xref: /openbmc/linux/drivers/scsi/aacraid/commsup.c (revision abfbd895)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  commsup.c
27  *
28  * Abstract: Contain all routines that are required for FSA host/adapter
29  *    communication.
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50 
51 #include "aacraid.h"
52 
53 /**
54  *	fib_map_alloc		-	allocate the fib objects
55  *	@dev: Adapter to allocate for
56  *
57  *	Allocate and map the shared PCI space for the FIB blocks used to
58  *	talk to the Adaptec firmware.
59  */
60 
61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63 	dprintk((KERN_INFO
64 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67 	dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68 		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70 		&dev->hw_fib_pa);
71 	if (dev->hw_fib_va == NULL)
72 		return -ENOMEM;
73 	return 0;
74 }
75 
76 /**
77  *	aac_fib_map_free		-	free the fib objects
78  *	@dev: Adapter to free
79  *
80  *	Free the PCI mappings and the memory allocated for FIB blocks
81  *	on this adapter.
82  */
83 
84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86 	pci_free_consistent(dev->pdev,
87 	  dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
88 	  dev->hw_fib_va, dev->hw_fib_pa);
89 	dev->hw_fib_va = NULL;
90 	dev->hw_fib_pa = 0;
91 }
92 
93 /**
94  *	aac_fib_setup	-	setup the fibs
95  *	@dev: Adapter to set up
96  *
97  *	Allocate the PCI space for the fibs, map it and then initialise the
98  *	fib area, the unmapped fib data and also the free list
99  */
100 
101 int aac_fib_setup(struct aac_dev * dev)
102 {
103 	struct fib *fibptr;
104 	struct hw_fib *hw_fib;
105 	dma_addr_t hw_fib_pa;
106 	int i;
107 
108 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
109 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
110 		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
111 		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
112 	}
113 	if (i<0)
114 		return -ENOMEM;
115 
116 	/* 32 byte alignment for PMC */
117 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
118 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
119 		(hw_fib_pa - dev->hw_fib_pa));
120 	dev->hw_fib_pa = hw_fib_pa;
121 	memset(dev->hw_fib_va, 0,
122 		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
123 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
124 
125 	/* add Xport header */
126 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
127 		sizeof(struct aac_fib_xporthdr));
128 	dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
129 
130 	hw_fib = dev->hw_fib_va;
131 	hw_fib_pa = dev->hw_fib_pa;
132 	/*
133 	 *	Initialise the fibs
134 	 */
135 	for (i = 0, fibptr = &dev->fibs[i];
136 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
137 		i++, fibptr++)
138 	{
139 		fibptr->flags = 0;
140 		fibptr->dev = dev;
141 		fibptr->hw_fib_va = hw_fib;
142 		fibptr->data = (void *) fibptr->hw_fib_va->data;
143 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
144 		sema_init(&fibptr->event_wait, 0);
145 		spin_lock_init(&fibptr->event_lock);
146 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
147 		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
148 		fibptr->hw_fib_pa = hw_fib_pa;
149 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
150 			dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
151 		hw_fib_pa = hw_fib_pa +
152 			dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
153 	}
154 	/*
155 	 *	Add the fib chain to the free list
156 	 */
157 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
158 	/*
159 	 *	Enable this to debug out of queue space
160 	 */
161 	dev->free_fib = &dev->fibs[0];
162 	return 0;
163 }
164 
165 /**
166  *	aac_fib_alloc	-	allocate a fib
167  *	@dev: Adapter to allocate the fib for
168  *
169  *	Allocate a fib from the adapter fib pool. If the pool is empty we
170  *	return NULL.
171  */
172 
173 struct fib *aac_fib_alloc(struct aac_dev *dev)
174 {
175 	struct fib * fibptr;
176 	unsigned long flags;
177 	spin_lock_irqsave(&dev->fib_lock, flags);
178 	fibptr = dev->free_fib;
179 	if(!fibptr){
180 		spin_unlock_irqrestore(&dev->fib_lock, flags);
181 		return fibptr;
182 	}
183 	dev->free_fib = fibptr->next;
184 	spin_unlock_irqrestore(&dev->fib_lock, flags);
185 	/*
186 	 *	Set the proper node type code and node byte size
187 	 */
188 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
189 	fibptr->size = sizeof(struct fib);
190 	/*
191 	 *	Null out fields that depend on being zero at the start of
192 	 *	each I/O
193 	 */
194 	fibptr->hw_fib_va->header.XferState = 0;
195 	fibptr->flags = 0;
196 	fibptr->callback = NULL;
197 	fibptr->callback_data = NULL;
198 
199 	return fibptr;
200 }
201 
202 /**
203  *	aac_fib_free	-	free a fib
204  *	@fibptr: fib to free up
205  *
206  *	Frees up a fib and places it on the appropriate queue
207  */
208 
209 void aac_fib_free(struct fib *fibptr)
210 {
211 	unsigned long flags;
212 
213 	if (fibptr->done == 2)
214 		return;
215 
216 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
217 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
218 		aac_config.fib_timeouts++;
219 	if (fibptr->hw_fib_va->header.XferState != 0) {
220 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
221 			 (void*)fibptr,
222 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
223 	}
224 	fibptr->next = fibptr->dev->free_fib;
225 	fibptr->dev->free_fib = fibptr;
226 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
227 }
228 
229 /**
230  *	aac_fib_init	-	initialise a fib
231  *	@fibptr: The fib to initialize
232  *
233  *	Set up the generic fib fields ready for use
234  */
235 
236 void aac_fib_init(struct fib *fibptr)
237 {
238 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
239 
240 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
241 	hw_fib->header.StructType = FIB_MAGIC;
242 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
243 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
244 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
245 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
246 }
247 
248 /**
249  *	fib_deallocate		-	deallocate a fib
250  *	@fibptr: fib to deallocate
251  *
252  *	Will deallocate and return to the free pool the FIB pointed to by the
253  *	caller.
254  */
255 
256 static void fib_dealloc(struct fib * fibptr)
257 {
258 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
259 	hw_fib->header.XferState = 0;
260 }
261 
262 /*
263  *	Commuication primitives define and support the queuing method we use to
264  *	support host to adapter commuication. All queue accesses happen through
265  *	these routines and are the only routines which have a knowledge of the
266  *	 how these queues are implemented.
267  */
268 
269 /**
270  *	aac_get_entry		-	get a queue entry
271  *	@dev: Adapter
272  *	@qid: Queue Number
273  *	@entry: Entry return
274  *	@index: Index return
275  *	@nonotify: notification control
276  *
277  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
278  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
279  *	returned.
280  */
281 
282 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
283 {
284 	struct aac_queue * q;
285 	unsigned long idx;
286 
287 	/*
288 	 *	All of the queues wrap when they reach the end, so we check
289 	 *	to see if they have reached the end and if they have we just
290 	 *	set the index back to zero. This is a wrap. You could or off
291 	 *	the high bits in all updates but this is a bit faster I think.
292 	 */
293 
294 	q = &dev->queues->queue[qid];
295 
296 	idx = *index = le32_to_cpu(*(q->headers.producer));
297 	/* Interrupt Moderation, only interrupt for first two entries */
298 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
299 		if (--idx == 0) {
300 			if (qid == AdapNormCmdQueue)
301 				idx = ADAP_NORM_CMD_ENTRIES;
302 			else
303 				idx = ADAP_NORM_RESP_ENTRIES;
304 		}
305 		if (idx != le32_to_cpu(*(q->headers.consumer)))
306 			*nonotify = 1;
307 	}
308 
309 	if (qid == AdapNormCmdQueue) {
310 		if (*index >= ADAP_NORM_CMD_ENTRIES)
311 			*index = 0; /* Wrap to front of the Producer Queue. */
312 	} else {
313 		if (*index >= ADAP_NORM_RESP_ENTRIES)
314 			*index = 0; /* Wrap to front of the Producer Queue. */
315 	}
316 
317 	/* Queue is full */
318 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
319 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
320 				qid, atomic_read(&q->numpending));
321 		return 0;
322 	} else {
323 		*entry = q->base + *index;
324 		return 1;
325 	}
326 }
327 
328 /**
329  *	aac_queue_get		-	get the next free QE
330  *	@dev: Adapter
331  *	@index: Returned index
332  *	@priority: Priority of fib
333  *	@fib: Fib to associate with the queue entry
334  *	@wait: Wait if queue full
335  *	@fibptr: Driver fib object to go with fib
336  *	@nonotify: Don't notify the adapter
337  *
338  *	Gets the next free QE off the requested priorty adapter command
339  *	queue and associates the Fib with the QE. The QE represented by
340  *	index is ready to insert on the queue when this routine returns
341  *	success.
