1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Adaptec AAC series RAID controller driver 4 * (c) Copyright 2001 Red Hat Inc. 5 * 6 * based on the old aacraid driver that is.. 7 * Adaptec aacraid device driver for Linux. 8 * 9 * Copyright (c) 2000-2010 Adaptec, Inc. 10 * 2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) 11 * 2016-2017 Microsemi Corp. (aacraid@microsemi.com) 12 * 13 * Module Name: 14 * commsup.c 15 * 16 * Abstract: Contain all routines that are required for FSA host/adapter 17 * communication. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/init.h> 22 #include <linux/crash_dump.h> 23 #include <linux/types.h> 24 #include <linux/sched.h> 25 #include <linux/pci.h> 26 #include <linux/spinlock.h> 27 #include <linux/slab.h> 28 #include <linux/completion.h> 29 #include <linux/blkdev.h> 30 #include <linux/delay.h> 31 #include <linux/kthread.h> 32 #include <linux/interrupt.h> 33 #include <linux/bcd.h> 34 #include <scsi/scsi.h> 35 #include <scsi/scsi_host.h> 36 #include <scsi/scsi_device.h> 37 #include <scsi/scsi_cmnd.h> 38 39 #include "aacraid.h" 40 41 /** 42 * fib_map_alloc - allocate the fib objects 43 * @dev: Adapter to allocate for 44 * 45 * Allocate and map the shared PCI space for the FIB blocks used to 46 * talk to the Adaptec firmware. 47 */ 48 49 static int fib_map_alloc(struct aac_dev *dev) 50 { 51 if (dev->max_fib_size > AAC_MAX_NATIVE_SIZE) 52 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 53 else 54 dev->max_cmd_size = dev->max_fib_size; 55 if (dev->max_fib_size < AAC_MAX_NATIVE_SIZE) { 56 dev->max_cmd_size = AAC_MAX_NATIVE_SIZE; 57 } else { 58 dev->max_cmd_size = dev->max_fib_size; 59 } 60 61 dprintk((KERN_INFO 62 "allocate hardware fibs dma_alloc_coherent(%p, %d * (%d + %d), %p)\n", 63 &dev->pdev->dev, dev->max_cmd_size, dev->scsi_host_ptr->can_queue, 64 AAC_NUM_MGT_FIB, &dev->hw_fib_pa)); 65 dev->hw_fib_va = dma_alloc_coherent(&dev->pdev->dev, 66 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) 67 * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) + (ALIGN32 - 1), 68 &dev->hw_fib_pa, GFP_KERNEL); 69 if (dev->hw_fib_va == NULL) 70 return -ENOMEM; 71 return 0; 72 } 73 74 /** 75 * aac_fib_map_free - free the fib objects 76 * @dev: Adapter to free 77 * 78 * Free the PCI mappings and the memory allocated for FIB blocks 79 * on this adapter. 80 */ 81 82 void aac_fib_map_free(struct aac_dev *dev) 83 { 84 size_t alloc_size; 85 size_t fib_size; 86 int num_fibs; 87 88 if(!dev->hw_fib_va || !dev->max_cmd_size) 89 return; 90 91 num_fibs = dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 92 fib_size = dev->max_fib_size + sizeof(struct aac_fib_xporthdr); 93 alloc_size = fib_size * num_fibs + ALIGN32 - 1; 94 95 dma_free_coherent(&dev->pdev->dev, alloc_size, dev->hw_fib_va, 96 dev->hw_fib_pa); 97 98 dev->hw_fib_va = NULL; 99 dev->hw_fib_pa = 0; 100 } 101 102 void aac_fib_vector_assign(struct aac_dev *dev) 103 { 104 u32 i = 0; 105 u32 vector = 1; 106 struct fib *fibptr = NULL; 107 108 for (i = 0, fibptr = &dev->fibs[i]; 109 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 110 i++, fibptr++) { 111 if ((dev->max_msix == 1) || 112 (i > ((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1) 113 - dev->vector_cap))) { 114 fibptr->vector_no = 0; 115 } else { 116 fibptr->vector_no = vector; 117 vector++; 118 if (vector == dev->max_msix) 119 vector = 1; 120 } 121 } 122 } 123 124 /** 125 * aac_fib_setup - setup the fibs 126 * @dev: Adapter to set up 127 * 128 * Allocate the PCI space for the fibs, map it and then initialise the 129 * fib area, the unmapped fib data and also the free list 130 */ 131 132 int aac_fib_setup(struct aac_dev * dev) 133 { 134 struct fib *fibptr; 135 struct hw_fib *hw_fib; 136 dma_addr_t hw_fib_pa; 137 int i; 138 u32 max_cmds; 139 140 while (((i = fib_map_alloc(dev)) == -ENOMEM) 141 && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) { 142 max_cmds = (dev->scsi_host_ptr->can_queue+AAC_NUM_MGT_FIB) >> 1; 143 dev->scsi_host_ptr->can_queue = max_cmds - AAC_NUM_MGT_FIB; 144 if (dev->comm_interface != AAC_COMM_MESSAGE_TYPE3) 145 dev->init->r7.max_io_commands = cpu_to_le32(max_cmds); 146 } 147 if (i<0) 148 return -ENOMEM; 149 150 memset(dev->hw_fib_va, 0, 151 (dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)) * 152 (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB)); 153 154 /* 32 byte alignment for PMC */ 155 hw_fib_pa = (dev->hw_fib_pa + (ALIGN32 - 1)) & ~(ALIGN32 - 1); 156 hw_fib = (struct hw_fib *)((unsigned char *)dev->hw_fib_va + 157 (hw_fib_pa - dev->hw_fib_pa)); 158 159 /* add Xport header */ 160 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 161 sizeof(struct aac_fib_xporthdr)); 162 hw_fib_pa += sizeof(struct aac_fib_xporthdr); 163 164 /* 165 * Initialise the fibs 166 */ 167 for (i = 0, fibptr = &dev->fibs[i]; 168 i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); 169 i++, fibptr++) 170 { 171 fibptr->flags = 0; 172 fibptr->size = sizeof(struct fib); 173 fibptr->dev = dev; 174 fibptr->hw_fib_va = hw_fib; 175 fibptr->data = (void *) fibptr->hw_fib_va->data; 176 fibptr->next = fibptr+1; /* Forward chain the fibs */ 177 init_completion(&fibptr->event_wait); 178 spin_lock_init(&fibptr->event_lock); 179 hw_fib->header.XferState = cpu_to_le32(0xffffffff); 180 hw_fib->header.SenderSize = 181 cpu_to_le16(dev->max_fib_size); /* ?? max_cmd_size */ 182 fibptr->hw_fib_pa = hw_fib_pa; 183 fibptr->hw_sgl_pa = hw_fib_pa + 184 offsetof(struct aac_hba_cmd_req, sge[2]); 185 /* 186 * one element is for the ptr to the separate sg list, 187 * second element for 32 byte alignment 188 */ 189 fibptr->hw_error_pa = hw_fib_pa + 190 offsetof(struct aac_native_hba, resp.resp_bytes[0]); 191 192 hw_fib = (struct hw_fib *)((unsigned char *)hw_fib + 193 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr)); 194 hw_fib_pa = hw_fib_pa + 195 dev->max_cmd_size + sizeof(struct aac_fib_xporthdr); 196 } 197 198 /* 199 *Assign vector numbers to fibs 200 */ 201 aac_fib_vector_assign(dev); 202 203 /* 204 * Add the fib chain to the free list 205 */ 206 dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL; 207 /* 208 * Set 8 fibs aside for management tools 209 */ 210 dev->free_fib = &dev->fibs[dev->scsi_host_ptr->can_queue]; 211 return 0; 212 } 213 214 /** 215 * aac_fib_alloc_tag-allocate a fib using tags 216 * @dev: Adapter to allocate the fib for 217 * @scmd: SCSI command 218 * 219 * Allocate a fib from the adapter fib pool using tags 220 * from the blk layer. 221 */ 222 223 struct fib *aac_fib_alloc_tag(struct aac_dev *dev, struct scsi_cmnd *scmd) 224 { 225 struct fib *fibptr; 226 227 fibptr = &dev->fibs[scmd->request->tag]; 228 /* 229 * Null out fields that depend on being zero at the start of 230 * each I/O 231 */ 232 fibptr->hw_fib_va->header.XferState = 0; 233 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 234 fibptr->callback_data = NULL; 235 fibptr->callback = NULL; 236 fibptr->flags = 0; 237 238 return fibptr; 239 } 240 241 /** 242 * aac_fib_alloc - allocate a fib 243 * @dev: Adapter to allocate the fib for 244 * 245 * Allocate a fib from the adapter fib pool. If the pool is empty we 246 * return NULL. 247 */ 248 249 struct fib *aac_fib_alloc(struct aac_dev *dev) 250 { 251 struct fib * fibptr; 252 unsigned long flags; 253 spin_lock_irqsave(&dev->fib_lock, flags); 254 fibptr = dev->free_fib; 255 if(!fibptr){ 256 spin_unlock_irqrestore(&dev->fib_lock, flags); 257 return fibptr; 258 } 259 dev->free_fib = fibptr->next; 260 spin_unlock_irqrestore(&dev->fib_lock, flags); 261 /* 262 * Set the proper node type code and node byte size 263 */ 264 fibptr->type = FSAFS_NTC_FIB_CONTEXT; 265 fibptr->size = sizeof(struct fib); 266 /* 267 * Null out fields that depend on being zero at the start of 268 * each I/O 269 */ 270 fibptr->hw_fib_va->header.XferState = 0; 271 fibptr->flags = 0; 272 fibptr->callback = NULL; 273 fibptr->callback_data = NULL; 274 275 return fibptr; 276 } 277 278 /** 279 * aac_fib_free - free a fib 280 * @fibptr: fib to free up 281 * 282 * Frees up a fib and places it on the appropriate queue 283 */ 284 285 void aac_fib_free(struct fib *fibptr) 286 { 287 unsigned long flags; 288 289 if (fibptr->done == 2) 290 return; 291 292 spin_lock_irqsave(&fibptr->dev->fib_lock, flags); 293 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 294 aac_config.fib_timeouts++; 295 if (!(fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) && 296 fibptr->hw_fib_va->header.XferState != 0) { 297 printk(KERN_WARNING "aac_fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 298 (void*)fibptr, 299 le32_to_cpu(fibptr->hw_fib_va->header.XferState)); 300 } 301 fibptr->next = fibptr->dev->free_fib; 302 fibptr->dev->free_fib = fibptr; 303 spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags); 304 } 305 306 /** 307 * aac_fib_init - initialise a fib 308 * @fibptr: The fib to initialize 309 * 310 * Set up the generic fib fields ready for use 311 */ 312 313 void aac_fib_init(struct fib *fibptr) 314 { 315 struct hw_fib *hw_fib = fibptr->hw_fib_va; 316 317 memset(&hw_fib->header, 0, sizeof(struct aac_fibhdr)); 318 hw_fib->header.StructType = FIB_MAGIC; 319 hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size); 320 hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable); 321 hw_fib->header.u.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa); 322 hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size); 323 } 324 325 /** 326 * fib_deallocate - deallocate a fib 327 * @fibptr: fib to deallocate 328 * 329 * Will deallocate and return to the free pool the FIB pointed to by the 330 * caller. 