xref: /openbmc/linux/drivers/scsi/aacraid/commsup.c (revision 8730046c)
1 /*
2  *	Adaptec AAC series RAID controller driver
3  *	(c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; see the file COPYING.  If not, write to
23  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Module Name:
26  *  commsup.c
27  *
28  * Abstract: Contain all routines that are required for FSA host/adapter
29  *    communication.
30  *
31  */
32 
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/types.h>
36 #include <linux/sched.h>
37 #include <linux/pci.h>
38 #include <linux/spinlock.h>
39 #include <linux/slab.h>
40 #include <linux/completion.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/interrupt.h>
45 #include <linux/semaphore.h>
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_host.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_cmnd.h>
50 
51 #include "aacraid.h"
52 
53 /**
54  *	fib_map_alloc		-	allocate the fib objects
55  *	@dev: Adapter to allocate for
56  *
57  *	Allocate and map the shared PCI space for the FIB blocks used to
58  *	talk to the Adaptec firmware.
59  */
60 
61 static int fib_map_alloc(struct aac_dev *dev)
62 {
63 	dprintk((KERN_INFO
64 	  "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
65 	  dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
66 	  AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
67 	dev->hw_fib_va = pci_alloc_consistent(dev->pdev,
68 		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr))
69 		* (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1),
70 		&dev->hw_fib_pa);
71 	if (dev->hw_fib_va == NULL)
72 		return -ENOMEM;
73 	return 0;
74 }
75 
76 /**
77  *	aac_fib_map_free		-	free the fib objects
78  *	@dev: Adapter to free
79  *
80  *	Free the PCI mappings and the memory allocated for FIB blocks
81  *	on this adapter.
82  */
83 
84 void aac_fib_map_free(struct aac_dev *dev)
85 {
86 	if (dev->hw_fib_va && dev->max_fib_size) {
87 		pci_free_consistent(dev->pdev,
88 		(dev->max_fib_size *
89 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)),
90 		dev->hw_fib_va, dev->hw_fib_pa);
91 	}
92 	dev->hw_fib_va = NULL;
93 	dev->hw_fib_pa = 0;
94 }
95 
96 void aac_fib_vector_assign(struct aac_dev *dev)
97 {
98 	u32 i = 0;
99 	u32 vector = 1;
100 	struct fib *fibptr = NULL;
101 
102 	for (i = 0, fibptr = &dev->fibs[i];
103 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
104 		i++, fibptr++) {
105 		if ((dev->max_msix == 1) ||
106 		  (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1)
107 			- dev->vector_cap))) {
108 			fibptr->vector_no = 0;
109 		} else {
110 			fibptr->vector_no = vector;
111 			vector++;
112 			if (vector == dev->max_msix)
113 				vector = 1;
114 		}
115 	}
116 }
117 
118 /**
119  *	aac_fib_setup	-	setup the fibs
120  *	@dev: Adapter to set up
121  *
122  *	Allocate the PCI space for the fibs, map it and then initialise the
123  *	fib area, the unmapped fib data and also the free list
124  */
125 
126 int aac_fib_setup(struct aac_dev * dev)
127 {
128 	struct fib *fibptr;
129 	struct hw_fib *hw_fib;
130 	dma_addr_t hw_fib_pa;
131 	int i;
132 
133 	while (((i = fib_map_alloc(dev)) == -ENOMEM)
134 	 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
135 		dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
136 		dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
137 	}
138 	if (i<0)
139 		return -ENOMEM;
140 
141 	/* 32 byte alignment for PMC */
142 	hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1);
143 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
144 		(hw_fib_pa - dev->hw_fib_pa));
145 	dev->hw_fib_pa = hw_fib_pa;
146 	memset(dev->hw_fib_va, 0,
147 		(dev->max_fib_size + sizeof(struct aac_fib_xporthdr)) *
148 		(dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
149 
150 	/* add Xport header */
151 	dev->hw_fib_va = (struct hw_fib *)((unsigned char *)dev->hw_fib_va +
152 		sizeof(struct aac_fib_xporthdr));
153 	dev->hw_fib_pa += sizeof(struct aac_fib_xporthdr);
154 
155 	hw_fib = dev->hw_fib_va;
156 	hw_fib_pa = dev->hw_fib_pa;
157 	/*
158 	 *	Initialise the fibs
159 	 */
160 	for (i = 0, fibptr = &dev->fibs[i];
161 		i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB);
162 		i++, fibptr++)
163 	{
164 		fibptr->flags = 0;
165 		fibptr->size = sizeof(struct fib);
166 		fibptr->dev = dev;
167 		fibptr->hw_fib_va = hw_fib;
168 		fibptr->data = (void *) fibptr->hw_fib_va->data;
169 		fibptr->next = fibptr+1;	/* Forward chain the fibs */
170 		sema_init(&fibptr->event_wait, 0);
171 		spin_lock_init(&fibptr->event_lock);
172 		hw_fib->header.XferState = cpu_to_le32(0xffffffff);
173 		hw_fib->header.SenderSize = cpu_to_le16(dev->max_fib_size);
174 		fibptr->hw_fib_pa = hw_fib_pa;
175 		hw_fib = (struct hw_fib *)((unsigned char *)hw_fib +
176 			dev->max_fib_size + sizeof(struct aac_fib_xporthdr));
177 		hw_fib_pa = hw_fib_pa +
178 			dev->max_fib_size + sizeof(struct aac_fib_xporthdr);
179 	}
180 
181 	/*
182 	 *Assign vector numbers to fibs
183 	 */
184 	aac_fib_vector_assign(dev);
185 
186 	/*
187 	 *	Add the fib chain to the free list
188 	 */
189 	dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
190 	/*
191 	*	Set 8 fibs aside for management tools
192 	*/
193 	dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue];
194 	return 0;
195 }
196 
197 /**
198  *	aac_fib_alloc_tag-allocate a fib using tags
199  *	@dev: Adapter to allocate the fib for
200  *
201  *	Allocate a fib from the adapter fib pool using tags
202  *	from the blk layer.
203  */
204 
205 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd)
206 {
207 	struct fib *fibptr;
208 
209 	fibptr = &dev->fibs[scmd->request->tag];
210 	/*
211 	 *	Null out fields that depend on being zero at the start of
212 	 *	each I/O
213 	 */
214 	fibptr->hw_fib_va->header.XferState = 0;
215 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
216 	fibptr->callback_data = NULL;
217 	fibptr->callback = NULL;
218 
219 	return fibptr;
220 }
221 
222 /**
223  *	aac_fib_alloc	-	allocate a fib
224  *	@dev: Adapter to allocate the fib for
225  *
226  *	Allocate a fib from the adapter fib pool. If the pool is empty we
227  *	return NULL.
228  */
229 
230 struct fib *aac_fib_alloc(struct aac_dev *dev)
231 {
232 	struct fib * fibptr;
233 	unsigned long flags;
234 	spin_lock_irqsave(&dev->fib_lock, flags);
235 	fibptr = dev->free_fib;
236 	if(!fibptr){
237 		spin_unlock_irqrestore(&dev->fib_lock, flags);
238 		return fibptr;
239 	}
240 	dev->free_fib = fibptr->next;
241 	spin_unlock_irqrestore(&dev->fib_lock, flags);
242 	/*
243 	 *	Set the proper node type code and node byte size
244 	 */
245 	fibptr->type = FSAFS_NTC_FIB_CONTEXT;
246 	fibptr->size = sizeof(struct fib);
247 	/*
248 	 *	Null out fields that depend on being zero at the start of
249 	 *	each I/O
250 	 */
251 	fibptr->hw_fib_va->header.XferState = 0;
252 	fibptr->flags = 0;
253 	fibptr->callback = NULL;
254 	fibptr->callback_data = NULL;
255 
256 	return fibptr;
257 }
258 
259 /**
260  *	aac_fib_free	-	free a fib
261  *	@fibptr: fib to free up
262  *
263  *	Frees up a fib and places it on the appropriate queue
264  */
265 
266 void aac_fib_free(struct fib *fibptr)
267 {
268 	unsigned long flags;
269 
270 	if (fibptr->done == 2)
271 		return;
272 
273 	spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
274 	if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
275 		aac_config.fib_timeouts++;
276 	if (fibptr->hw_fib_va->header.XferState != 0) {
277 		printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n",
278 			 (void*)fibptr,
279 			 le32_to_cpu(fibptr->hw_fib_va->header.XferState));
280 	}
281 	fibptr->next = fibptr->dev->free_fib;
282 	fibptr->dev->free_fib = fibptr;
283 	spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
284 }
285 
286 /**
287  *	aac_fib_init	-	initialise a fib
288  *	@fibptr: The fib to initialize
289  *
290  *	Set up the generic fib fields ready for use
291  */
292 
293 void aac_fib_init(struct fib *fibptr)
294 {
295 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
296 
297 	memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr));
298 	hw_fib->header.StructType = FIB_MAGIC;
299 	hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
300 	hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
301 	hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
302 	hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
303 }
304 
305 /**
306  *	fib_deallocate		-	deallocate a fib
307  *	@fibptr: fib to deallocate
308  *
309  *	Will deallocate and return to the free pool the FIB pointed to by the
310  *	caller.