342  */
343 
344 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
345 {
346 	struct aac_entry * entry = NULL;
347 	int map = 0;
348 
349 	if (qid == AdapNormCmdQueue) {
350 		/*  if no entries wait for some if caller wants to */
351 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
352 			printk(KERN_ERR "GetEntries failed\n");
353 		}
354 		/*
355 		 *	Setup queue entry with a command, status and fib mapped
356 		 */
357 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
358 		map = 1;
359 	} else {
360 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
361 			/* if no entries wait for some if caller wants to */
362 		}
363 		/*
364 		 *	Setup queue entry with command, status and fib mapped
365 		 */
366 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
367 		entry->addr = hw_fib->header.SenderFibAddress;
368 			/* Restore adapters pointer to the FIB */
369 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
370 		map = 0;
371 	}
372 	/*
373 	 *	If MapFib is true than we need to map the Fib and put pointers
374 	 *	in the queue entry.
375 	 */
376 	if (map)
377 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
378 	return 0;
379 }
380 
381 /*
382  *	Define the highest level of host to adapter communication routines.
383  *	These routines will support host to adapter FS commuication. These
384  *	routines have no knowledge of the commuication method used. This level
385  *	sends and receives FIBs. This level has no knowledge of how these FIBs
386  *	get passed back and forth.
387  */
388 
389 /**
390  *	aac_fib_send	-	send a fib to the adapter
391  *	@command: Command to send
392  *	@fibptr: The fib
393  *	@size: Size of fib data area
394  *	@priority: Priority of Fib
395  *	@wait: Async/sync select
396  *	@reply: True if a reply is wanted
397  *	@callback: Called with reply
398  *	@callback_data: Passed to callback
399  *
400  *	Sends the requested FIB to the adapter and optionally will wait for a
401  *	response FIB. If the caller does not wish to wait for a response than
402  *	an event to wait on must be supplied. This event will be set when a
403  *	response FIB is received from the adapter.
404  */
405 
406 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
407 		int priority, int wait, int reply, fib_callback callback,
408 		void *callback_data)
409 {
410 	struct aac_dev * dev = fibptr->dev;
411 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
412 	unsigned long flags = 0;
413 	unsigned long mflags = 0;
414 	unsigned long sflags = 0;
415 
416 
417 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
418 		return -EBUSY;
419 	/*
420 	 *	There are 5 cases with the wait and response requested flags.
421 	 *	The only invalid cases are if the caller requests to wait and
422 	 *	does not request a response and if the caller does not want a
423 	 *	response and the Fib is not allocated from pool. If a response
424 	 *	is not requesed the Fib will just be deallocaed by the DPC
425 	 *	routine when the response comes back from the adapter. No
426 	 *	further processing will be done besides deleting the Fib. We
427 	 *	will have a debug mode where the adapter can notify the host
428 	 *	it had a problem and the host can log that fact.
429 	 */
430 	fibptr->flags = 0;
431 	if (wait && !reply) {
432 		return -EINVAL;
433 	} else if (!wait && reply) {
434 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
435 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
436 	} else if (!wait && !reply) {
437 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
438 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
439 	} else if (wait && reply) {
440 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
441 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
442 	}
443 	/*
444 	 *	Map the fib into 32bits by using the fib number
445 	 */
446 
447 	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
448 	hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
449 	/*
450 	 *	Set FIB state to indicate where it came from and if we want a
451 	 *	response from the adapter. Also load the command from the
452 	 *	caller.
453 	 *
454 	 *	Map the hw fib pointer as a 32bit value
455 	 */
456 	hw_fib->header.Command = cpu_to_le16(command);
457 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
458 	/*
459 	 *	Set the size of the Fib we want to send to the adapter
460 	 */
461 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
462 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
463 		return -EMSGSIZE;
464 	}
465 	/*
466 	 *	Get a queue entry connect the FIB to it and send an notify
467 	 *	the adapter a command is ready.
468 	 */
469 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
470 
471 	/*
472 	 *	Fill in the Callback and CallbackContext if we are not
473 	 *	going to wait.
474 	 */
475 	if (!wait) {
476 		fibptr->callback = callback;
477 		fibptr->callback_data = callback_data;
478 		fibptr->flags = FIB_CONTEXT_FLAG;
479 	}
480 
481 	fibptr->done = 0;
482 
483 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
484 
485 	dprintk((KERN_DEBUG "Fib contents:.\n"));
486 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
487 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
488 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
489 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
490 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
491 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
492 
493 	if (!dev->queues)
494 		return -EBUSY;
495 
496 	if (wait) {
497 
498 		spin_lock_irqsave(&dev->manage_lock, mflags);
499 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
500 			printk(KERN_INFO "No management Fibs Available:%d\n",
501 						dev->management_fib_count);
502 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
503 			return -EBUSY;
504 		}
505 		dev->management_fib_count++;
506 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
507 		spin_lock_irqsave(&fibptr->event_lock, flags);
508 	}
509 
510 	if (dev->sync_mode) {
511 		if (wait)
512 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
513 		spin_lock_irqsave(&dev->sync_lock, sflags);
514 		if (dev->sync_fib) {
515 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
516 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
517 		} else {
518 			dev->sync_fib = fibptr;
519 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
520 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
521 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
522 				NULL, NULL, NULL, NULL, NULL);
523 		}
524 		if (wait) {
525 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
526 			if (down_interruptible(&fibptr->event_wait)) {
527 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
528 				return -EFAULT;
529 			}
530 			return 0;
531 		}
532 		return -EINPROGRESS;
533 	}
534 
535 	if (aac_adapter_deliver(fibptr) != 0) {
536 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
537 		if (wait) {
538 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
539 			spin_lock_irqsave(&dev->manage_lock, mflags);
540 			dev->management_fib_count--;
541 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
542 		}
543 		return -EBUSY;
544 	}
545 
546 
547 	/*
548 	 *	If the caller wanted us to wait for response wait now.
549 	 */
550 
551 	if (wait) {
552 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
553 		/* Only set for first known interruptable command */
554 		if (wait < 0) {
555 			/*
556 			 * *VERY* Dangerous to time out a command, the
557 			 * assumption is made that we have no hope of
558 			 * functioning because an interrupt routing or other
559 			 * hardware failure has occurred.
