1 /* 2 * Adaptec AAC series RAID controller driver 3 * (c) Copyright 2001 Red Hat Inc. 4 * 5 * based on the old aacraid driver that is.. 6 * Adaptec aacraid device driver for Linux. 7 * 8 * Copyright (c) 2000-2010 Adaptec, Inc. 9 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 10 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * Module Name: 27 * commsup.c 28 * 29 * Abstract: Contain all routines that are required for FSA host/adapter 30 * communication. 31 * 32 */ 33 34 #include <linux/kernel.h> 35 #include <linux/init.h> 36 #include <linux/crash_dump.h> 37 #include <linux/types.h> 38 #include <linux/sched.h> 39 #include <linux/pci.h> 40 #include <linux/spinlock.h> 41 #include <linux/slab.h> 42 #include <linux/completion.h> 43 #include <linux/blkdev.h> 44 #include <linux/delay.h> 45 #include <linux/kthread.h> 46 #include <linux/interrupt.h> 47 #include <linux/semaphore.h> 48 #include <linux/bcd.h> 49 #include <scsi/scsi.h> 50 #include <scsi/scsi_host.h> 51 #include <scsi/scsi_device.h> 52 #include <scsi/scsi_cmnd.h> 53 54 #include "aacraid.h" 55 56 /** 57 * fib_map_alloc - allocate the fib objects 58 * @dev: Adapter to allocate for 59 * 60 * Allocate and map the shared PCI space for the FIB blocks used to 61 * talk to the Adaptec firmware. 62 */ 63 64 static int fib_map_alloc(struct aac_dev *dev) 65 { 66 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) 67 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 68 else 69 dev->max_cmd_size = dev->max_fib_size; 70 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { 71 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 72 } else { 73 dev->max_cmd_size = dev->max_fib_size; 74 } 75 76 dprintk((KERN_INFO 77 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", 78 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, 79 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 80 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, 81 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) 82 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 83 &dev->hw_fib_pa, GFP_KERNEL); 84 if (dev->hw_fib_va == NULL) 85 return -ENOMEM; 86 return 0; 87 } 88 89 /** 90 * aac_fib_map_free - free the fib objects 91 * @dev: Adapter to free 92 * 93 * Free the PCI mappings and the memory allocated for FIB blocks 94 * on this adapter. 95 */ 96 97 void aac_fib_map_free(struct aac_dev *dev) 98 { 99 size_t alloc_size; 100 size_t fib_size; 101 int num_fibs; 102 103 if(!dev->hw_fib_va || !dev->max_cmd_size) 104 return; 105 106 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 107 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 108 alloc_size = fib_size * num_fibs + ALIGN32 - 1; 109 110 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, 111 dev->hw_fib_pa); 112 113 dev->hw_fib_va = NULL; 114 dev->hw_fib_pa = 0; 115 } 116 117 void aac_fib_vector_assign(struct aac_dev *dev) 118 { 119 u32 i = 0; 120 u32 vector = 1; 121 struct fib *fibptr = NULL; 122 123 for (i = 0, fibptr = &dev->fibs[i]; 124 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 125 i++, fibptr++) { 126 if ((dev->max_msix == 1) || 127 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) 128 - dev->vector_cap))) { 129 fibptr->vector_no = 0; 130 } else { 131 fibptr->vector_no = vector; 132 vector++; 133 if (vector == dev->max_msix) 134 vector = 1; 135 } 136 } 137 } 138 139 /** 140 * aac_fib_setup - setup the fibs 141 * @dev: Adapter to set up 142 * 143 * Allocate the PCI space for the fibs, map it and then initialise the 144 * fib area, the unmapped fib data and also the free list 145 */ 146 147 int aac_fib_setup(struct aac_dev * dev) 148 { 149 struct fib *fibptr; 150 struct hw_fib *hw_fib; 151 dma_addr_t hw_fib_pa; 152 int i; 153 u32 max_cmds; 154 155 while (((i = fib_map_alloc(dev)) == -ENOMEM) 156 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 157 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; 158 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; 159 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) 160 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); 161 } 162 if (i<0) 163 return -ENOMEM; 164 165 memset(dev->hw_fib_va, 0, 166 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * 167 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 168 169 /* 32 byte alignment for PMC */ 170 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 171 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 172 (hw_fib_pa - dev->hw_fib_pa)); 173 174 /* add Xport header */ 175 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 176 sizeof(struct aac_fib_xporthdr)); 177 hw_fib_pa += sizeof(struct aac_fib_xporthdr); 178 179 /* 180 * Initialise the fibs 181 */ 182 for (i = 0, fibptr = &dev->fibs[i]; 183 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 184 i++, fibptr++) 185 { 186 fibptr->flags = 0; 187 fibptr->size = sizeof(struct fib); 188 fibptr->dev = dev; 189 fibptr->hw_fib_va = hw_fib; 190 fibptr->data = (void *) fibptr->hw_fib_va->data; 191 fibptr->next = fibptr+1; /* Forward chain the fibs */ 192 sema_init(&fibptr->event_wait, 0); 193 spin_lock_init(&fibptr->event_lock); 194 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 195 hw_fib->header.SenderSize = 196 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */ 197 fibptr->hw_fib_pa = hw_fib_pa; 198 fibptr->hw_sgl_pa = hw_fib_pa + 199 offsetof(struct aac_hba_cmd_req, sge[2]); 200 /* 201 * one element is for the ptr to the separate sg list, 202 * second element for 32 byte alignment 203 */ 204 fibptr->hw_error_pa = hw_fib_pa + 205 offsetof(struct aac_native_hba, resp.resp_bytes[0]); 206 207 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 208 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); 209 hw_fib_pa = hw_fib_pa + 210 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); 211 } 212 213 /* 214 *Assign vector numbers to fibs 215 */ 216 aac_fib_vector_assign(dev); 217 218 /* 219 * Add the fib chain to the free list 220 */ 221 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 222 /* 223 * Set 8 fibs aside for management tools 224 */ 225 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; 226 return 0; 227 } 228 229 /** 230 * aac_fib_alloc_tag-allocate a fib using tags 231 * @dev: Adapter to allocate the fib for 232 * 233 * Allocate a fib from the adapter fib pool using tags 234 * from the blk layer. 235 */ 236 237 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) 238 { 239 struct fib *fibptr; 240 241 fibptr = &dev->fibs[scmd->request->tag]; 242 /* 243 * Null out fields that depend on being zero at the start of 244 * each I/O 245 */ 246 fibptr->hw_fib_va->header.XferState = 0; 247 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 248 fibptr->callback_data = NULL; 249 fibptr->callback = NULL; 250 251 return fibptr; 252 } 253 254 /** 255 * aac_fib_alloc - allocate a fib 256 * @dev: Adapter to allocate the fib for 257 * 258 * Allocate a fib from the adapter fib pool. If the pool is empty we 259 * return NULL. 260 */ 261 262 struct fib *aac_fib_alloc(struct aac_dev *dev) 263 { 264 struct fib * fibptr; 265 unsigned long flags; 266 spin_lock_irqsave(&dev->fib_lock, flags); 267 fibptr = dev->free_fib; 268 if(!fibptr){ 269 spin_unlock_irqrestore(&dev->fib_lock, flags); 270 return fibptr; 271 } 272 dev->free_fib = fibptr->next; 273 spin_unlock_irqrestore(&dev->fib_lock, flags); 274 /* 275 * Set the proper node type code and node byte size 276 */ 277 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 278 fibptr->size = sizeof(struct fib); 279 /* 280 * Null out fields that depend on being zero at the start of 281 * each I/O 282 */ 283 fibptr->hw_fib_va->header.XferState = 0; 284 fibptr->flags = 0; 285 fibptr->callback = NULL; 286 fibptr->callback_data = NULL; 287 288 return fibptr; 289 } 290 291 /** 292 * aac_fib_free - free a fib 293 * @fibptr: fib to free up 294 * 295 * Frees up a fib and places it on the appropriate queue 296 */ 297 298 void aac_fib_free(struct fib *fibptr) 299 { 300 unsigned long flags; 301 302 if (fibptr->done == 2) 303 return; 304 305 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 306 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 307 aac_config.fib_timeouts++; 308 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 309 fibptr->hw_fib_va->header.XferState != 0) { 310 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 311 (void*)fibptr, 312 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 313 } 314 fibptr->next = fibptr->dev->free_fib; 315 fibptr->dev->free_fib = fibptr; 316 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 317 } 318 319 /** 320 * aac_fib_init - initialise a fib 321 * @fibptr: The fib to initialize 322 * 323 * Set up the generic fib fields ready for use 324 */ 325 326 void aac_fib_init(struct fib *fibptr) 327 { 328 struct hw_fib *hw_fib = fibptr->hw_fib_va; 329 330 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); 331 hw_fib->header.StructType = FIB_MAGIC; 332 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 333 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 334 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 335 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 336 } 337 338 /** 339 * fib_deallocate - deallocate a fib 340 * @fibptr: fib to deallocate 341 * 342 * Will deallocate and return to the free pool the FIB pointed to by the 343 * caller. 