ID(container),
1131 					CONTAINER_TO_LUN(container));
1132 				if (device) {
1133 					dev->fsa_dev[container].config_needed = CHANGE;
1134 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1135 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1136 					scsi_device_put(device);
1137 				}
1138 			}
1139 		}
1140 
1141 		/*
1142 		 *	If we are waiting on something and this happens to be
1143 		 * that thing then set the re-configure flag.
1144 		 */
1145 		if (container != (u32)-1) {
1146 			if (container >= dev->maximum_num_containers)
1147 				break;
1148 			if ((dev->fsa_dev[container].config_waiting_on ==
1149 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1150 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1151 				dev->fsa_dev[container].config_waiting_on = 0;
1152 		} else for (container = 0;
1153 		    container < dev->maximum_num_containers; ++container) {
1154 			if ((dev->fsa_dev[container].config_waiting_on ==
1155 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1156 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1157 				dev->fsa_dev[container].config_waiting_on = 0;
1158 		}
1159 		break;
1160 
1161 	case AifCmdEventNotify:
1162 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1163 		case AifEnBatteryEvent:
1164 			dev->cache_protected =
1165 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1166 			break;
1167 		/*
1168 		 *	Add an Array.
1169 		 */
1170 		case AifEnAddContainer:
1171 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1172 			if (container >= dev->maximum_num_containers)
1173 				break;
1174 			dev->fsa_dev[container].config_needed = ADD;
1175 			dev->fsa_dev[container].config_waiting_on =
1176 				AifEnConfigChange;
1177 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1178 			break;
1179 
1180 		/*
1181 		 *	Delete an Array.
1182 		 */
1183 		case AifEnDeleteContainer:
1184 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1185 			if (container >= dev->maximum_num_containers)
1186 				break;
1187 			dev->fsa_dev[container].config_needed = DELETE;
1188 			dev->fsa_dev[container].config_waiting_on =
1189 				AifEnConfigChange;
1190 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1191 			break;
1192 
1193 		/*
1194 		 *	Container change detected. If we currently are not
1195 		 * waiting on something else, setup to wait on a Config Change.
1196 		 */
1197 		case AifEnContainerChange:
1198 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1199 			if (container >= dev->maximum_num_containers)
1200 				break;
1201 			if (dev->fsa_dev[container].config_waiting_on &&
1202 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1203 				break;
1204 			dev->fsa_dev[container].config_needed = CHANGE;
1205 			dev->fsa_dev[container].config_waiting_on =
1206 				AifEnConfigChange;
1207 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1208 			break;
1209 
1210 		case AifEnConfigChange:
1211 			break;
1212 
1213 		case AifEnAddJBOD:
1214 		case AifEnDeleteJBOD:
1215 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1216 			if ((container >> 28)) {
1217 				container = (u32)-1;
1218 				break;
1219 			}
1220 			channel = (container >> 24) & 0xF;
1221 			if (channel >= dev->maximum_num_channels) {
1222 				container = (u32)-1;
1223 				break;
1224 			}
1225 			id = container & 0xFFFF;
1226 			if (id >= dev->maximum_num_physicals) {
1227 				container = (u32)-1;
1228 				break;
1229 			}
1230 			lun = (container >> 16) & 0xFF;
1231 			container = (u32)-1;
1232 			channel = aac_phys_to_logical(channel);
1233 			device_config_needed =
1234 			  (((__le32 *)aifcmd->data)[0] ==
1235 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1236 			if (device_config_needed == ADD) {
1237 				device = scsi_device_lookup(dev->scsi_host_ptr,
1238 					channel,
1239 					id,
1240 					lun);
1241 				if (device) {
1242 					scsi_remove_device(device);
1243 					scsi_device_put(device);
1244 				}
1245 			}
1246 			break;
1247 
1248 		case AifEnEnclosureManagement:
1249 			/*
1250 			 * If in JBOD mode, automatic exposure of new
1251 			 * physical target to be suppressed until configured.
1252 			 */
1253 			if (dev->jbod)
1254 				break;
1255 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1256 			case EM_DRIVE_INSERTION:
1257 			case EM_DRIVE_REMOVAL:
1258 			case EM_SES_DRIVE_INSERTION:
1259 			case EM_SES_DRIVE_REMOVAL:
1260 				container = le32_to_cpu(
1261 					((__le32 *)aifcmd->data)[2]);
1262 				if ((container >> 28)) {
1263 					container = (u32)-1;
1264 					break;
1265 				}
1266 				channel = (container >> 24) & 0xF;
1267 				if (channel >= dev->maximum_num_channels) {
1268 					container = (u32)-1;
1269 					break;
1270 				}
1271 				id = container & 0xFFFF;
1272 				lun = (container >> 16) & 0xFF;
1273 				container = (u32)-1;
1274 				if (id >= dev->maximum_num_physicals) {
1275 					/* legacy dev_t ? */
1276 					if ((0x2000 <= id) || lun || channel ||
1277 					  ((channel = (id >> 7) & 0x3F) >=
1278 					  dev->maximum_num_channels))
1279 						break;
1280 					lun = (id >> 4) & 7;
1281 					id &= 0xF;
1282 				}
1283 				channel = aac_phys_to_logical(channel);
1284 				device_config_needed =
1285 				  ((((__le32 *)aifcmd->data)[3]
1286 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1287 				    (((__le32 *)aifcmd->data)[3]
1288 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1289 				  ADD : DELETE;
1290 				break;
1291 			}
1292 			break;
1293 		case AifBuManagerEvent:
1294 			aac_handle_aif_bu(dev, aifcmd);
1295 			break;
1296 		}
1297 
1298 		/*
1299 		 *	If we are waiting on something and this happens to be
1300 		 * that thing then set the re-configure flag.
