xref: /openbmc/linux/drivers/scsi/aacraid/commsup.c (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Adaptec AAC series RAID controller driver
4  *	(c) Copyright 2001 Red Hat Inc.
5  *
6  * based on the old aacraid driver that is..
7  * Adaptec aacraid device driver for Linux.
8  *
9  * Copyright (c) 2000-2010 Adaptec, Inc.
10  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
11  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com)
12  *
13  * Module Name:
14  *  commsup.c
15  *
16  * Abstract: Contain all routines that are required for FSA host/adapter
17  *    communication.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/crash_dump.h>
23 #include <linux/types.h>
24 #include <linux/sched.h>
25 #include <linux/pci.h>
26 #include <linux/spinlock.h>
27 #include <linux/slab.h>
28 #include <linux/completion.h>
29 #include <linux/blkdev.h>
30 #include <linux/delay.h>
31 #include <linux/kthread.h>
32 #include <linux/interrupt.h>
33 #include <linux/bcd.h>
34 #include <scsi/scsi.h>
35 #include <scsi/scsi_host.h>
36 #include <scsi/scsi_device.h>
37 #include <scsi/scsi_cmnd.h>
38 
39 #include "aacraid.h"
40 
41 /**
42  *	fib_map_alloc		-	allocate the fib objects
43  *	@dev: Adapter to allocate for
44  *
45  *	Allocate and map the shared PCI space for the FIB blocks used to
46  *	talk to the Adaptec firmware.
47  */
48 
49 static int fib_map_alloc(struct aac_dev *dev)
50 {
51 	if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE)
52 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
53 	else
54 		dev->max_cmd_size = dev->max_fib_size;
55 	if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) {
56 		dev->max_cmd_size = AAC_MAX_NATIVE_SIZE;
57 	} else {
58 		dev->max_cmd_size = dev->max_fib_size;
59 	}
60 
61 	dprintk((KERN_INFO
62 	  "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n",
63 	  &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue,
64 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
65 	dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev,
66 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr))
67 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
68 		&dev->hw_fib_pa, GFP_KERNEL);
69 	if (dev->hw_fib_va == NULL)
70 		return -ENOMEM;
71 	return 0;
72 }
73 
74 /**
75  *	aac_fib_map_free		-	free the fib objects
76  *	@dev: Adapter to free
77  *
78  *	Free the PCI mappings and the memory allocated for FIB blocks
79  *	on this adapter.
80  */
81 
82 void aac_fib_map_free(struct aac_dev *dev)
83 {
84 	size_t alloc_size;
85 	size_t fib_size;
86 	int num_fibs;
87 
88 	if(!dev->hw_fib_va || !dev->max_cmd_size)
89 		return;
90 
91 	num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
92 	fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
93 	alloc_size = fib_size * num_fibs + ALIGN32 - 1;
94 
95 	dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va,
96 			  dev->hw_fib_pa);
97 
98 	dev->hw_fib_va = NULL;
99 	dev->hw_fib_pa = 0;
100 }
101 
102 void aac_fib_vector_assign(struct aac_dev *dev)
103 {
104 	u32 i = 0;
105 	u32 vector = 1;
106 	struct fib *fibptr = NULL;
107 
108 	for (i = 0, fibptr = &dev->fibs[i];
109 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
110 		i++, fibptr++) {
111 		if ((dev->max_msix == 1) ||
112 		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
113 			- dev->vector_cap))) {
114 			fibptr->vector_no = 0;
115 		} else {
116 			fibptr->vector_no = vector;
117 			vector++;
118 			if (vector == dev->max_msix)
119 				vector = 1;
120 		}
121 	}
122 }
123 
124 /**
125  *	aac_fib_setup	-	setup the fibs
126  *	@dev: Adapter to set up
127  *
128  *	Allocate the PCI space for the fibs, map it and then initialise the
129  *	fib area, the unmapped fib data and also the free list
130  */
131 
132 int aac_fib_setup(struct aac_dev * dev)
133 {
134 	struct fib *fibptr;
135 	struct hw_fib *hw_fib;
136 	dma_addr_t hw_fib_pa;
137 	int i;
138 	u32 max_cmds;
139 
140 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
141 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
142 		max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1;
143 		dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB;
144 		if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3)
145 			dev->init->r7.max_io_commands = cpu_to_le32(max_cmds);
146 	}
147 	if (i<0)
148 		return -ENOMEM;
149 
150 	memset(dev->hw_fib_va, 0,
151 		(dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) *
152 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
153 
154 	/* 32 byte alignment for PMC */
155 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
156 	hw_fib    = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
157 					(hw_fib_pa - dev->hw_fib_pa));
158 
159 	/* add Xport header */
160 	hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
161 		sizeof(struct aac_fib_xporthdr));
162 	hw_fib_pa += sizeof(struct aac_fib_xporthdr);
163 
164 	/*
165 	 *	Initialise the fibs
166 	 */
167 	for (i = 0, fibptr = &dev->fibs[i];
168 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
169 		i++, fibptr++)
170 	{
171 		fibptr->flags = 0;
172 		fibptr->size = sizeof(struct fib);
173 		fibptr->dev = dev;
174 		fibptr->hw_fib_va = hw_fib;
175 		fibptr->data = (void *) fibptr->hw_fib_va->data;
176 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
177 		init_completion(&fibptr->event_wait);
178 		spin_lock_init(&fibptr->event_lock);
179 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
180 		hw_fib->header.SenderSize =
181 			cpu_to_le16(dev->max_fib_size);	/* ?? max_cmd_size */
182 		fibptr->hw_fib_pa = hw_fib_pa;
183 		fibptr->hw_sgl_pa = hw_fib_pa +
184 			offsetof(struct aac_hba_cmd_req, sge[2]);
185 		/*
186 		 * one element is for the ptr to the separate sg list,
187 		 * second element for 32 byte alignment
188 		 */
189 		fibptr->hw_error_pa = hw_fib_pa +
190 			offsetof(struct aac_native_hba, resp.resp_bytes[0]);
191 
192 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
193 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr));
194 		hw_fib_pa = hw_fib_pa +
195 			dev->max_cmd_size + sizeof(struct aac_fib_xporthdr);
196 	}
197 
198 	/*
199 	 *Assign vector numbers to fibs
200 	 */
201 	aac_fib_vector_assign(dev);
202 
203 	/*
204 	 *	Add the fib chain to the free list
205 	 */
206 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
207 	/*
208 	*	Set 8 fibs aside for management tools
209 	*/
210 	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
211 	return 0;
212 }
213 
214 /**
215  *	aac_fib_alloc_tag-allocate a fib using tags
216  *	@dev: Adapter to allocate the fib for
217  *
218  *	Allocate a fib from the adapter fib pool using tags
219  *	from the blk layer.
220  */
221 
222 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
223 {
224 	struct fib *fibptr;
225 
226 	fibptr = &dev->fibs[scmd->request->tag];
227 	/*
228 	 *	Null out fields that depend on being zero at the start of
229 	 *	each I/O
230 	 */
231 	fibptr->hw_fib_va->header.XferState = 0;
232 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
233 	fibptr->callback_data = NULL;
234 	fibptr->callback = NULL;
235 	fibptr->flags = 0;
236 
237 	return fibptr;
238 }
239 
240 /**
241  *	aac_fib_alloc	-	allocate a fib
242  *	@dev: Adapter to allocate the fib for
243  *
244  *	Allocate a fib from the adapter fib pool. If the pool is empty we
245  *	return NULL.
246  */
247 
248 struct fib *aac_fib_alloc(struct aac_dev *dev)
249 {
250 	struct fib * fibptr;
251 	unsigned long flags;
252 	spin_lock_irqsave(&dev->fib_lock, flags);
253 	fibptr = dev->free_fib;
254 	if(!fibptr){
255 		spin_unlock_irqrestore(&dev->fib_lock, flags);
256 		return fibptr;
257 	}
258 	dev->free_fib = fibptr->next;
259 	spin_unlock_irqrestore(&dev->fib_lock, flags);
260 	/*
261 	 *	Set the proper node type code and node byte size
262 	 */
263 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
264 	fibptr->size = sizeof(struct fib);
265 	/*
266 	 *	Null out fields that depend on being zero at the start of
267 	 *	each I/O
268 	 */
269 	fibptr->hw_fib_va->header.XferState = 0;
270 	fibptr->flags = 0;
271 	fibptr->callback = NULL;
272 	fibptr->callback_data = NULL;
273 
274 	return fibptr;
275 }
276 
277 /**
278  *	aac_fib_free	-	free a fib
279  *	@fibptr: fib to free up
280  *
281  *	Frees up a fib and places it on the appropriate queue
282  */
283 
284 void aac_fib_free(struct fib *fibptr)
285 {
286 	unsigned long flags;
287 
288 	if (fibptr->done == 2)
289 		return;
290 
291 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
292 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
293 		aac_config.fib_timeouts++;
294 	if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
295 		fibptr->hw_fib_va->header.XferState != 0) {
296 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
297 			 (void*)fibptr,
298 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
299 	}
300 	fibptr->next = fibptr->dev->free_fib;
301 	fibptr->dev->free_fib = fibptr;
302 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
303 }
304 
305 /**
306  *	aac_fib_init	-	initialise a fib
307  *	@fibptr: The fib to initialize
308  *
309  *	Set up the generic fib fields ready for use
310  */
311 
312 void aac_fib_init(struct fib *fibptr)
313 {
314 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
315 
316 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
317 	hw_fib->header.StructType = FIB_MAGIC;
318 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
319 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
320 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
321 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
322 }
323 
324 /**
325  *	fib_deallocate		-	deallocate a fib
326  *	@fibptr: fib to deallocate
327  *
328  *	Will deallocate and return to the free pool the FIB pointed to by the
329  *	caller.
330  */
331 
332 static void fib_dealloc(struct fib * fibptr)
333 {
334 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
335 	hw_fib->header.XferState = 0;
336 }
337 
338 /*
339  *	Commuication primitives define and support the queuing method we use to
340  *	support host to adapter commuication. All queue accesses happen through
341  *	these routines and are the only routines which have a knowledge of the
342  *	 how these queues are implemented.