344 */ 345 346 static void fib_dealloc(struct fib * fibptr) 347 { 348 struct hw_fib *hw_fib = fibptr->hw_fib_va; 349 hw_fib->header.XferState = 0; 350 } 351 352 /* 353 * Commuication primitives define and support the queuing method we use to 354 * support host to adapter commuication. All queue accesses happen through 355 * these routines and are the only routines which have a knowledge of the 356 * how these queues are implemented. 357 */ 358 359 /** 360 * aac_get_entry - get a queue entry 361 * @dev: Adapter 362 * @qid: Queue Number 363 * @entry: Entry return 364 * @index: Index return 365 * @nonotify: notification control 366 * 367 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 368 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 369 * returned. 370 */ 371 372 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 373 { 374 struct aac_queue * q; 375 unsigned long idx; 376 377 /* 378 * All of the queues wrap when they reach the end, so we check 379 * to see if they have reached the end and if they have we just 380 * set the index back to zero. This is a wrap. You could or off 381 * the high bits in all updates but this is a bit faster I think. 382 */ 383 384 q = &dev->queues->queue[qid]; 385 386 idx = *index = le32_to_cpu(*(q->headers.producer)); 387 /* Interrupt Moderation, only interrupt for first two entries */ 388 if (idx != le32_to_cpu(*(q->headers.consumer))) { 389 if (--idx == 0) { 390 if (qid == AdapNormCmdQueue) 391 idx = ADAP_NORM_CMD_ENTRIES; 392 else 393 idx = ADAP_NORM_RESP_ENTRIES; 394 } 395 if (idx != le32_to_cpu(*(q->headers.consumer))) 396 *nonotify = 1; 397 } 398 399 if (qid == AdapNormCmdQueue) { 400 if (*index >= ADAP_NORM_CMD_ENTRIES) 401 *index = 0; /* Wrap to front of the Producer Queue. */ 402 } else { 403 if (*index >= ADAP_NORM_RESP_ENTRIES) 404 *index = 0; /* Wrap to front of the Producer Queue. */ 405 } 406 407 /* Queue is full */ 408 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 409 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 410 qid, atomic_read(&q->numpending)); 411 return 0; 412 } else { 413 *entry = q->base + *index; 414 return 1; 415 } 416 } 417 418 /** 419 * aac_queue_get - get the next free QE 420 * @dev: Adapter 421 * @index: Returned index 422 * @priority: Priority of fib 423 * @fib: Fib to associate with the queue entry 424 * @wait: Wait if queue full 425 * @fibptr: Driver fib object to go with fib 426 * @nonotify: Don't notify the adapter 427 * 428 * Gets the next free QE off the requested priorty adapter command 429 * queue and associates the Fib with the QE. The QE represented by 430 * index is ready to insert on the queue when this routine returns 431 * success. 432 */ 433 434 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 435 { 436 struct aac_entry * entry = NULL; 437 int map = 0; 438 439 if (qid == AdapNormCmdQueue) { 440 /* if no entries wait for some if caller wants to */ 441 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 442 printk(KERN_ERR "GetEntries failed\n"); 443 } 444 /* 445 * Setup queue entry with a command, status and fib mapped 446 */ 447 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 448 map = 1; 449 } else { 450 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 451 /* if no entries wait for some if caller wants to */ 452 } 453 /* 454 * Setup queue entry with command, status and fib mapped 455 */ 456 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 457 entry->addr = hw_fib->header.SenderFibAddress; 458 /* Restore adapters pointer to the FIB */ 459 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 460 map = 0; 461 } 462 /* 463 * If MapFib is true than we need to map the Fib and put pointers 464 * in the queue entry. 465 */ 466 if (map) 467 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 468 return 0; 469 } 470 471 /* 472 * Define the highest level of host to adapter communication routines. 473 * These routines will support host to adapter FS commuication. These 474 * routines have no knowledge of the commuication method used. This level 475 * sends and receives FIBs. This level has no knowledge of how these FIBs 476 * get passed back and forth. 477 */ 478 479 /** 480 * aac_fib_send - send a fib to the adapter 481 * @command: Command to send 482 * @fibptr: The fib 483 * @size: Size of fib data area 484 * @priority: Priority of Fib 485 * @wait: Async/sync select 486 * @reply: True if a reply is wanted 487 * @callback: Called with reply 488 * @callback_data: Passed to callback 489 * 490 * Sends the requested FIB to the adapter and optionally will wait for a 491 * response FIB. If the caller does not wish to wait for a response than 492 * an event to wait on must be supplied. This event will be set when a 493 * response FIB is received from the adapter. 494 */ 495 496 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 497 int priority, int wait, int reply, fib_callback callback, 498 void *callback_data) 499 { 500 struct aac_dev * dev = fibptr->dev; 501 struct hw_fib * hw_fib = fibptr->hw_fib_va; 502 unsigned long flags = 0; 503 unsigned long mflags = 0; 504 unsigned long sflags = 0; 505 506 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 507 return -EBUSY; 508 509 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) 510 return -EINVAL; 511 512 /* 513 * There are 5 cases with the wait and response requested flags. 514 * The only invalid cases are if the caller requests to wait and 515 * does not request a response and if the caller does not want a 516 * response and the Fib is not allocated from pool. If a response 517 * is not requesed the Fib will just be deallocaed by the DPC 518 * routine when the response comes back from the adapter. No 519 * further processing will be done besides deleting the Fib. We 520 * will have a debug mode where the adapter can notify the host 521 * it had a problem and the host can log that fact. 522 */ 523 fibptr->flags = 0; 524 if (wait && !reply) { 525 return -EINVAL; 526 } else if (!wait && reply) { 527 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 528 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 529 } else if (!wait && !reply) { 530 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 531 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 532 } else if (wait && reply) { 533 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 534 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 535 } 536 /* 537 * Map the fib into 32bits by using the fib number 538 */ 539 540 hw_fib->header.SenderFibAddress = 541 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 542 543 /* use the same shifted value for handle to be compatible 544 * with the new native hba command handle 545 */ 546 hw_fib->header.Handle = 547 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 548 549 /* 550 * Set FIB state to indicate where it came from and if we want a 551 * response from the adapter. Also load the command from the 552 * caller. 553 * 554 * Map the hw fib pointer as a 32bit value 555 */ 556 hw_fib->header.Command = cpu_to_le16(command); 557 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 558 /* 559 * Set the size of the Fib we want to send to the adapter 560 */ 561 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 562 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 563 return -EMSGSIZE; 564 } 565 /* 566 * Get a queue entry connect the FIB to it and send an notify 567 * the adapter a command is ready. 568 */ 569 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 570 571 /* 572 * Fill in the Callback and CallbackContext if we are not 573 * going to wait. 574 */ 575 if (!wait) { 576 fibptr->callback = callback; 577 fibptr->callback_data = callback_data; 578 fibptr->flags = FIB_CONTEXT_FLAG; 579 } 580 581 fibptr->done = 0; 582 583 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 584 585 dprintk((KERN_DEBUG "Fib contents:.\n")); 586 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 587 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 588 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 589 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 590 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 591 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 592 593 if (!dev->queues) 594 return -EBUSY; 595 596 if (wait) { 597 598 spin_lock_irqsave(&dev->manage_lock, mflags); 599 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 600 printk(KERN_INFO "No management Fibs Available:%d\n", 601 dev->management_fib_count); 602 spin_unlock_irqrestore(&dev->manage_lock, mflags); 603 return -EBUSY; 604 } 605 dev->management_fib_count++; 606 spin_unlock_irqrestore(&dev->manage_lock, mflags); 607 spin_lock_irqsave(&fibptr->event_lock, flags); 608 } 609 610 if (dev->sync_mode) { 611 if (wait) 612 spin_unlock_irqrestore(&fibptr->event_lock, flags); 613 spin_lock_irqsave(&dev->sync_lock, sflags); 614 if (dev->sync_fib) { 615 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 616 spin_unlock_irqrestore(&dev->sync_lock, sflags); 617 } else { 618 dev->sync_fib = fibptr; 619 spin_unlock_irqrestore(&dev->sync_lock, sflags); 620 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 621 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 622 NULL, NULL, NULL, NULL, NULL); 623 } 624 if (wait) { 625 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 626 if (down_interruptible(&fibptr->event_wait)) { 627 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 628 return -EFAULT; 629 } 630 return 0; 631 } 632 return -EINPROGRESS; 633 } 634 635 if (aac_adapter_deliver(fibptr) != 0) { 636 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 637 if (wait) { 638 spin_unlock_irqrestore(&fibptr->event_lock, flags); 639 spin_lock_irqsave(&dev->manage_lock, mflags); 640 dev->management_fib_count--; 641 spin_unlock_irqrestore(&dev->manage_lock, mflags); 642 } 643 return -EBUSY; 644 } 645 646 647 /* 648 * If the caller wanted us to wait for response wait now. 649 */ 650 651 if (wait) { 652 spin_unlock_irqrestore(&fibptr->event_lock, flags); 653 /* Only set for first known interruptable command */ 654 if (wait < 0) { 655 /* 656 * *VERY* Dangerous to time out a command, the 657 * assumption is made that we have no hope of 658 * functioning because an interrupt routing or other 659 * hardware failure has occurred. 