1301 		 */
1302 		if (container != (u32)-1) {
1303 			if (container >= dev->maximum_num_containers)
1304 				break;
1305 			if ((dev->fsa_dev[container].config_waiting_on ==
1306 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1307 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1308 				dev->fsa_dev[container].config_waiting_on = 0;
1309 		} else for (container = 0;
1310 		    container < dev->maximum_num_containers; ++container) {
1311 			if ((dev->fsa_dev[container].config_waiting_on ==
1312 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1313 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1314 				dev->fsa_dev[container].config_waiting_on = 0;
1315 		}
1316 		break;
1317 
1318 	case AifCmdJobProgress:
1319 		/*
1320 		 *	These are job progress AIF's. When a Clear is being
1321 		 * done on a container it is initially created then hidden from
1322 		 * the OS. When the clear completes we don't get a config
1323 		 * change so we monitor the job status complete on a clear then
1324 		 * wait for a container change.
1325 		 */
1326 
1327 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1328 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1329 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1330 			for (container = 0;
1331 			    container < dev->maximum_num_containers;
1332 			    ++container) {
1333 				/*
1334 				 * Stomp on all config sequencing for all
1335 				 * containers?
1336 				 */
1337 				dev->fsa_dev[container].config_waiting_on =
1338 					AifEnContainerChange;
1339 				dev->fsa_dev[container].config_needed = ADD;
1340 				dev->fsa_dev[container].config_waiting_stamp =
1341 					jiffies;
1342 			}
1343 		}
1344 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1345 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1346 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1347 			for (container = 0;
1348 			    container < dev->maximum_num_containers;
1349 			    ++container) {
1350 				/*
1351 				 * Stomp on all config sequencing for all
1352 				 * containers?
1353 				 */
1354 				dev->fsa_dev[container].config_waiting_on =
1355 					AifEnContainerChange;
1356 				dev->fsa_dev[container].config_needed = DELETE;
1357 				dev->fsa_dev[container].config_waiting_stamp =
1358 					jiffies;
1359 			}
1360 		}
1361 		break;
1362 	}
1363 
1364 	container = 0;
1365 retry_next:
1366 	if (device_config_needed == NOTHING) {
1367 		for (; container < dev->maximum_num_containers; ++container) {
1368 			if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1369 			    (dev->fsa_dev[container].config_needed != NOTHING) &&
1370 			    time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1371 				device_config_needed =
1372 					dev->fsa_dev[container].config_needed;
1373 				dev->fsa_dev[container].config_needed = NOTHING;
1374 				channel = CONTAINER_TO_CHANNEL(container);
1375 				id = CONTAINER_TO_ID(container);
1376 				lun = CONTAINER_TO_LUN(container);
1377 				break;
1378 			}
1379 		}
1380 	}
1381 	if (device_config_needed == NOTHING)
1382 		return;
1383 
1384 	/*
1385 	 *	If we decided that a re-configuration needs to be done,
1386 	 * schedule it here on the way out the door, please close the door
1387 	 * behind you.
1388 	 */
1389 
1390 	/*
1391 	 *	Find the scsi_device associated with the SCSI address,
1392 	 * and mark it as changed, invalidating the cache. This deals
1393 	 * with changes to existing device IDs.
1394 	 */
1395 
1396 	if (!dev || !dev->scsi_host_ptr)
1397 		return;
1398 	/*
1399 	 * force reload of disk info via aac_probe_container
1400 	 */
1401 	if ((channel == CONTAINER_CHANNEL) &&
1402 	  (device_config_needed != NOTHING)) {
1403 		if (dev->fsa_dev[container].valid == 1)
1404 			dev->fsa_dev[container].valid = 2;
1405 		aac_probe_container(dev, container);
1406 	}
1407 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1408 	if (device) {
1409 		switch (device_config_needed) {
1410 		case DELETE:
1411 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1412 			scsi_remove_device(device);
1413 #else
1414 			if (scsi_device_online(device)) {
1415 				scsi_device_set_state(device, SDEV_OFFLINE);
1416 				sdev_printk(KERN_INFO, device,
1417 					"Device offlined - %s\n",
1418 					(channel == CONTAINER_CHANNEL) ?
1419 						"array deleted" :
1420 						"enclosure services event");
1421 			}
1422 #endif
1423 			break;
1424 		case ADD:
1425 			if (!scsi_device_online(device)) {
1426 				sdev_printk(KERN_INFO, device,
1427 					"Device online - %s\n",
1428 					(channel == CONTAINER_CHANNEL) ?
1429 						"array created" :
1430 						"enclosure services event");
1431 				scsi_device_set_state(device, SDEV_RUNNING);
1432 			}
1433 			/* FALLTHRU */
1434 		case CHANGE:
1435 			if ((channel == CONTAINER_CHANNEL)
1436 			 && (!dev->fsa_dev[container].valid)) {
1437 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1438 				scsi_remove_device(device);
1439 #else
1440 				if (!scsi_device_online(device))
1441 					break;
1442 				scsi_device_set_state(device, SDEV_OFFLINE);
1443 				sdev_printk(KERN_INFO, device,
1444 					"Device offlined - %s\n",
1445 					"array failed");
1446 #endif
1447 				break;
1448 			}
1449 			scsi_rescan_device(&device->sdev_gendev);
1450 
1451 		default:
1452 			break;
1453 		}
1454 		scsi_device_put(device);
1455 		device_config_needed = NOTHING;
1456 	}
1457 	if (device_config_needed == ADD)
1458 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1459 	if (channel == CONTAINER_CHANNEL) {
1460 		container++;
1461 		device_config_needed = NOTHING;
1462 		goto retry_next;
1463 	}
1464 }
1465 
1466 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1467 {
1468 	int index, quirks;
1469 	int retval;
1470 	struct Scsi_Host *host;
1471 	struct scsi_device *dev;
1472 	struct scsi_cmnd *command;
1473 	struct scsi_cmnd *command_list;
1474 	int jafo = 0;
1475 	int bled;
1476 	u64 dmamask;
1477 	int num_of_fibs = 0;
1478 
1479 	/*
1480 	 * Assumptions:
1481 	 *	- host is locked, unless called by the aacraid thread.