331 */ 332 333 static void fib_dealloc(struct fib * fibptr) 334 { 335 struct hw_fib *hw_fib = fibptr->hw_fib_va; 336 hw_fib->header.XferState = 0; 337 } 338 339 /* 340 * Commuication primitives define and support the queuing method we use to 341 * support host to adapter commuication. All queue accesses happen through 342 * these routines and are the only routines which have a knowledge of the 343 * how these queues are implemented. 344 */ 345 346 /** 347 * aac_get_entry - get a queue entry 348 * @dev: Adapter 349 * @qid: Queue Number 350 * @entry: Entry return 351 * @index: Index return 352 * @nonotify: notification control 353 * 354 * With a priority the routine returns a queue entry if the queue has free entries. If the queue 355 * is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is 356 * returned. 357 */ 358 359 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify) 360 { 361 struct aac_queue * q; 362 unsigned long idx; 363 364 /* 365 * All of the queues wrap when they reach the end, so we check 366 * to see if they have reached the end and if they have we just 367 * set the index back to zero. This is a wrap. You could or off 368 * the high bits in all updates but this is a bit faster I think. 369 */ 370 371 q = &dev->queues->queue[qid]; 372 373 idx = *index = le32_to_cpu(*(q->headers.producer)); 374 /* Interrupt Moderation, only interrupt for first two entries */ 375 if (idx != le32_to_cpu(*(q->headers.consumer))) { 376 if (--idx == 0) { 377 if (qid == AdapNormCmdQueue) 378 idx = ADAP_NORM_CMD_ENTRIES; 379 else 380 idx = ADAP_NORM_RESP_ENTRIES; 381 } 382 if (idx != le32_to_cpu(*(q->headers.consumer))) 383 *nonotify = 1; 384 } 385 386 if (qid == AdapNormCmdQueue) { 387 if (*index >= ADAP_NORM_CMD_ENTRIES) 388 *index = 0; /* Wrap to front of the Producer Queue. */ 389 } else { 390 if (*index >= ADAP_NORM_RESP_ENTRIES) 391 *index = 0; /* Wrap to front of the Producer Queue. */ 392 } 393 394 /* Queue is full */ 395 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { 396 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 397 qid, atomic_read(&q->numpending)); 398 return 0; 399 } else { 400 *entry = q->base + *index; 401 return 1; 402 } 403 } 404 405 /** 406 * aac_queue_get - get the next free QE 407 * @dev: Adapter 408 * @index: Returned index 409 * @qid: Queue number 410 * @hw_fib: Fib to associate with the queue entry 411 * @wait: Wait if queue full 412 * @fibptr: Driver fib object to go with fib 413 * @nonotify: Don't notify the adapter 414 * 415 * Gets the next free QE off the requested priorty adapter command 416 * queue and associates the Fib with the QE. The QE represented by 417 * index is ready to insert on the queue when this routine returns 418 * success. 419 */ 420 421 int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify) 422 { 423 struct aac_entry * entry = NULL; 424 int map = 0; 425 426 if (qid == AdapNormCmdQueue) { 427 /* if no entries wait for some if caller wants to */ 428 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 429 printk(KERN_ERR "GetEntries failed\n"); 430 } 431 /* 432 * Setup queue entry with a command, status and fib mapped 433 */ 434 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 435 map = 1; 436 } else { 437 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) { 438 /* if no entries wait for some if caller wants to */ 439 } 440 /* 441 * Setup queue entry with command, status and fib mapped 442 */ 443 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 444 entry->addr = hw_fib->header.SenderFibAddress; 445 /* Restore adapters pointer to the FIB */ 446 hw_fib->header.u.ReceiverFibAddress = hw_fib->header.SenderFibAddress; /* Let the adapter now where to find its data */ 447 map = 0; 448 } 449 /* 450 * If MapFib is true than we need to map the Fib and put pointers 451 * in the queue entry. 452 */ 453 if (map) 454 entry->addr = cpu_to_le32(fibptr->hw_fib_pa); 455 return 0; 456 } 457 458 /* 459 * Define the highest level of host to adapter communication routines. 460 * These routines will support host to adapter FS commuication. These 461 * routines have no knowledge of the commuication method used. This level 462 * sends and receives FIBs. This level has no knowledge of how these FIBs 463 * get passed back and forth. 464 */ 465 466 /** 467 * aac_fib_send - send a fib to the adapter 468 * @command: Command to send 469 * @fibptr: The fib 470 * @size: Size of fib data area 471 * @priority: Priority of Fib 472 * @wait: Async/sync select 473 * @reply: True if a reply is wanted 474 * @callback: Called with reply 475 * @callback_data: Passed to callback 476 * 477 * Sends the requested FIB to the adapter and optionally will wait for a 478 * response FIB. If the caller does not wish to wait for a response than 479 * an event to wait on must be supplied. This event will be set when a 480 * response FIB is received from the adapter. 481 */ 482 483 int aac_fib_send(u16 command, struct fib *fibptr, unsigned long size, 484 int priority, int wait, int reply, fib_callback callback, 485 void *callback_data) 486 { 487 struct aac_dev * dev = fibptr->dev; 488 struct hw_fib * hw_fib = fibptr->hw_fib_va; 489 unsigned long flags = 0; 490 unsigned long mflags = 0; 491 unsigned long sflags = 0; 492 493 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 494 return -EBUSY; 495 496 if (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)) 497 return -EINVAL; 498 499 /* 500 * There are 5 cases with the wait and response requested flags. 501 * The only invalid cases are if the caller requests to wait and 502 * does not request a response and if the caller does not want a 503 * response and the Fib is not allocated from pool. If a response 504 * is not requested the Fib will just be deallocaed by the DPC 505 * routine when the response comes back from the adapter. No 506 * further processing will be done besides deleting the Fib. We 507 * will have a debug mode where the adapter can notify the host 508 * it had a problem and the host can log that fact. 509 */ 510 fibptr->flags = 0; 511 if (wait && !reply) { 512 return -EINVAL; 513 } else if (!wait && reply) { 514 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected); 515 FIB_COUNTER_INCREMENT(aac_config.AsyncSent); 516 } else if (!wait && !reply) { 517 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected); 518 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent); 519 } else if (wait && reply) { 520 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected); 521 FIB_COUNTER_INCREMENT(aac_config.NormalSent); 522 } 523 /* 524 * Map the fib into 32bits by using the fib number 525 */ 526 527 hw_fib->header.SenderFibAddress = 528 cpu_to_le32(((u32)(fibptr - dev->fibs)) << 2); 529 530 /* use the same shifted value for handle to be compatible 531 * with the new native hba command handle 532 */ 533 hw_fib->header.Handle = 534 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 535 536 /* 537 * Set FIB state to indicate where it came from and if we want a 538 * response from the adapter. Also load the command from the 539 * caller. 540 * 541 * Map the hw fib pointer as a 32bit value 542 */ 543 hw_fib->header.Command = cpu_to_le16(command); 544 hw_fib->header.XferState |= cpu_to_le32(SentFromHost); 545 /* 546 * Set the size of the Fib we want to send to the adapter 547 */ 548 hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size); 549 if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) { 550 return -EMSGSIZE; 551 } 552 /* 553 * Get a queue entry connect the FIB to it and send an notify 554 * the adapter a command is ready. 555 */ 556 hw_fib->header.XferState |= cpu_to_le32(NormalPriority); 557 558 /* 559 * Fill in the Callback and CallbackContext if we are not 560 * going to wait. 561 */ 562 if (!wait) { 563 fibptr->callback = callback; 564 fibptr->callback_data = callback_data; 565 fibptr->flags = FIB_CONTEXT_FLAG; 566 } 567 568 fibptr->done = 0; 569 570 FIB_COUNTER_INCREMENT(aac_config.FibsSent); 571 572 dprintk((KERN_DEBUG "Fib contents:.\n")); 573 dprintk((KERN_DEBUG " Command = %d.\n", le32_to_cpu(hw_fib->header.Command))); 574 dprintk((KERN_DEBUG " SubCommand = %d.\n", le32_to_cpu(((struct aac_query_mount *)fib_data(fibptr))->command))); 575 dprintk((KERN_DEBUG " XferState = %x.