660 */ 661 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ 662 while (down_trylock(&fibptr->event_wait)) { 663 int blink; 664 if (time_is_before_eq_jiffies(timeout)) { 665 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 666 atomic_dec(&q->numpending); 667 if (wait == -1) { 668 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 669 "Usually a result of a PCI interrupt routing problem;\n" 670 "update mother board BIOS or consider utilizing one of\n" 671 "the SAFE mode kernel options (acpi, apic etc)\n"); 672 } 673 return -ETIMEDOUT; 674 } 675 676 if (unlikely(pci_channel_offline(dev->pdev))) 677 return -EFAULT; 678 679 if ((blink = aac_adapter_check_health(dev)) > 0) { 680 if (wait == -1) { 681 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 682 "Usually a result of a serious unrecoverable hardware problem\n", 683 blink); 684 } 685 return -EFAULT; 686 } 687 /* 688 * Allow other processes / CPUS to use core 689 */ 690 schedule(); 691 } 692 } else if (down_interruptible(&fibptr->event_wait)) { 693 /* Do nothing ... satisfy 694 * down_interruptible must_check */ 695 } 696 697 spin_lock_irqsave(&fibptr->event_lock, flags); 698 if (fibptr->done == 0) { 699 fibptr->done = 2; /* Tell interrupt we aborted */ 700 spin_unlock_irqrestore(&fibptr->event_lock, flags); 701 return -ERESTARTSYS; 702 } 703 spin_unlock_irqrestore(&fibptr->event_lock, flags); 704 BUG_ON(fibptr->done == 0); 705 706 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 707 return -ETIMEDOUT; 708 return 0; 709 } 710 /* 711 * If the user does not want a response than return success otherwise 712 * return pending 713 */ 714 if (reply) 715 return -EINPROGRESS; 716 else 717 return 0; 718 } 719 720 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, 721 void *callback_data) 722 { 723 struct aac_dev *dev = fibptr->dev; 724 int wait; 725 unsigned long flags = 0; 726 unsigned long mflags = 0; 727 728 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); 729 if (callback) { 730 wait = 0; 731 fibptr->callback = callback; 732 fibptr->callback_data = callback_data; 733 } else 734 wait = 1; 735 736 737 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { 738 struct aac_hba_cmd_req *hbacmd = 739 (struct aac_hba_cmd_req *)fibptr->hw_fib_va; 740 741 hbacmd->iu_type = command; 742 /* bit1 of request_id must be 0 */ 743 hbacmd->request_id = 744 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 745 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD; 746 } else if (command != HBA_IU_TYPE_SCSI_TM_REQ) 747 return -EINVAL; 748 749 750 if (wait) { 751 spin_lock_irqsave(&dev->manage_lock, mflags); 752 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 753 spin_unlock_irqrestore(&dev->manage_lock, mflags); 754 return -EBUSY; 755 } 756 dev->management_fib_count++; 757 spin_unlock_irqrestore(&dev->manage_lock, mflags); 758 spin_lock_irqsave(&fibptr->event_lock, flags); 759 } 760 761 if (aac_adapter_deliver(fibptr) != 0) { 762 if (wait) { 763 spin_unlock_irqrestore(&fibptr->event_lock, flags); 764 spin_lock_irqsave(&dev->manage_lock, mflags); 765 dev->management_fib_count--; 766 spin_unlock_irqrestore(&dev->manage_lock, mflags); 767 } 768 return -EBUSY; 769 } 770 FIB_COUNTER_INCREMENT(aac_config.NativeSent); 771 772 if (wait) { 773 774 spin_unlock_irqrestore(&fibptr->event_lock, flags); 775 776 if (unlikely(pci_channel_offline(dev->pdev))) 777 return -EFAULT; 778 779 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 780 if (down_interruptible(&fibptr->event_wait)) 781 fibptr->done = 2; 782 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); 783 784 spin_lock_irqsave(&fibptr->event_lock, flags); 785 if ((fibptr->done == 0) || (fibptr->done == 2)) { 786 fibptr->done = 2; /* Tell interrupt we aborted */ 787 spin_unlock_irqrestore(&fibptr->event_lock, flags); 788 return -ERESTARTSYS; 789 } 790 spin_unlock_irqrestore(&fibptr->event_lock, flags); 791 WARN_ON(fibptr->done == 0); 792 793 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 794 return -ETIMEDOUT; 795 796 return 0; 797 } 798 799 return -EINPROGRESS; 800 } 801 802 /** 803 * aac_consumer_get - get the top of the queue 804 * @dev: Adapter 805 * @q: Queue 806 * @entry: Return entry 807 * 808 * Will return a pointer to the entry on the top of the queue requested that 809 * we are a consumer of, and return the address of the queue entry. It does 810 * not change the state of the queue. 811 */ 812 813 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 814 { 815 u32 index; 816 int status; 817 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 818 status = 0; 819 } else { 820 /* 821 * The consumer index must be wrapped if we have reached 822 * the end of the queue, else we just use the entry 823 * pointed to by the header index 824 */ 825 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 826 index = 0; 827 else 828 index = le32_to_cpu(*q->headers.consumer); 829 *entry = q->base + index; 830 status = 1; 831 } 832 return(status); 833 } 834 835 /** 836 * aac_consumer_free - free consumer entry 837 * @dev: Adapter 838 * @q: Queue 839 * @qid: Queue ident 840 * 841 * Frees up the current top of the queue we are a consumer of. If the 842 * queue was full notify the producer that the queue is no longer full. 843 */ 844 845 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 846 { 847 int wasfull = 0; 848 u32 notify; 849 850 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 851 wasfull = 1; 852 853 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 854 *q->headers.consumer = cpu_to_le32(1); 855 else 856 le32_add_cpu(q->headers.consumer, 1); 857 858 if (wasfull) { 859 switch (qid) { 860 861 case HostNormCmdQueue: 862 notify = HostNormCmdNotFull; 863 break; 864 case HostNormRespQueue: 865 notify = HostNormRespNotFull; 866 break; 867 default: 868 BUG(); 869 return; 870 } 871 aac_adapter_notify(dev, notify); 872 } 873 } 874 875 /** 876 * aac_fib_adapter_complete - complete adapter issued fib 877 * @fibptr: fib to complete 878 * @size: size of fib 879 * 880 * Will do all necessary work to complete a FIB that was sent from 881 * the adapter. 882 */ 883 884 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 885 { 886 struct hw_fib * hw_fib = fibptr->hw_fib_va; 887 struct aac_dev * dev = fibptr->dev; 888 struct aac_queue * q; 889 unsigned long nointr = 0; 890 unsigned long qflags; 891 892 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || 893 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 894 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { 895 kfree(hw_fib); 896 return 0; 897 } 898 899 if (hw_fib->header.XferState == 0) { 900 if (dev->comm_interface == AAC_COMM_MESSAGE) 901 kfree(hw_fib); 902 return 0; 903 } 904 /* 905 * If we plan to do anything check the structure type first. 906 */ 907 if (hw_fib->header.StructType != FIB_MAGIC && 908 hw_fib->header.StructType != FIB_MAGIC2 && 909 hw_fib->header.StructType != FIB_MAGIC2_64) { 910 if (dev->comm_interface == AAC_COMM_MESSAGE) 911 kfree(hw_fib); 912 return -EINVAL; 913 } 914 /* 915 * This block handles the case where the adapter had sent us a 916 * command and we have finished processing the command. We 917 * call completeFib when we are done processing the command 918 * and want to send a response back to the adapter. This will 919 * send the completed cdb to the adapter. 920 */ 921 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 922 if (dev->comm_interface == AAC_COMM_MESSAGE) { 923 kfree (hw_fib); 924 } else { 925 u32 index; 926 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 927 if (size) { 928 size += sizeof(struct aac_fibhdr); 929 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 930 return -EMSGSIZE; 931 hw_fib->header.Size = cpu_to_le16(size); 932 } 933 q = &dev->queues->queue[AdapNormRespQueue]; 934 spin_lock_irqsave(q->lock, qflags); 935 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 936 *(q->headers.producer) = cpu_to_le32(index + 1); 937 spin_unlock_irqrestore(q->lock, qflags); 938 if (!(nointr & (int)aac_config.irq_mod)) 939 aac_adapter_notify(dev, AdapNormRespQueue); 940 } 941 } else { 942 printk(KERN_WARNING "aac_fib_adapter_complete: " 943 "Unknown xferstate detected.