1482 	 *	  (a matter of convenience, due to legacy issues surrounding
1483 	 *	  eh_host_adapter_reset).
1484 	 *	- in_reset is asserted, so no new i/o is getting to the
1485 	 *	  card.
1486 	 *	- The card is dead, or will be very shortly ;-/ so no new
1487 	 *	  commands are completing in the interrupt service.
1488 	 */
1489 	host = aac->scsi_host_ptr;
1490 	scsi_block_requests(host);
1491 	aac_adapter_disable_int(aac);
1492 	if (aac->thread && aac->thread->pid != current->pid) {
1493 		spin_unlock_irq(host->host_lock);
1494 		kthread_stop(aac->thread);
1495 		aac->thread = NULL;
1496 		jafo = 1;
1497 	}
1498 
1499 	/*
1500 	 *	If a positive health, means in a known DEAD PANIC
1501 	 * state and the adapter could be reset to `try again'.
1502 	 */
1503 	bled = forced ? 0 : aac_adapter_check_health(aac);
1504 	retval = aac_adapter_restart(aac, bled, reset_type);
1505 
1506 	if (retval)
1507 		goto out;
1508 
1509 	/*
1510 	 *	Loop through the fibs, close the synchronous FIBS
1511 	 */
1512 	retval = 1;
1513 	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1514 	for (index = 0; index <  num_of_fibs; index++) {
1515 
1516 		struct fib *fib = &aac->fibs[index];
1517 		__le32 XferState = fib->hw_fib_va->header.XferState;
1518 		bool is_response_expected = false;
1519 
1520 		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1521 		   (XferState & cpu_to_le32(ResponseExpected)))
1522 			is_response_expected = true;
1523 
1524 		if (is_response_expected
1525 		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1526 			unsigned long flagv;
1527 			spin_lock_irqsave(&fib->event_lock, flagv);
1528 			complete(&fib->event_wait);
1529 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1530 			schedule();
1531 			retval = 0;
1532 		}
1533 	}
1534 	/* Give some extra time for ioctls to complete. */
1535 	if (retval == 0)
1536 		ssleep(2);
1537 	index = aac->cardtype;
1538 
1539 	/*
1540 	 * Re-initialize the adapter, first free resources, then carefully
1541 	 * apply the initialization sequence to come back again. Only risk
1542 	 * is a change in Firmware dropping cache, it is assumed the caller
1543 	 * will ensure that i/o is queisced and the card is flushed in that
1544 	 * case.
1545 	 */
1546 	aac_free_irq(aac);
1547 	aac_fib_map_free(aac);
1548 	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1549 			  aac->comm_phys);
1550 	aac->comm_addr = NULL;
1551 	aac->comm_phys = 0;
1552 	kfree(aac->queues);
1553 	aac->queues = NULL;
1554 	kfree(aac->fsa_dev);
1555 	aac->fsa_dev = NULL;
1556 
1557 	dmamask = DMA_BIT_MASK(32);
1558 	quirks = aac_get_driver_ident(index)->quirks;
1559 	if (quirks & AAC_QUIRK_31BIT)
1560 		retval = pci_set_dma_mask(aac->pdev, dmamask);
1561 	else if (!(quirks & AAC_QUIRK_SRC))
1562 		retval = pci_set_dma_mask(aac->pdev, dmamask);
1563 	else
1564 		retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1565 
1566 	if (quirks & AAC_QUIRK_31BIT && !retval) {
1567 		dmamask = DMA_BIT_MASK(31);
1568 		retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1569 	}
1570 
1571 	if (retval)
1572 		goto out;
1573 
1574 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1575 		goto out;
1576 
1577 	if (jafo) {
1578 		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1579 					  aac->name);
1580 		if (IS_ERR(aac->thread)) {
1581 			retval = PTR_ERR(aac->thread);
1582 			aac->thread = NULL;
1583 			goto out;
1584 		}
1585 	}
1586 	(void)aac_get_adapter_info(aac);
1587 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1588 		host->sg_tablesize = 34;
1589 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1590 	}
1591 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1592 		host->sg_tablesize = 17;
1593 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1594 	}
1595 	aac_get_config_status(aac, 1);
1596 	aac_get_containers(aac);
1597 	/*
1598 	 * This is where the assumption that the Adapter is quiesced
1599 	 * is important.
1600 	 */
1601 	command_list = NULL;
1602 	__shost_for_each_device(dev, host) {
1603 		unsigned long flags;
1604 		spin_lock_irqsave(&dev->list_lock, flags);
1605 		list_for_each_entry(command, &dev->cmd_list, list)
1606 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1607 				command->SCp.buffer = (struct scatterlist *)command_list;
1608 				command_list = command;
1609 			}
1610 		spin_unlock_irqrestore(&dev->list_lock, flags);
1611 	}
1612 	while ((command = command_list)) {
1613 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1614 		command->SCp.buffer = NULL;
1615 		command->result = DID_OK << 16
1616 		  | COMMAND_COMPLETE << 8
1617 		  | SAM_STAT_TASK_SET_FULL;
1618 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1619 		command->scsi_done(command);
1620 	}
1621 	/*
1622 	 * Any Device that was already marked offline needs to be marked
1623 	 * running
1624 	 */
1625 	__shost_for_each_device(dev, host) {
1626 		if (!scsi_device_online(dev))
1627 			scsi_device_set_state(dev, SDEV_RUNNING);
1628 	}
1629 	retval = 0;
1630 
1631 out:
1632 	aac->in_reset = 0;
1633 	scsi_unblock_requests(host);
1634 
1635 	/*
1636 	 * Issue bus rescan to catch any configuration that might have
1637 	 * occurred
1638 	 */
1639 	if (!retval && !is_kdump_kernel()) {
1640 		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1641 		aac_schedule_safw_scan_worker(aac);
1642 	}
1643 
1644 	if (jafo) {
1645 		spin_lock_irq(host->host_lock);
1646 	}
1647 	return retval;
1648 }
1649 
1650 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1651 {
1652 	unsigned long flagv = 0;
1653 	int retval;
1654 	struct Scsi_Host * host;
1655 	int bled;
1656 
1657 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1658 		return -EBUSY;
1659 
1660 	if (aac->in_reset) {
1661 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1662 		return -EBUSY;
1663 	}
1664 	aac->in_reset = 1;
1665 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1666 
1667 	/*
1668 	 * Wait for all commands to complete to this specific
1669 	 * target (block maximum 60 seconds). Although not necessary,
1670 	 * it does make us a good storage citizen.