343  */
344 
345 /**
346  *	aac_get_entry		-	get a queue entry
347  *	@dev: Adapter
348  *	@qid: Queue Number
349  *	@entry: Entry return
350  *	@index: Index return
351  *	@nonotify: notification control
352  *
353  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
354  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
355  *	returned.
356  */
357 
358 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
359 {
360 	struct aac_queue * q;
361 	unsigned long idx;
362 
363 	/*
364 	 *	All of the queues wrap when they reach the end, so we check
365 	 *	to see if they have reached the end and if they have we just
366 	 *	set the index back to zero. This is a wrap. You could or off
367 	 *	the high bits in all updates but this is a bit faster I think.
368 	 */
369 
370 	q = &dev->queues->queue[qid];
371 
372 	idx = *index = le32_to_cpu(*(q->headers.producer));
373 	/* Interrupt Moderation, only interrupt for first two entries */
374 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
375 		if (--idx == 0) {
376 			if (qid == AdapNormCmdQueue)
377 				idx = ADAP_NORM_CMD_ENTRIES;
378 			else
379 				idx = ADAP_NORM_RESP_ENTRIES;
380 		}
381 		if (idx != le32_to_cpu(*(q->headers.consumer)))
382 			*nonotify = 1;
383 	}
384 
385 	if (qid == AdapNormCmdQueue) {
386 		if (*index >= ADAP_NORM_CMD_ENTRIES)
387 			*index = 0; /* Wrap to front of the Producer Queue. */
388 	} else {
389 		if (*index >= ADAP_NORM_RESP_ENTRIES)
390 			*index = 0; /* Wrap to front of the Producer Queue. */
391 	}
392 
393 	/* Queue is full */
394 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
395 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
396 				qid, atomic_read(&q->numpending));
397 		return 0;
398 	} else {
399 		*entry = q->base + *index;
400 		return 1;
401 	}
402 }
403 
404 /**
405  *	aac_queue_get		-	get the next free QE
406  *	@dev: Adapter
407  *	@index: Returned index
408  *	@priority: Priority of fib
409  *	@fib: Fib to associate with the queue entry
410  *	@wait: Wait if queue full
411  *	@fibptr: Driver fib object to go with fib
412  *	@nonotify: Don't notify the adapter
413  *
414  *	Gets the next free QE off the requested priorty adapter command
415  *	queue and associates the Fib with the QE. The QE represented by
416  *	index is ready to insert on the queue when this routine returns
417  *	success.
418  */
419 
420 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
421 {
422 	struct aac_entry * entry = NULL;
423 	int map = 0;
424 
425 	if (qid == AdapNormCmdQueue) {
426 		/*  if no entries wait for some if caller wants to */
427 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
428 			printk(KERN_ERR "GetEntries failed\n");
429 		}
430 		/*
431 		 *	Setup queue entry with a command, status and fib mapped
432 		 */
433 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
434 		map = 1;
435 	} else {
436 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
437 			/* if no entries wait for some if caller wants to */
438 		}
439 		/*
440 		 *	Setup queue entry with command, status and fib mapped
441 		 */
442 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
443 		entry->addr = hw_fib->header.SenderFibAddress;
444 			/* Restore adapters pointer to the FIB */
445 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
446 		map = 0;
447 	}
448 	/*
449 	 *	If MapFib is true than we need to map the Fib and put pointers
450 	 *	in the queue entry.
451 	 */
452 	if (map)
453 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
454 	return 0;
455 }
456 
457 /*
458  *	Define the highest level of host to adapter communication routines.
459  *	These routines will support host to adapter FS commuication. These
460  *	routines have no knowledge of the commuication method used. This level
461  *	sends and receives FIBs. This level has no knowledge of how these FIBs
462  *	get passed back and forth.
463  */
464 
465 /**
466  *	aac_fib_send	-	send a fib to the adapter
467  *	@command: Command to send
468  *	@fibptr: The fib
469  *	@size: Size of fib data area
470  *	@priority: Priority of Fib
471  *	@wait: Async/sync select
472  *	@reply: True if a reply is wanted
473  *	@callback: Called with reply
474  *	@callback_data: Passed to callback
475  *
476  *	Sends the requested FIB to the adapter and optionally will wait for a
477  *	response FIB. If the caller does not wish to wait for a response than
478  *	an event to wait on must be supplied. This event will be set when a
479  *	response FIB is received from the adapter.
480  */
481 
482 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
483 		int priority, int wait, int reply, fib_callback callback,
484 		void *callback_data)
485 {
486 	struct aac_dev * dev = fibptr->dev;
487 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
488 	unsigned long flags = 0;
489 	unsigned long mflags = 0;
490 	unsigned long sflags = 0;
491 
492 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
493 		return -EBUSY;
494 
495 	if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))
496 		return -EINVAL;
497 
498 	/*
499 	 *	There are 5 cases with the wait and response requested flags.
500 	 *	The only invalid cases are if the caller requests to wait and
501 	 *	does not request a response and if the caller does not want a
502 	 *	response and the Fib is not allocated from pool. If a response
503 	 *	is not requested the Fib will just be deallocaed by the DPC
504 	 *	routine when the response comes back from the adapter. No
505 	 *	further processing will be done besides deleting the Fib. We
506 	 *	will have a debug mode where the adapter can notify the host
507 	 *	it had a problem and the host can log that fact.
508 	 */
509 	fibptr->flags = 0;
510 	if (wait && !reply) {
511 		return -EINVAL;
512 	} else if (!wait && reply) {
513 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
514 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
515 	} else if (!wait && !reply) {
516 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
517 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
518 	} else if (wait && reply) {
519 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
520 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
521 	}
522 	/*
523 	 *	Map the fib into 32bits by using the fib number
524 	 */
525 
526 	hw_fib->header.SenderFibAddress =
527 		cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
528 
529 	/* use the same shifted value for handle to be compatible
530 	 * with the new native hba command handle
531 	 */
532 	hw_fib->header.Handle =
533 		cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
534 
535 	/*
536 	 *	Set FIB state to indicate where it came from and if we want a
537 	 *	response from the adapter. Also load the command from the
538 	 *	caller.
539 	 *
540 	 *	Map the hw fib pointer as a 32bit value
541 	 */
542 	hw_fib->header.Command = cpu_to_le16(command);
543 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
544 	/*
545 	 *	Set the size of the Fib we want to send to the adapter
546 	 */
547 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
548 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
549 		return -EMSGSIZE;
550 	}
551 	/*
552 	 *	Get a queue entry connect the FIB to it and send an notify
553 	 *	the adapter a command is ready.
554 	 */
555 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
556 
557 	/*
558 	 *	Fill in the Callback and CallbackContext if we are not
559 	 *	going to wait.
560 	 */
561 	if (!wait) {
562 		fibptr->callback = callback;
563 		fibptr->callback_data = callback_data;
564 		fibptr->flags = FIB_CONTEXT_FLAG;
565 	}
566 
567 	fibptr->done = 0;
568 
569 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
570 
571 	dprintk((KERN_DEBUG "Fib contents:.\n"));
572 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
573 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
574 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
575 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
576 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
577 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
578 
579 	if (!dev->queues)
580 		return -EBUSY;
581 
582 	if (wait) {
583 
584 		spin_lock_irqsave(&dev->manage_lock, mflags);
585 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
586 			printk(KERN_INFO "No management Fibs Available:%d\n",
587 						dev->management_fib_count);
588 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
589 			return -EBUSY;
590 		}
591 		dev->management_fib_count++;
592 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
593 		spin_lock_irqsave(&fibptr->event_lock, flags);
594 	}
595 
596 	if (dev->sync_mode) {
597 		if (wait)
598 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
599 		spin_lock_irqsave(&dev->sync_lock, sflags);
600 		if (dev->sync_fib) {
601 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
602 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
603 		} else {
604 			dev->sync_fib = fibptr;
605 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
606 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
607 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
608 				NULL, NULL, NULL, NULL, NULL);
609 		}
610 		if (wait) {
611 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
612 			if (wait_for_completion_interruptible(&fibptr->event_wait)) {
613 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
614 				return -EFAULT;
615 			}
616 			return 0;
617 		}
618 		return -EINPROGRESS;
619 	}
620 
621 	if (aac_adapter_deliver(fibptr) != 0) {
622 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
623 		if (wait) {
624 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
625 			spin_lock_irqsave(&dev->manage_lock, mflags);
626 			dev->management_fib_count--;
627 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
628 		}
629 		return -EBUSY;
630 	}
631 
632 
633 	/*
634 	 *	If the caller wanted us to wait for response wait now.
635 	 */
636 
637 	if (wait) {
638 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
639 		/* Only set for first known interruptable command */
640 		if (wait < 0) {
641 			/*
642 			 * *VERY* Dangerous to time out a command, the
643 			 * assumption is made that we have no hope of
644 			 * functioning because an interrupt routing or other
645 			 * hardware failure has occurred.