311  */
312 
313 static void fib_dealloc(struct fib * fibptr)
314 {
315 	struct hw_fib *hw_fib = fibptr->hw_fib_va;
316 	hw_fib->header.XferState = 0;
317 }
318 
319 /*
320  *	Commuication primitives define and support the queuing method we use to
321  *	support host to adapter commuication. All queue accesses happen through
322  *	these routines and are the only routines which have a knowledge of the
323  *	 how these queues are implemented.
324  */
325 
326 /**
327  *	aac_get_entry		-	get a queue entry
328  *	@dev: Adapter
329  *	@qid: Queue Number
330  *	@entry: Entry return
331  *	@index: Index return
332  *	@nonotify: notification control
333  *
334  *	With a priority the routine returns a queue entry if the queue has free entries. If the queue
335  *	is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
336  *	returned.
337  */
338 
339 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
340 {
341 	struct aac_queue * q;
342 	unsigned long idx;
343 
344 	/*
345 	 *	All of the queues wrap when they reach the end, so we check
346 	 *	to see if they have reached the end and if they have we just
347 	 *	set the index back to zero. This is a wrap. You could or off
348 	 *	the high bits in all updates but this is a bit faster I think.
349 	 */
350 
351 	q = &dev->queues->queue[qid];
352 
353 	idx = *index = le32_to_cpu(*(q->headers.producer));
354 	/* Interrupt Moderation, only interrupt for first two entries */
355 	if (idx != le32_to_cpu(*(q->headers.consumer))) {
356 		if (--idx == 0) {
357 			if (qid == AdapNormCmdQueue)
358 				idx = ADAP_NORM_CMD_ENTRIES;
359 			else
360 				idx = ADAP_NORM_RESP_ENTRIES;
361 		}
362 		if (idx != le32_to_cpu(*(q->headers.consumer)))
363 			*nonotify = 1;
364 	}
365 
366 	if (qid == AdapNormCmdQueue) {
367 		if (*index >= ADAP_NORM_CMD_ENTRIES)
368 			*index = 0; /* Wrap to front of the Producer Queue. */
369 	} else {
370 		if (*index >= ADAP_NORM_RESP_ENTRIES)
371 			*index = 0; /* Wrap to front of the Producer Queue. */
372 	}
373 
374 	/* Queue is full */
375 	if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) {
376 		printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
377 				qid, atomic_read(&q->numpending));
378 		return 0;
379 	} else {
380 		*entry = q->base + *index;
381 		return 1;
382 	}
383 }
384 
385 /**
386  *	aac_queue_get		-	get the next free QE
387  *	@dev: Adapter
388  *	@index: Returned index
389  *	@priority: Priority of fib
390  *	@fib: Fib to associate with the queue entry
391  *	@wait: Wait if queue full
392  *	@fibptr: Driver fib object to go with fib
393  *	@nonotify: Don't notify the adapter
394  *
395  *	Gets the next free QE off the requested priorty adapter command
396  *	queue and associates the Fib with the QE. The QE represented by
397  *	index is ready to insert on the queue when this routine returns
398  *	success.
399  */
400 
401 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
402 {
403 	struct aac_entry * entry = NULL;
404 	int map = 0;
405 
406 	if (qid == AdapNormCmdQueue) {
407 		/*  if no entries wait for some if caller wants to */
408 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
409 			printk(KERN_ERR "GetEntries failed\n");
410 		}
411 		/*
412 		 *	Setup queue entry with a command, status and fib mapped
413 		 */
414 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
415 		map = 1;
416 	} else {
417 		while (!aac_get_entry(dev, qid, &entry, index, nonotify)) {
418 			/* if no entries wait for some if caller wants to */
419 		}
420 		/*
421 		 *	Setup queue entry with command, status and fib mapped
422 		 */
423 		entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
424 		entry->addr = hw_fib->header.SenderFibAddress;
425 			/* Restore adapters pointer to the FIB */
426 		hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress;  /* Let the adapter now where to find its data */
427 		map = 0;
428 	}
429 	/*
430 	 *	If MapFib is true than we need to map the Fib and put pointers
431 	 *	in the queue entry.
432 	 */
433 	if (map)
434 		entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
435 	return 0;
436 }
437 
438 /*
439  *	Define the highest level of host to adapter communication routines.
440  *	These routines will support host to adapter FS commuication. These
441  *	routines have no knowledge of the commuication method used. This level
442  *	sends and receives FIBs. This level has no knowledge of how these FIBs
443  *	get passed back and forth.
444  */
445 
446 /**
447  *	aac_fib_send	-	send a fib to the adapter
448  *	@command: Command to send
449  *	@fibptr: The fib
450  *	@size: Size of fib data area
451  *	@priority: Priority of Fib
452  *	@wait: Async/sync select
453  *	@reply: True if a reply is wanted
454  *	@callback: Called with reply
455  *	@callback_data: Passed to callback
456  *
457  *	Sends the requested FIB to the adapter and optionally will wait for a
458  *	response FIB. If the caller does not wish to wait for a response than
459  *	an event to wait on must be supplied. This event will be set when a
460  *	response FIB is received from the adapter.
461  */
462 
463 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size,
464 		int priority, int wait, int reply, fib_callback callback,
465 		void *callback_data)
466 {
467 	struct aac_dev * dev = fibptr->dev;
468 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
469 	unsigned long flags = 0;
470 	unsigned long mflags = 0;
471 	unsigned long sflags = 0;
472 
473 
474 	if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
475 		return -EBUSY;
476 	/*
477 	 *	There are 5 cases with the wait and response requested flags.
478 	 *	The only invalid cases are if the caller requests to wait and
479 	 *	does not request a response and if the caller does not want a
480 	 *	response and the Fib is not allocated from pool. If a response
481 	 *	is not requesed the Fib will just be deallocaed by the DPC
482 	 *	routine when the response comes back from the adapter. No
483 	 *	further processing will be done besides deleting the Fib. We
484 	 *	will have a debug mode where the adapter can notify the host
485 	 *	it had a problem and the host can log that fact.
486 	 */
487 	fibptr->flags = 0;
488 	if (wait && !reply) {
489 		return -EINVAL;
490 	} else if (!wait && reply) {
491 		hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
492 		FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
493 	} else if (!wait && !reply) {
494 		hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
495 		FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
496 	} else if (wait && reply) {
497 		hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
498 		FIB_COUNTER_INCREMENT(aac_config.NormalSent);
499 	}
500 	/*
501 	 *	Map the fib into 32bits by using the fib number
502 	 */
503 
504 	hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2);
505 	hw_fib->header.Handle = (u32)(fibptr - dev->fibs) + 1;
506 	/*
507 	 *	Set FIB state to indicate where it came from and if we want a
508 	 *	response from the adapter. Also load the command from the
509 	 *	caller.
510 	 *
511 	 *	Map the hw fib pointer as a 32bit value
512 	 */
513 	hw_fib->header.Command = cpu_to_le16(command);
514 	hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
515 	/*
516 	 *	Set the size of the Fib we want to send to the adapter
517 	 */
518 	hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
519 	if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
520 		return -EMSGSIZE;
521 	}
522 	/*
523 	 *	Get a queue entry connect the FIB to it and send an notify
524 	 *	the adapter a command is ready.
525 	 */
526 	hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
527 
528 	/*
529 	 *	Fill in the Callback and CallbackContext if we are not
530 	 *	going to wait.
531 	 */
532 	if (!wait) {
533 		fibptr->callback = callback;
534 		fibptr->callback_data = callback_data;
535 		fibptr->flags = FIB_CONTEXT_FLAG;
536 	}
537 
538 	fibptr->done = 0;
539 
540 	FIB_COUNTER_INCREMENT(aac_config.FibsSent);
541 
542 	dprintk((KERN_DEBUG "Fib contents:.\n"));
543 	dprintk((KERN_DEBUG "  Command =               %d.\n", le32_to_cpu(hw_fib->header.Command)));
544 	dprintk((KERN_DEBUG "  SubCommand =            %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command)));
545 	dprintk((KERN_DEBUG "  XferState  =            %x.\n", le32_to_cpu(hw_fib->header.XferState)));
546 	dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib_va));
547 	dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
548 	dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
549 
550 	if (!dev->queues)
551 		return -EBUSY;
552 
553 	if (wait) {
554 
555 		spin_lock_irqsave(&dev->manage_lock, mflags);
556 		if (dev->management_fib_count >= AAC_NUM_MGT_FIB) {
557 			printk(KERN_INFO "No management Fibs Available:%d\n",
558 						dev->management_fib_count);
559 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
560 			return -EBUSY;
561 		}
562 		dev->management_fib_count++;
563 		spin_unlock_irqrestore(&dev->manage_lock, mflags);
564 		spin_lock_irqsave(&fibptr->event_lock, flags);
565 	}
566 
567 	if (dev->sync_mode) {
568 		if (wait)
569 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
570 		spin_lock_irqsave(&dev->sync_lock, sflags);
571 		if (dev->sync_fib) {
572 			list_add_tail(&fibptr->fiblink, &dev->sync_fib_list);
573 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
574 		} else {
575 			dev->sync_fib = fibptr;
576 			spin_unlock_irqrestore(&dev->sync_lock, sflags);
577 			aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB,
578 				(u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0,
579 				NULL, NULL, NULL, NULL, NULL);
580 		}
581 		if (wait) {
582 			fibptr->flags |= FIB_CONTEXT_FLAG_WAIT;
583 			if (down_interruptible(&fibptr->event_wait)) {
584 				fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT;
585 				return -EFAULT;
586 			}
587 			return 0;
588 		}
589 		return -EINPROGRESS;
590 	}
591 
592 	if (aac_adapter_deliver(fibptr) != 0) {
593 		printk(KERN_ERR "aac_fib_send: returned -EBUSY\n");
594 		if (wait) {
595 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
596 			spin_lock_irqsave(&dev->manage_lock, mflags);
597 			dev->management_fib_count--;
598 			spin_unlock_irqrestore(&dev->manage_lock, mflags);
599 		}
600 		return -EBUSY;
601 	}
602 
603 
604 	/*
605 	 *	If the caller wanted us to wait for response wait now.