560 			 */
561 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
562 			while (down_trylock(&fibptr->event_wait)) {
563 				int blink;
564 				if (time_is_before_eq_jiffies(timeout)) {
565 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
566 					atomic_dec(&q->numpending);
567 					if (wait == -1) {
568 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
569 						  "Usually a result of a PCI interrupt routing problem;\n"
570 						  "update mother board BIOS or consider utilizing one of\n"
571 						  "the SAFE mode kernel options (acpi, apic etc)\n");
572 					}
573 					return -ETIMEDOUT;
574 				}
575 				if ((blink = aac_adapter_check_health(dev)) > 0) {
576 					if (wait == -1) {
577 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
578 						  "Usually a result of a serious unrecoverable hardware problem\n",
579 						  blink);
580 					}
581 					return -EFAULT;
582 				}
583 				/* We used to udelay() here but that absorbed
584 				 * a CPU when a timeout occured. Not very
585 				 * useful. */
586 				cpu_relax();
587 			}
588 		} else if (down_interruptible(&fibptr->event_wait)) {
589 			/* Do nothing ... satisfy
590 			 * down_interruptible must_check */
591 		}
592 
593 		spin_lock_irqsave(&fibptr->event_lock, flags);
594 		if (fibptr->done == 0) {
595 			fibptr->done = 2; /* Tell interrupt we aborted */
596 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
597 			return -ERESTARTSYS;
598 		}
599 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
600 		BUG_ON(fibptr->done == 0);
601 
602 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
603 			return -ETIMEDOUT;
604 		return 0;
605 	}
606 	/*
607 	 *	If the user does not want a response than return success otherwise
608 	 *	return pending
609 	 */
610 	if (reply)
611 		return -EINPROGRESS;
612 	else
613 		return 0;
614 }
615 
616 /**
617  *	aac_consumer_get	-	get the top of the queue
618  *	@dev: Adapter
619  *	@q: Queue
620  *	@entry: Return entry
621  *
622  *	Will return a pointer to the entry on the top of the queue requested that
623  *	we are a consumer of, and return the address of the queue entry. It does
624  *	not change the state of the queue.
625  */
626 
627 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
628 {
629 	u32 index;
630 	int status;
631 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
632 		status = 0;
633 	} else {
634 		/*
635 		 *	The consumer index must be wrapped if we have reached
636 		 *	the end of the queue, else we just use the entry
637 		 *	pointed to by the header index
638 		 */
639 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
640 			index = 0;
641 		else
642 			index = le32_to_cpu(*q->headers.consumer);
643 		*entry = q->base + index;
644 		status = 1;
645 	}
646 	return(status);
647 }
648 
649 /**
650  *	aac_consumer_free	-	free consumer entry
651  *	@dev: Adapter
652  *	@q: Queue
653  *	@qid: Queue ident
654  *
655  *	Frees up the current top of the queue we are a consumer of. If the
656  *	queue was full notify the producer that the queue is no longer full.
657  */
658 
659 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
660 {
661 	int wasfull = 0;
662 	u32 notify;
663 
664 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
665 		wasfull = 1;
666 
667 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
668 		*q->headers.consumer = cpu_to_le32(1);
669 	else
670 		le32_add_cpu(q->headers.consumer, 1);
671 
672 	if (wasfull) {
673 		switch (qid) {
674 
675 		case HostNormCmdQueue:
676 			notify = HostNormCmdNotFull;
677 			break;
678 		case HostNormRespQueue:
679 			notify = HostNormRespNotFull;
680 			break;
681 		default:
682 			BUG();
683 			return;
684 		}
685 		aac_adapter_notify(dev, notify);
686 	}
687 }
688 
689 /**
690  *	aac_fib_adapter_complete	-	complete adapter issued fib
691  *	@fibptr: fib to complete
692  *	@size: size of fib
693  *
694  *	Will do all necessary work to complete a FIB that was sent from
695  *	the adapter.
696  */
697 
698 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
699 {
700 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
701 	struct aac_dev * dev = fibptr->dev;
702 	struct aac_queue * q;
703 	unsigned long nointr = 0;
704 	unsigned long qflags;
705 
706 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
707 	    dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
708 		kfree(hw_fib);
709 		return 0;
710 	}
711 
712 	if (hw_fib->header.XferState == 0) {
713 		if (dev->comm_interface == AAC_COMM_MESSAGE)
714 			kfree(hw_fib);
715 		return 0;
716 	}
717 	/*
718 	 *	If we plan to do anything check the structure type first.
719 	 */
720 	if (hw_fib->header.StructType != FIB_MAGIC &&
721 	    hw_fib->header.StructType != FIB_MAGIC2 &&
722 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
723 		if (dev->comm_interface == AAC_COMM_MESSAGE)
724 			kfree(hw_fib);
725 		return -EINVAL;
726 	}
727 	/*
728 	 *	This block handles the case where the adapter had sent us a
729 	 *	command and we have finished processing the command. We
730 	 *	call completeFib when we are done processing the command
731 	 *	and want to send a response back to the adapter. This will
732 	 *	send the completed cdb to the adapter.
733 	 */
734 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
735 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
736 			kfree (hw_fib);
737 		} else {
738 			u32 index;
739 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
740 			if (size) {
741 				size += sizeof(struct aac_fibhdr);
742 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
743 					return -EMSGSIZE;
744 				hw_fib->header.Size = cpu_to_le16(size);
745 			}
746 			q = &dev->queues->queue[AdapNormRespQueue];
747 			spin_lock_irqsave(q->lock, qflags);
748 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
749 			*(q->headers.producer) = cpu_to_le32(index + 1);
750 			spin_unlock_irqrestore(q->lock, qflags);
751 			if (!(nointr & (int)aac_config.irq_mod))
752 				aac_adapter_notify(dev, AdapNormRespQueue);
753 		}
754 	} else {
755 		printk(KERN_WARNING "aac_fib_adapter_complete: "
756 			"Unknown xferstate detected.\n");
757 		BUG();
758 	}
759 	return 0;
760 }
761 
762 /**
763  *	aac_fib_complete	-	fib completion handler
764  *	@fib: FIB to complete
765  *
766  *	Will do all necessary work to complete a FIB.
767  */
768 
769 int aac_fib_complete(struct fib *fibptr)
770 {
771 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
772 
773 	/*
774 	 *	Check for a fib which has already been completed
775 	 */
776 
777 	if (hw_fib->header.XferState == 0)
778 		return 0;
779 	/*
780 	 *	If we plan to do anything check the structure type first.
781 	 */
782 
783 	if (hw_fib->header.StructType != FIB_MAGIC &&
784 	    hw_fib->header.StructType != FIB_MAGIC2 &&
785 	    hw_fib->header.StructType != FIB_MAGIC2_64)
786 		return -EINVAL;
787 	/*
788 	 *	This block completes a cdb which orginated on the host and we
789 	 *	just need to deallocate the cdb or reinit it. At this point the
790 	 *	command is complete that we had sent to the adapter and this
791 	 *	cdb could be reused.
792 	 */
793 
794 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
795 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
796 	{
797 		fib_dealloc(fibptr);
798 	}
799 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
800 	{
801 		/*
802 		 *	This handles the case when the host has aborted the I/O
803 		 *	to the adapter because the adapter is not responding
804 		 */
805 		fib_dealloc(fibptr);
806 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
807 		fib_dealloc(fibptr);
808 	} else {
809 		BUG();
810 	}
811 	return 0;
812 }
813 
814 /**
815  *	aac_printf	-	handle printf from firmware
816  *	@dev: Adapter
817  *	@val: Message info
818  *
819  *	Print a message passed to us by the controller firmware on the
820  *	Adaptec board
821  */
822 
823 void aac_printf(struct aac_dev *dev, u32 val)
824 {
825 	char *cp = dev->printfbuf;
826 	if (dev->printf_enabled)
827 	{
828 		int length = val & 0xffff;
829 		int level = (val >> 16) & 0xffff;
830 
831 		/*
832 		 *	The size of the printfbuf is set in port.c
833 		 *	There is no variable or define for it
834 		 */
835 		if (length > 255)
836 			length = 255;
837 		if (cp[length] != 0)
838 			cp[length] = 0;
839 		if (level == LOG_AAC_HIGH_ERROR)
840 			printk(KERN_WARNING "%s:%s", dev->name, cp);
841 		else
842 			printk(KERN_INFO "%s:%s", dev->name, cp);
843 	}
844 	memset(cp, 0, 256);
845 }
846 
847 
848 /**
849  *	aac_handle_aif		-	Handle a message from the firmware
850  *	@dev: Which adapter this fib is from
851  *	@fibptr: Pointer to fibptr from adapter
852  *
853  *	This routine handles a driver notify fib from the adapter and
854  *	dispatches it to the appropriate routine for handling.