\n", le32_to_cpu(hw_fib->header.XferState))); 576 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib_va)); 577 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa)); 578 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr)); 579 580 if (!dev->queues) 581 return -EBUSY; 582 583 if (wait) { 584 585 spin_lock_irqsave(&dev->manage_lock, mflags); 586 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 587 printk(KERN_INFO "No management Fibs Available:%d\n", 588 dev->management_fib_count); 589 spin_unlock_irqrestore(&dev->manage_lock, mflags); 590 return -EBUSY; 591 } 592 dev->management_fib_count++; 593 spin_unlock_irqrestore(&dev->manage_lock, mflags); 594 spin_lock_irqsave(&fibptr->event_lock, flags); 595 } 596 597 if (dev->sync_mode) { 598 if (wait) 599 spin_unlock_irqrestore(&fibptr->event_lock, flags); 600 spin_lock_irqsave(&dev->sync_lock, sflags); 601 if (dev->sync_fib) { 602 list_add_tail(&fibptr->fiblink, &dev->sync_fib_list); 603 spin_unlock_irqrestore(&dev->sync_lock, sflags); 604 } else { 605 dev->sync_fib = fibptr; 606 spin_unlock_irqrestore(&dev->sync_lock, sflags); 607 aac_adapter_sync_cmd(dev, SEND_SYNCHRONOUS_FIB, 608 (u32)fibptr->hw_fib_pa, 0, 0, 0, 0, 0, 609 NULL, NULL, NULL, NULL, NULL); 610 } 611 if (wait) { 612 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 613 if (wait_for_completion_interruptible(&fibptr->event_wait)) { 614 fibptr->flags &= ~FIB_CONTEXT_FLAG_WAIT; 615 return -EFAULT; 616 } 617 return 0; 618 } 619 return -EINPROGRESS; 620 } 621 622 if (aac_adapter_deliver(fibptr) != 0) { 623 printk(KERN_ERR "aac_fib_send: returned -EBUSY\n"); 624 if (wait) { 625 spin_unlock_irqrestore(&fibptr->event_lock, flags); 626 spin_lock_irqsave(&dev->manage_lock, mflags); 627 dev->management_fib_count--; 628 spin_unlock_irqrestore(&dev->manage_lock, mflags); 629 } 630 return -EBUSY; 631 } 632 633 634 /* 635 * If the caller wanted us to wait for response wait now. 636 */ 637 638 if (wait) { 639 spin_unlock_irqrestore(&fibptr->event_lock, flags); 640 /* Only set for first known interruptable command */ 641 if (wait < 0) { 642 /* 643 * *VERY* Dangerous to time out a command, the 644 * assumption is made that we have no hope of 645 * functioning because an interrupt routing or other 646 * hardware failure has occurred. 647 */ 648 unsigned long timeout = jiffies + (180 * HZ); /* 3 minutes */ 649 while (!try_wait_for_completion(&fibptr->event_wait)) { 650 int blink; 651 if (time_is_before_eq_jiffies(timeout)) { 652 struct aac_queue * q = &dev->queues->queue[AdapNormCmdQueue]; 653 atomic_dec(&q->numpending); 654 if (wait == -1) { 655 printk(KERN_ERR "aacraid: aac_fib_send: first asynchronous command timed out.\n" 656 "Usually a result of a PCI interrupt routing problem;\n" 657 "update mother board BIOS or consider utilizing one of\n" 658 "the SAFE mode kernel options (acpi, apic etc)\n"); 659 } 660 return -ETIMEDOUT; 661 } 662 663 if (unlikely(aac_pci_offline(dev))) 664 return -EFAULT; 665 666 if ((blink = aac_adapter_check_health(dev)) > 0) { 667 if (wait == -1) { 668 printk(KERN_ERR "aacraid: aac_fib_send: adapter blinkLED 0x%x.\n" 669 "Usually a result of a serious unrecoverable hardware problem\n", 670 blink); 671 } 672 return -EFAULT; 673 } 674 /* 675 * Allow other processes / CPUS to use core 676 */ 677 schedule(); 678 } 679 } else if (wait_for_completion_interruptible(&fibptr->event_wait)) { 680 /* Do nothing ... satisfy 681 * wait_for_completion_interruptible must_check */ 682 } 683 684 spin_lock_irqsave(&fibptr->event_lock, flags); 685 if (fibptr->done == 0) { 686 fibptr->done = 2; /* Tell interrupt we aborted */ 687 spin_unlock_irqrestore(&fibptr->event_lock, flags); 688 return -ERESTARTSYS; 689 } 690 spin_unlock_irqrestore(&fibptr->event_lock, flags); 691 BUG_ON(fibptr->done == 0); 692 693 if(unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 694 return -ETIMEDOUT; 695 return 0; 696 } 697 /* 698 * If the user does not want a response than return success otherwise 699 * return pending 700 */ 701 if (reply) 702 return -EINPROGRESS; 703 else 704 return 0; 705 } 706 707 int aac_hba_send(u8 command, struct fib *fibptr, fib_callback callback, 708 void *callback_data) 709 { 710 struct aac_dev *dev = fibptr->dev; 711 int wait; 712 unsigned long flags = 0; 713 unsigned long mflags = 0; 714 struct aac_hba_cmd_req *hbacmd = (struct aac_hba_cmd_req *) 715 fibptr->hw_fib_va; 716 717 fibptr->flags = (FIB_CONTEXT_FLAG | FIB_CONTEXT_FLAG_NATIVE_HBA); 718 if (callback) { 719 wait = 0; 720 fibptr->callback = callback; 721 fibptr->callback_data = callback_data; 722 } else 723 wait = 1; 724 725 726 hbacmd->iu_type = command; 727 728 if (command == HBA_IU_TYPE_SCSI_CMD_REQ) { 729 /* bit1 of request_id must be 0 */ 730 hbacmd->request_id = 731 cpu_to_le32((((u32)(fibptr - dev->fibs)) << 2) + 1); 732 fibptr->flags |= FIB_CONTEXT_FLAG_SCSI_CMD; 733 } else 734 return -EINVAL; 735 736 737 if (wait) { 738 spin_lock_irqsave(&dev->manage_lock, mflags); 739 if (dev->management_fib_count >= AAC_NUM_MGT_FIB) { 740 spin_unlock_irqrestore(&dev->manage_lock, mflags); 741 return -EBUSY; 742 } 743 dev->management_fib_count++; 744 spin_unlock_irqrestore(&dev->manage_lock, mflags); 745 spin_lock_irqsave(&fibptr->event_lock, flags); 746 } 747 748 if (aac_adapter_deliver(fibptr) != 0) { 749 if (wait) { 750 spin_unlock_irqrestore(&fibptr->event_lock, flags); 751 spin_lock_irqsave(&dev->manage_lock, mflags); 752 dev->management_fib_count--; 753 spin_unlock_irqrestore(&dev->manage_lock, mflags); 754 } 755 return -EBUSY; 756 } 757 FIB_COUNTER_INCREMENT(aac_config.NativeSent); 758 759 if (wait) { 760 761 spin_unlock_irqrestore(&fibptr->event_lock, flags); 762 763 if (unlikely(aac_pci_offline(dev))) 764 return -EFAULT; 765 766 fibptr->flags |= FIB_CONTEXT_FLAG_WAIT; 767 if (wait_for_completion_interruptible(&fibptr->event_wait)) 768 fibptr->done = 2; 769 fibptr->flags &= ~(FIB_CONTEXT_FLAG_WAIT); 770 771 spin_lock_irqsave(&fibptr->event_lock, flags); 772 if ((fibptr->done == 0) || (fibptr->done == 2)) { 773 fibptr->done = 2; /* Tell interrupt we aborted */ 774 spin_unlock_irqrestore(&fibptr->event_lock, flags); 775 return -ERESTARTSYS; 776 } 777 spin_unlock_irqrestore(&fibptr->event_lock, flags); 778 WARN_ON(fibptr->done == 0); 779 780 if (unlikely(fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) 781 return -ETIMEDOUT; 782 783 return 0; 784 } 785 786 return -EINPROGRESS; 787 } 788 789 /** 790 * aac_consumer_get - get the top of the queue 791 * @dev: Adapter 792 * @q: Queue 793 * @entry: Return entry 794 * 795 * Will return a pointer to the entry on the top of the queue requested that 796 * we are a consumer of, and return the address of the queue entry. It does 797 * not change the state of the queue. 798 */ 799 800 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry) 801 { 802 u32 index; 803 int status; 804 if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) { 805 status = 0; 806 } else { 807 /* 808 * The consumer index must be wrapped if we have reached 809 * the end of the queue, else we just use the entry 810 * pointed to by the header index 811 */ 812 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 813 index = 0; 814 else 815 index = le32_to_cpu(*q->headers.consumer); 816 *entry = q->base + index; 817 status = 1; 818 } 819 return(status); 820 } 821 822 /** 823 * aac_consumer_free - free consumer entry 824 * @dev: Adapter 825 * @q: Queue 826 * @qid: Queue ident 827 * 828 * Frees up the current top of the queue we are a consumer of. If the 829 * queue was full notify the producer that the queue is no longer full. 830 */ 831 832 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid) 833 { 834 int wasfull = 0; 835 u32 notify; 836 837 if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer)) 838 wasfull = 1; 839 840 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 841 *q->headers.consumer = cpu_to_le32(1); 842 else 843 le32_add_cpu(q->headers.consumer, 1); 844 845 if (wasfull) { 846 switch (qid) { 847 848 case HostNormCmdQueue: 849 notify = HostNormCmdNotFull; 850 break; 851 case HostNormRespQueue: 852 notify = HostNormRespNotFull; 853 break; 854 default: 855 BUG(); 856 return; 857 } 858 aac_adapter_notify(dev, notify); 859 } 860 } 861 862 /** 863 * aac_fib_adapter_complete - complete adapter issued fib 864 * @fibptr: fib to complete 865 * @size: size of fib 866 * 867 * Will do all necessary work to complete a FIB that was sent from 868 * the adapter. 869 */ 870 871 int aac_fib_adapter_complete(struct fib *fibptr, unsigned short size) 872 { 873 struct hw_fib * hw_fib = fibptr->hw_fib_va; 874 struct aac_dev * dev = fibptr->dev; 875 struct aac_queue * q; 876 unsigned long nointr = 0; 877 unsigned long qflags; 878 879 if (dev->comm_interface == AAC_COMM_MESSAGE_TYPE1 || 880 dev->comm_interface == AAC_COMM_MESSAGE_TYPE2 || 881 dev->comm_interface == AAC_COMM_MESSAGE_TYPE3) { 882 kfree(hw_fib); 883 return 0; 884 } 885 886 if (hw_fib->header.XferState == 0) { 887 if (dev->comm_interface == AAC_COMM_MESSAGE) 888 kfree(hw_fib); 889 return 0; 890 } 891 /* 892 * If we plan to do anything check the structure type first. 893 */ 894 if (hw_fib->header.StructType != FIB_MAGIC && 895 hw_fib->header.StructType != FIB_MAGIC2 && 896 hw_fib->header.StructType != FIB_MAGIC2_64) { 897 if (dev->comm_interface == AAC_COMM_MESSAGE) 898 kfree(hw_fib); 899 return -EINVAL; 900 } 901 /* 902 * This block handles the case where the adapter had sent us a 903 * command and we have finished processing the command. We 904 * call completeFib when we are done processing the command 905 * and want to send a response back to the adapter. This will 906 * send the completed cdb to the adapter. 907 */ 908 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 909 if (dev->comm_interface == AAC_COMM_MESSAGE) { 910 kfree (hw_fib); 911 } else { 912 u32 index; 913 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 914 if (size) { 915 size += sizeof(struct aac_fibhdr); 916 if (size > le16_to_cpu(hw_fib->header.SenderSize)) 917 return -EMSGSIZE; 918 hw_fib->header.Size = cpu_to_le16(size); 919 } 920 q = &dev->queues->queue[AdapNormRespQueue]; 921 spin_lock_irqsave(q->lock, qflags); 922 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr); 923 *(q->headers.producer) = cpu_to_le32(index + 1); 924 spin_unlock_irqrestore(q->lock, qflags); 925 if (!(nointr & (int)aac_config.irq_mod)) 926 aac_adapter_notify(dev, AdapNormRespQueue); 927 } 928 } else { 929 printk(KERN_WARNING "aac_fib_adapter_complete: " 930 "Unknown xferstate detected.