1671 	 */
1672 	host = aac->scsi_host_ptr;
1673 	scsi_block_requests(host);
1674 
1675 	/* Quiesce build, flush cache, write through mode */
1676 	if (forced < 2)
1677 		aac_send_shutdown(aac);
1678 	spin_lock_irqsave(host->host_lock, flagv);
1679 	bled = forced ? forced :
1680 			(aac_check_reset != 0 && aac_check_reset != 1);
1681 	retval = _aac_reset_adapter(aac, bled, reset_type);
1682 	spin_unlock_irqrestore(host->host_lock, flagv);
1683 
1684 	if ((forced < 2) && (retval == -ENODEV)) {
1685 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1686 		struct fib * fibctx = aac_fib_alloc(aac);
1687 		if (fibctx) {
1688 			struct aac_pause *cmd;
1689 			int status;
1690 
1691 			aac_fib_init(fibctx);
1692 
1693 			cmd = (struct aac_pause *) fib_data(fibctx);
1694 
1695 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1696 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1697 			cmd->timeout = cpu_to_le32(1);
1698 			cmd->min = cpu_to_le32(1);
1699 			cmd->noRescan = cpu_to_le32(1);
1700 			cmd->count = cpu_to_le32(0);
1701 
1702 			status = aac_fib_send(ContainerCommand,
1703 			  fibctx,
1704 			  sizeof(struct aac_pause),
1705 			  FsaNormal,
1706 			  -2 /* Timeout silently */, 1,
1707 			  NULL, NULL);
1708 
1709 			if (status >= 0)
1710 				aac_fib_complete(fibctx);
1711 			/* FIB should be freed only after getting
1712 			 * the response from the F/W */
1713 			if (status != -ERESTARTSYS)
1714 				aac_fib_free(fibctx);
1715 		}
1716 	}
1717 
1718 	return retval;
1719 }
1720 
1721 int aac_check_health(struct aac_dev * aac)
1722 {
1723 	int BlinkLED;
1724 	unsigned long time_now, flagv = 0;
1725 	struct list_head * entry;
1726 
1727 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1728 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1729 		return 0;
1730 
1731 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1732 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1733 		return 0; /* OK */
1734 	}
1735 
1736 	aac->in_reset = 1;
1737 
1738 	/* Fake up an AIF:
1739 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1740 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1741 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1742 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1743 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1744 	 *	aac.aifcmd.data[3] = BlinkLED
1745 	 */
1746 
1747 	time_now = jiffies/HZ;
1748 	entry = aac->fib_list.next;
1749 
1750 	/*
1751 	 * For each Context that is on the
1752 	 * fibctxList, make a copy of the
1753 	 * fib, and then set the event to wake up the
1754 	 * thread that is waiting for it.
1755 	 */
1756 	while (entry != &aac->fib_list) {
1757 		/*
1758 		 * Extract the fibctx
1759 		 */
1760 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1761 		struct hw_fib * hw_fib;
1762 		struct fib * fib;
1763 		/*
1764 		 * Check if the queue is getting
1765 		 * backlogged
1766 		 */
1767 		if (fibctx->count > 20) {
1768 			/*
1769 			 * It's *not* jiffies folks,
1770 			 * but jiffies / HZ, so do not
1771 			 * panic ...
1772 			 */
1773 			u32 time_last = fibctx->jiffies;
1774 			/*
1775 			 * Has it been > 2 minutes
1776 			 * since the last read off
1777 			 * the queue?
1778 			 */
1779 			if ((time_now - time_last) > aif_timeout) {
1780 				entry = entry->next;
1781 				aac_close_fib_context(aac, fibctx);
1782 				continue;
1783 			}
1784 		}
1785 		/*
1786 		 * Warning: no sleep allowed while
1787 		 * holding spinlock
1788 		 */
1789 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1790 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1791 		if (fib && hw_fib) {
1792 			struct aac_aifcmd * aif;
1793 
1794 			fib->hw_fib_va = hw_fib;
1795 			fib->dev = aac;
1796 			aac_fib_init(fib);
1797 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1798 			fib->size = sizeof (struct fib);
1799 			fib->data = hw_fib->data;
1800 			aif = (struct aac_aifcmd *)hw_fib->data;
1801 			aif->command = cpu_to_le32(AifCmdEventNotify);
1802 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1803 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1804 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1805 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1806 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1807 
1808 			/*
1809 			 * Put the FIB onto the
1810 			 * fibctx's fibs
1811 			 */
1812 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1813 			fibctx->count++;
1814 			/*
1815 			 * Set the event to wake up the
1816 			 * thread that will waiting.