646 			 */
647 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
648 			while (!try_wait_for_completion(&fibptr->event_wait)) {
649 				int blink;
650 				if (time_is_before_eq_jiffies(timeout)) {
651 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
652 					atomic_dec(&q->numpending);
653 					if (wait == -1) {
654 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
655 						  "Usually a result of a PCI interrupt routing problem;\n"
656 						  "update mother board BIOS or consider utilizing one of\n"
657 						  "the SAFE mode kernel options (acpi, apic etc)\n");
658 					}
659 					return -ETIMEDOUT;
660 				}
661 
662 				if (unlikely(aac_pci_offline(dev)))
663 					return -EFAULT;
664 
665 				if ((blink = aac_adapter_check_health(dev)) > 0) {
666 					if (wait == -1) {
667 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
668 						  "Usually a result of a serious unrecoverable hardware problem\n",
669 						  blink);
670 					}
671 					return -EFAULT;
672 				}
673 				/*
674 				 * Allow other processes / CPUS to use core
675 				 */
676 				schedule();
677 			}
678 		} else if (wait_for_completion_interruptible(&fibptr->event_wait)) {
679 			/* Do nothing ... satisfy
680 			 * wait_for_completion_interruptible must_check */
681 		}
682 
683 		spin_lock_irqsave(&fibptr->event_lock, flags);
684 		if (fibptr->done == 0) {
685 			fibptr->done = 2; /* Tell interrupt we aborted */
686 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
687 			return -ERESTARTSYS;
688 		}
689 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
690 		BUG_ON(fibptr->done == 0);
691 
692 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
693 			return -ETIMEDOUT;
694 		return 0;
695 	}
696 	/*
697 	 *	If the user does not want a response than return success otherwise
698 	 *	return pending
699 	 */
700 	if (reply)
701 		return -EINPROGRESS;
702 	else
703 		return 0;
704 }
705 
706 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback,
707 		void *callback_data)
708 {
709 	struct aac_dev *dev = fibptr->dev;
710 	int wait;
711 	unsigned long flags = 0;
712 	unsigned long mflags = 0;
713 	struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *)
714 			fibptr->hw_fib_va;
715 
716 	fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA);
717 	if (callback) {
718 		wait = 0;
719 		fibptr->callback = callback;
720 		fibptr->callback_data = callback_data;
721 	} else
722 		wait = 1;
723 
724 
725 	hbacmd->iu_type = command;
726 
727 	if (command == HBA_IU_TYPE_SCSI_CMD_REQ) {
728 		/* bit1 of request_id must be 0 */
729 		hbacmd->request_id =
730 			cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1);
731 		fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD;
732 	} else
733 		return -EINVAL;
734 
735 
736 	if (wait) {
737 		spin_lock_irqsave(&dev->manage_lock, mflags);
738 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
739 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
740 			return -EBUSY;
741 		}
742 		dev->management_fib_count++;
743 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
744 		spin_lock_irqsave(&fibptr->event_lock, flags);
745 	}
746 
747 	if (aac_adapter_deliver(fibptr) != 0) {
748 		if (wait) {
749 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
750 			spin_lock_irqsave(&dev->manage_lock, mflags);
751 			dev->management_fib_count--;
752 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
753 		}
754 		return -EBUSY;
755 	}
756 	FIB_COUNTER_INCREMENT(aac_config.NativeSent);
757 
758 	if (wait) {
759 
760 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
761 
762 		if (unlikely(aac_pci_offline(dev)))
763 			return -EFAULT;
764 
765 		fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
766 		if (wait_for_completion_interruptible(&fibptr->event_wait))
767 			fibptr->done = 2;
768 		fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT);
769 
770 		spin_lock_irqsave(&fibptr->event_lock, flags);
771 		if ((fibptr->done == 0) || (fibptr->done == 2)) {
772 			fibptr->done = 2; /* Tell interrupt we aborted */
773 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
774 			return -ERESTARTSYS;
775 		}
776 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
777 		WARN_ON(fibptr->done == 0);
778 
779 		if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
780 			return -ETIMEDOUT;
781 
782 		return 0;
783 	}
784 
785 	return -EINPROGRESS;
786 }
787 
788 /**
789  *	aac_consumer_get	-	get the top of the queue
790  *	@dev: Adapter
791  *	@q: Queue
792  *	@entry: Return entry
793  *
794  *	Will return a pointer to the entry on the top of the queue requested that
795  *	we are a consumer of, and return the address of the queue entry. It does
796  *	not change the state of the queue.
797  */
798 
799 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
800 {
801 	u32 index;
802 	int status;
803 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
804 		status = 0;
805 	} else {
806 		/*
807 		 *	The consumer index must be wrapped if we have reached
808 		 *	the end of the queue, else we just use the entry
809 		 *	pointed to by the header index
810 		 */
811 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
812 			index = 0;
813 		else
814 			index = le32_to_cpu(*q->headers.consumer);
815 		*entry = q->base + index;
816 		status = 1;
817 	}
818 	return(status);
819 }
820 
821 /**
822  *	aac_consumer_free	-	free consumer entry
823  *	@dev: Adapter
824  *	@q: Queue
825  *	@qid: Queue ident
826  *
827  *	Frees up the current top of the queue we are a consumer of. If the
828  *	queue was full notify the producer that the queue is no longer full.
829  */
830 
831 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
832 {
833 	int wasfull = 0;
834 	u32 notify;
835 
836 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
837 		wasfull = 1;
838 
839 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
840 		*q->headers.consumer = cpu_to_le32(1);
841 	else
842 		le32_add_cpu(q->headers.consumer, 1);
843 
844 	if (wasfull) {
845 		switch (qid) {
846 
847 		case HostNormCmdQueue:
848 			notify = HostNormCmdNotFull;
849 			break;
850 		case HostNormRespQueue:
851 			notify = HostNormRespNotFull;
852 			break;
853 		default:
854 			BUG();
855 			return;
856 		}
857 		aac_adapter_notify(dev, notify);
858 	}
859 }
860 
861 /**
862  *	aac_fib_adapter_complete	-	complete adapter issued fib
863  *	@fibptr: fib to complete
864  *	@size: size of fib
865  *
866  *	Will do all necessary work to complete a FIB that was sent from
867  *	the adapter.
868  */
869 
870 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
871 {
872 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
873 	struct aac_dev * dev = fibptr->dev;
874 	struct aac_queue * q;
875 	unsigned long nointr = 0;
876 	unsigned long qflags;
877 
878 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
879 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 ||
880 		dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) {
881 		kfree(hw_fib);
882 		return 0;
883 	}
884 
885 	if (hw_fib->header.XferState == 0) {
886 		if (dev->comm_interface == AAC_COMM_MESSAGE)
887 			kfree(hw_fib);
888 		return 0;
889 	}
890 	/*
891 	 *	If we plan to do anything check the structure type first.
892 	 */
893 	if (hw_fib->header.StructType != FIB_MAGIC &&
894 	    hw_fib->header.StructType != FIB_MAGIC2 &&
895 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
896 		if (dev->comm_interface == AAC_COMM_MESSAGE)
897 			kfree(hw_fib);
898 		return -EINVAL;
899 	}
900 	/*
901 	 *	This block handles the case where the adapter had sent us a
902 	 *	command and we have finished processing the command. We
903 	 *	call completeFib when we are done processing the command
904 	 *	and want to send a response back to the adapter. This will
905 	 *	send the completed cdb to the adapter.
906 	 */
907 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
908 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
909 			kfree (hw_fib);
910 		} else {
911 			u32 index;
912 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
913 			if (size) {
914 				size += sizeof(struct aac_fibhdr);
915 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
916 					return -EMSGSIZE;
917 				hw_fib->header.Size = cpu_to_le16(size);
918 			}
919 			q = &dev->queues->queue[AdapNormRespQueue];
920 			spin_lock_irqsave(q->lock, qflags);
921 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
922 			*(q->headers.producer) = cpu_to_le32(index + 1);
923 			spin_unlock_irqrestore(q->lock, qflags);
924 			if (!(nointr & (int)aac_config.irq_mod))
925 				aac_adapter_notify(dev, AdapNormRespQueue);
926 		}
927 	} else {
928 		printk(KERN_WARNING "aac_fib_adapter_complete: "
929 			"Unknown xferstate detected.\n");
930 		BUG();
931 	}
932 	return 0;
933 }
934 
935 /**
936  *	aac_fib_complete	-	fib completion handler
937  *	@fib: FIB to complete
938  *
939  *	Will do all necessary work to complete a FIB.
940  */
941 
942 int aac_fib_complete(struct fib *fibptr)
943 {
944 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
945 
946 	if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) {
947 		fib_dealloc(fibptr);
948 		return 0;
949 	}
950 
951 	/*
952 	 *	Check for a fib which has already been completed or with a
953 	 *	status wait timeout
954 	 */
955 
956 	if (hw_fib->header.XferState == 0 || fibptr->done == 2)
957 		return 0;
958 	/*
959 	 *	If we plan to do anything check the structure type first.
960 	 */
961 
962 	if (hw_fib->header.StructType != FIB_MAGIC &&
963 	    hw_fib->header.StructType != FIB_MAGIC2 &&
964 	    hw_fib->header.StructType != FIB_MAGIC2_64)
965 		return -EINVAL;
966 	/*
967 	 *	This block completes a cdb which orginated on the host and we
968 	 *	just need to deallocate the cdb or reinit it. At this point the
969 	 *	command is complete that we had sent to the adapter and this
970 	 *	cdb could be reused.
971 	 */
972 
973 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
974 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
975 	{
976 		fib_dealloc(fibptr);
977 	}
978 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
979 	{
980 		/*
981 		 *	This handles the case when the host has aborted the I/O
982 		 *	to the adapter because the adapter is not responding
983 		 */
984 		fib_dealloc(fibptr);
985 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
986 		fib_dealloc(fibptr);
987 	} else {
988 		BUG();
989 	}
990 	return 0;
991 }
992 
993 /**
994  *	aac_printf	-	handle printf from firmware
995  *	@dev: Adapter
996  *	@val: Message info
997  *
998  *	Print a message passed to us by the controller firmware on the
999  *	Adaptec board
1000  */
1001 
1002 void aac_printf(struct aac_dev *dev, u32 val)
1003 {
1004 	char *cp = dev->printfbuf;
1005 	if (dev->printf_enabled)
1006 	{
1007 		int length = val & 0xffff;
1008 		int level = (val >> 16) & 0xffff;
1009 
1010 		/*
1011 		 *	The size of the printfbuf is set in port.c
1012 		 *	There is no variable or define for it
1013 		 */
1014 		if (length > 255)
1015 			length = 255;
1016 		if (cp[length] != 0)
1017 			cp[length] = 0;
1018 		if (level == LOG_AAC_HIGH_ERROR)
1019 			printk(KERN_WARNING "%s:%s", dev->name, cp);
1020 		else
1021 			printk(KERN_INFO "%s:%s", dev->name, cp);
1022 	}
1023 	memset(cp, 0, 256);
1024 }
1025 
1026 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
1027 {
1028 	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
1029 }
1030 
1031 
1032 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
1033 {
1034 	switch (aac_aif_data(aifcmd, 1)) {
1035 	case AifBuCacheDataLoss:
1036 		if (aac_aif_data(aifcmd, 2))
1037 			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
1038 			aac_aif_data(aifcmd, 2));
1039 		else
1040 			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
1041 		break;
1042 	case AifBuCacheDataRecover:
1043 		if (aac_aif_data(aifcmd, 2))
1044 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
1045 			aac_aif_data(aifcmd, 2));
1046 		else
1047 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
1048 		break;
1049 	}
1050 }
1051 
1052 /**
1053  *	aac_handle_aif		-	Handle a message from the firmware
1054  *	@dev: Which adapter this fib is from
1055  *	@fibptr: Pointer to fibptr from adapter
1056  *
1057  *	This routine handles a driver notify fib from the adapter and
1058  *	dispatches it to the appropriate routine for handling.