\n"); 931 BUG(); 932 } 933 return 0; 934 } 935 936 /** 937 * aac_fib_complete - fib completion handler 938 * @fibptr: FIB to complete 939 * 940 * Will do all necessary work to complete a FIB. 941 */ 942 943 int aac_fib_complete(struct fib *fibptr) 944 { 945 struct hw_fib * hw_fib = fibptr->hw_fib_va; 946 947 if (fibptr->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { 948 fib_dealloc(fibptr); 949 return 0; 950 } 951 952 /* 953 * Check for a fib which has already been completed or with a 954 * status wait timeout 955 */ 956 957 if (hw_fib->header.XferState == 0 || fibptr->done == 2) 958 return 0; 959 /* 960 * If we plan to do anything check the structure type first. 961 */ 962 963 if (hw_fib->header.StructType != FIB_MAGIC && 964 hw_fib->header.StructType != FIB_MAGIC2 && 965 hw_fib->header.StructType != FIB_MAGIC2_64) 966 return -EINVAL; 967 /* 968 * This block completes a cdb which orginated on the host and we 969 * just need to deallocate the cdb or reinit it. At this point the 970 * command is complete that we had sent to the adapter and this 971 * cdb could be reused. 972 */ 973 974 if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) && 975 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed))) 976 { 977 fib_dealloc(fibptr); 978 } 979 else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost)) 980 { 981 /* 982 * This handles the case when the host has aborted the I/O 983 * to the adapter because the adapter is not responding 984 */ 985 fib_dealloc(fibptr); 986 } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) { 987 fib_dealloc(fibptr); 988 } else { 989 BUG(); 990 } 991 return 0; 992 } 993 994 /** 995 * aac_printf - handle printf from firmware 996 * @dev: Adapter 997 * @val: Message info 998 * 999 * Print a message passed to us by the controller firmware on the 1000 * Adaptec board 1001 */ 1002 1003 void aac_printf(struct aac_dev *dev, u32 val) 1004 { 1005 char *cp = dev->printfbuf; 1006 if (dev->printf_enabled) 1007 { 1008 int length = val & 0xffff; 1009 int level = (val >> 16) & 0xffff; 1010 1011 /* 1012 * The size of the printfbuf is set in port.c 1013 * There is no variable or define for it 1014 */ 1015 if (length > 255) 1016 length = 255; 1017 if (cp[length] != 0) 1018 cp[length] = 0; 1019 if (level == LOG_AAC_HIGH_ERROR) 1020 printk(KERN_WARNING "%s:%s", dev->name, cp); 1021 else 1022 printk(KERN_INFO "%s:%s", dev->name, cp); 1023 } 1024 memset(cp, 0, 256); 1025 } 1026 1027 static inline int aac_aif_data(struct aac_aifcmd *aifcmd, uint32_t index) 1028 { 1029 return le32_to_cpu(((__le32 *)aifcmd->data)[index]); 1030 } 1031 1032 1033 static void aac_handle_aif_bu(struct aac_dev *dev, struct aac_aifcmd *aifcmd) 1034 { 1035 switch (aac_aif_data(aifcmd, 1)) { 1036 case AifBuCacheDataLoss: 1037 if (aac_aif_data(aifcmd, 2)) 1038 dev_info(&dev->pdev->dev, "Backup unit had cache data loss - [%d]\n", 1039 aac_aif_data(aifcmd, 2)); 1040 else 1041 dev_info(&dev->pdev->dev, "Backup Unit had cache data loss\n"); 1042 break; 1043 case AifBuCacheDataRecover: 1044 if (aac_aif_data(aifcmd, 2)) 1045 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully - [%d]\n", 1046 aac_aif_data(aifcmd, 2)); 1047 else 1048 dev_info(&dev->pdev->dev, "DDR cache data recovered successfully\n"); 1049 break; 1050 } 1051 } 1052 1053 #define AIF_SNIFF_TIMEOUT (500*HZ) 1054 /** 1055 * aac_handle_aif - Handle a message from the firmware 1056 * @dev: Which adapter this fib is from 1057 * @fibptr: Pointer to fibptr from adapter 1058 * 1059 * This routine handles a driver notify fib from the adapter and 1060 * dispatches it to the appropriate routine for handling. 1061 */ 1062 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr) 1063 { 1064 struct hw_fib * hw_fib = fibptr->hw_fib_va; 1065 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data; 1066 u32 channel, id, lun, container; 1067 struct scsi_device *device; 1068 enum { 1069 NOTHING, 1070 DELETE, 1071 ADD, 1072 CHANGE 1073 } device_config_needed = NOTHING; 1074 1075 /* Sniff for container changes */ 1076 1077 if (!dev || !dev->fsa_dev) 1078 return; 1079 container = channel = id = lun = (u32)-1; 1080 1081 /* 1082 * We have set this up to try and minimize the number of 1083 * re-configures that take place. As a result of this when 1084 * certain AIF's come in we will set a flag waiting for another 1085 * type of AIF before setting the re-config flag. 1086 */ 1087 switch (le32_to_cpu(aifcmd->command)) { 1088 case AifCmdDriverNotify: 1089 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1090 case AifRawDeviceRemove: 1091 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1092 if ((container >> 28)) { 1093 container = (u32)-1; 1094 break; 1095 } 1096 channel = (container >> 24) & 0xF; 1097 if (channel >= dev->maximum_num_channels) { 1098 container = (u32)-1; 1099 break; 1100 } 1101 id = container & 0xFFFF; 1102 if (id >= dev->maximum_num_physicals) { 1103 container = (u32)-1; 1104 break; 1105 } 1106 lun = (container >> 16) & 0xFF; 1107 container = (u32)-1; 1108 channel = aac_phys_to_logical(channel); 1109 device_config_needed = DELETE; 1110 break; 1111 1112 /* 1113 * Morph or Expand complete 1114 */ 1115 case AifDenMorphComplete: 1116 case AifDenVolumeExtendComplete: 1117 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1118 if (container >= dev->maximum_num_containers) 1119 break; 1120 1121 /* 1122 * Find the scsi_device associated with the SCSI 1123 * address. Make sure we have the right array, and if 1124 * so set the flag to initiate a new re-config once we 1125 * see an AifEnConfigChange AIF come through. 1126 */ 1127 1128 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) { 1129 device = scsi_device_lookup(dev->scsi_host_ptr, 1130 CONTAINER_TO_CHANNEL(container), 1131 CONTAINER_TO_ID(container), 1132 CONTAINER_TO_LUN(container)); 1133 if (device) { 1134 dev->fsa_dev[container].config_needed = CHANGE; 1135 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange; 1136 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1137 scsi_device_put(device); 1138 } 1139 } 1140 } 1141 1142 /* 1143 * If we are waiting on something and this happens to be 1144 * that thing then set the re-configure flag. 1145 */ 1146 if (container != (u32)-1) { 1147 if (container >= dev->maximum_num_containers) 1148 break; 1149 if ((dev->fsa_dev[container].config_waiting_on == 1150 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1151 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1152 dev->fsa_dev[container].config_waiting_on = 0; 1153 } else for (container = 0; 1154 container < dev->maximum_num_containers; ++container) { 1155 if ((dev->fsa_dev[container].config_waiting_on == 1156 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1157 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1158 dev->fsa_dev[container].config_waiting_on = 0; 1159 } 1160 break; 1161 1162 case AifCmdEventNotify: 1163 switch (le32_to_cpu(((__le32 *)aifcmd->data)[0])) { 1164 case AifEnBatteryEvent: 1165 dev->cache_protected = 1166 (((__le32 *)aifcmd->data)[1] == cpu_to_le32(3)); 1167 break; 1168 /* 1169 * Add an Array. 1170 */ 1171 case AifEnAddContainer: 1172 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1173 if (container >= dev->maximum_num_containers) 1174 break; 1175 dev->fsa_dev[container].config_needed = ADD; 1176 dev->fsa_dev[container].config_waiting_on = 1177 AifEnConfigChange; 1178 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1179 break; 1180 1181 /* 1182 * Delete an Array. 1183 */ 1184 case AifEnDeleteContainer: 1185 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1186 if (container >= dev->maximum_num_containers) 1187 break; 1188 dev->fsa_dev[container].config_needed = DELETE; 1189 dev->fsa_dev[container].config_waiting_on = 1190 AifEnConfigChange; 1191 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1192 break; 1193 1194 /* 1195 * Container change detected. If we currently are not 1196 * waiting on something else, setup to wait on a Config Change. 1197 */ 1198 case AifEnContainerChange: 1199 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1200 if (container >= dev->maximum_num_containers) 1201 break; 1202 if (dev->fsa_dev[container].config_waiting_on && 1203 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1204 break; 1205 dev->fsa_dev[container].config_needed = CHANGE; 1206 dev->fsa_dev[container].config_waiting_on = 1207 AifEnConfigChange; 1208 dev->fsa_dev[container].config_waiting_stamp = jiffies; 1209 break; 1210 1211 case AifEnConfigChange: 1212 break; 1213 1214 case AifEnAddJBOD: 1215 case AifEnDeleteJBOD: 1216 container = le32_to_cpu(((__le32 *)aifcmd->data)[1]); 1217 if ((container >> 28)) { 1218 container = (u32)-1; 1219 break; 1220 } 1221 channel = (container >> 24) & 0xF; 1222 if (channel >= dev->maximum_num_channels) { 1223 container = (u32)-1; 1224 break; 1225 } 1226 id = container & 0xFFFF; 1227 if (id >= dev->maximum_num_physicals) { 1228 container = (u32)-1; 1229 break; 1230 } 1231 lun = (container >> 16) & 0xFF; 1232 container = (u32)-1; 1233 channel = aac_phys_to_logical(channel); 1234 device_config_needed = 1235 (((__le32 *)aifcmd->data)[0] == 1236 cpu_to_le32(AifEnAddJBOD)) ? ADD : DELETE; 1237 if (device_config_needed == ADD) { 1238 device = scsi_device_lookup(dev->scsi_host_ptr, 1239 channel, 1240 id, 1241 lun); 1242 if (device) { 1243 scsi_remove_device(device); 1244 scsi_device_put(device); 1245 } 1246 } 1247 break; 1248 1249 case AifEnEnclosureManagement: 1250 /* 1251 * If in JBOD mode, automatic exposure of new 1252 * physical target to be suppressed until configured. 