1817 			 */
1818 			complete(&fibctx->completion);
1819 		} else {
1820 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1821 			kfree(fib);
1822 			kfree(hw_fib);
1823 		}
1824 		entry = entry->next;
1825 	}
1826 
1827 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1828 
1829 	if (BlinkLED < 0) {
1830 		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1831 				aac->name, BlinkLED);
1832 		goto out;
1833 	}
1834 
1835 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1836 
1837 out:
1838 	aac->in_reset = 0;
1839 	return BlinkLED;
1840 }
1841 
1842 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1843 {
1844 	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1845 }
1846 
1847 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1848 								int bus,
1849 								int target)
1850 {
1851 	if (bus != CONTAINER_CHANNEL)
1852 		bus = aac_phys_to_logical(bus);
1853 
1854 	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1855 }
1856 
1857 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1858 {
1859 	if (bus != CONTAINER_CHANNEL)
1860 		bus = aac_phys_to_logical(bus);
1861 
1862 	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1863 }
1864 
1865 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1866 {
1867 	if (sdev)
1868 		scsi_device_put(sdev);
1869 }
1870 
1871 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1872 {
1873 	struct scsi_device *sdev;
1874 
1875 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1876 	scsi_remove_device(sdev);
1877 	aac_put_safw_scsi_device(sdev);
1878 }
1879 
1880 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1881 	int bus, int target)
1882 {
1883 	return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1884 }
1885 
1886 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1887 {
1888 	if (is_safw_raid_volume(dev, bus, target))
1889 		return dev->fsa_dev[target].valid;
1890 	else
1891 		return aac_is_safw_scan_count_equal(dev, bus, target);
1892 }
1893 
1894 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1895 {
1896 	int is_exposed = 0;
1897 	struct scsi_device *sdev;
1898 
1899 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1900 	if (sdev)
1901 		is_exposed = 1;
1902 	aac_put_safw_scsi_device(sdev);
1903 
1904 	return is_exposed;
1905 }
1906 
1907 static int aac_update_safw_host_devices(struct aac_dev *dev)
1908 {
1909 	int i;
1910 	int bus;
1911 	int target;
1912 	int is_exposed = 0;
1913 	int rcode = 0;
1914 
1915 	rcode = aac_setup_safw_adapter(dev);
1916 	if (unlikely(rcode < 0)) {
1917 		goto out;
1918 	}
1919 
1920 	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1921 
1922 		bus = get_bus_number(i);
1923 		target = get_target_number(i);
1924 
1925 		is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1926 
1927 		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1928 			aac_add_safw_device(dev, bus, target);
1929 		else if (!aac_is_safw_target_valid(dev, bus, target) &&
1930 								is_exposed)
1931 			aac_remove_safw_device(dev, bus, target);
1932 	}
1933 out:
1934 	return rcode;
1935 }
1936 
1937 static int aac_scan_safw_host(struct aac_dev *dev)
1938 {
1939 	int rcode = 0;
1940 
1941 	rcode = aac_update_safw_host_devices(dev);
1942 	if (rcode)
1943 		aac_schedule_safw_scan_worker(dev);
1944 
1945 	return rcode;
1946 }
1947 
1948 int aac_scan_host(struct aac_dev *dev)
1949 {
1950 	int rcode = 0;
1951 
1952 	mutex_lock(&dev->scan_mutex);
1953 	if (dev->sa_firmware)
1954 		rcode = aac_scan_safw_host(dev);
1955 	else
1956 		scsi_scan_host(dev->scsi_host_ptr);
1957 	mutex_unlock(&dev->scan_mutex);
1958 
1959 	return rcode;
1960 }
1961 
1962 /**
1963  *	aac_handle_sa_aif	Handle a message from the firmware
1964  *	@dev: Which adapter this fib is from
1965  *	@fibptr: Pointer to fibptr from adapter
1966  *
1967  *	This routine handles a driver notify fib from the adapter and
1968  *	dispatches it to the appropriate routine for handling.
1969  */
1970 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1971 {
1972 	int i;
1973 	u32 events = 0;
1974 
1975 	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1976 		events = SA_AIF_HOTPLUG;
1977 	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1978 		events = SA_AIF_HARDWARE;
1979 	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1980 		events = SA_AIF_PDEV_CHANGE;
1981 	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1982 		events = SA_AIF_LDEV_CHANGE;
1983 	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1984 		events = SA_AIF_BPSTAT_CHANGE;
1985 	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1986 		events = SA_AIF_BPCFG_CHANGE;
1987 
1988 	switch (events) {
1989 	case SA_AIF_HOTPLUG:
1990 	case SA_AIF_HARDWARE:
1991 	case SA_AIF_PDEV_CHANGE:
1992 	case SA_AIF_LDEV_CHANGE:
1993 	case SA_AIF_BPCFG_CHANGE:
1994 
1995 		aac_scan_host(dev);
1996 
1997 		break;
1998 
1999 	case SA_AIF_BPSTAT_CHANGE:
2000 		/* currently do nothing */
2001 		break;
2002 	}
2003 
2004 	for (i = 1; i <= 10; ++i) {
2005 		events = src_readl(dev, MUnit.IDR);
2006 		if (events & (1<<23)) {
2007 			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
2008 				i, 10);
2009 			ssleep(1);
2010 		}
2011 	}
2012 }
2013 
2014 static int get_fib_count(struct aac_dev *dev)
2015 {
2016 	unsigned int num = 0;
2017 	struct list_head *entry;
2018 	unsigned long flagv;
2019 
2020 	/*
2021 	 * Warning: no sleep allowed while
2022 	 * holding spinlock. We take the estimate
2023 	 * and pre-allocate a set of fibs outside the
2024 	 * lock.