1059  */
1060 
1061 #define AIF_SNIFF_TIMEOUT	(500*HZ)
1062 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
1063 {
1064 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
1065 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
1066 	u32 channel, id, lun, container;
1067 	struct scsi_device *device;
1068 	enum {
1069 		NOTHING,
1070 		DELETE,
1071 		ADD,
1072 		CHANGE
1073 	} device_config_needed = NOTHING;
1074 
1075 	/* Sniff for container changes */
1076 
1077 	if (!dev || !dev->fsa_dev)
1078 		return;
1079 	container = channel = id = lun = (u32)-1;
1080 
1081 	/*
1082 	 *	We have set this up to try and minimize the number of
1083 	 * re-configures that take place. As a result of this when
1084 	 * certain AIF's come in we will set a flag waiting for another
1085 	 * type of AIF before setting the re-config flag.
1086 	 */
1087 	switch (le32_to_cpu(aifcmd->command)) {
1088 	case AifCmdDriverNotify:
1089 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1090 		case AifRawDeviceRemove:
1091 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1092 			if ((container >> 28)) {
1093 				container = (u32)-1;
1094 				break;
1095 			}
1096 			channel = (container >> 24) & 0xF;
1097 			if (channel >= dev->maximum_num_channels) {
1098 				container = (u32)-1;
1099 				break;
1100 			}
1101 			id = container & 0xFFFF;
1102 			if (id >= dev->maximum_num_physicals) {
1103 				container = (u32)-1;
1104 				break;
1105 			}
1106 			lun = (container >> 16) & 0xFF;
1107 			container = (u32)-1;
1108 			channel = aac_phys_to_logical(channel);
1109 			device_config_needed = DELETE;
1110 			break;
1111 
1112 		/*
1113 		 *	Morph or Expand complete
1114 		 */
1115 		case AifDenMorphComplete:
1116 		case AifDenVolumeExtendComplete:
1117 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1118 			if (container >= dev->maximum_num_containers)
1119 				break;
1120 
1121 			/*
1122 			 *	Find the scsi_device associated with the SCSI
1123 			 * address. Make sure we have the right array, and if
1124 			 * so set the flag to initiate a new re-config once we
1125 			 * see an AifEnConfigChange AIF come through.
1126 			 */
1127 
1128 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1129 				device = scsi_device_lookup(dev->scsi_host_ptr,
1130 					CONTAINER_TO_CHANNEL(container),
1131 					CONTAINER_TO_ID(container),
1132 					CONTAINER_TO_LUN(container));
1133 				if (device) {
1134 					dev->fsa_dev[container].config_needed = CHANGE;
1135 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1136 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1137 					scsi_device_put(device);
1138 				}
1139 			}
1140 		}
1141 
1142 		/*
1143 		 *	If we are waiting on something and this happens to be
1144 		 * that thing then set the re-configure flag.
1145 		 */
1146 		if (container != (u32)-1) {
1147 			if (container >= dev->maximum_num_containers)
1148 				break;
1149 			if ((dev->fsa_dev[container].config_waiting_on ==
1150 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1151 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1152 				dev->fsa_dev[container].config_waiting_on = 0;
1153 		} else for (container = 0;
1154 		    container < dev->maximum_num_containers; ++container) {
1155 			if ((dev->fsa_dev[container].config_waiting_on ==
1156 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1157 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1158 				dev->fsa_dev[container].config_waiting_on = 0;
1159 		}
1160 		break;
1161 
1162 	case AifCmdEventNotify:
1163 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1164 		case AifEnBatteryEvent:
1165 			dev->cache_protected =
1166 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1167 			break;
1168 		/*
1169 		 *	Add an Array.
1170 		 */
1171 		case AifEnAddContainer:
1172 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1173 			if (container >= dev->maximum_num_containers)
1174 				break;
1175 			dev->fsa_dev[container].config_needed = ADD;
1176 			dev->fsa_dev[container].config_waiting_on =
1177 				AifEnConfigChange;
1178 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1179 			break;
1180 
1181 		/*
1182 		 *	Delete an Array.
1183 		 */
1184 		case AifEnDeleteContainer:
1185 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1186 			if (container >= dev->maximum_num_containers)
1187 				break;
1188 			dev->fsa_dev[container].config_needed = DELETE;
1189 			dev->fsa_dev[container].config_waiting_on =
1190 				AifEnConfigChange;
1191 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1192 			break;
1193 
1194 		/*
1195 		 *	Container change detected. If we currently are not
1196 		 * waiting on something else, setup to wait on a Config Change.
1197 		 */
1198 		case AifEnContainerChange:
1199 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1200 			if (container >= dev->maximum_num_containers)
1201 				break;
1202 			if (dev->fsa_dev[container].config_waiting_on &&
1203 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1204 				break;
1205 			dev->fsa_dev[container].config_needed = CHANGE;
1206 			dev->fsa_dev[container].config_waiting_on =
1207 				AifEnConfigChange;
1208 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1209 			break;
1210 
1211 		case AifEnConfigChange:
1212 			break;
1213 
1214 		case AifEnAddJBOD:
1215 		case AifEnDeleteJBOD:
1216 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1217 			if ((container >> 28)) {
1218 				container = (u32)-1;
1219 				break;
1220 			}
1221 			channel = (container >> 24) & 0xF;
1222 			if (channel >= dev->maximum_num_channels) {
1223 				container = (u32)-1;
1224 				break;
1225 			}
1226 			id = container & 0xFFFF;
1227 			if (id >= dev->maximum_num_physicals) {
1228 				container = (u32)-1;
1229 				break;
1230 			}
1231 			lun = (container >> 16) & 0xFF;
1232 			container = (u32)-1;
1233 			channel = aac_phys_to_logical(channel);
1234 			device_config_needed =
1235 			  (((__le32 *)aifcmd->data)[0] ==
1236 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1237 			if (device_config_needed == ADD) {
1238 				device = scsi_device_lookup(dev->scsi_host_ptr,
1239 					channel,
1240 					id,
1241 					lun);
1242 				if (device) {
1243 					scsi_remove_device(device);
1244 					scsi_device_put(device);
1245 				}
1246 			}
1247 			break;
1248 
1249 		case AifEnEnclosureManagement:
1250 			/*
1251 			 * If in JBOD mode, automatic exposure of new
1252 			 * physical target to be suppressed until configured.
1253 			 */
1254 			if (dev->jbod)
1255 				break;
1256 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1257 			case EM_DRIVE_INSERTION:
1258 			case EM_DRIVE_REMOVAL:
1259 			case EM_SES_DRIVE_INSERTION:
1260 			case EM_SES_DRIVE_REMOVAL:
1261 				container = le32_to_cpu(
1262 					((__le32 *)aifcmd->data)[2]);
1263 				if ((container >> 28)) {
1264 					container = (u32)-1;
1265 					break;
1266 				}
1267 				channel = (container >> 24) & 0xF;
1268 				if (channel >= dev->maximum_num_channels) {
1269 					container = (u32)-1;
1270 					break;
1271 				}
1272 				id = container & 0xFFFF;
1273 				lun = (container >> 16) & 0xFF;
1274 				container = (u32)-1;
1275 				if (id >= dev->maximum_num_physicals) {
1276 					/* legacy dev_t ? */
1277 					if ((0x2000 <= id) || lun || channel ||
1278 					  ((channel = (id >> 7) & 0x3F) >=
1279 					  dev->maximum_num_channels))
1280 						break;
1281 					lun = (id >> 4) & 7;
1282 					id &= 0xF;
1283 				}
1284 				channel = aac_phys_to_logical(channel);
1285 				device_config_needed =
1286 				  ((((__le32 *)aifcmd->data)[3]
1287 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1288 				    (((__le32 *)aifcmd->data)[3]
1289 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1290 				  ADD : DELETE;
1291 				break;
1292 			}
1293 			break;
1294 		case AifBuManagerEvent:
1295 			aac_handle_aif_bu(dev, aifcmd);
1296 			break;
1297 		}
1298 
1299 		/*
1300 		 *	If we are waiting on something and this happens to be
1301 		 * that thing then set the re-configure flag.
1302 		 */
1303 		if (container != (u32)-1) {
1304 			if (container >= dev->maximum_num_containers)
1305 				break;
1306 			if ((dev->fsa_dev[container].config_waiting_on ==
1307 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1308 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1309 				dev->fsa_dev[container].config_waiting_on = 0;
1310 		} else for (container = 0;
1311 		    container < dev->maximum_num_containers; ++container) {
1312 			if ((dev->fsa_dev[container].config_waiting_on ==
1313 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1314 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1315 				dev->fsa_dev[container].config_waiting_on = 0;
1316 		}
1317 		break;
1318 
1319 	case AifCmdJobProgress:
1320 		/*
1321 		 *	These are job progress AIF's. When a Clear is being
1322 		 * done on a container it is initially created then hidden from
1323 		 * the OS. When the clear completes we don't get a config
1324 		 * change so we monitor the job status complete on a clear then
1325 		 * wait for a container change.
1326 		 */
1327 
1328 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1329 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1330 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1331 			for (container = 0;
1332 			    container < dev->maximum_num_containers;
1333 			    ++container) {
1334 				/*
1335 				 * Stomp on all config sequencing for all
1336 				 * containers?
1337 				 */
1338 				dev->fsa_dev[container].config_waiting_on =
1339 					AifEnContainerChange;
1340 				dev->fsa_dev[container].config_needed = ADD;
1341 				dev->fsa_dev[container].config_waiting_stamp =
1342 					jiffies;
1343 			}
1344 		}
1345 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1346 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1347 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1348 			for (container = 0;
1349 			    container < dev->maximum_num_containers;
1350 			    ++container) {
1351 				/*
1352 				 * Stomp on all config sequencing for all
1353 				 * containers?