\n"); 944 BUG(); 945 } 946 return 0; 947 } 948 949 /** 950 * aac_fib_complete - fib completion handler 951 * @fib: FIB to complete 952 * 953 * Will do all necessary work to complete a FIB. 954 */ 955 956 int aac_fib_complete(struct fib *fibptr) 957 { 958 struct hw_fib * hw_fib = fibptr->hw_fib_va; 959 960 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { 961 fib_dealloc(fibptr); 962 return 0; 963 } 964 965 /* 966 * Check for a fib which has already been completed or with a 967 * status wait timeout 968 */ 969 970 if (hw_fib->header.XferState == 0 || fibptr->done == 2) 971 return 0; 972 /* 973 * If we plan to do anything check the structure type first. 974 */ 975 976 if (hw_fib->header.StructType != FIB_MAGIC && 977 hw_fib->header.StructType != FIB_MAGIC2 && 978 hw_fib->header.StructType != FIB_MAGIC2_64) 979 return -EINVAL; 980 /* 981 * This block completes a cdb which orginated on the host and we 982 * just need to deallocate the cdb or reinit it. At this point the 983 * command is complete that we had sent to the adapter and this 984 * cdb could be reused. 985 */ 986 987 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 988 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 989 { 990 fib_dealloc(fibptr); 991 } 992 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 993 { 994 /* 995 * This handles the case when the host has aborted the I/O 996 * to the adapter because the adapter is not responding 997 */ 998 fib_dealloc(fibptr); 999 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 1000 fib_dealloc(fibptr); 1001 } else { 1002 BUG(); 1003 } 1004 return 0; 1005 } 1006 1007 /** 1008 * aac_printf - handle printf from firmware 1009 * @dev: Adapter 1010 * @val: Message info 1011 * 1012 * Print a message passed to us by the controller firmware on the 1013 * Adaptec board 1014 */ 1015 1016 void aac_printf(struct aac_dev *dev, u32 val) 1017 { 1018 char *cp = dev->printfbuf; 1019 if (dev->printf_enabled) 1020 { 1021 int length = val & 0xffff; 1022 int level = (val >> 16) & 0xffff; 1023 1024 /* 1025 * The size of the printfbuf is set in port.c 1026 * There is no variable or define for it 1027 */ 1028 if (length > 255) 1029 length = 255; 1030 if (cp[length] != 0) 1031 cp[length] = 0; 1032 if (level == LOG_AAC_HIGH_ERROR) 1033 printk(KERN_WARNING "%s:%s", dev->name, cp); 1034 else 1035 printk(KERN_INFO "%s:%s", dev->name, cp); 1036 } 1037 memset(cp, 0, 256); 1038 } 1039 1040 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) 1041 { 1042 return le32_to_cpu(((__le32 *)aifcmd->data)[index]); 1043 } 1044 1045 1046 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) 1047 { 1048 switch (aac_aif_data(aifcmd, 1)) { 1049 case AifBuCacheDataLoss: 1050 if (aac_aif_data(aifcmd, 2)) 1051 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", 1052 aac_aif_data(aifcmd, 2)); 1053 else 1054 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); 1055 break; 1056 case AifBuCacheDataRecover: 1057 if (aac_aif_data(aifcmd, 2)) 1058 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", 1059 aac_aif_data(aifcmd, 2)); 1060 else 1061 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); 1062 break; 1063 } 1064 } 1065 1066 /** 1067 * aac_handle_aif - Handle a message from the firmware 1068 * @dev: Which adapter this fib is from 1069 * @fibptr: Pointer to fibptr from adapter 1070 * 1071 * This routine handles a driver notify fib from the adapter and 1072 * dispatches it to the appropriate routine for handling. 1073 */ 1074 1075 #define AIF_SNIFF_TIMEOUT (500*HZ) 1076 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 1077 { 1078 struct hw_fib * hw_fib = fibptr->hw_fib_va; 1079 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 1080 u32 channel, id, lun, container; 1081 struct scsi_device *device; 1082 enum { 1083 NOTHING, 1084 DELETE, 1085 ADD, 1086 CHANGE 1087 } device_config_needed = NOTHING; 1088 1089 /* Sniff for container changes */ 1090 1091 if (!dev || !dev->fsa_dev) 1092 return; 1093 container = channel = id = lun = (u32)-1; 1094 1095 /* 1096 * We have set this up to try and minimize the number of 1097 * re-configures that take place. As a result of this when 1098 * certain AIF's come in we will set a flag waiting for another 1099 * type of AIF before setting the re-config flag. 1100 */ 1101 switch (le32_to_cpu(aifcmd->command)) { 1102 case AifCmdDriverNotify: 1103 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1104 case AifRawDeviceRemove: 1105 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1106 if ((container >> 28)) { 1107 container = (u32)-1; 1108 break; 1109 } 1110 channel = (container >> 24) & 0xF; 1111 if (channel >= dev->maximum_num_channels) { 1112 container = (u32)-1; 1113 break; 1114 } 1115 id = container & 0xFFFF; 1116 if (id >= dev->maximum_num_physicals) { 1117 container = (u32)-1; 1118 break; 1119 } 1120 lun = (container >> 16) & 0xFF; 1121 container = (u32)-1; 1122 channel = aac_phys_to_logical(channel); 1123 device_config_needed = DELETE; 1124 break; 1125 1126 /* 1127 * Morph or Expand complete 1128 */ 1129 case AifDenMorphComplete: 1130 case AifDenVolumeExtendComplete: 1131 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1132 if (container >= dev->maximum_num_containers) 1133 break; 1134 1135 /* 1136 * Find the scsi_device associated with the SCSI 1137 * address. Make sure we have the right array, and if 1138 * so set the flag to initiate a new re-config once we 1139 * see an AifEnConfigChange AIF come through. 1140 */ 1141 1142 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 1143 device = scsi_device_lookup(dev->scsi_host_ptr, 1144 CONTAINER_TO_CHANNEL(container), 1145 CONTAINER_TO_ID(container), 1146 CONTAINER_TO_LUN(container)); 1147 if (device) { 1148 dev->fsa_dev[container].config_needed = CHANGE; 1149 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 1150 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1151 scsi_device_put(device); 1152 } 1153 } 1154 } 1155 1156 /* 1157 * If we are waiting on something and this happens to be 1158 * that thing then set the re-configure flag. 1159 */ 1160 if (container != (u32)-1) { 1161 if (container >= dev->maximum_num_containers) 1162 break; 1163 if ((dev->fsa_dev[container].config_waiting_on == 1164 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1165 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1166 dev->fsa_dev[container].config_waiting_on = 0; 1167 } else for (container = 0; 1168 container < dev->maximum_num_containers; ++container) { 1169 if ((dev->fsa_dev[container].config_waiting_on == 1170 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1171 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1172 dev->fsa_dev[container].config_waiting_on = 0; 1173 } 1174 break; 1175 1176 case AifCmdEventNotify: 1177 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1178 case AifEnBatteryEvent: 1179 dev->cache_protected = 1180 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 1181 break; 1182 /* 1183 * Add an Array. 1184 */ 1185 case AifEnAddContainer: 1186 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1187 if (container >= dev->maximum_num_containers) 1188 break; 1189 dev->fsa_dev[container].config_needed = ADD; 1190 dev->fsa_dev[container].config_waiting_on = 1191 AifEnConfigChange; 1192 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1193 break; 1194 1195 /* 1196 * Delete an Array. 1197 */ 1198 case AifEnDeleteContainer: 1199 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1200 if (container >= dev->maximum_num_containers) 1201 break; 1202 dev->fsa_dev[container].config_needed = DELETE; 1203 dev->fsa_dev[container].config_waiting_on = 1204 AifEnConfigChange; 1205 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1206 break; 1207 1208 /* 1209 * Container change detected. If we currently are not 1210 * waiting on something else, setup to wait on a Config Change. 1211 */ 1212 case AifEnContainerChange: 1213 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1214 if (container >= dev->maximum_num_containers) 1215 break; 1216 if (dev->fsa_dev[container].config_waiting_on && 1217 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1218 break; 1219 dev->fsa_dev[container].config_needed = CHANGE; 1220 dev->fsa_dev[container].config_waiting_on = 1221 AifEnConfigChange; 1222 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1223 break; 1224 1225 case AifEnConfigChange: 1226 break; 1227 1228 case AifEnAddJBOD: 1229 case AifEnDeleteJBOD: 1230 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1231 if ((container >> 28)) { 1232 container = (u32)-1; 1233 break; 1234 } 1235 channel = (container >> 24) & 0xF; 1236 if (channel >= dev->maximum_num_channels) { 1237 container = (u32)-1; 1238 break; 1239 } 1240 id = container & 0xFFFF; 1241 if (id >= dev->maximum_num_physicals) { 1242 container = (u32)-1; 1243 break; 1244 } 1245 lun = (container >> 16) & 0xFF; 1246 container = (u32)-1; 1247 channel = aac_phys_to_logical(channel); 1248 device_config_needed = 1249 (((__le32 *)aifcmd->data)[0] == 1250 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1251 if (device_config_needed == ADD) { 1252 device = scsi_device_lookup(dev->scsi_host_ptr, 1253 channel, 1254 id, 1255 lun); 1256 if (device) { 1257 scsi_remove_device(device); 1258 scsi_device_put(device); 1259 } 1260 } 1261 break; 1262 1263 case AifEnEnclosureManagement: 1264 /* 1265 * If in JBOD mode, automatic exposure of new 1266 * physical target to be suppressed until configured. 