2025 	 */
2026 	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2027 			/ sizeof(struct hw_fib); /* some extra */
2028 	spin_lock_irqsave(&dev->fib_lock, flagv);
2029 	entry = dev->fib_list.next;
2030 	while (entry != &dev->fib_list) {
2031 		entry = entry->next;
2032 		++num;
2033 	}
2034 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2035 
2036 	return num;
2037 }
2038 
2039 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2040 						struct fib **fib_pool,
2041 						unsigned int num)
2042 {
2043 	struct hw_fib **hw_fib_p;
2044 	struct fib **fib_p;
2045 
2046 	hw_fib_p = hw_fib_pool;
2047 	fib_p = fib_pool;
2048 	while (hw_fib_p < &hw_fib_pool[num]) {
2049 		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2050 		if (!(*(hw_fib_p++))) {
2051 			--hw_fib_p;
2052 			break;
2053 		}
2054 
2055 		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2056 		if (!(*(fib_p++))) {
2057 			kfree(*(--hw_fib_p));
2058 			break;
2059 		}
2060 	}
2061 
2062 	/*
2063 	 * Get the actual number of allocated fibs
2064 	 */
2065 	num = hw_fib_p - hw_fib_pool;
2066 	return num;
2067 }
2068 
2069 static void wakeup_fibctx_threads(struct aac_dev *dev,
2070 						struct hw_fib **hw_fib_pool,
2071 						struct fib **fib_pool,
2072 						struct fib *fib,
2073 						struct hw_fib *hw_fib,
2074 						unsigned int num)
2075 {
2076 	unsigned long flagv;
2077 	struct list_head *entry;
2078 	struct hw_fib **hw_fib_p;
2079 	struct fib **fib_p;
2080 	u32 time_now, time_last;
2081 	struct hw_fib *hw_newfib;
2082 	struct fib *newfib;
2083 	struct aac_fib_context *fibctx;
2084 
2085 	time_now = jiffies/HZ;
2086 	spin_lock_irqsave(&dev->fib_lock, flagv);
2087 	entry = dev->fib_list.next;
2088 	/*
2089 	 * For each Context that is on the
2090 	 * fibctxList, make a copy of the
2091 	 * fib, and then set the event to wake up the
2092 	 * thread that is waiting for it.
2093 	 */
2094 
2095 	hw_fib_p = hw_fib_pool;
2096 	fib_p = fib_pool;
2097 	while (entry != &dev->fib_list) {
2098 		/*
2099 		 * Extract the fibctx
2100 		 */
2101 		fibctx = list_entry(entry, struct aac_fib_context,
2102 				next);
2103 		/*
2104 		 * Check if the queue is getting
2105 		 * backlogged
2106 		 */
2107 		if (fibctx->count > 20) {
2108 			/*
2109 			 * It's *not* jiffies folks,
2110 			 * but jiffies / HZ so do not
2111 			 * panic ...
2112 			 */
2113 			time_last = fibctx->jiffies;
2114 			/*
2115 			 * Has it been > 2 minutes
2116 			 * since the last read off
2117 			 * the queue?
2118 			 */
2119 			if ((time_now - time_last) > aif_timeout) {
2120 				entry = entry->next;
2121 				aac_close_fib_context(dev, fibctx);
2122 				continue;
2123 			}
2124 		}
2125 		/*
2126 		 * Warning: no sleep allowed while
2127 		 * holding spinlock
2128 		 */
2129 		if (hw_fib_p >= &hw_fib_pool[num]) {
2130 			pr_warn("aifd: didn't allocate NewFib\n");
2131 			entry = entry->next;
2132 			continue;
2133 		}
2134 
2135 		hw_newfib = *hw_fib_p;
2136 		*(hw_fib_p++) = NULL;
2137 		newfib = *fib_p;
2138 		*(fib_p++) = NULL;
2139 		/*
2140 		 * Make the copy of the FIB
2141 		 */
2142 		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2143 		memcpy(newfib, fib, sizeof(struct fib));
2144 		newfib->hw_fib_va = hw_newfib;
2145 		/*
2146 		 * Put the FIB onto the
2147 		 * fibctx's fibs
2148 		 */
2149 		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2150 		fibctx->count++;
2151 		/*
2152 		 * Set the event to wake up the
2153 		 * thread that is waiting.
2154 		 */
2155 		complete(&fibctx->completion);
2156 
2157 		entry = entry->next;
2158 	}
2159 	/*
2160 	 *	Set the status of this FIB
2161 	 */
2162 	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2163 	aac_fib_adapter_complete(fib, sizeof(u32));
2164 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2165 
2166 }
2167 
2168 static void aac_process_events(struct aac_dev *dev)
2169 {
2170 	struct hw_fib *hw_fib;
2171 	struct fib *fib;
2172 	unsigned long flags;
2173 	spinlock_t *t_lock;
2174 
2175 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2176 	spin_lock_irqsave(t_lock, flags);
2177 
2178 	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2179 		struct list_head *entry;
2180 		struct aac_aifcmd *aifcmd;
2181 		unsigned int  num;
2182 		struct hw_fib **hw_fib_pool, **hw_fib_p;
2183 		struct fib **fib_pool, **fib_p;
2184 
2185 		set_current_state(TASK_RUNNING);
2186 
2187 		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2188 		list_del(entry);
2189 
2190 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2191 		spin_unlock_irqrestore(t_lock, flags);
2192 
2193 		fib = list_entry(entry, struct fib, fiblink);
2194 		hw_fib = fib->hw_fib_va;
2195 		if (dev->sa_firmware) {
2196 			/* Thor AIF */
2197 			aac_handle_sa_aif(dev, fib);
2198 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2199 			goto free_fib;
2200 		}
2201 		/*
2202 		 *	We will process the FIB here or pass it to a
2203 		 *	worker thread that is TBD. We Really can't
2204 		 *	do anything at this point since we don't have
2205 		 *	anything defined for this thread to do.
2206 		 */
2207 		memset(fib, 0, sizeof(struct fib));
2208 		fib->type = FSAFS_NTC_FIB_CONTEXT;
2209 		fib->size = sizeof(struct fib);
2210 		fib->hw_fib_va = hw_fib;
2211 		fib->data = hw_fib->data;
2212 		fib->dev = dev;
2213 		/*
2214 		 *	We only handle AifRequest fibs from the adapter.