1354 				 */
1355 				dev->fsa_dev[container].config_waiting_on =
1356 					AifEnContainerChange;
1357 				dev->fsa_dev[container].config_needed = DELETE;
1358 				dev->fsa_dev[container].config_waiting_stamp =
1359 					jiffies;
1360 			}
1361 		}
1362 		break;
1363 	}
1364 
1365 	container = 0;
1366 retry_next:
1367 	if (device_config_needed == NOTHING) {
1368 		for (; container < dev->maximum_num_containers; ++container) {
1369 			if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1370 			    (dev->fsa_dev[container].config_needed != NOTHING) &&
1371 			    time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1372 				device_config_needed =
1373 					dev->fsa_dev[container].config_needed;
1374 				dev->fsa_dev[container].config_needed = NOTHING;
1375 				channel = CONTAINER_TO_CHANNEL(container);
1376 				id = CONTAINER_TO_ID(container);
1377 				lun = CONTAINER_TO_LUN(container);
1378 				break;
1379 			}
1380 		}
1381 	}
1382 	if (device_config_needed == NOTHING)
1383 		return;
1384 
1385 	/*
1386 	 *	If we decided that a re-configuration needs to be done,
1387 	 * schedule it here on the way out the door, please close the door
1388 	 * behind you.
1389 	 */
1390 
1391 	/*
1392 	 *	Find the scsi_device associated with the SCSI address,
1393 	 * and mark it as changed, invalidating the cache. This deals
1394 	 * with changes to existing device IDs.
1395 	 */
1396 
1397 	if (!dev || !dev->scsi_host_ptr)
1398 		return;
1399 	/*
1400 	 * force reload of disk info via aac_probe_container
1401 	 */
1402 	if ((channel == CONTAINER_CHANNEL) &&
1403 	  (device_config_needed != NOTHING)) {
1404 		if (dev->fsa_dev[container].valid == 1)
1405 			dev->fsa_dev[container].valid = 2;
1406 		aac_probe_container(dev, container);
1407 	}
1408 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1409 	if (device) {
1410 		switch (device_config_needed) {
1411 		case DELETE:
1412 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1413 			scsi_remove_device(device);
1414 #else
1415 			if (scsi_device_online(device)) {
1416 				scsi_device_set_state(device, SDEV_OFFLINE);
1417 				sdev_printk(KERN_INFO, device,
1418 					"Device offlined - %s\n",
1419 					(channel == CONTAINER_CHANNEL) ?
1420 						"array deleted" :
1421 						"enclosure services event");
1422 			}
1423 #endif
1424 			break;
1425 		case ADD:
1426 			if (!scsi_device_online(device)) {
1427 				sdev_printk(KERN_INFO, device,
1428 					"Device online - %s\n",
1429 					(channel == CONTAINER_CHANNEL) ?
1430 						"array created" :
1431 						"enclosure services event");
1432 				scsi_device_set_state(device, SDEV_RUNNING);
1433 			}
1434 			/* FALLTHRU */
1435 		case CHANGE:
1436 			if ((channel == CONTAINER_CHANNEL)
1437 			 && (!dev->fsa_dev[container].valid)) {
1438 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1439 				scsi_remove_device(device);
1440 #else
1441 				if (!scsi_device_online(device))
1442 					break;
1443 				scsi_device_set_state(device, SDEV_OFFLINE);
1444 				sdev_printk(KERN_INFO, device,
1445 					"Device offlined - %s\n",
1446 					"array failed");
1447 #endif
1448 				break;
1449 			}
1450 			scsi_rescan_device(&device->sdev_gendev);
1451 
1452 		default:
1453 			break;
1454 		}
1455 		scsi_device_put(device);
1456 		device_config_needed = NOTHING;
1457 	}
1458 	if (device_config_needed == ADD)
1459 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1460 	if (channel == CONTAINER_CHANNEL) {
1461 		container++;
1462 		device_config_needed = NOTHING;
1463 		goto retry_next;
1464 	}
1465 }
1466 
1467 static void aac_schedule_bus_scan(struct aac_dev *aac)
1468 {
1469 	if (aac->sa_firmware)
1470 		aac_schedule_safw_scan_worker(aac);
1471 	else
1472 		aac_schedule_src_reinit_aif_worker(aac);
1473 }
1474 
1475 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1476 {
1477 	int index, quirks;
1478 	int retval;
1479 	struct Scsi_Host *host = aac->scsi_host_ptr;
1480 	int jafo = 0;
1481 	int bled;
1482 	u64 dmamask;
1483 	int num_of_fibs = 0;
1484 
1485 	/*
1486 	 * Assumptions:
1487 	 *	- host is locked, unless called by the aacraid thread.
1488 	 *	  (a matter of convenience, due to legacy issues surrounding
1489 	 *	  eh_host_adapter_reset).
1490 	 *	- in_reset is asserted, so no new i/o is getting to the
1491 	 *	  card.
1492 	 *	- The card is dead, or will be very shortly ;-/ so no new
1493 	 *	  commands are completing in the interrupt service.
1494 	 */
1495 	aac_adapter_disable_int(aac);
1496 	if (aac->thread && aac->thread->pid != current->pid) {
1497 		spin_unlock_irq(host->host_lock);
1498 		kthread_stop(aac->thread);
1499 		aac->thread = NULL;
1500 		jafo = 1;
1501 	}
1502 
1503 	/*
1504 	 *	If a positive health, means in a known DEAD PANIC
1505 	 * state and the adapter could be reset to `try again'.
1506 	 */
1507 	bled = forced ? 0 : aac_adapter_check_health(aac);
1508 	retval = aac_adapter_restart(aac, bled, reset_type);
1509 
1510 	if (retval)
1511 		goto out;
1512 
1513 	/*
1514 	 *	Loop through the fibs, close the synchronous FIBS
1515 	 */
1516 	retval = 1;
1517 	num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB;
1518 	for (index = 0; index <  num_of_fibs; index++) {
1519 
1520 		struct fib *fib = &aac->fibs[index];
1521 		__le32 XferState = fib->hw_fib_va->header.XferState;
1522 		bool is_response_expected = false;
1523 
1524 		if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1525 		   (XferState & cpu_to_le32(ResponseExpected)))
1526 			is_response_expected = true;
1527 
1528 		if (is_response_expected
1529 		  || fib->flags & FIB_CONTEXT_FLAG_WAIT) {
1530 			unsigned long flagv;
1531 			spin_lock_irqsave(&fib->event_lock, flagv);
1532 			complete(&fib->event_wait);
1533 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1534 			schedule();
1535 			retval = 0;
1536 		}
1537 	}
1538 	/* Give some extra time for ioctls to complete. */
1539 	if (retval == 0)
1540 		ssleep(2);
1541 	index = aac->cardtype;
1542 
1543 	/*
1544 	 * Re-initialize the adapter, first free resources, then carefully
1545 	 * apply the initialization sequence to come back again. Only risk
1546 	 * is a change in Firmware dropping cache, it is assumed the caller
1547 	 * will ensure that i/o is queisced and the card is flushed in that
1548 	 * case.
1549 	 */
1550 	aac_free_irq(aac);
1551 	aac_fib_map_free(aac);
1552 	dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1553 			  aac->comm_phys);
1554 	aac->comm_addr = NULL;
1555 	aac->comm_phys = 0;
1556 	kfree(aac->queues);
1557 	aac->queues = NULL;
1558 	kfree(aac->fsa_dev);
1559 	aac->fsa_dev = NULL;
1560 
1561 	dmamask = DMA_BIT_MASK(32);
1562 	quirks = aac_get_driver_ident(index)->quirks;
1563 	if (quirks & AAC_QUIRK_31BIT)
1564 		retval = pci_set_dma_mask(aac->pdev, dmamask);
1565 	else if (!(quirks & AAC_QUIRK_SRC))
1566 		retval = pci_set_dma_mask(aac->pdev, dmamask);
1567 	else
1568 		retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1569 
1570 	if (quirks & AAC_QUIRK_31BIT && !retval) {
1571 		dmamask = DMA_BIT_MASK(31);
1572 		retval = pci_set_consistent_dma_mask(aac->pdev, dmamask);
1573 	}
1574 
1575 	if (retval)
1576 		goto out;
1577 
1578 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1579 		goto out;
1580 
1581 	if (jafo) {
1582 		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1583 					  aac->name);
1584 		if (IS_ERR(aac->thread)) {
1585 			retval = PTR_ERR(aac->thread);
1586 			aac->thread = NULL;
1587 			goto out;
1588 		}
1589 	}
1590 	(void)aac_get_adapter_info(aac);
1591 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1592 		host->sg_tablesize = 34;
1593 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1594 	}
1595 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1596 		host->sg_tablesize = 17;
1597 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1598 	}
1599 	aac_get_config_status(aac, 1);
1600 	aac_get_containers(aac);
1601 	/*
1602 	 * This is where the assumption that the Adapter is quiesced
1603 	 * is important.
1604 	 */
1605 	scsi_host_complete_all_commands(host, DID_RESET);
1606 
1607 	retval = 0;
1608 out:
1609 	aac->in_reset = 0;
1610 
1611 	/*
1612 	 * Issue bus rescan to catch any configuration that might have
1613 	 * occurred
1614 	 */
1615 	if (!retval && !is_kdump_kernel()) {
1616 		dev_info(&aac->pdev->dev, "Scheduling bus rescan\n");
1617 		aac_schedule_bus_scan(aac);
1618 	}
1619 
1620 	if (jafo) {
1621 		spin_lock_irq(host->host_lock);
1622 	}
1623 	return retval;
1624 }
1625 
1626 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type)
1627 {
1628 	unsigned long flagv = 0;
1629 	int retval, unblock_retval;
1630 	struct Scsi_Host *host = aac->scsi_host_ptr;
1631 	int bled;
1632 
1633 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1634 		return -EBUSY;
1635 
1636 	if (aac->in_reset) {
1637 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1638 		return -EBUSY;
1639 	}
1640 	aac->in_reset = 1;
1641 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1642 
1643 	/*
1644 	 * Wait for all commands to complete to this specific
1645 	 * target (block maximum 60 seconds). Although not necessary,
1646 	 * it does make us a good storage citizen.