855  */
856 
857 #define AIF_SNIFF_TIMEOUT	(500*HZ)
858 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
859 {
860 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
861 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
862 	u32 channel, id, lun, container;
863 	struct scsi_device *device;
864 	enum {
865 		NOTHING,
866 		DELETE,
867 		ADD,
868 		CHANGE
869 	} device_config_needed = NOTHING;
870 
871 	/* Sniff for container changes */
872 
873 	if (!dev || !dev->fsa_dev)
874 		return;
875 	container = channel = id = lun = (u32)-1;
876 
877 	/*
878 	 *	We have set this up to try and minimize the number of
879 	 * re-configures that take place. As a result of this when
880 	 * certain AIF's come in we will set a flag waiting for another
881 	 * type of AIF before setting the re-config flag.
882 	 */
883 	switch (le32_to_cpu(aifcmd->command)) {
884 	case AifCmdDriverNotify:
885 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
886 		case AifRawDeviceRemove:
887 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
888 			if ((container >> 28)) {
889 				container = (u32)-1;
890 				break;
891 			}
892 			channel = (container >> 24) & 0xF;
893 			if (channel >= dev->maximum_num_channels) {
894 				container = (u32)-1;
895 				break;
896 			}
897 			id = container & 0xFFFF;
898 			if (id >= dev->maximum_num_physicals) {
899 				container = (u32)-1;
900 				break;
901 			}
902 			lun = (container >> 16) & 0xFF;
903 			container = (u32)-1;
904 			channel = aac_phys_to_logical(channel);
905 			device_config_needed =
906 			  (((__le32 *)aifcmd->data)[0] ==
907 			    cpu_to_le32(AifRawDeviceRemove)) ? DELETE : ADD;
908 
909 			if (device_config_needed == ADD) {
910 				device = scsi_device_lookup(
911 					dev->scsi_host_ptr,
912 					channel, id, lun);
913 				if (device) {
914 					scsi_remove_device(device);
915 					scsi_device_put(device);
916 				}
917 			}
918 			break;
919 		/*
920 		 *	Morph or Expand complete
921 		 */
922 		case AifDenMorphComplete:
923 		case AifDenVolumeExtendComplete:
924 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
925 			if (container >= dev->maximum_num_containers)
926 				break;
927 
928 			/*
929 			 *	Find the scsi_device associated with the SCSI
930 			 * address. Make sure we have the right array, and if
931 			 * so set the flag to initiate a new re-config once we
932 			 * see an AifEnConfigChange AIF come through.
933 			 */
934 
935 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
936 				device = scsi_device_lookup(dev->scsi_host_ptr,
937 					CONTAINER_TO_CHANNEL(container),
938 					CONTAINER_TO_ID(container),
939 					CONTAINER_TO_LUN(container));
940 				if (device) {
941 					dev->fsa_dev[container].config_needed = CHANGE;
942 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
943 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
944 					scsi_device_put(device);
945 				}
946 			}
947 		}
948 
949 		/*
950 		 *	If we are waiting on something and this happens to be
951 		 * that thing then set the re-configure flag.
952 		 */
953 		if (container != (u32)-1) {
954 			if (container >= dev->maximum_num_containers)
955 				break;
956 			if ((dev->fsa_dev[container].config_waiting_on ==
957 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
958 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
959 				dev->fsa_dev[container].config_waiting_on = 0;
960 		} else for (container = 0;
961 		    container < dev->maximum_num_containers; ++container) {
962 			if ((dev->fsa_dev[container].config_waiting_on ==
963 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
964 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
965 				dev->fsa_dev[container].config_waiting_on = 0;
966 		}
967 		break;
968 
969 	case AifCmdEventNotify:
970 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
971 		case AifEnBatteryEvent:
972 			dev->cache_protected =
973 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
974 			break;
975 		/*
976 		 *	Add an Array.
977 		 */
978 		case AifEnAddContainer:
979 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
980 			if (container >= dev->maximum_num_containers)
981 				break;
982 			dev->fsa_dev[container].config_needed = ADD;
983 			dev->fsa_dev[container].config_waiting_on =
984 				AifEnConfigChange;
985 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
986 			break;
987 
988 		/*
989 		 *	Delete an Array.
990 		 */
991 		case AifEnDeleteContainer:
992 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
993 			if (container >= dev->maximum_num_containers)
994 				break;
995 			dev->fsa_dev[container].config_needed = DELETE;
996 			dev->fsa_dev[container].config_waiting_on =
997 				AifEnConfigChange;
998 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
999 			break;
1000 
1001 		/*
1002 		 *	Container change detected. If we currently are not
1003 		 * waiting on something else, setup to wait on a Config Change.
1004 		 */
1005 		case AifEnContainerChange:
1006 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1007 			if (container >= dev->maximum_num_containers)
1008 				break;
1009 			if (dev->fsa_dev[container].config_waiting_on &&
1010 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1011 				break;
1012 			dev->fsa_dev[container].config_needed = CHANGE;
1013 			dev->fsa_dev[container].config_waiting_on =
1014 				AifEnConfigChange;
1015 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1016 			break;
1017 
1018 		case AifEnConfigChange:
1019 			break;
1020 
1021 		case AifEnAddJBOD:
1022 		case AifEnDeleteJBOD:
1023 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1024 			if ((container >> 28)) {
1025 				container = (u32)-1;
1026 				break;
1027 			}
1028 			channel = (container >> 24) & 0xF;
1029 			if (channel >= dev->maximum_num_channels) {
1030 				container = (u32)-1;
1031 				break;
1032 			}
1033 			id = container & 0xFFFF;
1034 			if (id >= dev->maximum_num_physicals) {
1035 				container = (u32)-1;
1036 				break;
1037 			}
1038 			lun = (container >> 16) & 0xFF;
1039 			container = (u32)-1;
1040 			channel = aac_phys_to_logical(channel);
1041 			device_config_needed =
1042 			  (((__le32 *)aifcmd->data)[0] ==
1043 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1044 			if (device_config_needed == ADD) {
1045 				device = scsi_device_lookup(dev->scsi_host_ptr,
1046 					channel,
1047 					id,
1048 					lun);
1049 				if (device) {
1050 					scsi_remove_device(device);
1051 					scsi_device_put(device);
1052 				}
1053 			}
1054 			break;
1055 
1056 		case AifEnEnclosureManagement:
1057 			/*
1058 			 * If in JBOD mode, automatic exposure of new
1059 			 * physical target to be suppressed until configured.
1060 			 */
1061 			if (dev->jbod)
1062 				break;
1063 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1064 			case EM_DRIVE_INSERTION:
1065 			case EM_DRIVE_REMOVAL:
1066 			case EM_SES_DRIVE_INSERTION:
1067 			case EM_SES_DRIVE_REMOVAL:
1068 				container = le32_to_cpu(
1069 					((__le32 *)aifcmd->data)[2]);
1070 				if ((container >> 28)) {
1071 					container = (u32)-1;
1072 					break;
1073 				}
1074 				channel = (container >> 24) & 0xF;
1075 				if (channel >= dev->maximum_num_channels) {
1076 					container = (u32)-1;
1077 					break;
1078 				}
1079 				id = container & 0xFFFF;
1080 				lun = (container >> 16) & 0xFF;
1081 				container = (u32)-1;
1082 				if (id >= dev->maximum_num_physicals) {
1083 					/* legacy dev_t ? */
1084 					if ((0x2000 <= id) || lun || channel ||
1085 					  ((channel = (id >> 7) & 0x3F) >=
1086 					  dev->maximum_num_channels))
1087 						break;
1088 					lun = (id >> 4) & 7;
1089 					id &= 0xF;
1090 				}
1091 				channel = aac_phys_to_logical(channel);
1092 				device_config_needed =
1093 				  ((((__le32 *)aifcmd->data)[3]
1094 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1095 				    (((__le32 *)aifcmd->data)[3]
1096 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1097 				  ADD : DELETE;
1098 				break;
1099 			}
1100 			break;
1101 		}
1102 
1103 		/*
1104 		 *	If we are waiting on something and this happens to be
1105 		 * that thing then set the re-configure flag.