606 	 */
607 
608 	if (wait) {
609 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
610 		/* Only set for first known interruptable command */
611 		if (wait < 0) {
612 			/*
613 			 * *VERY* Dangerous to time out a command, the
614 			 * assumption is made that we have no hope of
615 			 * functioning because an interrupt routing or other
616 			 * hardware failure has occurred.
617 			 */
618 			unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */
619 			while (down_trylock(&fibptr->event_wait)) {
620 				int blink;
621 				if (time_is_before_eq_jiffies(timeout)) {
622 					struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue];
623 					atomic_dec(&q->numpending);
624 					if (wait == -1) {
625 	        				printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n"
626 						  "Usually a result of a PCI interrupt routing problem;\n"
627 						  "update mother board BIOS or consider utilizing one of\n"
628 						  "the SAFE mode kernel options (acpi, apic etc)\n");
629 					}
630 					return -ETIMEDOUT;
631 				}
632 				if ((blink = aac_adapter_check_health(dev)) > 0) {
633 					if (wait == -1) {
634 	        				printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n"
635 						  "Usually a result of a serious unrecoverable hardware problem\n",
636 						  blink);
637 					}
638 					return -EFAULT;
639 				}
640 				/*
641 				 * Allow other processes / CPUS to use core
642 				 */
643 				schedule();
644 			}
645 		} else if (down_interruptible(&fibptr->event_wait)) {
646 			/* Do nothing ... satisfy
647 			 * down_interruptible must_check */
648 		}
649 
650 		spin_lock_irqsave(&fibptr->event_lock, flags);
651 		if (fibptr->done == 0) {
652 			fibptr->done = 2; /* Tell interrupt we aborted */
653 			spin_unlock_irqrestore(&fibptr->event_lock, flags);
654 			return -ERESTARTSYS;
655 		}
656 		spin_unlock_irqrestore(&fibptr->event_lock, flags);
657 		BUG_ON(fibptr->done == 0);
658 
659 		if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT))
660 			return -ETIMEDOUT;
661 		return 0;
662 	}
663 	/*
664 	 *	If the user does not want a response than return success otherwise
665 	 *	return pending
666 	 */
667 	if (reply)
668 		return -EINPROGRESS;
669 	else
670 		return 0;
671 }
672 
673 /**
674  *	aac_consumer_get	-	get the top of the queue
675  *	@dev: Adapter
676  *	@q: Queue
677  *	@entry: Return entry
678  *
679  *	Will return a pointer to the entry on the top of the queue requested that
680  *	we are a consumer of, and return the address of the queue entry. It does
681  *	not change the state of the queue.
682  */
683 
684 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
685 {
686 	u32 index;
687 	int status;
688 	if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
689 		status = 0;
690 	} else {
691 		/*
692 		 *	The consumer index must be wrapped if we have reached
693 		 *	the end of the queue, else we just use the entry
694 		 *	pointed to by the header index
695 		 */
696 		if (le32_to_cpu(*q->headers.consumer) >= q->entries)
697 			index = 0;
698 		else
699 			index = le32_to_cpu(*q->headers.consumer);
700 		*entry = q->base + index;
701 		status = 1;
702 	}
703 	return(status);
704 }
705 
706 /**
707  *	aac_consumer_free	-	free consumer entry
708  *	@dev: Adapter
709  *	@q: Queue
710  *	@qid: Queue ident
711  *
712  *	Frees up the current top of the queue we are a consumer of. If the
713  *	queue was full notify the producer that the queue is no longer full.
714  */
715 
716 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
717 {
718 	int wasfull = 0;
719 	u32 notify;
720 
721 	if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
722 		wasfull = 1;
723 
724 	if (le32_to_cpu(*q->headers.consumer) >= q->entries)
725 		*q->headers.consumer = cpu_to_le32(1);
726 	else
727 		le32_add_cpu(q->headers.consumer, 1);
728 
729 	if (wasfull) {
730 		switch (qid) {
731 
732 		case HostNormCmdQueue:
733 			notify = HostNormCmdNotFull;
734 			break;
735 		case HostNormRespQueue:
736 			notify = HostNormRespNotFull;
737 			break;
738 		default:
739 			BUG();
740 			return;
741 		}
742 		aac_adapter_notify(dev, notify);
743 	}
744 }
745 
746 /**
747  *	aac_fib_adapter_complete	-	complete adapter issued fib
748  *	@fibptr: fib to complete
749  *	@size: size of fib
750  *
751  *	Will do all necessary work to complete a FIB that was sent from
752  *	the adapter.
753  */
754 
755 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size)
756 {
757 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
758 	struct aac_dev * dev = fibptr->dev;
759 	struct aac_queue * q;
760 	unsigned long nointr = 0;
761 	unsigned long qflags;
762 
763 	if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 ||
764 	    dev->comm_interface == AAC_COMM_MESSAGE_TYPE2) {
765 		kfree(hw_fib);
766 		return 0;
767 	}
768 
769 	if (hw_fib->header.XferState == 0) {
770 		if (dev->comm_interface == AAC_COMM_MESSAGE)
771 			kfree(hw_fib);
772 		return 0;
773 	}
774 	/*
775 	 *	If we plan to do anything check the structure type first.
776 	 */
777 	if (hw_fib->header.StructType != FIB_MAGIC &&
778 	    hw_fib->header.StructType != FIB_MAGIC2 &&
779 	    hw_fib->header.StructType != FIB_MAGIC2_64) {
780 		if (dev->comm_interface == AAC_COMM_MESSAGE)
781 			kfree(hw_fib);
782 		return -EINVAL;
783 	}
784 	/*
785 	 *	This block handles the case where the adapter had sent us a
786 	 *	command and we have finished processing the command. We
787 	 *	call completeFib when we are done processing the command
788 	 *	and want to send a response back to the adapter. This will
789 	 *	send the completed cdb to the adapter.
790 	 */
791 	if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
792 		if (dev->comm_interface == AAC_COMM_MESSAGE) {
793 			kfree (hw_fib);
794 		} else {
795 			u32 index;
796 			hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
797 			if (size) {
798 				size += sizeof(struct aac_fibhdr);
799 				if (size > le16_to_cpu(hw_fib->header.SenderSize))
800 					return -EMSGSIZE;
801 				hw_fib->header.Size = cpu_to_le16(size);
802 			}
803 			q = &dev->queues->queue[AdapNormRespQueue];
804 			spin_lock_irqsave(q->lock, qflags);
805 			aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
806 			*(q->headers.producer) = cpu_to_le32(index + 1);
807 			spin_unlock_irqrestore(q->lock, qflags);
808 			if (!(nointr & (int)aac_config.irq_mod))
809 				aac_adapter_notify(dev, AdapNormRespQueue);
810 		}
811 	} else {
812 		printk(KERN_WARNING "aac_fib_adapter_complete: "
813 			"Unknown xferstate detected.\n");
814 		BUG();
815 	}
816 	return 0;
817 }
818 
819 /**
820  *	aac_fib_complete	-	fib completion handler
821  *	@fib: FIB to complete
822  *
823  *	Will do all necessary work to complete a FIB.
824  */
825 
826 int aac_fib_complete(struct fib *fibptr)
827 {
828 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
829 
830 	/*
831 	 *	Check for a fib which has already been completed
832 	 */
833 
834 	if (hw_fib->header.XferState == 0)
835 		return 0;
836 	/*
837 	 *	If we plan to do anything check the structure type first.
838 	 */
839 
840 	if (hw_fib->header.StructType != FIB_MAGIC &&
841 	    hw_fib->header.StructType != FIB_MAGIC2 &&
842 	    hw_fib->header.StructType != FIB_MAGIC2_64)
843 		return -EINVAL;
844 	/*
845 	 *	This block completes a cdb which orginated on the host and we
846 	 *	just need to deallocate the cdb or reinit it. At this point the
847 	 *	command is complete that we had sent to the adapter and this
848 	 *	cdb could be reused.