1647 	 */
1648 	scsi_host_block(host);
1649 
1650 	/* Quiesce build, flush cache, write through mode */
1651 	if (forced < 2)
1652 		aac_send_shutdown(aac);
1653 	spin_lock_irqsave(host->host_lock, flagv);
1654 	bled = forced ? forced :
1655 			(aac_check_reset != 0 && aac_check_reset != 1);
1656 	retval = _aac_reset_adapter(aac, bled, reset_type);
1657 	spin_unlock_irqrestore(host->host_lock, flagv);
1658 
1659 	unblock_retval = scsi_host_unblock(host, SDEV_RUNNING);
1660 	if (!retval)
1661 		retval = unblock_retval;
1662 	if ((forced < 2) && (retval == -ENODEV)) {
1663 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1664 		struct fib * fibctx = aac_fib_alloc(aac);
1665 		if (fibctx) {
1666 			struct aac_pause *cmd;
1667 			int status;
1668 
1669 			aac_fib_init(fibctx);
1670 
1671 			cmd = (struct aac_pause *) fib_data(fibctx);
1672 
1673 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1674 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1675 			cmd->timeout = cpu_to_le32(1);
1676 			cmd->min = cpu_to_le32(1);
1677 			cmd->noRescan = cpu_to_le32(1);
1678 			cmd->count = cpu_to_le32(0);
1679 
1680 			status = aac_fib_send(ContainerCommand,
1681 			  fibctx,
1682 			  sizeof(struct aac_pause),
1683 			  FsaNormal,
1684 			  -2 /* Timeout silently */, 1,
1685 			  NULL, NULL);
1686 
1687 			if (status >= 0)
1688 				aac_fib_complete(fibctx);
1689 			/* FIB should be freed only after getting
1690 			 * the response from the F/W */
1691 			if (status != -ERESTARTSYS)
1692 				aac_fib_free(fibctx);
1693 		}
1694 	}
1695 
1696 	return retval;
1697 }
1698 
1699 int aac_check_health(struct aac_dev * aac)
1700 {
1701 	int BlinkLED;
1702 	unsigned long time_now, flagv = 0;
1703 	struct list_head * entry;
1704 
1705 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1706 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1707 		return 0;
1708 
1709 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1710 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1711 		return 0; /* OK */
1712 	}
1713 
1714 	aac->in_reset = 1;
1715 
1716 	/* Fake up an AIF:
1717 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1718 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1719 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1720 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1721 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1722 	 *	aac.aifcmd.data[3] = BlinkLED
1723 	 */
1724 
1725 	time_now = jiffies/HZ;
1726 	entry = aac->fib_list.next;
1727 
1728 	/*
1729 	 * For each Context that is on the
1730 	 * fibctxList, make a copy of the
1731 	 * fib, and then set the event to wake up the
1732 	 * thread that is waiting for it.
1733 	 */
1734 	while (entry != &aac->fib_list) {
1735 		/*
1736 		 * Extract the fibctx
1737 		 */
1738 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1739 		struct hw_fib * hw_fib;
1740 		struct fib * fib;
1741 		/*
1742 		 * Check if the queue is getting
1743 		 * backlogged
1744 		 */
1745 		if (fibctx->count > 20) {
1746 			/*
1747 			 * It's *not* jiffies folks,
1748 			 * but jiffies / HZ, so do not
1749 			 * panic ...
1750 			 */
1751 			u32 time_last = fibctx->jiffies;
1752 			/*
1753 			 * Has it been > 2 minutes
1754 			 * since the last read off
1755 			 * the queue?
1756 			 */
1757 			if ((time_now - time_last) > aif_timeout) {
1758 				entry = entry->next;
1759 				aac_close_fib_context(aac, fibctx);
1760 				continue;
1761 			}
1762 		}
1763 		/*
1764 		 * Warning: no sleep allowed while
1765 		 * holding spinlock
1766 		 */
1767 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1768 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1769 		if (fib && hw_fib) {
1770 			struct aac_aifcmd * aif;
1771 
1772 			fib->hw_fib_va = hw_fib;
1773 			fib->dev = aac;
1774 			aac_fib_init(fib);
1775 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1776 			fib->size = sizeof (struct fib);
1777 			fib->data = hw_fib->data;
1778 			aif = (struct aac_aifcmd *)hw_fib->data;
1779 			aif->command = cpu_to_le32(AifCmdEventNotify);
1780 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1781 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1782 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1783 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1784 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1785 
1786 			/*
1787 			 * Put the FIB onto the
1788 			 * fibctx's fibs
1789 			 */
1790 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1791 			fibctx->count++;
1792 			/*
1793 			 * Set the event to wake up the
1794 			 * thread that will waiting.
1795 			 */
1796 			complete(&fibctx->completion);
1797 		} else {
1798 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1799 			kfree(fib);
1800 			kfree(hw_fib);
1801 		}
1802 		entry = entry->next;
1803 	}
1804 
1805 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1806 
1807 	if (BlinkLED < 0) {
1808 		printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n",
1809 				aac->name, BlinkLED);
1810 		goto out;
1811 	}
1812 
1813 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1814 
1815 out:
1816 	aac->in_reset = 0;
1817 	return BlinkLED;
1818 }
1819 
1820 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target)
1821 {
1822 	return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers;
1823 }
1824 
1825 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev,
1826 								int bus,
1827 								int target)
1828 {
1829 	if (bus != CONTAINER_CHANNEL)
1830 		bus = aac_phys_to_logical(bus);
1831 
1832 	return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0);
1833 }
1834 
1835 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target)
1836 {
1837 	if (bus != CONTAINER_CHANNEL)
1838 		bus = aac_phys_to_logical(bus);
1839 
1840 	return scsi_add_device(dev->scsi_host_ptr, bus, target, 0);
1841 }
1842 
1843 static void aac_put_safw_scsi_device(struct scsi_device *sdev)
1844 {
1845 	if (sdev)
1846 		scsi_device_put(sdev);
1847 }
1848 
1849 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target)
1850 {
1851 	struct scsi_device *sdev;
1852 
1853 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1854 	scsi_remove_device(sdev);
1855 	aac_put_safw_scsi_device(sdev);
1856 }
1857 
1858 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev,
1859 	int bus, int target)
1860 {
1861 	return dev->hba_map[bus][target].scan_counter == dev->scan_counter;
1862 }
1863 
1864 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target)
1865 {
1866 	if (is_safw_raid_volume(dev, bus, target))
1867 		return dev->fsa_dev[target].valid;
1868 	else
1869 		return aac_is_safw_scan_count_equal(dev, bus, target);
1870 }
1871 
1872 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target)
1873 {
1874 	int is_exposed = 0;
1875 	struct scsi_device *sdev;
1876 
1877 	sdev = aac_lookup_safw_scsi_device(dev, bus, target);
1878 	if (sdev)
1879 		is_exposed = 1;
1880 	aac_put_safw_scsi_device(sdev);
1881 
1882 	return is_exposed;
1883 }
1884 
1885 static int aac_update_safw_host_devices(struct aac_dev *dev)
1886 {
1887 	int i;
1888 	int bus;
1889 	int target;
1890 	int is_exposed = 0;
1891 	int rcode = 0;
1892 
1893 	rcode = aac_setup_safw_adapter(dev);
1894 	if (unlikely(rcode < 0)) {
1895 		goto out;
1896 	}
1897 
1898 	for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) {
1899 
1900 		bus = get_bus_number(i);
1901 		target = get_target_number(i);
1902 
1903 		is_exposed = aac_is_safw_device_exposed(dev, bus, target);
1904 
1905 		if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed)
1906 			aac_add_safw_device(dev, bus, target);
1907 		else if (!aac_is_safw_target_valid(dev, bus, target) &&
1908 								is_exposed)
1909 			aac_remove_safw_device(dev, bus, target);
1910 	}
1911 out:
1912 	return rcode;
1913 }
1914 
1915 static int aac_scan_safw_host(struct aac_dev *dev)
1916 {
1917 	int rcode = 0;
1918 
1919 	rcode = aac_update_safw_host_devices(dev);
1920 	if (rcode)
1921 		aac_schedule_safw_scan_worker(dev);
1922 
1923 	return rcode;
1924 }
1925 
1926 int aac_scan_host(struct aac_dev *dev)
1927 {
1928 	int rcode = 0;
1929 
1930 	mutex_lock(&dev->scan_mutex);
1931 	if (dev->sa_firmware)
1932 		rcode = aac_scan_safw_host(dev);
1933 	else
1934 		scsi_scan_host(dev->scsi_host_ptr);
1935 	mutex_unlock(&dev->scan_mutex);
1936 
1937 	return rcode;
1938 }
1939 
1940 void aac_src_reinit_aif_worker(struct work_struct *work)
1941 {
1942 	struct aac_dev *dev = container_of(to_delayed_work(work),
1943 				struct aac_dev, src_reinit_aif_worker);
1944 
1945 	wait_event(dev->scsi_host_ptr->host_wait,
1946 			!scsi_host_in_recovery(dev->scsi_host_ptr));
1947 	aac_reinit_aif(dev, dev->cardtype);
1948 }
1949 
1950 /**
1951  *	aac_handle_sa_aif	Handle a message from the firmware
1952  *	@dev: Which adapter this fib is from
1953  *	@fibptr: Pointer to fibptr from adapter
1954  *
1955  *	This routine handles a driver notify fib from the adapter and
1956  *	dispatches it to the appropriate routine for handling.
1957  */
1958 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr)
1959 {
1960 	int i;
1961 	u32 events = 0;
1962 
1963 	if (fibptr->hbacmd_size & SA_AIF_HOTPLUG)
1964 		events = SA_AIF_HOTPLUG;
1965 	else if (fibptr->hbacmd_size & SA_AIF_HARDWARE)
1966 		events = SA_AIF_HARDWARE;
1967 	else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE)
1968 		events = SA_AIF_PDEV_CHANGE;
1969 	else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE)
1970 		events = SA_AIF_LDEV_CHANGE;
1971 	else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE)
1972 		events = SA_AIF_BPSTAT_CHANGE;
1973 	else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE)
1974 		events = SA_AIF_BPCFG_CHANGE;
1975 
1976 	switch (events) {
1977 	case SA_AIF_HOTPLUG:
1978 	case SA_AIF_HARDWARE:
1979 	case SA_AIF_PDEV_CHANGE:
1980 	case SA_AIF_LDEV_CHANGE:
1981 	case SA_AIF_BPCFG_CHANGE:
1982 
1983 		aac_scan_host(dev);
1984 
1985 		break;
1986 
1987 	case SA_AIF_BPSTAT_CHANGE:
1988 		/* currently do nothing */
1989 		break;
1990 	}
1991 
1992 	for (i = 1; i <= 10; ++i) {
1993 		events = src_readl(dev, MUnit.IDR);
1994 		if (events & (1<<23)) {
1995 			pr_warn(" AIF not cleared by firmware - %d/%d)\n",
1996 				i, 10);
1997 			ssleep(1);
1998 		}
1999 	}
2000 }
2001 
2002 static int get_fib_count(struct aac_dev *dev)
2003 {
2004 	unsigned int num = 0;
2005 	struct list_head *entry;
2006 	unsigned long flagv;
2007 
2008 	/*
2009 	 * Warning: no sleep allowed while
2010 	 * holding spinlock. We take the estimate
2011 	 * and pre-allocate a set of fibs outside the
2012 	 * lock.