1106 		 */
1107 		if (container != (u32)-1) {
1108 			if (container >= dev->maximum_num_containers)
1109 				break;
1110 			if ((dev->fsa_dev[container].config_waiting_on ==
1111 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1112 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1113 				dev->fsa_dev[container].config_waiting_on = 0;
1114 		} else for (container = 0;
1115 		    container < dev->maximum_num_containers; ++container) {
1116 			if ((dev->fsa_dev[container].config_waiting_on ==
1117 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1118 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1119 				dev->fsa_dev[container].config_waiting_on = 0;
1120 		}
1121 		break;
1122 
1123 	case AifCmdJobProgress:
1124 		/*
1125 		 *	These are job progress AIF's. When a Clear is being
1126 		 * done on a container it is initially created then hidden from
1127 		 * the OS. When the clear completes we don't get a config
1128 		 * change so we monitor the job status complete on a clear then
1129 		 * wait for a container change.
1130 		 */
1131 
1132 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1133 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1134 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1135 			for (container = 0;
1136 			    container < dev->maximum_num_containers;
1137 			    ++container) {
1138 				/*
1139 				 * Stomp on all config sequencing for all
1140 				 * containers?
1141 				 */
1142 				dev->fsa_dev[container].config_waiting_on =
1143 					AifEnContainerChange;
1144 				dev->fsa_dev[container].config_needed = ADD;
1145 				dev->fsa_dev[container].config_waiting_stamp =
1146 					jiffies;
1147 			}
1148 		}
1149 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1150 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1151 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1152 			for (container = 0;
1153 			    container < dev->maximum_num_containers;
1154 			    ++container) {
1155 				/*
1156 				 * Stomp on all config sequencing for all
1157 				 * containers?
1158 				 */
1159 				dev->fsa_dev[container].config_waiting_on =
1160 					AifEnContainerChange;
1161 				dev->fsa_dev[container].config_needed = DELETE;
1162 				dev->fsa_dev[container].config_waiting_stamp =
1163 					jiffies;
1164 			}
1165 		}
1166 		break;
1167 	}
1168 
1169 	container = 0;
1170 retry_next:
1171 	if (device_config_needed == NOTHING)
1172 	for (; container < dev->maximum_num_containers; ++container) {
1173 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1174 			(dev->fsa_dev[container].config_needed != NOTHING) &&
1175 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1176 			device_config_needed =
1177 				dev->fsa_dev[container].config_needed;
1178 			dev->fsa_dev[container].config_needed = NOTHING;
1179 			channel = CONTAINER_TO_CHANNEL(container);
1180 			id = CONTAINER_TO_ID(container);
1181 			lun = CONTAINER_TO_LUN(container);
1182 			break;
1183 		}
1184 	}
1185 	if (device_config_needed == NOTHING)
1186 		return;
1187 
1188 	/*
1189 	 *	If we decided that a re-configuration needs to be done,
1190 	 * schedule it here on the way out the door, please close the door
1191 	 * behind you.
1192 	 */
1193 
1194 	/*
1195 	 *	Find the scsi_device associated with the SCSI address,
1196 	 * and mark it as changed, invalidating the cache. This deals
1197 	 * with changes to existing device IDs.
1198 	 */
1199 
1200 	if (!dev || !dev->scsi_host_ptr)
1201 		return;
1202 	/*
1203 	 * force reload of disk info via aac_probe_container
1204 	 */
1205 	if ((channel == CONTAINER_CHANNEL) &&
1206 	  (device_config_needed != NOTHING)) {
1207 		if (dev->fsa_dev[container].valid == 1)
1208 			dev->fsa_dev[container].valid = 2;
1209 		aac_probe_container(dev, container);
1210 	}
1211 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1212 	if (device) {
1213 		switch (device_config_needed) {
1214 		case DELETE:
1215 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1216 			scsi_remove_device(device);
1217 #else
1218 			if (scsi_device_online(device)) {
1219 				scsi_device_set_state(device, SDEV_OFFLINE);
1220 				sdev_printk(KERN_INFO, device,
1221 					"Device offlined - %s\n",
1222 					(channel == CONTAINER_CHANNEL) ?
1223 						"array deleted" :
1224 						"enclosure services event");
1225 			}
1226 #endif
1227 			break;
1228 		case ADD:
1229 			if (!scsi_device_online(device)) {
1230 				sdev_printk(KERN_INFO, device,
1231 					"Device online - %s\n",
1232 					(channel == CONTAINER_CHANNEL) ?
1233 						"array created" :
1234 						"enclosure services event");
1235 				scsi_device_set_state(device, SDEV_RUNNING);
1236 			}
1237 			/* FALLTHRU */
1238 		case CHANGE:
1239 			if ((channel == CONTAINER_CHANNEL)
1240 			 && (!dev->fsa_dev[container].valid)) {
1241 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1242 				scsi_remove_device(device);
1243 #else
1244 				if (!scsi_device_online(device))
1245 					break;
1246 				scsi_device_set_state(device, SDEV_OFFLINE);
1247 				sdev_printk(KERN_INFO, device,
1248 					"Device offlined - %s\n",
1249 					"array failed");
1250 #endif
1251 				break;
1252 			}
1253 			scsi_rescan_device(&device->sdev_gendev);
1254 
1255 		default:
1256 			break;
1257 		}
1258 		scsi_device_put(device);
1259 		device_config_needed = NOTHING;
1260 	}
1261 	if (device_config_needed == ADD)
1262 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1263 	if (channel == CONTAINER_CHANNEL) {
1264 		container++;
1265 		device_config_needed = NOTHING;
1266 		goto retry_next;
1267 	}
1268 }
1269 
1270 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1271 {
1272 	int index, quirks;
1273 	int retval;
1274 	struct Scsi_Host *host;
1275 	struct scsi_device *dev;
1276 	struct scsi_cmnd *command;
1277 	struct scsi_cmnd *command_list;
1278 	int jafo = 0;
1279 
1280 	/*
1281 	 * Assumptions:
1282 	 *	- host is locked, unless called by the aacraid thread.
1283 	 *	  (a matter of convenience, due to legacy issues surrounding
1284 	 *	  eh_host_adapter_reset).
1285 	 *	- in_reset is asserted, so no new i/o is getting to the
1286 	 *	  card.
1287 	 *	- The card is dead, or will be very shortly ;-/ so no new
1288 	 *	  commands are completing in the interrupt service.
1289 	 */
1290 	host = aac->scsi_host_ptr;
1291 	scsi_block_requests(host);
1292 	aac_adapter_disable_int(aac);
1293 	if (aac->thread->pid != current->pid) {
1294 		spin_unlock_irq(host->host_lock);
1295 		kthread_stop(aac->thread);
1296 		jafo = 1;
1297 	}
1298 
1299 	/*
1300 	 *	If a positive health, means in a known DEAD PANIC
1301 	 * state and the adapter could be reset to `try again'.
1302 	 */
1303 	retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1304 
1305 	if (retval)
1306 		goto out;
1307 
1308 	/*
1309 	 *	Loop through the fibs, close the synchronous FIBS
1310 	 */
1311 	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1312 		struct fib *fib = &aac->fibs[index];
1313 		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1314 		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1315 			unsigned long flagv;
1316 			spin_lock_irqsave(&fib->event_lock, flagv);
1317 			up(&fib->event_wait);
1318 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1319 			schedule();
1320 			retval = 0;
1321 		}
1322 	}
1323 	/* Give some extra time for ioctls to complete. */
1324 	if (retval == 0)
1325 		ssleep(2);
1326 	index = aac->cardtype;
1327 
1328 	/*
1329 	 * Re-initialize the adapter, first free resources, then carefully
1330 	 * apply the initialization sequence to come back again. Only risk
1331 	 * is a change in Firmware dropping cache, it is assumed the caller
1332 	 * will ensure that i/o is queisced and the card is flushed in that
1333 	 * case.