849 	 */
850 
851 	if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
852 		(hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
853 	{
854 		fib_dealloc(fibptr);
855 	}
856 	else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
857 	{
858 		/*
859 		 *	This handles the case when the host has aborted the I/O
860 		 *	to the adapter because the adapter is not responding
861 		 */
862 		fib_dealloc(fibptr);
863 	} else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
864 		fib_dealloc(fibptr);
865 	} else {
866 		BUG();
867 	}
868 	return 0;
869 }
870 
871 /**
872  *	aac_printf	-	handle printf from firmware
873  *	@dev: Adapter
874  *	@val: Message info
875  *
876  *	Print a message passed to us by the controller firmware on the
877  *	Adaptec board
878  */
879 
880 void aac_printf(struct aac_dev *dev, u32 val)
881 {
882 	char *cp = dev->printfbuf;
883 	if (dev->printf_enabled)
884 	{
885 		int length = val & 0xffff;
886 		int level = (val >> 16) & 0xffff;
887 
888 		/*
889 		 *	The size of the printfbuf is set in port.c
890 		 *	There is no variable or define for it
891 		 */
892 		if (length > 255)
893 			length = 255;
894 		if (cp[length] != 0)
895 			cp[length] = 0;
896 		if (level == LOG_AAC_HIGH_ERROR)
897 			printk(KERN_WARNING "%s:%s", dev->name, cp);
898 		else
899 			printk(KERN_INFO "%s:%s", dev->name, cp);
900 	}
901 	memset(cp, 0, 256);
902 }
903 
904 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index)
905 {
906 	return le32_to_cpu(((__le32 *)aifcmd->data)[index]);
907 }
908 
909 
910 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd)
911 {
912 	switch (aac_aif_data(aifcmd, 1)) {
913 	case AifBuCacheDataLoss:
914 		if (aac_aif_data(aifcmd, 2))
915 			dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n",
916 			aac_aif_data(aifcmd, 2));
917 		else
918 			dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n");
919 		break;
920 	case AifBuCacheDataRecover:
921 		if (aac_aif_data(aifcmd, 2))
922 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n",
923 			aac_aif_data(aifcmd, 2));
924 		else
925 			dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n");
926 		break;
927 	}
928 }
929 
930 /**
931  *	aac_handle_aif		-	Handle a message from the firmware
932  *	@dev: Which adapter this fib is from
933  *	@fibptr: Pointer to fibptr from adapter
934  *
935  *	This routine handles a driver notify fib from the adapter and
936  *	dispatches it to the appropriate routine for handling.
937  */
938 
939 #define AIF_SNIFF_TIMEOUT	(500*HZ)
940 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
941 {
942 	struct hw_fib * hw_fib = fibptr->hw_fib_va;
943 	struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
944 	u32 channel, id, lun, container;
945 	struct scsi_device *device;
946 	enum {
947 		NOTHING,
948 		DELETE,
949 		ADD,
950 		CHANGE
951 	} device_config_needed = NOTHING;
952 
953 	/* Sniff for container changes */
954 
955 	if (!dev || !dev->fsa_dev)
956 		return;
957 	container = channel = id = lun = (u32)-1;
958 
959 	/*
960 	 *	We have set this up to try and minimize the number of
961 	 * re-configures that take place. As a result of this when
962 	 * certain AIF's come in we will set a flag waiting for another
963 	 * type of AIF before setting the re-config flag.
964 	 */
965 	switch (le32_to_cpu(aifcmd->command)) {
966 	case AifCmdDriverNotify:
967 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
968 		case AifRawDeviceRemove:
969 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
970 			if ((container >> 28)) {
971 				container = (u32)-1;
972 				break;
973 			}
974 			channel = (container >> 24) & 0xF;
975 			if (channel >= dev->maximum_num_channels) {
976 				container = (u32)-1;
977 				break;
978 			}
979 			id = container & 0xFFFF;
980 			if (id >= dev->maximum_num_physicals) {
981 				container = (u32)-1;
982 				break;
983 			}
984 			lun = (container >> 16) & 0xFF;
985 			container = (u32)-1;
986 			channel = aac_phys_to_logical(channel);
987 			device_config_needed =
988 			  (((__le32 *)aifcmd->data)[0] ==
989 			    cpu_to_le32(AifRawDeviceRemove)) ? DELETE : ADD;
990 
991 			if (device_config_needed == ADD) {
992 				device = scsi_device_lookup(
993 					dev->scsi_host_ptr,
994 					channel, id, lun);
995 				if (device) {
996 					scsi_remove_device(device);
997 					scsi_device_put(device);
998 				}
999 			}
1000 			break;
1001 		/*
1002 		 *	Morph or Expand complete
1003 		 */
1004 		case AifDenMorphComplete:
1005 		case AifDenVolumeExtendComplete:
1006 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1007 			if (container >= dev->maximum_num_containers)
1008 				break;
1009 
1010 			/*
1011 			 *	Find the scsi_device associated with the SCSI
1012 			 * address. Make sure we have the right array, and if
1013 			 * so set the flag to initiate a new re-config once we
1014 			 * see an AifEnConfigChange AIF come through.
1015 			 */
1016 
1017 			if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
1018 				device = scsi_device_lookup(dev->scsi_host_ptr,
1019 					CONTAINER_TO_CHANNEL(container),
1020 					CONTAINER_TO_ID(container),
1021 					CONTAINER_TO_LUN(container));
1022 				if (device) {
1023 					dev->fsa_dev[container].config_needed = CHANGE;
1024 					dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
1025 					dev->fsa_dev[container].config_waiting_stamp = jiffies;
1026 					scsi_device_put(device);
1027 				}
1028 			}
1029 		}
1030 
1031 		/*
1032 		 *	If we are waiting on something and this happens to be
1033 		 * that thing then set the re-configure flag.
1034 		 */
1035 		if (container != (u32)-1) {
1036 			if (container >= dev->maximum_num_containers)
1037 				break;
1038 			if ((dev->fsa_dev[container].config_waiting_on ==
1039 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1040 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1041 				dev->fsa_dev[container].config_waiting_on = 0;
1042 		} else for (container = 0;
1043 		    container < dev->maximum_num_containers; ++container) {
1044 			if ((dev->fsa_dev[container].config_waiting_on ==
1045 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1046 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1047 				dev->fsa_dev[container].config_waiting_on = 0;
1048 		}
1049 		break;
1050 
1051 	case AifCmdEventNotify:
1052 		switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) {
1053 		case AifEnBatteryEvent:
1054 			dev->cache_protected =
1055 				(((__le32 *)aifcmd->data)[1] == cpu_to_le32(3));
1056 			break;
1057 		/*
1058 		 *	Add an Array.
1059 		 */
1060 		case AifEnAddContainer:
1061 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1062 			if (container >= dev->maximum_num_containers)
1063 				break;
1064 			dev->fsa_dev[container].config_needed = ADD;
1065 			dev->fsa_dev[container].config_waiting_on =
1066 				AifEnConfigChange;
1067 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1068 			break;
1069 
1070 		/*
1071 		 *	Delete an Array.
1072 		 */
1073 		case AifEnDeleteContainer:
1074 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1075 			if (container >= dev->maximum_num_containers)
1076 				break;
1077 			dev->fsa_dev[container].config_needed = DELETE;
1078 			dev->fsa_dev[container].config_waiting_on =
1079 				AifEnConfigChange;
1080 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1081 			break;
1082 
1083 		/*
1084 		 *	Container change detected. If we currently are not
1085 		 * waiting on something else, setup to wait on a Config Change.
1086 		 */
1087 		case AifEnContainerChange:
1088 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1089 			if (container >= dev->maximum_num_containers)
1090 				break;
1091 			if (dev->fsa_dev[container].config_waiting_on &&
1092 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1093 				break;
1094 			dev->fsa_dev[container].config_needed = CHANGE;
1095 			dev->fsa_dev[container].config_waiting_on =
1096 				AifEnConfigChange;
1097 			dev->fsa_dev[container].config_waiting_stamp = jiffies;
1098 			break;
1099 
1100 		case AifEnConfigChange:
1101 			break;
1102 
1103 		case AifEnAddJBOD:
1104 		case AifEnDeleteJBOD:
1105 			container = le32_to_cpu(((__le32 *)aifcmd->data)[1]);
1106 			if ((container >> 28)) {
1107 				container = (u32)-1;
1108 				break;
1109 			}
1110 			channel = (container >> 24) & 0xF;
1111 			if (channel >= dev->maximum_num_channels) {
1112 				container = (u32)-1;
1113 				break;
1114 			}
1115 			id = container & 0xFFFF;
1116 			if (id >= dev->maximum_num_physicals) {
1117 				container = (u32)-1;
1118 				break;
1119 			}
1120 			lun = (container >> 16) & 0xFF;
1121 			container = (u32)-1;
1122 			channel = aac_phys_to_logical(channel);
1123 			device_config_needed =
1124 			  (((__le32 *)aifcmd->data)[0] ==
1125 			    cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE;
1126 			if (device_config_needed == ADD) {
1127 				device = scsi_device_lookup(dev->scsi_host_ptr,
1128 					channel,
1129 					id,
1130 					lun);
1131 				if (device) {
1132 					scsi_remove_device(device);
1133 					scsi_device_put(device);
1134 				}
1135 			}
1136 			break;
1137 
1138 		case AifEnEnclosureManagement:
1139 			/*
1140 			 * If in JBOD mode, automatic exposure of new
1141 			 * physical target to be suppressed until configured.