2013 	 */
2014 	num = le32_to_cpu(dev->init->r7.adapter_fibs_size)
2015 			/ sizeof(struct hw_fib); /* some extra */
2016 	spin_lock_irqsave(&dev->fib_lock, flagv);
2017 	entry = dev->fib_list.next;
2018 	while (entry != &dev->fib_list) {
2019 		entry = entry->next;
2020 		++num;
2021 	}
2022 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2023 
2024 	return num;
2025 }
2026 
2027 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool,
2028 						struct fib **fib_pool,
2029 						unsigned int num)
2030 {
2031 	struct hw_fib **hw_fib_p;
2032 	struct fib **fib_p;
2033 
2034 	hw_fib_p = hw_fib_pool;
2035 	fib_p = fib_pool;
2036 	while (hw_fib_p < &hw_fib_pool[num]) {
2037 		*(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL);
2038 		if (!(*(hw_fib_p++))) {
2039 			--hw_fib_p;
2040 			break;
2041 		}
2042 
2043 		*(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL);
2044 		if (!(*(fib_p++))) {
2045 			kfree(*(--hw_fib_p));
2046 			break;
2047 		}
2048 	}
2049 
2050 	/*
2051 	 * Get the actual number of allocated fibs
2052 	 */
2053 	num = hw_fib_p - hw_fib_pool;
2054 	return num;
2055 }
2056 
2057 static void wakeup_fibctx_threads(struct aac_dev *dev,
2058 						struct hw_fib **hw_fib_pool,
2059 						struct fib **fib_pool,
2060 						struct fib *fib,
2061 						struct hw_fib *hw_fib,
2062 						unsigned int num)
2063 {
2064 	unsigned long flagv;
2065 	struct list_head *entry;
2066 	struct hw_fib **hw_fib_p;
2067 	struct fib **fib_p;
2068 	u32 time_now, time_last;
2069 	struct hw_fib *hw_newfib;
2070 	struct fib *newfib;
2071 	struct aac_fib_context *fibctx;
2072 
2073 	time_now = jiffies/HZ;
2074 	spin_lock_irqsave(&dev->fib_lock, flagv);
2075 	entry = dev->fib_list.next;
2076 	/*
2077 	 * For each Context that is on the
2078 	 * fibctxList, make a copy of the
2079 	 * fib, and then set the event to wake up the
2080 	 * thread that is waiting for it.
2081 	 */
2082 
2083 	hw_fib_p = hw_fib_pool;
2084 	fib_p = fib_pool;
2085 	while (entry != &dev->fib_list) {
2086 		/*
2087 		 * Extract the fibctx
2088 		 */
2089 		fibctx = list_entry(entry, struct aac_fib_context,
2090 				next);
2091 		/*
2092 		 * Check if the queue is getting
2093 		 * backlogged
2094 		 */
2095 		if (fibctx->count > 20) {
2096 			/*
2097 			 * It's *not* jiffies folks,
2098 			 * but jiffies / HZ so do not
2099 			 * panic ...
2100 			 */
2101 			time_last = fibctx->jiffies;
2102 			/*
2103 			 * Has it been > 2 minutes
2104 			 * since the last read off
2105 			 * the queue?
2106 			 */
2107 			if ((time_now - time_last) > aif_timeout) {
2108 				entry = entry->next;
2109 				aac_close_fib_context(dev, fibctx);
2110 				continue;
2111 			}
2112 		}
2113 		/*
2114 		 * Warning: no sleep allowed while
2115 		 * holding spinlock
2116 		 */
2117 		if (hw_fib_p >= &hw_fib_pool[num]) {
2118 			pr_warn("aifd: didn't allocate NewFib\n");
2119 			entry = entry->next;
2120 			continue;
2121 		}
2122 
2123 		hw_newfib = *hw_fib_p;
2124 		*(hw_fib_p++) = NULL;
2125 		newfib = *fib_p;
2126 		*(fib_p++) = NULL;
2127 		/*
2128 		 * Make the copy of the FIB
2129 		 */
2130 		memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
2131 		memcpy(newfib, fib, sizeof(struct fib));
2132 		newfib->hw_fib_va = hw_newfib;
2133 		/*
2134 		 * Put the FIB onto the
2135 		 * fibctx's fibs
2136 		 */
2137 		list_add_tail(&newfib->fiblink, &fibctx->fib_list);
2138 		fibctx->count++;
2139 		/*
2140 		 * Set the event to wake up the
2141 		 * thread that is waiting.
2142 		 */
2143 		complete(&fibctx->completion);
2144 
2145 		entry = entry->next;
2146 	}
2147 	/*
2148 	 *	Set the status of this FIB
2149 	 */
2150 	*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2151 	aac_fib_adapter_complete(fib, sizeof(u32));
2152 	spin_unlock_irqrestore(&dev->fib_lock, flagv);
2153 
2154 }
2155 
2156 static void aac_process_events(struct aac_dev *dev)
2157 {
2158 	struct hw_fib *hw_fib;
2159 	struct fib *fib;
2160 	unsigned long flags;
2161 	spinlock_t *t_lock;
2162 
2163 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2164 	spin_lock_irqsave(t_lock, flags);
2165 
2166 	while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
2167 		struct list_head *entry;
2168 		struct aac_aifcmd *aifcmd;
2169 		unsigned int  num;
2170 		struct hw_fib **hw_fib_pool, **hw_fib_p;
2171 		struct fib **fib_pool, **fib_p;
2172 
2173 		set_current_state(TASK_RUNNING);
2174 
2175 		entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
2176 		list_del(entry);
2177 
2178 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2179 		spin_unlock_irqrestore(t_lock, flags);
2180 
2181 		fib = list_entry(entry, struct fib, fiblink);
2182 		hw_fib = fib->hw_fib_va;
2183 		if (dev->sa_firmware) {
2184 			/* Thor AIF */
2185 			aac_handle_sa_aif(dev, fib);
2186 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2187 			goto free_fib;
2188 		}
2189 		/*
2190 		 *	We will process the FIB here or pass it to a
2191 		 *	worker thread that is TBD. We Really can't
2192 		 *	do anything at this point since we don't have
2193 		 *	anything defined for this thread to do.
2194 		 */
2195 		memset(fib, 0, sizeof(struct fib));
2196 		fib->type = FSAFS_NTC_FIB_CONTEXT;
2197 		fib->size = sizeof(struct fib);
2198 		fib->hw_fib_va = hw_fib;
2199 		fib->data = hw_fib->data;
2200 		fib->dev = dev;
2201 		/*
2202 		 *	We only handle AifRequest fibs from the adapter.