1334 	 */
1335 	aac_fib_map_free(aac);
1336 	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1337 	aac->comm_addr = NULL;
1338 	aac->comm_phys = 0;
1339 	kfree(aac->queues);
1340 	aac->queues = NULL;
1341 	aac_free_irq(aac);
1342 	kfree(aac->fsa_dev);
1343 	aac->fsa_dev = NULL;
1344 	quirks = aac_get_driver_ident(index)->quirks;
1345 	if (quirks & AAC_QUIRK_31BIT) {
1346 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1347 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1348 			goto out;
1349 	} else {
1350 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1351 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1352 			goto out;
1353 	}
1354 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1355 		goto out;
1356 	if (quirks & AAC_QUIRK_31BIT)
1357 		if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1358 			goto out;
1359 	if (jafo) {
1360 		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1361 					  aac->name);
1362 		if (IS_ERR(aac->thread)) {
1363 			retval = PTR_ERR(aac->thread);
1364 			goto out;
1365 		}
1366 	}
1367 	(void)aac_get_adapter_info(aac);
1368 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1369 		host->sg_tablesize = 34;
1370 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1371 	}
1372 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1373 		host->sg_tablesize = 17;
1374 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1375 	}
1376 	aac_get_config_status(aac, 1);
1377 	aac_get_containers(aac);
1378 	/*
1379 	 * This is where the assumption that the Adapter is quiesced
1380 	 * is important.
1381 	 */
1382 	command_list = NULL;
1383 	__shost_for_each_device(dev, host) {
1384 		unsigned long flags;
1385 		spin_lock_irqsave(&dev->list_lock, flags);
1386 		list_for_each_entry(command, &dev->cmd_list, list)
1387 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1388 				command->SCp.buffer = (struct scatterlist *)command_list;
1389 				command_list = command;
1390 			}
1391 		spin_unlock_irqrestore(&dev->list_lock, flags);
1392 	}
1393 	while ((command = command_list)) {
1394 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1395 		command->SCp.buffer = NULL;
1396 		command->result = DID_OK << 16
1397 		  | COMMAND_COMPLETE << 8
1398 		  | SAM_STAT_TASK_SET_FULL;
1399 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1400 		command->scsi_done(command);
1401 	}
1402 	retval = 0;
1403 
1404 out:
1405 	aac->in_reset = 0;
1406 	scsi_unblock_requests(host);
1407 	if (jafo) {
1408 		spin_lock_irq(host->host_lock);
1409 	}
1410 	return retval;
1411 }
1412 
1413 int aac_reset_adapter(struct aac_dev * aac, int forced)
1414 {
1415 	unsigned long flagv = 0;
1416 	int retval;
1417 	struct Scsi_Host * host;
1418 
1419 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1420 		return -EBUSY;
1421 
1422 	if (aac->in_reset) {
1423 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1424 		return -EBUSY;
1425 	}
1426 	aac->in_reset = 1;
1427 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1428 
1429 	/*
1430 	 * Wait for all commands to complete to this specific
1431 	 * target (block maximum 60 seconds). Although not necessary,
1432 	 * it does make us a good storage citizen.
1433 	 */
1434 	host = aac->scsi_host_ptr;
1435 	scsi_block_requests(host);
1436 	if (forced < 2) for (retval = 60; retval; --retval) {
1437 		struct scsi_device * dev;
1438 		struct scsi_cmnd * command;
1439 		int active = 0;
1440 
1441 		__shost_for_each_device(dev, host) {
1442 			spin_lock_irqsave(&dev->list_lock, flagv);
1443 			list_for_each_entry(command, &dev->cmd_list, list) {
1444 				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1445 					active++;
1446 					break;
1447 				}
1448 			}
1449 			spin_unlock_irqrestore(&dev->list_lock, flagv);
1450 			if (active)
1451 				break;
1452 
1453 		}
1454 		/*
1455 		 * We can exit If all the commands are complete
1456 		 */
1457 		if (active == 0)
1458 			break;
1459 		ssleep(1);
1460 	}
1461 
1462 	/* Quiesce build, flush cache, write through mode */
1463 	if (forced < 2)
1464 		aac_send_shutdown(aac);
1465 	spin_lock_irqsave(host->host_lock, flagv);
1466 	retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1467 	spin_unlock_irqrestore(host->host_lock, flagv);
1468 
1469 	if ((forced < 2) && (retval == -ENODEV)) {
1470 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1471 		struct fib * fibctx = aac_fib_alloc(aac);
1472 		if (fibctx) {
1473 			struct aac_pause *cmd;
1474 			int status;
1475 
1476 			aac_fib_init(fibctx);
1477 
1478 			cmd = (struct aac_pause *) fib_data(fibctx);
1479 
1480 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1481 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1482 			cmd->timeout = cpu_to_le32(1);
1483 			cmd->min = cpu_to_le32(1);
1484 			cmd->noRescan = cpu_to_le32(1);
1485 			cmd->count = cpu_to_le32(0);
1486 
1487 			status = aac_fib_send(ContainerCommand,
1488 			  fibctx,
1489 			  sizeof(struct aac_pause),
1490 			  FsaNormal,
1491 			  -2 /* Timeout silently */, 1,
1492 			  NULL, NULL);
1493 
1494 			if (status >= 0)
1495 				aac_fib_complete(fibctx);
1496 			/* FIB should be freed only after getting
1497 			 * the response from the F/W */
1498 			if (status != -ERESTARTSYS)
1499 				aac_fib_free(fibctx);
1500 		}
1501 	}
1502 
1503 	return retval;
1504 }
1505 
1506 int aac_check_health(struct aac_dev * aac)
1507 {
1508 	int BlinkLED;
1509 	unsigned long time_now, flagv = 0;
1510 	struct list_head * entry;
1511 	struct Scsi_Host * host;
1512 
1513 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1514 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1515 		return 0;
1516 
1517 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1518 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1519 		return 0; /* OK */
1520 	}
1521 
1522 	aac->in_reset = 1;
1523 
1524 	/* Fake up an AIF:
1525 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1526 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1527 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1528 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1529 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1530 	 *	aac.aifcmd.data[3] = BlinkLED
1531 	 */
1532 
1533 	time_now = jiffies/HZ;
1534 	entry = aac->fib_list.next;
1535 
1536 	/*
1537 	 * For each Context that is on the
1538 	 * fibctxList, make a copy of the
1539 	 * fib, and then set the event to wake up the
1540 	 * thread that is waiting for it.
1541 	 */
1542 	while (entry != &aac->fib_list) {
1543 		/*
1544 		 * Extract the fibctx
1545 		 */
1546 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1547 		struct hw_fib * hw_fib;
1548 		struct fib * fib;
1549 		/*
1550 		 * Check if the queue is getting
1551 		 * backlogged
1552 		 */
1553 		if (fibctx->count > 20) {
1554 			/*
1555 			 * It's *not* jiffies folks,
1556 			 * but jiffies / HZ, so do not
1557 			 * panic ...
1558 			 */
1559 			u32 time_last = fibctx->jiffies;
1560 			/*
1561 			 * Has it been > 2 minutes
1562 			 * since the last read off
1563 			 * the queue?