1267 */ 1268 if (dev->jbod) 1269 break; 1270 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1271 case EM_DRIVE_INSERTION: 1272 case EM_DRIVE_REMOVAL: 1273 case EM_SES_DRIVE_INSERTION: 1274 case EM_SES_DRIVE_REMOVAL: 1275 container = le32_to_cpu( 1276 ((__le32 *)aifcmd->data)[2]); 1277 if ((container >> 28)) { 1278 container = (u32)-1; 1279 break; 1280 } 1281 channel = (container >> 24) & 0xF; 1282 if (channel >= dev->maximum_num_channels) { 1283 container = (u32)-1; 1284 break; 1285 } 1286 id = container & 0xFFFF; 1287 lun = (container >> 16) & 0xFF; 1288 container = (u32)-1; 1289 if (id >= dev->maximum_num_physicals) { 1290 /* legacy dev_t ? */ 1291 if ((0x2000 <= id) || lun || channel || 1292 ((channel = (id >> 7) & 0x3F) >= 1293 dev->maximum_num_channels)) 1294 break; 1295 lun = (id >> 4) & 7; 1296 id &= 0xF; 1297 } 1298 channel = aac_phys_to_logical(channel); 1299 device_config_needed = 1300 ((((__le32 *)aifcmd->data)[3] 1301 == cpu_to_le32(EM_DRIVE_INSERTION)) || 1302 (((__le32 *)aifcmd->data)[3] 1303 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? 1304 ADD : DELETE; 1305 break; 1306 } 1307 case AifBuManagerEvent: 1308 aac_handle_aif_bu(dev, aifcmd); 1309 break; 1310 } 1311 1312 /* 1313 * If we are waiting on something and this happens to be 1314 * that thing then set the re-configure flag. 1315 */ 1316 if (container != (u32)-1) { 1317 if (container >= dev->maximum_num_containers) 1318 break; 1319 if ((dev->fsa_dev[container].config_waiting_on == 1320 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1321 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1322 dev->fsa_dev[container].config_waiting_on = 0; 1323 } else for (container = 0; 1324 container < dev->maximum_num_containers; ++container) { 1325 if ((dev->fsa_dev[container].config_waiting_on == 1326 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1327 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1328 dev->fsa_dev[container].config_waiting_on = 0; 1329 } 1330 break; 1331 1332 case AifCmdJobProgress: 1333 /* 1334 * These are job progress AIF's. When a Clear is being 1335 * done on a container it is initially created then hidden from 1336 * the OS. When the clear completes we don't get a config 1337 * change so we monitor the job status complete on a clear then 1338 * wait for a container change. 1339 */ 1340 1341 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1342 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1343 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1344 for (container = 0; 1345 container < dev->maximum_num_containers; 1346 ++container) { 1347 /* 1348 * Stomp on all config sequencing for all 1349 * containers? 1350 */ 1351 dev->fsa_dev[container].config_waiting_on = 1352 AifEnContainerChange; 1353 dev->fsa_dev[container].config_needed = ADD; 1354 dev->fsa_dev[container].config_waiting_stamp = 1355 jiffies; 1356 } 1357 } 1358 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1359 ((__le32 *)aifcmd->data)[6] == 0 && 1360 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1361 for (container = 0; 1362 container < dev->maximum_num_containers; 1363 ++container) { 1364 /* 1365 * Stomp on all config sequencing for all 1366 * containers? 1367 */ 1368 dev->fsa_dev[container].config_waiting_on = 1369 AifEnContainerChange; 1370 dev->fsa_dev[container].config_needed = DELETE; 1371 dev->fsa_dev[container].config_waiting_stamp = 1372 jiffies; 1373 } 1374 } 1375 break; 1376 } 1377 1378 container = 0; 1379 retry_next: 1380 if (device_config_needed == NOTHING) 1381 for (; container < dev->maximum_num_containers; ++container) { 1382 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1383 (dev->fsa_dev[container].config_needed != NOTHING) && 1384 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1385 device_config_needed = 1386 dev->fsa_dev[container].config_needed; 1387 dev->fsa_dev[container].config_needed = NOTHING; 1388 channel = CONTAINER_TO_CHANNEL(container); 1389 id = CONTAINER_TO_ID(container); 1390 lun = CONTAINER_TO_LUN(container); 1391 break; 1392 } 1393 } 1394 if (device_config_needed == NOTHING) 1395 return; 1396 1397 /* 1398 * If we decided that a re-configuration needs to be done, 1399 * schedule it here on the way out the door, please close the door 1400 * behind you. 1401 */ 1402 1403 /* 1404 * Find the scsi_device associated with the SCSI address, 1405 * and mark it as changed, invalidating the cache. This deals 1406 * with changes to existing device IDs. 1407 */ 1408 1409 if (!dev || !dev->scsi_host_ptr) 1410 return; 1411 /* 1412 * force reload of disk info via aac_probe_container 1413 */ 1414 if ((channel == CONTAINER_CHANNEL) && 1415 (device_config_needed != NOTHING)) { 1416 if (dev->fsa_dev[container].valid == 1) 1417 dev->fsa_dev[container].valid = 2; 1418 aac_probe_container(dev, container); 1419 } 1420 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1421 if (device) { 1422 switch (device_config_needed) { 1423 case DELETE: 1424 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1425 scsi_remove_device(device); 1426 #else 1427 if (scsi_device_online(device)) { 1428 scsi_device_set_state(device, SDEV_OFFLINE); 1429 sdev_printk(KERN_INFO, device, 1430 "Device offlined - %s\n", 1431 (channel == CONTAINER_CHANNEL) ? 1432 "array deleted" : 1433 "enclosure services event"); 1434 } 1435 #endif 1436 break; 1437 case ADD: 1438 if (!scsi_device_online(device)) { 1439 sdev_printk(KERN_INFO, device, 1440 "Device online - %s\n", 1441 (channel == CONTAINER_CHANNEL) ? 1442 "array created" : 1443 "enclosure services event"); 1444 scsi_device_set_state(device, SDEV_RUNNING); 1445 } 1446 /* FALLTHRU */ 1447 case CHANGE: 1448 if ((channel == CONTAINER_CHANNEL) 1449 && (!dev->fsa_dev[container].valid)) { 1450 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1451 scsi_remove_device(device); 1452 #else 1453 if (!scsi_device_online(device)) 1454 break; 1455 scsi_device_set_state(device, SDEV_OFFLINE); 1456 sdev_printk(KERN_INFO, device, 1457 "Device offlined - %s\n", 1458 "array failed"); 1459 #endif 1460 break; 1461 } 1462 scsi_rescan_device(&device->sdev_gendev); 1463 1464 default: 1465 break; 1466 } 1467 scsi_device_put(device); 1468 device_config_needed = NOTHING; 1469 } 1470 if (device_config_needed == ADD) 1471 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1472 if (channel == CONTAINER_CHANNEL) { 1473 container++; 1474 device_config_needed = NOTHING; 1475 goto retry_next; 1476 } 1477 } 1478 1479 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1480 { 1481 int index, quirks; 1482 int retval; 1483 struct Scsi_Host *host; 1484 struct scsi_device *dev; 1485 struct scsi_cmnd *command; 1486 struct scsi_cmnd *command_list; 1487 int jafo = 0; 1488 int bled; 1489 u64 dmamask; 1490 int num_of_fibs = 0; 1491 1492 /* 1493 * Assumptions: 1494 * - host is locked, unless called by the aacraid thread. 1495 * (a matter of convenience, due to legacy issues surrounding 1496 * eh_host_adapter_reset). 1497 * - in_reset is asserted, so no new i/o is getting to the 1498 * card. 1499 * - The card is dead, or will be very shortly ;-/ so no new 1500 * commands are completing in the interrupt service. 1501 */ 1502 host = aac->scsi_host_ptr; 1503 scsi_block_requests(host); 1504 aac_adapter_disable_int(aac); 1505 if (aac->thread && aac->thread->pid != current->pid) { 1506 spin_unlock_irq(host->host_lock); 1507 kthread_stop(aac->thread); 1508 aac->thread = NULL; 1509 jafo = 1; 1510 } 1511 1512 /* 1513 * If a positive health, means in a known DEAD PANIC 1514 * state and the adapter could be reset to `try again'. 1515 */ 1516 bled = forced ? 0 : aac_adapter_check_health(aac); 1517 retval = aac_adapter_restart(aac, bled, reset_type); 1518 1519 if (retval) 1520 goto out; 1521 1522 /* 1523 * Loop through the fibs, close the synchronous FIBS 1524 */ 1525 retval = 1; 1526 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 1527 for (index = 0; index < num_of_fibs; index++) { 1528 1529 struct fib *fib = &aac->fibs[index]; 1530 __le32 XferState = fib->hw_fib_va->header.XferState; 1531 bool is_response_expected = false; 1532 1533 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && 1534 (XferState & cpu_to_le32(ResponseExpected))) 1535 is_response_expected = true; 1536 1537 if (is_response_expected 1538 || fib->flags & FIB_CONTEXT_FLAG_WAIT) { 1539 unsigned long flagv; 1540 spin_lock_irqsave(&fib->event_lock, flagv); 1541 up(&fib->event_wait); 1542 spin_unlock_irqrestore(&fib->event_lock, flagv); 1543 schedule(); 1544 retval = 0; 1545 } 1546 } 1547 /* Give some extra time for ioctls to complete. */ 1548 if (retval == 0) 1549 ssleep(2); 1550 index = aac->cardtype; 1551 1552 /* 1553 * Re-initialize the adapter, first free resources, then carefully 1554 * apply the initialization sequence to come back again. Only risk 1555 * is a change in Firmware dropping cache, it is assumed the caller 1556 * will ensure that i/o is queisced and the card is flushed in that 1557 * case. 1558 */ 1559 aac_free_irq(aac); 1560 aac_fib_map_free(aac); 1561 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1562 aac->comm_phys); 1563 aac->comm_addr = NULL; 1564 aac->comm_phys = 0; 1565 kfree(aac->queues); 1566 aac->queues = NULL; 1567 kfree(aac->fsa_dev); 1568 aac->fsa_dev = NULL; 1569 1570 dmamask = DMA_BIT_MASK(32); 1571 quirks = aac_get_driver_ident(index)->quirks; 1572 if (quirks & AAC_QUIRK_31BIT) 1573 retval = pci_set_dma_mask(aac->pdev, dmamask); 1574 else if (!