1142 			 */
1143 			if (dev->jbod)
1144 				break;
1145 			switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) {
1146 			case EM_DRIVE_INSERTION:
1147 			case EM_DRIVE_REMOVAL:
1148 			case EM_SES_DRIVE_INSERTION:
1149 			case EM_SES_DRIVE_REMOVAL:
1150 				container = le32_to_cpu(
1151 					((__le32 *)aifcmd->data)[2]);
1152 				if ((container >> 28)) {
1153 					container = (u32)-1;
1154 					break;
1155 				}
1156 				channel = (container >> 24) & 0xF;
1157 				if (channel >= dev->maximum_num_channels) {
1158 					container = (u32)-1;
1159 					break;
1160 				}
1161 				id = container & 0xFFFF;
1162 				lun = (container >> 16) & 0xFF;
1163 				container = (u32)-1;
1164 				if (id >= dev->maximum_num_physicals) {
1165 					/* legacy dev_t ? */
1166 					if ((0x2000 <= id) || lun || channel ||
1167 					  ((channel = (id >> 7) & 0x3F) >=
1168 					  dev->maximum_num_channels))
1169 						break;
1170 					lun = (id >> 4) & 7;
1171 					id &= 0xF;
1172 				}
1173 				channel = aac_phys_to_logical(channel);
1174 				device_config_needed =
1175 				  ((((__le32 *)aifcmd->data)[3]
1176 				    == cpu_to_le32(EM_DRIVE_INSERTION)) ||
1177 				    (((__le32 *)aifcmd->data)[3]
1178 				    == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ?
1179 				  ADD : DELETE;
1180 				break;
1181 			}
1182 			case AifBuManagerEvent:
1183 				aac_handle_aif_bu(dev, aifcmd);
1184 			break;
1185 		}
1186 
1187 		/*
1188 		 *	If we are waiting on something and this happens to be
1189 		 * that thing then set the re-configure flag.
1190 		 */
1191 		if (container != (u32)-1) {
1192 			if (container >= dev->maximum_num_containers)
1193 				break;
1194 			if ((dev->fsa_dev[container].config_waiting_on ==
1195 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1196 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1197 				dev->fsa_dev[container].config_waiting_on = 0;
1198 		} else for (container = 0;
1199 		    container < dev->maximum_num_containers; ++container) {
1200 			if ((dev->fsa_dev[container].config_waiting_on ==
1201 			    le32_to_cpu(*(__le32 *)aifcmd->data)) &&
1202 			 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT))
1203 				dev->fsa_dev[container].config_waiting_on = 0;
1204 		}
1205 		break;
1206 
1207 	case AifCmdJobProgress:
1208 		/*
1209 		 *	These are job progress AIF's. When a Clear is being
1210 		 * done on a container it is initially created then hidden from
1211 		 * the OS. When the clear completes we don't get a config
1212 		 * change so we monitor the job status complete on a clear then
1213 		 * wait for a container change.
1214 		 */
1215 
1216 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1217 		    (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] ||
1218 		     ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) {
1219 			for (container = 0;
1220 			    container < dev->maximum_num_containers;
1221 			    ++container) {
1222 				/*
1223 				 * Stomp on all config sequencing for all
1224 				 * containers?
1225 				 */
1226 				dev->fsa_dev[container].config_waiting_on =
1227 					AifEnContainerChange;
1228 				dev->fsa_dev[container].config_needed = ADD;
1229 				dev->fsa_dev[container].config_waiting_stamp =
1230 					jiffies;
1231 			}
1232 		}
1233 		if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) &&
1234 		    ((__le32 *)aifcmd->data)[6] == 0 &&
1235 		    ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) {
1236 			for (container = 0;
1237 			    container < dev->maximum_num_containers;
1238 			    ++container) {
1239 				/*
1240 				 * Stomp on all config sequencing for all
1241 				 * containers?
1242 				 */
1243 				dev->fsa_dev[container].config_waiting_on =
1244 					AifEnContainerChange;
1245 				dev->fsa_dev[container].config_needed = DELETE;
1246 				dev->fsa_dev[container].config_waiting_stamp =
1247 					jiffies;
1248 			}
1249 		}
1250 		break;
1251 	}
1252 
1253 	container = 0;
1254 retry_next:
1255 	if (device_config_needed == NOTHING)
1256 	for (; container < dev->maximum_num_containers; ++container) {
1257 		if ((dev->fsa_dev[container].config_waiting_on == 0) &&
1258 			(dev->fsa_dev[container].config_needed != NOTHING) &&
1259 			time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) {
1260 			device_config_needed =
1261 				dev->fsa_dev[container].config_needed;
1262 			dev->fsa_dev[container].config_needed = NOTHING;
1263 			channel = CONTAINER_TO_CHANNEL(container);
1264 			id = CONTAINER_TO_ID(container);
1265 			lun = CONTAINER_TO_LUN(container);
1266 			break;
1267 		}
1268 	}
1269 	if (device_config_needed == NOTHING)
1270 		return;
1271 
1272 	/*
1273 	 *	If we decided that a re-configuration needs to be done,
1274 	 * schedule it here on the way out the door, please close the door
1275 	 * behind you.
1276 	 */
1277 
1278 	/*
1279 	 *	Find the scsi_device associated with the SCSI address,
1280 	 * and mark it as changed, invalidating the cache. This deals
1281 	 * with changes to existing device IDs.
1282 	 */
1283 
1284 	if (!dev || !dev->scsi_host_ptr)
1285 		return;
1286 	/*
1287 	 * force reload of disk info via aac_probe_container
1288 	 */
1289 	if ((channel == CONTAINER_CHANNEL) &&
1290 	  (device_config_needed != NOTHING)) {
1291 		if (dev->fsa_dev[container].valid == 1)
1292 			dev->fsa_dev[container].valid = 2;
1293 		aac_probe_container(dev, container);
1294 	}
1295 	device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun);
1296 	if (device) {
1297 		switch (device_config_needed) {
1298 		case DELETE:
1299 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1300 			scsi_remove_device(device);
1301 #else
1302 			if (scsi_device_online(device)) {
1303 				scsi_device_set_state(device, SDEV_OFFLINE);
1304 				sdev_printk(KERN_INFO, device,
1305 					"Device offlined - %s\n",
1306 					(channel == CONTAINER_CHANNEL) ?
1307 						"array deleted" :
1308 						"enclosure services event");
1309 			}
1310 #endif
1311 			break;
1312 		case ADD:
1313 			if (!scsi_device_online(device)) {
1314 				sdev_printk(KERN_INFO, device,
1315 					"Device online - %s\n",
1316 					(channel == CONTAINER_CHANNEL) ?
1317 						"array created" :
1318 						"enclosure services event");
1319 				scsi_device_set_state(device, SDEV_RUNNING);
1320 			}
1321 			/* FALLTHRU */
1322 		case CHANGE:
1323 			if ((channel == CONTAINER_CHANNEL)
1324 			 && (!dev->fsa_dev[container].valid)) {
1325 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE))
1326 				scsi_remove_device(device);
1327 #else
1328 				if (!scsi_device_online(device))
1329 					break;
1330 				scsi_device_set_state(device, SDEV_OFFLINE);
1331 				sdev_printk(KERN_INFO, device,
1332 					"Device offlined - %s\n",
1333 					"array failed");
1334 #endif
1335 				break;
1336 			}
1337 			scsi_rescan_device(&device->sdev_gendev);
1338 
1339 		default:
1340 			break;
1341 		}
1342 		scsi_device_put(device);
1343 		device_config_needed = NOTHING;
1344 	}
1345 	if (device_config_needed == ADD)
1346 		scsi_add_device(dev->scsi_host_ptr, channel, id, lun);
1347 	if (channel == CONTAINER_CHANNEL) {
1348 		container++;
1349 		device_config_needed = NOTHING;
1350 		goto retry_next;
1351 	}
1352 }
1353 
1354 static int _aac_reset_adapter(struct aac_dev *aac, int forced)
1355 {
1356 	int index, quirks;
1357 	int retval;
1358 	struct Scsi_Host *host;
1359 	struct scsi_device *dev;
1360 	struct scsi_cmnd *command;
1361 	struct scsi_cmnd *command_list;
1362 	int jafo = 0;
1363 
1364 	/*
1365 	 * Assumptions:
1366 	 *	- host is locked, unless called by the aacraid thread.
1367 	 *	  (a matter of convenience, due to legacy issues surrounding
1368 	 *	  eh_host_adapter_reset).
1369 	 *	- in_reset is asserted, so no new i/o is getting to the
1370 	 *	  card.
1371 	 *	- The card is dead, or will be very shortly ;-/ so no new
1372 	 *	  commands are completing in the interrupt service.