1564 			 */
1565 			if ((time_now - time_last) > aif_timeout) {
1566 				entry = entry->next;
1567 				aac_close_fib_context(aac, fibctx);
1568 				continue;
1569 			}
1570 		}
1571 		/*
1572 		 * Warning: no sleep allowed while
1573 		 * holding spinlock
1574 		 */
1575 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1576 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1577 		if (fib && hw_fib) {
1578 			struct aac_aifcmd * aif;
1579 
1580 			fib->hw_fib_va = hw_fib;
1581 			fib->dev = aac;
1582 			aac_fib_init(fib);
1583 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1584 			fib->size = sizeof (struct fib);
1585 			fib->data = hw_fib->data;
1586 			aif = (struct aac_aifcmd *)hw_fib->data;
1587 			aif->command = cpu_to_le32(AifCmdEventNotify);
1588 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1589 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1590 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1591 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1592 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1593 
1594 			/*
1595 			 * Put the FIB onto the
1596 			 * fibctx's fibs
1597 			 */
1598 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1599 			fibctx->count++;
1600 			/*
1601 			 * Set the event to wake up the
1602 			 * thread that will waiting.
1603 			 */
1604 			up(&fibctx->wait_sem);
1605 		} else {
1606 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1607 			kfree(fib);
1608 			kfree(hw_fib);
1609 		}
1610 		entry = entry->next;
1611 	}
1612 
1613 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1614 
1615 	if (BlinkLED < 0) {
1616 		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1617 		goto out;
1618 	}
1619 
1620 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1621 
1622 	if (!aac_check_reset || ((aac_check_reset == 1) &&
1623 		(aac->supplement_adapter_info.SupportedOptions2 &
1624 			AAC_OPTION_IGNORE_RESET)))
1625 		goto out;
1626 	host = aac->scsi_host_ptr;
1627 	if (aac->thread->pid != current->pid)
1628 		spin_lock_irqsave(host->host_lock, flagv);
1629 	BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1630 	if (aac->thread->pid != current->pid)
1631 		spin_unlock_irqrestore(host->host_lock, flagv);
1632 	return BlinkLED;
1633 
1634 out:
1635 	aac->in_reset = 0;
1636 	return BlinkLED;
1637 }
1638 
1639 
1640 /**
1641  *	aac_command_thread	-	command processing thread
1642  *	@dev: Adapter to monitor
1643  *
1644  *	Waits on the commandready event in it's queue. When the event gets set
1645  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1646  *	until the queue is empty. When the queue is empty it will wait for
1647  *	more FIBs.
1648  */
1649 
1650 int aac_command_thread(void *data)
1651 {
1652 	struct aac_dev *dev = data;
1653 	struct hw_fib *hw_fib, *hw_newfib;
1654 	struct fib *fib, *newfib;
1655 	struct aac_fib_context *fibctx;
1656 	unsigned long flags;
1657 	DECLARE_WAITQUEUE(wait, current);
1658 	unsigned long next_jiffies = jiffies + HZ;
1659 	unsigned long next_check_jiffies = next_jiffies;
1660 	long difference = HZ;
1661 
1662 	/*
1663 	 *	We can only have one thread per adapter for AIF's.
1664 	 */
1665 	if (dev->aif_thread)
1666 		return -EINVAL;
1667 
1668 	/*
1669 	 *	Let the DPC know it has a place to send the AIF's to.
1670 	 */
1671 	dev->aif_thread = 1;
1672 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1673 	set_current_state(TASK_INTERRUPTIBLE);
1674 	dprintk ((KERN_INFO "aac_command_thread start\n"));
1675 	while (1) {
1676 		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1677 		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1678 			struct list_head *entry;
1679 			struct aac_aifcmd * aifcmd;
1680 
1681 			set_current_state(TASK_RUNNING);
1682 
1683 			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1684 			list_del(entry);
1685 
1686 			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1687 			fib = list_entry(entry, struct fib, fiblink);
1688 			/*
1689 			 *	We will process the FIB here or pass it to a
1690 			 *	worker thread that is TBD. We Really can't
1691 			 *	do anything at this point since we don't have
1692 			 *	anything defined for this thread to do.
1693 			 */
1694 			hw_fib = fib->hw_fib_va;
1695 			memset(fib, 0, sizeof(struct fib));
1696 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1697 			fib->size = sizeof(struct fib);
1698 			fib->hw_fib_va = hw_fib;
1699 			fib->data = hw_fib->data;
1700 			fib->dev = dev;
1701 			/*
1702 			 *	We only handle AifRequest fibs from the adapter.
1703 			 */
1704 			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1705 			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1706 				/* Handle Driver Notify Events */
1707 				aac_handle_aif(dev, fib);
1708 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1709 				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1710 			} else {
1711 				/* The u32 here is important and intended. We are using
1712 				   32bit wrapping time to fit the adapter field */
1713 
1714 				u32 time_now, time_last;
1715 				unsigned long flagv;
1716 				unsigned num;
1717 				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1718 				struct fib ** fib_pool, ** fib_p;
1719 
1720 				/* Sniff events */
1721 				if ((aifcmd->command ==
1722 				     cpu_to_le32(AifCmdEventNotify)) ||
1723 				    (aifcmd->command ==
1724 				     cpu_to_le32(AifCmdJobProgress))) {
1725 					aac_handle_aif(dev, fib);
1726 				}
1727 
1728 				time_now = jiffies/HZ;
1729 
1730 				/*
1731 				 * Warning: no sleep allowed while
1732 				 * holding spinlock. We take the estimate
1733 				 * and pre-allocate a set of fibs outside the
1734 				 * lock.
1735 				 */
1736 				num = le32_to_cpu(dev->init->AdapterFibsSize)
1737 				    / sizeof(struct hw_fib); /* some extra */
1738 				spin_lock_irqsave(&dev->fib_lock, flagv);
1739 				entry = dev->fib_list.next;
1740 				while (entry != &dev->fib_list) {
1741 					entry = entry->next;
1742 					++num;
1743 				}
1744 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1745 				hw_fib_pool = NULL;
1746 				fib_pool = NULL;
1747 				if (num
1748 				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1749 				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1750 					hw_fib_p = hw_fib_pool;
1751 					fib_p = fib_pool;
1752 					while (hw_fib_p < &hw_fib_pool[num]) {
1753 						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1754 							--hw_fib_p;
1755 							break;
1756 						}
1757 						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1758 							kfree(*(--hw_fib_p));
1759 							break;
1760 						}
1761 					}
1762 					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1763 						kfree(fib_pool);
1764 						fib_pool = NULL;
1765 						kfree(hw_fib_pool);
1766 						hw_fib_pool = NULL;
1767 					}
1768 				} else {
1769 					kfree(hw_fib_pool);
1770 					hw_fib_pool = NULL;
1771 				}
1772 				spin_lock_irqsave(&dev->fib_lock, flagv);
1773 				entry = dev->fib_list.next;
1774 				/*
1775 				 * For each Context that is on the
1776 				 * fibctxList, make a copy of the
1777 				 * fib, and then set the event to wake up the
1778 				 * thread that is waiting for it.
1779 				 */
1780 				hw_fib_p = hw_fib_pool;
1781 				fib_p = fib_pool;
1782 				while (entry != &dev->fib_list) {
1783 					/*
1784 					 * Extract the fibctx
1785 					 */
1786 					fibctx = list_entry(entry, struct aac_fib_context, next);
1787 					/*
1788 					 * Check if the queue is getting
1789 					 * backlogged
1790 					 */
1791 					if (fibctx->count > 20)
1792 					{
1793 						/*
1794 						 * It's *not* jiffies folks,
1795 						 * but jiffies / HZ so do not
1796 						 * panic ...
1797 						 */
1798 						time_last = fibctx->jiffies;
1799 						/*
1800 						 * Has it been > 2 minutes
1801 						 * since the last read off
1802 						 * the queue?