2215 		 */
2216 
2217 		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2218 		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2219 			/* Handle Driver Notify Events */
2220 			aac_handle_aif(dev, fib);
2221 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2222 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2223 			goto free_fib;
2224 		}
2225 		/*
2226 		 * The u32 here is important and intended. We are using
2227 		 * 32bit wrapping time to fit the adapter field
2228 		 */
2229 
2230 		/* Sniff events */
2231 		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2232 		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2233 			aac_handle_aif(dev, fib);
2234 		}
2235 
2236 		/*
2237 		 * get number of fibs to process
2238 		 */
2239 		num = get_fib_count(dev);
2240 		if (!num)
2241 			goto free_fib;
2242 
2243 		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2244 						GFP_KERNEL);
2245 		if (!hw_fib_pool)
2246 			goto free_fib;
2247 
2248 		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2249 		if (!fib_pool)
2250 			goto free_hw_fib_pool;
2251 
2252 		/*
2253 		 * Fill up fib pointer pools with actual fibs
2254 		 * and hw_fibs
2255 		 */
2256 		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2257 		if (!num)
2258 			goto free_mem;
2259 
2260 		/*
2261 		 * wakeup the thread that is waiting for
2262 		 * the response from fw (ioctl)
2263 		 */
2264 		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2265 							    fib, hw_fib, num);
2266 
2267 free_mem:
2268 		/* Free up the remaining resources */
2269 		hw_fib_p = hw_fib_pool;
2270 		fib_p = fib_pool;
2271 		while (hw_fib_p < &hw_fib_pool[num]) {
2272 			kfree(*hw_fib_p);
2273 			kfree(*fib_p);
2274 			++fib_p;
2275 			++hw_fib_p;
2276 		}
2277 		kfree(fib_pool);
2278 free_hw_fib_pool:
2279 		kfree(hw_fib_pool);
2280 free_fib:
2281 		kfree(fib);
2282 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2283 		spin_lock_irqsave(t_lock, flags);
2284 	}
2285 	/*
2286 	 *	There are no more AIF's
2287 	 */
2288 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2289 	spin_unlock_irqrestore(t_lock, flags);
2290 }
2291 
2292 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2293 							u32 datasize)
2294 {
2295 	struct aac_srb *srbcmd;
2296 	struct sgmap64 *sg64;
2297 	dma_addr_t addr;
2298 	char *dma_buf;
2299 	struct fib *fibptr;
2300 	int ret = -ENOMEM;
2301 	u32 vbus, vid;
2302 
2303 	fibptr = aac_fib_alloc(dev);
2304 	if (!fibptr)
2305 		goto out;
2306 
2307 	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2308 				     GFP_KERNEL);
2309 	if (!dma_buf)
2310 		goto fib_free_out;
2311 
2312 	aac_fib_init(fibptr);
2313 
2314 	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2315 	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2316 
2317 	srbcmd = (struct aac_srb *)fib_data(fibptr);
2318 
2319 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2320 	srbcmd->channel = cpu_to_le32(vbus);
2321 	srbcmd->id = cpu_to_le32(vid);
2322 	srbcmd->lun = 0;
2323 	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2324 	srbcmd->timeout = cpu_to_le32(10);
2325 	srbcmd->retry_limit = 0;
2326 	srbcmd->cdb_size = cpu_to_le32(12);
2327 	srbcmd->count = cpu_to_le32(datasize);
2328 
2329 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2330 	srbcmd->cdb[0] = BMIC_OUT;
2331 	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2332 	memcpy(dma_buf, (char *)wellness_str, datasize);
2333 
2334 	sg64 = (struct sgmap64 *)&srbcmd->sg;
2335 	sg64->count = cpu_to_le32(1);
2336 	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2337 	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2338 	sg64->sg[0].count = cpu_to_le32(datasize);
2339 
2340 	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2341 				FsaNormal, 1, 1, NULL, NULL);
2342 
2343 	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2344 
2345 	/*
2346 	 * Do not set XferState to zero unless
2347 	 * receives a response from F/W
2348 	 */
2349 	if (ret >= 0)
2350 		aac_fib_complete(fibptr);
2351 
2352 	/*
2353 	 * FIB should be freed only after
2354 	 * getting the response from the F/W
2355 	 */
2356 	if (ret != -ERESTARTSYS)
2357 		goto fib_free_out;
2358 
2359 out:
2360 	return ret;
2361 fib_free_out:
2362 	aac_fib_free(fibptr);
2363 	goto out;
2364 }
2365 
2366 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2367 {
2368 	struct tm cur_tm;
2369 	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2370 	u32 datasize = sizeof(wellness_str);
2371 	time64_t local_time;
2372 	int ret = -ENODEV;
2373 
2374 	if (!dev->sa_firmware)
2375 		goto out;
2376 
2377 	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2378 	time64_to_tm(local_time, 0, &cur_tm);
2379 	cur_tm.tm_mon += 1;
2380 	cur_tm.tm_year += 1900;
2381 	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2382 	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2383 	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2384 	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2385 	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2386 	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2387 	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2388 
2389 	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2390 
2391 out:
2392 	return ret;
2393 }
2394 
2395 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2396 {
2397 	int ret = -ENOMEM;
2398 	struct fib *fibptr;
2399 	__le32 *info;
2400 
2401 	fibptr = aac_fib_alloc(dev);
2402 	if (!fibptr)
2403 		goto out;
2404 
2405 	aac_fib_init(fibptr);
2406 	info = (__le32 *)fib_data(fibptr);
2407 	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2408 	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2409 					1, 1, NULL, NULL);
2410 
2411 	/*
2412 	 * Do not set XferState to zero unless
2413 	 * receives a response from F/W
2414 	 */
2415 	if (ret >= 0)
2416 		aac_fib_complete(fibptr);
2417 
2418 	/*
2419 	 * FIB should be freed only after
2420 	 * getting the response from the F/W
2421 	 */
2422 	if (ret != -ERESTARTSYS)
2423 		aac_fib_free(fibptr);
2424 
2425 out:
2426 	return ret;
2427 }
2428 
2429 /**
2430  *	aac_command_thread	-	command processing thread
2431  *	@dev: Adapter to monitor
2432  *
2433  *	Waits on the commandready event in it's queue. When the event gets set
2434  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2435  *	until the queue is empty. When the queue is empty it will wait for
2436  *	more FIBs.