1253 */ 1254 if (dev->jbod) 1255 break; 1256 switch (le32_to_cpu(((__le32 *)aifcmd->data)[3])) { 1257 case EM_DRIVE_INSERTION: 1258 case EM_DRIVE_REMOVAL: 1259 case EM_SES_DRIVE_INSERTION: 1260 case EM_SES_DRIVE_REMOVAL: 1261 container = le32_to_cpu( 1262 ((__le32 *)aifcmd->data)[2]); 1263 if ((container >> 28)) { 1264 container = (u32)-1; 1265 break; 1266 } 1267 channel = (container >> 24) & 0xF; 1268 if (channel >= dev->maximum_num_channels) { 1269 container = (u32)-1; 1270 break; 1271 } 1272 id = container & 0xFFFF; 1273 lun = (container >> 16) & 0xFF; 1274 container = (u32)-1; 1275 if (id >= dev->maximum_num_physicals) { 1276 /* legacy dev_t ? */ 1277 if ((0x2000 <= id) || lun || channel || 1278 ((channel = (id >> 7) & 0x3F) >= 1279 dev->maximum_num_channels)) 1280 break; 1281 lun = (id >> 4) & 7; 1282 id &= 0xF; 1283 } 1284 channel = aac_phys_to_logical(channel); 1285 device_config_needed = 1286 ((((__le32 *)aifcmd->data)[3] 1287 == cpu_to_le32(EM_DRIVE_INSERTION)) || 1288 (((__le32 *)aifcmd->data)[3] 1289 == cpu_to_le32(EM_SES_DRIVE_INSERTION))) ? 1290 ADD : DELETE; 1291 break; 1292 } 1293 break; 1294 case AifBuManagerEvent: 1295 aac_handle_aif_bu(dev, aifcmd); 1296 break; 1297 } 1298 1299 /* 1300 * If we are waiting on something and this happens to be 1301 * that thing then set the re-configure flag. 1302 */ 1303 if (container != (u32)-1) { 1304 if (container >= dev->maximum_num_containers) 1305 break; 1306 if ((dev->fsa_dev[container].config_waiting_on == 1307 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1308 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1309 dev->fsa_dev[container].config_waiting_on = 0; 1310 } else for (container = 0; 1311 container < dev->maximum_num_containers; ++container) { 1312 if ((dev->fsa_dev[container].config_waiting_on == 1313 le32_to_cpu(*(__le32 *)aifcmd->data)) && 1314 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) 1315 dev->fsa_dev[container].config_waiting_on = 0; 1316 } 1317 break; 1318 1319 case AifCmdJobProgress: 1320 /* 1321 * These are job progress AIF's. When a Clear is being 1322 * done on a container it is initially created then hidden from 1323 * the OS. When the clear completes we don't get a config 1324 * change so we monitor the job status complete on a clear then 1325 * wait for a container change. 1326 */ 1327 1328 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1329 (((__le32 *)aifcmd->data)[6] == ((__le32 *)aifcmd->data)[5] || 1330 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess))) { 1331 for (container = 0; 1332 container < dev->maximum_num_containers; 1333 ++container) { 1334 /* 1335 * Stomp on all config sequencing for all 1336 * containers? 1337 */ 1338 dev->fsa_dev[container].config_waiting_on = 1339 AifEnContainerChange; 1340 dev->fsa_dev[container].config_needed = ADD; 1341 dev->fsa_dev[container].config_waiting_stamp = 1342 jiffies; 1343 } 1344 } 1345 if (((__le32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero) && 1346 ((__le32 *)aifcmd->data)[6] == 0 && 1347 ((__le32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning)) { 1348 for (container = 0; 1349 container < dev->maximum_num_containers; 1350 ++container) { 1351 /* 1352 * Stomp on all config sequencing for all 1353 * containers? 1354 */ 1355 dev->fsa_dev[container].config_waiting_on = 1356 AifEnContainerChange; 1357 dev->fsa_dev[container].config_needed = DELETE; 1358 dev->fsa_dev[container].config_waiting_stamp = 1359 jiffies; 1360 } 1361 } 1362 break; 1363 } 1364 1365 container = 0; 1366 retry_next: 1367 if (device_config_needed == NOTHING) { 1368 for (; container < dev->maximum_num_containers; ++container) { 1369 if ((dev->fsa_dev[container].config_waiting_on == 0) && 1370 (dev->fsa_dev[container].config_needed != NOTHING) && 1371 time_before(jiffies, dev->fsa_dev[container].config_waiting_stamp + AIF_SNIFF_TIMEOUT)) { 1372 device_config_needed = 1373 dev->fsa_dev[container].config_needed; 1374 dev->fsa_dev[container].config_needed = NOTHING; 1375 channel = CONTAINER_TO_CHANNEL(container); 1376 id = CONTAINER_TO_ID(container); 1377 lun = CONTAINER_TO_LUN(container); 1378 break; 1379 } 1380 } 1381 } 1382 if (device_config_needed == NOTHING) 1383 return; 1384 1385 /* 1386 * If we decided that a re-configuration needs to be done, 1387 * schedule it here on the way out the door, please close the door 1388 * behind you. 1389 */ 1390 1391 /* 1392 * Find the scsi_device associated with the SCSI address, 1393 * and mark it as changed, invalidating the cache. This deals 1394 * with changes to existing device IDs. 1395 */ 1396 1397 if (!dev || !dev->scsi_host_ptr) 1398 return; 1399 /* 1400 * force reload of disk info via aac_probe_container 1401 */ 1402 if ((channel == CONTAINER_CHANNEL) && 1403 (device_config_needed != NOTHING)) { 1404 if (dev->fsa_dev[container].valid == 1) 1405 dev->fsa_dev[container].valid = 2; 1406 aac_probe_container(dev, container); 1407 } 1408 device = scsi_device_lookup(dev->scsi_host_ptr, channel, id, lun); 1409 if (device) { 1410 switch (device_config_needed) { 1411 case DELETE: 1412 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1413 scsi_remove_device(device); 1414 #else 1415 if (scsi_device_online(device)) { 1416 scsi_device_set_state(device, SDEV_OFFLINE); 1417 sdev_printk(KERN_INFO, device, 1418 "Device offlined - %s\n", 1419 (channel == CONTAINER_CHANNEL) ? 1420 "array deleted" : 1421 "enclosure services event"); 1422 } 1423 #endif 1424 break; 1425 case ADD: 1426 if (!scsi_device_online(device)) { 1427 sdev_printk(KERN_INFO, device, 1428 "Device online - %s\n", 1429 (channel == CONTAINER_CHANNEL) ? 1430 "array created" : 1431 "enclosure services event"); 1432 scsi_device_set_state(device, SDEV_RUNNING); 1433 } 1434 fallthrough; 1435 case CHANGE: 1436 if ((channel == CONTAINER_CHANNEL) 1437 && (!dev->fsa_dev[container].valid)) { 1438 #if (defined(AAC_DEBUG_INSTRUMENT_AIF_DELETE)) 1439 scsi_remove_device(device); 1440 #else 1441 if (!scsi_device_online(device)) 1442 break; 1443 scsi_device_set_state(device, SDEV_OFFLINE); 1444 sdev_printk(KERN_INFO, device, 1445 "Device offlined - %s\n", 1446 "array failed"); 1447 #endif 1448 break; 1449 } 1450 scsi_rescan_device(&device->sdev_gendev); 1451 break; 1452 1453 default: 1454 break; 1455 } 1456 scsi_device_put(device); 1457 device_config_needed = NOTHING; 1458 } 1459 if (device_config_needed == ADD) 1460 scsi_add_device(dev->scsi_host_ptr, channel, id, lun); 1461 if (channel == CONTAINER_CHANNEL) { 1462 container++; 1463 device_config_needed = NOTHING; 1464 goto retry_next; 1465 } 1466 } 1467 1468 static void aac_schedule_bus_scan(struct aac_dev *aac) 1469 { 1470 if (aac->sa_firmware) 1471 aac_schedule_safw_scan_worker(aac); 1472 else 1473 aac_schedule_src_reinit_aif_worker(aac); 1474 } 1475 1476 static int _aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1477 { 1478 int index, quirks; 1479 int retval; 1480 struct Scsi_Host *host = aac->scsi_host_ptr; 1481 int jafo = 0; 1482 int bled; 1483 u64 dmamask; 1484 int num_of_fibs = 0; 1485 1486 /* 1487 * Assumptions: 1488 * - host is locked, unless called by the aacraid thread. 1489 * (a matter of convenience, due to legacy issues surrounding 1490 * eh_host_adapter_reset). 1491 * - in_reset is asserted, so no new i/o is getting to the 1492 * card. 1493 * - The card is dead, or will be very shortly ;-/ so no new 1494 * commands are completing in the interrupt service. 1495 */ 1496 aac_adapter_disable_int(aac); 1497 if (aac->thread && aac->thread->pid != current->pid) { 1498 spin_unlock_irq(host->host_lock); 1499 kthread_stop(aac->thread); 1500 aac->thread = NULL; 1501 jafo = 1; 1502 } 1503 1504 /* 1505 * If a positive health, means in a known DEAD PANIC 1506 * state and the adapter could be reset to `try again'. 1507 */ 1508 bled = forced ? 0 : aac_adapter_check_health(aac); 1509 retval = aac_adapter_restart(aac, bled, reset_type); 1510 1511 if (retval) 1512 goto out; 1513 1514 /* 1515 * Loop through the fibs, close the synchronous FIBS 1516 */ 1517 retval = 1; 1518 num_of_fibs = aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB; 1519 for (index = 0; index < num_of_fibs; index++) { 1520 1521 struct fib *fib = &aac->fibs[index]; 1522 __le32 XferState = fib->hw_fib_va->header.XferState; 1523 bool is_response_expected = false; 1524 1525 if (!(XferState & cpu_to_le32(NoResponseExpected | Async)) && 1526 (XferState & cpu_to_le32(ResponseExpected))) 1527 is_response_expected = true; 1528 1529 if (is_response_expected 1530 || fib->flags & FIB_CONTEXT_FLAG_WAIT) { 1531 unsigned long flagv; 1532 spin_lock_irqsave(&fib->event_lock, flagv); 1533 complete(&fib->event_wait); 1534 spin_unlock_irqrestore(&fib->event_lock, flagv); 1535 schedule(); 1536 retval = 0; 1537 } 1538 } 1539 /* Give some extra time for ioctls to complete. */ 1540 if (retval == 0) 1541 ssleep(2); 1542 index = aac->cardtype; 1543 1544 /* 1545 * Re-initialize the adapter, first free resources, then carefully 1546 * apply the initialization sequence to come back again. Only risk 1547 * is a change in Firmware dropping cache, it is assumed the caller 1548 * will ensure that i/o is queisced and the card is flushed in that 1549 * case. 1550 */ 1551 aac_free_irq(aac); 1552 aac_fib_map_free(aac); 1553 dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr, 1554 aac->comm_phys); 1555 aac_adapter_ioremap(aac, 0); 1556 aac->comm_addr = NULL; 1557 aac->comm_phys = 0; 1558 kfree(aac->queues); 1559 aac->queues = NULL; 1560 kfree(aac->fsa_dev); 1561 aac->fsa_dev = NULL; 1562 1563 dmamask = DMA_BIT_MASK(32); 1564 quirks = aac_get_driver_ident(index)->quirks; 1565 if (quirks & AAC_QUIRK_31BIT) 1566 retval = dma_set_mask(&aac->pdev->dev, dmamask); 1567 else if (!