(quirks & AAC_QUIRK_SRC)) 1575 retval = pci_set_dma_mask(aac->pdev, dmamask); 1576 else 1577 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1578 1579 if (quirks & AAC_QUIRK_31BIT && !retval) { 1580 dmamask = DMA_BIT_MASK(31); 1581 retval = pci_set_consistent_dma_mask(aac->pdev, dmamask); 1582 } 1583 1584 if (retval) 1585 goto out; 1586 1587 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1588 goto out; 1589 1590 if (jafo) { 1591 aac->thread = kthread_run(aac_command_thread, aac, "%s", 1592 aac->name); 1593 if (IS_ERR(aac->thread)) { 1594 retval = PTR_ERR(aac->thread); 1595 aac->thread = NULL; 1596 goto out; 1597 } 1598 } 1599 (void)aac_get_adapter_info(aac); 1600 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1601 host->sg_tablesize = 34; 1602 host->max_sectors = (host->sg_tablesize * 8) + 112; 1603 } 1604 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1605 host->sg_tablesize = 17; 1606 host->max_sectors = (host->sg_tablesize * 8) + 112; 1607 } 1608 aac_get_config_status(aac, 1); 1609 aac_get_containers(aac); 1610 /* 1611 * This is where the assumption that the Adapter is quiesced 1612 * is important. 1613 */ 1614 command_list = NULL; 1615 __shost_for_each_device(dev, host) { 1616 unsigned long flags; 1617 spin_lock_irqsave(&dev->list_lock, flags); 1618 list_for_each_entry(command, &dev->cmd_list, list) 1619 if (command->SCp.phase == AAC_OWNER_FIRMWARE) { 1620 command->SCp.buffer = (struct scatterlist *)command_list; 1621 command_list = command; 1622 } 1623 spin_unlock_irqrestore(&dev->list_lock, flags); 1624 } 1625 while ((command = command_list)) { 1626 command_list = (struct scsi_cmnd *)command->SCp.buffer; 1627 command->SCp.buffer = NULL; 1628 command->result = DID_OK << 16 1629 | COMMAND_COMPLETE << 8 1630 | SAM_STAT_TASK_SET_FULL; 1631 command->SCp.phase = AAC_OWNER_ERROR_HANDLER; 1632 command->scsi_done(command); 1633 } 1634 /* 1635 * Any Device that was already marked offline needs to be marked 1636 * running 1637 */ 1638 __shost_for_each_device(dev, host) { 1639 if (!scsi_device_online(dev)) 1640 scsi_device_set_state(dev, SDEV_RUNNING); 1641 } 1642 retval = 0; 1643 1644 out: 1645 aac->in_reset = 0; 1646 scsi_unblock_requests(host); 1647 1648 /* 1649 * Issue bus rescan to catch any configuration that might have 1650 * occurred 1651 */ 1652 if (!retval && !is_kdump_kernel()) { 1653 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n"); 1654 aac_schedule_safw_scan_worker(aac); 1655 } 1656 1657 if (jafo) { 1658 spin_lock_irq(host->host_lock); 1659 } 1660 return retval; 1661 } 1662 1663 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1664 { 1665 unsigned long flagv = 0; 1666 int retval; 1667 struct Scsi_Host * host; 1668 int bled; 1669 1670 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1671 return -EBUSY; 1672 1673 if (aac->in_reset) { 1674 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1675 return -EBUSY; 1676 } 1677 aac->in_reset = 1; 1678 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1679 1680 /* 1681 * Wait for all commands to complete to this specific 1682 * target (block maximum 60 seconds). Although not necessary, 1683 * it does make us a good storage citizen. 1684 */ 1685 host = aac->scsi_host_ptr; 1686 scsi_block_requests(host); 1687 1688 /* Quiesce build, flush cache, write through mode */ 1689 if (forced < 2) 1690 aac_send_shutdown(aac); 1691 spin_lock_irqsave(host->host_lock, flagv); 1692 bled = forced ? forced : 1693 (aac_check_reset != 0 && aac_check_reset != 1); 1694 retval = _aac_reset_adapter(aac, bled, reset_type); 1695 spin_unlock_irqrestore(host->host_lock, flagv); 1696 1697 if ((forced < 2) && (retval == -ENODEV)) { 1698 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1699 struct fib * fibctx = aac_fib_alloc(aac); 1700 if (fibctx) { 1701 struct aac_pause *cmd; 1702 int status; 1703 1704 aac_fib_init(fibctx); 1705 1706 cmd = (struct aac_pause *) fib_data(fibctx); 1707 1708 cmd->command = cpu_to_le32(VM_ContainerConfig); 1709 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1710 cmd->timeout = cpu_to_le32(1); 1711 cmd->min = cpu_to_le32(1); 1712 cmd->noRescan = cpu_to_le32(1); 1713 cmd->count = cpu_to_le32(0); 1714 1715 status = aac_fib_send(ContainerCommand, 1716 fibctx, 1717 sizeof(struct aac_pause), 1718 FsaNormal, 1719 -2 /* Timeout silently */, 1, 1720 NULL, NULL); 1721 1722 if (status >= 0) 1723 aac_fib_complete(fibctx); 1724 /* FIB should be freed only after getting 1725 * the response from the F/W */ 1726 if (status != -ERESTARTSYS) 1727 aac_fib_free(fibctx); 1728 } 1729 } 1730 1731 return retval; 1732 } 1733 1734 int aac_check_health(struct aac_dev * aac) 1735 { 1736 int BlinkLED; 1737 unsigned long time_now, flagv = 0; 1738 struct list_head * entry; 1739 1740 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1741 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1742 return 0; 1743 1744 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1745 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1746 return 0; /* OK */ 1747 } 1748 1749 aac->in_reset = 1; 1750 1751 /* Fake up an AIF: 1752 * aac_aifcmd.command = AifCmdEventNotify = 1 1753 * aac_aifcmd.seqnum = 0xFFFFFFFF 1754 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1755 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1756 * aac.aifcmd.data[2] = AifHighPriority = 3 1757 * aac.aifcmd.data[3] = BlinkLED 1758 */ 1759 1760 time_now = jiffies/HZ; 1761 entry = aac->fib_list.next; 1762 1763 /* 1764 * For each Context that is on the 1765 * fibctxList, make a copy of the 1766 * fib, and then set the event to wake up the 1767 * thread that is waiting for it. 1768 */ 1769 while (entry != &aac->fib_list) { 1770 /* 1771 * Extract the fibctx 1772 */ 1773 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1774 struct hw_fib * hw_fib; 1775 struct fib * fib; 1776 /* 1777 * Check if the queue is getting 1778 * backlogged 1779 */ 1780 if (fibctx->count > 20) { 1781 /* 1782 * It's *not* jiffies folks, 1783 * but jiffies / HZ, so do not 1784 * panic ... 1785 */ 1786 u32 time_last = fibctx->jiffies; 1787 /* 1788 * Has it been > 2 minutes 1789 * since the last read off 1790 * the queue? 1791 */ 1792 if ((time_now - time_last) > aif_timeout) { 1793 entry = entry->next; 1794 aac_close_fib_context(aac, fibctx); 1795 continue; 1796 } 1797 } 1798 /* 1799 * Warning: no sleep allowed while 1800 * holding spinlock 1801 */ 1802 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1803 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1804 if (fib && hw_fib) { 1805 struct aac_aifcmd * aif; 1806 1807 fib->hw_fib_va = hw_fib; 1808 fib->dev = aac; 1809 aac_fib_init(fib); 1810 fib->type = FSAFS_NTC_FIB_CONTEXT; 1811 fib->size = sizeof (struct fib); 1812 fib->data = hw_fib->data; 1813 aif = (struct aac_aifcmd *)hw_fib->data; 1814 aif->command = cpu_to_le32(AifCmdEventNotify); 1815 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1816 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1817 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1818 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1819 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1820 1821 /* 1822 * Put the FIB onto the 1823 * fibctx's fibs 1824 */ 1825 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1826 fibctx->count++; 1827 /* 1828 * Set the event to wake up the 1829 * thread that will waiting. 1830 */ 1831 up(&fibctx->wait_sem); 1832 } else { 1833 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1834 kfree(fib); 1835 kfree(hw_fib); 1836 } 1837 entry = entry->next; 1838 } 1839 1840 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1841 1842 if (BlinkLED < 0) { 1843 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", 1844 aac->name, BlinkLED); 1845 goto out; 1846 } 1847 1848 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1849 1850 out: 1851 aac->in_reset = 0; 1852 return BlinkLED; 1853 } 1854 1855 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target) 1856 { 1857 return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers; 1858 } 1859 1860 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev, 1861 int bus, 1862 int target) 1863 { 1864 if (bus != CONTAINER_CHANNEL) 1865 bus = aac_phys_to_logical(bus); 1866 1867 return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0); 1868 } 1869 1870 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target) 1871 { 1872 if (bus != CONTAINER_CHANNEL) 1873 bus = aac_phys_to_logical(bus); 1874 1875 return scsi_add_device(dev->scsi_host_ptr, bus, target, 0); 1876 } 1877 1878 static void aac_put_safw_scsi_device(struct scsi_device *sdev) 1879 { 1880 if (sdev) 1881 scsi_device_put(sdev); 1882 } 1883 1884 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target) 1885 { 1886 struct scsi_device *sdev; 1887 1888 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1889 scsi_remove_device(sdev); 1890 aac_put_safw_scsi_device(sdev); 1891 } 1892 1893 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev, 1894 int bus, int target) 1895 { 1896 return dev->hba_map[bus][target].scan_counter == dev->scan_counter; 1897 } 1898 1899 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target) 1900 { 1901 if (is_safw_raid_volume(dev, bus, target)) 1902 return dev->fsa_dev[target].valid; 1903 else 1904 return aac_is_safw_scan_count_equal(dev, bus, target); 1905 } 1906 1907 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target) 