2203 		 */
2204 
2205 		aifcmd = (struct aac_aifcmd *) hw_fib->data;
2206 		if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
2207 			/* Handle Driver Notify Events */
2208 			aac_handle_aif(dev, fib);
2209 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
2210 			aac_fib_adapter_complete(fib, (u16)sizeof(u32));
2211 			goto free_fib;
2212 		}
2213 		/*
2214 		 * The u32 here is important and intended. We are using
2215 		 * 32bit wrapping time to fit the adapter field
2216 		 */
2217 
2218 		/* Sniff events */
2219 		if (aifcmd->command == cpu_to_le32(AifCmdEventNotify)
2220 		 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) {
2221 			aac_handle_aif(dev, fib);
2222 		}
2223 
2224 		/*
2225 		 * get number of fibs to process
2226 		 */
2227 		num = get_fib_count(dev);
2228 		if (!num)
2229 			goto free_fib;
2230 
2231 		hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *),
2232 						GFP_KERNEL);
2233 		if (!hw_fib_pool)
2234 			goto free_fib;
2235 
2236 		fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL);
2237 		if (!fib_pool)
2238 			goto free_hw_fib_pool;
2239 
2240 		/*
2241 		 * Fill up fib pointer pools with actual fibs
2242 		 * and hw_fibs
2243 		 */
2244 		num = fillup_pools(dev, hw_fib_pool, fib_pool, num);
2245 		if (!num)
2246 			goto free_mem;
2247 
2248 		/*
2249 		 * wakeup the thread that is waiting for
2250 		 * the response from fw (ioctl)
2251 		 */
2252 		wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool,
2253 							    fib, hw_fib, num);
2254 
2255 free_mem:
2256 		/* Free up the remaining resources */
2257 		hw_fib_p = hw_fib_pool;
2258 		fib_p = fib_pool;
2259 		while (hw_fib_p < &hw_fib_pool[num]) {
2260 			kfree(*hw_fib_p);
2261 			kfree(*fib_p);
2262 			++fib_p;
2263 			++hw_fib_p;
2264 		}
2265 		kfree(fib_pool);
2266 free_hw_fib_pool:
2267 		kfree(hw_fib_pool);
2268 free_fib:
2269 		kfree(fib);
2270 		t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2271 		spin_lock_irqsave(t_lock, flags);
2272 	}
2273 	/*
2274 	 *	There are no more AIF's
2275 	 */
2276 	t_lock = dev->queues->queue[HostNormCmdQueue].lock;
2277 	spin_unlock_irqrestore(t_lock, flags);
2278 }
2279 
2280 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str,
2281 							u32 datasize)
2282 {
2283 	struct aac_srb *srbcmd;
2284 	struct sgmap64 *sg64;
2285 	dma_addr_t addr;
2286 	char *dma_buf;
2287 	struct fib *fibptr;
2288 	int ret = -ENOMEM;
2289 	u32 vbus, vid;
2290 
2291 	fibptr = aac_fib_alloc(dev);
2292 	if (!fibptr)
2293 		goto out;
2294 
2295 	dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr,
2296 				     GFP_KERNEL);
2297 	if (!dma_buf)
2298 		goto fib_free_out;
2299 
2300 	aac_fib_init(fibptr);
2301 
2302 	vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus);
2303 	vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target);
2304 
2305 	srbcmd = (struct aac_srb *)fib_data(fibptr);
2306 
2307 	srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
2308 	srbcmd->channel = cpu_to_le32(vbus);
2309 	srbcmd->id = cpu_to_le32(vid);
2310 	srbcmd->lun = 0;
2311 	srbcmd->flags = cpu_to_le32(SRB_DataOut);
2312 	srbcmd->timeout = cpu_to_le32(10);
2313 	srbcmd->retry_limit = 0;
2314 	srbcmd->cdb_size = cpu_to_le32(12);
2315 	srbcmd->count = cpu_to_le32(datasize);
2316 
2317 	memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
2318 	srbcmd->cdb[0] = BMIC_OUT;
2319 	srbcmd->cdb[6] = WRITE_HOST_WELLNESS;
2320 	memcpy(dma_buf, (char *)wellness_str, datasize);
2321 
2322 	sg64 = (struct sgmap64 *)&srbcmd->sg;
2323 	sg64->count = cpu_to_le32(1);
2324 	sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16));
2325 	sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
2326 	sg64->sg[0].count = cpu_to_le32(datasize);
2327 
2328 	ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb),
2329 				FsaNormal, 1, 1, NULL, NULL);
2330 
2331 	dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr);
2332 
2333 	/*
2334 	 * Do not set XferState to zero unless
2335 	 * receives a response from F/W
2336 	 */
2337 	if (ret >= 0)
2338 		aac_fib_complete(fibptr);
2339 
2340 	/*
2341 	 * FIB should be freed only after
2342 	 * getting the response from the F/W
2343 	 */
2344 	if (ret != -ERESTARTSYS)
2345 		goto fib_free_out;
2346 
2347 out:
2348 	return ret;
2349 fib_free_out:
2350 	aac_fib_free(fibptr);
2351 	goto out;
2352 }
2353 
2354 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now)
2355 {
2356 	struct tm cur_tm;
2357 	char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ";
2358 	u32 datasize = sizeof(wellness_str);
2359 	time64_t local_time;
2360 	int ret = -ENODEV;
2361 
2362 	if (!dev->sa_firmware)
2363 		goto out;
2364 
2365 	local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60));
2366 	time64_to_tm(local_time, 0, &cur_tm);
2367 	cur_tm.tm_mon += 1;
2368 	cur_tm.tm_year += 1900;
2369 	wellness_str[8] = bin2bcd(cur_tm.tm_hour);
2370 	wellness_str[9] = bin2bcd(cur_tm.tm_min);
2371 	wellness_str[10] = bin2bcd(cur_tm.tm_sec);
2372 	wellness_str[12] = bin2bcd(cur_tm.tm_mon);
2373 	wellness_str[13] = bin2bcd(cur_tm.tm_mday);
2374 	wellness_str[14] = bin2bcd(cur_tm.tm_year / 100);
2375 	wellness_str[15] = bin2bcd(cur_tm.tm_year % 100);
2376 
2377 	ret = aac_send_wellness_command(dev, wellness_str, datasize);
2378 
2379 out:
2380 	return ret;
2381 }
2382 
2383 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now)
2384 {
2385 	int ret = -ENOMEM;
2386 	struct fib *fibptr;
2387 	__le32 *info;
2388 
2389 	fibptr = aac_fib_alloc(dev);
2390 	if (!fibptr)
2391 		goto out;
2392 
2393 	aac_fib_init(fibptr);
2394 	info = (__le32 *)fib_data(fibptr);
2395 	*info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */
2396 	ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal,
2397 					1, 1, NULL, NULL);
2398 
2399 	/*
2400 	 * Do not set XferState to zero unless
2401 	 * receives a response from F/W
2402 	 */
2403 	if (ret >= 0)
2404 		aac_fib_complete(fibptr);
2405 
2406 	/*
2407 	 * FIB should be freed only after
2408 	 * getting the response from the F/W
2409 	 */
2410 	if (ret != -ERESTARTSYS)
2411 		aac_fib_free(fibptr);
2412 
2413 out:
2414 	return ret;
2415 }
2416 
2417 /**
2418  *	aac_command_thread	-	command processing thread
2419  *	@dev: Adapter to monitor
2420  *
2421  *	Waits on the commandready event in it's queue. When the event gets set
2422  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
2423  *	until the queue is empty. When the queue is empty it will wait for
2424  *	more FIBs.
2425  */
2426 
2427 int aac_command_thread(void *data)
2428 {
2429 	struct aac_dev *dev = data;
2430 	DECLARE_WAITQUEUE(wait, current);
2431 	unsigned long next_jiffies = jiffies + HZ;
2432 	unsigned long next_check_jiffies = next_jiffies;
2433 	long difference = HZ;
2434 
2435 	/*
2436 	 *	We can only have one thread per adapter for AIF's.
2437 	 */
2438 	if (dev->aif_thread)
2439 		return -EINVAL;
2440 
2441 	/*
2442 	 *	Let the DPC know it has a place to send the AIF's to.
2443 	 */
2444 	dev->aif_thread = 1;
2445 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2446 	set_current_state(TASK_INTERRUPTIBLE);
2447 	dprintk ((KERN_INFO "aac_command_thread start\n"));
2448 	while (1) {
2449 
2450 		aac_process_events(dev);
2451 
2452 		/*
2453 		 *	Background activity
2454 		 */
2455 		if ((time_before(next_check_jiffies,next_jiffies))
2456 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
2457 			next_check_jiffies = next_jiffies;
2458 			if (aac_adapter_check_health(dev) == 0) {
2459 				difference = ((long)(unsigned)check_interval)
2460 					   * HZ;
2461 				next_check_jiffies = jiffies + difference;
2462 			} else if (!dev->queues)
2463 				break;
2464 		}
2465 		if (!time_before(next_check_jiffies,next_jiffies)
2466 		 && ((difference = next_jiffies - jiffies) <= 0)) {
2467 			struct timespec64 now;
2468 			int ret;
2469 
2470 			/* Don't even try to talk to adapter if its sick */
2471 			ret = aac_adapter_check_health(dev);
2472 			if (ret || !dev->queues)
2473 				break;
2474 			next_check_jiffies = jiffies
2475 					   + ((long)(unsigned)check_interval)
2476 					   * HZ;
2477 			ktime_get_real_ts64(&now);
2478 
2479 			/* Synchronize our watches */
2480 			if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec)
2481 			 && (now.tv_nsec > (NSEC_PER_SEC / HZ)))
2482 				difference = HZ + HZ / 2 -
2483 					     now.tv_nsec / (NSEC_PER_SEC / HZ);
2484 			else {
2485 				if (now.tv_nsec > NSEC_PER_SEC / 2)
2486 					++now.tv_sec;
2487 
2488 				if (dev->sa_firmware)
2489 					ret =
2490 					aac_send_safw_hostttime(dev, &now);
2491 				else
2492 					ret = aac_send_hosttime(dev, &now);
2493 
2494 				difference = (long)(unsigned)update_interval*HZ;
2495 			}
2496 			next_jiffies = jiffies + difference;
2497 			if (time_before(next_check_jiffies,next_jiffies))
2498 				difference = next_check_jiffies - jiffies;
2499 		}
2500 		if (difference <= 0)
2501 			difference = 1;
2502 		set_current_state(TASK_INTERRUPTIBLE);
2503 
2504 		if (kthread_should_stop())
2505 			break;
2506 
2507 		/*
2508 		 * we probably want usleep_range() here instead of the
2509 		 * jiffies computation
2510 		 */
2511 		schedule_timeout(difference);
2512 
2513 		if (kthread_should_stop())
2514 			break;
2515 	}
2516 	if (dev->queues)
2517 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2518 	dev->aif_thread = 0;
2519 	return 0;
2520 }
2521 
2522 int aac_acquire_irq(struct aac_dev *dev)
2523 {
2524 	int i;
2525 	int j;
2526 	int ret = 0;
2527 
2528 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2529 		for (i = 0; i < dev->max_msix; i++) {
2530 			dev->aac_msix[i].vector_no = i;
2531 			dev->aac_msix[i].dev = dev;
2532 			if (request_irq(pci_irq_vector(dev->pdev, i),
2533 					dev->a_ops.adapter_intr,
2534 					0, "aacraid", &(dev->aac_msix[i]))) {
2535 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2536 						dev->name, dev->id, i);
2537 				for (j = 0 ; j < i ; j++)
2538 					free_irq(pci_irq_vector(dev->pdev, j),
2539 						 &(dev->aac_msix[j]));
2540 				pci_disable_msix(dev->pdev);
2541 				ret = -1;
2542 			}
2543 		}
2544 	} else {
2545 		dev->aac_msix[0].vector_no = 0;
2546 		dev->aac_msix[0].dev = dev;
2547 
2548 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2549 			IRQF_SHARED, "aacraid",
2550 			&(dev->aac_msix[0])) < 0) {
2551 			if (dev->msi)
2552 				pci_disable_msi(dev->pdev);
2553 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2554 					dev->name, dev->id);
2555 			ret = -1;
2556 		}
2557 	}
2558 	return ret;
2559 }
2560 
2561 void aac_free_irq(struct aac_dev *dev)
2562 {
2563 	int i;
2564 
2565 	if (aac_is_src(dev)) {
2566 		if (dev->max_msix > 1) {
2567 			for (i = 0; i < dev->max_msix; i++)
2568 				free_irq(pci_irq_vector(dev->pdev, i),
2569 					 &(dev->aac_msix[i]));
2570 		} else {
2571 			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2572 		}
2573 	} else {
2574 		free_irq(dev->pdev->irq, dev);
2575 	}
2576 	if (dev->msi)
2577 		pci_disable_msi(dev->pdev);
2578 	else if (dev->max_msix > 1)
2579 		pci_disable_msix(dev->pdev);
2580 }
2581