1803 						 */
1804 						if ((time_now - time_last) > aif_timeout) {
1805 							entry = entry->next;
1806 							aac_close_fib_context(dev, fibctx);
1807 							continue;
1808 						}
1809 					}
1810 					/*
1811 					 * Warning: no sleep allowed while
1812 					 * holding spinlock
1813 					 */
1814 					if (hw_fib_p < &hw_fib_pool[num]) {
1815 						hw_newfib = *hw_fib_p;
1816 						*(hw_fib_p++) = NULL;
1817 						newfib = *fib_p;
1818 						*(fib_p++) = NULL;
1819 						/*
1820 						 * Make the copy of the FIB
1821 						 */
1822 						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1823 						memcpy(newfib, fib, sizeof(struct fib));
1824 						newfib->hw_fib_va = hw_newfib;
1825 						/*
1826 						 * Put the FIB onto the
1827 						 * fibctx's fibs
1828 						 */
1829 						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1830 						fibctx->count++;
1831 						/*
1832 						 * Set the event to wake up the
1833 						 * thread that is waiting.
1834 						 */
1835 						up(&fibctx->wait_sem);
1836 					} else {
1837 						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1838 					}
1839 					entry = entry->next;
1840 				}
1841 				/*
1842 				 *	Set the status of this FIB
1843 				 */
1844 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1845 				aac_fib_adapter_complete(fib, sizeof(u32));
1846 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1847 				/* Free up the remaining resources */
1848 				hw_fib_p = hw_fib_pool;
1849 				fib_p = fib_pool;
1850 				while (hw_fib_p < &hw_fib_pool[num]) {
1851 					kfree(*hw_fib_p);
1852 					kfree(*fib_p);
1853 					++fib_p;
1854 					++hw_fib_p;
1855 				}
1856 				kfree(hw_fib_pool);
1857 				kfree(fib_pool);
1858 			}
1859 			kfree(fib);
1860 			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1861 		}
1862 		/*
1863 		 *	There are no more AIF's
1864 		 */
1865 		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1866 
1867 		/*
1868 		 *	Background activity
1869 		 */
1870 		if ((time_before(next_check_jiffies,next_jiffies))
1871 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1872 			next_check_jiffies = next_jiffies;
1873 			if (aac_check_health(dev) == 0) {
1874 				difference = ((long)(unsigned)check_interval)
1875 					   * HZ;
1876 				next_check_jiffies = jiffies + difference;
1877 			} else if (!dev->queues)
1878 				break;
1879 		}
1880 		if (!time_before(next_check_jiffies,next_jiffies)
1881 		 && ((difference = next_jiffies - jiffies) <= 0)) {
1882 			struct timeval now;
1883 			int ret;
1884 
1885 			/* Don't even try to talk to adapter if its sick */
1886 			ret = aac_check_health(dev);
1887 			if (!ret && !dev->queues)
1888 				break;
1889 			next_check_jiffies = jiffies
1890 					   + ((long)(unsigned)check_interval)
1891 					   * HZ;
1892 			do_gettimeofday(&now);
1893 
1894 			/* Synchronize our watches */
1895 			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1896 			 && (now.tv_usec > (1000000 / HZ)))
1897 				difference = (((1000000 - now.tv_usec) * HZ)
1898 				  + 500000) / 1000000;
1899 			else if (ret == 0) {
1900 				struct fib *fibptr;
1901 
1902 				if ((fibptr = aac_fib_alloc(dev))) {
1903 					int status;
1904 					__le32 *info;
1905 
1906 					aac_fib_init(fibptr);
1907 
1908 					info = (__le32 *) fib_data(fibptr);
1909 					if (now.tv_usec > 500000)
1910 						++now.tv_sec;
1911 
1912 					*info = cpu_to_le32(now.tv_sec);
1913 
1914 					status = aac_fib_send(SendHostTime,
1915 						fibptr,
1916 						sizeof(*info),
1917 						FsaNormal,
1918 						1, 1,
1919 						NULL,
1920 						NULL);
1921 					/* Do not set XferState to zero unless
1922 					 * receives a response from F/W */
1923 					if (status >= 0)
1924 						aac_fib_complete(fibptr);
1925 					/* FIB should be freed only after
1926 					 * getting the response from the F/W */
1927 					if (status != -ERESTARTSYS)
1928 						aac_fib_free(fibptr);
1929 				}
1930 				difference = (long)(unsigned)update_interval*HZ;
1931 			} else {
1932 				/* retry shortly */
1933 				difference = 10 * HZ;
1934 			}
1935 			next_jiffies = jiffies + difference;
1936 			if (time_before(next_check_jiffies,next_jiffies))
1937 				difference = next_check_jiffies - jiffies;
1938 		}
1939 		if (difference <= 0)
1940 			difference = 1;
1941 		set_current_state(TASK_INTERRUPTIBLE);
1942 		schedule_timeout(difference);
1943 
1944 		if (kthread_should_stop())
1945 			break;
1946 	}
1947 	if (dev->queues)
1948 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1949 	dev->aif_thread = 0;
1950 	return 0;
1951 }
1952 
1953 int aac_acquire_irq(struct aac_dev *dev)
1954 {
1955 	int i;
1956 	int j;
1957 	int ret = 0;
1958 	int cpu;
1959 
1960 	cpu = cpumask_first(cpu_online_mask);
1961 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
1962 		for (i = 0; i < dev->max_msix; i++) {
1963 			dev->aac_msix[i].vector_no = i;
1964 			dev->aac_msix[i].dev = dev;
1965 			if (request_irq(dev->msixentry[i].vector,
1966 					dev->a_ops.adapter_intr,
1967 					0, "aacraid", &(dev->aac_msix[i]))) {
1968 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
1969 						dev->name, dev->id, i);
1970 				for (j = 0 ; j < i ; j++)
1971 					free_irq(dev->msixentry[j].vector,
1972 						 &(dev->aac_msix[j]));
1973 				pci_disable_msix(dev->pdev);
1974 				ret = -1;
1975 			}
1976 			if (irq_set_affinity_hint(dev->msixentry[i].vector,
1977 							get_cpu_mask(cpu))) {
1978 				printk(KERN_ERR "%s%d: Failed to set IRQ affinity for cpu %d\n",
1979 					    dev->name, dev->id, cpu);
1980 			}
1981 			cpu = cpumask_next(cpu, cpu_online_mask);
1982 		}
1983 	} else {
1984 		dev->aac_msix[0].vector_no = 0;
1985 		dev->aac_msix[0].dev = dev;
1986 
1987 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
1988 			IRQF_SHARED, "aacraid",
1989 			&(dev->aac_msix[0])) < 0) {
1990 			if (dev->msi)
1991 				pci_disable_msi(dev->pdev);
1992 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
1993 					dev->name, dev->id);
1994 			ret = -1;
1995 		}
1996 	}
1997 	return ret;
1998 }
1999 
2000 void aac_free_irq(struct aac_dev *dev)
2001 {
2002 	int i;
2003 	int cpu;
2004 
2005 	cpu = cpumask_first(cpu_online_mask);
2006 	if (dev->pdev->device == PMC_DEVICE_S6 ||
2007 	    dev->pdev->device == PMC_DEVICE_S7 ||
2008 	    dev->pdev->device == PMC_DEVICE_S8 ||
2009 	    dev->pdev->device == PMC_DEVICE_S9) {
2010 		if (dev->max_msix > 1) {
2011 			for (i = 0; i < dev->max_msix; i++) {
2012 				if (irq_set_affinity_hint(
2013 					dev->msixentry[i].vector, NULL)) {
2014 					printk(KERN_ERR "%s%d: Failed to reset IRQ affinity for cpu %d\n",
2015 					    dev->name, dev->id, cpu);
2016 				}
2017 				cpu = cpumask_next(cpu, cpu_online_mask);
2018 				free_irq(dev->msixentry[i].vector,
2019 						&(dev->aac_msix[i]));
2020 			}
2021 		} else {
2022 			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2023 		}
2024 	} else {
2025 		free_irq(dev->pdev->irq, dev);
2026 	}
2027 	if (dev->msi)
2028 		pci_disable_msi(dev->pdev);
2029 	else if (dev->max_msix > 1)
2030 		pci_disable_msix(dev->pdev);
2031 }
2032