1908 { 1909 int is_exposed = 0; 1910 struct scsi_device *sdev; 1911 1912 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1913 if (sdev) 1914 is_exposed = 1; 1915 aac_put_safw_scsi_device(sdev); 1916 1917 return is_exposed; 1918 } 1919 1920 static int aac_update_safw_host_devices(struct aac_dev *dev) 1921 { 1922 int i; 1923 int bus; 1924 int target; 1925 int is_exposed = 0; 1926 int rcode = 0; 1927 1928 rcode = aac_setup_safw_adapter(dev); 1929 if (unlikely(rcode < 0)) { 1930 goto out; 1931 } 1932 1933 for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) { 1934 1935 bus = get_bus_number(i); 1936 target = get_target_number(i); 1937 1938 is_exposed = aac_is_safw_device_exposed(dev, bus, target); 1939 1940 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed) 1941 aac_add_safw_device(dev, bus, target); 1942 else if (!aac_is_safw_target_valid(dev, bus, target) && 1943 is_exposed) 1944 aac_remove_safw_device(dev, bus, target); 1945 } 1946 out: 1947 return rcode; 1948 } 1949 1950 static int aac_scan_safw_host(struct aac_dev *dev) 1951 { 1952 int rcode = 0; 1953 1954 rcode = aac_update_safw_host_devices(dev); 1955 if (rcode) 1956 aac_schedule_safw_scan_worker(dev); 1957 1958 return rcode; 1959 } 1960 1961 int aac_scan_host(struct aac_dev *dev) 1962 { 1963 int rcode = 0; 1964 1965 mutex_lock(&dev->scan_mutex); 1966 if (dev->sa_firmware) 1967 rcode = aac_scan_safw_host(dev); 1968 else 1969 scsi_scan_host(dev->scsi_host_ptr); 1970 mutex_unlock(&dev->scan_mutex); 1971 1972 return rcode; 1973 } 1974 1975 /** 1976 * aac_handle_sa_aif Handle a message from the firmware 1977 * @dev: Which adapter this fib is from 1978 * @fibptr: Pointer to fibptr from adapter 1979 * 1980 * This routine handles a driver notify fib from the adapter and 1981 * dispatches it to the appropriate routine for handling. 1982 */ 1983 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) 1984 { 1985 int i; 1986 u32 events = 0; 1987 1988 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) 1989 events = SA_AIF_HOTPLUG; 1990 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) 1991 events = SA_AIF_HARDWARE; 1992 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) 1993 events = SA_AIF_PDEV_CHANGE; 1994 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) 1995 events = SA_AIF_LDEV_CHANGE; 1996 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) 1997 events = SA_AIF_BPSTAT_CHANGE; 1998 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) 1999 events = SA_AIF_BPCFG_CHANGE; 2000 2001 switch (events) { 2002 case SA_AIF_HOTPLUG: 2003 case SA_AIF_HARDWARE: 2004 case SA_AIF_PDEV_CHANGE: 2005 case SA_AIF_LDEV_CHANGE: 2006 case SA_AIF_BPCFG_CHANGE: 2007 2008 aac_scan_host(dev); 2009 2010 break; 2011 2012 case SA_AIF_BPSTAT_CHANGE: 2013 /* currently do nothing */ 2014 break; 2015 } 2016 2017 for (i = 1; i <= 10; ++i) { 2018 events = src_readl(dev, MUnit.IDR); 2019 if (events & (1<<23)) { 2020 pr_warn(" AIF not cleared by firmware - %d/%d)\n", 2021 i, 10); 2022 ssleep(1); 2023 } 2024 } 2025 } 2026 2027 static int get_fib_count(struct aac_dev *dev) 2028 { 2029 unsigned int num = 0; 2030 struct list_head *entry; 2031 unsigned long flagv; 2032 2033 /* 2034 * Warning: no sleep allowed while 2035 * holding spinlock. We take the estimate 2036 * and pre-allocate a set of fibs outside the 2037 * lock. 2038 */ 2039 num = le32_to_cpu(dev->init->r7.adapter_fibs_size) 2040 / sizeof(struct hw_fib); /* some extra */ 2041 spin_lock_irqsave(&dev->fib_lock, flagv); 2042 entry = dev->fib_list.next; 2043 while (entry != &dev->fib_list) { 2044 entry = entry->next; 2045 ++num; 2046 } 2047 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2048 2049 return num; 2050 } 2051 2052 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, 2053 struct fib **fib_pool, 2054 unsigned int num) 2055 { 2056 struct hw_fib **hw_fib_p; 2057 struct fib **fib_p; 2058 2059 hw_fib_p = hw_fib_pool; 2060 fib_p = fib_pool; 2061 while (hw_fib_p < &hw_fib_pool[num]) { 2062 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); 2063 if (!(*(hw_fib_p++))) { 2064 --hw_fib_p; 2065 break; 2066 } 2067 2068 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); 2069 if (!(*(fib_p++))) { 2070 kfree(*(--hw_fib_p)); 2071 break; 2072 } 2073 } 2074 2075 /* 2076 * Get the actual number of allocated fibs 2077 */ 2078 num = hw_fib_p - hw_fib_pool; 2079 return num; 2080 } 2081 2082 static void wakeup_fibctx_threads(struct aac_dev *dev, 2083 struct hw_fib **hw_fib_pool, 2084 struct fib **fib_pool, 2085 struct fib *fib, 2086 struct hw_fib *hw_fib, 2087 unsigned int num) 2088 { 2089 unsigned long flagv; 2090 struct list_head *entry; 2091 struct hw_fib **hw_fib_p; 2092 struct fib **fib_p; 2093 u32 time_now, time_last; 2094 struct hw_fib *hw_newfib; 2095 struct fib *newfib; 2096 struct aac_fib_context *fibctx; 2097 2098 time_now = jiffies/HZ; 2099 spin_lock_irqsave(&dev->fib_lock, flagv); 2100 entry = dev->fib_list.next; 2101 /* 2102 * For each Context that is on the 2103 * fibctxList, make a copy of the 2104 * fib, and then set the event to wake up the 2105 * thread that is waiting for it. 2106 */ 2107 2108 hw_fib_p = hw_fib_pool; 2109 fib_p = fib_pool; 2110 while (entry != &dev->fib_list) { 2111 /* 2112 * Extract the fibctx 2113 */ 2114 fibctx = list_entry(entry, struct aac_fib_context, 2115 next); 2116 /* 2117 * Check if the queue is getting 2118 * backlogged 2119 */ 2120 if (fibctx->count > 20) { 2121 /* 2122 * It's *not* jiffies folks, 2123 * but jiffies / HZ so do not 2124 * panic ... 2125 */ 2126 time_last = fibctx->jiffies; 2127 /* 2128 * Has it been > 2 minutes 2129 * since the last read off 2130 * the queue? 2131 */ 2132 if ((time_now - time_last) > aif_timeout) { 2133 entry = entry->next; 2134 aac_close_fib_context(dev, fibctx); 2135 continue; 2136 } 2137 } 2138 /* 2139 * Warning: no sleep allowed while 2140 * holding spinlock 2141 */ 2142 if (hw_fib_p >= &hw_fib_pool[num]) { 2143 pr_warn("aifd: didn't allocate NewFib\n"); 2144 entry = entry->next; 2145 continue; 2146 } 2147 2148 hw_newfib = *hw_fib_p; 2149 *(hw_fib_p++) = NULL; 2150 newfib = *fib_p; 2151 *(fib_p++) = NULL; 2152 /* 2153 * Make the copy of the FIB 2154 */ 2155 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 2156 memcpy(newfib, fib, sizeof(struct fib)); 2157 newfib->hw_fib_va = hw_newfib; 2158 /* 2159 * Put the FIB onto the 2160 * fibctx's fibs 2161 */ 2162 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 2163 fibctx->count++; 2164 /* 2165 * Set the event to wake up the 2166 * thread that is waiting. 2167 */ 2168 up(&fibctx->wait_sem); 2169 2170 entry = entry->next; 2171 } 2172 /* 2173 * Set the status of this FIB 2174 */ 2175 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2176 aac_fib_adapter_complete(fib, sizeof(u32)); 2177 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2178 2179 } 2180 2181 static void aac_process_events(struct aac_dev *dev) 2182 { 2183 struct hw_fib *hw_fib; 2184 struct fib *fib; 2185 unsigned long flags; 2186 spinlock_t *t_lock; 2187 2188 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2189 spin_lock_irqsave(t_lock, flags); 2190 2191 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 2192 struct list_head *entry; 2193 struct aac_aifcmd *aifcmd; 2194 unsigned int num; 2195 struct hw_fib **hw_fib_pool, **hw_fib_p; 2196 struct fib **fib_pool, **fib_p; 2197 2198 set_current_state(TASK_RUNNING); 2199 2200 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 2201 list_del(entry); 2202 2203 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2204 spin_unlock_irqrestore(t_lock, flags); 2205 2206 fib = list_entry(entry, struct fib, fiblink); 2207 hw_fib = fib->hw_fib_va; 2208 if (dev->sa_firmware) { 2209 /* Thor AIF */ 2210 aac_handle_sa_aif(dev, fib); 2211 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2212 goto free_fib; 2213 } 2214 /* 2215 * We will process the FIB here or pass it to a 2216 * worker thread that is TBD. We Really can't 2217 * do anything at this point since we don't have 2218 * anything defined for this thread to do. 2219 */ 2220 memset(fib, 0, sizeof(struct fib)); 2221 fib->type = FSAFS_NTC_FIB_CONTEXT; 2222 fib->size = sizeof(struct fib); 2223 fib->hw_fib_va = hw_fib; 2224 fib->data = hw_fib->data; 2225 fib->dev = dev; 2226 /* 2227 * We only handle AifRequest fibs from the adapter. 