(quirks & AAC_QUIRK_SRC)) 1568 retval = dma_set_mask(&aac->pdev->dev, dmamask); 1569 else 1570 retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask); 1571 1572 if (quirks & AAC_QUIRK_31BIT && !retval) { 1573 dmamask = DMA_BIT_MASK(31); 1574 retval = dma_set_coherent_mask(&aac->pdev->dev, dmamask); 1575 } 1576 1577 if (retval) 1578 goto out; 1579 1580 if ((retval = (*(aac_get_driver_ident(index)->init))(aac))) 1581 goto out; 1582 1583 if (jafo) { 1584 aac->thread = kthread_run(aac_command_thread, aac, "%s", 1585 aac->name); 1586 if (IS_ERR(aac->thread)) { 1587 retval = PTR_ERR(aac->thread); 1588 aac->thread = NULL; 1589 goto out; 1590 } 1591 } 1592 (void)aac_get_adapter_info(aac); 1593 if ((quirks & AAC_QUIRK_34SG) && (host->sg_tablesize > 34)) { 1594 host->sg_tablesize = 34; 1595 host->max_sectors = (host->sg_tablesize * 8) + 112; 1596 } 1597 if ((quirks & AAC_QUIRK_17SG) && (host->sg_tablesize > 17)) { 1598 host->sg_tablesize = 17; 1599 host->max_sectors = (host->sg_tablesize * 8) + 112; 1600 } 1601 aac_get_config_status(aac, 1); 1602 aac_get_containers(aac); 1603 /* 1604 * This is where the assumption that the Adapter is quiesced 1605 * is important. 1606 */ 1607 scsi_host_complete_all_commands(host, DID_RESET); 1608 1609 retval = 0; 1610 out: 1611 aac->in_reset = 0; 1612 1613 /* 1614 * Issue bus rescan to catch any configuration that might have 1615 * occurred 1616 */ 1617 if (!retval && !is_kdump_kernel()) { 1618 dev_info(&aac->pdev->dev, "Scheduling bus rescan\n"); 1619 aac_schedule_bus_scan(aac); 1620 } 1621 1622 if (jafo) { 1623 spin_lock_irq(host->host_lock); 1624 } 1625 return retval; 1626 } 1627 1628 int aac_reset_adapter(struct aac_dev *aac, int forced, u8 reset_type) 1629 { 1630 unsigned long flagv = 0; 1631 int retval, unblock_retval; 1632 struct Scsi_Host *host = aac->scsi_host_ptr; 1633 int bled; 1634 1635 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1636 return -EBUSY; 1637 1638 if (aac->in_reset) { 1639 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1640 return -EBUSY; 1641 } 1642 aac->in_reset = 1; 1643 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1644 1645 /* 1646 * Wait for all commands to complete to this specific 1647 * target (block maximum 60 seconds). Although not necessary, 1648 * it does make us a good storage citizen. 1649 */ 1650 scsi_host_block(host); 1651 1652 /* Quiesce build, flush cache, write through mode */ 1653 if (forced < 2) 1654 aac_send_shutdown(aac); 1655 spin_lock_irqsave(host->host_lock, flagv); 1656 bled = forced ? forced : 1657 (aac_check_reset != 0 && aac_check_reset != 1); 1658 retval = _aac_reset_adapter(aac, bled, reset_type); 1659 spin_unlock_irqrestore(host->host_lock, flagv); 1660 1661 unblock_retval = scsi_host_unblock(host, SDEV_RUNNING); 1662 if (!retval) 1663 retval = unblock_retval; 1664 if ((forced < 2) && (retval == -ENODEV)) { 1665 /* Unwind aac_send_shutdown() IOP_RESET unsupported/disabled */ 1666 struct fib * fibctx = aac_fib_alloc(aac); 1667 if (fibctx) { 1668 struct aac_pause *cmd; 1669 int status; 1670 1671 aac_fib_init(fibctx); 1672 1673 cmd = (struct aac_pause *) fib_data(fibctx); 1674 1675 cmd->command = cpu_to_le32(VM_ContainerConfig); 1676 cmd->type = cpu_to_le32(CT_PAUSE_IO); 1677 cmd->timeout = cpu_to_le32(1); 1678 cmd->min = cpu_to_le32(1); 1679 cmd->noRescan = cpu_to_le32(1); 1680 cmd->count = cpu_to_le32(0); 1681 1682 status = aac_fib_send(ContainerCommand, 1683 fibctx, 1684 sizeof(struct aac_pause), 1685 FsaNormal, 1686 -2 /* Timeout silently */, 1, 1687 NULL, NULL); 1688 1689 if (status >= 0) 1690 aac_fib_complete(fibctx); 1691 /* FIB should be freed only after getting 1692 * the response from the F/W */ 1693 if (status != -ERESTARTSYS) 1694 aac_fib_free(fibctx); 1695 } 1696 } 1697 1698 return retval; 1699 } 1700 1701 int aac_check_health(struct aac_dev * aac) 1702 { 1703 int BlinkLED; 1704 unsigned long time_now, flagv = 0; 1705 struct list_head * entry; 1706 1707 /* Extending the scope of fib_lock slightly to protect aac->in_reset */ 1708 if (spin_trylock_irqsave(&aac->fib_lock, flagv) == 0) 1709 return 0; 1710 1711 if (aac->in_reset || !(BlinkLED = aac_adapter_check_health(aac))) { 1712 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1713 return 0; /* OK */ 1714 } 1715 1716 aac->in_reset = 1; 1717 1718 /* Fake up an AIF: 1719 * aac_aifcmd.command = AifCmdEventNotify = 1 1720 * aac_aifcmd.seqnum = 0xFFFFFFFF 1721 * aac_aifcmd.data[0] = AifEnExpEvent = 23 1722 * aac_aifcmd.data[1] = AifExeFirmwarePanic = 3 1723 * aac.aifcmd.data[2] = AifHighPriority = 3 1724 * aac.aifcmd.data[3] = BlinkLED 1725 */ 1726 1727 time_now = jiffies/HZ; 1728 entry = aac->fib_list.next; 1729 1730 /* 1731 * For each Context that is on the 1732 * fibctxList, make a copy of the 1733 * fib, and then set the event to wake up the 1734 * thread that is waiting for it. 1735 */ 1736 while (entry != &aac->fib_list) { 1737 /* 1738 * Extract the fibctx 1739 */ 1740 struct aac_fib_context *fibctx = list_entry(entry, struct aac_fib_context, next); 1741 struct hw_fib * hw_fib; 1742 struct fib * fib; 1743 /* 1744 * Check if the queue is getting 1745 * backlogged 1746 */ 1747 if (fibctx->count > 20) { 1748 /* 1749 * It's *not* jiffies folks, 1750 * but jiffies / HZ, so do not 1751 * panic ... 1752 */ 1753 u32 time_last = fibctx->jiffies; 1754 /* 1755 * Has it been > 2 minutes 1756 * since the last read off 1757 * the queue? 1758 */ 1759 if ((time_now - time_last) > aif_timeout) { 1760 entry = entry->next; 1761 aac_close_fib_context(aac, fibctx); 1762 continue; 1763 } 1764 } 1765 /* 1766 * Warning: no sleep allowed while 1767 * holding spinlock 1768 */ 1769 hw_fib = kzalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1770 fib = kzalloc(sizeof(struct fib), GFP_ATOMIC); 1771 if (fib && hw_fib) { 1772 struct aac_aifcmd * aif; 1773 1774 fib->hw_fib_va = hw_fib; 1775 fib->dev = aac; 1776 aac_fib_init(fib); 1777 fib->type = FSAFS_NTC_FIB_CONTEXT; 1778 fib->size = sizeof (struct fib); 1779 fib->data = hw_fib->data; 1780 aif = (struct aac_aifcmd *)hw_fib->data; 1781 aif->command = cpu_to_le32(AifCmdEventNotify); 1782 aif->seqnum = cpu_to_le32(0xFFFFFFFF); 1783 ((__le32 *)aif->data)[0] = cpu_to_le32(AifEnExpEvent); 1784 ((__le32 *)aif->data)[1] = cpu_to_le32(AifExeFirmwarePanic); 1785 ((__le32 *)aif->data)[2] = cpu_to_le32(AifHighPriority); 1786 ((__le32 *)aif->data)[3] = cpu_to_le32(BlinkLED); 1787 1788 /* 1789 * Put the FIB onto the 1790 * fibctx's fibs 1791 */ 1792 list_add_tail(&fib->fiblink, &fibctx->fib_list); 1793 fibctx->count++; 1794 /* 1795 * Set the event to wake up the 1796 * thread that will waiting. 1797 */ 1798 complete(&fibctx->completion); 1799 } else { 1800 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1801 kfree(fib); 1802 kfree(hw_fib); 1803 } 1804 entry = entry->next; 1805 } 1806 1807 spin_unlock_irqrestore(&aac->fib_lock, flagv); 1808 1809 if (BlinkLED < 0) { 1810 printk(KERN_ERR "%s: Host adapter is dead (or got a PCI error) %d\n", 1811 aac->name, BlinkLED); 1812 goto out; 1813 } 1814 1815 printk(KERN_ERR "%s: Host adapter BLINK LED 0x%x\n", aac->name, BlinkLED); 1816 1817 out: 1818 aac->in_reset = 0; 1819 return BlinkLED; 1820 } 1821 1822 static inline int is_safw_raid_volume(struct aac_dev *aac, int bus, int target) 1823 { 1824 return bus == CONTAINER_CHANNEL && target < aac->maximum_num_containers; 1825 } 1826 1827 static struct scsi_device *aac_lookup_safw_scsi_device(struct aac_dev *dev, 1828 int bus, 1829 int target) 1830 { 1831 if (bus != CONTAINER_CHANNEL) 1832 bus = aac_phys_to_logical(bus); 1833 1834 return scsi_device_lookup(dev->scsi_host_ptr, bus, target, 0); 1835 } 1836 1837 static int aac_add_safw_device(struct aac_dev *dev, int bus, int target) 1838 { 1839 if (bus != CONTAINER_CHANNEL) 1840 bus = aac_phys_to_logical(bus); 1841 1842 return scsi_add_device(dev->scsi_host_ptr, bus, target, 0); 1843 } 1844 1845 static void aac_put_safw_scsi_device(struct scsi_device *sdev) 1846 { 1847 if (sdev) 1848 scsi_device_put(sdev); 1849 } 1850 1851 static void aac_remove_safw_device(struct aac_dev *dev, int bus, int target) 1852 { 1853 struct scsi_device *sdev; 1854 1855 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1856 scsi_remove_device(sdev); 1857 aac_put_safw_scsi_device(sdev); 1858 } 1859 1860 static inline int aac_is_safw_scan_count_equal(struct aac_dev *dev, 1861 int bus, int target) 1862 { 1863 return dev->hba_map[bus][target].scan_counter == dev->scan_counter; 1864 } 1865 1866 static int aac_is_safw_target_valid(struct aac_dev *dev, int bus, int target) 1867 { 1868 if (is_safw_raid_volume(dev, bus, target)) 1869 return dev->fsa_dev[target].valid; 1870 else 1871 return aac_is_safw_scan_count_equal(dev, bus, target); 1872 } 1873 1874 static int aac_is_safw_device_exposed(struct aac_dev *dev, int bus, int target) 1875 { 1876 int is_exposed = 0; 1877 struct scsi_device *sdev; 1878 1879 sdev = aac_lookup_safw_scsi_device(dev, bus, target); 1880 if (sdev) 1881 is_exposed = 1; 1882 aac_put_safw_scsi_device(sdev); 1883 1884 return is_exposed; 1885 } 1886 1887 static int