1373 	 */
1374 	host = aac->scsi_host_ptr;
1375 	scsi_block_requests(host);
1376 	aac_adapter_disable_int(aac);
1377 	if (aac->thread->pid != current->pid) {
1378 		spin_unlock_irq(host->host_lock);
1379 		kthread_stop(aac->thread);
1380 		jafo = 1;
1381 	}
1382 
1383 	/*
1384 	 *	If a positive health, means in a known DEAD PANIC
1385 	 * state and the adapter could be reset to `try again'.
1386 	 */
1387 	retval = aac_adapter_restart(aac, forced ? 0 : aac_adapter_check_health(aac));
1388 
1389 	if (retval)
1390 		goto out;
1391 
1392 	/*
1393 	 *	Loop through the fibs, close the synchronous FIBS
1394 	 */
1395 	for (retval = 1, index = 0; index < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); index++) {
1396 		struct fib *fib = &aac->fibs[index];
1397 		if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1398 		  (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected))) {
1399 			unsigned long flagv;
1400 			spin_lock_irqsave(&fib->event_lock, flagv);
1401 			up(&fib->event_wait);
1402 			spin_unlock_irqrestore(&fib->event_lock, flagv);
1403 			schedule();
1404 			retval = 0;
1405 		}
1406 	}
1407 	/* Give some extra time for ioctls to complete. */
1408 	if (retval == 0)
1409 		ssleep(2);
1410 	index = aac->cardtype;
1411 
1412 	/*
1413 	 * Re-initialize the adapter, first free resources, then carefully
1414 	 * apply the initialization sequence to come back again. Only risk
1415 	 * is a change in Firmware dropping cache, it is assumed the caller
1416 	 * will ensure that i/o is queisced and the card is flushed in that
1417 	 * case.
1418 	 */
1419 	aac_fib_map_free(aac);
1420 	pci_free_consistent(aac->pdev, aac->comm_size, aac->comm_addr, aac->comm_phys);
1421 	aac->comm_addr = NULL;
1422 	aac->comm_phys = 0;
1423 	kfree(aac->queues);
1424 	aac->queues = NULL;
1425 	aac_free_irq(aac);
1426 	kfree(aac->fsa_dev);
1427 	aac->fsa_dev = NULL;
1428 	quirks = aac_get_driver_ident(index)->quirks;
1429 	if (quirks & AAC_QUIRK_31BIT) {
1430 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(31)))) ||
1431 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(31)))))
1432 			goto out;
1433 	} else {
1434 		if (((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32)))) ||
1435 		  ((retval = pci_set_consistent_dma_mask(aac->pdev, DMA_BIT_MASK(32)))))
1436 			goto out;
1437 	}
1438 	if ((retval = (*(aac_get_driver_ident(index)->init))(aac)))
1439 		goto out;
1440 	if (quirks & AAC_QUIRK_31BIT)
1441 		if ((retval = pci_set_dma_mask(aac->pdev, DMA_BIT_MASK(32))))
1442 			goto out;
1443 	if (jafo) {
1444 		aac->thread = kthread_run(aac_command_thread, aac, "%s",
1445 					  aac->name);
1446 		if (IS_ERR(aac->thread)) {
1447 			retval = PTR_ERR(aac->thread);
1448 			goto out;
1449 		}
1450 	}
1451 	(void)aac_get_adapter_info(aac);
1452 	if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) {
1453 		host->sg_tablesize = 34;
1454 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1455 	}
1456 	if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) {
1457 		host->sg_tablesize = 17;
1458 		host->max_sectors = (host->sg_tablesize * 8) + 112;
1459 	}
1460 	aac_get_config_status(aac, 1);
1461 	aac_get_containers(aac);
1462 	/*
1463 	 * This is where the assumption that the Adapter is quiesced
1464 	 * is important.
1465 	 */
1466 	command_list = NULL;
1467 	__shost_for_each_device(dev, host) {
1468 		unsigned long flags;
1469 		spin_lock_irqsave(&dev->list_lock, flags);
1470 		list_for_each_entry(command, &dev->cmd_list, list)
1471 			if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1472 				command->SCp.buffer = (struct scatterlist *)command_list;
1473 				command_list = command;
1474 			}
1475 		spin_unlock_irqrestore(&dev->list_lock, flags);
1476 	}
1477 	while ((command = command_list)) {
1478 		command_list = (struct scsi_cmnd *)command->SCp.buffer;
1479 		command->SCp.buffer = NULL;
1480 		command->result = DID_OK << 16
1481 		  | COMMAND_COMPLETE << 8
1482 		  | SAM_STAT_TASK_SET_FULL;
1483 		command->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1484 		command->scsi_done(command);
1485 	}
1486 	retval = 0;
1487 
1488 out:
1489 	aac->in_reset = 0;
1490 	scsi_unblock_requests(host);
1491 	if (jafo) {
1492 		spin_lock_irq(host->host_lock);
1493 	}
1494 	return retval;
1495 }
1496 
1497 int aac_reset_adapter(struct aac_dev * aac, int forced)
1498 {
1499 	unsigned long flagv = 0;
1500 	int retval;
1501 	struct Scsi_Host * host;
1502 
1503 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1504 		return -EBUSY;
1505 
1506 	if (aac->in_reset) {
1507 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1508 		return -EBUSY;
1509 	}
1510 	aac->in_reset = 1;
1511 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1512 
1513 	/*
1514 	 * Wait for all commands to complete to this specific
1515 	 * target (block maximum 60 seconds). Although not necessary,
1516 	 * it does make us a good storage citizen.
1517 	 */
1518 	host = aac->scsi_host_ptr;
1519 	scsi_block_requests(host);
1520 	if (forced < 2) for (retval = 60; retval; --retval) {
1521 		struct scsi_device * dev;
1522 		struct scsi_cmnd * command;
1523 		int active = 0;
1524 
1525 		__shost_for_each_device(dev, host) {
1526 			spin_lock_irqsave(&dev->list_lock, flagv);
1527 			list_for_each_entry(command, &dev->cmd_list, list) {
1528 				if (command->SCp.phase == AAC_OWNER_FIRMWARE) {
1529 					active++;
1530 					break;
1531 				}
1532 			}
1533 			spin_unlock_irqrestore(&dev->list_lock, flagv);
1534 			if (active)
1535 				break;
1536 
1537 		}
1538 		/*
1539 		 * We can exit If all the commands are complete
1540 		 */
1541 		if (active == 0)
1542 			break;
1543 		ssleep(1);
1544 	}
1545 
1546 	/* Quiesce build, flush cache, write through mode */
1547 	if (forced < 2)
1548 		aac_send_shutdown(aac);
1549 	spin_lock_irqsave(host->host_lock, flagv);
1550 	retval = _aac_reset_adapter(aac, forced ? forced : ((aac_check_reset != 0) && (aac_check_reset != 1)));
1551 	spin_unlock_irqrestore(host->host_lock, flagv);
1552 
1553 	if ((forced < 2) && (retval == -ENODEV)) {
1554 		/* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */
1555 		struct fib * fibctx = aac_fib_alloc(aac);
1556 		if (fibctx) {
1557 			struct aac_pause *cmd;
1558 			int status;
1559 
1560 			aac_fib_init(fibctx);
1561 
1562 			cmd = (struct aac_pause *) fib_data(fibctx);
1563 
1564 			cmd->command = cpu_to_le32(VM_ContainerConfig);
1565 			cmd->type = cpu_to_le32(CT_PAUSE_IO);
1566 			cmd->timeout = cpu_to_le32(1);
1567 			cmd->min = cpu_to_le32(1);
1568 			cmd->noRescan = cpu_to_le32(1);
1569 			cmd->count = cpu_to_le32(0);
1570 
1571 			status = aac_fib_send(ContainerCommand,
1572 			  fibctx,
1573 			  sizeof(struct aac_pause),
1574 			  FsaNormal,
1575 			  -2 /* Timeout silently */, 1,
1576 			  NULL, NULL);
1577 
1578 			if (status >= 0)
1579 				aac_fib_complete(fibctx);
1580 			/* FIB should be freed only after getting
1581 			 * the response from the F/W */
1582 			if (status != -ERESTARTSYS)
1583 				aac_fib_free(fibctx);
1584 		}
1585 	}
1586 
1587 	return retval;
1588 }
1589 
1590 int aac_check_health(struct aac_dev * aac)
1591 {
1592 	int BlinkLED;
1593 	unsigned long time_now, flagv = 0;
1594 	struct list_head * entry;
1595 	struct Scsi_Host * host;
1596 
1597 	/* Extending the scope of fib_lock slightly to protect aac->in_reset */
1598 	if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0)
1599 		return 0;
1600 
1601 	if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) {
1602 		spin_unlock_irqrestore(&aac->fib_lock, flagv);
1603 		return 0; /* OK */
1604 	}
1605 
1606 	aac->in_reset = 1;
1607 
1608 	/* Fake up an AIF:
1609 	 *	aac_aifcmd.command = AifCmdEventNotify = 1
1610 	 *	aac_aifcmd.seqnum = 0xFFFFFFFF
1611 	 *	aac_aifcmd.data[0] = AifEnExpEvent = 23
1612 	 *	aac_aifcmd.data[1] = AifExeFirmwarePanic = 3
1613 	 *	aac.aifcmd.data[2] = AifHighPriority = 3
1614 	 *	aac.aifcmd.data[3] = BlinkLED
1615 	 */
1616 
1617 	time_now = jiffies/HZ;
1618 	entry = aac->fib_list.next;
1619 
1620 	/*
1621 	 * For each Context that is on the
1622 	 * fibctxList, make a copy of the
1623 	 * fib, and then set the event to wake up the
1624 	 * thread that is waiting for it.