2228 */ 2229 2230 aifcmd = (struct aac_aifcmd *) hw_fib->data; 2231 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 2232 /* Handle Driver Notify Events */ 2233 aac_handle_aif(dev, fib); 2234 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2235 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2236 goto free_fib; 2237 } 2238 /* 2239 * The u32 here is important and intended. We are using 2240 * 32bit wrapping time to fit the adapter field 2241 */ 2242 2243 /* Sniff events */ 2244 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) 2245 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { 2246 aac_handle_aif(dev, fib); 2247 } 2248 2249 /* 2250 * get number of fibs to process 2251 */ 2252 num = get_fib_count(dev); 2253 if (!num) 2254 goto free_fib; 2255 2256 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), 2257 GFP_KERNEL); 2258 if (!hw_fib_pool) 2259 goto free_fib; 2260 2261 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); 2262 if (!fib_pool) 2263 goto free_hw_fib_pool; 2264 2265 /* 2266 * Fill up fib pointer pools with actual fibs 2267 * and hw_fibs 2268 */ 2269 num = fillup_pools(dev, hw_fib_pool, fib_pool, num); 2270 if (!num) 2271 goto free_mem; 2272 2273 /* 2274 * wakeup the thread that is waiting for 2275 * the response from fw (ioctl) 2276 */ 2277 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, 2278 fib, hw_fib, num); 2279 2280 free_mem: 2281 /* Free up the remaining resources */ 2282 hw_fib_p = hw_fib_pool; 2283 fib_p = fib_pool; 2284 while (hw_fib_p < &hw_fib_pool[num]) { 2285 kfree(*hw_fib_p); 2286 kfree(*fib_p); 2287 ++fib_p; 2288 ++hw_fib_p; 2289 } 2290 kfree(fib_pool); 2291 free_hw_fib_pool: 2292 kfree(hw_fib_pool); 2293 free_fib: 2294 kfree(fib); 2295 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2296 spin_lock_irqsave(t_lock, flags); 2297 } 2298 /* 2299 * There are no more AIF's 2300 */ 2301 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2302 spin_unlock_irqrestore(t_lock, flags); 2303 } 2304 2305 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, 2306 u32 datasize) 2307 { 2308 struct aac_srb *srbcmd; 2309 struct sgmap64 *sg64; 2310 dma_addr_t addr; 2311 char *dma_buf; 2312 struct fib *fibptr; 2313 int ret = -ENOMEM; 2314 u32 vbus, vid; 2315 2316 fibptr = aac_fib_alloc(dev); 2317 if (!fibptr) 2318 goto out; 2319 2320 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, 2321 GFP_KERNEL); 2322 if (!dma_buf) 2323 goto fib_free_out; 2324 2325 aac_fib_init(fibptr); 2326 2327 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); 2328 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); 2329 2330 srbcmd = (struct aac_srb *)fib_data(fibptr); 2331 2332 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 2333 srbcmd->channel = cpu_to_le32(vbus); 2334 srbcmd->id = cpu_to_le32(vid); 2335 srbcmd->lun = 0; 2336 srbcmd->flags = cpu_to_le32(SRB_DataOut); 2337 srbcmd->timeout = cpu_to_le32(10); 2338 srbcmd->retry_limit = 0; 2339 srbcmd->cdb_size = cpu_to_le32(12); 2340 srbcmd->count = cpu_to_le32(datasize); 2341 2342 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 2343 srbcmd->cdb[0] = BMIC_OUT; 2344 srbcmd->cdb[6] = WRITE_HOST_WELLNESS; 2345 memcpy(dma_buf, (char *)wellness_str, datasize); 2346 2347 sg64 = (struct sgmap64 *)&srbcmd->sg; 2348 sg64->count = cpu_to_le32(1); 2349 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); 2350 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 2351 sg64->sg[0].count = cpu_to_le32(datasize); 2352 2353 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb), 2354 FsaNormal, 1, 1, NULL, NULL); 2355 2356 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); 2357 2358 /* 2359 * Do not set XferState to zero unless 2360 * receives a response from F/W 2361 */ 2362 if (ret >= 0) 2363 aac_fib_complete(fibptr); 2364 2365 /* 2366 * FIB should be freed only after 2367 * getting the response from the F/W 2368 */ 2369 if (ret != -ERESTARTSYS) 2370 goto fib_free_out; 2371 2372 out: 2373 return ret; 2374 fib_free_out: 2375 aac_fib_free(fibptr); 2376 goto out; 2377 } 2378 2379 int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now) 2380 { 2381 struct tm cur_tm; 2382 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; 2383 u32 datasize = sizeof(wellness_str); 2384 time64_t local_time; 2385 int ret = -ENODEV; 2386 2387 if (!dev->sa_firmware) 2388 goto out; 2389 2390 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60)); 2391 time64_to_tm(local_time, 0, &cur_tm); 2392 cur_tm.tm_mon += 1; 2393 cur_tm.tm_year += 1900; 2394 wellness_str[8] = bin2bcd(cur_tm.tm_hour); 2395 wellness_str[9] = bin2bcd(cur_tm.tm_min); 2396 wellness_str[10] = bin2bcd(cur_tm.tm_sec); 2397 wellness_str[12] = bin2bcd(cur_tm.tm_mon); 2398 wellness_str[13] = bin2bcd(cur_tm.tm_mday); 2399 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); 2400 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); 2401 2402 ret = aac_send_wellness_command(dev, wellness_str, datasize); 2403 2404 out: 2405 return ret; 2406 } 2407 2408 int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now) 2409 { 2410 int ret = -ENOMEM; 2411 struct fib *fibptr; 2412 __le32 *info; 2413 2414 fibptr = aac_fib_alloc(dev); 2415 if (!fibptr) 2416 goto out; 2417 2418 aac_fib_init(fibptr); 2419 info = (__le32 *)fib_data(fibptr); 2420 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */ 2421 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, 2422 1, 1, NULL, NULL); 2423 2424 /* 2425 * Do not set XferState to zero unless 2426 * receives a response from F/W 2427 */ 2428 if (ret >= 0) 2429 aac_fib_complete(fibptr); 2430 2431 /* 2432 * FIB should be freed only after 2433 * getting the response from the F/W 2434 */ 2435 if (ret != -ERESTARTSYS) 2436 aac_fib_free(fibptr); 2437 2438 out: 2439 return ret; 2440 } 2441 2442 /** 2443 * aac_command_thread - command processing thread 2444 * @dev: Adapter to monitor 2445 * 2446 * Waits on the commandready event in it's queue. When the event gets set 2447 * it will pull FIBs off it's queue. It will continue to pull FIBs off 2448 * until the queue is empty. When the queue is empty it will wait for 2449 * more FIBs. 2450 */ 2451 2452 int aac_command_thread(void *data) 2453 { 2454 struct aac_dev *dev = data; 2455 DECLARE_WAITQUEUE(wait, current); 2456 unsigned long next_jiffies = jiffies + HZ; 2457 unsigned long next_check_jiffies = next_jiffies; 2458 long difference = HZ; 2459 2460 /* 2461 * We can only have one thread per adapter for AIF's. 2462 */ 2463 if (dev->aif_thread) 2464 return -EINVAL; 2465 2466 /* 2467 * Let the DPC know it has a place to send the AIF's to. 2468 */ 2469 dev->aif_thread = 1; 2470 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2471 set_current_state(TASK_INTERRUPTIBLE); 2472 dprintk ((KERN_INFO "aac_command_thread start\n")); 2473 while (1) { 2474 2475 aac_process_events(dev); 2476 2477 /* 2478 * Background activity 2479 */ 2480 if ((time_before(next_check_jiffies,next_jiffies)) 2481 && ((difference = next_check_jiffies - jiffies) <= 0)) { 2482 next_check_jiffies = next_jiffies; 2483 if (aac_adapter_check_health(dev) == 0) { 2484 difference = ((long)(unsigned)check_interval) 2485 * HZ; 2486 next_check_jiffies = jiffies + difference; 2487 } else if (!dev->queues) 2488 break; 2489 } 2490 if (!time_before(next_check_jiffies,next_jiffies) 2491 && ((difference = next_jiffies - jiffies) <= 0)) { 2492 struct timespec64 now; 2493 int ret; 2494 2495 /* Don't even try to talk to adapter if its sick */ 2496 ret = aac_adapter_check_health(dev); 2497 if (ret || !dev->queues) 2498 break; 2499 next_check_jiffies = jiffies 2500 + ((long)(unsigned)check_interval) 2501 * HZ; 2502 ktime_get_real_ts64(&now); 2503 2504 /* Synchronize our watches */ 2505 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec) 2506 && (now.tv_nsec > (NSEC_PER_SEC / HZ))) 2507 difference = HZ + HZ / 2 - 2508 now.tv_nsec / (NSEC_PER_SEC / HZ); 2509 else { 2510 if (now.tv_nsec > NSEC_PER_SEC / 2) 2511 ++now.tv_sec; 2512 2513 if (dev->sa_firmware) 2514 ret = 2515 aac_send_safw_hostttime(dev, &now); 2516 else 2517 ret = aac_send_hosttime(dev, &now); 2518 2519 difference = (long)(unsigned)update_interval*HZ; 2520 } 2521 next_jiffies = jiffies + difference; 2522 if (time_before(next_check_jiffies,next_jiffies)) 2523 difference = next_check_jiffies - jiffies; 2524 } 2525 if (difference <= 0) 2526 difference = 1; 2527 set_current_state(TASK_INTERRUPTIBLE); 2528 2529 if (kthread_should_stop()) 2530 break; 2531 2532 /* 2533 * we probably want usleep_range() here instead of the 2534 * jiffies computation 2535 */ 2536 schedule_timeout(difference); 2537 2538 if (kthread_should_stop()) 2539 break; 2540 } 2541 if (dev->queues) 2542 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2543 dev->aif_thread = 0; 2544 return 0; 2545 } 2546 2547 int aac_acquire_irq(struct aac_dev *dev) 2548 { 2549 int i; 2550 int j; 2551 int ret = 0; 2552 2553 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 2554 for (i = 0; i < dev->max_msix; i++) { 2555 dev->aac_msix[i].vector_no = i; 2556 dev->aac_msix[i].dev = dev; 2557 if (request_irq(pci_irq_vector(dev->pdev, i), 2558 dev->a_ops.adapter_intr, 2559 0, "aacraid", &(dev->aac_msix[i]))) { 2560 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 2561 dev->name, dev->id, i); 2562 for (j = 0 ; j < i ; j++) 2563 free_irq(pci_irq_vector(dev->pdev, j), 2564 &(dev->aac_msix[j])); 2565 pci_disable_msix(dev->pdev); 2566 ret = -1; 2567 } 2568 } 2569 } else { 2570 dev->aac_msix[0].vector_no = 0; 2571 dev->aac_msix[0].dev = dev; 2572 2573 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 2574 IRQF_SHARED, "aacraid", 2575 &(dev->aac_msix[0])) < 0) { 2576 if (dev->msi) 2577 pci_disable_msi(dev->pdev); 2578 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 2579 dev->name, dev->id); 2580 ret = -1; 2581 } 2582 } 2583 return ret; 2584 } 2585 2586 void aac_free_irq(struct aac_dev *dev) 2587 { 2588 int i; 2589 int cpu; 2590 2591 cpu = cpumask_first(cpu_online_mask); 2592 if (aac_is_src(dev)) { 2593 if (dev->max_msix > 1) { 2594 for (i = 0; i < dev->max_msix; i++) 2595 free_irq(pci_irq_vector(dev->pdev, i), 2596 &(dev->aac_msix[i])); 2597 } else { 2598 free_irq(dev->pdev->irq, &(dev->aac_msix[0])); 2599 } 2600 } else { 2601 free_irq(dev->pdev->irq, dev); 2602 } 2603 if (dev->msi) 2604 pci_disable_msi(dev->pdev); 2605 else if (dev->max_msix > 1) 2606 pci_disable_msix(dev->pdev); 2607 } 2608