aac_update_safw_host_devices(struct aac_dev *dev) 1888 { 1889 int i; 1890 int bus; 1891 int target; 1892 int is_exposed = 0; 1893 int rcode = 0; 1894 1895 rcode = aac_setup_safw_adapter(dev); 1896 if (unlikely(rcode < 0)) { 1897 goto out; 1898 } 1899 1900 for (i = 0; i < AAC_BUS_TARGET_LOOP; i++) { 1901 1902 bus = get_bus_number(i); 1903 target = get_target_number(i); 1904 1905 is_exposed = aac_is_safw_device_exposed(dev, bus, target); 1906 1907 if (aac_is_safw_target_valid(dev, bus, target) && !is_exposed) 1908 aac_add_safw_device(dev, bus, target); 1909 else if (!aac_is_safw_target_valid(dev, bus, target) && 1910 is_exposed) 1911 aac_remove_safw_device(dev, bus, target); 1912 } 1913 out: 1914 return rcode; 1915 } 1916 1917 static int aac_scan_safw_host(struct aac_dev *dev) 1918 { 1919 int rcode = 0; 1920 1921 rcode = aac_update_safw_host_devices(dev); 1922 if (rcode) 1923 aac_schedule_safw_scan_worker(dev); 1924 1925 return rcode; 1926 } 1927 1928 int aac_scan_host(struct aac_dev *dev) 1929 { 1930 int rcode = 0; 1931 1932 mutex_lock(&dev->scan_mutex); 1933 if (dev->sa_firmware) 1934 rcode = aac_scan_safw_host(dev); 1935 else 1936 scsi_scan_host(dev->scsi_host_ptr); 1937 mutex_unlock(&dev->scan_mutex); 1938 1939 return rcode; 1940 } 1941 1942 void aac_src_reinit_aif_worker(struct work_struct *work) 1943 { 1944 struct aac_dev *dev = container_of(to_delayed_work(work), 1945 struct aac_dev, src_reinit_aif_worker); 1946 1947 wait_event(dev->scsi_host_ptr->host_wait, 1948 !scsi_host_in_recovery(dev->scsi_host_ptr)); 1949 aac_reinit_aif(dev, dev->cardtype); 1950 } 1951 1952 /** 1953 * aac_handle_sa_aif Handle a message from the firmware 1954 * @dev: Which adapter this fib is from 1955 * @fibptr: Pointer to fibptr from adapter 1956 * 1957 * This routine handles a driver notify fib from the adapter and 1958 * dispatches it to the appropriate routine for handling. 1959 */ 1960 static void aac_handle_sa_aif(struct aac_dev *dev, struct fib *fibptr) 1961 { 1962 int i; 1963 u32 events = 0; 1964 1965 if (fibptr->hbacmd_size & SA_AIF_HOTPLUG) 1966 events = SA_AIF_HOTPLUG; 1967 else if (fibptr->hbacmd_size & SA_AIF_HARDWARE) 1968 events = SA_AIF_HARDWARE; 1969 else if (fibptr->hbacmd_size & SA_AIF_PDEV_CHANGE) 1970 events = SA_AIF_PDEV_CHANGE; 1971 else if (fibptr->hbacmd_size & SA_AIF_LDEV_CHANGE) 1972 events = SA_AIF_LDEV_CHANGE; 1973 else if (fibptr->hbacmd_size & SA_AIF_BPSTAT_CHANGE) 1974 events = SA_AIF_BPSTAT_CHANGE; 1975 else if (fibptr->hbacmd_size & SA_AIF_BPCFG_CHANGE) 1976 events = SA_AIF_BPCFG_CHANGE; 1977 1978 switch (events) { 1979 case SA_AIF_HOTPLUG: 1980 case SA_AIF_HARDWARE: 1981 case SA_AIF_PDEV_CHANGE: 1982 case SA_AIF_LDEV_CHANGE: 1983 case SA_AIF_BPCFG_CHANGE: 1984 1985 aac_scan_host(dev); 1986 1987 break; 1988 1989 case SA_AIF_BPSTAT_CHANGE: 1990 /* currently do nothing */ 1991 break; 1992 } 1993 1994 for (i = 1; i <= 10; ++i) { 1995 events = src_readl(dev, MUnit.IDR); 1996 if (events & (1<<23)) { 1997 pr_warn(" AIF not cleared by firmware - %d/%d)\n", 1998 i, 10); 1999 ssleep(1); 2000 } 2001 } 2002 } 2003 2004 static int get_fib_count(struct aac_dev *dev) 2005 { 2006 unsigned int num = 0; 2007 struct list_head *entry; 2008 unsigned long flagv; 2009 2010 /* 2011 * Warning: no sleep allowed while 2012 * holding spinlock. We take the estimate 2013 * and pre-allocate a set of fibs outside the 2014 * lock. 2015 */ 2016 num = le32_to_cpu(dev->init->r7.adapter_fibs_size) 2017 / sizeof(struct hw_fib); /* some extra */ 2018 spin_lock_irqsave(&dev->fib_lock, flagv); 2019 entry = dev->fib_list.next; 2020 while (entry != &dev->fib_list) { 2021 entry = entry->next; 2022 ++num; 2023 } 2024 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2025 2026 return num; 2027 } 2028 2029 static int fillup_pools(struct aac_dev *dev, struct hw_fib **hw_fib_pool, 2030 struct fib **fib_pool, 2031 unsigned int num) 2032 { 2033 struct hw_fib **hw_fib_p; 2034 struct fib **fib_p; 2035 2036 hw_fib_p = hw_fib_pool; 2037 fib_p = fib_pool; 2038 while (hw_fib_p < &hw_fib_pool[num]) { 2039 *(hw_fib_p) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL); 2040 if (!(*(hw_fib_p++))) { 2041 --hw_fib_p; 2042 break; 2043 } 2044 2045 *(fib_p) = kmalloc(sizeof(struct fib), GFP_KERNEL); 2046 if (!(*(fib_p++))) { 2047 kfree(*(--hw_fib_p)); 2048 break; 2049 } 2050 } 2051 2052 /* 2053 * Get the actual number of allocated fibs 2054 */ 2055 num = hw_fib_p - hw_fib_pool; 2056 return num; 2057 } 2058 2059 static void wakeup_fibctx_threads(struct aac_dev *dev, 2060 struct hw_fib **hw_fib_pool, 2061 struct fib **fib_pool, 2062 struct fib *fib, 2063 struct hw_fib *hw_fib, 2064 unsigned int num) 2065 { 2066 unsigned long flagv; 2067 struct list_head *entry; 2068 struct hw_fib **hw_fib_p; 2069 struct fib **fib_p; 2070 u32 time_now, time_last; 2071 struct hw_fib *hw_newfib; 2072 struct fib *newfib; 2073 struct aac_fib_context *fibctx; 2074 2075 time_now = jiffies/HZ; 2076 spin_lock_irqsave(&dev->fib_lock, flagv); 2077 entry = dev->fib_list.next; 2078 /* 2079 * For each Context that is on the 2080 * fibctxList, make a copy of the 2081 * fib, and then set the event to wake up the 2082 * thread that is waiting for it. 2083 */ 2084 2085 hw_fib_p = hw_fib_pool; 2086 fib_p = fib_pool; 2087 while (entry != &dev->fib_list) { 2088 /* 2089 * Extract the fibctx 2090 */ 2091 fibctx = list_entry(entry, struct aac_fib_context, 2092 next); 2093 /* 2094 * Check if the queue is getting 2095 * backlogged 2096 */ 2097 if (fibctx->count > 20) { 2098 /* 2099 * It's *not* jiffies folks, 2100 * but jiffies / HZ so do not 2101 * panic ... 2102 */ 2103 time_last = fibctx->jiffies; 2104 /* 2105 * Has it been > 2 minutes 2106 * since the last read off 2107 * the queue? 2108 */ 2109 if ((time_now - time_last) > aif_timeout) { 2110 entry = entry->next; 2111 aac_close_fib_context(dev, fibctx); 2112 continue; 2113 } 2114 } 2115 /* 2116 * Warning: no sleep allowed while 2117 * holding spinlock 2118 */ 2119 if (hw_fib_p >= &hw_fib_pool[num]) { 2120 pr_warn("aifd: didn't allocate NewFib\n"); 2121 entry = entry->next; 2122 continue; 2123 } 2124 2125 hw_newfib = *hw_fib_p; 2126 *(hw_fib_p++) = NULL; 2127 newfib = *fib_p; 2128 *(fib_p++) = NULL; 2129 /* 2130 * Make the copy of the FIB 2131 */ 2132 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib)); 2133 memcpy(newfib, fib, sizeof(struct fib)); 2134 newfib->hw_fib_va = hw_newfib; 2135 /* 2136 * Put the FIB onto the 2137 * fibctx's fibs 2138 */ 2139 list_add_tail(&newfib->fiblink, &fibctx->fib_list); 2140 fibctx->count++; 2141 /* 2142 * Set the event to wake up the 2143 * thread that is waiting. 2144 */ 2145 complete(&fibctx->completion); 2146 2147 entry = entry->next; 2148 } 2149 /* 2150 * Set the status of this FIB 2151 */ 2152 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2153 aac_fib_adapter_complete(fib, sizeof(u32)); 2154 spin_unlock_irqrestore(&dev->fib_lock, flagv); 2155 2156 } 2157 2158 static void aac_process_events(struct aac_dev *dev) 2159 { 2160 struct hw_fib *hw_fib; 2161 struct fib *fib; 2162 unsigned long flags; 2163 spinlock_t *t_lock; 2164 2165 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2166 spin_lock_irqsave(t_lock, flags); 2167 2168 while (!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) { 2169 struct list_head *entry; 2170 struct aac_aifcmd *aifcmd; 2171 unsigned int num; 2172 struct hw_fib **hw_fib_pool, **hw_fib_p; 2173 struct fib **fib_pool, **fib_p; 2174 2175 set_current_state(TASK_RUNNING); 2176 2177 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next; 2178 list_del(entry); 2179 2180 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2181 spin_unlock_irqrestore(t_lock, flags); 2182 2183 fib = list_entry(entry, struct fib, fiblink); 2184 hw_fib = fib->hw_fib_va; 2185 if (dev->sa_firmware) { 2186 /* Thor AIF */ 2187 aac_handle_sa_aif(dev, fib); 2188 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2189 goto free_fib; 2190 } 2191 /* 2192 * We will process the FIB here or pass it to a 2193 * worker thread that is TBD. We Really can't 2194 * do anything at this point since we don't have 2195 * anything defined for this thread to do. 2196 */ 2197 memset(fib, 0, sizeof(struct fib)); 2198 fib->type = FSAFS_NTC_FIB_CONTEXT; 2199 fib->size = sizeof(struct fib); 2200 fib->hw_fib_va = hw_fib; 2201 fib->data = hw_fib->data; 2202 fib->dev = dev; 2203 /* 2204 * We only handle AifRequest fibs from the adapter. 