1625 	 */
1626 	while (entry != &aac->fib_list) {
1627 		/*
1628 		 * Extract the fibctx
1629 		 */
1630 		struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next);
1631 		struct hw_fib * hw_fib;
1632 		struct fib * fib;
1633 		/*
1634 		 * Check if the queue is getting
1635 		 * backlogged
1636 		 */
1637 		if (fibctx->count > 20) {
1638 			/*
1639 			 * It's *not* jiffies folks,
1640 			 * but jiffies / HZ, so do not
1641 			 * panic ...
1642 			 */
1643 			u32 time_last = fibctx->jiffies;
1644 			/*
1645 			 * Has it been > 2 minutes
1646 			 * since the last read off
1647 			 * the queue?
1648 			 */
1649 			if ((time_now - time_last) > aif_timeout) {
1650 				entry = entry->next;
1651 				aac_close_fib_context(aac, fibctx);
1652 				continue;
1653 			}
1654 		}
1655 		/*
1656 		 * Warning: no sleep allowed while
1657 		 * holding spinlock
1658 		 */
1659 		hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC);
1660 		fib = kzalloc(sizeof(struct fib), GFP_ATOMIC);
1661 		if (fib && hw_fib) {
1662 			struct aac_aifcmd * aif;
1663 
1664 			fib->hw_fib_va = hw_fib;
1665 			fib->dev = aac;
1666 			aac_fib_init(fib);
1667 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1668 			fib->size = sizeof (struct fib);
1669 			fib->data = hw_fib->data;
1670 			aif = (struct aac_aifcmd *)hw_fib->data;
1671 			aif->command = cpu_to_le32(AifCmdEventNotify);
1672 			aif->seqnum = cpu_to_le32(0xFFFFFFFF);
1673 			((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent);
1674 			((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic);
1675 			((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority);
1676 			((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED);
1677 
1678 			/*
1679 			 * Put the FIB onto the
1680 			 * fibctx's fibs
1681 			 */
1682 			list_add_tail(&fib->fiblink, &fibctx->fib_list);
1683 			fibctx->count++;
1684 			/*
1685 			 * Set the event to wake up the
1686 			 * thread that will waiting.
1687 			 */
1688 			up(&fibctx->wait_sem);
1689 		} else {
1690 			printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1691 			kfree(fib);
1692 			kfree(hw_fib);
1693 		}
1694 		entry = entry->next;
1695 	}
1696 
1697 	spin_unlock_irqrestore(&aac->fib_lock, flagv);
1698 
1699 	if (BlinkLED < 0) {
1700 		printk(KERN_ERR "%s: Host adapter dead %d\n", aac->name, BlinkLED);
1701 		goto out;
1702 	}
1703 
1704 	printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED);
1705 
1706 	if (!aac_check_reset || ((aac_check_reset == 1) &&
1707 		(aac->supplement_adapter_info.SupportedOptions2 &
1708 			AAC_OPTION_IGNORE_RESET)))
1709 		goto out;
1710 	host = aac->scsi_host_ptr;
1711 	if (aac->thread->pid != current->pid)
1712 		spin_lock_irqsave(host->host_lock, flagv);
1713 	BlinkLED = _aac_reset_adapter(aac, aac_check_reset != 1);
1714 	if (aac->thread->pid != current->pid)
1715 		spin_unlock_irqrestore(host->host_lock, flagv);
1716 	return BlinkLED;
1717 
1718 out:
1719 	aac->in_reset = 0;
1720 	return BlinkLED;
1721 }
1722 
1723 
1724 /**
1725  *	aac_command_thread	-	command processing thread
1726  *	@dev: Adapter to monitor
1727  *
1728  *	Waits on the commandready event in it's queue. When the event gets set
1729  *	it will pull FIBs off it's queue. It will continue to pull FIBs off
1730  *	until the queue is empty. When the queue is empty it will wait for
1731  *	more FIBs.
1732  */
1733 
1734 int aac_command_thread(void *data)
1735 {
1736 	struct aac_dev *dev = data;
1737 	struct hw_fib *hw_fib, *hw_newfib;
1738 	struct fib *fib, *newfib;
1739 	struct aac_fib_context *fibctx;
1740 	unsigned long flags;
1741 	DECLARE_WAITQUEUE(wait, current);
1742 	unsigned long next_jiffies = jiffies + HZ;
1743 	unsigned long next_check_jiffies = next_jiffies;
1744 	long difference = HZ;
1745 
1746 	/*
1747 	 *	We can only have one thread per adapter for AIF's.
1748 	 */
1749 	if (dev->aif_thread)
1750 		return -EINVAL;
1751 
1752 	/*
1753 	 *	Let the DPC know it has a place to send the AIF's to.
1754 	 */
1755 	dev->aif_thread = 1;
1756 	add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1757 	set_current_state(TASK_INTERRUPTIBLE);
1758 	dprintk ((KERN_INFO "aac_command_thread start\n"));
1759 	while (1) {
1760 		spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1761 		while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1762 			struct list_head *entry;
1763 			struct aac_aifcmd * aifcmd;
1764 
1765 			set_current_state(TASK_RUNNING);
1766 
1767 			entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1768 			list_del(entry);
1769 
1770 			spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1771 			fib = list_entry(entry, struct fib, fiblink);
1772 			/*
1773 			 *	We will process the FIB here or pass it to a
1774 			 *	worker thread that is TBD. We Really can't
1775 			 *	do anything at this point since we don't have
1776 			 *	anything defined for this thread to do.
1777 			 */
1778 			hw_fib = fib->hw_fib_va;
1779 			memset(fib, 0, sizeof(struct fib));
1780 			fib->type = FSAFS_NTC_FIB_CONTEXT;
1781 			fib->size = sizeof(struct fib);
1782 			fib->hw_fib_va = hw_fib;
1783 			fib->data = hw_fib->data;
1784 			fib->dev = dev;
1785 			/*
1786 			 *	We only handle AifRequest fibs from the adapter.
1787 			 */
1788 			aifcmd = (struct aac_aifcmd *) hw_fib->data;
1789 			if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1790 				/* Handle Driver Notify Events */
1791 				aac_handle_aif(dev, fib);
1792 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1793 				aac_fib_adapter_complete(fib, (u16)sizeof(u32));
1794 			} else {
1795 				/* The u32 here is important and intended. We are using
1796 				   32bit wrapping time to fit the adapter field */
1797 
1798 				u32 time_now, time_last;
1799 				unsigned long flagv;
1800 				unsigned num;
1801 				struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1802 				struct fib ** fib_pool, ** fib_p;
1803 
1804 				/* Sniff events */
1805 				if ((aifcmd->command ==
1806 				     cpu_to_le32(AifCmdEventNotify)) ||
1807 				    (aifcmd->command ==
1808 				     cpu_to_le32(AifCmdJobProgress))) {
1809 					aac_handle_aif(dev, fib);
1810 				}
1811 
1812 				time_now = jiffies/HZ;
1813 
1814 				/*
1815 				 * Warning: no sleep allowed while
1816 				 * holding spinlock. We take the estimate
1817 				 * and pre-allocate a set of fibs outside the
1818 				 * lock.
1819 				 */
1820 				num = le32_to_cpu(dev->init->AdapterFibsSize)
1821 				    / sizeof(struct hw_fib); /* some extra */
1822 				spin_lock_irqsave(&dev->fib_lock, flagv);
1823 				entry = dev->fib_list.next;
1824 				while (entry != &dev->fib_list) {
1825 					entry = entry->next;
1826 					++num;
1827 				}
1828 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1829 				hw_fib_pool = NULL;
1830 				fib_pool = NULL;
1831 				if (num
1832 				 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1833 				 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1834 					hw_fib_p = hw_fib_pool;
1835 					fib_p = fib_pool;
1836 					while (hw_fib_p < &hw_fib_pool[num]) {
1837 						if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1838 							--hw_fib_p;
1839 							break;
1840 						}
1841 						if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1842 							kfree(*(--hw_fib_p));
1843 							break;
1844 						}
1845 					}
1846 					if ((num = hw_fib_p - hw_fib_pool) == 0) {
1847 						kfree(fib_pool);
1848 						fib_pool = NULL;
1849 						kfree(hw_fib_pool);
1850 						hw_fib_pool = NULL;
1851 					}
1852 				} else {
1853 					kfree(hw_fib_pool);
1854 					hw_fib_pool = NULL;
1855 				}
1856 				spin_lock_irqsave(&dev->fib_lock, flagv);
1857 				entry = dev->fib_list.next;
1858 				/*
1859 				 * For each Context that is on the
1860 				 * fibctxList, make a copy of the
1861 				 * fib, and then set the event to wake up the
1862 				 * thread that is waiting for it.