2437  */
2438 
2439 int aac_command_thread(void *data)
2440 {
2441 	struct aac_dev *dev = data;
2442 	DECLARE_WAITQUEUE(wait, current);
2443 	unsigned long next_jiffies = jiffies + HZ;
2444 	unsigned long next_check_jiffies = next_jiffies;
2445 	long difference = HZ;
2446 
2447 	/*
2448 	 *	We can only have one thread per adapter for AIF's.
2449 	 */
2450 	if (dev->aif_thread)
2451 		return -EINVAL;
2452 
2453 	/*
2454 	 *	Let the DPC know it has a place to send the AIF's to.
2455 	 */
2456 	dev->aif_thread = 1;
2457 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2458 	set_current_state(TASK_INTERRUPTIBLE);
2459 	dprintk ((KERN_INFO "aac_command_thread start\n"));
2460 	while (1) {
2461 
2462 		aac_process_events(dev);
2463 
2464 		/*
2465 		 *	Background activity
2466 		 */
2467 		if ((time_before(next_check_jiffies,next_jiffies))
2468 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2469 			next_check_jiffies = next_jiffies;
2470 			if (aac_adapter_check_health(dev) == 0) {
2471 				difference = ((long)(unsigned)check_interval)
2472 					   * HZ;
2473 				next_check_jiffies = jiffies + difference;
2474 			} else if (!dev->queues)
2475 				break;
2476 		}
2477 		if (!time_before(next_check_jiffies,next_jiffies)
2478 		 && ((difference = next_jiffies - jiffies) <= 0)) {
2479 			struct timespec64 now;
2480 			int ret;
2481 
2482 			/* Don't even try to talk to adapter if its sick */
2483 			ret = aac_adapter_check_health(dev);
2484 			if (ret || !dev->queues)
2485 				break;
2486 			next_check_jiffies = jiffies
2487 					   + ((long)(unsigned)check_interval)
2488 					   * HZ;
2489 			ktime_get_real_ts64(&now);
2490 
2491 			/* Synchronize our watches */
2492 			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2493 			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2494 				difference = HZ + HZ / 2 -
2495 					     now.tv_nsec / (NSEC_PER_SEC / HZ);
2496 			else {
2497 				if (now.tv_nsec > NSEC_PER_SEC / 2)
2498 					++now.tv_sec;
2499 
2500 				if (dev->sa_firmware)
2501 					ret =
2502 					aac_send_safw_hostttime(dev, &now);
2503 				else
2504 					ret = aac_send_hosttime(dev, &now);
2505 
2506 				difference = (long)(unsigned)update_interval*HZ;
2507 			}
2508 			next_jiffies = jiffies + difference;
2509 			if (time_before(next_check_jiffies,next_jiffies))
2510 				difference = next_check_jiffies - jiffies;
2511 		}
2512 		if (difference <= 0)
2513 			difference = 1;
2514 		set_current_state(TASK_INTERRUPTIBLE);
2515 
2516 		if (kthread_should_stop())
2517 			break;
2518 
2519 		/*
2520 		 * we probably want usleep_range() here instead of the
2521 		 * jiffies computation
2522 		 */
2523 		schedule_timeout(difference);
2524 
2525 		if (kthread_should_stop())
2526 			break;
2527 	}
2528 	if (dev->queues)
2529 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2530 	dev->aif_thread = 0;
2531 	return 0;
2532 }
2533 
2534 int aac_acquire_irq(struct aac_dev *dev)
2535 {
2536 	int i;
2537 	int j;
2538 	int ret = 0;
2539 
2540 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2541 		for (i = 0; i < dev->max_msix; i++) {
2542 			dev->aac_msix[i].vector_no = i;
2543 			dev->aac_msix[i].dev = dev;
2544 			if (request_irq(pci_irq_vector(dev->pdev, i),
2545 					dev->a_ops.adapter_intr,
2546 					0, "aacraid", &(dev->aac_msix[i]))) {
2547 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2548 						dev->name, dev->id, i);
2549 				for (j = 0 ; j < i ; j++)
2550 					free_irq(pci_irq_vector(dev->pdev, j),
2551 						 &(dev->aac_msix[j]));
2552 				pci_disable_msix(dev->pdev);
2553 				ret = -1;
2554 			}
2555 		}
2556 	} else {
2557 		dev->aac_msix[0].vector_no = 0;
2558 		dev->aac_msix[0].dev = dev;
2559 
2560 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2561 			IRQF_SHARED, "aacraid",
2562 			&(dev->aac_msix[0])) < 0) {
2563 			if (dev->msi)
2564 				pci_disable_msi(dev->pdev);
2565 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2566 					dev->name, dev->id);
2567 			ret = -1;
2568 		}
2569 	}
2570 	return ret;
2571 }
2572 
2573 void aac_free_irq(struct aac_dev *dev)
2574 {
2575 	int i;
2576 
2577 	if (aac_is_src(dev)) {
2578 		if (dev->max_msix > 1) {
2579 			for (i = 0; i < dev->max_msix; i++)
2580 				free_irq(pci_irq_vector(dev->pdev, i),
2581 					 &(dev->aac_msix[i]));
2582 		} else {
2583 			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2584 		}
2585 	} else {
2586 		free_irq(dev->pdev->irq, dev);
2587 	}
2588 	if (dev->msi)
2589 		pci_disable_msi(dev->pdev);
2590 	else if (dev->max_msix > 1)
2591 		pci_disable_msix(dev->pdev);
2592 }
2593