2205 */ 2206 2207 aifcmd = (struct aac_aifcmd *) hw_fib->data; 2208 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 2209 /* Handle Driver Notify Events */ 2210 aac_handle_aif(dev, fib); 2211 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 2212 aac_fib_adapter_complete(fib, (u16)sizeof(u32)); 2213 goto free_fib; 2214 } 2215 /* 2216 * The u32 here is important and intended. We are using 2217 * 32bit wrapping time to fit the adapter field 2218 */ 2219 2220 /* Sniff events */ 2221 if (aifcmd->command == cpu_to_le32(AifCmdEventNotify) 2222 || aifcmd->command == cpu_to_le32(AifCmdJobProgress)) { 2223 aac_handle_aif(dev, fib); 2224 } 2225 2226 /* 2227 * get number of fibs to process 2228 */ 2229 num = get_fib_count(dev); 2230 if (!num) 2231 goto free_fib; 2232 2233 hw_fib_pool = kmalloc_array(num, sizeof(struct hw_fib *), 2234 GFP_KERNEL); 2235 if (!hw_fib_pool) 2236 goto free_fib; 2237 2238 fib_pool = kmalloc_array(num, sizeof(struct fib *), GFP_KERNEL); 2239 if (!fib_pool) 2240 goto free_hw_fib_pool; 2241 2242 /* 2243 * Fill up fib pointer pools with actual fibs 2244 * and hw_fibs 2245 */ 2246 num = fillup_pools(dev, hw_fib_pool, fib_pool, num); 2247 if (!num) 2248 goto free_mem; 2249 2250 /* 2251 * wakeup the thread that is waiting for 2252 * the response from fw (ioctl) 2253 */ 2254 wakeup_fibctx_threads(dev, hw_fib_pool, fib_pool, 2255 fib, hw_fib, num); 2256 2257 free_mem: 2258 /* Free up the remaining resources */ 2259 hw_fib_p = hw_fib_pool; 2260 fib_p = fib_pool; 2261 while (hw_fib_p < &hw_fib_pool[num]) { 2262 kfree(*hw_fib_p); 2263 kfree(*fib_p); 2264 ++fib_p; 2265 ++hw_fib_p; 2266 } 2267 kfree(fib_pool); 2268 free_hw_fib_pool: 2269 kfree(hw_fib_pool); 2270 free_fib: 2271 kfree(fib); 2272 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2273 spin_lock_irqsave(t_lock, flags); 2274 } 2275 /* 2276 * There are no more AIF's 2277 */ 2278 t_lock = dev->queues->queue[HostNormCmdQueue].lock; 2279 spin_unlock_irqrestore(t_lock, flags); 2280 } 2281 2282 static int aac_send_wellness_command(struct aac_dev *dev, char *wellness_str, 2283 u32 datasize) 2284 { 2285 struct aac_srb *srbcmd; 2286 struct sgmap64 *sg64; 2287 dma_addr_t addr; 2288 char *dma_buf; 2289 struct fib *fibptr; 2290 int ret = -ENOMEM; 2291 u32 vbus, vid; 2292 2293 fibptr = aac_fib_alloc(dev); 2294 if (!fibptr) 2295 goto out; 2296 2297 dma_buf = dma_alloc_coherent(&dev->pdev->dev, datasize, &addr, 2298 GFP_KERNEL); 2299 if (!dma_buf) 2300 goto fib_free_out; 2301 2302 aac_fib_init(fibptr); 2303 2304 vbus = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_bus); 2305 vid = (u32)le16_to_cpu(dev->supplement_adapter_info.virt_device_target); 2306 2307 srbcmd = (struct aac_srb *)fib_data(fibptr); 2308 2309 srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi); 2310 srbcmd->channel = cpu_to_le32(vbus); 2311 srbcmd->id = cpu_to_le32(vid); 2312 srbcmd->lun = 0; 2313 srbcmd->flags = cpu_to_le32(SRB_DataOut); 2314 srbcmd->timeout = cpu_to_le32(10); 2315 srbcmd->retry_limit = 0; 2316 srbcmd->cdb_size = cpu_to_le32(12); 2317 srbcmd->count = cpu_to_le32(datasize); 2318 2319 memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb)); 2320 srbcmd->cdb[0] = BMIC_OUT; 2321 srbcmd->cdb[6] = WRITE_HOST_WELLNESS; 2322 memcpy(dma_buf, (char *)wellness_str, datasize); 2323 2324 sg64 = (struct sgmap64 *)&srbcmd->sg; 2325 sg64->count = cpu_to_le32(1); 2326 sg64->sg[0].addr[1] = cpu_to_le32((u32)(((addr) >> 16) >> 16)); 2327 sg64->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff)); 2328 sg64->sg[0].count = cpu_to_le32(datasize); 2329 2330 ret = aac_fib_send(ScsiPortCommand64, fibptr, sizeof(struct aac_srb), 2331 FsaNormal, 1, 1, NULL, NULL); 2332 2333 dma_free_coherent(&dev->pdev->dev, datasize, dma_buf, addr); 2334 2335 /* 2336 * Do not set XferState to zero unless 2337 * receives a response from F/W 2338 */ 2339 if (ret >= 0) 2340 aac_fib_complete(fibptr); 2341 2342 /* 2343 * FIB should be freed only after 2344 * getting the response from the F/W 2345 */ 2346 if (ret != -ERESTARTSYS) 2347 goto fib_free_out; 2348 2349 out: 2350 return ret; 2351 fib_free_out: 2352 aac_fib_free(fibptr); 2353 goto out; 2354 } 2355 2356 static int aac_send_safw_hostttime(struct aac_dev *dev, struct timespec64 *now) 2357 { 2358 struct tm cur_tm; 2359 char wellness_str[] = "<HW>TD\010\0\0\0\0\0\0\0\0\0DW\0\0ZZ"; 2360 u32 datasize = sizeof(wellness_str); 2361 time64_t local_time; 2362 int ret = -ENODEV; 2363 2364 if (!dev->sa_firmware) 2365 goto out; 2366 2367 local_time = (now->tv_sec - (sys_tz.tz_minuteswest * 60)); 2368 time64_to_tm(local_time, 0, &cur_tm); 2369 cur_tm.tm_mon += 1; 2370 cur_tm.tm_year += 1900; 2371 wellness_str[8] = bin2bcd(cur_tm.tm_hour); 2372 wellness_str[9] = bin2bcd(cur_tm.tm_min); 2373 wellness_str[10] = bin2bcd(cur_tm.tm_sec); 2374 wellness_str[12] = bin2bcd(cur_tm.tm_mon); 2375 wellness_str[13] = bin2bcd(cur_tm.tm_mday); 2376 wellness_str[14] = bin2bcd(cur_tm.tm_year / 100); 2377 wellness_str[15] = bin2bcd(cur_tm.tm_year % 100); 2378 2379 ret = aac_send_wellness_command(dev, wellness_str, datasize); 2380 2381 out: 2382 return ret; 2383 } 2384 2385 static int aac_send_hosttime(struct aac_dev *dev, struct timespec64 *now) 2386 { 2387 int ret = -ENOMEM; 2388 struct fib *fibptr; 2389 __le32 *info; 2390 2391 fibptr = aac_fib_alloc(dev); 2392 if (!fibptr) 2393 goto out; 2394 2395 aac_fib_init(fibptr); 2396 info = (__le32 *)fib_data(fibptr); 2397 *info = cpu_to_le32(now->tv_sec); /* overflow in y2106 */ 2398 ret = aac_fib_send(SendHostTime, fibptr, sizeof(*info), FsaNormal, 2399 1, 1, NULL, NULL); 2400 2401 /* 2402 * Do not set XferState to zero unless 2403 * receives a response from F/W 2404 */ 2405 if (ret >= 0) 2406 aac_fib_complete(fibptr); 2407 2408 /* 2409 * FIB should be freed only after 2410 * getting the response from the F/W 2411 */ 2412 if (ret != -ERESTARTSYS) 2413 aac_fib_free(fibptr); 2414 2415 out: 2416 return ret; 2417 } 2418 2419 /** 2420 * aac_command_thread - command processing thread 2421 * @data: Adapter to monitor 2422 * 2423 * Waits on the commandready event in it's queue. When the event gets set 2424 * it will pull FIBs off it's queue. It will continue to pull FIBs off 2425 * until the queue is empty. When the queue is empty it will wait for 2426 * more FIBs. 2427 */ 2428 2429 int aac_command_thread(void *data) 2430 { 2431 struct aac_dev *dev = data; 2432 DECLARE_WAITQUEUE(wait, current); 2433 unsigned long next_jiffies = jiffies + HZ; 2434 unsigned long next_check_jiffies = next_jiffies; 2435 long difference = HZ; 2436 2437 /* 2438 * We can only have one thread per adapter for AIF's. 2439 */ 2440 if (dev->aif_thread) 2441 return -EINVAL; 2442 2443 /* 2444 * Let the DPC know it has a place to send the AIF's to. 2445 */ 2446 dev->aif_thread = 1; 2447 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2448 set_current_state(TASK_INTERRUPTIBLE); 2449 dprintk ((KERN_INFO "aac_command_thread start\n")); 2450 while (1) { 2451 2452 aac_process_events(dev); 2453 2454 /* 2455 * Background activity 2456 */ 2457 if ((time_before(next_check_jiffies,next_jiffies)) 2458 && ((difference = next_check_jiffies - jiffies) <= 0)) { 2459 next_check_jiffies = next_jiffies; 2460 if (aac_adapter_check_health(dev) == 0) { 2461 difference = ((long)(unsigned)check_interval) 2462 * HZ; 2463 next_check_jiffies = jiffies + difference; 2464 } else if (!dev->queues) 2465 break; 2466 } 2467 if (!time_before(next_check_jiffies,next_jiffies) 2468 && ((difference = next_jiffies - jiffies) <= 0)) { 2469 struct timespec64 now; 2470 int ret; 2471 2472 /* Don't even try to talk to adapter if its sick */ 2473 ret = aac_adapter_check_health(dev); 2474 if (ret || !dev->queues) 2475 break; 2476 next_check_jiffies = jiffies 2477 + ((long)(unsigned)check_interval) 2478 * HZ; 2479 ktime_get_real_ts64(&now); 2480 2481 /* Synchronize our watches */ 2482 if (((NSEC_PER_SEC - (NSEC_PER_SEC / HZ)) > now.tv_nsec) 2483 && (now.tv_nsec > (NSEC_PER_SEC / HZ))) 2484 difference = HZ + HZ / 2 - 2485 now.tv_nsec / (NSEC_PER_SEC / HZ); 2486 else { 2487 if (now.tv_nsec > NSEC_PER_SEC / 2) 2488 ++now.tv_sec; 2489 2490 if (dev->sa_firmware) 2491 ret = 2492 aac_send_safw_hostttime(dev, &now); 2493 else 2494 ret = aac_send_hosttime(dev, &now); 2495 2496 difference = (long)(unsigned)update_interval*HZ; 2497 } 2498 next_jiffies = jiffies + difference; 2499 if (time_before(next_check_jiffies,next_jiffies)) 2500 difference = next_check_jiffies - jiffies; 2501 } 2502 if (difference <= 0) 2503 difference = 1; 2504 set_current_state(TASK_INTERRUPTIBLE); 2505 2506 if (kthread_should_stop()) 2507 break; 2508 2509 /* 2510 * we probably want usleep_range() here instead of the 2511 * jiffies computation 2512 */ 2513 schedule_timeout(difference); 2514 2515 if (kthread_should_stop()) 2516 break; 2517 } 2518 if (dev->queues) 2519 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait); 2520 dev->aif_thread = 0; 2521 return 0; 2522 } 2523 2524 int aac_acquire_irq(struct aac_dev *dev) 2525 { 2526 int i; 2527 int j; 2528 int ret = 0; 2529 2530 if (!dev->sync_mode && dev->msi_enabled && dev->max_msix > 1) { 2531 for (i = 0; i < dev->max_msix; i++) { 2532 dev->aac_msix[i].vector_no = i; 2533 dev->aac_msix[i].dev = dev; 2534 if (request_irq(pci_irq_vector(dev->pdev, i), 2535 dev->a_ops.adapter_intr, 2536 0, "aacraid", &(dev->aac_msix[i]))) { 2537 printk(KERN_ERR "%s%d: Failed to register IRQ for vector %d.\n", 2538 dev->name, dev->id, i); 2539 for (j = 0 ; j < i ; j++) 2540 free_irq(pci_irq_vector(dev->pdev, j), 2541 &(dev->aac_msix[j])); 2542 pci_disable_msix(dev->pdev); 2543 ret = -1; 2544 } 2545 } 2546 } else { 2547 dev->aac_msix[0].vector_no = 0; 2548 dev->aac_msix[0].dev = dev; 2549 2550 if (request_irq(dev->pdev->irq, dev->a_ops.adapter_intr, 2551 IRQF_SHARED, "aacraid", 2552 &(dev->aac_msix[0])) < 0) { 2553 if (dev->msi) 2554 pci_disable_msi(dev->pdev); 2555 printk(KERN_ERR "%s%d: Interrupt unavailable.\n", 2556 dev->name, dev->id); 2557 ret = -1; 2558 } 2559 } 2560 return ret; 2561 } 2562 2563 void aac_free_irq(struct aac_dev *dev) 2564 { 2565 int i; 2566 2567 if (aac_is_src(dev)) { 2568 if (dev->max_msix > 1) { 2569 for (i = 0; i < dev->max_msix; i++) 2570 free_irq(pci_irq_vector(dev->pdev, i), 2571 &(dev->aac_msix[i])); 2572 } else { 2573 free_irq(dev->pdev->irq, &(dev->aac_msix[0])); 2574 } 2575 } else { 2576 free_irq(dev->pdev->irq, dev); 2577 } 2578 if (dev->msi) 2579 pci_disable_msi(dev->pdev); 2580 else if (dev->max_msix > 1) 2581 pci_disable_msix(dev->pdev); 2582 } 2583