1863 				 */
1864 				hw_fib_p = hw_fib_pool;
1865 				fib_p = fib_pool;
1866 				while (entry != &dev->fib_list) {
1867 					/*
1868 					 * Extract the fibctx
1869 					 */
1870 					fibctx = list_entry(entry, struct aac_fib_context, next);
1871 					/*
1872 					 * Check if the queue is getting
1873 					 * backlogged
1874 					 */
1875 					if (fibctx->count > 20)
1876 					{
1877 						/*
1878 						 * It's *not* jiffies folks,
1879 						 * but jiffies / HZ so do not
1880 						 * panic ...
1881 						 */
1882 						time_last = fibctx->jiffies;
1883 						/*
1884 						 * Has it been > 2 minutes
1885 						 * since the last read off
1886 						 * the queue?
1887 						 */
1888 						if ((time_now - time_last) > aif_timeout) {
1889 							entry = entry->next;
1890 							aac_close_fib_context(dev, fibctx);
1891 							continue;
1892 						}
1893 					}
1894 					/*
1895 					 * Warning: no sleep allowed while
1896 					 * holding spinlock
1897 					 */
1898 					if (hw_fib_p < &hw_fib_pool[num]) {
1899 						hw_newfib = *hw_fib_p;
1900 						*(hw_fib_p++) = NULL;
1901 						newfib = *fib_p;
1902 						*(fib_p++) = NULL;
1903 						/*
1904 						 * Make the copy of the FIB
1905 						 */
1906 						memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1907 						memcpy(newfib, fib, sizeof(struct fib));
1908 						newfib->hw_fib_va = hw_newfib;
1909 						/*
1910 						 * Put the FIB onto the
1911 						 * fibctx's fibs
1912 						 */
1913 						list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1914 						fibctx->count++;
1915 						/*
1916 						 * Set the event to wake up the
1917 						 * thread that is waiting.
1918 						 */
1919 						up(&fibctx->wait_sem);
1920 					} else {
1921 						printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1922 					}
1923 					entry = entry->next;
1924 				}
1925 				/*
1926 				 *	Set the status of this FIB
1927 				 */
1928 				*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1929 				aac_fib_adapter_complete(fib, sizeof(u32));
1930 				spin_unlock_irqrestore(&dev->fib_lock, flagv);
1931 				/* Free up the remaining resources */
1932 				hw_fib_p = hw_fib_pool;
1933 				fib_p = fib_pool;
1934 				while (hw_fib_p < &hw_fib_pool[num]) {
1935 					kfree(*hw_fib_p);
1936 					kfree(*fib_p);
1937 					++fib_p;
1938 					++hw_fib_p;
1939 				}
1940 				kfree(hw_fib_pool);
1941 				kfree(fib_pool);
1942 			}
1943 			kfree(fib);
1944 			spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1945 		}
1946 		/*
1947 		 *	There are no more AIF's
1948 		 */
1949 		spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1950 
1951 		/*
1952 		 *	Background activity
1953 		 */
1954 		if ((time_before(next_check_jiffies,next_jiffies))
1955 		 && ((difference = next_check_jiffies - jiffies) <= 0)) {
1956 			next_check_jiffies = next_jiffies;
1957 			if (aac_check_health(dev) == 0) {
1958 				difference = ((long)(unsigned)check_interval)
1959 					   * HZ;
1960 				next_check_jiffies = jiffies + difference;
1961 			} else if (!dev->queues)
1962 				break;
1963 		}
1964 		if (!time_before(next_check_jiffies,next_jiffies)
1965 		 && ((difference = next_jiffies - jiffies) <= 0)) {
1966 			struct timeval now;
1967 			int ret;
1968 
1969 			/* Don't even try to talk to adapter if its sick */
1970 			ret = aac_check_health(dev);
1971 			if (!ret && !dev->queues)
1972 				break;
1973 			next_check_jiffies = jiffies
1974 					   + ((long)(unsigned)check_interval)
1975 					   * HZ;
1976 			do_gettimeofday(&now);
1977 
1978 			/* Synchronize our watches */
1979 			if (((1000000 - (1000000 / HZ)) > now.tv_usec)
1980 			 && (now.tv_usec > (1000000 / HZ)))
1981 				difference = (((1000000 - now.tv_usec) * HZ)
1982 				  + 500000) / 1000000;
1983 			else if (ret == 0) {
1984 				struct fib *fibptr;
1985 
1986 				if ((fibptr = aac_fib_alloc(dev))) {
1987 					int status;
1988 					__le32 *info;
1989 
1990 					aac_fib_init(fibptr);
1991 
1992 					info = (__le32 *) fib_data(fibptr);
1993 					if (now.tv_usec > 500000)
1994 						++now.tv_sec;
1995 
1996 					*info = cpu_to_le32(now.tv_sec);
1997 
1998 					status = aac_fib_send(SendHostTime,
1999 						fibptr,
2000 						sizeof(*info),
2001 						FsaNormal,
2002 						1, 1,
2003 						NULL,
2004 						NULL);
2005 					/* Do not set XferState to zero unless
2006 					 * receives a response from F/W */
2007 					if (status >= 0)
2008 						aac_fib_complete(fibptr);
2009 					/* FIB should be freed only after
2010 					 * getting the response from the F/W */
2011 					if (status != -ERESTARTSYS)
2012 						aac_fib_free(fibptr);
2013 				}
2014 				difference = (long)(unsigned)update_interval*HZ;
2015 			} else {
2016 				/* retry shortly */
2017 				difference = 10 * HZ;
2018 			}
2019 			next_jiffies = jiffies + difference;
2020 			if (time_before(next_check_jiffies,next_jiffies))
2021 				difference = next_check_jiffies - jiffies;
2022 		}
2023 		if (difference <= 0)
2024 			difference = 1;
2025 		set_current_state(TASK_INTERRUPTIBLE);
2026 
2027 		if (kthread_should_stop())
2028 			break;
2029 
2030 		schedule_timeout(difference);
2031 
2032 		if (kthread_should_stop())
2033 			break;
2034 	}
2035 	if (dev->queues)
2036 		remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
2037 	dev->aif_thread = 0;
2038 	return 0;
2039 }
2040 
2041 int aac_acquire_irq(struct aac_dev *dev)
2042 {
2043 	int i;
2044 	int j;
2045 	int ret = 0;
2046 
2047 	if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) {
2048 		for (i = 0; i < dev->max_msix; i++) {
2049 			dev->aac_msix[i].vector_no = i;
2050 			dev->aac_msix[i].dev = dev;
2051 			if (request_irq(pci_irq_vector(dev->pdev, i),
2052 					dev->a_ops.adapter_intr,
2053 					0, "aacraid", &(dev->aac_msix[i]))) {
2054 				printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n",
2055 						dev->name, dev->id, i);
2056 				for (j = 0 ; j < i ; j++)
2057 					free_irq(pci_irq_vector(dev->pdev, j),
2058 						 &(dev->aac_msix[j]));
2059 				pci_disable_msix(dev->pdev);
2060 				ret = -1;
2061 			}
2062 		}
2063 	} else {
2064 		dev->aac_msix[0].vector_no = 0;
2065 		dev->aac_msix[0].dev = dev;
2066 
2067 		if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr,
2068 			IRQF_SHARED, "aacraid",
2069 			&(dev->aac_msix[0])) < 0) {
2070 			if (dev->msi)
2071 				pci_disable_msi(dev->pdev);
2072 			printk(KERN_ERR "%s%d: Interrupt unavailable.\n",
2073 					dev->name, dev->id);
2074 			ret = -1;
2075 		}
2076 	}
2077 	return ret;
2078 }
2079 
2080 void aac_free_irq(struct aac_dev *dev)
2081 {
2082 	int i;
2083 	int cpu;
2084 
2085 	cpu = cpumask_first(cpu_online_mask);
2086 	if (dev->pdev->device == PMC_DEVICE_S6 ||
2087 	    dev->pdev->device == PMC_DEVICE_S7 ||
2088 	    dev->pdev->device == PMC_DEVICE_S8 ||
2089 	    dev->pdev->device == PMC_DEVICE_S9) {
2090 		if (dev->max_msix > 1) {
2091 			for (i = 0; i < dev->max_msix; i++)
2092 				free_irq(pci_irq_vector(dev->pdev, i),
2093 					 &(dev->aac_msix[i]));
2094 		} else {
2095 			free_irq(dev->pdev->irq, &(dev->aac_msix[0]));
2096 		}
2097 	} else {
2098 		free_irq(dev->pdev->irq, dev);
2099 	}
2100 	if (dev->msi)
2101 		pci_disable_msi(dev->pdev);
2102 	else if (dev->max_msix > 1)
2103 		pci_disable_msix(dev->pdev);
2104 }
2105